A Solution Manual For

Differential equations and linear algebra, 3rd ed., Edwards and Penney

Nasser M. Abbasi

May 15, 2024

Contents

1 Section 1.2. Integrals as general and particular solutions. Page 16 2
2 Section 1.3. Slope fields and solution curves. Page 26
3 Section 1.4. Separable equations. Page 43
230
4 Section 1.5. Linear first order equations. Page 56
5 Section 1.6, Substitution methods and exact equations. Page 74947
6 Chapter 1 review problems. Page 78
7 Section 5.1, second order linear equations. Page 2991841
8 Section 5.2, second order linear equations. Page 311
9 Section 5.3, second order linear equations. Page $323 \quad 2356$
10 Section 5.4, Mechanical Vibrations. Page 337
2532
11 Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351

12 Section 5.6, Forced Oscillations and Resonance. Page 362
13 Section 7.2, Matrices and Linear systems. Page 417
1 Section 1.2. Integrals as general and particular solutions. Page 16
1.1 problem 1 3
1.2 problem 2 7
1.3 problem 3 11
1.4 problem 4 15
1.5 problem 5 19
1.6 problem 6 23
1.7 problem 7 27
1.8 problem 8 31
1.9 problem 9 35
1.10 problem 10 39

1.1 problem 1

1.1.1 Existence and uniqueness analysis 3
1.1.2 Solving as quadrature ode . 4
1.1.3 Maple step by step solution . 5

Internal problem ID [1]
Internal file name [OUTPUT/1_Sunday_June_05_2022_01_33_34_AM_9550685/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=1+2 x
$$

With initial conditions

$$
[y(0)=3]
$$

1.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =1+2 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=1+2 x
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1+2 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 1+2 x \mathrm{~d} x \\
& =x^{2}+c_{1}+x
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2}+x+3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}+x+3 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x^{2}+x+3
$$

Verified OK.

1.1.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=1+2 x, y(0)=3\right]
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int(1+2 x) d x+c_{1}
$$

- Evaluate integral

$$
y=x^{2}+c_{1}+x
$$

- \quad Solve for y

$$
y=x^{2}+c_{1}+x
$$

- Use initial condition $y(0)=3$

$$
3=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=3
$$

- \quad Substitute $c_{1}=3$ into general solution and simplify

$$
y=x^{2}+x+3
$$

- Solution to the IVP

$$
y=x^{2}+x+3
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

```
dsolve([diff(y(x),x) = 1+2*x,y(0) = 3],y(x), singsol=all)
```

$$
y(x)=x^{2}+x+3
$$

\checkmark Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 11

```
DSolve[{y'[x]==1+2*x,y[0]==3},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{2}+x+3
$$

1.2 problem 2

1.2.1 Existence and uniqueness analysis 7
1.2.2 Solving as quadrature ode . 8
1.2.3 Maple step by step solution . 9

Internal problem ID [2]
Internal file name [OUTPUT/2_Sunday_June_05_2022_01_33_35_AM_53084472/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=(-2+x)^{2}
$$

With initial conditions

$$
[y(2)=1]
$$

1.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =(-2+x)^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=(-2+x)^{2}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=(-2+x)^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

1.2.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int(-2+x)^{2} \mathrm{~d} x \\
& =\frac{(-2+x)^{3}}{3}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{3} x^{3}-2 x^{2}+4 x-\frac{5}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3} x^{3}-2 x^{2}+4 x-\frac{5}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{1}{3} x^{3}-2 x^{2}+4 x-\frac{5}{3}
$$

Verified OK.

1.2.3 Maple step by step solution

Let's solve
$\left[y^{\prime}=(-2+x)^{2}, y(2)=1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int(-2+x)^{2} d x+c_{1}$
- Evaluate integral

$$
y=\frac{(-2+x)^{3}}{3}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{3} x^{3}-2 x^{2}+4 x-\frac{8}{3}+c_{1}
$$

- Use initial condition $y(2)=1$

$$
1=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=1
$$

- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=\frac{1}{3} x^{3}-2 x^{2}+4 x-\frac{5}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{1}{3} x^{3}-2 x^{2}+4 x-\frac{5}{3}
$$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([diff(y(x),x) = (-2+x)~2,y(2) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{(-2+x)^{3}}{3}+1
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 22
DSolve[\{y' $[x]==(-2+x) \wedge 2, y[2]==1\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3}\left(x^{3}-6 x^{2}+12 x-5\right)
$$

1.3 problem 3

1.3.1 Existence and uniqueness analysis 11
1.3.2 Solving as quadrature ode . 12
1.3.3 Maple step by step solution . 13

Internal problem ID [3]
Internal file name [OUTPUT/3_Sunday_June_05_2022_01_33_36_AM_71634107/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\sqrt{x}
$$

With initial conditions

$$
[y(4)=0]
$$

1.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\sqrt{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\sqrt{x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=4$ is inside this domain. The domain of $q(x)=\sqrt{x}$ is

$$
\{0 \leq x\}
$$

And the point $x_{0}=4$ is also inside this domain. Hence solution exists and is unique.

1.3.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \sqrt{x} \mathrm{~d} x \\
& =\frac{2 x^{\frac{3}{2}}}{3}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=4$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\frac{16}{3}+c_{1} \\
& c_{1}=-\frac{16}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 x^{\frac{3}{2}}}{3}-\frac{16}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{\frac{3}{2}}}{3}-\frac{16}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 x^{\frac{3}{2}}}{3}-\frac{16}{3}
$$

Verified OK.

1.3.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\sqrt{x}, y(4)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \sqrt{x} d x+c_{1}$
- Evaluate integral

$$
y=\frac{2 x^{\frac{3}{2}}}{3}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{2 x^{\frac{3}{2}}}{3}+c_{1}
$$

- Use initial condition $y(4)=0$

$$
0=\frac{8 \sqrt{4}}{3}+c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=-\frac{8 \sqrt{4}}{3}$
- Substitute $c_{1}=-\frac{8 \sqrt{4}}{3}$ into general solution and simplify
$y=\frac{2 x^{\frac{3}{2}}}{3}-\frac{16}{3}$
- \quad Solution to the IVP
$y=\frac{2 x^{\frac{3}{2}}}{3}-\frac{16}{3}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

```
dsolve([diff(y(x),x) = x^(1/2),y(4) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{2 x^{\frac{3}{2}}}{3}-\frac{16}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 16

```
DSolve[{y'[x] == x^(1/2),y[4]==0},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{2}{3}\left(x^{3 / 2}-8\right)
$$

1.4 problem 4

1.4.1 Existence and uniqueness analysis 15
1.4.2 Solving as quadrature ode . 16
1.4.3 Maple step by step solution . 17

Internal problem ID [4]
Internal file name [OUTPUT/4_Sunday_June_05_2022_01_33_37_AM_33243587/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x^{2}}
$$

With initial conditions

$$
[y(1)=5]
$$

1.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x^{2}}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

1.4.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x^{2}} \mathrm{~d} x \\
& =-\frac{1}{x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=c_{1}-1 \\
c_{1}=6
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-1+6 x}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-1+6 x}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-1+6 x}{x}
$$

Verified OK.

1.4.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{x^{2}}, y(1)=5\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x^{2}} d x+c_{1}$
- Evaluate integral

$$
y=-\frac{1}{x}+c_{1}
$$

- \quad Solve for y
$y=\frac{c_{1} x-1}{x}$
- Use initial condition $y(1)=5$

$$
5=c_{1}-1
$$

- \quad Solve for c_{1}

$$
c_{1}=6
$$

- \quad Substitute $c_{1}=6$ into general solution and simplify

$$
y=\frac{-1+6 x}{x}
$$

- \quad Solution to the IVP

$$
y=\frac{-1+6 x}{x}
$$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve([diff(y(x),x) = 1/x^2,y(1) = 5],y(x), singsol=all)
```

$$
y(x)=-\frac{1}{x}+6
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12
DSolve[\{y' $\left.[\mathrm{x}]==1 / \mathrm{x}^{\wedge} 2, \mathrm{y}[1]==5\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow 6-\frac{1}{x}
$$

1.5 problem 5

1.5.1 Existence and uniqueness analysis 19
1.5.2 Solving as quadrature ode . 20
1.5.3 Maple step by step solution . 21

Internal problem ID [5]
Internal file name [OUTPUT/5_Sunday_June_05_2022_01_33_38_AM_47063498/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
y^{\prime}=\frac{1}{\sqrt{2+x}}
$$

With initial conditions

$$
[y(2)=-1]
$$

1.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{1}{\sqrt{2+x}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{\sqrt{2+x}}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{1}{\sqrt{2+x}}$ is

$$
\{-2<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

1.5.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{\sqrt{2+x}} \mathrm{~d} x \\
& =2 \sqrt{2+x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=4+c_{1} \\
c_{1}=-5
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \sqrt{2+x}-5
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \sqrt{2+x}-5 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=2 \sqrt{2+x}-5
$$

Verified OK.

1.5.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{\sqrt{2+x}}, y(2)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{1}{\sqrt{2+x}} d x+c_{1}
$$

- Evaluate integral

$$
y=2 \sqrt{2+x}+c_{1}
$$

- \quad Solve for y

$$
y=2 \sqrt{2+x}+c_{1}
$$

- Use initial condition $y(2)=-1$

$$
-1=2 \sqrt{4}+c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=-2 \sqrt{4}-1$
- Substitute $c_{1}=-2 \sqrt{4}-1$ into general solution and simplify

$$
y=2 \sqrt{2+x}-5
$$

- \quad Solution to the IVP

$$
y=2 \sqrt{2+x}-5
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([diff(y(x),x) = 1/(2+x)^(1/2),y(2) = -1],y(x), singsol=all)
```

$$
y(x)=2 \sqrt{2+x}-5
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 16
DSolve[\{y' $\left.[\mathrm{x}]==1 /(2+\mathrm{x})^{\wedge}(1 / 2), \mathrm{y}[2]==-1\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 2 \sqrt{x+2}-5
$$

1.6 problem 6

1.6.1 Existence and uniqueness analysis 23
1.6.2 Solving as quadrature ode . 24
1.6.3 Maple step by step solution . 25

Internal problem ID [6]
Internal file name [OUTPUT/6_Sunday_June_05_2022_01_33_39_AM_3851012/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x \sqrt{x^{2}+9}
$$

With initial conditions

$$
[y(-4)=0]
$$

1.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =x \sqrt{x^{2}+9}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=x \sqrt{x^{2}+9}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-4$ is inside this domain. The domain of $q(x)=x \sqrt{x^{2}+9}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-4$ is also inside this domain. Hence solution exists and is unique.

1.6.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \sqrt{x^{2}+9} \mathrm{~d} x \\
& =\frac{\left(x^{2}+9\right)^{\frac{3}{2}}}{3}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-4$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\frac{125}{3}+c_{1} \\
& c_{1}=-\frac{125}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(x^{2}+9\right)^{\frac{3}{2}}}{3}-\frac{125}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x^{2}+9\right)^{\frac{3}{2}}}{3}-\frac{125}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(x^{2}+9\right)^{\frac{3}{2}}}{3}-\frac{125}{3}
$$

Verified OK.

1.6.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=x \sqrt{x^{2}+9}, y(-4)=0\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int x \sqrt{x^{2}+9} d x+c_{1}
$$

- Evaluate integral

$$
y=\frac{\left(x^{2}+9\right)^{\frac{3}{2}}}{3}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(x^{2}+9\right)^{\frac{3}{2}}}{3}+c_{1}
$$

- Use initial condition $y(-4)=0$

$$
0=\frac{25 \sqrt{25}}{3}+c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{25 \sqrt{25}}{3}
$$

- Substitute $c_{1}=-\frac{25 \sqrt{25}}{3}$ into general solution and simplify

$$
y=\frac{x^{2} \sqrt{x^{2}+9}}{3}+3 \sqrt{x^{2}+9}-\frac{125}{3}
$$

- Solution to the IVP

$$
y=\frac{x^{2} \sqrt{x^{2}+9}}{3}+3 \sqrt{x^{2}+9}-\frac{125}{3}
$$

Maple trace

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(y(x),x) = x*(x^2+9)^(1/2),y(-4) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{x^{2} \sqrt{x^{2}+9}}{3}+3 \sqrt{x^{2}+9}-\frac{125}{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 20
DSolve[\{y' $\left.[x]==x *\left(x^{\wedge} 2+9\right)^{\wedge}(1 / 2), y[-4]==0\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3}\left(\left(x^{2}+9\right)^{3 / 2}-125\right)
$$

1.7 problem 7

1.7.1 Existence and uniqueness analysis 27
1.7.2 Solving as quadrature ode . 28
1.7.3 Maple step by step solution . 29

Internal problem ID [7]
Internal file name [OUTPUT/7_Sunday_June_05_2022_01_33_40_AM_84918379/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{10}{x^{2}+1}
$$

With initial conditions

$$
[y(0)=0]
$$

1.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{10}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{10}{x^{2}+1}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{10}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.7.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{10}{x^{2}+1} \mathrm{~d} x \\
& =10 \arctan (x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=10 \arctan (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=10 \arctan (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=10 \arctan (x)
$$

Verified OK.

1.7.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{10}{x^{2}+1}, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{10}{x^{2}+1} d x+c_{1}$
- Evaluate integral

$$
y=10 \arctan (x)+c_{1}
$$

- \quad Solve for y

$$
y=10 \arctan (x)+c_{1}
$$

- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=10 \arctan (x)$
- \quad Solution to the IVP
$y=10 \arctan (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 8

```
dsolve([diff(y(x),x) = 10/(x^2+1),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=10 \arctan (x)
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 9

```
DSolve[{y'[x]==10/(x^2+1),y[0]==0},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 10 \arctan (x)
$$

1.8 problem 8

1.8.1 Existence and uniqueness analysis 31
1.8.2 Solving as quadrature ode . 32
1.8.3 Maple step by step solution . 33

Internal problem ID [8]
Internal file name [OUTPUT/8_Sunday_June_05_2022_01_33_41_AM_47998857/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\cos (2 x)
$$

With initial conditions

$$
[y(0)=1]
$$

1.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\cos (2 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\cos (2 x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\cos (2 x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.8.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \cos (2 x) \mathrm{d} x \\
& =\frac{\sin (2 x)}{2}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sin (2 x)}{2}+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (2 x)}{2}+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sin (2 x)}{2}+1
$$

Verified OK.

1.8.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\cos (2 x), y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \cos (2 x) d x+c_{1}$
- Evaluate integral
$y=\frac{\sin (2 x)}{2}+c_{1}$
- \quad Solve for y

$$
y=\frac{\sin (2 x)}{2}+c_{1}
$$

- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=1
$$

- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=\frac{\sin (2 x)}{2}+1
$$

- \quad Solution to the IVP

$$
y=\frac{\sin (2 x)}{2}+1
$$

Maple trace
${ }^{-}$Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

$$
\begin{gathered}
\operatorname{dsolve}([\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\cos (2 * \mathrm{x}), \mathrm{y}(0)=1], \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
y(x)=\frac{\sin (2 x)}{2}+1
\end{gathered}
$$

\checkmark Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 12

```
DSolve[{y'[x] == Cos[2*x],y[0]==1},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \sin (x) \cos (x)+1
$$

1.9 problem 9

1.9.1 Existence and uniqueness analysis 35
1.9.2 Solving as quadrature ode . 36
1.9.3 Maple step by step solution . 37

Internal problem ID [9]
Internal file name [OUTPUT/9_Sunday_June_05_2022_01_33_42_AM_384554/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
y^{\prime}=\frac{1}{\sqrt{-x^{2}+1}}
$$

With initial conditions

$$
[y(0)=0]
$$

1.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{1}{\sqrt{-x^{2}+1}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{\sqrt{-x^{2}+1}}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{\sqrt{-x^{2}+1}}$ is

$$
\{-1<x<1\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.9.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{\sqrt{-x^{2}+1}} \mathrm{~d} x \\
& =\arcsin (x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\arcsin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\arcsin (x)
$$

Verified OK.

1.9.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{\sqrt{-x^{2}+1}}, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{1}{\sqrt{-x^{2}+1}} d x+c_{1}
$$

- Evaluate integral

$$
y=\arcsin (x)+c_{1}
$$

- \quad Solve for y

$$
y=\arcsin (x)+c_{1}
$$

- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\arcsin (x)$
- \quad Solution to the IVP
$y=\arcsin (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 6

```
dsolve([diff(y(x),x) = 1/(-x^2+1)^(1/2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\arcsin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 31
DSolve[\{y' $\left.[x]==1 /\left(-x^{\wedge} 2+1\right)^{\wedge}(1 / 2), y[0]==0\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}\left(\pi-4 \arctan \left(\frac{\sqrt{1-x^{2}}}{x+1}\right)\right)
$$

1.10 problem 10

1.10.1 Existence and uniqueness analysis 39
1.10.2 Solving as quadrature ode . 40
1.10.3 Maple step by step solution . 41

Internal problem ID [10]
Internal file name [DUTPUT/10_Sunday_June_05_2022_01_33_43_AM_98532069/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.2. Integrals as general and particular solutions. Page 16
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x \mathrm{e}^{-x}
$$

With initial conditions

$$
[y(0)=1]
$$

1.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=x \mathrm{e}^{-x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=x \mathrm{e}^{-x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=x \mathrm{e}^{-x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.10.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{-x} \mathrm{~d} x \\
& =-(x+1) \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-1 \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-x \mathrm{e}^{-x}-\mathrm{e}^{-x}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x \mathrm{e}^{-x}-\mathrm{e}^{-x}+2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-x \mathrm{e}^{-x}-\mathrm{e}^{-x}+2
$$

Verified OK.

1.10.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{x}{\mathrm{e}^{x}}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{x}{\mathrm{e}^{x}} d x+c_{1}$
- Evaluate integral
$y=-\frac{x+1}{\mathrm{e}^{x}}+c_{1}$
- \quad Solve for y

$$
y=\frac{c_{1} \mathrm{e}^{x}-x-1}{\mathrm{e}^{x}}
$$

- Use initial condition $y(0)=1$
$1=c_{1}-1$
- \quad Solve for c_{1}

$$
c_{1}=2
$$

- \quad Substitute $c_{1}=2$ into general solution and simplify

$$
y=2+(-x-1) \mathrm{e}^{-x}
$$

- \quad Solution to the IVP

$$
y=2+(-x-1) \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(y(x),x) = x/exp(x),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=2+(-x-1) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21
DSolve[\{y' $[x]==x / \operatorname{Exp}[x], y[0]==1\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(-x+2 e^{x}-1\right)
$$

2 Section 1.3. Slope fields and solution curves. Page 26

2.1 problem 1 44
2.2 problem 2 57
2.3 problem 3 70
2.4 problem 4 83
2.5 problem 5 96
2.6 problem 6 111
2.7 problem 8 126
2.8 problem 9 139
2.9 problem 11 152
2.10 problem 12 168
2.11 problem 13 180
2.12 problem 14 184
2.13 problem 17 188
2.14 problem 18 205
2.15 problem 19 223
2.16 problem 20 226

2.1 problem 1

2.1.1 Solving as linear ode . 44
2.1.2 Solving as first order ode lie symmetry lookup ode 46
2.1.3 Solving as exact ode . 50
2.1.4 Maple step by step solution . 54

Internal problem ID [11]
Internal file name [OUTPUT/11_Sunday_June_05_2022_01_33_44_AM_42995819/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=-\sin (x)
$$

2.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-\sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=-\sin (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-\sin (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)(-\sin (x)) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(-\sin (x) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int-\sin (x) \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=\frac{\cos (x) \mathrm{e}^{x}}{2}-\frac{\sin (x) \mathrm{e}^{x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(\frac{\cos (x) \mathrm{e}^{x}}{2}-\frac{\sin (x) \mathrm{e}^{x}}{2}\right)+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=-\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot

Verification of solutions

$$
y=-\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

2.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\sin (x)-y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 11: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\sin (x)-y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\sin (x) \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\sin (R) \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\frac{\mathrm{e}^{R}(\cos (R)-\sin (R))}{2} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{2}+c_{1}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{-x}\left(\sin (x) \mathrm{e}^{x}-\cos (x) \mathrm{e}^{x}-2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\sin (x)-y$		$\frac{d S}{d R}=-\sin (R) \mathrm{e}^{R}$
		$\rightarrow \rightarrow$
1 $1 \times 1 \times \pm \times 1$		
		$\rightarrow \rightarrow$
$\xrightarrow[1]{ }$	$R=x$	$\xrightarrow{\rightarrow}$
	$S=\mathrm{e}^{x} y$	
		$\rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \gg-\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}\left(\sin (x) \mathrm{e}^{x}-\cos (x) \mathrm{e}^{x}-2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}\left(\sin (x) \mathrm{e}^{x}-\cos (x) \mathrm{e}^{x}-2 c_{1}\right)}{2}
$$

Verified OK.

2.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-\sin (x)-y) \mathrm{d} x \\
(\sin (x)+y) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\sin (x)+y \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\sin (x)+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(\sin (x)+y) \\
& =(\sin (x)+y) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left((\sin (x)+y) \mathrm{e}^{x}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(\sin (x)+y) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =\frac{(2 y-\cos (x)+\sin (x)) \mathrm{e}^{x}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(2 y-\cos (x)+\sin (x)) \mathrm{e}^{x}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(2 y-\cos (x)+\sin (x)) \mathrm{e}^{x}}{2}
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{-x}\left(\sin (x) \mathrm{e}^{x}-\cos (x) \mathrm{e}^{x}-2 c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}\left(\sin (x) \mathrm{e}^{x}-\cos (x) \mathrm{e}^{x}-2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}\left(\sin (x) \mathrm{e}^{x}-\cos (x) \mathrm{e}^{x}-2 c_{1}\right)}{2}
$$

Verified OK.

2.1.4 Maple step by step solution

Let's solve

$$
y^{\prime}+y=-\sin (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\sin (x)-y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=-\sin (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=-\mu(x) \sin (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\mu(x) \sin (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\mu(x) \sin (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-\mu(x) \sin (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int-\sin (x) \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{\sin (x) \mathrm{e}^{x}}{2}+\frac{\cos (x) \mathrm{e}^{x}}{2}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=-\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x) = - sin(x)-y(x),y(x), singsol=all)
```

$$
y(x)=\frac{\cos (x)}{2}-\frac{\sin (x)}{2}+\mathrm{e}^{-x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 25
DSolve[y' $[x]==-\operatorname{Sin}[x]-y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}\left(-\sin (x)+\cos (x)+2 c_{1} e^{-x}\right)
$$

2.2 problem 2

2.2.1 Solving as linear ode . 57
2.2.2 Solving as first order ode lie symmetry lookup ode 59
2.2.3 Solving as exact ode . 63
2.2.4 Maple step by step solution . 67

Internal problem ID [12]
Internal file name [OUTPUT/12_Sunday_June_05_2022_01_33_45_AM_10607916/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=x
$$

2.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(x \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} y=\int x \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=-(x+1) \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
y=-\mathrm{e}^{x}(x+1) \mathrm{e}^{-x}+c_{1} \mathrm{e}^{x}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{x}-x-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-x-1 \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}-x-1
$$

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x+y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 14: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x+y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{-x} y \\
S_{y} & =\mathrm{e}^{-x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-(R+1) \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x} y=-(x+1) \mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
(x+y+1) \mathrm{e}^{-x}-c_{1}=0
$$

Which gives

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x+y$		$\frac{d S}{d R}=R \mathrm{e}^{-R}$
		相
:		
	$R=x$	
	$S=\mathrm{e}^{-x} y$	
		\rightarrow
		\rightarrow
		$\xrightarrow{\rightarrow}$
餏		
$\cdots+\cdots+H^{+} \rightarrow$		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot
Verification of solutions

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(x+y) \mathrm{d} x \\
(-x-y) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x-y \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}(-x-y) \\
& =-\mathrm{e}^{-x}(x+y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}(1) \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\mathrm{e}^{-x}(x+y)\right)+\left(\mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{-x}(x+y) \mathrm{d} x \\
\phi & =(x+y+1) \mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(x+y+1) \mathrm{e}^{-x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(x+y+1) \mathrm{e}^{-x}
$$

The solution becomes

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot
Verification of solutions

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

2.2.4 Maple step by step solution

Let's solve
$y^{\prime}-y=x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=x+y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}-y=x
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y\right)=\mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x}$
$y=\frac{\int x \mathrm{e}^{-x} d x+c_{1}}{\mathrm{e}^{-x}}$
- Evaluate the integrals on the rhs
$y=\frac{-(x+1) \mathrm{e}^{-x}+c_{1}}{\mathrm{e}^{-x}}$
- Simplify

$$
y=c_{1} \mathrm{e}^{x}-x-1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve(diff $(y(x), x)=x+y(x), y(x)$, singsol=all)

$$
y(x)=-x-1+\mathrm{e}^{x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 16
DSolve[y' $[x]==x+y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x+c_{1} e^{x}-1
$$

2.3 problem 3

2.3.1 Solving as linear ode 70
2.3.2 Solving as first order ode lie symmetry lookup ode 72
2.3.3 Solving as exact ode 76
2.3.4 Maple step by step solution 80

Internal problem ID [13]
Internal file name [OUTPUT/13_Sunday_June_05_2022_01_33_46_AM_26965091/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=-\sin (x)
$$

2.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-\sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=-\sin (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-\sin (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)(-\sin (x)) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(-\sin (x) \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} y=\int-\sin (x) \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=\frac{\cos (x) \mathrm{e}^{-x}}{2}+\frac{\sin (x) \mathrm{e}^{-x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
y=\mathrm{e}^{x}\left(\frac{\cos (x) \mathrm{e}^{-x}}{2}+\frac{\sin (x) \mathrm{e}^{-x}}{2}\right)+c_{1} \mathrm{e}^{x}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{x}+\frac{\sin (x)}{2}+\frac{\cos (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\frac{\sin (x)}{2}+\frac{\cos (x)}{2}
$$

Verified OK.

2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\sin (x)+y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 17: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\sin (x)+y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{-x} y \\
S_{y} & =\mathrm{e}^{-x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\sin (x) \mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\sin (R) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\frac{\mathrm{e}^{-R}(\cos (R)+\sin (R))}{2} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x} y=\frac{\mathrm{e}^{-x}(\cos (x)+\sin (x))}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x} y=\frac{\mathrm{e}^{-x}(\cos (x)+\sin (x))}{2}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{x}\left(\sin (x) \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{-x}+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\sin (x)+y$		$\frac{d S}{d R}=-\sin (R) \mathrm{e}^{-R}$
		$1418 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ -
		$14{ }^{1}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}\left(\sin (x) \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{-x}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}\left(\sin (x) \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{-x}+2 c_{1}\right)}{2}
$$

Verified OK.

2.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-\sin (x)+y) \mathrm{d} x \\
(\sin (x)-y) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\sin (x)-y \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\sin (x)-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}(\sin (x)-y) \\
& =(\sin (x)-y) \mathrm{e}^{-x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}(1) \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left((\sin (x)-y) \mathrm{e}^{-x}\right)+\left(\mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(\sin (x)-y) \mathrm{e}^{-x} \mathrm{~d} x \\
\phi & =-\frac{\mathrm{e}^{-x}(-2 y+\cos (x)+\sin (x))}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{-x}(-2 y+\cos (x)+\sin (x))}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{-x}(-2 y+\cos (x)+\sin (x))}{2}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{x}\left(\sin (x) \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{-x}+2 c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}\left(\sin (x) \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{-x}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}\left(\sin (x) \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{-x}+2 c_{1}\right)}{2}
$$

Verified OK.

2.3.4 Maple step by step solution

Let's solve

$$
y^{\prime}-y=-\sin (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\sin (x)+y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=-\sin (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y\right)=-\mu(x) \sin (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\mu(x) \sin (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\mu(x) \sin (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-\mu(x) \sin (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x}$
$y=\frac{\int-\sin (x) \mathrm{e}^{-x} d x+c_{1}}{\mathrm{e}^{-x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\sin (x) \mathrm{e}^{-x}}{2}+\frac{\cos (x) \mathrm{e}^{-x}}{2}+c_{1}}{\mathrm{e}^{-x}}$
- Simplify
$y=c_{1} \mathrm{e}^{x}+\frac{\sin (x)}{2}+\frac{\cos (x)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x) = - sin(x)+y(x),y(x), singsol=all)
```

$$
y(x)=\frac{\cos (x)}{2}+\frac{\sin (x)}{2}+\mathrm{e}^{x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 21
DSolve[y'[x] == -Sin $[x]+y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}\left(\sin (x)+\cos (x)+2 c_{1} e^{x}\right)
$$

2.4 problem 4

2.4.1 Solving as linear ode 83
2.4.2 Solving as first order ode lie symmetry lookup ode 85
2.4.3 Solving as exact ode 89
2.4.4 Maple step by step solution 93

Internal problem ID [14]
Internal file name [OUTPUT/14_Sunday_June_05_2022_01_33_47_AM_82648825/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=x
$$

2.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=x
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(x \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int x \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}(x-1) \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=x-1+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x-1+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
y=x-1+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

2.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x-y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 20: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x-y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=(R-1) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=(x-1) \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=(x-1) \mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x-y$		$\frac{d S}{d R}=R \mathrm{e}^{R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-5(R)]{ }$
发:		-
	$R=x$	$\rightarrow \rightarrow \rightarrow \infty$
	$S=\mathrm{e}^{x} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{\rightarrow \rightarrow-\rightarrow \rightarrow+}$
		\rightarrow
		$\rightarrow+$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow+]{ }$
		-

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(x-y) \mathrm{d} x \\
(-x+y) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x+y \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(-x+y) \\
& =-\mathrm{e}^{x}(x-y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{x}(x-y)\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}(x-y) \mathrm{d} x \\
\phi & =-(x-y-1) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-(x-y-1) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-(x-y-1) \mathrm{e}^{x}
$$

The solution becomes

$$
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot
Verification of solutions

$$
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.4.4 Maple step by step solution

Let's solve
$y^{\prime}+y=x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=x-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+y\right)=\mu(x) x
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int x \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{(x-1) \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=x-1+c_{1} \mathrm{e}^{-x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve(diff $(y(x), x)=x-y(x), y(x)$, singsol=all)

$$
y(x)=x-1+\mathrm{e}^{-x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 16
DSolve[y'[x] == $x-y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x+c_{1} e^{-x}-1
$$

2.5 problem 5

2.5.1 Solving as linear ode 96
2.5.2 Solving as homogeneousTypeD2 ode 98
2.5.3 Solving as first order ode lie symmetry lookup ode 100
2.5.4 Solving as exact ode 104
2.5.5 Maple step by step solution 108
Internal problem ID [15]Internal file name [DUTPUT/15_Sunday_June_05_2022_01_33_48_AM_98169401/index.tex]

Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_linear, 'class A`]]

$$
y^{\prime}-y=1-x
$$

2.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=1-x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=1-x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(1-x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)(1-x) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(-(x-1) \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} y=\int-(x-1) \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=x \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
y=\mathrm{e}^{x} x \mathrm{e}^{-x}+c_{1} \mathrm{e}^{x}
$$

which simplifies to

$$
y=x+c_{1} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+c_{1} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot
Verification of solutions

$$
y=x+c_{1} \mathrm{e}^{x}
$$

Verified OK.

2.5.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-u(x) x=1-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(x-1)(u-1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{x-1}{x}$ and $g(u)=u-1$. Integrating both sides gives

$$
\frac{1}{u-1} d u=\frac{x-1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{u-1} d u & =\int \frac{x-1}{x} d x \\
\ln (u-1) & =x-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u-1=\mathrm{e}^{x-\ln (x)+c_{2}}
$$

Which simplifies to

$$
u-1=c_{3} \mathrm{e}^{x-\ln (x)}
$$

Which simplifies to

$$
u(x)=\frac{c_{3} \mathrm{e}^{x} \mathrm{e}^{c_{2}}}{x}+1
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x\left(\frac{c_{3} \mathrm{e}^{x} \mathrm{e}^{c_{2}}}{x}+1\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\frac{c_{3} \mathrm{e}^{x} \mathrm{e}^{c_{2}}}{x}+1\right) \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot
Verification of solutions

$$
y=x\left(\frac{c_{3} \mathrm{e}^{x} \mathrm{e}^{c_{2}}}{x}+1\right)
$$

Verified OK.

2.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-x+y+1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-x+y+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{-x} y \\
S_{y} & =\mathrm{e}^{-x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(1-x) \mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(1-R) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{-R} R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x} y=x \mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x} y=x \mathrm{e}^{-x}+c_{1}
$$

Which gives

$$
y=\left(x \mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-x+y+1$		$\frac{d S}{d R}=(1-R) \mathrm{e}^{-R}$
+ + + 4		
	$R=x$	+1)
	$S=\mathrm{e}^{-x} y$	
	$S=\mathrm{e}^{-x} y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot
Verification of solutions

$$
y=\left(x \mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

2.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-x+y+1) \mathrm{d} x \\
(x-y-1) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=x-y-1 \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x-y-1) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}(x-y-1) \\
& =(x-y-1) \mathrm{e}^{-x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}(1) \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((x-y-1) \mathrm{e}^{-x}\right)+\left(\mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(x-y-1) \mathrm{e}^{-x} \mathrm{~d} x \\
\phi & =-(x-y) \mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-(x-y) \mathrm{e}^{-x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-(x-y) \mathrm{e}^{-x}
$$

The solution becomes

$$
y=\left(x \mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot
Verification of solutions

$$
y=\left(x \mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

2.5.5 Maple step by step solution

Let's solve
$y^{\prime}-y=1-x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=1-x+y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=1-x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}-y\right)=\mu(x)(1-x)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)(1-x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)(1-x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)(1-x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x}$
$y=\frac{\int(1-x) \mathrm{e}^{-x} d x+c_{1}}{\mathrm{e}^{-x}}$
- Evaluate the integrals on the rhs
$y=\frac{x \mathrm{e}^{-x}+c_{1}}{\mathrm{e}^{-x}}$
- Simplify
$y=x+c_{1} \mathrm{e}^{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x})=1-\mathrm{x}+\mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=x+\mathrm{e}^{x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 13
DSolve[y'[x] == 1-x+y[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x+c_{1} e^{x}
$$

2.6 problem 6

2.6.1 Solving as linear ode . 111
2.6.2 Solving as homogeneousTypeD2 ode 113
2.6.3 Solving as first order ode lie symmetry lookup ode 115
2.6.4 Solving as exact ode . 119
2.6.5 Maple step by step solution . 123

Internal problem ID [16]
Internal file name [OUTPUT/16_Sunday_June_05_2022_01_33_48_AM_22920425/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=x+1
$$

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =x+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=x+1
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x+1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)(x+1) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left((x+1) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int(x+1) \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=x \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{x} x \mathrm{e}^{-x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=x+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot

Verification of solutions

$$
y=x+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

2.6.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+u(x) x=x+1
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(x+1)(-u+1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{x+1}{x}$ and $g(u)=-u+1$. Integrating both sides gives

$$
\frac{1}{-u+1} d u=\frac{x+1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{-u+1} d u & =\int \frac{x+1}{x} d x \\
-\ln (u-1) & =x+\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{u-1}=\mathrm{e}^{x+\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{u-1}=c_{3} \mathrm{e}^{x+\ln (x)}
$$

Which simplifies to

$$
u(x)=\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3} x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3}} \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3}}
$$

Verified OK.

2.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x-y+1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 26: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x-y+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(x+1) \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(R+1) \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R} R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=x \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=x \mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x-y+1$		$\frac{d S}{d R}=(R+1) \mathrm{e}^{R}$
! :		$\rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }+(R)^{\rightarrow}$
		\rightarrow
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow$ -
		$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow-2 \rightarrow 07+19+19+1}$
	$S=\mathrm{e}^{x} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow$
		1

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 29: Slope field plot

Verification of solutions

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(x-y+1) \mathrm{d} x \\
(-1-x+y) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-1-x+y \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-1-x+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(-1-x+y) \\
& =-\mathrm{e}^{x}(x-y+1)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{x}(x-y+1)\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}(x-y+1) \mathrm{d} x \\
\phi & =-\mathrm{e}^{x}(x-y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{x}(x-y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{x}(x-y)
$$

The solution becomes

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot
Verification of solutions

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.6.5 Maple step by step solution

Let's solve
$y^{\prime}+y=x+1$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative

$$
y^{\prime}=1+x-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=x+1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x)(x+1)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)(x+1) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)(x+1) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)(x+1) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int(x+1) \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{x \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=x+c_{1} \mathrm{e}^{-x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve(diff $(y(x), x)=1+x-y(x), y(x)$, singsol=all)

$$
y(x)=x+\mathrm{e}^{-x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 15
DSolve[y'[x] == $1+x-y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x+c_{1} e^{-x}
$$

2.7 problem 8

$$
\text { 2.7.1 Solving as linear ode . } 126
$$

2.7.2 Solving as first order ode lie symmetry lookup ode 128
2.7.3 Solving as exact ode . 132
2.7.4 Maple step by step solution . 136

Internal problem ID [17]
Internal file name [OUTPUT/17_Sunday_June_05_2022_01_33_48_AM_76142612/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=x^{2}
$$

2.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=x^{2}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(x^{2} \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int x^{2} \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=\left(x^{2}-2 x+2\right) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(x^{2}-2 x+2\right) \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=x^{2}-2 x+2+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}-2 x+2+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot

Verification of solutions

$$
y=x^{2}-2 x+2+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x^{2}-y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 29: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2}-y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{2} \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2} \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\left(R^{2}-2 R+2\right) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=\left(x^{2}-2 x+2\right) \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=\left(x^{2}-2 x+2\right) \mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(x^{2}-y\right) \mathrm{d} x \\
\left(-x^{2}+y\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}+y \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(-x^{2}+y\right) \\
& =-\mathrm{e}^{x}\left(x^{2}-y\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{x}\left(x^{2}-y\right)\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}\left(x^{2}-y\right) \mathrm{d} x \\
\phi & =-\left(x^{2}-2 x-y+2\right) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\left(x^{2}-2 x-y+2\right) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\left(x^{2}-2 x-y+2\right) \mathrm{e}^{x}
$$

The solution becomes

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot

Verification of solutions

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.7.4 Maple step by step solution

Let's solve
$y^{\prime}+y=x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=x^{2}-y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+y=x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int x^{2} \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\left(x^{2}-2 x+2\right) \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}$
- Simplify

$$
y=x^{2}-2 x+2+c_{1} \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff $(y(x), x)=x^{\wedge} 2-y(x), y(x)$, singsol=all)

$$
y(x)=x^{2}-2 x+2+\mathrm{e}^{-x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 21
DSolve[y'[x] == x^2-y[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}-2 x+c_{1} e^{-x}+2
$$

2.8 problem 9

> 2.8.1 Solving as linear ode
2.8.2 Solving as first order ode lie symmetry lookup ode 141
2.8.3 Solving as exact ode . 145
2.8.4 Maple step by step solution . 149

Internal problem ID [18]
Internal file name [OUTPUT/18_Sunday_June_05_2022_01_33_49_AM_67397934/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=x^{2}-2
$$

2.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =x^{2}-2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=x^{2}-2
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}-2\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(x^{2}-2\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(\left(x^{2}-2\right) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int\left(x^{2}-2\right) \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=x(-2+x) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x} x(-2+x) \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{-x}+x^{2}-2 x
$$

Summary
The solution(s) found are the following

$$
y=c_{1} \mathrm{e}^{-x}+x^{2}-2 x
$$

Figure 34: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x^{2}-2 x
$$

Verified OK.

2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x^{2}-y-2 \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 32: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2}-y-2
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(x^{2}-2\right) \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(R^{2}-2\right) \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R(R-2) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=x(-2+x) \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=x(-2+x) \mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{2}-y-2$		$\frac{d S}{d R}=\left(R^{2}-2\right) \mathrm{e}^{R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \infty \rightarrow \infty \rightarrow \infty$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ } \operatorname{Sos}^{(R)}$
		$\rightarrow \rightarrow \rightarrow-\infty \rightarrow \infty$
	$R=x$	$\rightarrow \rightarrow \rightarrow-\infty$
	$S=\mathrm{e}^{x} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
+ + ¢ ¢ ¢ ¢ ¢ - -		$\rightarrow \rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow+\infty$
		$\pm \rightarrow \rightarrow \infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 35: Slope field plot
Verification of solutions

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(x^{2}-y-2\right) \mathrm{d} x \\
\left(-x^{2}+y+2\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2}+y+2 \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}+y+2\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(-x^{2}+y+2\right) \\
& =-\mathrm{e}^{x}\left(x^{2}-y-2\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{x}\left(x^{2}-y-2\right)\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}\left(x^{2}-y-2\right) \mathrm{d} x \\
\phi & =-\left(x^{2}-2 x-y\right) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\left(x^{2}-2 x-y\right) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\left(x^{2}-2 x-y\right) \mathrm{e}^{x}
$$

The solution becomes

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot

Verification of solutions

$$
y=\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.8.4 Maple step by step solution

Let's solve
$y^{\prime}+y=x^{2}-2$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative

$$
y^{\prime}=-2+x^{2}-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=x^{2}-2$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+y\right)=\mu(x)\left(x^{2}-2\right)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(x^{2}-2\right) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)\left(x^{2}-2\right) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)\left(x^{2}-2\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int\left(x^{2}-2\right) \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{x(-2+x) \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}$
- Simplify

$$
y=c_{1} \mathrm{e}^{-x}+x^{2}-2 x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x)=-2+x^{\wedge} 2-y(x), y(x)$, singsol=all)

$$
y(x)=x^{2}-2 x+\mathrm{e}^{-x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 19
DSolve[y'[x]== -2+x^2-y[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow(x-2) x+c_{1} e^{-x}
$$

2.9 problem 11

2.9.1 Existence and uniqueness analysis 152
2.9.2 Solving as separable ode . 153
2.9.3 Solving as first order ode lie symmetry lookup ode 155
2.9.4 Solving as exact ode . 159
2.9.5 Solving as riccati ode . 163
2.9.6 Maple step by step solution . 165

Internal problem ID [19]
Internal file name [OUTPUT/19_Sunday_June_05_2022_01_33_49_AM_64304397/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 x^{2} y^{2}=0
$$

With initial conditions

$$
[y(1)=-1]
$$

2.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =2 x^{2} y^{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(2 x^{2} y^{2}\right) \\
& =4 x^{2} y
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

2.9.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =2 x^{2} y^{2}
\end{aligned}
$$

Where $f(x)=2 x^{2}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =2 x^{2} d x \\
\int \frac{1}{y^{2}} d y & =\int 2 x^{2} d x \\
-\frac{1}{y} & =\frac{2 x^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{3}{2 x^{3}+3 c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{3}{3 c_{1}+2} \\
c_{1}=\frac{1}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{2 x^{3}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{2 x^{3}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{2 x^{3}+1}
$$

Verified OK.

2.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 x^{2} y^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 35: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{2 x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\bar{\xi}} d x \\
& =\int \frac{1}{\frac{1}{2 x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{2 x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 x^{2} y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =2 x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 x^{3}}{3}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{2 x^{3}}{3}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{3}{-2 x^{3}+3 c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 x^{2} y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow+\infty$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-5}$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-}$
	$S=\frac{2 x^{3}}{3}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	3	
+ ¢ datatatat		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{3}{3 c_{1}-2} \\
c_{1}=-\frac{1}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{2 x^{3}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{2 x^{3}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{3}{2 x^{3}+1}
$$

Verified OK.

2.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y^{2}}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{2 y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2} \\
& N(x, y)=\frac{1}{2 y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{2 y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\frac{1}{2 y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\frac{1}{2 y}
$$

The solution becomes

$$
y=-\frac{3}{2\left(x^{3}+3 c_{1}\right)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{3}{2\left(3 c_{1}+1\right)} \\
c_{1}=\frac{1}{6}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{2 x^{3}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{2 x^{3}+1} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{2 x^{3}+1}
$$

Verified OK.

2.9.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =2 x^{2} y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=2 x^{2} y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=2 x^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{2 x^{2} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =4 x \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
2 x^{2} u^{\prime \prime}(x)-4 x u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} x^{3}+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=3 c_{2} x^{2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{3 c_{2}}{2\left(c_{2} x^{3}+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{3}{2 x^{3}+2 c_{3}}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{3}{2\left(c_{3}+1\right)} \\
c_{3}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{3}{2 x^{3}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{2 x^{3}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{2 x^{3}+1}
$$

Verified OK.

2.9.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 x^{2} y^{2}=0, y(1)=-1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=2 x^{2}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int 2 x^{2} d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=\frac{2 x^{3}}{3}+c_{1}$
- \quad Solve for y
$y=-\frac{3}{2 x^{3}+3 c_{1}}$
- Use initial condition $y(1)=-1$

$$
-1=-\frac{3}{3 c_{1}+2}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{1}{3}$
- \quad Substitute $c_{1}=\frac{1}{3}$ into general solution and simplify $y=-\frac{3}{2 x^{3}+1}$
- \quad Solution to the IVP

$$
y=-\frac{3}{2 x^{3}+1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve([diff(y(x),x) = 2*x^2*y(x)^2,y(1) = -1],y(x), singsol=all)
```

$$
y(x)=-\frac{3}{2 x^{3}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 16
DSolve[\{y' $\left.[x]==2 * x^{\wedge} 2 * y[x] \sim 2, y[1]==-1\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{3}{2 x^{3}+1}
$$

2.10 problem 12

2.10.1 Solving as separable ode . 168
2.10.2 Solving as first order ode lie symmetry lookup ode 170
2.10.3 Solving as exact ode . 174
2.10.4 Maple step by step solution . 178

Internal problem ID [20]
Internal file name [OUTPUT/20_Sunday_June_05_2022_01_33_49_AM_94980606/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x \ln (y)=0
$$

2.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x \ln (y)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\ln (y)$. Integrating both sides gives

$$
\begin{aligned}
& \frac{1}{\ln (y)} d y=x d x \\
& \int \frac{1}{\ln (y)} d y=\int x d x \\
&-\operatorname{expIntegral} \\
& 1
\end{aligned}(-\ln (y))=\frac{x^{2}}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (y))=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\mathrm{e}^{-\operatorname{expIntegral}}(-\ln (y))=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

Figure 41: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\operatorname{RootOf}\left(c_{2} \mathrm{e}^{\frac{x^{2}}{2}+c_{1}} \mathrm{explintegral}_{1}\left(-_z\right)-1\right)}
$$

Verified OK.

2.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x \ln (y) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 38: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x \ln (y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\ln (y)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\ln (R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\exp \operatorname{Integral}_{1}(-\ln (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=-\exp \operatorname{Integral}_{1}(-\ln (y))+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=-\exp \operatorname{Integral}_{1}(-\ln (y))+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=-\exp \operatorname{Integral}_{1}(-\ln (y))+c_{1} \tag{1}
\end{equation*}
$$

Figure 42: Slope field plot

Verification of solutions

$$
\frac{x^{2}}{2}=-\exp \operatorname{Integral}_{1}(-\ln (y))+c_{1}
$$

Verified OK.

2.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\ln (y)}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{\ln (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{\ln (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\ln (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\ln (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\ln (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\ln (y)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
& \int f^{\prime}(y) \mathrm{d} y=\int\left(\frac{1}{\ln (y)}\right) \mathrm{d} y \\
& f(y)=-\operatorname{expIntegral} \\
& 1
\end{aligned}(-\ln (y))+c_{1}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\exp \operatorname{Integral}_{1}(-\ln (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\exp \operatorname{Integral}_{1}(-\ln (y))
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& -\frac{x^{2}}{2}-\exp \operatorname{Integral}_{1}(-\ln (y))=c_{1}
\end{aligned}
$$

Figure 43: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}-\exp \operatorname{Integral}_{1}(-\ln (y))=c_{1}
$$

Verified OK.

2.10.4 Maple step by step solution

Let's solve

$$
y^{\prime}-x \ln (y)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\ln (y)}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\ln (y)} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
-\mathrm{Ei}_{1}(-\ln (y))=\frac{x^{2}}{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x) = x*ln(y(x)),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(x^{2}+2 \operatorname{expIntegral}_{1}\left(-_Z\right)+2 c_{1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.266 (sec). Leaf size: 22
DSolve[y'[x] == $x * \log [y[x]], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \operatorname{LogIntegral}^{(-1)}\left(\frac{x^{2}}{2}+c_{1}\right) \\
& y(x) \rightarrow 1
\end{aligned}
$$

2.11 problem 13

2.11.1 Existence and uniqueness analysis 180
2.11.2 Solving as quadrature ode . 181
2.11.3 Maple step by step solution . 182

Internal problem ID [21]
Internal file name [DUTPUT/21_Sunday_June_05_2022_01_33_50_AM_13432084/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{\frac{1}{3}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

2.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{\frac{1}{3}}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{\frac{1}{3}}\right) \\
& =\frac{1}{3 y^{\frac{2}{3}}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.11.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{3}{2}=c_{1} \\
& c_{1}=\frac{3}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}=x+\frac{3}{2}
$$

Solving for y from the above gives

$$
y=\frac{(2 x+3) \sqrt{6 x+9}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(2 x+3) \sqrt{6 x+9}}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{(2 x+3) \sqrt{6 x+9}}{9}
$$

Verified OK.

2.11.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{\frac{1}{3}}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{\frac{1}{3}}}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{3 y^{\frac{2}{3}}}{2}=x+c_{1}$
- \quad Solve for y

$$
y=\frac{\left(6 x+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

- Use initial condition $y(0)=1$

$$
1=\frac{2 \sqrt{6} c_{1}^{\frac{3}{2}}}{9}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{3}{2}$
- \quad Substitute $c_{1}=\frac{3}{2}$ into general solution and simplify
$y=\frac{(2 x+3) \sqrt{6 x+9}}{9}$
- \quad Solution to the IVP
$y=\frac{(2 x+3) \sqrt{6 x+9}}{9}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

```
dsolve([diff(y(x),x) = y(x)^(1/3),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{(2 x+3) \sqrt{6 x+9}}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 23

```
DSolve[{y'[x] == y[x]^(1/3),y[0]==1},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{(2 x+3)^{3 / 2}}{3 \sqrt{3}}
$$

2.12 problem 14

2.12.1 Existence and uniqueness analysis 184
2.12.2 Solving as quadrature ode . 185
2.12.3 Maple step by step solution . 186

Internal problem ID [22]
Internal file name [OUTPUT/22_Sunday_June_05_2022_01_33_50_AM_29491422/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{\frac{1}{3}}=0
$$

With initial conditions

$$
[y(0)=0]
$$

2.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{\frac{1}{3}}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{\frac{1}{3}}\right) \\
& =\frac{1}{3 y^{\frac{2}{3}}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{0<y\}
$$

But the point $y_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

2.12.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}=x
$$

Solving for y from the above gives

$$
y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}
$$

Verified OK.

2.12.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{\frac{1}{3}}=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{\frac{1}{3}}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{3 y^{\frac{2}{3}}}{2}=x+c_{1}$
- \quad Solve for y

$$
y=\frac{\left(6 x+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

- Use initial condition $y(0)=0$

$$
0=\frac{2 \sqrt{6} c_{1}^{\frac{3}{2}}}{9}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}$
- \quad Solution to the IVP
$y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x) = y(x)^(1/3),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 21

```
DSolve[{y'[x] == y[x]~(1/3),y[0]==0},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{2}{3} \sqrt{\frac{2}{3}} x^{3 / 2}
$$

2.13 problem 17

2.13.1 Existence and uniqueness analysis 188
2.13.2 Solving as separable ode . 189
2.13.3 Solving as differentialType ode 190
2.13.4 Solving as homogeneousTypeMapleC ode 192
2.13.5 Solving as first order ode lie symmetry lookup ode 195
2.13.6 Solving as exact ode . 200
2.13.7 Maple step by step solution . 203

Internal problem ID [23]
Internal file name [OUTPUT/23_Sunday_June_05_2022_01_33_50_AM_51008168/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y y^{\prime}=x-1
$$

With initial conditions

$$
[y(0)=1]
$$

2.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x-1}{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x-1}{y}\right) \\
& =-\frac{x-1}{y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.13.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x-1}{y}
\end{aligned}
$$

Where $f(x)=x-1$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =x-1 d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int x-1 d x \\
\frac{y^{2}}{2} & =\frac{1}{2} x^{2}-x+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}-2 x} \\
& y=-\sqrt{x^{2}+2 c_{1}-2 x}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\sqrt{c_{1}} \sqrt{2}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\sqrt{c_{1}} \sqrt{2} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x-1
$$

But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

2.13.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x-1}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(x-1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(x-1) d x=d\left(\frac{1}{2} x^{2}-x\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{1}{2} x^{2}-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}-2 x}+c_{1} \\
& y=-\sqrt{x^{2}+2 c_{1}-2 x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\sqrt{c_{1}} \sqrt{2}+c_{1} \\
c_{1}=\sqrt{2}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}\right)+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{x^{2}+4+2 \sqrt{3}-2 x}+2+\sqrt{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\sqrt{c_{1}} \sqrt{2}+c_{1} \\
c_{1}=-\sqrt{2}\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}\right)+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{x^{2}+4-2 \sqrt{3}-2 x}+2-\sqrt{3}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x^{2}+4-2 \sqrt{3}-2 x}+2-\sqrt{3} \tag{1}\\
& y=-\sqrt{x^{2}+4+2 \sqrt{3}-2 x}+2+\sqrt{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{x^{2}+4-2 \sqrt{3}-2 x}+2-\sqrt{3}
$$

Verified OK. \{positive\}

$$
y=-\sqrt{x^{2}+4+2 \sqrt{3}-2 x}+2+\sqrt{3}
$$

Verified OK. \{positive\}

2.13.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{X+x_{0}-1}{Y(X)+y_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =1 \\
y_{0} & =0
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{X}{Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{X}{Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X$ and $N=Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{1}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{1}{u(X)}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{1}{u(X)}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}-1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}-1}{u X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (X)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (X)+2 c_{2}\right) \\
& =-2 \ln (X)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (X)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{X^{2}} \\
& =\frac{c_{3}}{X^{2}}
\end{aligned}
$$

The solution is

$$
u(X)^{2}-1=\frac{c_{3}}{X^{2}}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{Y(X)^{2}}{X^{2}}-1=\frac{c_{3}}{X^{2}}
$$

Which simplifies to

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

Using the solution for $Y(X)$

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
Y & =y+y_{0} \\
X & =x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y \\
& X=x+1
\end{aligned}
$$

Then the solution in y becomes

$$
-(x-1-y)(x-1+y)=c_{3}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{3} \\
& c_{3}=0
\end{aligned}
$$

Substituting c_{3} found above in the general solution gives

$$
-(x-y-1)(x-1+y)=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(x-1-y)(x-1+y)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-(x-1-y)(x-1+y)=0
$$

Verified OK.

2.13.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x-1}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 43: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x-1}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{1}{2} x^{2}-x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x-1}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x-1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{1}{2} x^{2}-x=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{1}{2} x^{2}-x=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x-1}{y}$		$\frac{d S}{d R}=R$
Wivaravytum		
	$R=y$	
	1	
	$S=\frac{1}{2} x^{2}-x$	
	$S=\frac{1}{2} x^{2}-x$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{1}{2}+c_{1} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{2} x^{2}-x=\frac{y^{2}}{2}-\frac{1}{2}
$$

Solving for y from the above gives

$$
y=1-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1-x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1-x
$$

Verified OK. \{positive\}

2.13.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =(x-1) \mathrm{d} x \\
(1-x) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =1-x \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(1-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 1-x \mathrm{~d} x \\
\phi & =x-\frac{1}{2} x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+x=\frac{1}{2}
$$

Solving for y from the above gives

$$
y=1-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1-x \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=1-x
$$

Verified OK. \{positive\}

2.13.7 Maple step by step solution

Let's solve
$\left[y y^{\prime}=x-1, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int(x-1) d x+c_{1}
$$

- Evaluate integral
$\frac{y^{2}}{2}=\frac{1}{2} x^{2}-x+c_{1}$
- \quad Solve for y

$$
\left\{y=\sqrt{x^{2}+2 c_{1}-2 x}, y=-\sqrt{x^{2}+2 c_{1}-2 x}\right\}
$$

- Use initial condition $y(0)=1$

$$
1=\sqrt{c_{1}} \sqrt{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{1}{2}
$$

- \quad Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify

$$
y=\operatorname{csgn}(x-1)(x-1)
$$

- Use initial condition $y(0)=1$
$1=-\sqrt{c_{1}} \sqrt{2}$
- Solution does not satisfy initial condition
- Solution to the IVP

$$
y=\operatorname{csgn}(x-1)(x-1)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 9

```
dsolve([y(x)*diff(y(x),x) = -1+x,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=1-x
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 14
DSolve $[\{y[x] * y$ ' $[x]==-1+x, y[0]==1\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{(x-1)^{2}}
$$

2.14 problem 18

2.14.1 Existence and uniqueness analysis205
2.14.2 Solving as separable ode 206
2.14.3 Solving as differentialType ode 208
2.14.4 Solving as homogeneousTypeMapleC ode 209
2.14.5 Solving as first order ode lie symmetry lookup ode 212
2.14.6 Solving as exact ode 217
2.14.7 Maple step by step solution 220
Internal problem ID [24]Internal file name [OUTPUT/24_Sunday_June_05_2022_01_33_51_AM_85751881/index.tex]

Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y y^{\prime}=x-1
$$

With initial conditions

$$
[y(1)=0]
$$

2.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x-1}{y}
\end{aligned}
$$

$f(x, y)$ is not defined at $y=0$ therefore existence and uniqueness theorem do not apply.

2.14.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x-1}{y}
\end{aligned}
$$

Where $f(x)=x-1$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =x-1 d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int x-1 d x \\
\frac{y^{2}}{2} & =\frac{1}{2} x^{2}-x+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}-2 x} \\
& y=-\sqrt{x^{2}+2 c_{1}-2 x}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\sqrt{-1+2 c_{1}} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1-x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\sqrt{-1+2 c_{1}} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x-1
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x-1 \tag{1}\\
& y=1-x \tag{2}
\end{align*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=x-1
$$

Verified OK. \{positive\}

$$
y=1-x
$$

Verified OK. \{positive\}

2.14.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x-1}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(x-1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(x-1) d x=d\left(\frac{1}{2} x^{2}-x\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{1}{2} x^{2}-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}-2 x}+c_{1} \\
& y=-\sqrt{x^{2}+2 c_{1}-2 x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\sqrt{-1+2 c_{1}}+c_{1} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{x^{2}-2 x+2}+1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\sqrt{-1+2 c_{1}}+c_{1}
$$

Warning: Unable to solve for constant of integration. $\frac{\text { Summary }}{\text { The solution(s) found are the following }}$

$$
y=-\sqrt{x^{2}-2 x+2}
$$

Verification of solutions

$$
y=-\sqrt{x^{2}-2 x+2}+1
$$

Verified OK. \{positive\}

2.14.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{X+x_{0}-1}{Y(X)+y_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =1 \\
y_{0} & =0
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{X}{Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{X}{Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X$ and $N=Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{1}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{1}{u(X)}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{1}{u(X)}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}-1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}-1}{u X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (X)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (X)+2 c_{2}\right) \\
& =-2 \ln (X)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (X)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{X^{2}} \\
& =\frac{c_{3}}{X^{2}}
\end{aligned}
$$

The solution is

$$
u(X)^{2}-1=\frac{c_{3}}{X^{2}}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{Y(X)^{2}}{X^{2}}-1=\frac{c_{3}}{X^{2}}
$$

Which simplifies to

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

Using the solution for $Y(X)$

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
Y & =y+y_{0} \\
X & =x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y \\
& X=x+1
\end{aligned}
$$

Then the solution in y becomes

$$
-(x-1-y)(x-1+y)=c_{3}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{3} \\
& c_{3}=0
\end{aligned}
$$

Substituting c_{3} found above in the general solution gives

$$
-(x-y-1)(x-1+y)=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(x-1-y)(x-1+y)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-(x-1-y)(x-1+y)=0
$$

Verified OK.

2.14.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x-1}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 46: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =\frac{1}{x-1} \\
\eta(x, y) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x-1}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{1}{2} x^{2}-x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x-1}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x-1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{1}{2} x^{2}-x=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{1}{2} x^{2}-x=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x-1}{y}$		$\frac{d S}{d R}=R$
边		
	$R=y$	
	$S=\frac{1}{2} x^{2}-x$	

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{1}{2}=c_{1} \\
& c_{1}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{2} x^{2}-x=\frac{y^{2}}{2}-\frac{1}{2}
$$

Solving for y from the above gives

$$
\begin{aligned}
& y=x-1 \\
& y=1-x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x-1 \tag{1}\\
& y=1-x \tag{2}
\end{align*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=x-1
$$

Verified OK. \{positive\}

$$
y=1-x
$$

Verified OK. \{positive\}

2.14.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =(x-1) \mathrm{d} x \\
(1-x) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =1-x \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(1-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 1-x \mathrm{~d} x \\
\phi & =x-\frac{1}{2} x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+x=\frac{1}{2}
$$

Solving for y from the above gives

$$
\begin{aligned}
& y=x-1 \\
& y=1-x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=x-1 \tag{1}\\
& y=1-x \tag{2}
\end{align*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=x-1
$$

Verified OK. \{positive\}

$$
y=1-x
$$

Verified OK. \{positive\}

2.14.7 Maple step by step solution

Let's solve

$$
\left[y y^{\prime}=x-1, y(1)=0\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int(x-1) d x+c_{1}
$$

- Evaluate integral
$\frac{y^{2}}{2}=\frac{1}{2} x^{2}-x+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{x^{2}+2 c_{1}-2 x}, y=-\sqrt{x^{2}+2 c_{1}-2 x}\right\}$
- Use initial condition $y(1)=0$

$$
0=\sqrt{-1+2 c_{1}}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{1}{2}$
- \quad Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify

$$
y=\operatorname{csgn}(x-1)(x-1)
$$

- Use initial condition $y(1)=0$

$$
0=-\sqrt{-1+2 c_{1}}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{1}{2}$
- \quad Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify

$$
y=(1-x) \operatorname{csgn}(x-1)
$$

- \quad Solutions to the IVP
$\{y=(1-x) \operatorname{csgn}(x-1), y=\operatorname{csgn}(x-1)(x-1)\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve $([y(x) * \operatorname{diff}(y(x), x)=-1+x, y(1)=0], y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=1-x \\
& y(x)=x-1
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 29
DSolve[\{y[x]*y'[x] == -1+x,y[1]==0\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{(x-1)^{2}} \\
& y(x) \rightarrow \sqrt{(x-1)^{2}}
\end{aligned}
$$

2.15 problem 19

2.15.1 Existence and uniqueness analysis 223
2.15.2 Solving as quadrature ode . 224

Internal problem ID [25]
Internal file name [DUTPUT/25_Sunday_June_05_2022_01_33_51_AM_10109649/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\ln \left(1+y^{2}\right)=0
$$

With initial conditions

$$
[y(0)=0]
$$

2.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\ln \left(y^{2}+1\right)
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\ln \left(y^{2}+1\right)\right) \\
& =\frac{2 y}{y^{2}+1}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.15.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\ln \left(y^{2}+1\right)} d y & =\int d x \\
\int^{y} \frac{1}{\ln \left(_a^{2}+1\right)} d _a & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \int^{0} \frac{1}{\ln \left(_a^{2}+1\right)} d _a=c_{1} \\
& c_{1}=\int^{0} \frac{1}{\ln \left(_a^{2}+1\right)} d _a
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{y} \frac{1}{\ln \left(_a^{2}+1\right)} d _a=x+\int^{0} \frac{1}{\ln \left(_a^{2}+1\right)} d _a
$$

Solving for y from the above gives

$$
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{\ln \left(_a^{2}+1\right)} d _a\right)+x+\int^{0} \frac{1}{\ln \left(_a^{2}+1\right)} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{\ln \left(_a^{2}+1\right)} d _a\right)+x+\int^{0} \frac{1}{\ln \left(_a^{2}+1\right)} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{\ln \left(_a^{2}+1\right)} d _a\right)+x+\int^{0} \frac{1}{\ln \left(_a^{2}+1\right)} d _a\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x) = ln(1+y(x)~2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6

```
DSolve[{y'[x] == Log[1+y[x]^2],y[0]==0},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 0
$$

2.16 problem 20

2.16.1 Solving as riccati ode

226
Internal problem ID [26]
Internal file name [OUTPUT/26_Sunday_June_05_2022_01_33_51_AM_88102550/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.3. Slope fields and solution curves. Page 26
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+y^{2}=x^{2}
$$

2.16.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}-y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}-y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}, f_{1}(x)=0$ and $f_{2}(x)=-1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(x)+x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}\right) \sqrt{x}
$$

The above shows that

$$
u^{\prime}(x)=\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}\right) x^{\frac{3}{2}}
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}\right) x}{\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}\right) x}{\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}\right) x}{\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{3}} \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot

Verification of solutions

$$
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}\right) x}{\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{3}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 44

```
dsolve(diff(y(x),x) = x^2-y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{x\left(\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)\right)}{c_{1} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.109 (sec). Leaf size: 197

```
DSolve[y'[x]== x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{-i x^{2}\left(2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{i x^{2}}{2}\right)+c_{1}\left(\operatorname{BesselJ}\left(-\frac{5}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselJ}\left(\frac{3}{4}, \frac{i x^{2}}{2}\right)\right)\right)-c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)} \\
& y(x) \rightarrow \frac{i x^{2} \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{i x^{2}}{2}\right)-i x^{2} \operatorname{BesselJ}\left(\frac{3}{4}, \frac{i x^{2}}{2}\right)+\operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}
\end{aligned}
$$

3 Section 1.4. Separable equations. Page 43
3.1 problem 1 231
3.2 problem 2 246
3.3 problem 3 260
3.4 problem 4 275
3.5 problem 5 293
3.6 problem 6 305
3.7 problem 7 317
3.8 problem 8 329
3.9 problem 9 341
3.10 problem 10 356
3.11 problem 11 370
3.12 problem 12 382
3.13 problem 14 397
3.14 problem 15 412
3.15 problem 16 430
3.16 problem 17 442
3.17 problem 18 455
3.18 problem 19 469
3.19 problem 20 484
3.20 problem 21 500
3.21 problem 22 514
3.22 problem 23 529
3.23 problem 24 533
3.24 problem 25 549
3.25 problem 26 564
3.26 problem 27 580
3.27 problem 28 594

3.1 problem 1

3.1.1 Solving as separable ode
231
3.1.2 Solving as linear ode . 233
3.1.3 Solving as homogeneousTypeD2 ode 234
3.1.4 Solving as first order ode lie symmetry lookup ode 236
3.1.5 Solving as exact ode . 240
3.1.6 Maple step by step solution . 244

Internal problem ID [27]
Internal file name [OUTPUT/27_Sunday_June_05_2022_01_33_52_AM_84822014/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 y x+y^{\prime}=0
$$

3.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-2 y x
\end{aligned}
$$

Where $f(x)=-2 x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-2 x d x \\
\int \frac{1}{y} d y & =\int-2 x d x \\
\ln (y) & =-x^{2}+c_{1} \\
y & =\mathrm{e}^{-x^{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{-x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 54: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x^{2}}
$$

Verified OK.

3.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=2 x \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
2 y x+y^{\prime}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{x^{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
y=c_{1} \mathrm{e}^{-x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 55: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x^{2}}
$$

Verified OK.

3.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x^{2}+u^{\prime}(x) x+u(x)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(2 x^{2}+1\right)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2 x^{2}+1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2 x^{2}+1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2 x^{2}+1}{x} d x \\
\ln (u) & =-x^{2}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{-x^{2}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{-x^{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{-x^{2}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{-x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 56: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{-x^{2}}
$$

Verified OK.

3.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-2 y x \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 49: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 y x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x \mathrm{e}^{x^{2}} y \\
S_{y} & =\mathrm{e}^{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x^{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x^{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{-x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 y x$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\rightarrow \rightarrow \rightarrow+4$
¢ P		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 \rightarrow \rightarrow}$
	$R=x$	\rightarrow
	$S=\mathrm{e}^{x^{2}} y$	
+		\rightarrow
		\rightarrow
		$\xrightarrow[\rightarrow+\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 57: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x^{2}}
$$

Verified OK.

3.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{2 y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\mathrm{e}^{-x^{2}-2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x^{2}-2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 58: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-x^{2}-2 c_{1}}
$$

Verified OK.

3.1.6 Maple step by step solution

Let's solve
$2 y x+y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=-2 x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int-2 x d x+c_{1}$
- Evaluate integral

$$
\ln (y)=-x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-x^{2}+c_{1}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(2*x*y(x)+diff (y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 20
DSolve $[2 * x * y[x]+y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.2 problem 2

3.2.1 Solving as separable ode . 246
3.2.2 Solving as first order ode lie symmetry lookup ode 248
3.2.3 Solving as exact ode . 252
3.2.4 Solving as riccati ode . 256
3.2.5 Maple step by step solution . 258

Internal problem ID [28]
Internal file name [OUTPUT/28_Sunday_June_05_2022_01_33_52_AM_4751393/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 x y^{2}+y^{\prime}=0
$$

3.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-2 x y^{2}
\end{aligned}
$$

Where $f(x)=-2 x$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =-2 x d x \\
\int \frac{1}{y^{2}} d y & =\int-2 x d x \\
-\frac{1}{y} & =-x^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{-x^{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{-x^{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 59: Slope field plot

Verification of solutions

$$
y=-\frac{1}{-x^{2}+c_{1}}
$$

Verified OK.

3.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 x y^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 52: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{2 x}} d x
\end{aligned}
$$

Which results in

$$
S=-x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 x y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x^{2}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
-x^{2}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{x^{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 x y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-5[R)^{1}}]{ }{ }^{\text {a }}$
		$\rightarrow \rightarrow \rightarrow \rightarrow-\infty$
	$R=y$	$\rightarrow \infty$
	$S={ }^{2}$	
	$S=-x^{2}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$
4 4		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }+\uparrow+\xrightarrow[\rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$ -

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot

Verification of solutions

$$
y=\frac{1}{x^{2}+c_{1}}
$$

Verified OK.

3.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{2 y^{2}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{1}{2 y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{1}{2 y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{2 y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{2 y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{2 y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{2 y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{2 y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{2 y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{1}{2 y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{1}{2 y}
$$

The solution becomes

$$
y=\frac{1}{x^{2}+2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}+2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot
Verification of solutions

$$
y=\frac{1}{x^{2}+2 c_{1}}
$$

Verified OK.

3.2.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-2 x y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-2 x y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=-2 x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-2 x u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-2 x u^{\prime \prime}(x)+2 u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} x^{2}+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=2 c_{2} x
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2}}{c_{2} x^{2}+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{1}{x^{2}+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}+c_{3}} \tag{1}
\end{equation*}
$$

Figure 62: Slope field plot

Verification of solutions

$$
y=\frac{1}{x^{2}+c_{3}}
$$

Verified OK.

3.2.5 Maple step by step solution

Let's solve
$2 x y^{2}+y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=-2 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int-2 x d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=-x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{-x^{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(2*x*y(x)^2+diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=\frac{1}{x^{2}+c_{1}}
$$

Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 20

```
DSolve[2*x*y[x]^2+y'[x] == 0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{x^{2}-c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.3 problem 3

3.3.1 Solving as separable ode
260
3.3.2 Solving as linear ode . 262
3.3.3 Solving as homogeneousTypeD2 ode 263
3.3.4 Solving as first order ode lie symmetry lookup ode 265
3.3.5 Solving as exact ode . 269
3.3.6 Maple step by step solution . 273

Internal problem ID [29]
Internal file name [OUTPUT/29_Sunday_June_05_2022_01_33_52_AM_46698786/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\sin (x) y=0
$$

3.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\sin (x) y
\end{aligned}
$$

Where $f(x)=\sin (x)$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\sin (x) d x \\
\int \frac{1}{y} d y & =\int \sin (x) d x \\
\ln (y) & =-\cos (x)+c_{1} \\
y & =\mathrm{e}^{-\cos (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\cos (x)}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\cos (x)} \tag{1}
\end{equation*}
$$

Figure 63: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\cos (x)}
$$

Verified OK.

3.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\sin (x) \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\sin (x) y=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\sin (x) d x} \\
& =\mathrm{e}^{\cos (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\cos (x)} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\cos (x)} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\cos (x)}$ results in

$$
y=c_{1} \mathrm{e}^{-\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\cos (x)} \tag{1}
\end{equation*}
$$

Figure 64: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\cos (x)}
$$

Verified OK.

3.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\sin (x) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(-1+\sin (x) x)}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1+\sin (x) x}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1+\sin (x) x}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1+\sin (x) x}{x} d x \\
\ln (u) & =-\ln (x)-\cos (x)+c_{2} \\
u & =\mathrm{e}^{-\ln (x)-\cos (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)-\cos (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{-\cos (x)}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{-\cos (x)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{-\cos (x)} \tag{1}
\end{equation*}
$$

Figure 65: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{-\cos (x)}
$$

Verified OK.

3.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\sin (x) y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 55: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\cos (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\cos (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\cos (x)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\sin (x) y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\sin (x) \mathrm{e}^{\cos (x)} y \\
S_{y} & =\mathrm{e}^{\cos (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\mathrm{e}^{\cos (x)} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\cos (x)} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{-\cos (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\sin (x) y$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\rightarrow \rightarrow \rightarrow S(R) \xrightarrow{\rightarrow}$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2 \rightarrow \longrightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow$
为	$S=\mathrm{e}^{\cos (x)} y$	$\xrightarrow{\text { a }} \xrightarrow{\rightarrow \rightarrow \rightarrow+}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\cos (x)} \tag{1}
\end{equation*}
$$

Figure 66: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\cos (x)}
$$

Verified OK.

3.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =(\sin (x)) \mathrm{d} x \\
(-\sin (x)) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\sin (x) \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\sin (x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\sin (x) \mathrm{d} x \\
\phi & =\cos (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\cos (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\cos (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\cos (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\cos (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 67: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\cos (x)+c_{1}}
$$

Verified OK.

3.3.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\sin (x) y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\sin (x)
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \sin (x) d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-\cos (x)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\cos (x)+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(x),x) = sin(x)*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\cos (x)}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 19
DSolve[y' $[x]==\operatorname{Sin}[x] * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-\cos (x)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.4 problem 4

$$
\text { 3.4.1 Solving as separable ode . } 275
$$

3.4.2 Solving as linear ode 277
3.4.3 Solving as homogeneousTypeD2 ode 278
3.4.4 Solving as homogeneousTypeMapleC ode 280
3.4.5 Solving as first order ode lie symmetry lookup ode 283
3.4.6 Solving as exact ode 287
3.4.7 Maple step by step solution 291

Internal problem ID [30]
Internal file name [OUTPUT/30_Sunday_June_05_2022_01_33_53_AM_72715024/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
(x+1) y^{\prime}-4 y=0
$$

3.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{4 y}{x+1}
\end{aligned}
$$

Where $f(x)=\frac{4}{x+1}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{4}{x+1} d x \\
\int \frac{1}{y} d y & =\int \frac{4}{x+1} d x \\
\ln (y) & =4 \ln (x+1)+c_{1} \\
y & =\mathrm{e}^{4 \ln (x+1)+c_{1}} \\
& =c_{1}(x+1)^{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(x+1)^{4} \tag{1}
\end{equation*}
$$

Figure 68: Slope field plot

Verification of solutions

$$
y=c_{1}(x+1)^{4}
$$

Verified OK.

3.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{4}{x+1} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{4 y}{x+1}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x+1} d x} \\
& =\frac{1}{(x+1)^{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{(x+1)^{4}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{(x+1)^{4}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(x+1)^{4}}$ results in

$$
y=c_{1}(x+1)^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(x+1)^{4} \tag{1}
\end{equation*}
$$

Figure 69: Slope field plot
Verification of solutions

$$
y=c_{1}(x+1)^{4}
$$

Verified OK.

3.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
(x+1)\left(u^{\prime}(x) x+u(x)\right)-4 u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(3 x-1)}{(x+1) x}
\end{aligned}
$$

Where $f(x)=\frac{3 x-1}{x(x+1)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{3 x-1}{x(x+1)} d x \\
\int \frac{1}{u} d u & =\int \frac{3 x-1}{x(x+1)} d x \\
\ln (u) & =-\ln (x)+4 \ln (x+1)+c_{2} \\
u & =\mathrm{e}^{-\ln (x)+4 \ln (x+1)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)+4 \ln (x+1)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{2}\left(x^{3}+4 x^{2}+6 x+4+\frac{1}{x}\right)
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x c_{2}\left(x^{3}+4 x^{2}+6 x+4+\frac{1}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x c_{2}\left(x^{3}+4 x^{2}+6 x+4+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Figure 70: Slope field plot
Verification of solutions

$$
y=x c_{2}\left(x^{3}+4 x^{2}+6 x+4+\frac{1}{x}\right)
$$

Verified OK.

3.4.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{4 Y(X)+4 y_{0}}{X+x_{0}+1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =-1 \\
y_{0} & =0
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{4 Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{4 Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=4 Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =4 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{3 u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{3 u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X-3 u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{3 u}{X}
\end{aligned}
$$

Where $f(X)=\frac{3}{X}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{3}{X} d X \\
\int \frac{1}{u} d u & =\int \frac{3}{X} d X \\
\ln (u) & =3 \ln (X)+c_{2} \\
u & =\mathrm{e}^{3 \ln (X)+c_{2}} \\
& =c_{2} X^{3}
\end{aligned}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=X^{4} c_{2}
$$

Using the solution for $Y(X)$

$$
Y(X)=X^{4} c_{2}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y \\
& X=x-1
\end{aligned}
$$

Then the solution in y becomes

$$
y=c_{2}(x+1)^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}(x+1)^{4} \tag{1}
\end{equation*}
$$

Figure 71: Slope field plot
Verification of solutions

$$
y=c_{2}(x+1)^{4}
$$

Verified OK.

3.4.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{4 y}{x+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 58: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=(x+1)^{4} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{(x+1)^{4}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{(x+1)^{4}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{4 y}{x+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{4 y}{(x+1)^{5}} \\
S_{y} & =\frac{1}{(x+1)^{4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{(x+1)^{4}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{(x+1)^{4}}=c_{1}
$$

Which gives

$$
y=c_{1}(x+1)^{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{4 y}{x+1}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\text { a }}$,
		$\rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$R=x$	\rightarrow
	$S=\quad y$	
	$=\overline{(x+1)^{4}}$	
		$\xrightarrow{-2}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(x+1)^{4} \tag{1}
\end{equation*}
$$

Figure 72: Slope field plot

Verification of solutions

$$
y=c_{1}(x+1)^{4}
$$

Verified OK.

3.4.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{4 y}\right) \mathrm{d} y & =\left(\frac{1}{x+1}\right) \mathrm{d} x \\
\left(-\frac{1}{x+1}\right) \mathrm{d} x+\left(\frac{1}{4 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x+1} \\
& N(x, y)=\frac{1}{4 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{4 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x+1} \mathrm{~d} x \\
\phi & =-\ln (x+1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{4 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{4 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{4 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{4 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x+1)+\frac{\ln (y)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x+1)+\frac{\ln (y)}{4}
$$

The solution becomes

$$
y=\mathrm{e}^{4 c_{1}}(x+1)^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{4 c_{1}}(x+1)^{4} \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{4 c_{1}}(x+1)^{4}
$$

Verified OK.

3.4.7 Maple step by step solution

Let's solve

$$
(x+1) y^{\prime}-4 y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{4}{x+1}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{4}{x+1} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=4 \ln (x+1)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}}(x+1)^{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve((1+x)*diff(y(x),x) = 4*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1}(x+1)^{4}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 18
DSolve[(1+x)*y'[x] == 4*y[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1}(x+1)^{4} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.5 problem 5

3.5.1 Solving as separable ode
3.5.2 Solving as first order ode lie symmetry lookup ode 295
3.5.3 Solving as exact ode . 299
3.5.4 Maple step by step solution . 303

Internal problem ID [31]
Internal file name [OUTPUT/31_Sunday_June_05_2022_01_33_53_AM_21188209/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 \sqrt{x} y^{\prime}-\sqrt{1-y^{2}}=0
$$

3.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sqrt{-y^{2}+1}}{2 \sqrt{x}}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 \sqrt{x}}$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =\frac{1}{2 \sqrt{x}} d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int \frac{1}{2 \sqrt{x}} d x \\
\arcsin (y) & =\sqrt{x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(\sqrt{x}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\sqrt{x}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 74: Slope field plot

Verification of solutions

$$
y=\sin \left(\sqrt{x}+c_{1}\right)
$$

Verified OK.

3.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sqrt{-y^{2}+1}}{2 \sqrt{x}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 61: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=2 \sqrt{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{2 \sqrt{x}} d x
\end{aligned}
$$

Which results in

$$
S=\sqrt{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{-y^{2}+1}}{2 \sqrt{x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{2 \sqrt{x}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{x}=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
\sqrt{x}=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(-\sqrt{x}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\sin \left(-\sqrt{x}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 75: Slope field plot

Verification of solutions

$$
y=-\sin \left(-\sqrt{x}+c_{1}\right)
$$

Verified OK.

3.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =\left(\frac{1}{\sqrt{x}}\right) \mathrm{d} x \\
\left(-\frac{1}{\sqrt{x}}\right) \mathrm{d} x+\left(\frac{2}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\sqrt{x}} \\
& N(x, y)=\frac{2}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\sqrt{x}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\sqrt{x}} \mathrm{~d} x \\
\phi & =-2 \sqrt{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =2 \arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 \sqrt{x}+2 \arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 \sqrt{x}+2 \arcsin (y)
$$

The solution becomes

$$
y=\sin \left(\sqrt{x}+\frac{c_{1}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\sqrt{x}+\frac{c_{1}}{2}\right) \tag{1}
\end{equation*}
$$

Figure 76: Slope field plot

Verification of solutions

$$
y=\sin \left(\sqrt{x}+\frac{c_{1}}{2}\right)
$$

Verified OK.

3.5.4 Maple step by step solution

Let's solve

$$
2 \sqrt{x} y^{\prime}-\sqrt{1-y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{\sqrt{1-y^{2}}}=\frac{1}{2 \sqrt{x}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int \frac{1}{2 \sqrt{x}} d x+c_{1}$
- Evaluate integral

$$
\arcsin (y)=\sqrt{x}+c_{1}
$$

- \quad Solve for y

$$
y=\sin \left(\sqrt{x}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12
dsolve $\left(2 * x^{\wedge}(1 / 2) * \operatorname{diff}(y(x), x)=\left(1-y(x)^{\wedge} 2\right) \wedge(1 / 2), y(x)\right.$, singsol=all)

$$
y(x)=\sin \left(\sqrt{x}+\frac{c_{1}}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.221 (sec). Leaf size: 32
DSolve $\left[2 * x^{\wedge}(1 / 2) * y^{\prime}[x]==(1-y[x] \sim 2)^{\wedge}(1 / 2), y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \cos \left(\sqrt{x}+c_{1}\right) \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow \text { Interval }[\{-1,1\}]
\end{aligned}
$$

3.6 problem 6

3.6.1 Solving as first order ode lie symmetry calculated ode 305
3.6.2 Solving as exact ode . 310

Internal problem ID [32]
Internal file name [OUTPUT/32_Sunday_June_05_2022_01_33_53_AM_61324329/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
y^{\prime}-3 \sqrt{y x}=0
$$

3.6.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =3 \sqrt{y x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{equation*}
b_{2}+3 \sqrt{y x}\left(b_{3}-a_{2}\right)-9 y x a_{3}-\frac{3 y\left(x a_{2}+y a_{3}+a_{1}\right)}{2 \sqrt{y x}}-\frac{3 x\left(x b_{2}+y b_{3}+b_{1}\right)}{2 \sqrt{y x}}=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
-\frac{18 y x a_{3} \sqrt{y x}+9 x y a_{2}-3 x y b_{3}+3 x^{2} b_{2}+3 y^{2} a_{3}-2 b_{2} \sqrt{y x}+3 x b_{1}+3 y a_{1}}{2 \sqrt{y x}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
-18 y x a_{3} \sqrt{y x}-3 x^{2} b_{2}-9 x y a_{2}+3 x y b_{3}-3 y^{2} a_{3}+2 b_{2} \sqrt{y x}-3 x b_{1}-3 y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{y x}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{y x}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-18 v_{2} v_{1} a_{3} v_{3}-9 v_{1} v_{2} a_{2}-3 v_{2}^{2} a_{3}-3 v_{1}^{2} b_{2}+3 v_{1} v_{2} b_{3}-3 v_{2} a_{1}-3 v_{1} b_{1}+2 b_{2} v_{3}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-3 v_{1}^{2} b_{2}-18 v_{2} v_{1} a_{3} v_{3}+\left(-9 a_{2}+3 b_{3}\right) v_{1} v_{2}-3 v_{1} b_{1}-3 v_{2}^{2} a_{3}-3 v_{2} a_{1}+2 b_{2} v_{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-3 a_{1} & =0 \\
-18 a_{3} & =0 \\
-3 a_{3} & =0 \\
-3 b_{1} & =0 \\
-3 b_{2} & =0 \\
2 b_{2} & =0 \\
-9 a_{2}+3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =3 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =3 y-(3 \sqrt{y x})(x) \\
& =-3 x \sqrt{y x}+3 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-3 x \sqrt{y x}+3 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{3}+y\right)}{3}+\frac{\ln \left(-x^{2}+\sqrt{y x}\right)}{3}-\frac{\ln \left(x^{2}+\sqrt{y x}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 \sqrt{y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{\left(x^{\frac{3}{2}}+\sqrt{y}\right) \sqrt{x}}{x^{3}-y} \\
& S_{y}=-\frac{x^{\frac{3}{2}}+\sqrt{y}}{\sqrt{y}\left(3 x^{3}-3 y\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\left(x^{\frac{3}{2}}+\sqrt{y}\right)(\sqrt{y} \sqrt{x}-\sqrt{y x})}{\sqrt{y}\left(x^{3}-y\right)} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(-x^{3}+y\right)}{3}+\frac{\ln \left(-x^{2}+\sqrt{y} \sqrt{x}\right)}{3}-\frac{\ln \left(x^{2}+\sqrt{y} \sqrt{x}\right)}{3}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(-x^{3}+y\right)}{3}+\frac{\ln \left(-x^{2}+\sqrt{y} \sqrt{x}\right)}{3}-\frac{\ln \left(x^{2}+\sqrt{y} \sqrt{x}\right)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(-x^{3}+y\right)}{3}+\frac{\ln \left(-x^{2}+\sqrt{y} \sqrt{x}\right)}{3}-\frac{\ln \left(x^{2}+\sqrt{y} \sqrt{x}\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 77: Slope field plot

Verification of solutions

$$
\frac{\ln \left(-x^{3}+y\right)}{3}+\frac{\ln \left(-x^{2}+\sqrt{y} \sqrt{x}\right)}{3}-\frac{\ln \left(x^{2}+\sqrt{y} \sqrt{x}\right)}{3}=c_{1}
$$

Verified OK.

3.6.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(3 \sqrt{y x}) \mathrm{d} x \\
(-3 \sqrt{y x}) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-3 \sqrt{y x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-3 \sqrt{y x}) \\
& =-\frac{3 x}{2 \sqrt{y x}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{3 x}{2 \sqrt{y x}}\right)-(0)\right) \\
& =-\frac{3 x}{2 \sqrt{y x}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{3 \sqrt{y x}}\left((0)-\left(-\frac{3 x}{2 \sqrt{y x}}\right)\right) \\
& =-\frac{1}{2 y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{2 y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (y)}{2}} \\
& =\frac{1}{\sqrt{y}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\sqrt{y}}(-3 \sqrt{y x}) \\
& =-\frac{3 \sqrt{y x}}{\sqrt{y}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\sqrt{y}}(1) \\
& =\frac{1}{\sqrt{y}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{3 \sqrt{y x}}{\sqrt{y}}\right)+\left(\frac{1}{\sqrt{y}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{3 \sqrt{y x}}{\sqrt{y}} \mathrm{~d} x \\
\phi & =-\frac{2 x \sqrt{y x}}{\sqrt{y}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x \sqrt{y x}}{y^{\frac{3}{2}}}-\frac{x^{2}}{\sqrt{y} \sqrt{y x}}+f^{\prime}(y) \tag{4}\\
& =0+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{2 x \sqrt{y x}}{\sqrt{y}}+2 \sqrt{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{2 x \sqrt{y x}}{\sqrt{y}}+2 \sqrt{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{2 x \sqrt{y x}}{\sqrt{y}}+2 \sqrt{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 78: Slope field plot

Verification of solutions

$$
-\frac{2 x \sqrt{y x}}{\sqrt{y}}+2 \sqrt{y}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 65
dsolve (diff $(y(x), x)=3 *(x * y(x))^{\wedge}(1 / 2), y(x)$, singsol=all)

$$
\frac{\left(c_{1} x^{3}-y(x) c_{1}+1\right) \sqrt{x y(x)}-x^{2}\left(c_{1} x^{3}-y(x) c_{1}-1\right)}{\left(x^{3}-y(x)\right)\left(x^{2}-\sqrt{x y(x)}\right)}=0
$$

\checkmark Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 26
DSolve[y'[x] == $3 *(x * y[x])^{\wedge}(1 / 2), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(2 x^{3 / 2}+c_{1}\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.7 problem 7

3.7.1 Solving as first order ode lie symmetry calculated ode 317
3.7.2 Solving as exact ode . 322

Internal problem ID [33]
Internal file name [OUTPUT/33_Sunday_June_05_2022_01_33_54_AM_75111295/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
y^{\prime}-4(y x)^{\frac{1}{3}}=0
$$

3.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =4(y x)^{\frac{1}{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{equation*}
b_{2}+4(y x)^{\frac{1}{3}}\left(b_{3}-a_{2}\right)-16(y x)^{\frac{2}{3}} a_{3}-\frac{4 y\left(x a_{2}+y a_{3}+a_{1}\right)}{3(y x)^{\frac{2}{3}}}-\frac{4 x\left(x b_{2}+y b_{3}+b_{1}\right)}{3(y x)^{\frac{2}{3}}}=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
-\frac{48(y x)^{\frac{4}{3}} a_{3}+16 x y a_{2}-8 x y b_{3}-3 b_{2}(y x)^{\frac{2}{3}}+4 x^{2} b_{2}+4 y^{2} a_{3}+4 x b_{1}+4 y a_{1}}{3(y x)^{\frac{2}{3}}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
-48(y x)^{\frac{4}{3}} a_{3}+3 b_{2}(y x)^{\frac{2}{3}}-4 x^{2} b_{2}-16 x y a_{2}+8 x y b_{3}-4 y^{2} a_{3}-4 x b_{1}-4 y a_{1}=0 \tag{6E}
\end{equation*}
$$

Since the PDE has radicals, simplifying gives

$$
-48 y x(y x)^{\frac{1}{3}} a_{3}-4 x^{2} b_{2}-16 x y a_{2}+8 x y b_{3}+3 b_{2}(y x)^{\frac{2}{3}}-4 y^{2} a_{3}-4 x b_{1}-4 y a_{1}=0
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,(y x)^{\frac{1}{3}},(y x)^{\frac{2}{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},(y x)^{\frac{1}{3}}=v_{3},(y x)^{\frac{2}{3}}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-48 v_{2} v_{1} v_{3} a_{3}-16 v_{1} v_{2} a_{2}-4 v_{2}^{2} a_{3}-4 v_{1}^{2} b_{2}+8 v_{1} v_{2} b_{3}-4 v_{2} a_{1}-4 v_{1} b_{1}+3 b_{2} v_{4}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-4 v_{1}^{2} b_{2}-48 v_{2} v_{1} v_{3} a_{3}+\left(-16 a_{2}+8 b_{3}\right) v_{1} v_{2}-4 v_{1} b_{1}-4 v_{2}^{2} a_{3}-4 v_{2} a_{1}+3 b_{2} v_{4}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{1} & =0 \\
-48 a_{3} & =0 \\
-4 a_{3} & =0 \\
-4 b_{1} & =0 \\
-4 b_{2} & =0 \\
3 b_{2} & =0 \\
-16 a_{2}+8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{2 y}{x} \\
& =\frac{2 y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x^{2}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x^{2}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=4(y x)^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{2 y}{x^{3}} \\
R_{y} & =\frac{1}{x^{2}} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x^{2}}{4 x(y x)^{\frac{1}{3}}-2 y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{4 R^{\frac{1}{3}}-2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln \left(R^{2}-8\right)}{4}-\frac{\ln \left(R^{\frac{2}{3}}-2\right)}{2}+\frac{\ln \left(2 R^{\frac{2}{3}}+R^{\frac{4}{3}}+4\right)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=-\frac{\ln \left(\frac{y^{2}}{x^{4}}-8\right)}{4}-\frac{\ln \left(\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-2\right)}{2}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+4\right)}{4}+c_{1}
$$

Which simplifies to

$$
\ln (x)=-\frac{\ln \left(\frac{y^{2}}{x^{4}}-8\right)}{4}-\frac{\ln \left(\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-2\right)}{2}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+4\right)}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=4(y x)^{\frac{1}{3}}$		$\frac{d S}{d R}=\frac{1}{4 R^{\frac{1}{3}}-2 R}$
	$R=\frac{y}{x^{2}}$	$S(R)$
	$S=\ln (x)$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (x)=-\frac{\ln \left(\frac{y^{2}}{x^{4}}-8\right)}{4}-\frac{\ln \left(\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-2\right)}{2}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+4\right)}{4}+c_{1} \tag{1}
\end{equation*}
$$

Figure 79: Slope field plot

Verification of solutions

$$
\ln (x)=-\frac{\ln \left(\frac{y^{2}}{x^{4}}-8\right)}{4}-\frac{\ln \left(\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-2\right)}{2}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+4\right)}{4}+c_{1}
$$

Verified OK.

3.7.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(4(y x)^{\frac{1}{3}}\right) \mathrm{d} x \\
\left(-4(y x)^{\frac{1}{3}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-4(y x)^{\frac{1}{3}} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-4(y x)^{\frac{1}{3}}\right) \\
& =-\frac{4 x}{3(y x)^{\frac{2}{3}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{4 x}{3(y x)^{\frac{2}{3}}}\right)-(0)\right) \\
& =-\frac{4 x}{3(y x)^{\frac{2}{3}}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{4(y x)^{\frac{1}{3}}}\left((0)-\left(-\frac{4 x}{3(y x)^{\frac{2}{3}}}\right)\right) \\
& =-\frac{1}{3 y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{3 y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (y)}{3}} \\
& =\frac{1}{y^{\frac{1}{3}}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{\frac{1}{3}}}\left(-4(y x)^{\frac{1}{3}}\right) \\
& =-\frac{4(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{\frac{1}{3}}}(1) \\
& =\frac{1}{y^{\frac{1}{3}}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{4(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}}\right)+\left(\frac{1}{y^{\frac{1}{3}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{4(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}} \mathrm{~d} x \\
\phi & =-\frac{3 x(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x^{2}}{(y x)^{\frac{2}{3}} y^{\frac{1}{3}}}+\frac{x(y x)^{\frac{1}{3}}}{y^{\frac{4}{3}}}+f^{\prime}(y) \tag{4}\\
& =0+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{3 x(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{3 x(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{3 x(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 80: Slope field plot

Verification of solutions

$$
-\frac{3 x(y x)^{\frac{1}{3}}}{y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 91

```
dsolve(diff(y(x),x) = 4*(x*y(x))^(1/3),y(x), singsol=all)
```

$$
\begin{aligned}
& -\frac{32 x\left(\left(-c_{1} x^{5}+\frac{y(x)^{2} c_{1} x}{8}+\frac{x}{16}\right)(x y(x))^{\frac{2}{3}}+\left(c_{1} x^{4}-\frac{y(x)^{2} c_{1}}{8}+\frac{1}{8}\right)\left(x^{3}+\frac{y(x)(x y(x))^{\frac{1}{3}}}{4}\right)\right)}{\left(8 x^{4}-y(x)^{2}\right)\left(-(x y(x))^{\frac{2}{3}}+2 x^{2}\right)^{2}} \\
& =0
\end{aligned}
$$

Solution by Mathematica
Time used: 4.813 (sec). Leaf size: 35

```
DSolve[y'[x] == 4*(x*y[x])~(1/3),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{2}{3} \sqrt{\frac{2}{3}}\left(3 x^{4 / 3}+c_{1}\right)^{3 / 2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.8 problem 8

3.8.1 Solving as separable ode . 329
3.8.2 Solving as first order ode lie symmetry lookup ode 331
3.8.3 Solving as exact ode . 335
3.8.4 Maple step by step solution . 339

Internal problem ID [34]
Internal file name [OUTPUT/34_Sunday_June_05_2022_01_33_55_AM_57455569/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 x \sec (y)=0
$$

3.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =2 x \sec (y)
\end{aligned}
$$

Where $f(x)=2 x$ and $g(y)=\sec (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sec (y)} d y & =2 x d x \\
\int \frac{1}{\sec (y)} d y & =\int 2 x d x \\
\sin (y) & =x^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\arcsin \left(x^{2}+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(x^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 81: Slope field plot

Verification of solutions

$$
y=\arcsin \left(x^{2}+c_{1}\right)
$$

Verified OK.

3.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 x \sec (y) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 64: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{2 x}} d x
\end{aligned}
$$

Which results in

$$
S=x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 x \sec (y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2}=\sin (y)+c_{1}
$$

Which simplifies to

$$
x^{2}=\sin (y)+c_{1}
$$

Which gives

$$
y=-\arcsin \left(-x^{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 x \sec (y)$		$\frac{d S}{d R}=\cos (R)$
		$\rightarrow x^{2}$
$14+14 z^{3}+1$.		
	$R=y$	$\rightarrow \rightarrow 0$
	$S=x^{2}$	$\rightarrow-4 \times 1+8$
-	$S=x^{2}$	
		$x_{0 \rightarrow 8}$
		$\rightarrow \rightarrow x^{+1}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\arcsin \left(-x^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
y=-\arcsin \left(-x^{2}+c_{1}\right)
$$

Verified OK.

3.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 \sec (y)}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{2 \sec (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{2 \sec (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 \sec (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 \sec (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 \sec (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{1}{2 \sec (y)} \\
& =\frac{\cos (y)}{2}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{\cos (y)}{2}\right) \mathrm{d} y \\
f(y) & =\frac{\sin (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{\sin (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{\sin (y)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\frac{\sin (y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 83: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}+\frac{\sin (y)}{2}=c_{1}
$$

Verified OK.

3.8.4 Maple step by step solution

Let's solve
$y^{\prime}-2 x \sec (y)=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\sec (y)}=2 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sec (y)} d x=\int 2 x d x+c_{1}
$$

- Evaluate integral

$$
\sin (y)=x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\arcsin \left(x^{2}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x) = 2*x*sec(y(x)),y(x), singsol=all)
```

$$
y(x)=\arcsin \left(x^{2}+2 c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.841 (sec). Leaf size: 12

```
DSolve[y'[x]==2*x*Sec[y[x]],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \arcsin \left(x^{2}+c_{1}\right)
$$

3.9 problem 9

3.9.1 Solving as separable ode . 341
3.9.2 Solving as linear ode . 343
3.9.3 Solving as homogeneousTypeD2 ode 344
3.9.4 Solving as first order ode lie symmetry lookup ode 346
3.9.5 Solving as exact ode . 350
3.9.6 Maple step by step solution . 354

Internal problem ID [35]
Internal file name [OUTPUT/35_Sunday_June_05_2022_01_33_55_AM_55264386/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(-x^{2}+1\right) y^{\prime}-2 y=0
$$

3.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{2 y}{x^{2}-1}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x^{2}-1}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{2}{x^{2}-1} d x \\
\int \frac{1}{y} d y & =\int-\frac{2}{x^{2}-1} d x \\
\ln (y) & =2 \operatorname{arctanh}(x)+c_{1} \\
y & =\mathrm{e}^{2} \operatorname{arctanh}(x)+c_{1} \\
& =\frac{c_{1}(x+1)^{2}}{-x^{2}+1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}(x+1)^{2}}{-x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}(x+1)^{2}}{-x^{2}+1}
$$

Verified OK.

3.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x^{2}-1} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x^{2}-1}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x^{2}-1} d x} \\
& =\frac{-x^{2}+1}{(x+1)^{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1-x}{x+1}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{(1-x) y}{x+1}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{(1-x) y}{x+1}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1-x}{x+1}$ results in

$$
y=\frac{c_{1}(-x-1)}{x-1}
$$

which simplifies to

$$
y=-\frac{(x+1) c_{1}}{x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{(x+1) c_{1}}{x-1} \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot

Verification of solutions

$$
y=-\frac{(x+1) c_{1}}{x-1}
$$

Verified OK.

3.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(-x^{2}+1\right)\left(u^{\prime}(x) x+u(x)\right)-2 u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(x^{2}+2 x-1\right)}{\left(x^{2}-1\right) x}
\end{aligned}
$$

Where $f(x)=-\frac{x^{2}+2 x-1}{\left(x^{2}-1\right) x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{x^{2}+2 x-1}{\left(x^{2}-1\right) x} d x \\
\int \frac{1}{u} d u & =\int-\frac{x^{2}+2 x-1}{\left(x^{2}-1\right) x} d x \\
\ln (u) & =-\ln (x)+\ln (x+1)-\ln (x-1)+c_{2} \\
u & =\mathrm{e}^{-\ln (x)+\ln (x+1)-\ln (x-1)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)+\ln (x+1)-\ln (x-1)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{2}\left(\frac{1}{x-1}+\frac{1}{x(x-1)}\right)
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x c_{2}\left(\frac{1}{x-1}+\frac{1}{x(x-1)}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x c_{2}\left(\frac{1}{x-1}+\frac{1}{x(x-1)}\right) \tag{1}
\end{equation*}
$$

Figure 86: Slope field plot

Verification of solutions

$$
y=x c_{2}\left(\frac{1}{x-1}+\frac{1}{x(x-1)}\right)
$$

Verified OK.

3.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y}{x^{2}-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 67: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{(x+1)^{2}}{-x^{2}+1} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{(x+1)^{2}}{-x^{2}+1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\left(-x^{2}+1\right) y}{(x+1)^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 y}{(x+1)^{2}} \\
S_{y} & =\frac{1-x}{x+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{(x-1) y}{x+1}=c_{1}
$$

Which simplifies to

$$
-\frac{(x-1) y}{x+1}=c_{1}
$$

Which gives

$$
y=-\frac{(x+1) c_{1}}{x-1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y}{x^{2}-1}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow} \mathrm{S}$ (RT) ${ }_{\text {l }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 22]{ }$ 他
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$S=-\frac{(x-1) y}{x+1}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow{\rightarrow \rightarrow \rightarrow+R^{+\rightarrow \rightarrow \rightarrow}}$
		$\xrightarrow{\rightarrow \rightarrow ~}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{(x+1) c_{1}}{x-1} \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot

Verification of solutions

$$
y=-\frac{(x+1) c_{1}}{x-1}
$$

Verified OK.

3.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{2 y}\right) \mathrm{d} y & =\left(\frac{1}{x^{2}-1}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{2}-1}\right) \mathrm{d} x+\left(-\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x^{2}-1} \\
N(x, y) & =-\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{2}-1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{2}-1} \mathrm{~d} x \\
\phi & =\operatorname{arctanh}(x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\operatorname{arctanh}(x)-\frac{\ln (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\operatorname{arctanh}(x)-\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\mathrm{e}^{2 \operatorname{arctanh}(x)-2 c_{1}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 \operatorname{arctanh}(x)-2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 \operatorname{arctanh}(x)-2 c_{1}}
$$

Verified OK.

3.9.6 Maple step by step solution

Let's solve
$\left(-x^{2}+1\right) y^{\prime}-2 y=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{2}{-x^{2}+1}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{2}{-x^{2}+1} d x+c_{1}$
- Evaluate integral
$\ln (y)=2 \operatorname{arctanh}(x)+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{2 \operatorname{arctanh}(x)+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve((-x^2+1)*diff(y(x),x) = 2*y(x),y(x), singsol=all)
```

$$
y(x)=-\frac{(x+1) c_{1}}{x-1}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 22
DSolve $\left[\left(-x^{\wedge} 2+1\right) * y\right.$ ' $[x]==2 * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{c_{1}(x+1)}{x-1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.10 problem 10

3.10.1 Solving as separable ode . 356
3.10.2 Solving as first order ode lie symmetry lookup ode 358
3.10.3 Solving as exact ode . 362
3.10.4 Solving as riccati ode . 366
3.10.5 Maple step by step solution . 368

Internal problem ID [36]
Internal file name [OUTPUT/36_Sunday_June_05_2022_01_33_56_AM_69487583/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(x^{2}+1\right) y^{\prime}-(1+y)^{2}=0
$$

3.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{(y+1)^{2}}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{2}+1}$ and $g(y)=(y+1)^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{(y+1)^{2}} d y & =\frac{1}{x^{2}+1} d x \\
\int \frac{1}{(y+1)^{2}} d y & =\int \frac{1}{x^{2}+1} d x
\end{aligned}
$$

$$
-\frac{1}{y+1}=\arctan (x)+c_{1}
$$

Which results in

$$
y=-\frac{\arctan (x)+c_{1}+1}{\arctan (x)+c_{1}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\arctan (x)+c_{1}+1}{\arctan (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 89: Slope field plot
Verification of solutions

$$
y=-\frac{\arctan (x)+c_{1}+1}{\arctan (x)+c_{1}}
$$

Verified OK.

3.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{(y+1)^{2}}{x^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 70: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2}+1 \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x^{2}+1} d x
\end{aligned}
$$

Which results in

$$
S=\arctan (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{(y+1)^{2}}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x^{2}+1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{(y+1)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{(R+1)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R+1}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\arctan (x)=-\frac{1}{1+y}+c_{1}
$$

Which simplifies to

$$
\arctan (x)=-\frac{1}{1+y}+c_{1}
$$

Which gives

$$
y=-\frac{\arctan (x)-c_{1}+1}{\arctan (x)-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{(y+1)^{2}}{x^{2}+1}$		$\frac{d S}{d R}=\frac{1}{(R+1)^{2}}$
		$\rightarrow \rightarrow \rightarrow$ -
		-> $\uparrow+$
		$S(R)+$
		\% $4+$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty \text { - }]{\rightarrow \rightarrow \rightarrow-\infty}$	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }+$
	$S=\arctan (x)$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow]{\text { a }}$	$S=\arctan (x)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow \rightarrow \rightarrow \pm$ - + +
		$\rightarrow \rightarrow+\infty$
		$\rightarrow \rightarrow-\infty+1$
		$\rightarrow \rightarrow \rightarrow \infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\arctan (x)-c_{1}+1}{\arctan (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
y=-\frac{\arctan (x)-c_{1}+1}{\arctan (x)-c_{1}}
$$

Verified OK.

3.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{(y+1)^{2}}\right) \mathrm{d} y & =\left(\frac{1}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{2}+1}\right) \mathrm{d} x+\left(\frac{1}{(y+1)^{2}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x^{2}+1} \\
& N(x, y)=\frac{1}{(y+1)^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{(y+1)^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\arctan (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{(y+1)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{(y+1)^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{(y+1)^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{(y+1)^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y+1}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\arctan (x)-\frac{1}{y+1}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\arctan (x)-\frac{1}{y+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\arctan (x)-\frac{1}{1+y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot
Verification of solutions

$$
-\arctan (x)-\frac{1}{1+y}=c_{1}
$$

Verified OK.

3.10.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{(y+1)^{2}}{x^{2}+1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{x^{2}+1}+\frac{2 y}{x^{2}+1}+\frac{1}{x^{2}+1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{1}{x^{2}+1}, f_{1}(x)=\frac{2}{x^{2}+1}$ and $f_{2}(x)=\frac{1}{x^{2}+1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}+1}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 x}{\left(x^{2}+1\right)^{2}} \\
f_{1} f_{2} & =\frac{2}{\left(x^{2}+1\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{1}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}+1}-\left(-\frac{2 x}{\left(x^{2}+1\right)^{2}}+\frac{2}{\left(x^{2}+1\right)^{2}}\right) u^{\prime}(x)+\frac{u(x)}{\left(x^{2}+1\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\arctan (x) c_{2}+c_{1}\right)\left(\frac{x+i}{x-i}\right)^{\frac{i}{2}}
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(\frac{-x-i}{-x+i}\right)^{\frac{i}{2}}\left(\arctan (x) c_{2}+c_{1}+c_{2}\right)}{x^{2}+1}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\frac{-x-i}{-x+i}\right)^{\frac{i}{2}}\left(\arctan (x) c_{2}+c_{1}+c_{2}\right)\left(\frac{x+i}{x-i}\right)^{-\frac{i}{2}}}{\arctan (x) c_{2}+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\arctan (x)-c_{3}-1}{\arctan (x)+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\arctan (x)-c_{3}-1}{\arctan (x)+c_{3}} \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot

Verification of solutions

$$
y=\frac{-\arctan (x)-c_{3}-1}{\arctan (x)+c_{3}}
$$

Verified OK.

3.10.5 Maple step by step solution

Let's solve

$$
\left(x^{2}+1\right) y^{\prime}-(1+y)^{2}=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
\frac{y^{\prime}}{(1+y)^{2}}=\frac{1}{x^{2}+1}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{(1+y)^{2}} d x=\int \frac{1}{x^{2}+1} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{1+y}=\arctan (x)+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{\arctan (x)+c_{1}+1}{\arctan (x)+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve((x^2+1)*diff(y(x),x) = (1+y(x))^2,y(x), singsol=all)
```

$$
y(x)=\frac{-\arctan (x)-c_{1}-1}{\arctan (x)+c_{1}}
$$

Solution by Mathematica
Time used: 0.19 (sec). Leaf size: 25
DSolve $\left[\left(x^{\wedge} 2+1\right) * y\right.$ ' $[x]==(1+y[x]) \wedge 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\arctan (x)+1+c_{1}}{\arctan (x)+c_{1}} \\
& y(x) \rightarrow-1
\end{aligned}
$$

3.11 problem 11

3.11.1 Solving as separable ode 370
3.11.2 Solving as first order ode lie symmetry lookup ode 372
3.11.3 Solving as exact ode . 376
3.11.4 Maple step by step solution . 380

Internal problem ID [37]
Internal file name [OUTPUT/37_Sunday_June_05_2022_01_33_56_AM_89088322/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-x y^{3}=0
$$

3.11.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x y^{3}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y^{3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{3}} d y & =x d x \\
\int \frac{1}{y^{3}} d y & =\int x d x \\
-\frac{1}{2 y^{2}} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{1}{\sqrt{-x^{2}-2 c_{1}}} \\
& y=\frac{1}{\sqrt{-x^{2}-2 c_{1}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{1}{\sqrt{-x^{2}-2 c_{1}}} \tag{1}\\
& y=\frac{1}{\sqrt{-x^{2}-2 c_{1}}} \tag{2}
\end{align*}
$$

Figure 93: Slope field plot

Verification of solutions

$$
y=-\frac{1}{\sqrt{-x^{2}-2 c_{1}}}
$$

Verified OK.

$$
y=\frac{1}{\sqrt{-x^{2}-2 c_{1}}}
$$

Verified OK.

3.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x y^{3} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 73: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x y^{3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=-\frac{1}{2 y^{2}}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=-\frac{1}{2 y^{2}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x y^{3}$		$\frac{d S}{d R}=\frac{1}{R^{3}}$
¢ ${ }_{\text {d, }}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ } \xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	x^{2}	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ } \xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4]{ }$
		\rightarrow + $\dagger^{\dagger} \uparrow$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=-\frac{1}{2 y^{2}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
\frac{x^{2}}{2}=-\frac{1}{2 y^{2}}+c_{1}
$$

Verified OK.

3.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{3}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{y^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{y^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{3}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{3}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{3}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{3}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{2 y^{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{1}{2 y^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{1}{2 y^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\frac{1}{2 y^{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}-\frac{1}{2 y^{2}}=c_{1}
$$

Verified OK.

3.11.4 Maple step by step solution

Let's solve
$y^{\prime}-x y^{3}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{3}}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{3}} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{2 y^{2}}=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{1}{\sqrt{-x^{2}-2 c_{1}}}, y=-\frac{1}{\sqrt{-x^{2}-2 c_{1}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x) = x*y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
y(x) & =\frac{1}{\sqrt{-x^{2}+c_{1}}} \\
y(x) & =-\frac{1}{\sqrt{-x^{2}+c_{1}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 44
DSolve[y'[x] == $x * y[x] \wedge 3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt{-x^{2}-2 c_{1}}} \\
& y(x) \rightarrow \frac{1}{\sqrt{-x^{2}-2 c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.12 problem 12

3.12.1 Solving as separable ode
3.12.2 Solving as first order ode lie symmetry lookup ode 384
3.12.3 Solving as bernoulli ode . 388
3.12.4 Solving as exact ode . 391
3.12.5 Maple step by step solution . 395

Internal problem ID [38]
Internal file name [OUTPUT/38_Sunday_June_05_2022_01_33_57_AM_44493475/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y y^{\prime}-x\left(1+y^{2}\right)=0
$$

3.12.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x\left(y^{2}+1\right)}{y}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\frac{y^{2}+1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{2}+1}{y}} d y & =x d x \\
\int \frac{1}{\frac{y^{2}+1}{y}} d y & =\int x d x
\end{aligned}
$$

$$
\frac{\ln \left(y^{2}+1\right)}{2}=\frac{x^{2}}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\sqrt{y^{2}+1}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y^{2}+1}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

The solution is

$$
\sqrt{1+y^{2}}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\sqrt{1+y^{2}}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 96: Slope field plot
Verification of solutions

$$
\sqrt{1+y^{2}}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Verified OK.

3.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x\left(y^{2}+1\right)}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 76: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x y^{n}}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x\left(y^{2}+1\right)}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{2}+1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x\left(y^{2}+1\right)}{y}$		$\frac{d S}{d R}=\frac{R}{R^{2}+1}$
		为
		$\rightarrow \rightarrow$ STR
		－
	$R=y$	连
	S x^{2}	
	$S=\frac{x^{2}}{2}$	$\rightarrow \rightarrow+\infty$
	2	边
		为
		$\rightarrow 0$
		\rightarrow 为

Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 97: Slope field plot
Verification of solutions

$$
\frac{x^{2}}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

Verified OK.

3.12.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x\left(y^{2}+1\right)}{y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=x y+x \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =x \\
f_{1}(x) & =x \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=x y^{2}+x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =w(x) x+x \\
w^{\prime} & =2 x w+2 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-2 x \\
q(x) & =2 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-2 w(x) x=2 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(2 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} w\right) & =\left(\mathrm{e}^{-x^{2}}\right)(2 x) \\
\mathrm{d}\left(\mathrm{e}^{-x^{2}} w\right) & =\left(2 x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{2}} w=\int 2 x \mathrm{e}^{-x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{-x^{2}} w=-\mathrm{e}^{-x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}}$ results in

$$
w(x)=-\mathrm{e}^{x^{2}} \mathrm{e}^{-x^{2}}+c_{1} \mathrm{e}^{x^{2}}
$$

which simplifies to

$$
w(x)=-1+c_{1} \mathrm{e}^{x^{2}}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-1+c_{1} \mathrm{e}^{x^{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{-1+c_{1} \mathrm{e}^{x^{2}}} \\
& y(x)=-\sqrt{-1+c_{1} \mathrm{e}^{x^{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-1+c_{1} \mathrm{e}^{x^{2}}} \tag{1}\\
& y=-\sqrt{-1+c_{1} \mathrm{e}^{x^{2}}} \tag{2}
\end{align*}
$$

Figure 98: Slope field plot

Verification of solutions

$$
y=\sqrt{-1+c_{1} e^{x^{2}}}
$$

Verified OK.

$$
y=-\sqrt{-1+c_{1} \mathrm{e}^{x^{2}}}
$$

Verified OK.

3.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y}{y^{2}+1}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{y}{y^{2}+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{y}{y^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y}{y^{2}+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{y^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{y^{2}+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =\frac{\ln \left(y^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{\ln \left(y^{2}+1\right)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{\ln \left(y^{2}+1\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\frac{\ln \left(1+y^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 99: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}+\frac{\ln \left(1+y^{2}\right)}{2}=c_{1}
$$

Verified OK.

3.12.5 Maple step by step solution

Let's solve

$$
y y^{\prime}-x\left(1+y^{2}\right)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y y^{\prime}}{1+y^{2}}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y y^{\prime}}{1+y^{2}} d x=\int x d x+c_{1}
$$

- Evaluate integral
$\frac{\ln \left(1+y^{2}\right)}{2}=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y

$$
\left\{y=\sqrt{-1+\mathrm{e}^{x^{2}+2 c_{1}}}, y=-\sqrt{-1+\mathrm{e}^{x^{2}+2 c_{1}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(y(x)*diff(y(x),x) = x*(1+y(x)^2),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{\mathrm{e}^{x^{2}} c_{1}-1} \\
& y(x)=-\sqrt{\mathrm{e}^{x^{2}} c_{1}-1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.961 (sec). Leaf size: 57
DSolve[y[x]*y'[x] == $x *(1+y[x] \sim 2), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-1+e^{x^{2}+2 c_{1}}} \\
& y(x) \rightarrow \sqrt{-1+e^{x^{2}+2 c_{1}}} \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i
\end{aligned}
$$

3.13 problem 14

3.13.1 Solving as separable ode . 397
3.13.2 Solving as differentialType ode 399
3.13.3 Solving as first order ode lie symmetry lookup ode 402
3.13.4 Solving as exact ode . 406
3.13.5 Maple step by step solution . 410

Internal problem ID [39]
Internal file name [OUTPUT/39_Sunday_June_05_2022_01_33_57_AM_34740163/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_oorder_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{1+\sqrt{x}}{1+\sqrt{y}}=0
$$

3.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{1+\sqrt{x}}{1+\sqrt{y}}
\end{aligned}
$$

Where $f(x)=1+\sqrt{x}$ and $g(y)=\frac{1}{1+\sqrt{y}}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{1+\sqrt{y}}} d y=1+\sqrt{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{1+\sqrt{y}}} d y & =\int 1+\sqrt{x} d x \\
y+\frac{2 y^{\frac{3}{2}}}{3} & =\frac{2 x^{\frac{3}{2}}}{3}+x+c_{1}
\end{aligned}
$$

The solution is

$$
y+\frac{2 y^{\frac{3}{2}}}{3}-\frac{2 x^{\frac{3}{2}}}{3}-x-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y+\frac{2 y^{\frac{3}{2}}}{3}-\frac{2 x^{\frac{3}{2}}}{3}-x-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot
Verification of solutions

$$
y+\frac{2 y^{\frac{3}{2}}}{3}-\frac{2 x^{\frac{3}{2}}}{3}-x-c_{1}=0
$$

Verified OK.

3.13.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{1+\sqrt{x}}{1+\sqrt{y}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(1+\sqrt{y}) d y=(1+\sqrt{x}) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(1+\sqrt{x}) d x=d\left(\frac{2 x^{\frac{3}{2}}}{3}+x\right)
$$

Hence (2) becomes

$$
(1+\sqrt{y}) d y=d\left(\frac{2 x^{\frac{3}{2}}}{3}+x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\left(\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+-\right. \\
& y=\left(-\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}-\right. \\
& y=\left(-\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}-\right. \\
&
\end{aligned}
$$

Summary

The solution(s) found are the following
y
$=\left(\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{}{2}\right.$

$$
\begin{equation*}
y \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& =\left(-\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}-\right. \tag{3}\\
& \quad+c_{1}
\end{align*}
$$

$=\left(-\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}-\right.$

Figure 101: Slope field plot

Verification of solutions

y

$$
\begin{aligned}
= & \left(\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{}{2}\right. \\
& +c_{1}
\end{aligned}
$$

Verified OK.

y

$$
\begin{aligned}
= & \left(-\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}--\right.
\end{aligned}
$$

Verified OK.
y

$$
\begin{aligned}
&=\left(-\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}--\right. \\
&+c_{1}
\end{aligned}
$$

Verified OK.

3.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{1+\sqrt{x}}{1+\sqrt{y}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 79: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{1+\sqrt{x}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{1+\sqrt{x}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{2 x^{\frac{3}{2}}}{3}+x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1+\sqrt{x}}{1+\sqrt{y}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =1+\sqrt{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1+\sqrt{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1+\sqrt{R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{2 R^{\frac{3}{2}}}{3}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{2 x^{\frac{3}{2}}}{3}+x=\frac{2 y^{\frac{3}{2}}}{3}+y+c_{1}
$$

Which simplifies to

$$
\frac{2 x^{\frac{3}{2}}}{3}+x=\frac{2 y^{\frac{3}{2}}}{3}+y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{1+\sqrt{x}}{1+\sqrt{y}}$		$\frac{d S}{d R}=1+\sqrt{R}$
${ }_{y(x)}{ }_{2}$		
カップ	$R=y$	
$\begin{array}{lll\|ll} \hline-4 & -2 & x^{0} & { }_{2}^{2} & { }^{4} \\ & & -2 & & \end{array}$	$S=\frac{2 x^{\frac{3}{2}}}{3}+x$	

Summary
The solution（s）found are the following

$$
\begin{equation*}
\frac{2 x^{\frac{3}{2}}}{3}+x=\frac{2 y^{\frac{3}{2}}}{3}+y+c_{1} \tag{1}
\end{equation*}
$$

Figure 102: Slope field plot
Verification of solutions

$$
\frac{2 x^{\frac{3}{2}}}{3}+x=\frac{2 y^{\frac{3}{2}}}{3}+y+c_{1}
$$

Verified OK.

3.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(1+\sqrt{y}) \mathrm{d} y & =(1+\sqrt{x}) \mathrm{d} x \\
(-1-\sqrt{x}) \mathrm{d} x+(1+\sqrt{y}) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-1-\sqrt{x} \\
& N(x, y)=1+\sqrt{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-1-\sqrt{x}) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1+\sqrt{y}) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-1-\sqrt{x} \mathrm{~d} x \\
\phi & =-x-\frac{2 x^{\frac{3}{2}}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=1+\sqrt{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
1+\sqrt{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1+\sqrt{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1+\sqrt{y}) \mathrm{d} y \\
f(y) & =y+\frac{2 y^{\frac{3}{2}}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-\frac{2 x^{\frac{3}{2}}}{3}+y+\frac{2 y^{\frac{3}{2}}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-\frac{2 x^{\frac{3}{2}}}{3}+y+\frac{2 y^{\frac{3}{2}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{2 x^{\frac{3}{2}}}{3}-x+\frac{2 y^{\frac{3}{2}}}{3}+y=c_{1} \tag{1}
\end{equation*}
$$

Figure 103: Slope field plot
Verification of solutions

$$
-\frac{2 x^{\frac{3}{2}}}{3}-x+\frac{2 y^{\frac{3}{2}}}{3}+y=c_{1}
$$

Verified OK.

3.13.5 Maple step by step solution

Let's solve
$y^{\prime}-\frac{1+\sqrt{x}}{1+\sqrt{y}}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
(1+\sqrt{y}) y^{\prime}=1+\sqrt{x}
$$

- Integrate both sides with respect to x
$\int(1+\sqrt{y}) y^{\prime} d x=\int(1+\sqrt{x}) d x+c_{1}$
- Evaluate integral

$$
y+\frac{2 y^{\frac{3}{2}}}{3}=\frac{2 x^{\frac{3}{2}}}{3}+x+c_{1}
$$

- \quad Solve for y

$$
y=\left(\frac{\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3 c_{1}-3 x+4 x^{3}+12 x^{\frac{3}{2}} c_{1}+12 x^{\frac{5}{2}}+9 c_{1}^{2}+18 c_{1} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{}{2\left(-1+4 x^{\frac{3}{2}}+6 c_{1}+6 x+2 \sqrt{-2 x^{\frac{3}{2}}-3}\right.}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x) = (1+x^(1/2))/(1+y(x)^(1/2)),y(x), singsol=all)
```

$$
x+\frac{2 x^{\frac{3}{2}}}{3}-y(x)-\frac{2 y(x)^{\frac{3}{2}}}{3}+c_{1}=0
$$

Solution by Mathematica

Time used: 4.529 (sec). Leaf size: 796

```
DSolve[y'[x]== (1+x^(1/2))/(1+y[x]~(1/2)),y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$

$$
\rightarrow \frac{-16 x^{3 / 2}+\left(96 x^{5 / 2}+24\left(-3+4 c_{1}\right) x^{3 / 2}+8 \sqrt{\left(2 x^{3 / 2}+3 x-1+3 c_{1}\right)\left(2 x^{3 / 2}+3 x+3 c_{1}\right)^{3}}+32 x^{3}+72 x\right.}{4 \sqrt[3]{96 x^{5 / 2}+24(-}}
$$

$$
y(x)
$$

$$
\begin{aligned}
& \rightarrow \frac{1}{16}\left(\frac{2(1+i \sqrt{3})\left(16 x^{3 / 2}+24 x-9+24 c_{1}\right)}{\sqrt[3]{96 x^{5 / 2}+24\left(-3+4 c_{1}\right) x^{3 / 2}+8 \sqrt{\left(2 x^{3 / 2}+3 x-1+3 c_{1}\right)\left(2 x^{3 / 2}+3 x+3 c_{1}\right)^{3}}+32 x^{3}+72 x^{2}+3}}\right. \\
& \quad+2 i(\sqrt{3}+i) \sqrt[3]{96 x^{5 / 2}+24\left(-3+4 c_{1}\right) x^{3 / 2}+8 \sqrt{\left(2 x^{3 / 2}+3 x-1+3 c_{1}\right)\left(2 x^{3 / 2}+3 x+3 c_{1}\right)^{3}}+32 x^{3}+7}
\end{aligned}
$$

$$
+12)
$$

$$
y(x)
$$

$$
\begin{aligned}
\rightarrow & \frac{1}{16}\left(\frac{2(1-i \sqrt{3})\left(16 x^{3 / 2}+24 x-9+24 c_{1}\right)}{\sqrt[3]{96 x^{5 / 2}+24\left(-3+4 c_{1}\right) x^{3 / 2}+8 \sqrt{\left(2 x^{3 / 2}+3 x-1+3 c_{1}\right)\left(2 x^{3 / 2}+3 x+3 c_{1}\right)^{3}}+32 x^{3}+72 x^{2}+3}}\right. \\
& -2(1+i \sqrt{3}) \sqrt[3]{96 x^{5 / 2}+24\left(-3+4 c_{1}\right) x^{3 / 2}+8 \sqrt{\left(2 x^{3 / 2}+3 x-1+3 c_{1}\right)\left(2 x^{3 / 2}+3 x+3 c_{1}\right)^{3}}+32 x^{3}+7}
\end{aligned}
$$

$$
+12)
$$

3.14 problem 15

> 3.14.1 Solving as separable ode
3.14.2 Solving as first order ode lie symmetry lookup ode 418
3.14.3 Solving as exact ode . 422
3.14.4 Maple step by step solution . 426

Internal problem ID [40]
Internal file name [OUTPUT/40_Sunday_June_05_2022_01_33_58_AM_70028064/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{(x-1) y^{5}}{x^{2}\left(-y+2 y^{3}\right)}=0
$$

3.14.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y^{4}(x-1)}{x^{2}\left(2 y^{2}-1\right)}
\end{aligned}
$$

Where $f(x)=\frac{x-1}{x^{2}}$ and $g(y)=\frac{y^{4}}{2 y^{2}-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{4}}{2 y^{2}-1}} d y & =\frac{x-1}{x^{2}} d x \\
\int \frac{1}{\frac{y^{4}}{2 y^{2}-1}} d y & =\int \frac{x-1}{x^{2}} d x
\end{aligned}
$$

$$
-\frac{2}{y}+\frac{1}{3 y^{3}}=\ln (x)+\frac{1}{x}+c_{1}
$$

Which results in

$$
\begin{aligned}
& y \\
& =\xrightarrow{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)}\right.\right.} \\
& 3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right. \\
& -\frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)} \\
& y= \\
& -\underbrace{4^{\frac{1}{3}}\left(x\left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x}\right)\right.} \\
& 3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right. \\
& -\frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)} \\
& +\quad i \sqrt{3}\left(\frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)+18 c_{1} x-32 x^{2}+9} x+3 \sqrt{9 \ln (x)^{2} x^{2}+}\right.\right.}{}\right.
\end{aligned}
$$

$$
y=
$$

$$
-4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (?}\right.\right.
$$

$$
\begin{aligned}
& 3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right. \\
- & \frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)} \\
& i \sqrt{3}\left(\frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)+18 c_{1} x-32 x^{2}+9} x+3 \sqrt{9 \ln (x)^{2} x^{2}+}\right.\right.}{}\right. \\
- &
\end{aligned}
$$

Summary

The solution(s) found are the following
y

$$
\begin{align*}
= & \frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)}\right.\right.}{}+\frac{}{3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right.} \tag{1}\\
& -\frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)} \\
y= & \\
& -\frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (.}\right.\right.}{} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& 3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right. \\
- & \frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)} \\
& i \sqrt{3}\left(\frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)+18 c_{1} x-32 x^{2}+9} x+3 \sqrt{9 \ln (x)^{2} x^{2}+}\right.\right.}{y=}\right. \\
+ & \tag{3}\\
- & 4^{\frac{1}{3}\left(x\left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (}\right)\right.} \\
& \frac{3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right.}{-} \\
& \frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)} \\
& i \sqrt{3}\left(\frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)+18 c_{1} x-32 x^{2}+9} x+3 \sqrt{9 \ln (x)^{2} x^{2}+}\right.\right.}{-}\right. \\
&
\end{align*}
$$

Figure 104: Slope field plot

Verification of solutions

y

$$
\begin{aligned}
&= \frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)}\right.\right.}{} \\
&+\frac{3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right.}{3\left(x \ln (x)+c_{1} x+1\right)}
\end{aligned}
$$

Verified OK.

$y=$

$$
-\underline{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (!}\right.\right.}
$$

$$
3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right.
$$

$$
-\frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)}
$$

Verified OK.

$y=$

$$
-4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (}\right.\right.
$$

$$
\begin{aligned}
& 3\left(x \ln (x)+c_{1} x+1\right)\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}}\right.\right. \\
- & \frac{2 x}{3\left(x \ln (x)+c_{1} x+1\right)} \\
& i \sqrt{3}\left(\frac{4^{\frac{1}{3}}\left(x \left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)+18 c_{1} x-32 x^{2}+9} x+3 \sqrt{9 \ln (x)^{2} x^{2}+}\right.\right.}{}\right.
\end{aligned}
$$

Verified OK.

3.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y^{4}(x-1)}{x^{2}\left(2 y^{2}-1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 82: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =\frac{x^{2}}{x-1} \\
\eta(x, y) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}}{x-1}} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)+\frac{1}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{4}(x-1)}{x^{2}\left(2 y^{2}-1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x-1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2 y^{2}-1}{y^{4}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2 R^{2}-1}{R^{4}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{2}{R}+\frac{1}{3 R^{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x \ln (x)+1}{x}=-\frac{2}{y}+\frac{1}{3 y^{3}}+c_{1}
$$

Which simplifies to

$$
\frac{x \ln (x)+1}{x}=-\frac{2}{y}+\frac{1}{3 y^{3}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{4}(x-1)}{x^{2}\left(2 y^{2}-1\right)}$		$\frac{d S}{d R}=\frac{2 R^{2}-1}{R^{4}}$
		$\rightarrow \rightarrow \rightarrow \pm$ - ${ }_{\text {a }}$
$\rightarrow \Delta x+1$	$R=y$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$		$\rightarrow \rightarrow \rightarrow \rightarrow+\infty$
	$S=\frac{x \ln (x)+1}{}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow 0]{ } \rightarrow$
vix	x	$\rightarrow \rightarrow \rightarrow+\infty$
		${ }_{\rightarrow \rightarrow \rightarrow-\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x \ln (x)+1}{x}=-\frac{2}{y}+\frac{1}{3 y^{3}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 105: Slope field plot
Verification of solutions

$$
\frac{x \ln (x)+1}{x}=-\frac{2}{y}+\frac{1}{3 y^{3}}+c_{1}
$$

Verified OK.

3.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2 y^{2}-1}{y^{4}}\right) \mathrm{d} y & =\left(\frac{x-1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{x-1}{x^{2}}\right) \mathrm{d} x+\left(\frac{2 y^{2}-1}{y^{4}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x-1}{x^{2}} \\
& N(x, y)=\frac{2 y^{2}-1}{y^{4}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x-1}{x^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2 y^{2}-1}{y^{4}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x-1}{x^{2}} \mathrm{~d} x \\
\phi & =-\ln (x)-\frac{1}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 y^{2}-1}{y^{4}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 y^{2}-1}{y^{4}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2 y^{2}-1}{y^{4}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2 y^{2}-1}{y^{4}}\right) \mathrm{d} y \\
f(y) & =-\frac{2}{y}+\frac{1}{3 y^{3}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\frac{1}{x}-\frac{2}{y}+\frac{1}{3 y^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\frac{1}{x}-\frac{2}{y}+\frac{1}{3 y^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (x)-\frac{1}{x}-\frac{2}{y}+\frac{1}{3 y^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 106: Slope field plot

Verification of solutions

$$
-\ln (x)-\frac{1}{x}-\frac{2}{y}+\frac{1}{3 y^{3}}=c_{1}
$$

Verified OK.

3.14.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{(x-1) y^{5}}{x^{2}\left(-y+2 y^{3}\right)}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}\left(-y+2 y^{3}\right)}{y^{5}}=\frac{x-1}{x^{2}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}\left(-y+2 y^{3}\right)}{y^{5}} d x=\int \frac{x-1}{x^{2}} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{2}{y}+\frac{1}{3 y^{3}}=\ln (x)+\frac{1}{x}+c_{1}
$$

- \quad Solve for y
$y=\frac{4^{\frac{1}{3}}\left(x\left(9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+3 \ln (x) \sqrt{9 \ln (x)^{2} x^{2}+18 \ln (x) c_{1} x^{2}+9 c_{1}^{2} x^{2}+18 x \ln (x)+18 c_{1} x-32 x^{2}+9} x+3 \sqrt{9 \ln (x)^{2} x^{2}}\right.\right.}{}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 844

```
dsolve(diff (y (x),x) = (-1+x)*y(x)^5/x^2/(-y(x)+2*y(x)^3),y(x), singsol=all)
```

$y(x)$
$=\frac{8 x^{2} 2^{\frac{1}{3}}-4 x\left(3 x\left(x \ln (x)+c_{1} x+1\right) \sqrt{9+9 \ln (x)^{2} x^{2}+18\left(c_{1} x^{2}+x\right) \ln (x)+\left(9 c_{1}^{2}-32\right) x^{2}+18 c_{1} x}+9\right.}{\left(3 x\left(x \ln (x)+c_{1} x+1\right) \sqrt{9+5}\right.}$
$y(x)=$
$-\underline{8 x\left(3 x\left(x \ln (x)+c_{1} x+1\right) \sqrt{9+9 \ln (x)^{2} x^{2}+18\left(c_{1} x^{2}+x\right) \ln (x)+\left(9 c_{1}^{2}-32\right) x^{2}+18 c_{1} x}+9(x \ln ()\right.}$
$\left(3 x\left(x \ln (x)+c_{1} x\right.\right.$
$y(x)$
$=\frac{-8 x\left(3 x\left(x \ln (x)+c_{1} x+1\right) \sqrt{9+9 \ln (x)^{2} x^{2}+18\left(c_{1} x^{2}+x\right) \ln (x)+\left(9 c_{1}^{2}-32\right) x^{2}+18 c_{1} x}+9(x \ln (x\right.}{\left(3 x\left(x \ln (x)+c_{1} x+\right.\right.}$

Solution by Mathematica

Time used: 19.626 (sec). Leaf size: 842

```
DSolve[y'[x] == (-1+x)*y[x]^5/x^2/(-y[x]+2*y[x]^3),y[x],x,IncludeSingularSolutions -> True]
```

$y(x) \rightarrow$
$-\sqrt{\sqrt[3]{16 x^{3}-9 x^{3} \log ^{2}(x)-9 c_{1}^{2} x^{3}-18 c_{1} x^{2}+3 \sqrt{x^{2}\left(x \log (x)+x_{1} x+1\right)^{2}\left(9 x^{2} \log ^{2}(x)+\left(-32+9 c_{1}^{2}\right) x^{2}\right.}}}$
$y(x)$

$$
\rightarrow \frac{\sqrt[3]{16 x^{3}-9 x^{3} \log ^{2}(x)-9 c_{1}^{2} x^{3}-18 c_{1} x^{2}+3 \sqrt{x^{2}\left(x \log (x)+c_{1} x+1\right)^{2}\left(9 x^{2} \log ^{2}(x)+\left(-32+9 c_{1}^{2}\right) x^{2}\right.}} \underset{y(x)}{ }}{}
$$

$$
\rightarrow \frac{8 \sqrt[3]{2}(1-i \sqrt{3}) x^{2}}{\sqrt[3]{16 x^{3}-9 x^{3} \log ^{2}(x)-9 c_{1}^{2} x^{3}-18 c_{1} x^{2}+3 \sqrt{x^{2}\left(x \log (x)+c_{1} x+1\right)^{2}\left(9 x^{2} \log ^{2}(x)+\left(-32+9 c_{1}^{2}\right) x^{2}-\right.}}}
$$

$$
y(x) \rightarrow 0
$$

3.15 problem 16

> 3.15.1 Solving as separable ode
3.15.2 Solving as first order ode lie symmetry lookup ode 432
3.15.3 Solving as exact ode . 436
3.15.4 Maple step by step solution . 440

Internal problem ID [41]
Internal file name [OUTPUT/41_Sunday_June_05_2022_01_33_59_AM_89324613/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
\left(x^{2}+1\right) \tan (y) y^{\prime}=x
$$

3.15.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x}{\left(x^{2}+1\right) \tan (y)}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}+1}$ and $g(y)=\frac{1}{\tan (y)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{\tan (y)}} d y & =\frac{x}{x^{2}+1} d x \\
\int \frac{1}{\frac{1}{\tan (y)}} d y & =\int \frac{x}{x^{2}+1} d x \\
-\ln (\cos (y)) & =\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\cos (y)}=\mathrm{e}^{\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}
$$

Which simplifies to

$$
\sec (y)=c_{2} \sqrt{x^{2}+1}
$$

Which simplifies to

$$
y=\operatorname{arcsec}\left(c_{2} \sqrt{x^{2}+1} \mathrm{e}^{c_{1}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{arcsec}\left(c_{2} \sqrt{x^{2}+1} \mathrm{e}^{c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 107: Slope field plot
Verification of solutions

$$
y=\operatorname{arcsec}\left(c_{2} \sqrt{x^{2}+1} \mathrm{e}^{c_{1}}\right)
$$

Verified OK.

3.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x}{\left(x^{2}+1\right) \tan (y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 85: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x^{2}+1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}+1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+1\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{\left(x^{2}+1\right) \tan (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x}{x^{2}+1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\tan (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\tan (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (\cos (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{2}+1\right)}{2}=-\ln (\cos (y))+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{2}+1\right)}{2}=-\ln (\cos (y))+c_{1}
$$

Which gives

$$
y=\arccos \left(\mathrm{e}^{-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in x, y coordinates |
| :---: | :---: | :---: | \left\lvert\, | Canonical
 coordinates
 transformation |
| :---: | | ODE in canonical coordinates |
| :---: |
| (R, S) |\right.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arccos \left(\mathrm{e}^{-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 108: Slope field plot

Verification of solutions

$$
y=\arccos \left(\mathrm{e}^{-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}\right)
$$

Verified OK.

3.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\tan (y)) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+(\tan (y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+1} \\
N(x, y) & =\tan (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(\tan (y)) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\tan (y)$. Therefore equation (4) becomes

$$
\begin{equation*}
\tan (y)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\tan (y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\tan (y)) \mathrm{d} y \\
f(y) & =-\ln (\cos (y))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}-\ln (\cos (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}-\ln (\cos (y))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(x^{2}+1\right)}{2}-\ln (\cos (y))=c_{1} \tag{1}
\end{equation*}
$$

Figure 109: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(x^{2}+1\right)}{2}-\ln (\cos (y))=c_{1}
$$

Verified OK.

3.15.4 Maple step by step solution

Let's solve

$$
\left(x^{2}+1\right) \tan (y) y^{\prime}=x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\tan (y) y^{\prime}=\frac{x}{x^{2}+1}$
- Integrate both sides with respect to x

$$
\int \tan (y) y^{\prime} d x=\int \frac{x}{x^{2}+1} d x+c_{1}
$$

- Evaluate integral
$-\ln (\cos (y))=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}$
- \quad Solve for y
$y=\arccos \left(\mathrm{e}^{-\frac{\ln \left(x^{2}+1\right)}{2}-c_{1}}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve((x^2+1)*\operatorname{tan}(y(x))*\operatorname{diff}(y(x),x)= x,y(x), singsol=all)
```

$$
y(x)=\arccos \left(\frac{1}{\sqrt{x^{2}+1} c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 15.547 (sec). Leaf size: 63
DSolve $\left[\left(x^{\wedge} 2+1\right) * \operatorname{Tan}[y[x]] * y^{\prime}[x]==x, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\arccos \left(\frac{e^{-c_{1}}}{\sqrt{x^{2}+1}}\right) \\
& y(x) \rightarrow \arccos \left(\frac{e^{-c_{1}}}{\sqrt{x^{2}+1}}\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

3.16 problem 17

3.16.1 Solving as separable ode . 442
3.16.2 Solving as linear ode . 444
3.16.3 Solving as first order ode lie symmetry lookup ode 445
3.16.4 Solving as exact ode . 449
3.16.5 Maple step by step solution . 453

Internal problem ID [42]
Internal file name [OUTPUT/42_Sunday_June_05_2022_01_34_00_AM_31480899/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y-y x=x+1
$$

3.16.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =(y+1)(x+1)
\end{aligned}
$$

Where $f(x)=x+1$ and $g(y)=y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y+1} d y & =x+1 d x \\
\int \frac{1}{y+1} d y & =\int x+1 d x \\
\ln (y+1) & =\frac{1}{2} x^{2}+x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2}{\frac{1}{2} x^{2}+x}^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1
$$

Verified OK.

3.16.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-x-1 \\
& q(x)=x+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+(-x-1) y=x+1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-x-1) d x} \\
& =\mathrm{e}^{-\frac{1}{2} x^{2}-x}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{-\frac{x(2+x)}{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x+1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x(2+x)}{2}} y\right) & =\left(\mathrm{e}^{-\frac{x(2+x)}{2}}\right)(x+1) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{x(2+x)}{2}} y\right) & =\left((x+1) \mathrm{e}^{-\frac{x(2+x)}{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{x(2+x)}{2}} y=\int(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{x(2+x)}{2}} y=-\mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x(2+x)}{2}}$ results in

$$
y=-\mathrm{e}^{\frac{x(2+x)}{2}} \mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1} \mathrm{e}^{\frac{x(2+x)}{2}}
$$

which simplifies to

$$
y=-1+c_{1} \mathrm{e}^{\frac{x(2+x)}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+c_{1} \mathrm{e}^{\frac{x(2+x)}{2}} \tag{1}
\end{equation*}
$$

Figure 111: Slope field plot

Verification of solutions

$$
y=-1+c_{1} \mathrm{e}^{\frac{x(2+x)}{2}}
$$

Verified OK.

3.16.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y x+x+y+1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 88: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{1}{2} x^{2}+x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{2} x^{2}+x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{1}{2} x^{2}-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y x+x+y+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}} y \\
& S_{y}=\mathrm{e}^{-\frac{x(2+x)}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(R+1) \mathrm{e}^{-\frac{R(2+R)}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{R(2+R)}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x(2+x)}{2}} y=-\mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x(2+x)}{2}} y=-\mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{x(2+x)}{2}}-c_{1}\right) \mathrm{e}^{\frac{x(2+x)}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y x+x+y+1$		$\frac{d S}{d R}=(R+1) \mathrm{e}^{-\frac{R(2+R)}{2}}$
		\rightarrow
		\rightarrow
		$\rightarrow \rightarrow+1 x^{+}$
	$R=x$	
		$x^{\rightarrow 2}$
为	$S=\mathrm{e}^{-\frac{2}{2}} y$	7
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$
9 9 9 9 9 分*)		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-\frac{x(2+x)}{2}}-c_{1}\right) \mathrm{e}^{\frac{x(2+x)}{2}} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-\frac{x(2+x)}{2}}-c_{1}\right) \mathrm{e}^{\frac{x(2+x)}{2}}
$$

Verified OK.

3.16.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+1}\right) \mathrm{d} y & =(x+1) \mathrm{d} x \\
(-x-1) \mathrm{d} x+\left(\frac{1}{y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x-1 \\
& N(x, y)=\frac{1}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x-1 \mathrm{~d} x \\
\phi & =-\frac{1}{2} x^{2}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+1}\right) \mathrm{d} y \\
f(y) & =\ln (y+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-x+\ln (y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-x+\ln (y+1)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1
$$

Verified OK.

3.16.5 Maple step by step solution

Let's solve

$$
y^{\prime}-y-y x=x+1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{1+y}=x+1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1+y} d x=\int(x+1) d x+c_{1}$
- Evaluate integral
$\ln (1+y)=\frac{1}{2} x^{2}+x+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x) = 1+x+y(x)+x*y(x),y(x), singsol=all)
```

$$
y(x)=-1+\mathrm{e}^{\frac{x(2+x)}{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 25
DSolve[y'[x] == $1+x+y[x]+x * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-1+c_{1} e^{\frac{1}{2} x(x+2)} \\
& y(x) \rightarrow-1
\end{aligned}
$$

3.17 problem 18

3.17.1 Solving as separable ode . 455
3.17.2 Solving as first order ode lie symmetry lookup ode 457
3.17.3 Solving as exact ode . 461
3.17.4 Solving as riccati ode . 465
3.17.5 Maple step by step solution . 467

Internal problem ID [43]
Internal file name [OUTPUT/43_Sunday_June_05_2022_01_34_00_AM_93942449/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} x^{2}-y^{2}+x^{2} y^{2}=-x^{2}+1
$$

3.17.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\left(x^{2}-1\right)\left(-y^{2}-1\right)}{x^{2}}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}-1}{x^{2}}$ and $g(y)=-y^{2}-1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-y^{2}-1} d y & =\frac{x^{2}-1}{x^{2}} d x \\
\int \frac{1}{-y^{2}-1} d y & =\int \frac{x^{2}-1}{x^{2}} d x
\end{aligned}
$$

$$
-\arctan (y)=x+\frac{1}{x}+c_{1}
$$

Which results in

$$
y=-\tan \left(\frac{c_{1} x+x^{2}+1}{x}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\tan \left(\frac{c_{1} x+x^{2}+1}{x}\right) \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
y=-\tan \left(\frac{c_{1} x+x^{2}+1}{x}\right)
$$

Verified OK.

3.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x^{2} y^{2}+x^{2}-y^{2}-1}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 91: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =\frac{x^{2}}{x^{2}-1} \\
\eta(x, y) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}}{x^{2}-1}} d x
\end{aligned}
$$

Which results in

$$
S=x+\frac{1}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x^{2} y^{2}+x^{2}-y^{2}-1}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =1-\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\arctan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x+\frac{1}{x}=-\arctan (y)+c_{1}
$$

Which simplifies to

$$
x+\frac{1}{x}=-\arctan (y)+c_{1}
$$

Which gives

$$
y=\tan \left(\frac{c_{1} x-x^{2}-1}{x}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x^{2} y^{2}+x^{2}-y^{2}-1}{x^{2}}$		$\frac{d S}{d R}=-\frac{1}{R^{2}+1}$
$\square_{1}+4$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
ddydyst t yadydydy	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
	$S=x+\frac{1}{x}$	
	$S=x+\frac{1}{x}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		$\rightarrow \Delta \geq y d y$
		$\rightarrow \rightarrow \rightarrow$ 为

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(\frac{c_{1} x-x^{2}-1}{x}\right) \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot

Verification of solutions

$$
y=\tan \left(\frac{c_{1} x-x^{2}-1}{x}\right)
$$

Verified OK.

3.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-y^{2}-1}\right) \mathrm{d} y & =\left(\frac{x^{2}-1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{x^{2}-1}{x^{2}}\right) \mathrm{d} x+\left(\frac{1}{-y^{2}-1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x^{2}-1}{x^{2}} \\
& N(x, y)=\frac{1}{-y^{2}-1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{2}-1}{x^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-y^{2}-1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x^{2}-1}{x^{2}} \mathrm{~d} x \\
\phi & =-x-\frac{1}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-y^{2}-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-y^{2}-1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =-\arctan (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-\frac{1}{x}-\arctan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-\frac{1}{x}-\arctan (y)
$$

The solution becomes

$$
y=-\tan \left(\frac{c_{1} x+x^{2}+1}{x}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\tan \left(\frac{c_{1} x+x^{2}+1}{x}\right) \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
y=-\tan \left(\frac{c_{1} x+x^{2}+1}{x}\right)
$$

Verified OK.

3.17.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x^{2} y^{2}+x^{2}-y^{2}-1}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-y^{2}-1+\frac{y^{2}}{x^{2}}+\frac{1}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{x^{2}-1}{x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=-\frac{x^{2}-1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(x^{2}-1\right) u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x^{2}-2}{x^{3}}-\frac{2}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{\left(x^{2}-1\right)^{3}}{x^{6}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(x^{2}-1\right) u^{\prime \prime}(x)}{x^{2}}-\left(\frac{2 x^{2}-2}{x^{3}}-\frac{2}{x}\right) u^{\prime}(x)-\frac{\left(x^{2}-1\right)^{3} u(x)}{x^{6}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(\frac{x^{2}+1}{x}\right)+c_{2} \cos \left(\frac{x^{2}+1}{x}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(x^{2}-1\right)\left(c_{1} \cos \left(\frac{x^{2}+1}{x}\right)-c_{2} \sin \left(\frac{x^{2}+1}{x}\right)\right)}{x^{2}}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{1} \cos \left(\frac{x^{2}+1}{x}\right)-c_{2} \sin \left(\frac{x^{2}+1}{x}\right)}{c_{1} \sin \left(\frac{x^{2}+1}{x}\right)+c_{2} \cos \left(\frac{x^{2}+1}{x}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\sin \left(\frac{x^{2}+1}{x}\right)+c_{3} \cos \left(\frac{x^{2}+1}{x}\right)}{c_{3} \sin \left(\frac{x^{2}+1}{x}\right)+\cos \left(\frac{x^{2}+1}{x}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\sin \left(\frac{x^{2}+1}{x}\right)+c_{3} \cos \left(\frac{x^{2}+1}{x}\right)}{c_{3} \sin \left(\frac{x^{2}+1}{x}\right)+\cos \left(\frac{x^{2}+1}{x}\right)} \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot

Verification of solutions

$$
y=\frac{-\sin \left(\frac{x^{2}+1}{x}\right)+c_{3} \cos \left(\frac{x^{2}+1}{x}\right)}{c_{3} \sin \left(\frac{x^{2}+1}{x}\right)+\cos \left(\frac{x^{2}+1}{x}\right)}
$$

Verified OK.

3.17.5 Maple step by step solution

Let's solve

$$
y^{\prime} x^{2}-y^{2}+x^{2} y^{2}=-x^{2}+1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=-\frac{(x+1)(x-1)}{x^{2}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1+y^{2}} d x=\int-\frac{(x+1)(x-1)}{x^{2}} d x+c_{1}
$$

- Evaluate integral

$$
\arctan (y)=c_{1}-x-\frac{1}{x}
$$

- \quad Solve for y

$$
y=\tan \left(\frac{c_{1} x-x^{2}-1}{x}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve(x^2*diff(y(x),x) = 1-x^2+y(x)^2-x^2*y(x)^2,y(x), singsol=all)
```

$$
y(x)=-\tan \left(\frac{c_{1} x+x^{2}+1}{x}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.267 (sec). Leaf size: 17

```
DSolve[x^2*y'[x] == 1-x^2+y[x]^2-x^2*y[x]^2,y[x],x,IncludeSingularSolutions ->> True]
```

$$
y(x) \rightarrow-\tan \left(x+\frac{1}{x}-c_{1}\right)
$$

3.18 problem 19

3.18.1 Existence and uniqueness analysis 469
3.18.2 Solving as separable ode . 470
3.18.3 Solving as linear ode . 471
3.18.4 Solving as homogeneousTypeD2 ode 473
3.18.5 Solving as first order ode lie symmetry lookup ode 474
3.18.6 Solving as exact ode . 478
3.18.7 Maple step by step solution . 482

Internal problem ID [44]
Internal file name [OUTPUT/44_Sunday_June_05_2022_01_34_01_AM_61389824/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\mathrm{e}^{x} y=0
$$

With initial conditions

$$
[y(0)=2 \mathrm{e}]
$$

3.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\mathrm{e}^{x} \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\mathrm{e}^{x} y=0
$$

The domain of $p(x)=-\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. Hence solution exists and is unique.

3.18.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\mathrm{e}^{x} y
\end{aligned}
$$

Where $f(x)=\mathrm{e}^{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\mathrm{e}^{x} d x \\
\int \frac{1}{y} d y & =\int \mathrm{e}^{x} d x \\
\ln (y) & =\mathrm{e}^{x}+c_{1} \\
y & =\mathrm{e}^{\mathrm{e}^{x}+c_{1}} \\
& =c_{1} \mathrm{e}^{\mathrm{e}^{x}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 \mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2 \mathrm{e}=\mathrm{e} c_{1} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Verified OK.

3.18.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\mathrm{e}^{x} d x} \\
& =\mathrm{e}^{-\mathrm{e}^{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\mathrm{e}^{x}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\mathrm{e}^{x}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\mathrm{e}^{x}}$ results in

$$
y=c_{1} \mathrm{e}^{\mathrm{e}^{x}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 \mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2 \mathrm{e}=\mathrm{e} c_{1} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Verified OK.

3.18.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\mathrm{e}^{x} u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x \mathrm{e}^{x}-1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{x \mathrm{e}^{x}-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x \mathrm{e}^{x}-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{x \mathrm{e}^{x}-1}{x} d x \\
\ln (u) & =-\ln (x)+\mathrm{e}^{x}+c_{2} \\
u & =\mathrm{e}^{-\ln (x)+\mathrm{e}^{x}+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)+\mathrm{e}^{x}}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{x^{x}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{\mathrm{e}^{x}}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=2 \mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2 \mathrm{e}=\mathrm{e} c_{2} \\
c_{2}=2
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Verified OK.

3.18.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\mathrm{e}^{x} y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 94: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\mathrm{e}^{x}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\mathrm{e}^{x}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\mathrm{e}^{x} y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-y \mathrm{e}^{x-\mathrm{e}^{x}} \\
S_{y} & =\mathrm{e}^{-\mathrm{e}^{x}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\mathrm{e}^{x}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\mathrm{e}^{x}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{\mathrm{e}^{x}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\mathrm{e}^{x} y$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	
	$S=\mathrm{e}^{-\mathrm{e}^{x}} y$	
$\rightarrow \rightarrow$		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{\rightarrow \rightarrow-\infty}$		
atad ${ }^{\text {a }}$		$\rightarrow \rightarrow \rightarrow$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 \mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
2 \mathrm{e}=\mathrm{e} c_{1}
$$

$$
c_{1}=2
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Verified OK.

3.18.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x} \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{x}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{x}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\mathrm{e}^{x}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 \mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2 \mathrm{e}=\mathrm{e}^{1+c_{1}} \\
& c_{1}=\ln (2)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

Verified OK.

3.18.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\mathrm{e}^{x} y=0, y(0)=2 \mathrm{e}\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \mathrm{e}^{x} d x+c_{1}
$$

- Evaluate integral
$\ln (y)=\mathrm{e}^{x}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\mathrm{e}^{x}+c_{1}}$
- Use initial condition $y(0)=2 \mathrm{e}$
$2 \mathrm{e}=\mathrm{e}^{1+c_{1}}$
- \quad Solve for c_{1}
$c_{1}=\ln (2)$
- \quad Substitute $c_{1}=\ln (2)$ into general solution and simplify
$y=2 \mathrm{e}^{\mathrm{e}^{x}}$
- Solution to the IVP
$y=2 \mathrm{e}^{\mathrm{e}^{x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve([diff(y(x),x) = exp(x)*y(x),y(0) = 2*exp(1)],y(x), singsol=all)
```

$$
y(x)=2 \mathrm{e}^{\mathrm{e}^{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 12
DSolve[\{y' $[x]==\operatorname{Exp}[x] * y[x], y[0]==2 * \operatorname{Exp}[1]\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 2 e^{e^{x}}
$$

3.19 problem 20

3.19.1 Existence and uniqueness analysis 484
3.19.2 Solving as separable ode . 485
3.19.3 Solving as first order ode lie symmetry lookup ode 487
3.19.4 Solving as exact ode . 491
3.19.5 Solving as riccati ode . 495
3.19.6 Maple step by step solution . 497

Internal problem ID [45]
Internal file name [OUTPUT/45_Sunday_June_05_2022_01_34_01_AM_89532822/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-3\left(1+y^{2}\right) x^{2}=0
$$

With initial conditions

$$
[y(0)=1]
$$

3.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =3\left(y^{2}+1\right) x^{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3\left(y^{2}+1\right) x^{2}\right) \\
& =6 y x^{2}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

3.19.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x^{2}\left(3 y^{2}+3\right)
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=3 y^{2}+3$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{3 y^{2}+3} d y & =x^{2} d x \\
\int \frac{1}{3 y^{2}+3} d y & =\int x^{2} d x \\
\frac{\arctan (y)}{3} & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\tan \left(x^{3}+3 c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\tan \left(3 c_{1}\right) \\
c_{1}=\frac{\pi}{12}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{3}+\frac{\pi}{4}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Verified OK.

3.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3\left(y^{2}+1\right) x^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 97: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3\left(y^{2}+1\right) x^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{3 y^{2}+3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{3 R^{2}+3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\arctan (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{3}}{3}=\frac{\arctan (y)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{x^{3}}{3}=\frac{\arctan (y)}{3}+c_{1}
$$

Which gives

$$
y=-\tan \left(-x^{3}+3 c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=3\left(y^{2}+1\right) x^{2}$		$\frac{d S}{d R}=\frac{1}{3 R^{2}+3}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+\rightarrow \rightarrow \rightarrow]{ }$
	$R=y$	$\rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm} \rightarrow$
	$S=\frac{}{3}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
		$\rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
+ + tatatatat		\rightarrow

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\tan \left(3 c_{1}\right) \\
c_{1}=-\frac{\pi}{12}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{3}+\frac{\pi}{4}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Verified OK.

3.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{3 y^{2}+3}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{3 y^{2}+3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =\frac{1}{3 y^{2}+3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{3 y^{2}+3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{3 y^{2}+3}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{3 y^{2}+3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{3 y^{2}+3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{3 y^{2}+3}\right) \mathrm{d} y \\
f(y) & =\frac{\arctan (y)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}+\frac{\arctan (y)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}+\frac{\arctan (y)}{3}
$$

The solution becomes

$$
y=\tan \left(x^{3}+3 c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\tan \left(3 c_{1}\right) \\
c_{1}=\frac{\pi}{12}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{3}+\frac{\pi}{4}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Verified OK.

3.19.5 Solving as riccati ode

 In canonical form the ODE is$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =3\left(y^{2}+1\right) x^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=3 x^{2} y^{2}+3 x^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=3 x^{2}, f_{1}(x)=0$ and $f_{2}(x)=3 x^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{3 x^{2} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =6 x \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =27 x^{6}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
3 x^{2} u^{\prime \prime}(x)-6 x u^{\prime}(x)+27 x^{6} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(x^{3}\right)+c_{2} \cos \left(x^{3}\right)
$$

The above shows that

$$
u^{\prime}(x)=-3 x^{2}\left(c_{2} \sin \left(x^{3}\right)-c_{1} \cos \left(x^{3}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2} \sin \left(x^{3}\right)-c_{1} \cos \left(x^{3}\right)}{c_{1} \sin \left(x^{3}\right)+c_{2} \cos \left(x^{3}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} \cos \left(x^{3}\right)+\sin \left(x^{3}\right)}{c_{3} \sin \left(x^{3}\right)+\cos \left(x^{3}\right)}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-c_{3} \\
& c_{3}=-1
\end{aligned}
$$

Substituting c_{3} found above in the general solution gives

$$
y=\frac{-\sin \left(x^{3}\right)-\cos \left(x^{3}\right)}{\sin \left(x^{3}\right)-\cos \left(x^{3}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\sin \left(x^{3}\right)-\cos \left(x^{3}\right)}{\sin \left(x^{3}\right)-\cos \left(x^{3}\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{-\sin \left(x^{3}\right)-\cos \left(x^{3}\right)}{\sin \left(x^{3}\right)-\cos \left(x^{3}\right)}
$$

Verified OK.

3.19.6 Maple step by step solution

Let's solve
$\left[y^{\prime}-3\left(1+y^{2}\right) x^{2}=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{1+y^{2}}=3 x^{2}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1+y^{2}} d x=\int 3 x^{2} d x+c_{1}$
- Evaluate integral
$\arctan (y)=x^{3}+c_{1}$
- \quad Solve for y

$$
y=\tan \left(x^{3}+c_{1}\right)
$$

- Use initial condition $y(0)=1$
$1=\tan \left(c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=\frac{\pi}{4}$
- \quad Substitute $c_{1}=\frac{\pi}{4}$ into general solution and simplify
$y=\tan \left(x^{3}+\frac{\pi}{4}\right)$
- \quad Solution to the IVP

$$
y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([diff(y(x),x) = 3*x^2*(1+y(x)^2),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.167 (sec). Leaf size: 15
DSolve[\{y' $\left.[x]==3 * x^{\wedge} 2 *(1+y[x] \sim 2), y[0]==1\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \tan \left(x^{3}+\frac{\pi}{4}\right)
$$

3.20 problem 21

3.20.1 Existence and uniqueness analysis 500
3.20.2 Solving as separable ode . 501
3.20.3 Solving as first order ode lie symmetry lookup ode 503
3.20.4 Solving as exact ode . 508
3.20.5 Maple step by step solution . 511

Internal problem ID [46]
Internal file name [OUTPUT/46_Sunday_June_05_2022_01_34_02_AM_95687917/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 y y^{\prime}=\frac{x}{\sqrt{x^{2}-16}}
$$

With initial conditions

$$
[y(5)=2]
$$

3.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x}{2 \sqrt{x^{2}-16} y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty \leq x<-4,-4<x<4,4<x \leq \infty\}
$$

And the point $x_{0}=5$ is inside this domain. The y domain of $f(x, y)$ when $x=5$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x}{2 \sqrt{x^{2}-16} y}\right) \\
& =-\frac{x}{2 \sqrt{x^{2}-16} y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty \leq x<-4,-4<x<4,4<x \leq \infty\}
$$

And the point $x_{0}=5$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=5$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

3.20.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x}{2 \sqrt{x^{2}-16} y}
\end{aligned}
$$

Where $f(x)=\frac{x}{2 \sqrt{x^{2}-16}}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =\frac{x}{2 \sqrt{x^{2}-16}} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{x}{2 \sqrt{x^{2}-16}} d x \\
\frac{y^{2}}{2} & =\frac{(x-4)(x+4)}{2 \sqrt{x^{2}-16}}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\sqrt{\sqrt{x^{2}-16}\left(2 c_{1} \sqrt{x^{2}-16}+x^{2}-16\right)}}{\sqrt{x^{2}-16}} \\
& y=-\frac{\left.\sqrt{\sqrt{x^{2}-16}\left(2 c_{1} \sqrt{x^{2}-16}+x^{2}-16\right.}\right)}{\sqrt{x^{2}-16}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=5$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=-\sqrt{2 c_{1}+3}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=5$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\sqrt{2 c_{1}+3} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{x^{2}-16+\sqrt{x^{2}-16} x^{2}-16 \sqrt{x^{2}-16}}}{\sqrt{x^{2}-16}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x^{2}-16+\sqrt{x^{2}-16} x^{2}-16 \sqrt{x^{2}-16}}}{\sqrt{x^{2}-16}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{x^{2}-16+\sqrt{x^{2}-16} x^{2}-16 \sqrt{x^{2}-16}}}{\sqrt{x^{2}-16}}
$$

Verified OK.

3.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x}{2 \sqrt{x^{2}-16} y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 100: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{2 \sqrt{x^{2}-16}}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{2 \sqrt{x^{2}-16}}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{(x-4)(x+4)}{2 \sqrt{x^{2}-16}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{2 \sqrt{x^{2}-16} y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x}{2 \sqrt{x^{2}-16}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sqrt{x^{2}-16}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{x^{2}-16}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x}{2 \sqrt{x^{2}-16} y}$		$\frac{d S}{d R}=R$
$\rightarrow \quad \rightarrow$		
\rightarrow		
$\rightarrow \quad \rightarrow$		
$\Rightarrow \quad y(x) \quad \rightarrow$		
\therefore 边 2		
,		
+it ${ }_{\text {l }}$		
	$S=\underline{\sqrt{x^{2}-16}}$	
\rightarrow -	2	
$\xrightarrow{\infty}$		
\rightarrow		
\rightarrow 佰		
$\rightarrow \rightarrow$		

Initial conditions are used to solve for c_{1}. Substituting $x=5$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{3}{2}=2+c_{1}
$$

$$
c_{1}=-\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\sqrt{x^{2}-16}}{2}=\frac{y^{2}}{2}-\frac{1}{2}
$$

Solving for y from the above gives

$$
y=\sqrt{\sqrt{x^{2}-16}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{\sqrt{x^{2}-16}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{\sqrt{x^{2}-16}+1}
$$

Verified OK.

3.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y) \mathrm{d} y & =\left(\frac{x}{\sqrt{x^{2}-16}}\right) \mathrm{d} x \\
\left(-\frac{x}{\sqrt{x^{2}-16}}\right) \mathrm{d} x+(2 y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x}{\sqrt{x^{2}-16}} \\
& N(x, y)=2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{\sqrt{x^{2}-16}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{\sqrt{x^{2}-16}} \mathrm{~d} x \\
\phi & =-\sqrt{x^{2}-16}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y^{2}-\sqrt{x^{2}-16}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y^{2}-\sqrt{x^{2}-16}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=5$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}-\sqrt{x^{2}-16}=1
$$

Solving for y from the above gives

$$
y=\sqrt{\sqrt{x^{2}-16}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{\sqrt{x^{2}-16}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{\sqrt{x^{2}-16}+1}
$$

Verified OK.

3.20.5 Maple step by step solution

Let's solve
$\left[2 y y^{\prime}=\frac{x}{\sqrt{x^{2}-16}}, y(5)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int 2 y y^{\prime} d x=\int \frac{x}{\sqrt{x^{2}-16}} d x+c_{1}$
- Evaluate integral
$y^{2}=\frac{(x-4)(x+4)}{\sqrt{x^{2}-16}}+c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{\sqrt{\sqrt{x^{2}-16}\left(c_{1} \sqrt{x^{2}-16}+x^{2}-16\right)}}{\sqrt{x^{2}-16}}, y=-\frac{\left.\sqrt{\sqrt{x^{2}-16}\left(c_{1} \sqrt{x^{2}-16}+x^{2}-16\right.}\right)}{\sqrt{x^{2}-16}}\right\}
$$

- Use initial condition $y(5)=2$

$$
2=\frac{\sqrt{9} \sqrt{\sqrt{9}\left(c_{1} \sqrt{9}+9\right)}}{9}
$$

- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify
$y=\frac{\left.\sqrt{\sqrt{x^{2}-16}\left(\sqrt{x^{2}-16}+x^{2}-16\right.}\right)}{\sqrt{x^{2}-16}}$
- Use initial condition $y(5)=2$

$$
2=-\frac{\sqrt{9} \sqrt{\sqrt{9}\left(c_{1} \sqrt{9}+9\right)}}{9}
$$

- Solution does not satisfy initial condition
- \quad Solution to the IVP
$y=\frac{\left.\sqrt{\sqrt{x^{2}-16}\left(\sqrt{x^{2}-16}+x^{2}-16\right.}\right)}{\sqrt{x^{2}-16}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 34
dsolve $\left(\left[2 * y(x) * \operatorname{diff}(y(x), x)=x /\left(x^{\wedge} 2-16\right)^{\wedge}(1 / 2), y(5)=2\right], y(x)\right.$, singsol=all)

$$
y(x)=\frac{\sqrt{\sqrt{x^{2}-16}\left(x^{2}+\sqrt{x^{2}-16}-16\right)}}{\sqrt{x^{2}-16}}
$$

\checkmark Solution by Mathematica
Time used: 1.931 (sec). Leaf size: 20
DSolve[\{2*y[x]*y'[x] ==x/(x^2-16)^(1/2),y[5]==2\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{\sqrt{x^{2}-16}+1}
$$

3.21 problem 22

$$
\text { 3.21.1 Existence and uniqueness analysis } 514
$$

3.21.2 Solving as separable ode 515
3.21.3 Solving as linear ode 516
3.21.4 Solving as homogeneousTypeD2 ode 518
3.21.5 Solving as first order ode lie symmetry lookup ode 519
3.21.6 Solving as exact ode 523
3.21.7 Maple step by step solution 527

Internal problem ID [47]
Internal file name [OUTPUT/47_Sunday_June_05_2022_01_34_03_AM_52437484/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+y-4 y x^{3}=0
$$

With initial conditions

$$
[y(1)=-3]
$$

3.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-4 x^{3}+1 \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\left(-4 x^{3}+1\right) y=0
$$

The domain of $p(x)=-4 x^{3}+1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. Hence solution exists and is unique.

3.21.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y\left(4 x^{3}-1\right)
\end{aligned}
$$

Where $f(x)=4 x^{3}-1$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =4 x^{3}-1 d x \\
\int \frac{1}{y} d y & =\int 4 x^{3}-1 d x \\
\ln (y) & =x^{4}+c_{1}-x \\
y & =\mathrm{e}^{x^{4}+c_{1}-x} \\
& =c_{1} \mathrm{e}^{x^{4}-x}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -3=c_{1} \\
& c_{1}=-3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-3 \mathrm{e}^{x^{4}-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \mathrm{e}^{x^{4}-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-3 \mathrm{e}^{x^{4}-x}
$$

Verified OK.

3.21.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(-4 x^{3}+1\right) d x} \\
& =\mathrm{e}^{-x^{4}+x}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)}$ results in

$$
y=c_{1} \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -3=c_{1} \\
& c_{1}=-3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Verified OK.

3.21.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+u(x) x-4 u(x) x^{4}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(4 x^{4}-x-1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{4 x^{4}-x-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{4 x^{4}-x-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{4 x^{4}-x-1}{x} d x \\
\ln (u) & =x^{4}-x-\ln (x)+c_{2} \\
u & =\mathrm{e}^{x^{4}-x-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{x^{4}-x-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{x^{4}} \mathrm{e}^{-x}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =c_{2} \mathrm{e}^{x^{4}} \mathrm{e}^{-x}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-3=c_{2} \\
c_{2}=-3
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Verified OK.

3.21.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =4 y x^{3}-y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 103: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{4}-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{4}-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{4}+x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=4 y x^{3}-y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\left(-4 x^{3}+1\right) \mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)} y \\
& S_{y}=\mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x(x-1)\left(x^{2}+x+1\right)} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
-3=c_{1}
$$

$$
c_{1}=-3
$$

Substituting c_{1} found above in the general solution gives

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Verified OK.

3.21.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(4 x^{3}-1\right) \mathrm{d} x \\
\left(-4 x^{3}+1\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-4 x^{3}+1 \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-4 x^{3}+1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-4 x^{3}+1 \mathrm{~d} x \\
\phi & =-x^{4}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{4}+x+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{4}+x+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{x^{4}+c_{1}-x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-3=\mathrm{e}^{c_{1}} \\
c_{1}=\ln (3)+i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

Verified OK.

3.21.7 Maple step by step solution

Let's solve
$\left[y^{\prime}+y-4 y x^{3}=0, y(1)=-3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=4 x^{3}-1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int\left(4 x^{3}-1\right) d x+c_{1}$
- Evaluate integral
$\ln (y)=x^{4}+c_{1}-x$
- \quad Solve for y

$$
y=\mathrm{e}^{x^{4}+c_{1}-x}
$$

- Use initial condition $y(1)=-3$

$$
-3=\mathrm{e}^{c_{1}}
$$

- \quad Solve for c_{1}

$$
c_{1}=\ln (3)+\mathrm{I} \pi
$$

- \quad Substitute $c_{1}=\ln (3)+\mathrm{I} \pi$ into general solution and simplify $y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}$
- Solution to the IVP
$y=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve([diff(y(x),x) = - y (x)+4*x^3*y(x),y(1) = -3],y(x), singsol=all)
```

$$
y(x)=-3 \mathrm{e}^{x(x-1)\left(x^{2}+x+1\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 16
DSolve[\{y' $\left.[x]==-y[x]+4 * x^{\wedge} 3 * y[x], y[1]==-3\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-3 e^{x^{4}-x}
$$

3.22 problem 23

3.22.1 Existence and uniqueness analysis 529
3.22.2 Solving as quadrature ode . 530
3.22.3 Maple step by step solution . 531

Internal problem ID [48]
Internal file name [OUTPUT/48_Sunday_June_05_2022_01_34_03_AM_42337791/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 y=-1
$$

With initial conditions

$$
[y(1)=1]
$$

3.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=-1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=-1
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

3.22.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-1+2 y} d y & =\int d x \\
\frac{\ln (-1+2 y)}{2} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{-1+2 y}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\sqrt{-1+2 y}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{2}^{2} \mathrm{e}^{2}}{2}+\frac{1}{2} \\
c_{2}=-\mathrm{e}^{-2} \mathrm{e}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{2 x-2}}{2}+\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x-2}}{2}+\frac{1}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x-2}}{2}+\frac{1}{2}
$$

Verified OK.

3.22.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-2 y=-1, y(1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{-1+2 y}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-1+2 y} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{\ln (-1+2 y)}{2}=x+c_{1}$
- \quad Solve for y

$$
y=\frac{\mathrm{e}^{2 x+2 c_{1}}}{2}+\frac{1}{2}
$$

- Use initial condition $y(1)=1$
$1=\frac{\mathrm{e}^{2+2 c_{1}}}{2}+\frac{1}{2}$
- \quad Solve for c_{1}
$c_{1}=-1$
- \quad Substitute $c_{1}=-1$ into general solution and simplify
$y=\frac{\mathrm{e}^{2 x-2}}{2}+\frac{1}{2}$
- Solution to the IVP

$$
y=\frac{\mathrm{e}^{2 x-2}}{2}+\frac{1}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([1+diff(y(x),x) = 2*y(x),y(1) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{1}{2}+\frac{\mathrm{e}^{2 x-2}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 18
DSolve[\{1+y'[x] == $2 * y[x], y[1]==1\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2}\left(e^{2 x-2}+1\right)
$$

3.23 problem 24

$$
\text { 3.23.1 Solving as separable ode . } 533
$$

3.23.2 Solving as linear ode . 535
3.23.3 Solving as homogeneousTypeD2 ode 536
3.23.4 Solving as first order ode lie symmetry lookup ode 538
3.23.5 Solving as exact ode . 543
3.23.6 Maple step by step solution . 546

Internal problem ID [49]
Internal file name [OUTPUT/49_Sunday_June_05_2022_01_34_04_AM_52046128/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\tan (x) y^{\prime}-y=0
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=\frac{\pi}{2}\right]
$$

3.23.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{\tan (x)}
\end{aligned}
$$

Where $f(x)=\frac{1}{\tan (x)}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{\tan (x)} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{\tan (x)} d x \\
\ln (y) & =\ln (\sin (x))+c_{1} \\
y & =\mathrm{e}^{\ln (\sin (x))+c_{1}} \\
& =c_{1} \sin (x)
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{\pi}{2}=c_{1} \\
& c_{1}=\frac{\pi}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\pi \sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\pi \sin (x)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\pi \sin (x)}{2}
$$

Verified OK.

3.23.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\cot (x) d x} \\
& =\frac{1}{\sin (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\csc (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\csc (x) y) & =0
\end{aligned}
$$

Integrating gives

$$
\csc (x) y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\csc (x)$ results in

$$
y=c_{1} \sin (x)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{\pi}{2}=c_{1} \\
& c_{1}=\frac{\pi}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\pi \sin (x)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\pi \sin (x)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\pi \sin (x)}{2}
$$

Verified OK.

3.23.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\tan (x)\left(u^{\prime}(x) x+u(x)\right)-u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(\tan (x)-x)}{\tan (x) x}
\end{aligned}
$$

Where $f(x)=-\frac{\tan (x)-x}{x \tan (x)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{\tan (x)-x}{x \tan (x)} d x \\
\int \frac{1}{u} d u & =\int-\frac{\tan (x)-x}{x \tan (x)} d x \\
\ln (u) & =\ln (\sin (x))-\ln (x)+c_{2} \\
u & =\mathrm{e}^{\ln (\sin (x))-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{\ln (\sin (x))-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \sin (x)}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =c_{2} \sin (x)
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=\frac{\pi}{2}$ and $y=\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{\pi}{2}=c_{2} \\
& c_{2}=\frac{\pi}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{\pi \sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\pi \sin (x)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\pi \sin (x)}{2}
$$

Verified OK.

3.23.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{\tan (x)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 107: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sin (x) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sin (x)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sin (x)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{\tan (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\csc (x) \cot (x) y \\
S_{y} & =\csc (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\csc (x) y=c_{1}
$$

Which simplifies to

$$
\csc (x) y=c_{1}
$$

Which gives

$$
y=\frac{c_{1}}{\csc (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{\tan (x)}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\cdots{ }_{\rightarrow 0 \times 1}$		$\xrightarrow{\text { a }}$ +
	$S=\csc (x) y$	
		$\xrightarrow{+\rightarrow-2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		\rightarrow

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{\pi}{2}=c_{1}
$$

$$
c_{1}=\frac{\pi}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\pi \sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\pi \sin (x)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\pi \sin (x)}{2}
$$

Verified OK.

3.23.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{\tan (x)}\right) \mathrm{d} x \\
\left(-\frac{1}{\tan (x)}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\tan (x)} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\tan (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\tan (x)} \mathrm{d} x \\
\phi & =-\ln (\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (\sin (x))+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (\sin (x))+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} \sin (x)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{\pi}{2}=\mathrm{e}^{c_{1}} \\
c_{1}=\ln \left(\frac{\pi}{2}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\pi \sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\pi \sin (x)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\pi \sin (x)}{2}
$$

Verified OK.

3.23.6 Maple step by step solution

Let's solve

$$
\left[\tan (x) y^{\prime}-y=0, y\left(\frac{\pi}{2}\right)=\frac{\pi}{2}\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{1}{\tan (x)}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{\tan (x)} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=\ln (\sin (x))+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} \sin (x)
$$

- Use initial condition $y\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$
$\frac{\pi}{2}=\mathrm{e}^{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=\ln \left(\frac{\pi}{2}\right)$
- \quad Substitute $c_{1}=\ln \left(\frac{\pi}{2}\right)$ into general solution and simplify

$$
y=\frac{\pi \sin (x)}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{\pi \sin (x)}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve([tan(x)*diff (y (x),x) = y(x),y(1/2*Pi) = 1/2*Pi],y(x), singsol=all)
```

$$
y(x)=\frac{\pi \sin (x)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 12
DSolve[\{Tan $[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]=\mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{Pi} / 2]==\mathrm{Pi} / 2\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} \pi \sin (x)
$$

3.24 problem 25

3.24.1 Existence and uniqueness analysis
 549

3.24.2 Solving as separable ode 550
3.24.3 Solving as linear ode 551
3.24.4 Solving as homogeneousTypeD2 ode 553
3.24.5 Solving as first order ode lie symmetry lookup ode 554
3.24.6 Solving as exact ode 558
3.24.7 Maple step by step solution 562

Internal problem ID [50]
Internal file name [DUTPUT/50_Sunday_June_05_2022_01_34_05_AM_66719473/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
-y+y^{\prime} x-2 x^{2} y=0
$$

With initial conditions

$$
[y(1)=1]
$$

3.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 x^{2}+1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y\left(2 x^{2}+1\right)}{x}=0
$$

The domain of $p(x)=-\frac{2 x^{2}+1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. Hence solution exists and is unique.

3.24.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y\left(2 x^{2}+1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{2 x^{2}+1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{2 x^{2}+1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{2 x^{2}+1}{x} d x \\
\ln (y) & =x^{2}+\ln (x)+c_{1} \\
y & =\mathrm{e}^{x^{2}+\ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x^{2}+\ln (x)}
\end{aligned}
$$

Which can be simplified to become

$$
y=c_{1} \mathrm{e}^{x^{2}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\mathrm{e} c_{1} \\
c_{1}=\mathrm{e}^{-1}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{(x-1)(x+1)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Verified OK.

3.24.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x^{2}+1}{x} d x} \\
& =\mathrm{e}^{-x^{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\mathrm{e}^{-x^{2}}}{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{-x^{2}} y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\mathrm{e}^{-x^{2}} y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{\mathrm{e}^{-x^{2}}}{x}$ results in

$$
y=c_{1} \mathrm{e}^{x^{2}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\mathrm{e} c_{1} \\
c_{1}=\mathrm{e}^{-1}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{(x-1)(x+1)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Verified OK.

3.24.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x+\left(u^{\prime}(x) x+u(x)\right) x-2 x^{3} u(x)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =2 u x
\end{aligned}
$$

Where $f(x)=2 x$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =2 x d x \\
\int \frac{1}{u} d u & =\int 2 x d x \\
\ln (u) & =x^{2}+c_{2} \\
u & =\mathrm{e}^{x^{2}+c_{2}} \\
& =c_{2} \mathrm{e}^{x^{2}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x c_{2} \mathrm{e}^{x^{2}}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\mathrm{e} c_{2} \\
c_{2}=\mathrm{e}^{-1}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{(x-1)(x+1)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Verified OK.

3.24.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y\left(2 x^{2}+1\right)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 110: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{2}+\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{2}+\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{-x^{2}} y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(2 x^{2}+1\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{y\left(-2 x^{2}-1\right) \mathrm{e}^{-x^{2}}}{x^{2}} \\
& S_{y}=\frac{\mathrm{e}^{-x^{2}}}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{-x^{2}} y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{-x^{2}} y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{x^{2}} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(2 x^{2}+1\right)}{x}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 促
		\rightarrow
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
	$S=\underline{\mathrm{e}^{-x^{2}} y}$	
	x	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
+		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
+		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-49 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
¢ ¢ ¢ ¢ ¢ ¢ ¢ + ¢ ¢ ! ! ! ! ! ! ! ! !		

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\mathrm{e} c_{1}
$$

$$
c_{1}=\mathrm{e}^{-1}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{(x-1)(x+1)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{(x-1)(x+1)}
$$

Verified OK.

3.24.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{2 x^{2}+1}{x}\right) \mathrm{d} x \\
\left(-\frac{2 x^{2}+1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{2 x^{2}+1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x^{2}+1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2 x^{2}+1}{x} \mathrm{~d} x \\
\phi & =-x^{2}-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{x^{2}+c_{1}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\mathrm{e}^{1+c_{1}} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{x^{2}-1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}-1} x \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{2}-1} x
$$

Verified OK.

3.24.7 Maple step by step solution

Let's solve
$\left[-y+y^{\prime} x-2 x^{2} y=0, y(1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{2 x^{2}+1}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{2 x^{2}+1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=x^{2}+\ln (x)+c_{1}$
- \quad Solve for y

$$
y=\frac{x}{\mathrm{e}^{-x^{2}-c_{1}}}
$$

- Use initial condition $y(1)=1$
$1=\frac{1}{\mathrm{e}^{-c_{1}-1}}$
- \quad Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify
$y=x \mathrm{e}^{(x-1)(x+1)}$
- Solution to the IVP
$y=x \mathrm{e}^{(x-1)(x+1)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve([-y(x)+x*diff(y(x),x) = 2*x^2*y(x),y(1) = 1],y(x), singsol=all)
```

$$
y(x)=x \mathrm{e}^{(x-1)(x+1)}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 14
DSolve[\{-y[x]+x*y'[x] ==2*x^2*y[x],y[1]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x^{2}-1} x
$$

3.25 problem 26

3.25.1 Existence and uniqueness analysis 564
3.25.2 Solving as separable ode . 565
3.25.3 Solving as first order ode lie symmetry lookup ode 567
3.25.4 Solving as exact ode . 571
3.25.5 Solving as riccati ode . 575
3.25.6 Maple step by step solution . 577

Internal problem ID [51]
Internal file name [OUTPUT/51_Sunday_June_05_2022_01_34_05_AM_60682592/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 x y^{2}-3 x^{2} y^{2}=0
$$

With initial conditions

$$
[y(1)=-1]
$$

3.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =3 x^{2} y^{2}+2 x y^{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2} y^{2}+2 x y^{2}\right) \\
& =6 y x^{2}+4 y x
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

3.25.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\left(3 x^{2}+2 x\right) y^{2}
\end{aligned}
$$

Where $f(x)=3 x^{2}+2 x$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =3 x^{2}+2 x d x \\
\int \frac{1}{y^{2}} d y & =\int 3 x^{2}+2 x d x \\
-\frac{1}{y} & =x^{3}+x^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{x^{3}+x^{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{1}+2} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x^{3}+x^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Verified OK.

3.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 x^{2} y^{2}+2 x y^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 113: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =\frac{1}{3 x^{2}+2 x} \\
\eta(x, y) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x^{2}+2 x}} d x
\end{aligned}
$$

Which results in

$$
S=x^{3}+x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x^{2} y^{2}+2 x y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x^{2}+2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2}(x+1)=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
x^{2}(x+1)=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{-x^{3}-x^{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=3 x^{2} y^{2}+2 x y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow \rightarrow+\uparrow \uparrow \uparrow+\rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$\xrightarrow{\text { a }}$	R	
-4 1 ¢	$S=x^{2}(x+1)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$
要过 1		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{1}{c_{1}-2} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x^{3}+x^{2}-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Verified OK.

3.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(3 x^{2}+2 x\right) \mathrm{d} x \\
\left(-3 x^{2}-2 x\right) \mathrm{d} x+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-3 x^{2}-2 x \\
& N(x, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 x^{2}-2 x\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-3 x^{2}-2 x \mathrm{~d} x \\
\phi & =-x^{3}-x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{3}-x^{2}-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{3}-x^{2}-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{1}{x^{3}+x^{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{1}+2} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x^{3}+x^{2}-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Verified OK.

3.25.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =3 x^{2} y^{2}+2 x y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=3 x^{2} y^{2}+2 x y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=3 x^{2}+2 x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(3 x^{2}+2 x\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =6 x+2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(3 x^{2}+2 x\right) u^{\prime \prime}(x)-(6 x+2) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+x^{2}(x+1) c_{2}
$$

The above shows that

$$
u^{\prime}(x)=c_{2} x(3 x+2)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2} x(3 x+2)}{\left(3 x^{2}+2 x\right)\left(c_{1}+x^{2}(x+1) c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{x^{3}+x^{2}+c_{3}}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{3}+2} \\
c_{3}=-1
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x^{3}+x^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{x^{3}+x^{2}-1}
$$

Verified OK.

3.25.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 x y^{2}-3 x^{2} y^{2}=0, y(1)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=x(3 x+2)
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int x(3 x+2) d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=x^{3}+x^{2}+c_{1}$
- \quad Solve for y
$y=-\frac{1}{x^{3}+x^{2}+c_{1}}$
- Use initial condition $y(1)=-1$
$-1=-\frac{1}{c_{1}+2}$
- \quad Solve for c_{1}
$c_{1}=-1$
- \quad Substitute $c_{1}=-1$ into general solution and simplify $y=-\frac{1}{x^{3}+x^{2}-1}$
- \quad Solution to the IVP
$y=-\frac{1}{x^{3}+x^{2}-1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([diff(y(x),x) = 2*x*y(x)^2+3*x^2*y(x)^2,y(1) = -1],y(x), singsol=all)
```

$$
y(x)=-\frac{1}{x^{3}+x^{2}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}[x]==2 * x * y[x] \sim 2+3 * x^{\wedge} 2 * y[x] \sim 2, y[1]==-1\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{x^{3}+x^{2}-1}
$$

3.26 problem 27

3.26.1 Existence and uniqueness analysis 580
3.26.2 Solving as separable ode . 581
3.26.3 Solving as first order special form ID 1 ode 583
3.26.4 Solving as first order ode lie symmetry lookup ode 584
3.26.5 Solving as exact ode . 588
3.26.6 Maple step by step solution . 592

Internal problem ID [52]
Internal file name [OUTPUT/52_Sunday_June_05_2022_01_34_06_AM_21281142/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first order special form ID 1", "first_order_ode_lie__symmetry__lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-6 \mathrm{e}^{2 x-y}=0
$$

With initial conditions

$$
[y(0)=0]
$$

3.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =6 \mathrm{e}^{2 x-y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(6 \mathrm{e}^{2 x-y}\right) \\
& =-6 \mathrm{e}^{2 x-y}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

3.26.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =6 \mathrm{e}^{2 x} \mathrm{e}^{-y}
\end{aligned}
$$

Where $f(x)=6 \mathrm{e}^{2 x}$ and $g(y)=\mathrm{e}^{-y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{-y}} d y & =6 \mathrm{e}^{2 x} d x \\
\int \frac{1}{\mathrm{e}^{-y}} d y & =\int 6 \mathrm{e}^{2 x} d x \\
\mathrm{e}^{y} & =3 \mathrm{e}^{2 x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\ln \left(3 \mathrm{e}^{2 x}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln \left(3+c_{1}\right) \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(3 \mathrm{e}^{2 x}-2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Verified OK.

3.26.3 Solving as first order special form ID 1 ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=6 \mathrm{e}^{2 x-y} \tag{1}
\end{equation*}
$$

And using the substitution $u=\mathrm{e}^{y}$ then

$$
u^{\prime}=y^{\prime} \mathrm{e}^{y}
$$

The above shows that

$$
\begin{aligned}
y^{\prime} & =u^{\prime}(x) \mathrm{e}^{-y} \\
& =\frac{u^{\prime}(x)}{u}
\end{aligned}
$$

Substituting this in (1) gives

$$
\frac{u^{\prime}(x)}{u}=\frac{6 \mathrm{e}^{2 x}}{u}
$$

The above simplifies to

$$
\begin{equation*}
u^{\prime}(x)=6 \mathrm{e}^{2 x} \tag{2}
\end{equation*}
$$

Now ode (2) is solved for $u(x)$ Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 6 \mathrm{e}^{2 x} \mathrm{~d} x \\
& =3 \mathrm{e}^{2 x}+c_{1}
\end{aligned}
$$

Substituting the solution found for $u(x)$ in $u=\mathrm{e}^{y}$ gives

$$
\begin{aligned}
y & =\ln (u(x)) \\
& =\ln \left(3 \mathrm{e}^{2 x}+c_{1}\right) \\
& =\ln \left(3 \mathrm{e}^{2 x}+c_{1}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln \left(3+c_{1}\right) \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(3 \mathrm{e}^{2 x}-2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Verified OK.

3.26.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =6 \mathrm{e}^{2 x-y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 116: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{\mathrm{e}^{-2 x}}{6} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\mathrm{e}^{-2 x}}{6}} d x
\end{aligned}
$$

Which results in

$$
S=3 \mathrm{e}^{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=6 \mathrm{e}^{2 x-y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =6 \mathrm{e}^{2 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
3 \mathrm{e}^{2 x}=\mathrm{e}^{y}+c_{1}
$$

Which simplifies to

$$
3 \mathrm{e}^{2 x}=\mathrm{e}^{y}+c_{1}
$$

Which gives

$$
y=\ln \left(3 \mathrm{e}^{2 x}-c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=6 \mathrm{e}^{2 x-y}$		$\frac{d S}{d R}=\mathrm{e}^{R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$R=y$	
	$S=3 \mathrm{e}^{2 x}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow-9 \rightarrow \rightarrow-2 \rightarrow+8)}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{\rightarrow \rightarrow \rightarrow-\infty}$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\ln \left(3-c_{1}\right)
$$

$$
c_{1}=2
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(3 \mathrm{e}^{2 x}-2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Verified OK.

3.26.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}\right) \mathrm{d} y & =\left(6 \mathrm{e}^{2 x}\right) \mathrm{d} x \\
\left(-6 \mathrm{e}^{2 x}\right) \mathrm{d} x+\left(\mathrm{e}^{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-6 \mathrm{e}^{2 x} \\
N(x, y) & =\mathrm{e}^{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-6 \mathrm{e}^{2 x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-6 \mathrm{e}^{2 x} \mathrm{~d} x \\
\phi & =-3 \mathrm{e}^{2 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 \mathrm{e}^{2 x}+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 \mathrm{e}^{2 x}+\mathrm{e}^{y}
$$

The solution becomes

$$
y=\ln \left(3 \mathrm{e}^{2 x}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln \left(3+c_{1}\right) \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(3 \mathrm{e}^{2 x}-2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\ln \left(3 \mathrm{e}^{2 x}-2\right)
$$

Verified OK.

3.26.6 Maple step by step solution

Let's solve
$\left[y^{\prime}-6 \mathrm{e}^{2 x-y}=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$y^{\prime} \mathrm{e}^{y}=6\left(\mathrm{e}^{x}\right)^{2}$
- Integrate both sides with respect to x
$\int y^{\prime} \mathrm{e}^{y} d x=\int 6\left(\mathrm{e}^{x}\right)^{2} d x+c_{1}$
- Evaluate integral
$\mathrm{e}^{y}=3\left(\mathrm{e}^{x}\right)^{2}+c_{1}$
- \quad Solve for y
$y=\ln \left(3\left(\mathrm{e}^{x}\right)^{2}+c_{1}\right)$
- Use initial condition $y(0)=0$
$0=\ln \left(3+c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=-2$
- \quad Substitute $c_{1}=-2$ into general solution and simplify
$y=\ln \left(3 \mathrm{e}^{2 x}-2\right)$
- Solution to the IVP
$y=\ln \left(3 \mathrm{e}^{2 x}-2\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 13

```
dsolve([diff(y(x),x) = 6*exp(2*x-y(x)),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\ln \left(-2+3 \mathrm{e}^{2 x}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.739 (sec). Leaf size: 15

$$
\begin{gathered}
\text { DSolve }\left[\left\{\mathrm{y}^{\prime}[\mathrm{x}]=6 * \operatorname{Exp}[2 * \mathrm{x}-\mathrm{y}[\mathrm{x}]], \mathrm{y}[0]==0\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x} \text {, IncludeSingularSolutions } \rightarrow \text { True }\right] \\
y(x) \rightarrow \log \left(3 e^{2 x}-2\right)
\end{gathered}
$$

3.27 problem 28

3.27.1 Existence and uniqueness analysis 594
3.27.2 Solving as separable ode . 595
3.27.3 Solving as first order ode lie symmetry lookup ode 597
3.27.4 Solving as exact ode . 601
3.27.5 Maple step by step solution . 605

Internal problem ID [53]
Internal file name [OUTPUT/53_Sunday_June_05_2022_01_34_06_AM_31221340/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.4. Separable equations. Page 43
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 \sqrt{x} y^{\prime}-\cos (y)^{2}=0
$$

With initial conditions

$$
\left[y(4)=\frac{\pi}{4}\right]
$$

3.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\cos (y)^{2}}{2 \sqrt{x}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{\pi}{4}$ is

$$
\{0<x\}
$$

And the point $x_{0}=4$ is inside this domain. The y domain of $f(x, y)$ when $x=4$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{\pi}{4}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\cos (y)^{2}}{2 \sqrt{x}}\right) \\
& =-\frac{\cos (y) \sin (y)}{\sqrt{x}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{\pi}{4}$ is

$$
\{0<x\}
$$

And the point $x_{0}=4$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=4$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{\pi}{4}$ is inside this domain. Therefore solution exists and is unique.

3.27.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\cos (y)^{2}}{2 \sqrt{x}}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 \sqrt{x}}$ and $g(y)=\cos (y)^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (y)^{2}} d y & =\frac{1}{2 \sqrt{x}} d x \\
\int \frac{1}{\cos (y)^{2}} d y & =\int \frac{1}{2 \sqrt{x}} d x \\
\tan (y) & =\sqrt{x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\arctan \left(\sqrt{x}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=4$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{\pi}{4}=\arctan \left(c_{1}+2\right) \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\arctan (\sqrt{x}-1)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arctan (\sqrt{x}-1) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot
$\underline{\text { Verification of solutions }}$

$$
y=\arctan (\sqrt{x}-1)
$$

Verified OK.

3.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\cos (y)^{2}}{2 \sqrt{x}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 119: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=2 \sqrt{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{2 \sqrt{x}} d x
\end{aligned}
$$

Which results in

$$
S=\sqrt{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\cos (y)^{2}}{2 \sqrt{x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{2 \sqrt{x}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sec (y)^{2} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sec (R)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\tan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{x}=\tan (y)+c_{1}
$$

Which simplifies to

$$
\sqrt{x}=\tan (y)+c_{1}
$$

Which gives

$$
y=-\arctan \left(-\sqrt{x}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\cos (y)^{2}}{2 \sqrt{x}}$		$\frac{d S}{d R}=\sec (R)^{2}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$		
$y(x), \quad, \rightarrow \rightarrow \rightarrow+\infty \rightarrow \infty$		
\rightarrow		
	$R=y$	
$-4 \mathrm{ll}$	$S=\sqrt{x}$	
	$S=\sqrt{x}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		

Initial conditions are used to solve for c_{1}. Substituting $x=4$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{\pi}{4}=-\arctan \left(c_{1}-2\right) \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\arctan (\sqrt{x}-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arctan (\sqrt{x}-1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\arctan (\sqrt{x}-1)
$$

Verified OK.

3.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2}{\cos (y)^{2}}\right) \mathrm{d} y & =\left(\frac{1}{\sqrt{x}}\right) \mathrm{d} x \\
\left(-\frac{1}{\sqrt{x}}\right) \mathrm{d} x+\left(\frac{2}{\cos (y)^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\sqrt{x}} \\
& N(x, y)=\frac{2}{\cos (y)^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\sqrt{x}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2}{\cos (y)^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\sqrt{x}} \mathrm{~d} x \\
\phi & =-2 \sqrt{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2}{\cos (y)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2}{\cos (y)^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{\cos (y)^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(2 \sec (y)^{2}\right) \mathrm{d} y \\
f(y) & =2 \tan (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 \sqrt{x}+2 \tan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 \sqrt{x}+2 \tan (y)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=4$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=c_{1} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-2 \sqrt{x}+2 \tan (y)=-2
$$

Solving for y from the above gives

$$
y=\arctan (\sqrt{x}-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arctan (\sqrt{x}-1) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\arctan (\sqrt{x}-1)
$$

Verified OK.

3.27.5 Maple step by step solution

Let's solve

$$
\left[2 \sqrt{x} y^{\prime}-\cos (y)^{2}=0, y(4)=\frac{\pi}{4}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\cos (y)^{2}}=\frac{1}{2 \sqrt{x}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\cos (y)^{2}} d x=\int \frac{1}{2 \sqrt{x}} d x+c_{1}$
- Evaluate integral
$\tan (y)=\sqrt{x}+c_{1}$
- \quad Solve for y
$y=\arctan \left(\sqrt{x}+c_{1}\right)$
- Use initial condition $y(4)=\frac{\pi}{4}$
$\frac{\pi}{4}=\arctan \left(\sqrt{4}+c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify
$y=\arctan (\sqrt{x}-1)$
- Solution to the IVP
$y=\arctan (\sqrt{x}-1)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 10
dsolve([2*x~(1/2) $\left.* \operatorname{diff}(y(x), x)=\cos (y(x))^{\wedge} 2, y(4)=1 / 4 * \operatorname{Pi}\right], y(x)$, singsol=all)

$$
y(x)=\arctan (-1+\sqrt{x})
$$

\checkmark Solution by Mathematica
Time used: 0.46 (sec). Leaf size: 17

```
DSolve[{2*x^(1/2)*y'[x] == Cos[y[x]]^2,y[4]==Pi/4},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\arctan (1-\sqrt{x})
$$

4 Section 1.5. Linear first order equations. Page 56
4.1 problem 1 608
4.2 problem 2 612
4.3 problem 3 626
4.4 problem 4 638
4.5 problem 5 651
4.6 problem 6 667
4.7 problem 7 681
4.8 problem 8 694
4.9 problem 9 709
4.10 problem 10 724
4.11 problem 11 737
4.12 problem 12 751
4.13 problem 13 765
4.14 problem 14 779
4.15 problem 15 793
4.16 problem 16 808
4.17 problem 17 822
4.18 problem 18 835
4.19 problem 19 848
4.20 problem 20 861
4.21 problem 21 875
4.22 problem 22 889
4.23 problem 23 903
4.24 problem 24 916
4.25 problem 25 931

4.1 problem 1

4.1.1 Existence and uniqueness analysis 608
4.1.2 Solving as quadrature ode . 609
4.1.3 Maple step by step solution . 610

Internal problem ID [54]
Internal file name [DUTPUT/54_Sunday_June_05_2022_01_34_08_AM_49603279/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y=2
$$

With initial conditions

$$
[y(0)=0]
$$

4.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=2
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y+2} d y & =\int d x \\
-\ln (-y+2) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-y+2}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{-y+2}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{-1+2 c_{2}}{c_{2}} \\
c_{2}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-2 \mathrm{e}^{-x}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \mathrm{e}^{-x}+2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 \mathrm{e}^{-x}+2
$$

Verified OK.

4.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y=2, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{-y+2}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-y+2} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\ln (-y+2)=x+c_{1}$
- \quad Solve for y
$y=-\mathrm{e}^{-x-c_{1}}+2$
- Use initial condition $y(0)=0$

$$
0=-\mathrm{e}^{-c_{1}}+2
$$

- \quad Solve for c_{1}

$$
c_{1}=-\ln (2)
$$

- \quad Substitute $c_{1}=-\ln (2)$ into general solution and simplify

$$
y=-2 \mathrm{e}^{-x}+2
$$

- Solution to the IVP
$y=-2 \mathrm{e}^{-x}+2$

```
Maple trace
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([y(x)+diff(y(x),x) = 2,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=2-2 \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 14
DSolve[\{y[x]+y'[x] ==2,y[0]==0\},y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow 2-2 e^{-x}
$$

4.2 problem 2

4.2.1 Existence and uniqueness analysis 612
4.2.2 Solving as linear ode . 613
4.2.3 Solving as first order ode lie symmetry lookup ode 615
4.2.4 Solving as exact ode . 619
4.2.5 Maple step by step solution . 623

Internal problem ID [55]
Internal file name [OUTPUT/55_Sunday_June_05_2022_01_34_08_AM_17924870/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=3 \mathrm{e}^{2 x}
$$

With initial conditions

$$
[y(0)=0]
$$

4.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =3 \mathrm{e}^{2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=3 \mathrm{e}^{2 x}
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=3 \mathrm{e}^{2 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.2.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(3 \mathrm{e}^{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} y\right) & =\left(\mathrm{e}^{-2 x}\right)\left(3 \mathrm{e}^{2 x}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} y\right) & =3 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 x} y=\int 3 \mathrm{~d} x \\
& \mathrm{e}^{-2 x} y=3 x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
y=3 x \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{2 x}
$$

which simplifies to

$$
y=\mathrm{e}^{2 x}\left(3 x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 x \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=3 x \mathrm{e}^{2 x}
$$

Verified OK.

4.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y+3 \mathrm{e}^{2 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 123: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 y+3 \mathrm{e}^{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 \mathrm{e}^{-2 x} y \\
S_{y} & =\mathrm{e}^{-2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-2 x} y=3 x+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 x} y=3 x+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{2 x}\left(3 x+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 y+3 \mathrm{e}^{2 x}$		$\frac{d S}{d R}=3$
		O
¢pppoppopapap		¢papapapaspapappospos
	$R=x$	
	$S=\mathrm{e}^{-2 x} y$	
$t^{2} t^{2} t^{2}+1+1$	$S=\mathrm{e}^{-2 x} y$	Aftapafapa
bibiapa a ¢ ¢ ¢		Afosfors

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 x \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 x \mathrm{e}^{2 x}
$$

Verified OK.

4.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 y+3 \mathrm{e}^{2 x}\right) \mathrm{d} x \\
\left(-2 y-3 \mathrm{e}^{2 x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 y-3 \mathrm{e}^{2 x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y-3 \mathrm{e}^{2 x}\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-2 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 x}\left(-2 y-3 \mathrm{e}^{2 x}\right) \\
& =-2 \mathrm{e}^{-2 x} y-3
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 x}(1) \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-2 \mathrm{e}^{-2 x} y-3\right)+\left(\mathrm{e}^{-2 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-2 \mathrm{e}^{-2 x} y-3 \mathrm{~d} x \\
\phi & =-3 x+\mathrm{e}^{-2 x} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 x}=\mathrm{e}^{-2 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 x+\mathrm{e}^{-2 x} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 x+\mathrm{e}^{-2 x} y
$$

The solution becomes

$$
y=\mathrm{e}^{2 x}\left(3 x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 x \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=3 x \mathrm{e}^{2 x}
$$

Verified OK.

4.2.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-2 y=3 \mathrm{e}^{2 x}, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+3 \mathrm{e}^{2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=3 \mathrm{e}^{2 x}$
- \quad The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-2 y\right)=3 \mu(x) \mathrm{e}^{2 x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-2 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x)$
- Solve to find the integrating factor $\mu(x)=\mathrm{e}^{-2 x}$
- Integrate both sides with respect to x $\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) \mathrm{e}^{2 x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 3 \mu(x) \mathrm{e}^{2 x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(x) \mathrm{e}^{2 x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-2 x}$
$y=\frac{\int 3 \mathrm{e}^{2 x} \mathrm{e}^{-2 x} d x+c_{1}}{\mathrm{e}^{-2 x}}$
- Evaluate the integrals on the rhs
$y=\frac{3 x+c_{1}}{\mathrm{e}^{-2 x}}$
- Simplify
$y=\mathrm{e}^{2 x}\left(3 x+c_{1}\right)$
- Use initial condition $y(0)=0$
$0=c_{1}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=3 x \mathrm{e}^{2 x}$
- \quad Solution to the IVP
$y=3 x \mathrm{e}^{2 x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve([-2*y(x)+diff(y(x),x) = 3*exp(2*x),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=3 \mathrm{e}^{2 x} x
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 13
DSolve $[\{-2 * y[x]+y$ ' $[x]==3 * \operatorname{Exp}[2 * x], y[0]==0\}, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow 3 e^{2 x} x
$$

4.3 problem 3

$$
\text { 4.3.1 Solving as linear ode . } 626
$$

4.3.2 Solving as first order ode lie symmetry lookup ode 628
4.3.3 Solving as exact ode 632
4.3.4 Maple step by step solution 636

Internal problem ID [56]
Internal file name [OUTPUT/56_Sunday_June_05_2022_01_34_09_AM_7434653/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
3 y+y^{\prime}=2 x \mathrm{e}^{-3 x}
$$

4.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =3 \\
q(x) & =2 x \mathrm{e}^{-3 x}
\end{aligned}
$$

Hence the ode is

$$
3 y+y^{\prime}=2 x \mathrm{e}^{-3 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x \mathrm{e}^{-3 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{3 x}\right) & =\left(\mathrm{e}^{3 x}\right)\left(2 x \mathrm{e}^{-3 x}\right) \\
\mathrm{d}\left(y \mathrm{e}^{3 x}\right) & =(2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{3 x}=\int 2 x \mathrm{~d} x \\
& y \mathrm{e}^{3 x}=x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 x}$ results in

$$
y=\mathrm{e}^{-3 x} x^{2}+c_{1} \mathrm{e}^{-3 x}
$$

which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 161: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right)
$$

Verified OK.

4.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\left(3 y \mathrm{e}^{3 x}-2 x\right) \mathrm{e}^{-3 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 126: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-3 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 x}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{3 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\left(3 y \mathrm{e}^{3 x}-2 x\right) \mathrm{e}^{-3 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 y \mathrm{e}^{3 x} \\
S_{y} & =\mathrm{e}^{3 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{3 x}=x^{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{3 x}=x^{2}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\left(3 y \mathrm{e}^{3 x}-2 x\right) \mathrm{e}^{-3 x}$		$\frac{d S}{d R}=2 R$
		!
W,	$R=x$	
	$S=y \mathrm{e}^{3 x}$	-4,
		1,

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 162: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right)
$$

Verified OK.

4.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{3 x}\right) \mathrm{d} y & =\left(-3 y \mathrm{e}^{3 x}+2 x\right) \mathrm{d} x \\
\left(3 y \mathrm{e}^{3 x}-2 x\right) \mathrm{d} x+\left(\mathrm{e}^{3 x}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y \mathrm{e}^{3 x}-2 x \\
N(x, y) & =\mathrm{e}^{3 x}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y \mathrm{e}^{3 x}-2 x\right) \\
& =3 \mathrm{e}^{3 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{3 x}\right) \\
& =3 \mathrm{e}^{3 x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 y \mathrm{e}^{3 x}-2 x \mathrm{~d} x \\
\phi & =-x^{2}+y \mathrm{e}^{3 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 x}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}+y \mathrm{e}^{3 x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}+y \mathrm{e}^{3 x}
$$

The solution becomes

$$
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 163: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right)
$$

Verified OK.

4.3.4 Maple step by step solution

Let's solve
$3 y+y^{\prime}=\frac{2 x}{\mathrm{e}^{3 x}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-3 y+\frac{2 x}{\mathrm{e}^{3 x}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $3 y+y^{\prime}=\frac{2 x}{\mathrm{e}^{3 x}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(3 y+y^{\prime}\right)=\frac{2 \mu(x) x}{\mathrm{e}^{3 x}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(3 y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=3 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{2 \mu(x) x}{\mathrm{e}^{3 x}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{2 \mu(x) x}{\mathrm{e}^{3 x}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{2 \mu(x) x}{e^{3 x}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}$
$y=\frac{\int 2 x \mathrm{e}^{-3 x} \mathrm{e}^{3 x} d x+c_{1}}{\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{2}+c_{1}}{\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}}$
- Simplify

$$
y=\mathrm{e}^{-3 x}\left(x^{2}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(3*y(x)+diff (y (x),x) = 2*x/exp (3*x),y(x), singsol=all)
```

$$
y(x)=\left(x^{2}+c_{1}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 17
DSolve[3*y $[x]+y$ ' $[x]==2 * x / \operatorname{Exp}[3 * x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-3 x}\left(x^{2}+c_{1}\right)
$$

4.4 problem 4

$$
\text { 4.4.1 Solving as linear ode . } 638
$$

4.4.2 Solving as first order ode lie symmetry lookup ode 640
4.4.3 Solving as exact ode . 644
4.4.4 Maple step by step solution . 649

Internal problem ID [57]
Internal file name [OUTPUT/57_Sunday_June_05_2022_01_34_09_AM_17869309/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-2 y x+y^{\prime}=\mathrm{e}^{x^{2}}
$$

4.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 x \\
& q(x)=\mathrm{e}^{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
-2 y x+y^{\prime}=\mathrm{e}^{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} y\right) & =\left(\mathrm{e}^{-x^{2}}\right)\left(\mathrm{e}^{x^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{-x^{2}} y\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{2}} y=\int \mathrm{d} x \\
& \mathrm{e}^{-x^{2}} y=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}}$ results in

$$
y=\mathrm{e}^{x^{2}} x+c_{1} \mathrm{e}^{x^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

Figure 164: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right)
$$

Verified OK.

4.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y x+\mathrm{e}^{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 129: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 y x+\mathrm{e}^{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 x \mathrm{e}^{-x^{2}} y \\
S_{y} & =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x^{2}} y=x+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x^{2}} y=x+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 y x+\mathrm{e}^{x^{2}}$		$\frac{d S}{d R}=1$
(x) x^{2}		
\% 414		
	$R=x$	
	$S=\mathrm{e}^{-x^{2}} y$	
- ${ }^{\text {a }}$		
,		
4		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 165: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right)
$$

Verified OK.

4.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 y x+\mathrm{e}^{x^{2}}\right) \mathrm{d} x \\
\left(-2 y x-\mathrm{e}^{x^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-2 y x-\mathrm{e}^{x^{2}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y x-\mathrm{e}^{x^{2}}\right) \\
& =-2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-2 x)-(0)) \\
& =-2 x
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-2 x \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x^{2}} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x^{2}}\left(-2 y x-\mathrm{e}^{x^{2}}\right) \\
& =-2 x \mathrm{e}^{-x^{2}} y-1
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x^{2}}(1) \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-2 x \mathrm{e}^{-x^{2}} y-1\right)+\left(\mathrm{e}^{-x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-2 x \mathrm{e}^{-x^{2}} y-1 \mathrm{~d} x \\
\phi & =-x+\mathrm{e}^{-x^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x^{2}}=\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\mathrm{e}^{-x^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\mathrm{e}^{-x^{2}} y
$$

The solution becomes

$$
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 166: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right)
$$

Verified OK.

4.4.4 Maple step by step solution

Let's solve
$-2 y x+y^{\prime}=\mathrm{e}^{x^{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y x+\mathrm{e}^{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$-2 y x+y^{\prime}=\mathrm{e}^{x^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(-2 y x+y^{\prime}\right)=\mu(x) \mathrm{e}^{x^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(-2 y x+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x) x$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{x^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{x^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x^{2}}$
$y=\frac{\int \mathrm{e}^{x^{2}} \mathrm{e}^{-x^{2}} d x+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{x+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Simplify

$$
y=\mathrm{e}^{x^{2}}\left(x+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(-2*x*y(x)+diff (y(x),x) = exp(x^2),y(x), singsol=all)
```

$$
y(x)=\left(c_{1}+x\right) \mathrm{e}^{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 15
DSolve[-2*x*y[x]+y'[x] == Exp[x^2],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x^{2}}\left(x+c_{1}\right)
$$

4.5 problem 5

4.5.1 Existence and uniqueness analysis
651
4.5.2 Solving as linear ode . 652
4.5.3 Solving as homogeneousTypeD2 ode 654
4.5.4 Solving as first order ode lie symmetry lookup ode 656
4.5.5 Solving as exact ode . 660
4.5.6 Maple step by step solution . 664

Internal problem ID [58]
Internal file name [OUTPUT/58_Sunday_June_05_2022_01_34_09_AM_42143003/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+y^{\prime} x=3 x
$$

With initial conditions

$$
[y(1)=5]
$$

4.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =3
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=3
$$

The domain of $p(x)=\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

4.5.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(3) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{2}\right) & =\left(x^{2}\right)(3) \\
\mathrm{d}\left(y x^{2}\right) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{2}=\int 3 x^{2} \mathrm{~d} x \\
& y x^{2}=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=x+\frac{c_{1}}{x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
5=1+c_{1}
$$

$$
c_{1}=4
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+4}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Verified OK.

4.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x+\left(u^{\prime}(x) x+u(x)\right) x=3 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-3 u+3}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=-3 u+3$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-3 u+3} d u & =\frac{1}{x} d x \\
\int \frac{1}{-3 u+3} d u & =\int \frac{1}{x} d x \\
-\frac{\ln (u-1)}{3} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(u-1)^{\frac{1}{3}}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{(u-1)^{\frac{1}{3}}}=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}} x^{3}+1\right) \mathrm{e}^{-3 c_{2}}}{x^{2} c_{3}^{3}}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
5=\frac{\mathrm{e}^{-3 c_{2}} \mathrm{e}^{3 c_{2}} c_{3}^{3}+\mathrm{e}^{-3 c_{2}}}{c_{3}^{3}}
$$

$$
c_{2}=-\frac{\ln \left(4 c_{3}^{3}\right)}{3}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+4}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Verified OK.

4.5.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y-3 x}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 132: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y-3 x}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 y x \\
S_{y} & =x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2} y=x^{3}+c_{1}
$$

Which simplifies to

$$
x^{2} y=x^{3}+c_{1}
$$

Which gives

$$
y=\frac{x^{3}+c_{1}}{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y-3 x}{x}$		$\frac{d S}{d R}=3 R^{2}$
$)^{+}$		
	$R=x$	
	$S=y x^{2}$	
	$S=y x^{2}$	+
		\rightarrow

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=1+c_{1} \\
c_{1}=4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+4}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Verified OK.

4.5.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =(-2 y+3 x) \mathrm{d} x \\
(2 y-3 x) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y-3 x \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y-3 x) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((2)-(1)) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x(2 y-3 x) \\
& =x(2 y-3 x)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x(x) \\
& =x^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(x(2 y-3 x))+\left(x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x(2 y-3 x) \mathrm{d} x \\
\phi & =-x^{2}(x-y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}(x-y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}(x-y)
$$

The solution becomes

$$
y=\frac{x^{3}+c_{1}}{x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=1+c_{1} \\
c_{1}=4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+4}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+4}{x^{2}}
$$

Verified OK.

4.5.6 Maple step by step solution

Let's solve

$$
\left[2 y+y^{\prime} x=3 x, y(1)=5\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=3-\frac{2 y}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=3$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=3 \mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 3 \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$
$y=\frac{\int 3 x^{2} d x+c_{1}}{x^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{3}+c_{1}}{x^{2}}$
- Use initial condition $y(1)=5$
$5=1+c_{1}$
- \quad Solve for c_{1}
$c_{1}=4$
- \quad Substitute $c_{1}=4$ into general solution and simplify
$y=\frac{x^{3}+4}{x^{2}}$
- \quad Solution to the IVP
$y=\frac{x^{3}+4}{x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

```
dsolve([2*y(x)+x*diff(y(x),x) = 3*x,y(1) = 5],y(x), singsol=all)
```

$$
y(x)=x+\frac{4}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 12
DSolve[\{2*y[x]+x*y'[x]==3*x,y[1]==5\},y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{4}{x^{2}}+x
$$

4.6 problem 6

4.6.1 Existence and uniqueness analysis 667
4.6.2 Solving as linear ode . 668
4.6.3 Solving as first order ode lie symmetry lookup ode 670
4.6.4 Solving as exact ode . 674
4.6.5 Maple step by step solution . 679

Internal problem ID [59]
Internal file name [DUTPUT/59_Sunday_June_05_2022_01_34_10_AM_18874532/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y+2 y^{\prime} x=10 \sqrt{x}
$$

With initial conditions

$$
[y(2)=5]
$$

4.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=\frac{5}{\sqrt{x}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2 x}=\frac{5}{\sqrt{x}}
$$

The domain of $p(x)=\frac{1}{2 x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{5}{\sqrt{x}}$ is

$$
\{0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

4.6.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{5}{\sqrt{x}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(y \sqrt{x}) & =(\sqrt{x})\left(\frac{5}{\sqrt{x}}\right) \\
\mathrm{d}(y \sqrt{x}) & =5 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \sqrt{x}=\int 5 \mathrm{~d} x \\
& y \sqrt{x}=5 x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
y=5 \sqrt{x}+\frac{c_{1}}{\sqrt{x}}
$$

which simplifies to

$$
y=\frac{5 x+c_{1}}{\sqrt{x}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=5 \sqrt{2}+\frac{\sqrt{2} c_{1}}{2} \\
c_{1}=-5(\sqrt{2}-1) \sqrt{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}}
$$

Verified OK.

4.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y-10 \sqrt{x}}{2 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 135: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\sqrt{x}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sqrt{x}}} d y
\end{aligned}
$$

Which results in

$$
S=y \sqrt{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y-10 \sqrt{x}}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{2 \sqrt{x}} \\
S_{y} & =\sqrt{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=5 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=5
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=5 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{x} y=5 x+c_{1}
$$

Which simplifies to

$$
\sqrt{x} y=5 x+c_{1}
$$

Which gives

$$
y=\frac{5 x+c_{1}}{\sqrt{x}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y-10 \sqrt{x}}{2 x}$		$\frac{d S}{d R}=5$
2		
	$R=x$	
	$S=y \sqrt{x}$	
	$S=y \sqrt{x}$	
$-^{-4} 4$		
¢f介f		

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
5 & =5 \sqrt{2}+\frac{\sqrt{2} c_{1}}{2} \\
c_{1} & =-5(\sqrt{2}-1) \sqrt{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}}
$$

Verified OK.

4.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x) \mathrm{d} y & =(-y+10 \sqrt{x}) \mathrm{d} x \\
(y-10 \sqrt{x}) \mathrm{d} x+(2 x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-10 \sqrt{x} \\
N(x, y) & =2 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-10 \sqrt{x}) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x}((1)-(2)) \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{2 x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (x)}{2}} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\sqrt{x}}(y-10 \sqrt{x}) \\
& =\frac{y-10 \sqrt{x}}{\sqrt{x}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\sqrt{x}}(2 x) \\
& =2 \sqrt{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y-10 \sqrt{x}}{\sqrt{x}}\right)+(2 \sqrt{x}) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y-10 \sqrt{x}}{\sqrt{x}} \mathrm{~d} x \\
\phi & =-10 x+2 y \sqrt{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \sqrt{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \sqrt{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \sqrt{x}=2 \sqrt{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-10 x+2 y \sqrt{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-10 x+2 y \sqrt{x}
$$

The solution becomes

$$
y=\frac{10 x+c_{1}}{2 \sqrt{x}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=5 \sqrt{2}+\frac{\sqrt{2} c_{1}}{4} \\
c_{1}=-10(\sqrt{2}-1) \sqrt{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 x-10+5 \sqrt{2}}{\sqrt{x}}
$$

Verified OK.

4.6.5 Maple step by step solution

Let's solve
$\left[y+2 y^{\prime} x=10 \sqrt{x}, y(2)=5\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{2 x}+\frac{5}{\sqrt{x}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{2 x}=\frac{5}{\sqrt{x}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{2 x}\right)=\frac{5 \mu(x)}{\sqrt{x}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{2 x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{2 x}$
- Solve to find the integrating factor
$\mu(x)=\sqrt{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{5 \mu(x)}{\sqrt{x}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{5 \mu(x)}{\sqrt{x}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{5 \mu(x)}{\sqrt{x}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sqrt{x}$
$y=\frac{\int 5 d x+c_{1}}{\sqrt{x}}$
- Evaluate the integrals on the rhs
$y=\frac{5 x+c_{1}}{\sqrt{x}}$
- Use initial condition $y(2)=5$

$$
5=\frac{\left(10+c_{1}\right) \sqrt{2}}{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=-5(\sqrt{2}-1) \sqrt{2}
$$

- \quad Substitute $c_{1}=-5(\sqrt{2}-1) \sqrt{2}$ into general solution and simplify
$y=\frac{5(x-2+\sqrt{2})}{\sqrt{x}}$
- Solution to the IVP
$y=\frac{5(x-2+\sqrt{2})}{\sqrt{x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([y(x)+2*x*diff(y(x),x) = 10*x^(1/2),y(2) = 5],y(x), singsol=all)
```

$$
y(x)=\frac{-10+5 \sqrt{2}+5 x}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 20
DSolve $\left[\left\{y[x]+2 * x * y\right.\right.$ ' $\left.[x]==10 * x^{\wedge}(1 / 2), y[2]==5\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow \frac{5(x+\sqrt{2}-2)}{\sqrt{x}}
$$

4.7 problem 7

4.7.1 Solving as linear ode 681
4.7.2 Solving as first order ode lie symmetry lookup ode 683
4.7.3 Solving as exact ode 687
4.7.4 Maple step by step solution 692

Internal problem ID [60]
Internal file name [OUTPUT/60_Sunday_June_05_2022_01_34_11_AM_22228658/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y+2 y^{\prime} x=10 \sqrt{x}
$$

4.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=\frac{5}{\sqrt{x}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2 x}=\frac{5}{\sqrt{x}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{5}{\sqrt{x}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(y \sqrt{x}) & =(\sqrt{x})\left(\frac{5}{\sqrt{x}}\right) \\
\mathrm{d}(y \sqrt{x}) & =5 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \sqrt{x}=\int 5 \mathrm{~d} x \\
& y \sqrt{x}=5 x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
y=5 \sqrt{x}+\frac{c_{1}}{\sqrt{x}}
$$

which simplifies to

$$
y=\frac{5 x+c_{1}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 x+c_{1}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Figure 174: Slope field plot
Verification of solutions

$$
y=\frac{5 x+c_{1}}{\sqrt{x}}
$$

Verified OK.

4.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y-10 \sqrt{x}}{2 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 138: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\sqrt{x}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sqrt{x}}} d y
\end{aligned}
$$

Which results in

$$
S=y \sqrt{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y-10 \sqrt{x}}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{2 \sqrt{x}} \\
S_{y} & =\sqrt{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=5 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=5
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=5 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{x} y=5 x+c_{1}
$$

Which simplifies to

$$
\sqrt{x} y=5 x+c_{1}
$$

Which gives

$$
y=\frac{5 x+c_{1}}{\sqrt{x}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y-10 \sqrt{x}}{2 x}$		$\frac{d S}{d R}=5$
		¢
y (x)		
$2)^{2} 4$		
$\begin{array}{llllllllllll}-4 & -2 & 0\end{array}$	$S=y \sqrt{x}$	
-2-		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 x+c_{1}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Figure 175: Slope field plot

Verification of solutions

$$
y=\frac{5 x+c_{1}}{\sqrt{x}}
$$

Verified OK.

4.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x) \mathrm{d} y & =(-y+10 \sqrt{x}) \mathrm{d} x \\
(y-10 \sqrt{x}) \mathrm{d} x+(2 x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-10 \sqrt{x} \\
N(x, y) & =2 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-10 \sqrt{x}) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x}((1)-(2)) \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{2 x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (x)}{2}} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\sqrt{x}}(y-10 \sqrt{x}) \\
& =\frac{y-10 \sqrt{x}}{\sqrt{x}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\sqrt{x}}(2 x) \\
& =2 \sqrt{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y-10 \sqrt{x}}{\sqrt{x}}\right)+(2 \sqrt{x}) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y-10 \sqrt{x}}{\sqrt{x}} \mathrm{~d} x \\
\phi & =-10 x+2 y \sqrt{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \sqrt{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \sqrt{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \sqrt{x}=2 \sqrt{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-10 x+2 y \sqrt{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-10 x+2 y \sqrt{x}
$$

The solution becomes

$$
y=\frac{10 x+c_{1}}{2 \sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{10 x+c_{1}}{2 \sqrt{x}} \tag{1}
\end{equation*}
$$

Figure 176: Slope field plot

Verification of solutions

$$
y=\frac{10 x+c_{1}}{2 \sqrt{x}}
$$

Verified OK.

4.7.4 Maple step by step solution

Let's solve
$y+2 y^{\prime} x=10 \sqrt{x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{2 x}+\frac{5}{\sqrt{x}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{2 x}=\frac{5}{\sqrt{x}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{2 x}\right)=\frac{5 \mu(x)}{\sqrt{x}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{2 x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{2 x}$
- \quad Solve to find the integrating factor
$\mu(x)=\sqrt{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{5 \mu(x)}{\sqrt{x}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{5 \mu(x)}{\sqrt{x}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{5 \mu(x)}{\sqrt{x}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sqrt{x}$
$y=\frac{\int 5 d x+c_{1}}{\sqrt{x}}$
- Evaluate the integrals on the rhs
$y=\frac{5 x+c_{1}}{\sqrt{x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(y(x)+2*x*diff(y(x),x) = 10*x^(1/2),y(x), singsol=all)
```

$$
y(x)=\frac{5 x+c_{1}}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 17

```
DSolve[y[x]+2*x*y'[x] == 10*x^(1/2),y[x],x,IncludeSingularSolutions m True]
```

$$
y(x) \rightarrow \frac{5 x+c_{1}}{\sqrt{x}}
$$

4.8 problem 8

4.8.1 Solving as linear ode . 694
4.8.2 Solving as homogeneousTypeD2 ode 696
4.8.3 Solving as first order ode lie symmetry lookup ode 698
4.8.4 Solving as exact ode . 702
4.8.5 Maple step by step solution . 707

Internal problem ID [61]
Internal file name [DUTPUT/61_Sunday_June_05_2022_01_34_11_AM_24442165/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y+3 y^{\prime} x=12 x
$$

4.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{3 x} \\
q(x) & =4
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{3 x}=4
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{3 x} d x} \\
& =x^{\frac{1}{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(4) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{\frac{1}{3}} y\right) & =\left(x^{\frac{1}{3}}\right)(4) \\
\mathrm{d}\left(x^{\frac{1}{3}} y\right) & =\left(4 x^{\frac{1}{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{\frac{1}{3}} y=\int 4 x^{\frac{1}{3}} \mathrm{~d} x \\
& x^{\frac{1}{3}} y=3 x^{\frac{4}{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{\frac{1}{3}}$ results in

$$
y=3 x+\frac{c_{1}}{x^{\frac{1}{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x+\frac{c_{1}}{x^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

Figure 177: Slope field plot
Verification of solutions

$$
y=3 x+\frac{c_{1}}{x^{\frac{1}{3}}}
$$

Verified OK.

4.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x+3\left(u^{\prime}(x) x+u(x)\right) x=12 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-\frac{4 u}{3}+4}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=-\frac{4 u}{3}+4$. Integrating both sides gives

$$
\frac{1}{-\frac{4 u}{3}+4} d u=\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{-\frac{4 u}{3}+4} d u & =\int \frac{1}{x} d x \\
-\frac{3 \ln (u-3)}{4} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(u-3)^{\frac{3}{4}}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{(u-3)^{\frac{3}{4}}}=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x\left(3+\left(\frac{\mathrm{e}^{-c_{2}}}{c_{3} x}\right)^{\frac{4}{3}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(3+\left(\frac{\mathrm{e}^{-c_{2}}}{c_{3} x}\right)^{\frac{4}{3}}\right) \tag{1}
\end{equation*}
$$

Figure 178: Slope field plot

Verification of solutions

$$
y=x\left(3+\left(\frac{\mathrm{e}^{-c_{2}}}{c_{3} x}\right)^{\frac{4}{3}}\right)
$$

Verified OK.

4.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y-12 x}{3 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 141: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{\frac{1}{3}}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{\frac{1}{3}}} d y}
\end{aligned}
$$

Which results in

$$
S=x^{\frac{1}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y-12 x}{3 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{3 x^{\frac{2}{3}}} \\
S_{y} & =x^{\frac{1}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 x^{\frac{1}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 R^{\frac{1}{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 R^{\frac{4}{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{\frac{1}{3}} y=3 x^{\frac{4}{3}}+c_{1}
$$

Which simplifies to

$$
x^{\frac{1}{3}} y=3 x^{\frac{4}{3}}+c_{1}
$$

Which gives

$$
y=\frac{3 x^{\frac{4}{3}}+c_{1}}{x^{\frac{1}{3}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y-12 x}{3 x}$		$\frac{d S}{d R}=4 R^{\frac{1}{3}}$
		4 4 4 4 4 4
¢f		- $2+1+\uparrow+1+1$
chat	$R=x$	copapapapat
		$\begin{array}{cccc}-4 & -2 & 0\end{array}$
Po	$S=x^{\frac{1}{3}} y$	
P 4		
		- - ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{\frac{4}{3}}+c_{1}}{x^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

Figure 179: Slope field plot

Verification of solutions

$$
y=\frac{3 x^{\frac{4}{3}}+c_{1}}{x^{\frac{1}{3}}}
$$

Verified OK.

4.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3 x) \mathrm{d} y & =(-y+12 x) \mathrm{d} x \\
(y-12 x) \mathrm{d} x+(3 x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-12 x \\
N(x, y) & =3 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-12 x) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(3 x) \\
& =3
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 x}((1)-(3)) \\
& =-\frac{2}{3 x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{3 x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{2 \ln (x)}{3}} \\
& =\frac{1}{x^{\frac{2}{3}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{\frac{2}{3}}}(y-12 x) \\
& =\frac{y-12 x}{x^{\frac{2}{3}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{\frac{2}{3}}}(3 x) \\
& =3 x^{\frac{1}{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y-12 x}{x^{\frac{2}{3}}}\right)+\left(3 x^{\frac{1}{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y-12 x}{x^{\frac{2}{3}}} \mathrm{~d} x \\
\phi & =(-9 x+3 y) x^{\frac{1}{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 x^{\frac{1}{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 x^{\frac{1}{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
3 x^{\frac{1}{3}}=3 x^{\frac{1}{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(-9 x+3 y) x^{\frac{1}{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(-9 x+3 y) x^{\frac{1}{3}}
$$

The solution becomes

$$
y=\frac{9 x^{\frac{4}{3}}+c_{1}}{3 x^{\frac{1}{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 x^{\frac{4}{3}}+c_{1}}{3 x^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

Figure 180: Slope field plot

Verification of solutions

$$
y=\frac{9 x^{\frac{4}{3}}+c_{1}}{3 x^{\frac{1}{3}}}
$$

Verified OK.

4.8.5 Maple step by step solution

Let's solve
$y+3 y^{\prime} x=12 x$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=4-\frac{y}{3 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{3 x}=4$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{3 x}\right)=4 \mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{3 x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{3 x}$
- Solve to find the integrating factor
$\mu(x)=x^{\frac{1}{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 4 \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 4 \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{\frac{1}{3}}$

$$
y=\frac{\int 4 x^{\frac{1}{3}} d x+c_{1}}{x^{\frac{1}{3}}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{3 x^{\frac{4}{3}}+c_{1}}{x^{\frac{1}{3}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(y(x)+3*x*diff(y(x),x) = 12*x,y(x), singsol=all)
```

$$
y(x)=3 x+\frac{c_{1}}{x^{\frac{1}{3}}}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 17

```
DSolve[y[x]+3*x*y'[x] == 12*x,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 3 x+\frac{c_{1}}{\sqrt[3]{x}}
$$

4.9 problem 9

4.9.1 Existence and uniqueness analysis 709
4.9.2 Solving as linear ode . 710
4.9.3 Solving as homogeneousTypeD2 ode 712
4.9.4 Solving as first order ode lie symmetry lookup ode 713
4.9.5 Solving as exact ode . 717
4.9.6 Maple step by step solution . 722

Internal problem ID [62]
Internal file name [OUTPUT/62_Sunday_June_05_2022_01_34_12_AM_84258183/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
-y+y^{\prime} x=x
$$

With initial conditions

$$
[y(1)=7]
$$

4.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=1
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

4.9.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\frac{1}{x} \\
\mathrm{~d}\left(\frac{y}{x}\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{1}{x} \mathrm{~d} x \\
& \frac{y}{x}=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x \ln (x)+c_{1} x
$$

which simplifies to

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=7$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 7=c_{1} \\
& c_{1}=7
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \ln (x)+7 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \ln (x)+7 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \ln (x)+7 x
$$

Verified OK.

4.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x+\left(u^{\prime}(x) x+u(x)\right) x=x
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \frac{1}{x} \mathrm{~d} x \\
& =\ln (x)+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x\left(\ln (x)+c_{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=7$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 7=c_{2} \\
& c_{2}=7
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=x \ln (x)+7 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \ln (x)+7 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \ln (x)+7 x
$$

Verified OK.

4.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 144: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=\ln (x)+c_{1}
$$

Which gives

$$
y=x\left(\ln (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x+y}{x}$		$\frac{d S}{d R}=\frac{1}{R}$
		- x chi
-		SSR + + + , $+\rightarrow \rightarrow \rightarrow 0 \rightarrow 0$
		- 4
	$R=x$	\rightarrow ardy
	$S=\frac{y}{x}$	$\triangle \rightarrow 4 \rightarrow 0$
	$S=\frac{y}{x}$	axydy
		$\cdots 2+9$
		枵分
		19 9
		+1

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=7$ in the above solution gives an equation to solve for the constant of integration.

$$
7=c_{1}
$$

$$
c_{1}=7
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \ln (x)+7 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \ln (x)+7 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \ln (x)+7 x
$$

Verified OK.

4.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =(x+y) \mathrm{d} x \\
(-x-y) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x-y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-1)-(1)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}(-x-y) \\
& =\frac{-x-y}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(x) \\
& =\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x-y}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x-y}{x^{2}} \mathrm{~d} x \\
\phi & =-\ln (x)+\frac{y}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\frac{y}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\frac{y}{x}
$$

The solution becomes

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=7$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 7=c_{1} \\
& c_{1}=7
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \ln (x)+7 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \ln (x)+7 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \ln (x)+7 x
$$

Verified OK.

4.9.6 Maple step by step solution

Let's solve
$\left[-y+y^{\prime} x=x, y(1)=7\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=1+\frac{y}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int \frac{1}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
y=x\left(\ln (x)+c_{1}\right)
$$

- Use initial condition $y(1)=7$
$7=c_{1}$
- \quad Solve for c_{1}
$c_{1}=7$
- \quad Substitute $c_{1}=7$ into general solution and simplify

$$
y=(\ln (x)+7) x
$$

- Solution to the IVP

$$
y=(\ln (x)+7) x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve([-y(x)+x*diff(y(x),x) = x,y(1) = 7],y(x), singsol=all)
```

$$
y(x)=(\ln (x)+7) x
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 11

```
DSolve[{-y[x]+x*y'[x]== x,y[1]==7},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x(\log (x)+7)
$$

4.10 problem 10

4.10.1 Solving as linear ode724
4.10.2 Solving as first order ode lie symmetry lookup ode 726
4.10.3 Solving as exact ode 730
4.10.4 Maple step by step solution 735

Internal problem ID [63]
Internal file name [OUTPUT/63_Sunday_June_05_2022_01_34_12_AM_21495753/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-3 y+2 y^{\prime} x=9 x^{3}
$$

4.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{2 x} \\
& q(x)=\frac{9 x^{2}}{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{2 x}=\frac{9 x^{2}}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{9 x^{2}}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{\frac{3}{2}}}\right) & =\left(\frac{1}{x^{\frac{3}{2}}}\right)\left(\frac{9 x^{2}}{2}\right) \\
\mathrm{d}\left(\frac{y}{x^{\frac{3}{2}}}\right) & =\left(\frac{9 \sqrt{x}}{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{\frac{3}{2}}} & =\int \frac{9 \sqrt{x}}{2} \mathrm{~d} x \\
\frac{y}{x^{\frac{3}{2}}} & =3 x^{\frac{3}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{\frac{3}{2}}}$ results in

$$
y=3 x^{3}+x^{\frac{3}{2}} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{3}+x^{\frac{3}{2}} c_{1} \tag{1}
\end{equation*}
$$

Figure 185: Slope field plot

Verification of solutions

$$
y=3 x^{3}+x^{\frac{3}{2}} c_{1}
$$

Verified OK.

4.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\frac{9 x^{3}}{2}+\frac{3 y}{2}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 147: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{\frac{3}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{\frac{3}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{\frac{3}{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\frac{9 x^{3}}{2}+\frac{3 y}{2}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y}{2 x^{\frac{5}{2}}} \\
S_{y} & =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{9 \sqrt{x}}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{9 \sqrt{R}}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 R^{\frac{3}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{\frac{3}{2}}}=3 x^{\frac{3}{2}}+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{\frac{3}{2}}}=3 x^{\frac{3}{2}}+c_{1}
$$

Which gives

$$
y=3 x^{3}+x^{\frac{3}{2}} c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\frac{9 x^{3}}{2}+\frac{3 y}{2}}{x}$		$\frac{d S}{d R}=\frac{9 \sqrt{R}}{2}$
		1419191911
1t1tatatatatat		4 4 4 44144
		$S(R)$
	$R=x$	
	$S=\frac{y}{s}$	
		1
		- \% ¢ ¢ ¢ 9 9 9 9 ¢
		- \% ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{3}+x^{\frac{3}{2}} c_{1} \tag{1}
\end{equation*}
$$

Figure 186: Slope field plot

Verification of solutions

$$
y=3 x^{3}+x^{\frac{3}{2}} c_{1}
$$

Verified OK.

4.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x) \mathrm{d} y & =\left(9 x^{3}+3 y\right) \mathrm{d} x \\
\left(-9 x^{3}-3 y\right) \mathrm{d} x+(2 x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-9 x^{3}-3 y \\
N(x, y) & =2 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-9 x^{3}-3 y\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x}((-3)-(2)) \\
& =-\frac{5}{2 x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{5}{2 x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{5 \ln (x)}{2}} \\
& =\frac{1}{x^{\frac{5}{2}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{\frac{5}{2}}}\left(-9 x^{3}-3 y\right) \\
& =\frac{-9 x^{3}-3 y}{x^{\frac{5}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{\frac{5}{2}}}(2 x) \\
& =\frac{2}{x^{\frac{3}{2}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-9 x^{3}-3 y}{x^{\frac{5}{2}}}\right)+\left(\frac{2}{x^{\frac{3}{2}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-9 x^{3}-3 y}{x^{\frac{5}{2}}} \mathrm{~d} x \\
\phi & =\frac{-6 x^{3}+2 y}{x^{\frac{3}{2}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{2}{x^{\frac{3}{2}}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2}{x^{\frac{3}{2}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2}{x^{\frac{3}{2}}}=\frac{2}{x^{\frac{3}{2}}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-6 x^{3}+2 y}{x^{\frac{3}{2}}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-6 x^{3}+2 y}{x^{\frac{3}{2}}}
$$

The solution becomes

$$
y=\frac{x^{\frac{3}{2}} c_{1}}{2}+3 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{\frac{3}{2}} c_{1}}{2}+3 x^{3} \tag{1}
\end{equation*}
$$

Figure 187: Slope field plot

Verification of solutions

$$
y=\frac{x^{\frac{3}{2}} c_{1}}{2}+3 x^{3}
$$

Verified OK.

4.10.4 Maple step by step solution

Let's solve
$-3 y+2 y^{\prime} x=9 x^{3}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{2 x}+\frac{9 x^{2}}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-\frac{3 y}{2 x}=\frac{9 x^{2}}{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{2 x}\right)=\frac{9 \mu(x) x^{2}}{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{2 x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{3 \mu(x)}{2 x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{\frac{3}{2}}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{9 \mu(x) x^{2}}{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{9 \mu(x) x^{2}}{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{9 \mu(x) x^{2}}{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{\frac{3}{2}}}$
$y=x^{\frac{3}{2}}\left(\int \frac{9 \sqrt{x}}{2} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{\frac{3}{2}}\left(3 x^{\frac{3}{2}}+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(-3*y(x)+2*x*diff(y(x),x) = 9*x^3,y(x), singsol=all)
```

$$
y(x)=3 x^{3}+x^{\frac{3}{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 19
DSolve $\left[-3 * y[x]+2 * x * y\right.$ ' $[x]==9 * x^{\wedge} 3, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow 3 x^{3}+c_{1} x^{3 / 2}
$$

4.11 problem 11

4.11.1 Existence and uniqueness analysis 737]
4.11.2 Solving as separable ode . 738
4.11.3 Solving as linear ode . 739
4.11.4 Solving as homogeneousTypeD2 ode 740
4.11.5 Solving as first order ode lie symmetry lookup ode 742
4.11.6 Solving as exact ode . 746
4.11.7 Maple step by step solution . 749

Internal problem ID [64]
Internal file name [OUTPUT/64_Sunday_June_05_2022_01_34_13_AM_35107389/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y+y^{\prime} x-3 y x=0
$$

With initial conditions

$$
[y(1)=0]
$$

4.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3 x-1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y(3 x-1)}{x}=0
$$

The domain of $p(x)=-\frac{3 x-1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. Hence solution exists and is unique.

4.11.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y(3 x-1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{3 x-1}{x}$ and $g(y)=y$. Since unique solution exists and $g(y)$ evaluated at $y_{0}=0$ is zero, then the solution is

$$
\begin{aligned}
y & =y_{0} \\
& =0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

4.11.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3 x-1}{x} d x} \\
& =\mathrm{e}^{-3 x+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=x \mathrm{e}^{-3 x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x \mathrm{e}^{-3 x} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
x \mathrm{e}^{-3 x} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=x \mathrm{e}^{-3 x}$ results in

$$
y=\frac{c_{1} \mathrm{e}^{3 x}}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1} \mathrm{e}^{3} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

4.11.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x+\left(u^{\prime}(x) x+u(x)\right) x-3 u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(3 x-2)}{x}
\end{aligned}
$$

Where $f(x)=\frac{3 x-2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{3 x-2}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{3 x-2}{x} d x \\
\ln (u) & =3 x-2 \ln (x)+c_{2} \\
u & =\mathrm{e}^{3 x-2 \ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{3 x-2 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{3 x}}{x^{2}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{c_{2} \mathrm{e}^{3 x}}{x}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{2} \mathrm{e}^{3} \\
c_{2}=0
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

4.11.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y(3 x-1)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 150: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{3 x-\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{3 x-\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=x \mathrm{e}^{-3 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(3 x-1)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{-3 x} y(-3 x+1) \\
S_{y} & =x \mathrm{e}^{-3 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x \mathrm{e}^{-3 x} y=c_{1}
$$

Which simplifies to

$$
x \mathrm{e}^{-3 x} y=c_{1}
$$

Which gives

$$
y=\frac{c_{1} \mathrm{e}^{3 x}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(3 x-1)}{x}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	$S=x \mathrm{e}^{-3 x} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow \rightarrow$ 边
		\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{1} \mathrm{e}^{3}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=0
$$

Verified OK.

4.11.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{3 x-1}{x}\right) \mathrm{d} x \\
\left(-\frac{3 x-1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{3 x-1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 x-1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{3 x-1}{x} \mathrm{~d} x \\
\phi & =-3 x+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 x+\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 x+\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{3 x+c_{1}}}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\mathrm{e}^{3+c_{1}}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.

Verification of solutions N/A

4.11.7 Maple step by step solution

Let's solve

$$
\left[y+y^{\prime} x-3 y x=0, y(1)=0\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{3 x-1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{3 x-1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=3 x-\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{3 x+c_{1}}}{x}
$$

- Use initial condition $y(1)=0$
$0=\mathrm{e}^{3+c_{1}}$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([y(x)+x*diff(y(x),x) = 3*x*y(x),y(1) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6

```
DSolve[{y[x]+x*y'[x] == 3*x*y[x],y[1]==0},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 0
$$

4.12 problem 12

4.12.1 Existence and uniqueness analysis 751
4.12.2 Solving as linear ode . 752
4.12.3 Solving as first order ode lie symmetry lookup ode 754
4.12.4 Solving as exact ode . 7758
4.12.5 Maple step by step solution . 762

Internal problem ID [65]
Internal file name [DUTPUT/65_Sunday_June_05_2022_01_34_13_AM_88553762/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
3 y+y^{\prime} x=2 x^{5}
$$

With initial conditions

$$
[y(2)=1]
$$

4.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=2 x^{4}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=2 x^{4}
$$

The domain of $p(x)=\frac{3}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=2 x^{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

4.12.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x^{4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{3}\right) & =\left(x^{3}\right)\left(2 x^{4}\right) \\
\mathrm{d}\left(y x^{3}\right) & =\left(2 x^{7}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{3}=\int 2 x^{7} \mathrm{~d} x \\
& y x^{3}=\frac{x^{8}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{x^{5}}{4}+\frac{c_{1}}{x^{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{c_{1}}{8}+8
$$

$$
c_{1}=-56
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{8}-224}{4 x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{8}-224}{4 x^{3}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{8}-224}{4 x^{3}}
$$

Verified OK.

4.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-2 x^{5}+3 y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 153: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-2 x^{5}+3 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=3 y x^{2} \\
& S_{y}=x^{3}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 x^{7} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R^{7}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{8}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x^{3}=\frac{x^{8}}{4}+c_{1}
$$

Which simplifies to

$$
y x^{3}=\frac{x^{8}}{4}+c_{1}
$$

Which gives

$$
y=\frac{x^{8}+4 c_{1}}{4 x^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-2 x^{5}+3 y}{x}$		$\frac{d S}{d R}=2 R^{7}$
+ $1+\ldots+4$		
		$\rightarrow+1+1$
	$R=x$	
	$S=y x^{3}$	
		$\xrightarrow{-2 \rightarrow \rightarrow+1+1+1+1}$
-1 + ¢ - ,		
		$\xrightarrow[\rightarrow+1]{\rightarrow+1}+1+1+$
		${ }^{\text {d }}$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{c_{1}}{8}+8 \\
& c_{1}=-56
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{8}-224}{4 x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{8}-224}{4 x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{8}-224}{4 x^{3}}
$$

Verified OK.

4.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(2 x^{5}-3 y\right) \mathrm{d} x \\
\left(-2 x^{5}+3 y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 x^{5}+3 y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 x^{5}+3 y\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((3)-(1)) \\
& =\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(-2 x^{5}+3 y\right) \\
& =-2 x^{7}+3 y x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}(x) \\
& =x^{3}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-2 x^{7}+3 y x^{2}\right)+\left(x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-2 x^{7}+3 y x^{2} \mathrm{~d} x \\
\phi & =-\frac{1}{4} x^{8}+y x^{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{3}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3}=x^{3}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{4} x^{8}+y x^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{4} x^{8}+y x^{3}
$$

The solution becomes

$$
y=\frac{x^{8}+4 c_{1}}{4 x^{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{c_{1}}{8}+8 \\
& c_{1}=-56
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{8}-224}{4 x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{8}-224}{4 x^{3}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{8}-224}{4 x^{3}}
$$

Verified OK.

4.12.5 Maple step by step solution

Let's solve
$\left[3 y+y^{\prime} x=2 x^{5}, y(2)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{3 y}{x}+2 x^{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{3 y}{x}=2 x^{4}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{3 y}{x}\right)=2 \mu(x) x^{4}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{3 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{3 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x^{3}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) x^{4} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) x^{4} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(x) x^{4} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{3}$
$y=\frac{\int 2 x^{7} d x+c_{1}}{x^{3}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{x^{8}}{4}+c_{1}}{x^{3}}$
- Simplify
$y=\frac{x^{8}+4 c_{1}}{4 x^{3}}$
- Use initial condition $y(2)=1$
$1=\frac{c_{1}}{8}+8$
- \quad Solve for c_{1}
$c_{1}=-56$
- Substitute $c_{1}=-56$ into general solution and simplify
$y=\frac{x^{8}-224}{4 x^{3}}$
- Solution to the IVP
$y=\frac{x^{8}-224}{4 x^{3}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([3*y(x)+x*diff(y(x),x) = 2*x^5,y(2) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{x^{8}-224}{4 x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 17
DSolve[\{3*y[x]+x*y'[x] ==2*x^5,y[2]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{8}-224}{4 x^{3}}
$$

4.13 problem 13

4.13.1 Existence and uniqueness analysis 765
4.13.2 Solving as linear ode . 766
4.13.3 Solving as first order ode lie symmetry lookup ode 768
4.13.4 Solving as exact ode . 772
4.13.5 Maple step by step solution . 777

Internal problem ID [66]
Internal file name [DUTPUT/66_Sunday_June_05_2022_01_34_14_AM_18474770/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\mathrm{e}^{x}
$$

With initial conditions

$$
[y(0)=1]
$$

4.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\mathrm{e}^{x}
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.13.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\mathrm{e}^{2 x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int \mathrm{e}^{2 x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{2 x}}{2}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\frac{\mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+c_{1} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Verified OK.

4.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\mathrm{e}^{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 156: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\mathrm{e}^{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{2 R}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\mathrm{e}^{x}$		$\frac{d S}{d R}=\mathrm{e}^{2 R}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+21} \uparrow$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}{ }^{\text {a }}$
	$S=\mathrm{e}^{x} y$	
		¢ $4+1+1+1$
तोtोtt\|tt		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+c_{1} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Verified OK.

4.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(y-\mathrm{e}^{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-\mathrm{e}^{x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-\mathrm{e}^{x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y-\mathrm{e}^{x}\right) \\
& =\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =\mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+c_{1} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Verified OK.

4.13.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\mathrm{e}^{x}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\mathrm{e}^{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=\mathrm{e}^{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x) \mathrm{e}^{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int\left(\mathrm{e}^{x}\right)^{2} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(\mathrm{e}^{x}\right)^{2}}{2}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=\frac{\mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}$
- Use initial condition $y(0)=1$
$1=\frac{1}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{2}$
- \quad Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify
$y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}$
- Solution to the IVP

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([y(x)+diff(y(x),x) = exp(x),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 21

```
DSolve[{y[x]+y'[x] == Exp[x],y[0]==1},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{2} e^{-x}\left(e^{2 x}+1\right)
$$

4.14 problem 14

4.14.1 Existence and uniqueness analysis 779
4.14.2 Solving as linear ode . 780
4.14.3 Solving as first order ode lie symmetry lookup ode 782
4.14.4 Solving as exact ode . 786
4.14.5 Maple step by step solution . 791

Internal problem ID [67]
Internal file name [OUTPUT/67_Sunday_June_05_2022_01_34_14_AM_3504027/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-3 y+y^{\prime} x=x^{3}
$$

With initial conditions

$$
[y(1)=10]
$$

4.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{x}=x^{2}
$$

The domain of $p(x)=-\frac{3}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

4.14.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{y}{x^{3}}\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{3}} & =\int \frac{1}{x} \mathrm{~d} x \\
\frac{y}{x^{3}} & =\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
y=\ln (x) x^{3}+c_{1} x^{3}
$$

which simplifies to

$$
y=x^{3}\left(\ln (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 10=c_{1} \\
& c_{1}=10
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (x) x^{3}+10 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x) x^{3}+10 x^{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (x) x^{3}+10 x^{3}
$$

Verified OK.

4.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{3}+3 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 159: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{3}+3 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{3 y}{x^{4}} \\
& S_{y}=\frac{1}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{3}}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{3}}=\ln (x)+c_{1}
$$

Which gives

$$
y=x^{3}\left(\ln (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{3}+3 y}{x}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow 0 \rightarrow \infty$
		$\rightarrow \rightarrow \times x+1$
		为
		$\rightarrow \rightarrow$ ard
	$R=x$	$\rightarrow \rightarrow$ ava
	$S=\frac{y}{x}$	
	$S=\frac{x^{3}}{}$	$\rightarrow \rightarrow \wedge\|1\|+\mid y \forall \rightarrow R_{\rightarrow \rightarrow \infty}$
		$\rightarrow \rightarrow \Delta x y y x^{+}$
		1
		$\cdots+\cdots+4$
		$\cdots \rightarrow+\infty$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 10=c_{1} \\
& c_{1}=10
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (x) x^{3}+10 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x) x^{3}+10 x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x) x^{3}+10 x^{3}
$$

Verified OK.

4.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(x^{3}+3 y\right) \mathrm{d} x \\
\left(-x^{3}-3 y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{3}-3 y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{3}-3 y\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-3)-(1)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(-x^{3}-3 y\right) \\
& =\frac{-x^{3}-3 y}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}(x) \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{-x^{3}-3 y}{x^{4}}\right)+\left(\frac{1}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{3}-3 y}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{y}{x^{3}}-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{3}}=\frac{1}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y}{x^{3}}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y}{x^{3}}-\ln (x)
$$

The solution becomes

$$
y=x^{3}\left(\ln (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 10=c_{1} \\
& c_{1}=10
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (x) x^{3}+10 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x) x^{3}+10 x^{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (x) x^{3}+10 x^{3}
$$

Verified OK.

4.14.5 Maple step by step solution

Let's solve
$\left[-3 y+y^{\prime} x=x^{3}, y(1)=10\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{x}+x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{3 y}{x}=x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{3 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{3}}$
$y=x^{3}\left(\int \frac{1}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{3}\left(\ln (x)+c_{1}\right)$
- Use initial condition $y(1)=10$
$10=c_{1}$
- \quad Solve for c_{1}
$c_{1}=10$
- Substitute $c_{1}=10$ into general solution and simplify
$y=(\ln (x)+10) x^{3}$
- \quad Solution to the IVP
$y=(\ln (x)+10) x^{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([-3*y(x)+x*diff(y(x),x) = x^3,y(1) = 10],y(x), singsol=all)
```

$$
y(x)=(\ln (x)+10) x^{3}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 13
DSolve[\{-3*y[x]+x*y'[x]==$\left.x^{\wedge} 3, y[1]==10\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{3}(\log (x)+10)
$$

4.15 problem 15

4.15.1 Existence and uniqueness analysis 793
4.15.2 Solving as separable ode . 794
4.15.3 Solving as linear ode . 796
4.15.4 Solving as first order ode lie symmetry lookup ode 797
4.15.5 Solving as exact ode . 802
4.15.6 Maple step by step solution . 805

Internal problem ID [68]
Internal file name [OUTPUT/68_Sunday_June_05_2022_01_34_15_AM_99518507/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 y x+y^{\prime}=x
$$

With initial conditions

$$
[y(0)=-2]
$$

4.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 x \\
q(x) & =x
\end{aligned}
$$

Hence the ode is

$$
2 y x+y^{\prime}=x
$$

The domain of $p(x)=2 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.15.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x(1-2 y)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=1-2 y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{1-2 y} d y & =x d x \\
\int \frac{1}{1-2 y} d y & =\int x d x \\
-\frac{\ln (1-2 y)}{2} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{1-2 y}}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{1-2 y}}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=\frac{\mathrm{e}^{-2 c_{1}} \mathrm{e}^{2 c_{1}} c_{2}^{2}-\mathrm{e}^{-2 c_{1}}}{2 c_{2}^{2}} \\
c_{1}=-\frac{\ln \left(5 c_{2}^{2}\right)}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Verified OK.

4.15.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} y\right) & =\left(\mathrm{e}^{x^{2}}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{x^{2}} y\right) & =\left(\mathrm{e}^{x^{2}} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x^{2}} y=\int \mathrm{e}^{x^{2}} x \mathrm{~d} x \\
& \mathrm{e}^{x^{2}} y=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
y=\frac{\mathrm{e}^{x^{2}} \mathrm{e}^{-x^{2}}}{2}+c_{1} \mathrm{e}^{-x^{2}}
$$

which simplifies to

$$
y=\frac{1}{2}+c_{1} \mathrm{e}^{-x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=\frac{1}{2}+c_{1} \\
c_{1}=-\frac{5}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Verified OK.

4.15.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 y x+x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 162: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 y x+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x \mathrm{e}^{x^{2}} y \\
S_{y} & =\mathrm{e}^{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{x^{2}} x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R^{2}} R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{R^{2}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x^{2}} y=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x^{2}} y=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 y x+x$		$\frac{d S}{d R}=\mathrm{e}^{R^{2}} R$
		$11.11 x^{-3}+1+1$
	$R=x$	1.11010
	$S=\mathrm{e}^{x^{2}} y$	
-4\%tatatat		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=\frac{1}{2}+c_{1}
$$

$$
c_{1}=-\frac{5}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Verified OK.

4.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{1-2 y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{1-2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{1-2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{1-2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{1-2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{1-2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{-1+2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{-1+2 y}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (-1+2 y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln (-1+2 y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln (-1+2 y)}{2}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-x^{2}-2 c_{1}}}{2}+\frac{1}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=\frac{\mathrm{e}^{-2 c_{1}}}{2}+\frac{1}{2} \\
c_{1}=-\frac{\ln (5)}{2}-\frac{i \pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Verified OK.

4.15.6 Maple step by step solution

Let's solve

$$
\left[2 y x+y^{\prime}=x, y(0)=-2\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{-1+2 y}=-x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{-1+2 y} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (-1+2 y)}{2}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{-x^{2}+2 c_{1}}}{2}+\frac{1}{2}
$$

- Use initial condition $y(0)=-2$

$$
-2=\frac{\mathrm{e}^{2 c_{1}}}{2}+\frac{1}{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{\ln (5)}{2}+\frac{\mathrm{I} \pi}{2}
$$

- \quad Substitute $c_{1}=\frac{\ln (5)}{2}+\frac{\mathrm{I} \pi}{2}$ into general solution and simplify

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve([2*x*y(x)+diff(y(x),x) = x,y(0) = -2],y(x), singsol=all)
```

$$
y(x)=\frac{1}{2}-\frac{5 \mathrm{e}^{-x^{2}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 20
DSolve[\{2*x*y[x]+y'[x] == $x, y[0]=-2\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}-\frac{5 e^{-x^{2}}}{2}
$$

4.16 problem 16

4.16.1 Existence and uniqueness analysis 808
4.16.2 Solving as separable ode . 809
4.16.3 Solving as linear ode . 811
4.16.4 Solving as first order ode lie symmetry lookup ode 812
4.16.5 Solving as exact ode . 816
4.16.6 Maple step by step solution . 820

Internal problem ID [69]
Internal file name [OUTPUT/69_Sunday_June_05_2022_01_34_15_AM_62449306/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\cos (x)(1-y)=0
$$

With initial conditions

$$
[y(\pi)=2]
$$

4.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cos (x) \\
q(x) & =\cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\cos (x) y=\cos (x)
$$

The domain of $p(x)=\cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\pi$ is inside this domain. The domain of $q(x)=\cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\pi$ is also inside this domain. Hence solution exists and is unique.

4.16.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\cos (x)(1-y)
\end{aligned}
$$

Where $f(x)=\cos (x)$ and $g(y)=1-y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{1-y} d y & =\cos (x) d x \\
\int \frac{1}{1-y} d y & =\int \cos (x) d x \\
-\ln (y-1) & =\sin (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y-1}=\mathrm{e}^{\sin (x)+c_{1}}
$$

Which simplifies to

$$
\frac{1}{y-1}=c_{2} \mathrm{e}^{\sin (x)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{\mathrm{e}^{-c_{1}} \mathrm{e}^{c_{1}} c_{2}+\mathrm{e}^{-c_{1}}}{c_{2}} \\
c_{1}=-\ln \left(c_{2}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+\mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Verified OK.

4.16.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cos (x) d x} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\mathrm{e}^{\sin (x)}\right)(\cos (x)) \\
\mathrm{d}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\cos (x) \mathrm{e}^{\sin (x)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\sin (x)} y=\int \cos (x) \mathrm{e}^{\sin (x)} \mathrm{d} x \\
& \mathrm{e}^{\sin (x)} y=\mathrm{e}^{\sin (x)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\sin (x)}$ results in

$$
y=\mathrm{e}^{-\sin (x)} \mathrm{e}^{\sin (x)}+c_{1} \mathrm{e}^{-\sin (x)}
$$

which simplifies to

$$
y=1+c_{1} \mathrm{e}^{-\sin (x)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=1+c_{1} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+\mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Verified OK.

4.16.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\cos (x)(y-1) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 165: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\sin (x)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\cos (x)(y-1)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\cos (x) \mathrm{e}^{\sin (x)} y \\
& S_{y}=\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) \mathrm{e}^{\sin (x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R) \mathrm{e}^{\sin (R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{\sin (R)}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\mathrm{e}^{\sin (x)} y=\mathrm{e}^{\sin (x)}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\sin (x)} y=\mathrm{e}^{\sin (x)}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\sin (x)}\left(\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\cos (x)(y-1)$		$\frac{d S}{d R}=\cos (R) \mathrm{e}^{\sin (R)}$
		$\xrightarrow{\text { Nitu }}$
		$\xrightarrow{\text { a }}$
		分
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		\rightarrow 边
	$R=x$	
	$S=\mathrm{e}^{\sin (x)} y$	$\xrightarrow{\text { N }}$
		$\xrightarrow{\text { a }}$
		$\triangle \downarrow \downarrow \rightarrow \rightarrow 0$ 加
		\therefore 此

Initial conditions are used to solve for c_{1} ．Substituting $x=\pi$ and $y=2$ in the above solution gives an equation to solve for the constant of integration．

$$
2=1+c_{1}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+\mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Verified OK.

4.16.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{1-y}\right) \mathrm{d} y & =(\cos (x)) \mathrm{d} x \\
(-\cos (x)) \mathrm{d} x+\left(\frac{1}{1-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\cos (x) \\
N(x, y) & =\frac{1}{1-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\cos (x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{1-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cos (x) \mathrm{d} x \\
\phi & =-\sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{1-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{1-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y-1}\right) \mathrm{d} y \\
f(y) & =-\ln (y-1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sin (x)-\ln (y-1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sin (x)-\ln (y-1)
$$

The solution becomes

$$
y=\mathrm{e}^{-\sin (x)-c_{1}}+1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\mathrm{e}^{-c_{1}}+1 \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+\mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=1+\mathrm{e}^{-\sin (x)}
$$

Verified OK.

4.16.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\cos (x)(1-y)=0, y(\pi)=2\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables
$\frac{y^{\prime}}{1-y}=\cos (x)$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1-y} d x=\int \cos (x) d x+c_{1}$
- Evaluate integral
$-\ln (1-y)=\sin (x)+c_{1}$
- \quad Solve for y
$y=-\mathrm{e}^{-\sin (x)-c_{1}}+1$
- Use initial condition $y(\pi)=2$
$2=-\mathrm{e}^{-c_{1}}+1$
- \quad Solve for c_{1}
$c_{1}=-\mathrm{I} \pi$
- \quad Substitute $c_{1}=-\mathrm{I} \pi$ into general solution and simplify
$y=1+\mathrm{e}^{-\sin (x)}$
- \quad Solution to the IVP
$y=1+\mathrm{e}^{-\sin (x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve([diff(y(x),x) = cos(x)*(1-y(x)),y(Pi) = 2],y(x), singsol=all)
```

$$
y(x)=1+\mathrm{e}^{-\sin (x)}
$$

\checkmark Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 13
DSolve[\{y' $[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}] *(1-\mathrm{y}[\mathrm{x}]), \mathrm{y}[\mathrm{Pi}]==2\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-\sin (x)}+1
$$

4.17 problem 17

4.17.1 Existence and uniqueness analysis 822
4.17.2 Solving as linear ode . 823
4.17.3 Solving as first order ode lie symmetry lookup ode 825
4.17.4 Solving as exact ode . 829
4.17.5 Maple step by step solution . 833

Internal problem ID [70]
Internal file name [OUTPUT/70_Sunday_June_05_2022_01_34_16_AM_9186813/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y+(x+1) y^{\prime}=\cos (x)
$$

With initial conditions

$$
[y(0)=1]
$$

4.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x+1} \\
q(x) & =\frac{\cos (x)}{x+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x+1}=\frac{\cos (x)}{x+1}
$$

The domain of $p(x)=\frac{1}{x+1}$ is

$$
\{x<-1 \vee-1<x\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{\cos (x)}{x+1}$ is

$$
\{x<-1 \vee-1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.17.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{x+1} d x} \\
=x+1
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\cos (x)}{x+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((x+1) y) & =(x+1)\left(\frac{\cos (x)}{x+1}\right) \\
\mathrm{d}((x+1) y) & =\cos (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (x+1) y=\int \cos (x) \mathrm{d} x \\
& (x+1) y=\sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x+1$ results in

$$
y=\frac{\sin (x)}{x+1}+\frac{c_{1}}{x+1}
$$

which simplifies to

$$
y=\frac{\sin (x)+c_{1}}{x+1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sin (x)+1}{x+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x)+1}{x+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (x)+1}{x+1}
$$

Verified OK.

4.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y+\cos (x)}{x+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 168: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x+1} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x+1}} d y
\end{aligned}
$$

Which results in

$$
S=(x+1) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y+\cos (x)}{x+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x+1
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(x+1) y=\sin (x)+c_{1}
$$

Which simplifies to

$$
(x+1) y=\sin (x)+c_{1}
$$

Which gives

$$
y=\frac{\sin (x)+c_{1}}{x+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-y+\cos (x)}{x+1}$		$\frac{d S}{d R}=\cos (R)$
		$\cdots \ggg$
	$R=x$	\rightarrow ady \rightarrow
	$S=(x+1) y$	
		$\rightarrow{ }^{\text {® }}$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sin (x)+1}{x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x)+1}{x+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sin (x)+1}{x+1}
$$

Verified OK.

4.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x+1) \mathrm{d} y & =(-y+\cos (x)) \mathrm{d} x \\
(y-\cos (x)) \mathrm{d} x+(x+1) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-\cos (x) \\
N(x, y) & =x+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-\cos (x)) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+1) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y-\cos (x) \mathrm{d} x \\
\phi & =y x-\sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x+1$. Therefore equation (4) becomes

$$
\begin{equation*}
x+1=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x-\sin (x)+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x-\sin (x)+y
$$

The solution becomes

$$
y=\frac{\sin (x)+c_{1}}{x+1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sin (x)+1}{x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x)+1}{x+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (x)+1}{x+1}
$$

Verified OK.

4.17.5 Maple step by step solution

Let's solve
$\left[y+(x+1) y^{\prime}=\cos (x), y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x+1}+\frac{\cos (x)}{x+1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{x+1}=\frac{\cos (x)}{x+1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+1}\right)=\frac{\mu(x) \cos (x)}{x+1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x+1}$
- Solve to find the integrating factor
$\mu(x)=x+1$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \cos (x)}{x+1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \cos (x)}{x+1} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \cos (x)}{x+1} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x+1$
$y=\frac{\int \cos (x) d x+c_{1}}{x+1}$
- Evaluate the integrals on the rhs
$y=\frac{\sin (x)+c_{1}}{x+1}$
- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=1
$$

- \quad Substitute $c_{1}=1$ into general solution and simplify
$y=\frac{\sin (x)+1}{x+1}$
- Solution to the IVP
$y=\frac{\sin (x)+1}{x+1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([y(x)+(1+x)*diff(y(x),x) = cos(x),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\sin (x)+1}{x+1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 15

$$
\begin{gathered}
\text { DSolve }\left[\left\{\mathrm{y}[\mathrm{x}]+(1+\mathrm{x}) * \mathrm{y}^{\prime}[\mathrm{x}]=\operatorname{Cos}[\mathrm{x}], \mathrm{y}[0]==1\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True }\right] \\
y(x) \rightarrow \frac{\sin (x)+1}{x+1}
\end{gathered}
$$

4.18 problem 18

4.18.1 Solving as linear ode . 835
4.18.2 Solving as first order ode lie symmetry lookup ode 837
4.18.3 Solving as exact ode . 841
4.18.4 Maple step by step solution . 846

Internal problem ID [71]
Internal file name [OUTPUT/71_Sunday_June_05_2022_01_34_17_AM_1048459/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x-2 y=x^{3} \cos (x)
$$

4.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=x^{2} \cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=x^{2} \cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2} \cos (x)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(x^{2} \cos (x)\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\cos (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \cos (x) \mathrm{d} x \\
\frac{y}{x^{2}} & =\sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=\sin (x) x^{2}+c_{1} x^{2}
$$

which simplifies to

$$
y=x^{2}\left(\sin (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 212: Slope field plot

Verification of solutions

$$
y=x^{2}\left(\sin (x)+c_{1}\right)
$$

Verified OK.

4.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{3} \cos (x)+2 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 171: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{3} \cos (x)+2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{2 y}{x^{3}} \\
& S_{y}=\frac{1}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{2}}=\sin (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}}=\sin (x)+c_{1}
$$

Which gives

$$
y=x^{2}\left(\sin (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{3} \cos (x)+2 y}{x}$		$\frac{d S}{d R}=\cos (R)$
		$\rightarrow x^{-1}$
	$R=x$	$\rightarrow \rightarrow x^{-\infty}$
	$S=\frac{y}{x^{2}}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 213: Slope field plot
Verification of solutions

$$
y=x^{2}\left(\sin (x)+c_{1}\right)
$$

Verified OK.

4.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(x^{3} \cos (x)+2 y\right) \mathrm{d} x \\
\left(-x^{3} \cos (x)-2 y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{3} \cos (x)-2 y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{3} \cos (x)-2 y\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-2)-(1)) \\
& =-\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (x)} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3}}\left(-x^{3} \cos (x)-2 y\right) \\
& =\frac{-x^{3} \cos (x)-2 y}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3}}(x) \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{3} \cos (x)-2 y}{x^{3}}\right)+\left(\frac{1}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{3} \cos (x)-2 y}{x^{3}} \mathrm{~d} x \\
\phi & =-\sin (x)+\frac{y}{x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{2}}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sin (x)+\frac{y}{x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sin (x)+\frac{y}{x^{2}}
$$

The solution becomes

$$
y=x^{2}\left(\sin (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
y=x^{2}\left(\sin (x)+c_{1}\right)
$$

Figure 214: Slope field plot

Verification of solutions

$$
y=x^{2}\left(\sin (x)+c_{1}\right)
$$

Verified OK.

4.18.4 Maple step by step solution

Let's solve
$y^{\prime} x-2 y=x^{3} \cos (x)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{x}+x^{2} \cos (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{x}=x^{2} \cos (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=\mu(x) x^{2} \cos (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{2 \mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} \cos (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{2} \cos (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} \cos (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{2}}$
$y=x^{2}\left(\int \cos (x) d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{2}\left(\sin (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(x*diff(y(x),x) = x^3*\operatorname{cos}(x)+2*y(x),y(x), singsol=all)
```

$$
y(x)=\left(\sin (x)+c_{1}\right) x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 14
DSolve[x*y'[x]== $x^{\wedge} 3 * \operatorname{Cos}[x]+2 * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(\sin (x)+c_{1}\right)
$$

4.19 problem 19

4.19.1 Solving as linear ode . 848
4.19.2 Solving as first order ode lie symmetry lookup ode 850
4.19.3 Solving as exact ode . 854
4.19.4 Maple step by step solution . 858

Internal problem ID [72]
Internal file name [OUTPUT/72_Sunday_June_05_2022_01_34_17_AM_13474884/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y \cot (x)+y^{\prime}=\cos (x)
$$

4.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cot (x) \\
q(x) & =\cos (x)
\end{aligned}
$$

Hence the ode is

$$
y \cot (x)+y^{\prime}=\cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cot (x) d x} \\
& =\sin (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin (x) y) & =(\sin (x))(\cos (x)) \\
\mathrm{d}(\sin (x) y) & =\left(\frac{\sin (2 x)}{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sin (x) y=\int \frac{\sin (2 x)}{2} \mathrm{~d} x \\
& \sin (x) y=-\frac{\cos (2 x)}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sin (x)$ results in

$$
y=-\frac{\csc (x) \cos (2 x)}{4}+c_{1} \csc (x)
$$

Summary
The solution(s) found are the following

Figure 215: Slope field plot

Verification of solutions

$$
y=-\frac{\csc (x) \cos (2 x)}{4}+c_{1} \csc (x)
$$

Verified OK.

4.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-y \cot (x)+\cos (x) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 174: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\sin (x) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y \cot (x)+\cos (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cos (x) y \\
S_{y} & =\sin (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sin (2 x)}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\sin (2 R)}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\cos (2 R)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sin (x) y=-\frac{\cos (2 x)}{4}+c_{1}
$$

Which simplifies to

$$
\sin (x) y=-\frac{\cos (2 x)}{4}+c_{1}
$$

Which gives

$$
y=-\frac{\cos (2 x)-4 c_{1}}{4 \sin (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y \cot (x)+\cos (x)$		$\frac{d S}{d R}=\frac{\sin (2 R)}{2}$
S 19		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (2 x)-4 c_{1}}{4 \sin (x)} \tag{1}
\end{equation*}
$$

Figure 216: Slope field plot

Verification of solutions

$$
y=-\frac{\cos (2 x)-4 c_{1}}{4 \sin (x)}
$$

Verified OK.

4.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y \cot (x)+\cos (x)) \mathrm{d} x \\
(y \cot (x)-\cos (x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \cot (x)-\cos (x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y \cot (x)-\cos (x)) \\
& =\cot (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((\cot (x))-(0)) \\
& =\cot (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \cot (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\sin (x))} \\
& =\sin (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sin (x)(y \cot (x)-\cos (x)) \\
& =\cos (x)(-\sin (x)+y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sin (x)(1) \\
& =\sin (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(\cos (x)(-\sin (x)+y))+(\sin (x)) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x)(-\sin (x)+y) \mathrm{d} x \\
\phi & =-\frac{\sin (x)(-2 y+\sin (x))}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sin (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sin (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sin (x)=\sin (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\sin (x)(-2 y+\sin (x))}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\sin (x)(-2 y+\sin (x))}{2}
$$

The solution becomes

$$
y=\frac{\sin (x)^{2}+2 c_{1}}{2 \sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x)^{2}+2 c_{1}}{2 \sin (x)} \tag{1}
\end{equation*}
$$

Figure 217: Slope field plot

Verification of solutions

$$
y=\frac{\sin (x)^{2}+2 c_{1}}{2 \sin (x)}
$$

Verified OK.

4.19.4 Maple step by step solution

Let's solve

$$
y \cot (x)+y^{\prime}=\cos (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y \cot (x)+\cos (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y \cot (x)+y^{\prime}=\cos (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y \cot (x)+y^{\prime}\right)=\mu(x) \cos (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$ $\mu(x)\left(y \cot (x)+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cot (x)$
- Solve to find the integrating factor
$\mu(x)=\sin (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \cos (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \cos (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \cos (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sin (x)$
$y=\frac{\int \cos (x) \sin (x) d x+c_{1}}{\sin (x)}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\sin (x)^{2}}{\sin (x)}+c_{1}}{\sin }$
- Simplify
$y=\frac{\sin (x)}{2}+c_{1} \csc (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(\operatorname{cot}(x)*y(x)+diff(y(x),x)= cos(x),y(x), singsol=all)
```

$$
y(x)=-\frac{\left(2 \cos (x)^{2}-4 c_{1}-1\right) \csc (x)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 19
DSolve[Cot $[x] * y[x]+y$ ' $[x]==\operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-\frac{1}{2} \cos (x) \cot (x)+c_{1} \csc (x)
$$

4.20 problem 20

$$
\text { 4.20.1 Existence and uniqueness analysis } 861
$$

4.20.2 Solving as separable ode 862
4.20.3 Solving as linear ode 863
4.20.4 Solving as first order ode lie symmetry lookup ode 865
4.20.5 Solving as exact ode 869
4.20.6 Maple step by step solution 873

Internal problem ID [73]
Internal file name [OUTPUT/73_Sunday_June_05_2022_01_34_18_AM_15979896/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y-y x=x+1
$$

With initial conditions

$$
[y(0)=0]
$$

4.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-x-1 \\
& q(x)=x+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+(-x-1) y=x+1
$$

The domain of $p(x)=-x-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=x+1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.20.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =(y+1)(x+1)
\end{aligned}
$$

Where $f(x)=x+1$ and $g(y)=y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y+1} d y & =x+1 d x \\
\int \frac{1}{y+1} d y & =\int x+1 d x \\
\ln (y+1) & =\frac{1}{2} x^{2}+x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2} \mathrm{e}^{\frac{1}{2} x^{2}+x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{2} \mathrm{e}^{c_{1}}-1
$$

$$
c_{1}=-\ln \left(c_{2}\right)
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1
$$

Verified OK.

4.20.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-x-1) d x} \\
& =\mathrm{e}^{-\frac{1}{2} x^{2}-x}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{-\frac{x(2+x)}{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x+1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x(2+x)}{2}} y\right) & =\left(\mathrm{e}^{-\frac{x(2+x)}{2}}\right)(x+1) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{x(2+x)}{2}} y\right) & =\left((x+1) \mathrm{e}^{-\frac{x(2+x)}{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{x(2+x)}{2}} y=\int(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{x(2+x)}{2}} y=-\mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x(2+x)}{2}}$ results in

$$
y=-\mathrm{e}^{\frac{x(2+x)}{2}} \mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1} \mathrm{e}^{\frac{x(2+x)}{2}}
$$

which simplifies to

$$
y=-1+c_{1} \mathrm{e}^{\frac{x(2+x)}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}-1 \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1
$$

Verified OK.

4.20.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y x+x+y+1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 177: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{1}{2} x^{2}+x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{2} x^{2}+x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{1}{2} x^{2}-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y x+x+y+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}} y \\
& S_{y}=\mathrm{e}^{-\frac{x(2+x)}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(R+1) \mathrm{e}^{-\frac{R(2+R)}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{R(2+R)}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\mathrm{e}^{-\frac{x(2+x)}{2}} y=-\mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x(2+x)}{2}} y=-\mathrm{e}^{-\frac{x(2+x)}{2}}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{x(2+x)}{2}}-c_{1}\right) \mathrm{e}^{\frac{x(2+x)}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y x+x+y+1$		$\frac{d S}{d R}=(R+1) \mathrm{e}^{-\frac{R(2+R)}{2}}$
		$\rightarrow \rightarrow \rightarrow$ いいい
		$\xrightarrow[\rightarrow \rightarrow-\infty]{ }$
1䞨		$\xrightarrow[\rightarrow \rightarrow \rightarrow-]{ }$
－	$R=x$	$\underset{\rightarrow \rightarrow \rightarrow-\infty}{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow-4 \rightarrow 4}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$－	$S=\mathrm{e}^{-\frac{x(2+x)}{2}} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \text { 为 }]{\substack{\text { a }}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow+10]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow x_{0}]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-]{ }$
		$\rightarrow \rightarrow+x_{0} \rightarrow x_{0}$

Initial conditions are used to solve for c_{1} ．Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration．

$$
0=c_{1}-1
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1
$$

Verified OK.

4.20.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+1}\right) \mathrm{d} y & =(x+1) \mathrm{d} x \\
(-x-1) \mathrm{d} x+\left(\frac{1}{y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x-1 \\
& N(x, y)=\frac{1}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x-1 \mathrm{~d} x \\
\phi & =-\frac{1}{2} x^{2}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+1}\right) \mathrm{d} y \\
f(y) & =\ln (y+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-x+\ln (y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-x+\ln (y+1)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{c_{1}}-1 \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{1}{2} x^{2}+x}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{1}{2} x^{2}+x}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{1}{2} x^{2}+x}-1
$$

Verified OK.

4.20.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y-y x=x+1, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables
$\frac{y^{\prime}}{1+y}=x+1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1+y} d x=\int(x+1) d x+c_{1}$
- Evaluate integral

$$
\ln (1+y)=\frac{1}{2} x^{2}+x+c_{1}
$$

- \quad Solve for y
$y=\mathrm{e}^{\frac{1}{2} x^{2}+x+c_{1}}-1$
- Use initial condition $y(0)=0$

$$
0=\mathrm{e}^{c_{1}}-1
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\mathrm{e}^{\frac{x(2+x)}{2}}-1$
- \quad Solution to the IVP

$$
y=\mathrm{e}^{\frac{x(2+x)}{2}}-1
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 13
dsolve([diff $(y(x), x)=1+x+y(x)+x * y(x), y(0)=0], y(x)$, singsol=all)

$$
y(x)=-1+\mathrm{e}^{\frac{x(2+x)}{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 17
DSolve[\{y' $[x]==1+x+y[x]+x * y[x], y[0]==0\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{\frac{1}{2} x(x+2)}-1
$$

4.21 problem 21

4.21.1 Existence and uniqueness analysis 875
4.21.2 Solving as linear ode . 876
4.21.3 Solving as first order ode lie symmetry lookup ode 878
4.21.4 Solving as exact ode . 882
4.21.5 Maple step by step solution . 887

Internal problem ID [74]
Internal file name [DUTPUT/74_Sunday_June_05_2022_01_34_18_AM_23906152/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-3 y+y^{\prime} x=x^{4} \cos (x)
$$

With initial conditions

$$
[y(2 \pi)=0]
$$

4.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x^{3} \cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{x}=x^{3} \cos (x)
$$

The domain of $p(x)=-\frac{3}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2 \pi$ is inside this domain. The domain of $q(x)=x^{3} \cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2 \pi$ is also inside this domain. Hence solution exists and is unique.

4.21.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{3} \cos (x)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(x^{3} \cos (x)\right) \\
\mathrm{d}\left(\frac{y}{x^{3}}\right) & =\cos (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{3}} & =\int \cos (x) \mathrm{d} x \\
\frac{y}{x^{3}} & =\sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
y=x^{3} \sin (x)+c_{1} x^{3}
$$

which simplifies to

$$
y=x^{3}\left(\sin (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2 \pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=8 \pi^{3} c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{3} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3} \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=x^{3} \sin (x)
$$

Verified OK.

4.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{4} \cos (x)+3 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 180: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{4} \cos (x)+3 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{3 y}{x^{4}} \\
& S_{y}=\frac{1}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{3}}=\sin (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{3}}=\sin (x)+c_{1}
$$

Which gives

$$
y=x^{3}\left(\sin (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{4} \cos (x)+3 y}{x}$		$\frac{d S}{d R}=\cos (R)$
		$\rightarrow \rightarrow+$
		$\rightarrow \square$
		$\rightarrow \rightarrow \rightarrow$
	$R=x$	
	$S=\frac{y}{x^{3}}$	
¢ 4 \& ${ }^{\text {2 }}$,		
		$\rightarrow \rightarrow x^{+\infty}$
		$\rightarrow+\infty x^{\text {a }}$

Initial conditions are used to solve for c_{1}. Substituting $x=2 \pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=8 \pi^{3} c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{3} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{3} \sin (x)
$$

Verified OK.

4.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(x^{4} \cos (x)+3 y\right) \mathrm{d} x \\
\left(-x^{4} \cos (x)-3 y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{4} \cos (x)-3 y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{4} \cos (x)-3 y\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-3)-(1)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(-x^{4} \cos (x)-3 y\right) \\
& =\frac{-x^{4} \cos (x)-3 y}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}(x) \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{4} \cos (x)-3 y}{x^{4}}\right)+\left(\frac{1}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{4} \cos (x)-3 y}{x^{4}} \mathrm{~d} x \\
\phi & =-\sin (x)+\frac{y}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{3}}=\frac{1}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sin (x)+\frac{y}{x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sin (x)+\frac{y}{x^{3}}
$$

The solution becomes

$$
y=x^{3}\left(\sin (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2 \pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=8 \pi^{3} c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{3} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3} \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=x^{3} \sin (x)
$$

Verified OK.

4.21.5 Maple step by step solution

Let's solve
$\left[-3 y+y^{\prime} x=x^{4} \cos (x), y(2 \pi)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{x}+x^{3} \cos (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{3 y}{x}=x^{3} \cos (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu(x) x^{3} \cos (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{3 \mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{3} \cos (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{3} \cos (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{3} \cos (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{3}}$
$y=x^{3}\left(\int \cos (x) d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{3}\left(\sin (x)+c_{1}\right)$
- Use initial condition $y(2 \pi)=0$
$0=8 \pi^{3} c_{1}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=x^{3} \sin (x)
$$

- \quad Solution to the IVP
$y=x^{3} \sin (x)$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

```
dsolve([x*diff(y(x),x) = x^4*\operatorname{cos}(x)+3*y(x),y(2*Pi) = 0],y(x), singsol=all)
```

$$
y(x)=\sin (x) x^{3}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 11
DSolve $\left[\left\{x * y '[x]==x^{\wedge} 4 * \operatorname{Cos}[x]+3 * y[x], y[2 * P i]==0\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow x^{3} \sin (x)
$$

4.22 problem 22

4.22.1 Existence and uniqueness analysis 889
4.22.2 Solving as linear ode . 890
4.22.3 Solving as first order ode lie symmetry lookup ode 892
4.22.4 Solving as exact ode . 896
4.22.5 Maple step by step solution . 900

Internal problem ID [75]
Internal file name [DUTPUT/75_Sunday_June_05_2022_01_34_19_AM_60896489/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-2 y x+y^{\prime}=3 x^{2} \mathrm{e}^{x^{2}}
$$

With initial conditions

$$
[y(0)=5]
$$

4.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 x \\
& q(x)=3 x^{2} \mathrm{e}^{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
-2 y x+y^{\prime}=3 x^{2} \mathrm{e}^{x^{2}}
$$

The domain of $p(x)=-2 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=3 x^{2} \mathrm{e}^{x^{2}}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.22.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(3 x^{2} \mathrm{e}^{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} y\right) & =\left(\mathrm{e}^{-x^{2}}\right)\left(3 x^{2} \mathrm{e}^{x^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{-x^{2}} y\right) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{2}} y=\int 3 x^{2} \mathrm{~d} x \\
& \mathrm{e}^{-x^{2}} y=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}}$ results in

$$
y=\mathrm{e}^{x^{2}} x^{3}+c_{1} \mathrm{e}^{x^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{x^{2}}\left(x^{3}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 5=c_{1} \\
& c_{1}=5
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{x^{2}}\left(x^{3}+5\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}}\left(x^{3}+5\right) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{2}}\left(x^{3}+5\right)
$$

Verified OK.

4.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 x^{2} \mathrm{e}^{x^{2}}+2 y x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 183: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x^{2} \mathrm{e}^{x^{2}}+2 y x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 x \mathrm{e}^{-x^{2}} y \\
S_{y} & =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x^{2}} y=x^{3}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x^{2}} y=x^{3}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{x^{2}}\left(x^{3}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=3 x^{2} \mathrm{e}^{x^{2}}+2 y x$		$\frac{d S}{d R}=3 R^{2}$
$1+1+4+4 \rightarrow+4+4+4$	$R=x$	
	$S=\mathrm{e}^{-x^{2}} y$	
	$S=\mathrm{e}^{-2} y$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 5=c_{1} \\
& c_{1}=5
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{x^{2}} x^{3}+5 \mathrm{e}^{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}} x^{3}+5 \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x^{2}} x^{3}+5 \mathrm{e}^{x^{2}}
$$

Verified OK.

4.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(3 x^{2} \mathrm{e}^{x^{2}}+2 y x\right) \mathrm{d} x \\
\left(-3 x^{2} \mathrm{e}^{x^{2}}-2 y x\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-3 x^{2} \mathrm{e}^{x^{2}}-2 y x \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 x^{2} \mathrm{e}^{x^{2}}-2 y x\right) \\
& =-2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-2 x)-(0)) \\
& =-2 x
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-2 x \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x^{2}} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x^{2}}\left(-3 x^{2} \mathrm{e}^{x^{2}}-2 y x\right) \\
& =-2 x \mathrm{e}^{-x^{2}} y-3 x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x^{2}}(1) \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-2 x \mathrm{e}^{-x^{2}} y-3 x^{2}\right)+\left(\mathrm{e}^{-x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-2 x \mathrm{e}^{-x^{2}} y-3 x^{2} \mathrm{~d} x \\
\phi & =-x^{3}+\mathrm{e}^{-x^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x^{2}}=\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{3}+\mathrm{e}^{-x^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{3}+\mathrm{e}^{-x^{2}} y
$$

The solution becomes

$$
y=\mathrm{e}^{x^{2}}\left(x^{3}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 5=c_{1} \\
& c_{1}=5
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{x^{2}} x^{3}+5 \mathrm{e}^{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}} x^{3}+5 \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\mathrm{e}^{x^{2}} x^{3}+5 \mathrm{e}^{x^{2}}
$$

Verified OK.

4.22.5 Maple step by step solution

Let's solve
$\left[-2 y x+y^{\prime}=3 x^{2} \mathrm{e}^{x^{2}}, y(0)=5\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=3 x^{2} \mathrm{e}^{x^{2}}+2 y x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $-2 y x+y^{\prime}=3 x^{2} \mathrm{e}^{x^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(-2 y x+y^{\prime}\right)=3 \mu(x) x^{2} \mathrm{e}^{x^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(-2 y x+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x) x$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) x^{2} \mathrm{e}^{x^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 3 \mu(x) x^{2} \mathrm{e}^{x^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(x) x^{2} x^{x^{2}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x^{2}}$
$y=\frac{\int 3 x^{2} \mathrm{e}^{x^{2}} \mathrm{e}^{-x^{2}} d x+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{3}+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Simplify
$y=\mathrm{e}^{x^{2}}\left(x^{3}+c_{1}\right)$
- Use initial condition $y(0)=5$
$5=c_{1}$
- \quad Solve for c_{1}
$c_{1}=5$
- \quad Substitute $c_{1}=5$ into general solution and simplify
$y=\mathrm{e}^{x^{2}}\left(x^{3}+5\right)$
- \quad Solution to the IVP
$y=\mathrm{e}^{x^{2}}\left(x^{3}+5\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([diff(y(x),x) = 3*exp(x^2)*x^2+2*x*y(x),y(0) = 5],y(x), singsol=all)
```

$$
y(x)=\left(x^{3}+5\right) \mathrm{e}^{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 16

```
DSolve[{y'[x] == 3*Exp[x^2]*x^2+2*x*y[x],y[0]==5},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{x^{2}}\left(x^{3}+5\right)
$$

4.23 problem 23

$$
\text { 4.23.1 Solving as linear ode . } 903
$$

4.23.2 Solving as first order ode lie symmetry lookup ode 905
4.23.3 Solving as exact ode . 909
4.23.4 Maple step by step solution . 914

Internal problem ID [76]
Internal file name [OUTPUT/76_Sunday_June_05_2022_01_34_20_AM_39126778/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
(-3+2 x) y+y^{\prime} x=4 x^{4}
$$

4.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-2 x+3}{x} \\
& q(x)=4 x^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-2 x+3) y}{x}=4 x^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x+3}{x} d x} \\
& =\mathrm{e}^{2 x-3 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\mathrm{e}^{2 x}}{x^{3}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(4 x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{2 x} y}{x^{3}}\right) & =\left(\frac{\mathrm{e}^{2 x}}{x^{3}}\right)\left(4 x^{3}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{2 x} y}{x^{3}}\right) & =\left(4 \mathrm{e}^{2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{2 x} y}{x^{3}}=\int 4 \mathrm{e}^{2 x} \mathrm{~d} x \\
& \frac{\mathrm{e}^{2 x} y}{x^{3}}=2 \mathrm{e}^{2 x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{\mathrm{e}^{2 x}}{x^{3}}$ results in

$$
y=2 x^{3} \mathrm{e}^{-2 x} \mathrm{e}^{2 x}+c_{1} x^{3} \mathrm{e}^{-2 x}
$$

which simplifies to

$$
y=x^{3}\left(2+c_{1} \mathrm{e}^{-2 x}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(2+c_{1} \mathrm{e}^{-2 x}\right) \tag{1}
\end{equation*}
$$

Figure 228: Slope field plot

Verification of solutions

$$
y=x^{3}\left(2+c_{1} \mathrm{e}^{-2 x}\right)
$$

Verified OK.

4.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-4 x^{4}+2 y x-3 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 186: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-2 x+3 \ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 x+3 \ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{2 x} y}{x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-4 x^{4}+2 y x-3 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{2 x} y(-3+2 x)}{x^{4}} \\
S_{y} & =\frac{\mathrm{e}^{2 x}}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \mathrm{e}^{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \mathrm{e}^{2 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{2 x} y}{x^{3}}=2 \mathrm{e}^{2 x}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{2 x} y}{x^{3}}=2 \mathrm{e}^{2 x}+c_{1}
$$

Which gives

$$
y=x^{3}\left(2 \mathrm{e}^{2 x}+c_{1}\right) \mathrm{e}^{-2 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-4 x^{4}+2 y x-3 y}{x}$		$\frac{d S}{d R}=4 \mathrm{e}^{2 R}$
dex x^{2}		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-S T R]}{ }^{\text {P }}$
		$\rightarrow \rightarrow \rightarrow$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$S=\frac{\mathrm{e}^{2 x} y}{x^{3}}$	
	$S=\frac{x^{3}}{}$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+$
102		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \text { (}}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(2 \mathrm{e}^{2 x}+c_{1}\right) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 229: Slope field plot

Verification of solutions

$$
y=x^{3}\left(2 \mathrm{e}^{2 x}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Verified OK.

4.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-(-3+2 x) y+4 x^{4}\right) \mathrm{d} x \\
\left((-3+2 x) y-4 x^{4}\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =(-3+2 x) y-4 x^{4} \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left((-3+2 x) y-4 x^{4}\right) \\
& =-3+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-3+2 x)-(1)) \\
& =\frac{-4+2 x}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{-4+2 x}{x}} \mathrm{~d} x
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 x-4 \ln (x)} \\
& =\frac{\mathrm{e}^{2 x}}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{2 x}}{x^{4}}\left((-3+2 x) y-4 x^{4}\right) \\
& =\frac{\mathrm{e}^{2 x}\left(-4 x^{4}+2 y x-3 y\right)}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{2 x}}{x^{4}}(x) \\
& =\frac{\mathrm{e}^{2 x}}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{\mathrm{e}^{2 x}\left(-4 x^{4}+2 y x-3 y\right)}{x^{4}}\right)+\left(\frac{\mathrm{e}^{2 x}}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\mathrm{e}^{2 x}\left(-4 x^{4}+2 y x-3 y\right)}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{\left(-2 x^{3}+y\right) \mathrm{e}^{2 x}}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{2 x}}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{2 x}}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{2 x}}{x^{3}}=\frac{\mathrm{e}^{2 x}}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(-2 x^{3}+y\right) \mathrm{e}^{2 x}}{x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(-2 x^{3}+y\right) \mathrm{e}^{2 x}}{x^{3}}
$$

The solution becomes

$$
y=x^{3}\left(2 \mathrm{e}^{2 x}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(2 \mathrm{e}^{2 x}+c_{1}\right) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 230: Slope field plot

Verification of solutions

$$
y=x^{3}\left(2 \mathrm{e}^{2 x}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Verified OK.

4.23.4 Maple step by step solution

Let's solve
$(-3+2 x) y+y^{\prime} x=4 x^{4}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{(-3+2 x) y}{x}+4 x^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{(-3+2 x) y}{x}=4 x^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{(-3+2 x) y}{x}\right)=4 \mu(x) x^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{(-3+2 x) y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)(-3+2 x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{\mathrm{e}^{2 x}}{x^{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 4 \mu(x) x^{3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 4 \mu(x) x^{3} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(x) x^{3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\mathrm{e}^{2 x}}{x^{3}}$
$y=\frac{x^{3}\left(\int 4 \mathrm{e}^{2 x} d x+c_{1}\right)}{\mathrm{e}^{2 x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{3}\left(2 \mathrm{e}^{2 x}+c_{1}\right)}{\mathrm{e}^{2 x}}$
- Simplify

$$
y=x^{3}\left(2+c_{1} \mathrm{e}^{-2 x}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve((-3+2*x)*y(x)+x*diff(y(x),x) = 4*x^4,y(x), singsol=all)
```

$$
y(x)=x^{3}\left(2+\mathrm{e}^{-2 x} c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 19
DSolve $[(-3+2 * x) * y[x]+x * y$ ' $[x]==4 * x \wedge 4, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{3}\left(2+c_{1} e^{-2 x}\right)
$$

4.24 problem 24

4.24.1 Existence and uniqueness analysis 916
4.24.2 Solving as separable ode . 917
4.24.3 Solving as linear ode . 919
4.24.4 Solving as first order ode lie symmetry lookup ode 921
4.24.5 Solving as exact ode . 925
4.24.6 Maple step by step solution . 929

Internal problem ID [77]
Internal file name [DUTPUT/77_Sunday_June_05_2022_01_34_20_AM_50448999/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
3 y x+\left(x^{2}+4\right) y^{\prime}=x
$$

With initial conditions

$$
[y(0)=1]
$$

4.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3 x}{x^{2}+4} \\
& q(x)=\frac{x}{x^{2}+4}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 x y}{x^{2}+4}=\frac{x}{x^{2}+4}
$$

The domain of $p(x)=\frac{3 x}{x^{2}+4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{x}{x^{2}+4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.24.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x(-3 y+1)}{x^{2}+4}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}+4}$ and $g(y)=-3 y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-3 y+1} d y & =\frac{x}{x^{2}+4} d x \\
\int \frac{1}{-3 y+1} d y & =\int \frac{x}{x^{2}+4} d x \\
-\frac{\ln (-3 y+1)}{3} & =\frac{\ln \left(x^{2}+4\right)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(-3 y+1)^{\frac{1}{3}}}=\mathrm{e}^{\frac{\ln \left(x^{2}+4\right)}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(-3 y+1)^{\frac{1}{3}}}=c_{2} \sqrt{x^{2}+4}
$$

Which can be simplified to become

$$
y=\frac{\left(c_{2}^{3} \mathrm{e}^{3 c_{1}}\left(x^{2}+4\right)^{\frac{3}{2}}-1\right) \mathrm{e}^{-3 c_{1}}}{3 c_{2}^{3}\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{8 \mathrm{e}^{-3 c_{1}} \mathrm{e}^{3 c_{1}} c_{2}^{3}-\mathrm{e}^{-3 c_{1}}}{24 c_{2}^{3}} \\
c_{1}=-\frac{\ln \left(-16 c_{2}^{3}\right)}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Verified OK.

4.24.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3 x}{x^{2}+4} d x} \\
& =\left(x^{2}+4\right)^{\frac{3}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x}{x^{2}+4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+4\right)^{\frac{3}{2}} y\right) & =\left(\left(x^{2}+4\right)^{\frac{3}{2}}\right)\left(\frac{x}{x^{2}+4}\right) \\
\mathrm{d}\left(\left(x^{2}+4\right)^{\frac{3}{2}} y\right) & =\left(\sqrt{x^{2}+4} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{2}+4\right)^{\frac{3}{2}} y=\int \sqrt{x^{2}+4} x \mathrm{~d} x \\
& \left(x^{2}+4\right)^{\frac{3}{2}} y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\left(x^{2}+4\right)^{\frac{3}{2}}$ results in

$$
y=\frac{1}{3}+\frac{c_{1}}{\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{3}+\frac{c_{1}}{8} \\
c_{1}=\frac{16}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Verified OK.

4.24.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x(3 y-1)}{x^{2}+4} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 189: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\left(x^{2}+4\right)^{\frac{3}{2}}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\left(x^{2}+4\right)^{\frac{3}{2}}}} d y
\end{aligned}
$$

Which results in

$$
S=\left(x^{2}+4\right)^{\frac{3}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x(3 y-1)}{x^{2}+4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 \sqrt{x^{2}+4} y x \\
S_{y} & =\left(x^{2}+4\right)^{\frac{3}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sqrt{x^{2}+4} x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sqrt{R^{2}+4} R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\left(R^{2}+4\right)^{\frac{3}{2}}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\left(x^{2}+4\right)^{\frac{3}{2}} y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}}{3}+c_{1}
$$

Which simplifies to

$$
\left(x^{2}+4\right)^{\frac{3}{2}}\left(y-\frac{1}{3}\right)-c_{1}=0
$$

Which gives

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+3 c_{1}}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x(3 y-1)}{x^{2}+4}$		$\frac{d S}{d R}=\sqrt{R^{2}+4} R$
, $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$	$R=x$	
侕		
	$S=\left(x^{2}+4\right)^{\frac{3}{2}} y$	
-1.		$\left.\rightarrow{ }_{-\infty}\right)^{4} 4$
		- 19

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{3}+\frac{c_{1}}{8} \\
c_{1}=\frac{16}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Verified OK.

4.24.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-3 y+1}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+4}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+4}\right) \mathrm{d} x+\left(\frac{1}{-3 y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+4} \\
N(x, y) & =\frac{1}{-3 y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+4}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-3 y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+4} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+4\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-3 y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-3 y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{3 y-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{3 y-1}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (3 y-1)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+4\right)}{2}-\frac{\ln (3 y-1)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+4\right)}{2}-\frac{\ln (3 y-1)}{3}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-\frac{3 \ln \left(x^{2}+4\right)}{2}-3 c_{1}}}{3}+\frac{1}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{\mathrm{e}^{-3 c_{1}}}{24}+\frac{1}{3} \\
& c_{1}=-\frac{4 \ln (2)}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}+16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Verified OK.

4.24.6 Maple step by step solution

Let's solve
$\left[3 y x+\left(x^{2}+4\right) y^{\prime}=x, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{3 y-1}=-\frac{x}{x^{2}+4}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{3 y-1} d x=\int-\frac{x}{x^{2}+4} d x+c_{1}$
- Evaluate integral

$$
\frac{\ln (3 y-1)}{3}=-\frac{\ln \left(x^{2}+4\right)}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{-\frac{3 \ln \left(x^{2}+4\right)}{2}+3 c_{1}}}{3}+\frac{1}{3}
$$

- Use initial condition $y(0)=1$

$$
1=\frac{\mathrm{e}^{-3 \ln (2)+3 c_{1}}}{3}+\frac{1}{3}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{4 \ln (2)}{3}$
- Substitute $c_{1}=\frac{4 \ln (2)}{3}$ into general solution and simplify

$$
y=\frac{1}{3}+\frac{16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

- \quad Solution to the IVP

$$
y=\frac{1}{3}+\frac{16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

```
dsolve([3*x*y(x)+(x^2+4)*diff (y(x),x) = x,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{1}{3}+\frac{16}{3\left(x^{2}+4\right)^{\frac{3}{2}}}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 22
DSolve $\left[\left\{3 * x * y[x]+\left(x^{\wedge} 2+4\right) * y^{\prime}[x]==x, y[0]==1\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{16}{3\left(x^{2}+4\right)^{3 / 2}}+\frac{1}{3}
$$

4.25 problem 25

4.25.1 Existence and uniqueness analysis 931
4.25.2 Solving as linear ode . 932
4.25.3 Solving as first order ode lie symmetry lookup ode 934
4.25.4 Solving as exact ode . 939
4.25.5 Maple step by step solution . 944

Internal problem ID [78]
Internal file name [DUTPUT/78_Sunday_June_05_2022_01_34_21_AM_53165874/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.5. Linear first order equations. Page 56
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
3 y x^{3}+\left(x^{2}+1\right) y^{\prime}=6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

With initial conditions

$$
[y(0)=1]
$$

4.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3 x^{3}}{x^{2}+1} \\
& q(x)=\frac{6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 x^{3} y}{x^{2}+1}=\frac{6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1}
$$

The domain of $p(x)=\frac{3 x^{3}}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.25.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3 x^{3}}{x^{2}+1} d x} \\
& =\mathrm{e}^{\frac{3 x^{2}}{2}-\frac{3 \ln \left(x^{2}+1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{\frac{3 x^{2}}{2}} y}{\left(x^{2}+1\right)^{\frac{3}{2}}}\right) & =\left(\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}\right)\left(\frac{6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{\frac{3 x^{2}}{2}} y}{\left(x^{2}+1\right)^{\frac{3}{2}}}\right) & =\left(\frac{6 x}{\left(x^{2}+1\right)^{\frac{5}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{\frac{3 x^{2}}{2}} y}{\left(x^{2}+1\right)^{\frac{3}{2}}}=\int \frac{6 x}{\left(x^{2}+1\right)^{\frac{5}{2}}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{\frac{3 x^{2}}{2}} y}{\left(x^{2}+1\right)^{\frac{3}{2}}}=-\frac{2}{\left(x^{2}+1\right)^{\frac{3}{2}}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{e^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}$ results in

$$
y=-2 \mathrm{e}^{-\frac{3 x^{2}}{2}}+c_{1}\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

which simplifies to

$$
y=\left(\left(x^{2}+1\right)^{\frac{3}{2}} c_{1}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-2 \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}-2 \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}-2 \mathrm{e}^{-\frac{3 x^{2}}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}-2 \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Verified OK.

4.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x\left(y \mathrm{e}^{\frac{3 x^{2}}{2}} x^{2}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 192: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{3 x^{2}}{2}+\frac{3 \ln \left(x^{2}+1\right)}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{3 x^{2}}{2}+\frac{3 \ln \left(x^{2}+1\right)}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{3 x^{2}}{2}-\frac{3 \ln \left(x^{2}+1\right)}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x\left(y \mathrm{e}^{\frac{3 x^{2}}{2}} x^{2}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{3 y \mathrm{e}^{\frac{3 x^{2}}{2}} x^{3}}{\left(x^{2}+1\right)^{\frac{5}{2}}} \\
& S_{y}=\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{6 x}{\left(x^{2}+1\right)^{\frac{5}{2}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{6 R}{\left(R^{2}+1\right)^{\frac{5}{2}}}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{2}{\left(R^{2}+1\right)^{\frac{3}{2}}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{\mathrm{e}^{\frac{3 x^{2}}{2}} y}{\left(x^{2}+1\right)^{\frac{3}{2}}}=-\frac{2}{\left(x^{2}+1\right)^{\frac{3}{2}}}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{\frac{3 x^{2}}{2}} y}{\left(x^{2}+1\right)^{\frac{3}{2}}}=-\frac{2}{\left(x^{2}+1\right)^{\frac{3}{2}}}+c_{1}
$$

Which gives

$$
y=\left(\left(x^{2}+1\right)^{\frac{3}{2}} c_{1}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x\left(y \mathrm{e}^{\frac{3 x^{2}}{2}} x^{2}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}}{x^{2}+1}$		$\frac{d S}{d R}=\frac{6 R}{\left(R^{2}+1\right)^{\frac{5}{2}}}$
$9{ }^{4}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ } \xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-]{ }(R) \downarrow$
¢ $1+1+4$ 如分 ${ }^{\text {a }}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\rightarrow \rightarrow \rightarrow$ 为 ${ }_{\text {d }}$
	${ }^{\frac{3 a^{2}}{2}} y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 .}$
	$S=\frac{\mathrm{e}^{2} y}{\left(x^{2}+1\right)^{3}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
－2\％9	$\left(x^{2}+1\right)^{\frac{3}{2}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
－		$\rightarrow \rightarrow \rightarrow$ 边
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\rightarrow \rightarrow \rightarrow$ 边

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-2 \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}-2 \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}-2 \mathrm{e}^{-\frac{3 x^{2}}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=3\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}-2 \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Verified OK.

4.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+1\right) \mathrm{d} y & =\left(-3 y x^{3}+6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}\right) \mathrm{d} x \\
\left(3 y x^{3}-6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}\right) \mathrm{d} x+\left(x^{2}+1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=3 y x^{3}-6 x \mathrm{e}^{-\frac{3 x^{2}}{2}} \\
& N(x, y)=x^{2}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y x^{3}-6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}\right) \\
& =3 x^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+1\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+1}\left(\left(3 x^{3}\right)-(2 x)\right) \\
& =\frac{3 x^{3}-2 x}{x^{2}+1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{3 x^{3}-2 x}{x^{2}+1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{3 x^{2}}{2}-\frac{5 \ln \left(x^{2}+1\right)}{2}} \\
& =\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{5}{2}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{5}{2}}}\left(3 y x^{3}-6 x \mathrm{e}^{-\frac{3 x^{2}}{2}}\right) \\
& =\frac{3 x\left(y \mathrm{e}^{\frac{3 x^{2}}{2}} x^{2}-2\right)}{\left(x^{2}+1\right)^{\frac{5}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{5}{2}}}\left(x^{2}+1\right) \\
& =\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{3 x\left(y \mathrm{e}^{\frac{3 x^{2}}{2}} x^{2}-2\right)}{\left(x^{2}+1\right)^{\frac{5}{2}}}\right)+\left(\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{3 x\left(y \mathrm{e}^{\frac{3 x^{2}}{2}} x^{2}-2\right)}{\left(x^{2}+1\right)^{\frac{5}{2}}} \mathrm{~d} x \\
\phi & =\int_{0}^{x} \frac{3 _a\left(y \mathrm{e}^{\frac{3-a^{2}}{2}}-a^{2}-2\right)}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int_{0}^{x} \frac{3 _a^{3} \mathrm{e}^{\frac{3 _a^{2}}{2}}}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{e^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}=3\left(\int_{0}^{x} \frac{-a^{3} \mathrm{e}^{\frac{3-a^{2}}{2}}}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
& f^{\prime}(y)\left.=-\frac{3\left(\int_{0}^{x}=a^{3} \mathrm{e}^{\frac{3-a^{2}}{2}}\right.}{\left(-a^{2}+1\right)^{\frac{5}{2}}} d _a\right)\left(x^{2}+1\right)^{\frac{3}{2}}-\mathrm{e}^{\frac{3 x^{2}}{2}} \\
&\left(x^{2}+1\right)^{\frac{3}{2}} \\
&\left.\left.=-\frac{3\left(\left(\int_{0}^{x}-a^{3} \mathrm{e}^{\frac{3-a^{2}}{2}}\right.\right.}{\left(a^{2}+1\right)^{\frac{5}{2}}} d _a\right)\left(x^{2}+1\right)^{\frac{3}{2}}-\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{3}\right) \\
&\left(x^{2}+1\right)^{\frac{3}{2}}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
& \int f^{\prime}(y) \mathrm{d} y=\int\left(-\frac{3\left(\left(\int_{0}^{x} \frac{a^{3} e^{\frac{3-a^{2}}{2}}}{\left(a^{2}+1\right)^{\frac{5}{2}}} d _a\right)\left(x^{2}+1\right)^{\frac{3}{2}}-\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{3}\right)}{\left(x^{2}+1\right)^{\frac{3}{2}}}\right) \mathrm{d} y \\
& f(y)=-\frac{3\left(\left(\int_{0}^{x} \frac{a^{3} e^{\frac{3}{-\frac{a^{2}}{2}}}}{\left(-a^{2}+1\right)^{\frac{5}{2}}} d _a\right)\left(x^{2}+1\right)^{\frac{3}{2}}-\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{3}\right) y}{\left(x^{2}+1\right)^{\frac{3}{2}}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int_{0}^{x} \frac{3 _a\left(y \mathrm{e}^{\frac{3 _a^{2}}{2}}-a^{2}-2\right)}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a-\frac{3\left(\left(\int_{0}^{x} \frac{-a^{3} e^{\frac{3-a^{2}}{2}}}{\left(-a^{2}+1\right)^{\frac{5}{2}}} d _a\right)\left(x^{2}+1\right)^{\frac{3}{2}}-\frac{e^{\frac{3 x^{2}}{2}}}{3}\right) y}{\left(x^{2}+1\right)^{\frac{3}{2}}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int_{0}^{x} \frac{3 _a\left(y \mathrm{e}^{\frac{3-a^{2}}{2}}-a^{2}-2\right)}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a-\frac{3\left(\left(\int_{0}^{x} \frac{a^{3} \mathrm{e}^{\frac{3}{}-a^{2}}}{\left(-a^{2}+1\right)^{\frac{5}{2}}} d _a\right)\left(x^{2}+1\right)^{\frac{3}{2}}-\frac{\mathrm{e}^{\frac{3 x^{2}}{2}}}{3}\right) y}{\left(x^{2}+1\right)^{\frac{3}{2}}}
$$

The solution becomes

$$
y=\left(x^{2}+1\right)^{\frac{3}{2}}\left(c_{1}+6\left(\int_{0}^{x} \frac{-a}{\left(-a^{2}+1\right)^{\frac{5}{2}}} d _a\right)\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=6\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}\left(\int_{0}^{x} \frac{-a}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a\right)+\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=6\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}\left(\int_{0}^{x} \frac{-a}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a\right)+\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=6\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}\left(\int_{0}^{x} \frac{-a}{\left(_a^{2}+1\right)^{\frac{5}{2}}} d _a\right)+\left(x^{2}+1\right)^{\frac{3}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

Verified OK.

4.25.5 Maple step by step solution

Let's solve

$$
\left[3 y x^{3}+\left(x^{2}+1\right) y^{\prime}=\frac{6 x}{e^{\frac{3 x^{2}}{2}}}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{3 x^{3} y}{x^{2}+1}+\frac{6 x}{\left(x^{2}+1\right) \mathrm{e}^{\frac{3 x^{2}}{2}}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{3 x^{3} y}{x^{2}+1}=\frac{6 x}{\left(x^{2}+1\right) \mathrm{e}^{\frac{3 x^{2}}{2}}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{3 x^{3} y}{x^{2}+1}\right)=\frac{6 \mu(x) x}{\left(x^{2}+1\right) \mathrm{e}^{\frac{3 x^{2}}{2}}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{3 x^{3} y}{x^{2}+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{3 \mu(x) x^{3}}{x^{2}+1}$
- Solve to find the integrating factor
$\mu(x)=\frac{\left(\mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{2} \mathrm{e}^{-\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{6 \mu(x) x}{\left(x^{2}+1\right) \mathrm{e}^{\frac{3 x^{2}}{2}}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{6 \mu(x) x}{\left(x^{2}+1\right) \mathrm{e}^{\frac{3 x^{2}}{2}}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{6 \mu(x) x}{\left(x^{2}+1\right) e^{\frac{3 x^{2}}{2}}} d x+c_{1}}{\mu(x)}$
- Substitute $\mu(x)=\frac{\left(\mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{2} \mathrm{e}^{-\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{3}{2}}}$
$y=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}\left(\int \frac{6 x e^{-\frac{3 x^{2}}{2}} e^{\frac{3 x^{2}}{2}}}{\left(x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}\right)}{\left(\mathrm{e}^{\frac{3 x 2}{2}}\right)^{2} \mathrm{e}^{-\frac{3 x^{2}}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}\left(-\frac{2}{\left(x^{2}+1\right)^{\frac{3}{2}}}+c_{1}\right)}{\left(\mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{2} \mathrm{e}^{-\frac{3 x^{2}}{2}}}$
- Simplify
$y=\left(\left(x^{2}+1\right)^{\frac{3}{2}} c_{1}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}$
- Use initial condition $y(0)=1$
$1=c_{1}-2$
- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify
$y=\left(3 x^{2} \sqrt{x^{2}+1}+3 \sqrt{x^{2}+1}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}$
- \quad Solution to the IVP
$y=\left(3 x^{2} \sqrt{x^{2}+1}+3 \sqrt{x^{2}+1}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 29
dsolve $\left(\left[3 * x^{\wedge} 3 * y(x)+\left(x^{\wedge} 2+1\right) * \operatorname{diff}(y(x), x)=6 * x / \exp \left(3 / 2 * x^{\wedge} 2\right), y(0)=1\right], y(x)\right.$, singsol=all)

$$
y(x)=\left(3 x^{2} \sqrt{x^{2}+1}+3 \sqrt{x^{2}+1}-2\right) \mathrm{e}^{-\frac{3 x^{2}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 28
DSolve $\left[\left\{3 * x^{\wedge} 3 * y[x]+\left(x^{\wedge} 2+1\right) * y^{\prime}[x]==6 * x / \operatorname{Exp}\left[3 / 2 * x^{\wedge} 2\right], y[0]==1\right\}, y[x], x\right.$, IncludeSingularSolution

$$
y(x) \rightarrow e^{-\frac{3 x^{2}}{2}}\left(3\left(x^{2}+1\right)^{3 / 2}-2\right)
$$

5 Section 1.6, Substitution methods and exact equations. Page 74
5.1 problem 1 949
5.2 problem 2 965
5.3 problem 3 980
5.4 problem 4 987
5.5 problem 5 1001
5.6 problem 6 1016
5.7 problem 7 1030
5.8 problem 8 1046
5.9 problem 9 1056
5.10 problem 10 1074
5.11 problem 11 1089
5.12 problem 12 1103
5.13 problem 13 1111
5.14 problem 14 1119
5.15 problem 15 1127
5.16 problem 16 1141
5.17 problem 17 1149
5.18 problem 18 1159
5.19 problem 19 1162
5.20 problem 20 1171
5.21 problem 21 1187
5.22 problem 22 1190
5.23 problem 23 1200
5.24 problem 24 1209
5.25 problem 25 1218
5.26 problem 26 1232
5.27 problem 27 1245
5.28 problem 28 1258
5.29 problem 29 1264
5.30 problem 30 1270
5.31 problem 31 1281
5.32 problem 32 1297
5.33 problem 33 1313
5.34 problem 34 1329
5.35 problem 35 1336
5.36 problem 36 1344
5.37 problem 37 1350
5.38 problem 38 1356
5.39 problem 39 1362
5.40 problem 40 1368
5.41 problem 41 1374
5.42 problem 42 1380

5.1 problem 1

5.1.1 Solving as homogeneousTypeD2 ode 949
5.1.2 Solving as differentialType ode 951
5.1.3 Solving as first order ode lie symmetry calculated ode 953
5.1.4 Solving as exact ode . 958
5.1.5 Maple step by step solution . 962

Internal problem ID [79]
Internal file name [OUTPUT/79_Sunday_June_05_2022_01_34_22_AM_72549356/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
(x+y) y^{\prime}+y=x
$$

5.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
(x+u(x) x)\left(u^{\prime}(x) x+u(x)\right)+u(x) x=x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+2 u-1}{x(u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+2 u-1}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+2 u-1}{u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+2 u-1}{u+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+2 u-1\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+2 u-1}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+2 u-1}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}+2 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}+2 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}+\frac{2 y}{x}-1} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y^{2}+2 y x-x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y^{2}+2 y x-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 237: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y^{2}+2 y x-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{c}^{c_{2}}}{x}
$$

Verified OK.

5.1.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x-y}{x+y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(-x) d y+(x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(x-y) d x=d\left(\frac{1}{2} x^{2}-y x\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{1}{2} x^{2}-y x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-x+\sqrt{2 x^{2}+2 c_{1}}+c_{1} \\
& y=-x-\sqrt{2 x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-x+\sqrt{2 x^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-x-\sqrt{2 x^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 238: Slope field plot
Verification of solutions

$$
y=-x+\sqrt{2 x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-x-\sqrt{2 x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

5.1.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-x+y}{x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-x+y)\left(b_{3}-a_{2}\right)}{x+y}-\frac{(-x+y)^{2} a_{3}}{(x+y)^{2}}-\left(\frac{1}{x+y}+\frac{-x+y}{(x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{x+y}+\frac{-x+y}{(x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}-3 x^{2} b_{2}-x^{2} b_{3}+2 x y a_{2}-2 x y a_{3}-2 x y b_{2}-2 x y b_{3}-y^{2} a_{2}+3 y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}-2 x b_{1}+2}{(x+y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}+3 x^{2} b_{2}+x^{2} b_{3}-2 x y a_{2}+2 x y a_{3}+2 x y b_{2} \tag{6E}\\
& +2 x y b_{3}+y^{2} a_{2}-3 y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}+2 x b_{1}-2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2}-2 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-a_{3} v_{1}^{2}+2 a_{3} v_{1} v_{2}-3 a_{3} v_{2}^{2}+3 b_{2} v_{1}^{2} \tag{7E}\\
& +2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}+2 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}-2 a_{1} v_{2}+2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}+3 b_{2}+b_{3}\right) v_{1}^{2}+\left(-2 a_{2}+2 a_{3}+2 b_{2}+2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+2 b_{1} v_{1}+\left(a_{2}-3 a_{3}+b_{2}-b_{3}\right) v_{2}^{2}-2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
2 b_{1} & =0 \\
-2 a_{2}+2 a_{3}+2 b_{2}+2 b_{3} & =0 \\
-a_{2}-a_{3}+3 b_{2}+b_{3} & =0 \\
a_{2}-3 a_{3}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{2}+b_{3} \\
a_{3} & =b_{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{-x+y}{x+y}\right)(x) \\
& =\frac{-x^{2}+2 y x+y^{2}}{x+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}+2 y x+y^{2}}{x+y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{2}+2 y x+y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x+y}{x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x-y}{x^{2}-2 y x-y^{2}} \\
S_{y} & =\frac{-x-y}{x^{2}-2 y x-y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+2 y x-x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+2 y x-x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-x+y}{x+y}$		$\frac{d S}{d R}=0$
促		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{\text { a }}$
	$R=x$	\rightarrow
	$S=\underline{\ln \left(-x^{2}+2 y x+y^{2}\right)}$	
	$S=\frac{2}{2}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+2 y x-x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 239: Slope field plot
Verification of solutions

$$
\frac{\ln \left(y^{2}+2 y x-x^{2}\right)}{2}=c_{1}
$$

Verified OK.

5.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x+y) \mathrm{d} y & =(x-y) \mathrm{d} x \\
(-x+y) \mathrm{d} x+(x+y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x+y \\
& N(x, y)=x+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+y) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x+y \mathrm{~d} x \\
\phi & =-\frac{x(x-2 y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x+y$. Therefore equation (4) becomes

$$
\begin{equation*}
x+y=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x(x-2 y)}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x(x-2 y)}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x(x-2 y)}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 240: Slope field plot

Verification of solutions

$$
-\frac{x(x-2 y)}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

5.1.5 Maple step by step solution

Let's solve
$(x+y) y^{\prime}+y=x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$1=1$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x $F(x, y)=\int(-x+y) d x+f_{1}(y)$
- Evaluate integral

$$
F(x, y)=-\frac{x^{2}}{2}+y x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$x+y=x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\frac{y^{2}}{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=-\frac{1}{2} x^{2}+y x+\frac{1}{2} y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
-\frac{1}{2} x^{2}+y x+\frac{1}{2} y^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-x-\sqrt{2 x^{2}+2 c_{1}}, y=-x+\sqrt{2 x^{2}+2 c_{1}}\right\}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 51

```
dsolve((x+y(x))*diff(y(x),x) = x-y(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-c_{1} x-\sqrt{2 c_{1}^{2} x^{2}+1}}{c_{1}} \\
& y(x)=\frac{-c_{1} x+\sqrt{2 c_{1}^{2} x^{2}+1}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.465 (sec). Leaf size: 94
DSolve[($x+y[x]) * y$ ' $[x]==x-y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x-\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-x+\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-\sqrt{2} \sqrt{x^{2}}-x \\
& y(x) \rightarrow \sqrt{2} \sqrt{x^{2}}-x
\end{aligned}
$$

5.2 problem 2

5.2.1 Solving as homogeneousTypeD2 ode
965
5.2.2 Solving as first order ode lie symmetry lookup ode 967
5.2.3 Solving as bernoulli ode . 971
5.2.4 Solving as exact ode . 975

Internal problem ID [80]
Internal file name [OUTPUT/80_Sunday_June_05_2022_01_34_22_AM_8417198/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
2 x y y^{\prime}-y^{2}=x^{2}
$$

5.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)-u(x)^{2} x^{2}=x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-1}{2 u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{2 x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\frac{\ln (x)}{2}+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\frac{\ln (x)}{2}+2 c_{2}\right) \\
& =-\ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-\ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{x} \\
& =\frac{c_{3}}{x}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x} \\
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x} \tag{1}
\end{equation*}
$$

Figure 241: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x}
$$

Verified OK.

5.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+y^{2}}{2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 196: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+y^{2}}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{2 x^{2}} \\
S_{y} & =\frac{y}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$		$\frac{d S}{d R}=\frac{1}{2}$
A		
	$R=x$	
	$S=\frac{y^{2}}{0}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 242: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

Verified OK.

5.2.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y^{2}}{2 x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{2 x} y+\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{2 x} \\
f_{1}(x) & =\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{y^{2}}{2 x}+\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{2 x}+\frac{x}{2} \\
w^{\prime} & =\frac{w}{x}+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)(x) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int \mathrm{d} x \\
& \frac{w}{x}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=c_{1} x+x^{2}
$$

which simplifies to

$$
w(x)=x\left(x+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=x\left(x+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{x\left(x+c_{1}\right)} \\
& y(x)=-\sqrt{x\left(x+c_{1}\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x\left(x+c_{1}\right)} \tag{1}\\
& y=-\sqrt{x\left(x+c_{1}\right)} \tag{2}
\end{align*}
$$

Figure 243: Slope field plot

Verification of solutions

$$
y=\sqrt{x\left(x+c_{1}\right)}
$$

Verified OK.

$$
y=-\sqrt{x\left(x+c_{1}\right)}
$$

Verified OK.

5.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y x) \mathrm{d} y & =\left(x^{2}+y^{2}\right) \mathrm{d} x \\
\left(-x^{2}-y^{2}\right) \mathrm{d} x+(2 y x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}-y^{2} \\
N(x, y) & =2 y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-y^{2}\right) \\
& =-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y x) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x y}((-2 y)-(2 y)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-x^{2}-y^{2}\right) \\
& =\frac{-x^{2}-y^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(2 y x) \\
& =\frac{2 y}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{2}-y^{2}}{x^{2}}\right)+\left(\frac{2 y}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{2}-y^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =-x+\frac{y^{2}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{2 y}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 y}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 y}{x}=\frac{2 y}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\frac{y^{2}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\frac{y^{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x+\frac{y^{2}}{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 244: Slope field plot

Verification of solutions

$$
-x+\frac{y^{2}}{x}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(2*x*y(x)*diff(y(x),x) = x^2+y(x)^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{\left(c_{1}+x\right) x} \\
& y(x)=-\sqrt{\left(c_{1}+x\right) x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.17 (sec). Leaf size: 38

```
DSolve[2*x*y[x]*y'[x] == x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x} \sqrt{x+c_{1}} \\
& y(x) \rightarrow \sqrt{x} \sqrt{x+c_{1}}
\end{aligned}
$$

5.3 problem 3

5.3.1 Solving as first order ode lie symmetry calculated ode 980

Internal problem ID [81]
Internal file name [OUTPUT/81_Sunday_June_05_2022_01_34_23_AM_42870616/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime} x-y-2 \sqrt{y x}=0
$$

5.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+2 \sqrt{y x}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(y+2 \sqrt{y x})\left(b_{3}-a_{2}\right)}{x}-\frac{(y+2 \sqrt{y x})^{2} a_{3}}{x^{2}} \tag{5E}\\
& -\left(\frac{y}{\sqrt{y x} x}-\frac{y+2 \sqrt{y x}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{\left(1+\frac{x}{\sqrt{y x}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{4(y x)^{\frac{3}{2}} a_{3}-x^{2} y b_{3}+3 x y^{2} a_{3}+x^{3} b_{2}+x^{2} y a_{2}-x y a_{1}+\sqrt{y x} x b_{1}-\sqrt{y x} y a_{1}+x^{2} b_{1}}{\sqrt{y x} x^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
-4(y x)^{\frac{3}{2}} a_{3}-x^{3} b_{2}-x^{2} y a_{2}+x^{2} y b_{3}-3 x y^{2} a_{3}-\sqrt{y x} x b_{1}+\sqrt{y x} y a_{1}-x^{2} b_{1}+x y a_{1}=0 \tag{6E}
\end{equation*}
$$

Since the PDE has radicals, simplifying gives

$$
-x^{3} b_{2}-x^{2} y a_{2}+x^{2} y b_{3}-4 y x \sqrt{y x} a_{3}-3 x y^{2} a_{3}-x^{2} b_{1}-\sqrt{y x} x b_{1}+x y a_{1}+\sqrt{y x} y a_{1}=0
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{y x}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{y x}=v_{3}\right\}
$$

The above PDE (6E) now becomes
$-v_{1}^{2} v_{2} a_{2}-3 v_{1} v_{2}^{2} a_{3}-4 v_{2} v_{1} v_{3} a_{3}-v_{1}^{3} b_{2}+v_{1}^{2} v_{2} b_{3}+v_{1} v_{2} a_{1}+v_{3} v_{2} a_{1}-v_{1}^{2} b_{1}-v_{3} v_{1} b_{1}=0$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-v_{1}^{3} b_{2}+\left(b_{3}-a_{2}\right) v_{1}^{2} v_{2}-v_{1}^{2} b_{1}-3 v_{1} v_{2}^{2} a_{3}-4 v_{2} v_{1} v_{3} a_{3}+v_{1} v_{2} a_{1}-v_{3} v_{1} b_{1}+v_{3} v_{2} a_{1}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-4 a_{3} & =0 \\
-3 a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y+2 \sqrt{y x}}{x}\right)(x) \\
& =-2 \sqrt{y x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-2 \sqrt{y x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{y}{\sqrt{y x}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+2 \sqrt{y x}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\sqrt{y}}{2 x^{\frac{3}{2}}} \\
S_{y} & =-\frac{1}{2 \sqrt{y} \sqrt{x}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\sqrt{y x}}{\sqrt{y} x^{\frac{3}{2}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\sqrt{y}}{\sqrt{x}}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\sqrt{y}}{\sqrt{x}}=-\ln (x)+c_{1}
$$

Which gives

$$
y=x \ln (x)^{2}-2 x \ln (x) c_{1}+c_{1}^{2} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x \ln (x)^{2}-2 x \ln (x) c_{1}+c_{1}^{2} x \tag{1}
\end{equation*}
$$

Figure 245: Slope field plot

Verification of solutions

$$
y=x \ln (x)^{2}-2 x \ln (x) c_{1}+c_{1}^{2} x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve $(x * \operatorname{diff}(y(x), x)=y(x)+2 *(x * y(x)) \sim(1 / 2), y(x), \quad$ singsol=all $)$

$$
-\frac{y(x)}{\sqrt{x y(x)}}+\ln (x)-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 19
DSolve[x*y'[x] == $y[x]+2 *(x * y[x])^{\wedge}(1 / 2), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{4} x\left(2 \log (x)+c_{1}\right)^{2}
$$

5.4 problem 4

5.4.1 Solving as homogeneousTypeD2 ode 987
5.4.2 Solving as first order ode lie symmetry calculated ode 989
5.4.3 Solving as exact ode . 994

Internal problem ID [82]
Internal file name [OUTPUT/82_Sunday_June_05_2022_01_34_24_AM_98227792/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
(x-y) y^{\prime}-y=x
$$

5.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
(x-u(x) x)\left(u^{\prime}(x) x+u(x)\right)-u(x) x=x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{(u-1) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+1}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-\arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}+1\right)}{2}-\arctan (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 246: Slope field plot
Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

5.4.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x+y}{-x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(x+y)\left(b_{3}-a_{2}\right)}{-x+y}-\frac{(x+y)^{2} a_{3}}{(-x+y)^{2}} \\
& -\left(-\frac{1}{-x+y}-\frac{x+y}{(-x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{-x+y}+\frac{x+y}{(-x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}+2 x y a_{3}+2 x y b_{2}+2 x y b_{3}-y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}+2 x b_{1}-2 y a}{(x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+x^{2} b_{3}+2 x y a_{2}-2 x y a_{3}-2 x y b_{2} \tag{6E}\\
& \quad-2 x y b_{3}+y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}-2 x b_{1}+2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& \quad-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}+2 a_{1} v_{2}-2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}-b_{2}+b_{3}\right) v_{1}^{2}+\left(2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-2 b_{1} v_{1}+\left(a_{2}+a_{3}+b_{2}-b_{3}\right) v_{2}^{2}+2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-2 b_{1} & =0 \\
-a_{2}-a_{3}-b_{2}+b_{3} & =0 \\
a_{2}+a_{3}+b_{2}-b_{3} & =0 \\
2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =-b_{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x+y}{-x+y}\right)(x) \\
& =\frac{-x^{2}-y^{2}}{x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x+y}{-x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+y}{x^{2}+y^{2}} \\
S_{y} & =\frac{-x+y}{x^{2}+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 247: Slope field plot
Verification of solutions

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Verified OK.

5.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x-y) \mathrm{d} y & =(x+y) \mathrm{d} x \\
(-x-y) \mathrm{d} x+(x-y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x-y \\
N(x, y) & =x-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x-y) \\
& =1
\end{aligned}
$$

 Therefore by multiplying $M=-y-x$ and $N=x-y$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{-y-x}{x^{2}+y^{2}} \\
N & =\frac{x-y}{x^{2}+y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x-y}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{-x-y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{-x-y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{x-y}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{-x-y}{x^{2}+y^{2}} \\
& N(x, y)=\frac{x-y}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-x-y}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+2 y x+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x-y}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+2 y x+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x-y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{y}{x^{2}+y^{2}}+\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{x-y}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x-y}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x-y}{x^{2}+y^{2}}=\frac{x-y}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{x}{y}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{x}{y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 248: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{x}{y}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve((x-y(x))*diff(y(x),x) = x+y(x),y(x), singsol=all)
```

$$
y(x)=\tan \left(\text { RootOf }\left(-2 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x)+2 c_{1}\right)\right) x
$$

Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 36
DSolve[($x-y[x]) * y$ ' $x]==x+y[x], y[x], x$, IncludeSingularSolutions $->$ True]

Solve $\left[\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y(x)}{x}\right)=-\log (x)+c_{1}, y(x)\right]$

5.5 problem 5

5.5.1 Solving as homogeneousTypeD2 ode 1001
5.5.2 Solving as first order ode lie symmetry calculated ode 1003
5.5.3 Solving as exact ode . 1009

Internal problem ID [83]
Internal file name [DUTPUT/83_Sunday_June_05_2022_01_34_25_AM_29678176/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
x(x+y) y^{\prime}-y(x-y)=0
$$

5.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x(x+u(x) x)\left(u^{\prime}(x) x+u(x)\right)-u(x) x(x-u(x) x)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u^{2}}{x(u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{u^{2}}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{u+1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{u^{2}}{u+1}} d u & =\int-\frac{2}{x} d x \\
\ln (u)-\frac{1}{u} & =-2 \ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\ln (u(x))-\frac{1}{u(x)}+2 \ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0 \\
& \ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 249: Slope field plot
Verification of solutions

$$
\ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0
$$

Verified OK.

5.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y(-x+y)}{x(x+y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(-x+y)\left(b_{3}-a_{2}\right)}{x(x+y)}-\frac{y^{2}(-x+y)^{2} a_{3}}{x^{2}(x+y)^{2}} \\
& -\left(\frac{y}{x(x+y)}+\frac{y(-x+y)}{x^{2}(x+y)}+\frac{y(-x+y)}{x(x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{-x+y}{x(x+y)}-\frac{y}{x(x+y)}+\frac{y(-x+y)}{x(x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{2}+2 x^{2} y^{2} b_{3}-2 y^{4} a_{3}-x^{3} b_{1}+x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}+x y^{2} b_{1}-y^{3} a_{1}}{x^{2}(x+y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{2}+2 x^{2} y^{2} b_{3}-2 y^{4} a_{3}-x^{3} b_{1} \tag{6E}\\
+x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0
\end{gather*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{2}^{4}+4 b_{2} v_{1}^{3} v_{2}+2 b_{2} v_{v}^{2} v_{2}^{2}+2 b_{3} v_{1}^{2} v_{2}^{2}+a_{1} v_{1}^{2} v_{2} \tag{7E}\\
& \quad-2 a_{1} v_{1} v_{2}^{2}-a_{1} v_{2}^{3}-b_{1} v_{1}^{3}+2 b_{1} v_{1}^{2} v_{2}+b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{3} v_{2}-b_{1} v_{1}^{3}+\left(-2 a_{2}+2 b_{2}+2 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(a_{1}+2 b_{1}\right) v_{1}^{2} v_{2}+\left(-2 a_{1}+b_{1}\right) v_{1} v_{2}^{2}-2 a_{3} v_{2}^{4}-a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a_{1} & =0 \\
-2 a_{3} & =0 \\
-b_{1} & =0 \\
4 b_{2} & =0 \\
-2 a_{1}+b_{1} & =0 \\
a_{1}+2 b_{1} & =0 \\
-2 a_{2}+2 b_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(-x+y)}{x(x+y)}\right)(x) \\
& =\frac{2 y^{2}}{x+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y^{2}}{x+y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{2}-\frac{x}{2 y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(-x+y)}{x(x+y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{2 y} \\
S_{y} & =\frac{x+y}{2 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y) y-x}{2 y}=-\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y) y-x}{2 y}=-\frac{\ln (x)}{2}+c_{1}
$$

Which gives

$$
y=\frac{x}{\text { LambertW }\left(x^{2} \mathrm{e}^{-2 c_{1}}\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(-x+y)}{x(x+y)}$		$\frac{d S}{d R}=-\frac{1}{2 R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-5]{ } \rightarrow$
		$\rightarrow \rightarrow-\infty$
$\xrightarrow{\sim}$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$\ln (y) y-x$	$\xrightarrow{\rightarrow \rightarrow+\rightarrow \rightarrow+\infty}$
$19+10$	$2 y$	$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
		\rightarrow - * 年
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\text { LambertW }\left(x^{2} \mathrm{e}^{-2 c_{1}}\right)} \tag{1}
\end{equation*}
$$

Figure 250: Slope field plot

Verification of solutions

$$
y=\frac{x}{\text { LambertW }\left(x^{2} \mathrm{e}^{-2 c_{1}}\right)}
$$

Verified OK.

5.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(x+y)) \mathrm{d} y & =(y(x-y)) \mathrm{d} x \\
(-y(x-y)) \mathrm{d} x+(x(x+y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y(x-y) \\
N(x, y) & =x(x+y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y(x-y)) \\
& =-x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(x+y)) \\
& =2 x+y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x y^{2}}$ is an integrating factor. Therefore by multiplying $M=-y(x-y)$ and $N=x(x+y)$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =-\frac{x-y}{x y} \\
N & =\frac{x+y}{y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x+y}{y^{2}}\right) \mathrm{d} y & =\left(\frac{x-y}{y x}\right) \mathrm{d} x \\
\left(-\frac{x-y}{y x}\right) \mathrm{d} x+\left(\frac{x+y}{y^{2}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x-y}{y x} \\
N(x, y) & =\frac{x+y}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x-y}{y x}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x+y}{y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x-y}{y x} \mathrm{~d} x \\
\phi & =\ln (x)-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x+y}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x+y}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x)-\frac{x}{y}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x)-\frac{x}{y}+\ln (y)
$$

The solution becomes

$$
y=\frac{x}{\text { LambertW }\left(x^{2} \mathrm{e}^{-c_{1}}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\text { LambertW }\left(x^{2} \mathrm{e}^{-c_{1}}\right)} \tag{1}
\end{equation*}
$$

Figure 251: Slope field plot
Verification of solutions

$$
y=\frac{x}{\text { LambertW }\left(x^{2} \mathrm{e}^{-c_{1}}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve($x *(x+y(x)) * \operatorname{diff}(y(x), x)=y(x) *(x-y(x)), y(x)$, singsol=all)

$$
y(x)=\frac{x}{\text { LambertW }\left(c_{1} x^{2}\right)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 4.218 (sec). Leaf size: 25
DSolve[x*(x+y[x])*y'[x]==y[x]*(x-y[x]),y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{W\left(e^{-c_{1}} x^{2}\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.6 problem 6

5.6.1 Solving as homogeneousTypeD2 ode 1016
5.6.2 Solving as first order ode lie symmetry calculated ode 1018
5.6.3 Solving as exact ode . 1023

Internal problem ID [84]
Internal file name [OUTPUT/84_Sunday_June_05_2022_01_34_26_AM_1049457/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
(x+2 y) y^{\prime}-y=0
$$

5.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
(x+2 u(x) x)\left(u^{\prime}(x) x+u(x)\right)-u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u^{2}}{x(2 u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{u^{2}}{2 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{2 u+1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{u^{2}}{2 u+1}} d u & =\int-\frac{2}{x} d x \\
2 \ln (u)-\frac{1}{u} & =-2 \ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
2 \ln (u(x))-\frac{1}{u(x)}+2 \ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& 2 \ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0 \\
& 2 \ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 \ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 252: Slope field plot
Verification of solutions

$$
2 \ln \left(\frac{y}{x}\right)-\frac{x}{y}+2 \ln (x)-c_{2}=0
$$

Verified OK.

5.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x+2 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y\left(b_{3}-a_{2}\right)}{x+2 y}-\frac{y^{2} a_{3}}{(x+2 y)^{2}}+\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(x+2 y)^{2}} \tag{5E}\\
& -\left(\frac{1}{x+2 y}-\frac{2 y}{(x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\frac{4 x y b_{2}-2 y^{2} a_{2}+4 y^{2} b_{2}+2 y^{2} b_{3}-x b_{1}+y a_{1}}{(x+2 y)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
4 x y b_{2}-2 y^{2} a_{2}+4 y^{2} b_{2}+2 y^{2} b_{3}-x b_{1}+y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{2}^{2}+4 b_{2} v_{1} v_{2}+4 b_{2} v_{2}^{2}+2 b_{3} v_{2}^{2}+a_{1} v_{2}-b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
4 b_{2} v_{1} v_{2}-b_{1} v_{1}+\left(-2 a_{2}+4 b_{2}+2 b_{3}\right) v_{2}^{2}+a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-b_{1} & =0 \\
4 b_{2} & =0 \\
-2 a_{2}+4 b_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y}{x+2 y}\right)(x) \\
& =\frac{2 y^{2}}{x+2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y^{2}}{x+2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)-\frac{x}{2 y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{2 y} \\
S_{y} & =\frac{x+2 y}{2 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 \ln (y) y-x}{2 y}=c_{1}
$$

Which simplifies to

$$
\frac{2 \ln (y) y-x}{2 y}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(\frac{x \mathrm{e}^{-c_{1}}}{2}\right)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{LambertW}\left(\frac{x \mathrm{e}^{-c_{1}}}{2}\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 253: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\operatorname{LambertW}\left(\frac{x \mathrm{e}^{-c_{1}}}{2}\right)+c_{1}}
$$

Verified OK.

5.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x+2 y) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(x+2 y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =x+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+2 y) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x+2 y}((-1)-(1)) \\
& =-\frac{2}{x+2 y}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{y}((1)-(-1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}(-y) \\
& =-\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}(x+2 y) \\
& =\frac{x+2 y}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{1}{y}\right)+\left(\frac{x+2 y}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{y} \mathrm{~d} x \\
\phi & =-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x+2 y}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x+2 y}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{y}\right) \mathrm{d} y \\
f(y) & =2 \ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x}{y}+2 \ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x}{y}+2 \ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\text {LambertW }\left(\frac{x \mathrm{e}^{-\frac{c_{1}}{2}}}{2}\right)+\frac{c_{1}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\text {LambertW }\left(\frac{x e^{-\frac{c_{1}}{2}}}{2}\right)+\frac{c_{1}}{2}} \tag{1}
\end{equation*}
$$

Figure 254: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\text {LambertW }\left(\frac{x \mathrm{e}^{-\frac{c_{1}}{2}}}{2}\right)+\frac{c_{1}}{2}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve $((x+2 * y(x)) * \operatorname{diff}(y(x), x)=y(x), y(x)$, singsol=all)

$$
y(x)=\frac{x}{2 \text { LambertW }\left(\frac{x e^{\frac{c_{1}}{2}}}{2}\right)}
$$

\checkmark Solution by Mathematica
Time used: 4.677 (sec). Leaf size: 31
DSolve $[(x+2 * y[x]) * y$ ' $[x]==y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{2 W\left(\frac{1}{2} e^{-\frac{c_{1}}{2}} x\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.7 problem 7

5.7.1 Solving as homogeneousTypeD2 ode 1030
5.7.2 Solving as first order ode lie symmetry lookup ode 1032
5.7.3 Solving as bernoulli ode . 1036
5.7.4 Solving as exact ode . 1040

Internal problem ID [85]
Internal file name [OUTPUT/85_Sunday_June_05_2022_01_34_27_AM_34787952/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
x y^{2} y^{\prime}-y^{3}=x^{3}
$$

5.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{3} u(x)^{2}\left(u^{\prime}(x) x+u(x)\right)-u(x)^{3} x^{3}=x^{3}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{1}{u^{2} x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{1}{u^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{u^{2}}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{1}{u^{2}}} d u & =\int \frac{1}{x} d x \\
\frac{u^{3}}{3} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{u(x)^{3}}{3}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{3}}{3 x^{3}}-\ln (x)-c_{2}=0 \\
& \frac{y^{3}}{3 x^{3}}-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3}}{3 x^{3}}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 255: Slope field plot

Verification of solutions

$$
\frac{y^{3}}{3 x^{3}}-\ln (x)-c_{2}=0
$$

Verified OK.

5.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{3}+y^{3}}{x y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 198: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x^{3}}{y^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{3}}{y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{3}}{3 x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{3}+y^{3}}{x y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{3}}{x^{4}} \\
S_{y} & =\frac{y^{2}}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{3}}{3 x^{3}}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{y^{3}}{3 x^{3}}=\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow \Delta x+1$
		STRU $+1+0 \rightarrow 0 \rightarrow 0$
	$R=x$	
		\cdots
	$S=\frac{y}{3 x^{3}}$	$\rightarrow \rightarrow$ ard
		- $\sim_{4} \uparrow$
		- 4
		+ 4

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3}}{3 x^{3}}=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 256: Slope field plot
Verification of solutions

$$
\frac{y^{3}}{3 x^{3}}=\ln (x)+c_{1}
$$

Verified OK.

5.7.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{3}+y^{3}}{x y^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y+x^{2} \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =x^{2} \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=\frac{y^{3}}{x}+x^{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =\frac{w(x)}{x}+x^{2} \\
w^{\prime} & =\frac{3 w}{x}+3 x^{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=3 x^{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=3 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(3 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(3 x^{2}\right) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\left(\frac{3}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{3}} & =\int \frac{3}{x} \mathrm{~d} x \\
\frac{w}{x^{3}} & =3 \ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=3 \ln (x) x^{3}+c_{1} x^{3}
$$

which simplifies to

$$
w(x)=x^{3}\left(3 \ln (x)+c_{1}\right)
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=x^{3}\left(3 \ln (x)+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}} x \\
& y(x)=\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1) x}{2} \\
& y(x)=-\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3}) x}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}} x \tag{1}\\
& y=\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1) x}{2} \tag{2}\\
& y=-\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3}) x}{2} \tag{3}
\end{align*}
$$

Figure 257: Slope field plot

Verification of solutions

$$
y=\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}} x
$$

Verified OK.

$$
y=\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1) x}{2}
$$

Verified OK.

$$
y=-\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3}) x}{2}
$$

Verified OK.

5.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x y^{2}\right) \mathrm{d} y & =\left(x^{3}+y^{3}\right) \mathrm{d} x \\
\left(-x^{3}-y^{3}\right) \mathrm{d} x+\left(x y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{3}-y^{3} \\
N(x, y) & =x y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{3}-y^{3}\right) \\
& =-3 y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x y^{2}\right) \\
& =y^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y^{2}}\left(\left(-3 y^{2}\right)-\left(y^{2}\right)\right) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(-x^{3}-y^{3}\right) \\
& =\frac{-x^{3}-y^{3}}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}\left(x y^{2}\right) \\
& =\frac{y^{2}}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{3}-y^{3}}{x^{4}}\right)+\left(\frac{y^{2}}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{3}-y^{3}}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{y^{3}}{3 x^{3}}-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{y^{2}}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y^{2}}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y^{2}}{x^{3}}=\frac{y^{2}}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y^{3}}{3 x^{3}}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y^{3}}{3 x^{3}}-\ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3}}{3 x^{3}}-\ln (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 258: Slope field plot

Verification of solutions

$$
\frac{y^{3}}{3 x^{3}}-\ln (x)=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 58
dsolve $\left(x * y(x) \wedge 2 * \operatorname{diff}(y(x), x)=x^{\wedge} 3+y(x) \wedge 3, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}} x \\
& y(x)=-\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3}) x}{2} \\
& y(x)=\frac{\left(3 \ln (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1) x}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 63
DSolve $\left[x * y[x] \sim 2 * y\right.$ ' $[x]==x^{\wedge} 3+y[x] \wedge 3, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow x \sqrt[3]{3 \log (x)+c_{1}} \\
& y(x) \rightarrow-\sqrt[3]{-1} x \sqrt[3]{3 \log (x)+c_{1}} \\
& y(x) \rightarrow(-1)^{2 / 3} x \sqrt[3]{3 \log (x)+c_{1}}
\end{aligned}
$$

5.8 problem 8

5.8.1 Solving as homogeneousTypeD ode 1046
5.8.2 Solving as homogeneousTypeD2 ode 1048
5.8.3 Solving as first order ode lie symmetry lookup ode 1050

Internal problem ID [86]
Internal file name [DUTPUT/86_Sunday_June_05_2022_01_34_28_AM_64359794/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
y^{\prime} x^{2}-\mathrm{e}^{\frac{y}{x}} x^{2}-y x=0
$$

5.8.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\mathrm{e}^{\frac{y}{x}}+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\mathrm{e}^{\frac{y}{x}}
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=\frac{\mathrm{e}^{u(x)}}{x}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\mathrm{e}^{u}} d u & =\int \frac{1}{x} d x \\
-\mathrm{e}^{-u} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}-\ln (x)-c_{1}=0
$$

Therefore the solution is found using $y=u x$. Hence

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 259: Slope field plot
Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0
$$

Verified OK.

5.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x^{2}-\mathrm{e}^{u(x)} x^{2}-u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\frac{1}{\mathrm{e}^{u}} d u=\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\mathrm{e}^{u}} d u & =\int \frac{1}{x} d x \\
-\mathrm{e}^{-u} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0 \\
& -\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 260: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0
$$

Verified OK.

5.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\mathrm{e}^{\frac{y}{x}} x+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 200: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=y x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y x}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\mathrm{e}^{\frac{y}{x}} x+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{y}{x}}}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-S(R) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \mathrm{e}^{\mathrm{e}^{-R}} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{\mathrm{e}^{-\frac{y}{x}}}
$$

Which simplifies to

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\frac{y}{x}}
$$

Which gives

$$
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\mathrm{e}^{\frac{y}{x} x+y}}{x}$		$\frac{d S}{d R}=-S(R) \mathrm{e}^{-R}$
	$R=\underline{y}$	did d $_{\text {d }}$
	$S=-\frac{1}{x}$	
	x	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x \tag{1}
\end{equation*}
$$

Figure 261: Slope field plot

Verification of solutions

$$
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x)=\exp (y(x) / x) * x^{\wedge} 2+x * y(x), y(x)\right.$, singsol=all)

$$
y(x)=\ln \left(-\frac{1}{\ln (x)+c_{1}}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.303 (sec). Leaf size: 18
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==\operatorname{Exp}[y[x] / x] * x^{\wedge} 2+x * y[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x \log \left(-\log (x)-c_{1}\right)
$$

5.9 problem 9

5.9.1 Solving as homogeneousTypeD2 ode 1056
5.9.2 Solving as first order ode lie symmetry lookup ode 1058
5.9.3 Solving as bernoulli ode . 1062
5.9.4 Solving as exact ode . 1066
5.9.5 Solving as riccati ode . 1071

Internal problem ID [87]
Internal file name [OUTPUT/87_Sunday_June_05_2022_01_34_29_AM_6495535/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y^{\prime} x^{2}-y x-y^{2}=0
$$

5.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x^{2}-u(x) x^{2}-u(x)^{2} x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =\frac{1}{x} d x \\
\int \frac{1}{u^{2}} d u & =\int \frac{1}{x} d x \\
-\frac{1}{u} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x}{y}-\ln (x)-c_{2}=0 \\
& -\frac{x}{y}-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{y}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 262: Slope field plot
Verification of solutions

$$
-\frac{x}{y}-\ln (x)-c_{2}=0
$$

Verified OK.

5.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y(x+y)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 202: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{2}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(x+y)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{y} \\
S_{y} & =\frac{x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x}{y}=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{x}{y}=\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{x}{\ln (x)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(x+y)}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\rightarrow \rightarrow$ -
($\rightarrow \rightarrow+\infty$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1+$ + $\square_{\rightarrow \rightarrow \rightarrow \rightarrow \infty}$	$R=x$	$\cdots \times 1+0$
	$S=-\frac{x}{y}$	
	$S=-\frac{}{y}$	
		14
		+ ${ }^{+}$
		arady

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 263: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\ln (x)+c_{1}}
$$

Verified OK.

5.9.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x+y)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y+\frac{1}{x^{2}} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =\frac{1}{x^{2}} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{x y}+\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x}+\frac{1}{x^{2}} \\
w^{\prime} & =-\frac{w}{x}-\frac{1}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)\left(-\frac{1}{x^{2}}\right) \\
\mathrm{d}(w x) & =\left(-\frac{1}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int-\frac{1}{x} \mathrm{~d} x \\
& w x=-\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-\frac{\ln (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
w(x)=\frac{-\ln (x)+c_{1}}{x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{-\ln (x)+c_{1}}{x}
$$

Or

$$
y=\frac{x}{-\ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{-\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 264: Slope field plot

Verification of solutions

$$
y=\frac{x}{-\ln (x)+c_{1}}
$$

Verified OK.

5.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(y x+y^{2}\right) \mathrm{d} x \\
\left(-y x-y^{2}\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-y x-y^{2} \\
& N(x, y)=x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y x-y^{2}\right) \\
& =-x-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x y^{2}}$ is an integrating factor. Therefore by multiplying $M=-y^{2}-y x$ and $N=x^{2}$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{-y^{2}-y x}{x y^{2}} \\
N & =\frac{x}{y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =\left(-\frac{-y x-y^{2}}{x y^{2}}\right) \mathrm{d} x \\
\left(\frac{-y x-y^{2}}{x y^{2}}\right) \mathrm{d} x+\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{-y x-y^{2}}{x y^{2}} \\
& N(x, y)=\frac{x}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-y x-y^{2}}{x y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y x-y^{2}}{x y^{2}} \mathrm{~d} x \\
\phi & =-\ln (x)-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\frac{x}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\frac{x}{y}
$$

The solution becomes

$$
y=-\frac{x}{\ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 265: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\ln (x)+c_{1}}
$$

Verified OK.

5.9.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x+y)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =\frac{1}{x^{3}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}+\frac{u^{\prime}(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \ln (x)+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2} x}{c_{2} \ln (x)+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{x}{\ln (x)+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\ln (x)+c_{3}} \tag{1}
\end{equation*}
$$

Figure 266: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\ln (x)+c_{3}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)=x * y(x)+y(x)^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\frac{x}{c_{1}-\ln (x)}
$$

\checkmark Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 21

```
DSolve[x^2*y'[x] == x*y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{-\log (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.10 problem 10

5.10.1 Solving as homogeneousTypeD2 ode 1074
5.10.2 Solving as first order ode lie symmetry lookup ode 1076
5.10.3 Solving as bernoulli ode . 1080
5.10.4 Solving as exact ode . 1084

Internal problem ID [88]
Internal file name [OUTPUT/88_Sunday_June_05_2022_01_34_30_AM_21734797/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
x y y^{\prime}-3 y^{2}=x^{2}
$$

5.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)-3 u(x)^{2} x^{2}=x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u^{2}+1}{u x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{2 u^{2}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 u^{2}+1}{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{2 u^{2}+1}{u}} d u & =\int \frac{1}{x} d x \\
\frac{\ln \left(2 u^{2}+1\right)}{4} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(2 u^{2}+1\right)^{\frac{1}{4}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\left(2 u^{2}+1\right)^{\frac{1}{4}}=c_{3} x
$$

Which simplifies to

$$
\left(2 u(x)^{2}+1\right)^{\frac{1}{4}}=c_{3} \mathrm{e}^{c_{2}} x
$$

The solution is

$$
\left(2 u(x)^{2}+1\right)^{\frac{1}{4}}=c_{3} \mathrm{e}^{c_{2}} x
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{2 y^{2}}{x^{2}}+1\right)^{\frac{1}{4}} & =c_{3} \mathrm{e}^{c_{2}} x \\
\left(\frac{2 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{4}} & =c_{3} \mathrm{e}^{c_{2}} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{2 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{4}}=c_{3} \mathrm{e}^{c_{2}} x \tag{1}
\end{equation*}
$$

Figure 267: Slope field plot
Verification of solutions

$$
\left(\frac{2 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{4}}=c_{3} \mathrm{e}^{c_{2}} x
$$

Verified OK.

5.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+3 y^{2}}{x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 204: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x^{6}}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{6}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x^{6}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+3 y^{2}}{x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y^{2}}{x^{7}} \\
S_{y} & =\frac{y}{x^{6}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x^{5}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{5}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{4 R^{4}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x^{6}}=-\frac{1}{4 x^{4}}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x^{6}}=-\frac{1}{4 x^{4}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{x y}$		$\frac{d S}{d R}=\frac{1}{R^{5}}$
中 + + p p p p p \uparrow		$\rightarrow \rightarrow \rightarrow+{ }^{\text {a }}$, \uparrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow S(R)}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	
	$S=\underline{y^{2}}$	
A 0 atal		
		$\rightarrow+4, \uparrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x^{6}}=-\frac{1}{4 x^{4}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 268: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x^{6}}=-\frac{1}{4 x^{4}}+c_{1}
$$

Verified OK.

5.10.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+3 y^{2}}{x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{3}{x} y+x \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{3}{x} \\
f_{1}(x) & =x \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{3 y^{2}}{x}+x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{3 w(x)}{x}+x \\
w^{\prime} & =\frac{6 w}{x}+2 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{6}{x} \\
& q(x)=2 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{6 w(x)}{x}=2 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{6}{x} d x} \\
& =\frac{1}{x^{6}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(2 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{6}}\right) & =\left(\frac{1}{x^{6}}\right)(2 x) \\
\mathrm{d}\left(\frac{w}{x^{6}}\right) & =\left(\frac{2}{x^{5}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{6}} & =\int \frac{2}{x^{5}} \mathrm{~d} x \\
\frac{w}{x^{6}} & =-\frac{1}{2 x^{4}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{6}}$ results in

$$
w(x)=-\frac{1}{2} x^{2}+c_{1} x^{6}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-\frac{1}{2} x^{2}+c_{1} x^{6}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{4 c_{1} x^{4}-2} x}{2} \\
& y(x)=-\frac{\sqrt{4 c_{1} x^{4}-2} x}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{4 c_{1} x^{4}-2} x}{2} \tag{1}\\
& y=-\frac{\sqrt{4 c_{1} x^{4}-2} x}{2} \tag{2}
\end{align*}
$$

Figure 269: Slope field plot
Verification of solutions

$$
y=\frac{\sqrt{4 c_{1} x^{4}-2} x}{2}
$$

Verified OK.

$$
y=-\frac{\sqrt{4 c_{1} x^{4}-2} x}{2}
$$

Verified OK.

5.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y x) \mathrm{d} y & =\left(x^{2}+3 y^{2}\right) \mathrm{d} x \\
\left(-x^{2}-3 y^{2}\right) \mathrm{d} x+(y x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}-3 y^{2} \\
N(x, y) & =y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-3 y^{2}\right) \\
& =-6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y x) \\
& =y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y}((-6 y)-(y)) \\
& =-\frac{7}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{7}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-7 \ln (x)} \\
& =\frac{1}{x^{7}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{7}}\left(-x^{2}-3 y^{2}\right) \\
& =\frac{-x^{2}-3 y^{2}}{x^{7}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{7}}(y x) \\
& =\frac{y}{x^{6}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{2}-3 y^{2}}{x^{7}}\right)+\left(\frac{y}{x^{6}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{2}-3 y^{2}}{x^{7}} \mathrm{~d} x \\
\phi & =\frac{x^{2}+2 y^{2}}{4 x^{6}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{y}{x^{6}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{x^{6}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{x^{6}}=\frac{y}{x^{6}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{2}+2 y^{2}}{4 x^{6}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{2}+2 y^{2}}{4 x^{6}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{2 y^{2}+x^{2}}{4 x^{6}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 270: Slope field plot

Verification of solutions

$$
\frac{2 y^{2}+x^{2}}{4 x^{6}}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(x*y(x)*diff(y(x),x) = x^2+3*y(x)^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{4 c_{1} x^{4}-2} x}{2} \\
& y(x)=\frac{\sqrt{4 c_{1} x^{4}-2} x}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.6 (sec). Leaf size: 42
DSolve $\left[x * y[x] * y\right.$ ' $[x]==x^{\wedge} 2+3 * y[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x \sqrt{-\frac{1}{2}+c_{1} x^{4}} \\
& y(x) \rightarrow x \sqrt{-\frac{1}{2}+c_{1} x^{4}}
\end{aligned}
$$

5.11 problem 11

5.11.1 Solving as homogeneousTypeD2 ode 1089
5.11.2 Solving as first order ode lie symmetry calculated ode 1091
5.11.3 Solving as exact ode . 1096

Internal problem ID [89]
Internal file name [DUTPUT/89_Sunday_June_05_2022_01_34_31_AM_60925206/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
\left(x^{2}-y^{2}\right) y^{\prime}-2 y x=0
$$

5.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(x^{2}-u(x)^{2} x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)-2 u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(u^{2}+1\right)}{\left(u^{2}-1\right) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u\left(u^{2}+1\right)}{u^{2}-1}$. Integrating both sides gives

$$
\frac{1}{\frac{u\left(u^{2}+1\right)}{u^{2}-1}} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{u\left(u^{2}+1\right)}{u^{2}-1}} d u & =\int-\frac{1}{x} d x \\
-\ln (u)+\ln \left(u^{2}+1\right) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u)+\ln \left(u^{2}+1\right)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u^{2}+1}{u}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{u(x)^{2}+1}{u(x)}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{x\left(\frac{y^{2}}{x^{2}}+1\right)}{y} & =\frac{c_{3}}{x} \\
\frac{x^{2}+y^{2}}{x y} & =\frac{c_{3}}{x}
\end{aligned}
$$

Which simplifies to

$$
\frac{x^{2}+y^{2}}{y}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{y}=c_{3} \tag{1}
\end{equation*}
$$

Figure 271: Slope field plot

Verification of solutions

$$
\frac{x^{2}+y^{2}}{y}=c_{3}
$$

Verified OK.

5.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 y x}{-x^{2}+y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2 y x\left(b_{3}-a_{2}\right)}{-x^{2}+y^{2}}-\frac{4 y^{2} x^{2} a_{3}}{\left(-x^{2}+y^{2}\right)^{2}} \\
& -\left(-\frac{2 y}{-x^{2}+y^{2}}-\frac{4 y x^{2}}{\left(-x^{2}+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 x}{-x^{2}+y^{2}}+\frac{4 y^{2} x}{\left(-x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} b_{2}+2 y^{2} x^{2} a_{3}+4 x^{2} y^{2} b_{2}-4 x y^{3} a_{2}+4 x y^{3} b_{3}-2 y^{4} a_{3}-y^{4} b_{2}+2 x^{3} b_{1}-2 x^{2} y a_{1}+2 x y^{2} b_{1}-2 y^{3} a_{1}}{\left(x^{2}-y^{2}\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} b_{2}-2 y^{2} x^{2} a_{3}-4 x^{2} y^{2} b_{2}+4 x y^{3} a_{2}-4 x y^{3} b_{3}+2 y^{4} a_{3} \tag{6E}\\
& +y^{4} b_{2}-2 x^{3} b_{1}+2 x^{2} y a_{1}-2 x y^{2} b_{1}+2 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{2} v_{1} v_{2}^{3}-2 a_{3} v_{1}^{2} v_{2}^{2}+2 a_{3} v_{2}^{4}-b_{2} v_{1}^{4}-4 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4} \tag{7E}\\
& \quad-4 b_{3} v_{1} v_{2}^{3}+2 a_{1} v_{1}^{2} v_{2}+2 a_{1} v_{2}^{3}-2 b_{1} v_{1}^{3}-2 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -b_{2} v_{1}^{4}-2 b_{1} v_{1}^{3}+\left(-2 a_{3}-4 b_{2}\right) v_{1}^{2} v_{2}^{2}+2 a_{1} v_{1}^{2} v_{2} \tag{8E}\\
& \quad+\left(4 a_{2}-4 b_{3}\right) v_{1} v_{2}^{3}-2 b_{1} v_{1} v_{2}^{2}+\left(2 a_{3}+b_{2}\right) v_{2}^{4}+2 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-2 b_{1} & =0 \\
-b_{2} & =0 \\
4 a_{2}-4 b_{3} & =0 \\
-2 a_{3}-4 b_{2} & =0 \\
2 a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 y x}{-x^{2}+y^{2}}\right)(x) \\
& =\frac{-y x^{2}-y^{3}}{x^{2}-y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-y x^{2}-y^{3}}{x^{2}-y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (y)+\ln \left(x^{2}+y^{2}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y x}{-x^{2}+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x}{x^{2}+y^{2}} \\
S_{y} & =-\frac{1}{y}+\frac{2 y}{x^{2}+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y)+\ln \left(x^{2}+y^{2}\right)=c_{1}
$$

Which simplifies to

$$
-\ln (y)+\ln \left(x^{2}+y^{2}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y x}{-x^{2}+y^{2}}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow ~]{\text { a }}$
		\rightarrow
$\xrightarrow[\rightarrow \rightarrow-\infty]{ }$	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	$S=-\ln (y)+\ln \left(x^{2}+y^{2}\right.$	
		$\xrightarrow[\rightarrow \rightarrow \longrightarrow \rightarrow]{\text { - }}$
		\rightarrow
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (y)+\ln \left(x^{2}+y^{2}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 272: Slope field plot

Verification of solutions

$$
-\ln (y)+\ln \left(x^{2}+y^{2}\right)=c_{1}
$$

Verified OK.

5.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}-y^{2}\right) \mathrm{d} y & =(2 y x) \mathrm{d} x \\
(-2 y x) \mathrm{d} x+\left(x^{2}-y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 y x \\
N(x, y) & =x^{2}-y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 y x) \\
& =-2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}-y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}-y^{2}}((-2 x)-(2 x)) \\
& =-\frac{4 x}{x^{2}-y^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{2 x y}((2 x)-(-2 x)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}(-2 y x) \\
& =-\frac{2 x}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}\left(x^{2}-y^{2}\right) \\
& =\frac{x^{2}-y^{2}}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{2 x}{y}\right)+\left(\frac{x^{2}-y^{2}}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2 x}{y} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{2}}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2}-y^{2}}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2}-y^{2}}{y^{2}}=\frac{x^{2}}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-1) \mathrm{d} y \\
f(y) & =-y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{y}-y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{y}-y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{y}-y=c_{1} \tag{1}
\end{equation*}
$$

Figure 273: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{y}-y=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 47
dsolve $\left(\left(x^{\wedge} 2-y(x) \wedge 2\right) * \operatorname{diff}(y(x), x)=2 * x * y(x), y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1-\sqrt{-4 c_{1}^{2} x^{2}+1}}{2 c_{1}} \\
& y(x)=\frac{1+\sqrt{-4 c_{1}^{2} x^{2}+1}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.035 (sec). Leaf size: 66
DSolve[($\left.x^{\wedge} 2-y[x] \sim 2\right) * y^{\prime}[x]==2 * x * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(e^{c_{1}}-\sqrt{-4 x^{2}+e^{2 c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(\sqrt{-4 x^{2}+e^{2 c_{1}}}+e^{c_{1}}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.12 problem 12

5.12.1 Solving as first order ode lie symmetry calculated ode 1103

Internal problem ID [90]
Internal file name [OUTPUT/90_Sunday_June_05_2022_01_34_33_AM_27424058/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x y y^{\prime}-y^{2}-x \sqrt{4 x^{2}+y^{2}}=0
$$

5.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}+x \sqrt{4 x^{2}+y^{2}}}{x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(y^{2}+x \sqrt{4 x^{2}+y^{2}}\right)\left(b_{3}-a_{2}\right)}{x y}-\frac{\left(y^{2}+x \sqrt{4 x^{2}+y^{2}}\right)^{2} a_{3}}{x^{2} y^{2}} \\
& -\left(\frac{\sqrt{4 x^{2}+y^{2}}+\frac{4 x^{2}}{\sqrt{4 x^{2}+y^{2}}}}{x y}-\frac{y^{2}+x \sqrt{4 x^{2}+y^{2}}}{x^{2} y}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 y+\frac{x y}{\sqrt{4 x^{2}+y^{2}}}}{x y}-\frac{y^{2}+x \sqrt{4 x^{2}+y^{2}}}{x y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(4 x^{2}+y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}-4 x^{5} b_{2}+8 x^{4} y a_{2}-8 x^{4} y b_{3}+12 x^{3} y^{2} a_{3}+x^{2} y^{3} a_{2}-x^{2} y^{3} b_{3}+2 x y^{4} a_{3}+\sqrt{4 x^{2}+y^{2}} x y^{2} b}{x^{2} y^{2} \sqrt{4 x^{2}+y^{2}}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(4 x^{2}+y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}+4 x^{5} b_{2}-8 x^{4} y a_{2}+8 x^{4} y b_{3}-12 x^{3} y^{2} a_{3}-x^{2} y^{3} a_{2}+x^{2} y^{3} b_{3} \tag{6E}\\
& -2 x y^{4} a_{3}-\sqrt{4 x^{2}+y^{2}} x y^{2} b_{1}+\sqrt{4 x^{2}+y^{2}} y^{3} a_{1}+4 x^{4} b_{1}-4 x^{3} y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(4 x^{2}+y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}+\left(4 x^{2}+y^{2}\right) x^{3} b_{2}-\left(4 x^{2}+y^{2}\right) x^{2} y a_{2}+2\left(4 x^{2}+y^{2}\right) x^{2} y b_{3} \tag{6E}\\
& -2\left(4 x^{2}+y^{2}\right) x y^{2} a_{3}-4 x^{4} y a_{2}-4 x^{3} y^{2} a_{3}-x^{3} y^{2} b_{2}-x^{2} y^{3} b_{3}+\left(4 x^{2}+y^{2}\right) x^{2} b_{1} \\
& -\sqrt{4 x^{2}+y^{2}} x y^{2} b_{1}+\sqrt{4 x^{2}+y^{2}} y^{3} a_{1}-4 x^{3} y a_{1}-x^{2} y^{2} b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 x^{5} b_{2}-4 x^{4} \sqrt{4 x^{2}+y^{2}} a_{3}-8 x^{4} y a_{2}+8 x^{4} y b_{3}-12 x^{3} y^{2} a_{3}-x^{2} \sqrt{4 x^{2}+y^{2}} y^{2} a_{3}-x^{2} y^{3} a_{2} \\
& +x^{2} y^{3} b_{3}-2 x y^{4} a_{3}+4 x^{4} b_{1}-4 x^{3} y a_{1}-\sqrt{4 x^{2}+y^{2}} x y^{2} b_{1}+\sqrt{4 x^{2}+y^{2}} y^{3} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{4 x^{2}+y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 x^{2}+y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -8 v_{1}^{4} v_{2} a_{2}-v_{1}^{2} v_{2}^{3} a_{2}-4 v_{1}^{4} v_{3} a_{3}-12 v_{1}^{3} v_{2}^{2} a_{3}-v_{1}^{2} v_{3} v_{2}^{2} a_{3}-2 v_{1} v_{2}^{4} a_{3}+4 v_{1}^{5} b_{2} \tag{7E}\\
& +8 v_{1}^{4} v_{2} b_{3}+v_{1}^{2} v_{2}^{3} b_{3}-4 v_{1}^{3} v_{2} a_{1}+v_{3} v_{2}^{3} a_{1}+4 v_{1}^{4} b_{1}-v_{3} v_{1} v_{2}^{2} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 v_{1}^{5} b_{2}+\left(-8 a_{2}+8 b_{3}\right) v_{1}^{4} v_{2}-4 v_{1}^{4} v_{3} a_{3}+4 v_{1}^{4} b_{1}-12 v_{1}^{3} v_{2}^{2} a_{3}-4 v_{1}^{3} v_{2} a_{1} \tag{8E}\\
& +\left(b_{3}-a_{2}\right) v_{1}^{2} v_{2}^{3}-v_{1}^{2} v_{3} v_{2}^{2} a_{3}-2 v_{1} v_{2}^{4} a_{3}-v_{3} v_{1} v_{2}^{2} b_{1}+v_{3} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-4 a_{1} & =0 \\
-12 a_{3} & =0 \\
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
4 b_{1} & =0 \\
4 b_{2} & =0 \\
-8 a_{2}+8 b_{3} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y^{2}+x \sqrt{4 x^{2}+y^{2}}}{x y}\right)(x) \\
& =-\frac{x \sqrt{4 x^{2}+y^{2}}}{y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{x \sqrt{4 x^{2}+y^{2}}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\sqrt{4 x^{2}+y^{2}}}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}+x \sqrt{4 x^{2}+y^{2}}}{x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y^{2}}{x^{2} \sqrt{4 x^{2}+y^{2}}} \\
S_{y} & =-\frac{y}{x \sqrt{4 x^{2}+y^{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\sqrt{4 x^{2}+y^{2}}}{x}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\sqrt{4 x^{2}+y^{2}}}{x}=-\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}+x \sqrt{4 x^{2}+y^{2}}}{x y}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow \infty$ -
		$\xrightarrow[\rightarrow-\infty \rightarrow \infty]{ }$
		$\rightarrow \rightarrow \infty \rightarrow \infty-\infty$
		$\rightarrow \rightarrow \rightarrow-\infty \ggg \gg 1$
	$R=x$	
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ + + + + +		$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$
	$S=-\frac{\sqrt{4 x^{2}+y^{2}}}{x}$	
	$S=-\frac{\sqrt{4 x^{2}+y^{2}}}{}$	
		$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
		-
		$\rightarrow \rightarrow 0$ 为
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\sqrt{4 x^{2}+y^{2}}}{x}=-\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 274: Slope field plot

Verification of solutions

$$
-\frac{\sqrt{4 x^{2}+y^{2}}}{x}=-\ln (x)+c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
dsolve $\left(x * y(x) * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+x *\left(4 * x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge}(1 / 2), y(x)\right.$, singsol=all)

$$
\frac{x \ln (x)-c_{1} x-\sqrt{4 x^{2}+y(x)^{2}}}{x}=0
$$

\checkmark Solution by Mathematica
Time used: 0.256 (sec). Leaf size: 54
DSolve $\left[x * y[x] * y^{\prime}[x]==y[x] \wedge 2+x *\left(4 * x^{\wedge} 2+y[x] \sim 2\right)^{\wedge}(1 / 2), y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
& y(x) \rightarrow-x \sqrt{\log ^{2}(x)+2 c_{1} \log (x)-4+c_{1}^{2}} \\
& y(x) \rightarrow x \sqrt{\log ^{2}(x)+2 c_{1} \log (x)-4+c_{1}^{2}}
\end{aligned}
$$

5.13 problem 13

5.13.1 Solving as first order ode lie symmetry calculated ode 1111

Internal problem ID [91]
Internal file name [OUTPUT/91_Sunday_June_05_2022_01_34_34_AM_26106079/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _dAlembert]
```

$$
y^{\prime} x-y-\sqrt{x^{2}+y^{2}}=0
$$

5.13.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+\sqrt{x^{2}+y^{2}}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{\left(y+\sqrt{x^{2}+y^{2}}\right)\left(b_{3}-a_{2}\right)}{x}-\frac{\left(y+\sqrt{x^{2}+y^{2}}\right)^{2} a_{3}}{x^{2}} \\
& -\left(\frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{y+\sqrt{x^{2}+y^{2}}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(1+\frac{y}{\sqrt{x^{2}+y^{2}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}+x^{3} a_{2}-x^{3} b_{3}+2 x^{2} y a_{3}+x^{2} y b_{2}+y^{3} a_{3}+\sqrt{x^{2}+y^{2}} x b_{1}-\sqrt{x^{2}+y^{2}} y a_{1}+x y b_{1}-y^{2} a_{1}}{\sqrt{x^{2}+y^{2}} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}-x^{3} a_{2}+x^{3} b_{3}-2 x^{2} y a_{3}-x^{2} y b_{2}-y^{3} a_{3} \tag{6E}\\
-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}-x y b_{1}+y^{2} a_{1}=0
\end{gather*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}+\left(x^{2}+y^{2}\right) x b_{3}-\left(x^{2}+y^{2}\right) y a_{3}-x^{3} a_{2}-x^{2} y a_{3}-x^{2} y b_{2} \tag{6E}\\
& \quad-x y^{2} b_{3}+\left(x^{2}+y^{2}\right) a_{1}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}-x^{2} a_{1}-x y b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -x^{3} a_{2}+x^{3} b_{3}-x^{2} \sqrt{x^{2}+y^{2}} a_{3}-2 x^{2} y a_{3}-x^{2} y b_{2}-\sqrt{x^{2}+y^{2}} y^{2} a_{3} \\
& \quad-y^{3} a_{3}-\sqrt{x^{2}+y^{2}} x b_{1}-x y b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}+y^{2} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{1}^{3} a_{2}-2 v_{1}^{2} v_{2} a_{3}-v_{1}^{2} v_{3} a_{3}-v_{2}^{3} a_{3}-v_{3} v_{2}^{2} a_{3}-v_{1}^{2} v_{2} b_{2} \tag{7E}\\
& +v_{1}^{3} b_{3}+v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}-v_{1} v_{2} b_{1}-v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(b_{3}-a_{2}\right) v_{1}^{3}+\left(-2 a_{3}-b_{2}\right) v_{1}^{2} v_{2}-v_{1}^{2} v_{3} a_{3}-v_{1} v_{2} b_{1} \tag{8E}\\
& \quad-v_{3} v_{1} b_{1}-v_{2}^{3} a_{3}-v_{3} v_{2}^{2} a_{3}+v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-2 a_{3}-b_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y+\sqrt{x^{2}+y^{2}}}{x}\right)(x) \\
& =-\sqrt{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\sqrt{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln \left(y+\sqrt{x^{2}+y^{2}}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+\sqrt{x^{2}+y^{2}}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{x}{\sqrt{x^{2}+y^{2}}\left(y+\sqrt{x^{2}+y^{2}}\right)} \\
& S_{y}=-\frac{1}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{2\left(\sqrt{x^{2}+y^{2}} y+x^{2}+y^{2}\right)}{x \sqrt{x^{2}+y^{2}}\left(y+\sqrt{x^{2}+y^{2}}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln \left(y+\sqrt{x^{2}+y^{2}}\right)=-2 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln \left(y+\sqrt{x^{2}+y^{2}}\right)=-2 \ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{-c_{1}}\left(\mathrm{e}^{2 c_{1}}-x^{2}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}$		$\frac{d S}{d R}=-\frac{2}{R}$
	$R=x$	
	$S=-\ln (y+\sqrt{x}$	
$\xrightarrow{2}$		
- - - - - -		
$\rightarrow \rightarrow \rightarrow-\infty$		
为		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-c_{1}}\left(\mathrm{e}^{2 c_{1}}-x^{2}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 275: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-c_{1}}\left(\mathrm{e}^{2 c_{1}}-x^{2}\right)}{2}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 26
dsolve $\left(x * \operatorname{diff}(y(x), x)=y(x)+\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge}(1 / 2), y(x)\right.$, singsol=all)

$$
\frac{-c_{1} x^{2}+\sqrt{x^{2}+y(x)^{2}}+y(x)}{x^{2}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.341 (sec). Leaf size: 27
DSolve[x*y'[x] == $y[x]+\left(x^{\wedge} 2+y[x]^{\wedge} 2\right)^{\wedge}(1 / 2), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-1+e^{2 c_{1}} x^{2}\right)
$$

5.14 problem 14

5.14.1 Solving as first order ode lie symmetry calculated ode 1119

Internal problem ID [92]
Internal file name [OUTPUT/92_Sunday_June_05_2022_01_34_36_AM_9049263/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode_lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _dAlembert]
```

$$
y y^{\prime}-\sqrt{x^{2}+y^{2}}=-x
$$

5.14.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-x+\sqrt{x^{2}+y^{2}}}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(-x+\sqrt{x^{2}+y^{2}}\right)\left(b_{3}-a_{2}\right)}{y}-\frac{\left(-x+\sqrt{x^{2}+y^{2}}\right)^{2} a_{3}}{y^{2}} \\
& -\frac{\left(-1+\frac{x}{\sqrt{x^{2}+y^{2}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{y} \tag{5E}\\
& -\left(\frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{-x+\sqrt{x^{2}+y^{2}}}{y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}+\sqrt{x^{2}+y^{2}} x^{2} a_{3}+\sqrt{x^{2}+y^{2}} x^{2} b_{2}-2 \sqrt{x^{2}+y^{2}} x y a_{2}+2 \sqrt{x^{2}+y^{2}} x y b_{3}-\sqrt{x^{2}+y^{2}} y^{2} a_{3}-}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}-\sqrt{x^{2}+y^{2}} x^{2} a_{3}-\sqrt{x^{2}+y^{2}} x^{2} b_{2}+2 \sqrt{x^{2}+y^{2}} x y a_{2} \\
& -2 \sqrt{x^{2}+y^{2}} x y b_{3}+\sqrt{x^{2}+y^{2}} y^{2} a_{3}+b_{2} \sqrt{x^{2}+y^{2}} y^{2} \tag{6E}\\
& +2 x^{3} a_{3}+x^{3} b_{2}-2 x^{2} y a_{2}+2 x^{2} y b_{3}+x y^{2} a_{3}-y^{3} a_{2}+y^{3} b_{3} \\
& -\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}+x^{2} b_{1}-x y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}+2\left(x^{2}+y^{2}\right) x a_{3}+\left(x^{2}+y^{2}\right) x b_{2}-\left(x^{2}+y^{2}\right) y a_{2} \\
& +2\left(x^{2}+y^{2}\right) y b_{3}-\sqrt{x^{2}+y^{2}} x^{2} a_{3}-\sqrt{x^{2}+y^{2}} x^{2} b_{2} \tag{6E}\\
& +2 \sqrt{x^{2}+y^{2}} x y a_{2}-2 \sqrt{x^{2}+y^{2}} x y b_{3}+\sqrt{x^{2}+y^{2}} y^{2} a_{3} \\
& +b_{2} \sqrt{x^{2}+y^{2}} y^{2}-x^{2} y a_{2}-x y^{2} a_{3}-x y^{2} b_{2}-y^{3} b_{3}+\left(x^{2}+y^{2}\right) b_{1} \\
& -\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}-x y a_{1}-y^{2} b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{3} a_{3}+x^{3} b_{2}-2 \sqrt{x^{2}+y^{2}} x^{2} a_{3}-\sqrt{x^{2}+y^{2}} x^{2} b_{2}-2 x^{2} y a_{2}+2 x^{2} y b_{3} \\
& +2 \sqrt{x^{2}+y^{2}} x y a_{2}-2 \sqrt{x^{2}+y^{2}} x y b_{3}+x y^{2} a_{3}+b_{2} \sqrt{x^{2}+y^{2}} y^{2} \\
& \quad-y^{3} a_{2}+y^{3} b_{3}+x^{2} b_{1}-\sqrt{x^{2}+y^{2}} x b_{1}-x y a_{1}+\sqrt{x^{2}+y^{2}} y a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{1}^{2} v_{2} a_{2}+2 v_{3} v_{1} v_{2} a_{2}-v_{2}^{3} a_{2}+2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+v_{1} v_{2}^{2} a_{3}+v_{1}^{3} b_{2}-v_{3} v_{1}^{2} b_{2} \tag{7E}\\
& +b_{2} v_{3} v_{2}^{2}+2 v_{1}^{2} v_{2} b_{3}-2 v_{3} v_{1} v_{2} b_{3}+v_{2}^{3} b_{3}-v_{1} v_{2} a_{1}+v_{3} v_{2} a_{1}+v_{1}^{2} b_{1}-v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{3}+b_{2}\right) v_{1}^{3}+\left(-2 a_{2}+2 b_{3}\right) v_{1}^{2} v_{2}+\left(-2 a_{3}-b_{2}\right) v_{1}^{2} v_{3}+v_{1}^{2} b_{1}+v_{1} v_{2}^{2} a_{3} \tag{8E}\\
& \quad+\left(2 a_{2}-2 b_{3}\right) v_{1} v_{2} v_{3}-v_{1} v_{2} a_{1}-v_{3} v_{1} b_{1}+\left(b_{3}-a_{2}\right) v_{2}^{3}+b_{2} v_{3} v_{2}^{2}+v_{3} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
2 a_{2}-2 b_{3} & =0 \\
-2 a_{3}-b_{2} & =0 \\
2 a_{3}+b_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{-x+\sqrt{x^{2}+y^{2}}}{y}\right)(x) \\
& =\frac{x^{2}-\sqrt{x^{2}+y^{2}} x+y^{2}}{y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}-\sqrt{x^{2}+y^{2}} x+y^{2}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)-\frac{x \ln \left(\frac{2 x^{2}+2 \sqrt{x^{2}} \sqrt{x^{2}+y^{2}}}{y}\right)}{\sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x+\sqrt{x^{2}+y^{2}}}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{\sqrt{x^{2}+y^{2}}+x}{x \sqrt{x^{2}+y^{2}}} \\
S_{y} & =\frac{2 x^{2}+y^{2}+2 \sqrt{x^{2}+y^{2}} x}{y \sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\sqrt{x^{2}+y^{2}} x+x^{2}+y^{2}}{x \sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\ln (2)}{2}+\frac{\ln \left(2 \mathrm{e}^{c_{1}}+2 x\right)}{2}+\frac{c_{1}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-x+\sqrt{x^{2}+y^{2}}}{y}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow-\infty$ -
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \pm$
		$\rightarrow \rightarrow \rightarrow \infty$ -
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
	$S=2 \ln (y)-\ln (2)-\ln$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ } \rightarrow+\infty$
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$
-1: $x^{\text {a }}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\ln (2)}{2}+\frac{\ln \left(2 \mathrm{e}^{c_{1}}+2 x\right)}{2}+\frac{c_{1}}{2}} \tag{1}
\end{equation*}
$$

Figure 276: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln (2)}{2}+\frac{\ln \left(2 \mathrm{e}^{c_{1}}+2 x\right)}{2}+\frac{c_{1}}{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = y(x)/x, y(x)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

```
dsolve(x+y(x)*diff(y(x),x) = (x^2+y(x)^2)^(1/2),y(x), singsol=all)
```

$$
\frac{-y(x)^{2} c_{1}+\sqrt{x^{2}+y(x)^{2}}+x}{y(x)^{2}}=0
$$

Solution by Mathematica
Time used: 0.402 (sec). Leaf size: 57
DSolve[x+y[x]*y'[x]==($\left(x^{\wedge} 2+y[x] \sim 2\right)^{\wedge}(1 / 2), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-e^{\frac{c_{1}}{2}} \sqrt{2 x+e^{c_{1}}} \\
& y(x) \rightarrow e^{\frac{c_{1}}{2}} \sqrt{2 x+e^{c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.15 problem 15

5.15.1 Solving as homogeneousTypeD2 ode 1127
5.15.2 Solving as first order ode lie symmetry calculated ode 1129
5.15.3 Solving as exact ode . 1135

Internal problem ID [93]
Internal file name [DUTPUT/93_Sunday_June_05_2022_01_34_37_AM_70160291/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 15 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y(3 x+y)+x(x+y) y^{\prime}=0
$$

5.15.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x(3 x+u(x) x)+x(x+u(x) x)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u(u+2)}{x(u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{u(u+2)}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u+2)}{u+1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{u(u+2)}{u+1}} d u & =\int-\frac{2}{x} d x \\
\frac{\ln (u(u+2))}{2} & =-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u(u+2)}=\mathrm{e}^{-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u(u+2)}=\frac{c_{3}}{x^{2}}
$$

Which simplifies to

$$
\sqrt{u(x)(u(x)+2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

The solution is

$$
\sqrt{u(x)(u(x)+2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y\left(\frac{y}{x}+2\right)}{x}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}} \\
\sqrt{\frac{y(y+2 x)}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y(y+2 x)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 277: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y(y+2 x)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Verified OK.

5.15.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y(3 x+y)}{x(x+y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(3 x+y)\left(b_{3}-a_{2}\right)}{x(x+y)}-\frac{y^{2}(3 x+y)^{2} a_{3}}{x^{2}(x+y)^{2}} \\
& -\left(-\frac{3 y}{x(x+y)}+\frac{y(3 x+y)}{x^{2}(x+y)}+\frac{y(3 x+y)}{x(x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3 x+y}{x(x+y)}-\frac{y}{x(x+y)}+\frac{y(3 x+y)}{x(x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{4 x^{4} b_{2}+4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}-12 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}-2 x^{2} y^{2} b_{3}-8 x y^{3} a_{3}-2 y^{4} a_{3}+3 x^{3} b_{1}-3 x^{2} y a_{1}+2 x^{2} y b_{1}}{x^{2}(x+y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{4} b_{2}+4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}-12 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}-2 x^{2} y^{2} b_{3}-8 x y^{3} a_{3} \tag{6E}\\
& \quad-2 y^{4} a_{3}+3 x^{3} b_{1}-3 x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{2} v_{2}^{2}-12 a_{3} v_{1}^{2} v_{2}^{2}-8 a_{3} v_{1} v_{2}^{3}-2 a_{3} v_{2}^{4}+4 b_{2} v_{1}^{4}+4 b_{2} v_{1}^{3} v_{2}+2 b_{2} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& \quad-2 b_{3} v_{1}^{2} v_{2}^{2}-3 a_{1} v_{1}^{2} v_{2}-2 a_{1} v_{1} v_{2}^{2}-a_{1} v_{2}^{3}+3 b_{1} v_{1}^{3}+2 b_{1} v_{1}^{2} v_{2}+b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{4}+4 b_{2} v_{1}^{3} v_{2}+3 b_{1} v_{1}^{3}+\left(2 a_{2}-12 a_{3}+2 b_{2}-2 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(-3 a_{1}+2 b_{1}\right) v_{1}^{2} v_{2}-8 a_{3} v_{1} v_{2}^{3}+\left(-2 a_{1}+b_{1}\right) v_{1} v_{2}^{2}-2 a_{3} v_{2}^{4}-a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a_{1} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
3 b_{1} & =0 \\
4 b_{2} & =0 \\
-3 a_{1}+2 b_{1} & =0 \\
-2 a_{1}+b_{1} & =0 \\
2 a_{2}-12 a_{3}+2 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(3 x+y)}{x(x+y)}\right)(x) \\
& =\frac{4 y x+2 y^{2}}{x+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 y x+2 y^{2}}{x+y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(2 x+y))}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(3 x+y)}{x(x+y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{4 x+2 y} \\
S_{y} & =\frac{x+y}{2 y(2 x+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{4}+\frac{\ln (y+2 x)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{4}+\frac{\ln (y+2 x)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(3 x+y)}{x(x+y)}$		$\frac{d S}{d R}=-\frac{1}{2 R}$
		$\cdots \rightarrow \infty$
		2
	$R=x$	\rightarrow
	$\ln (y), \quad \ln (2 x+y)$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-4} \rightarrow$
	$S=\frac{\ln (y)}{4}+\frac{\ln (2 x+y)}{4}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
$\bigcirc x^{4}$	4	$\rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow-1$ ¢
		为 ${ }_{\text {a }}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{4}+\frac{\ln (y+2 x)}{4}=-\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 278: Slope field plot

Verification of solutions

$$
\frac{\ln (y)}{4}+\frac{\ln (y+2 x)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.

5.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(x+y)) \mathrm{d} y & =(-y(3 x+y)) \mathrm{d} x \\
(y(3 x+y)) \mathrm{d} x+(x(x+y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y(3 x+y) \\
N(x, y) & =x(x+y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y(3 x+y)) \\
& =3 x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(x+y)) \\
& =2 x+y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x(x+y)}((3 x+2 y)-(2 x+y)) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x(y(3 x+y)) \\
& =y(3 x+y) x
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x(x(x+y)) \\
& =x^{2}(x+y)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(y(3 x+y) x)+\left(x^{2}(x+y)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y(3 x+y) x \mathrm{~d} x \\
\phi & =\frac{y x^{2}(2 x+y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x^{2}(2 x+y)}{2}+\frac{y x^{2}}{2}+f^{\prime}(y) \tag{4}\\
& =x^{2}(x+y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}(x+y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}(x+y)=x^{2}(x+y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y x^{2}(2 x+y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y x^{2}(2 x+y)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y x^{2}(y+2 x)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 279: Slope field plot

Verification of solutions

$$
\frac{y x^{2}(y+2 x)}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 59

```
dsolve(y(x)*(3*x+y(x))+x*(x+y(x))*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}}{c_{1} x} \\
& y(x)=\frac{-c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}}{c_{1} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.607 (sec). Leaf size: 93
DSolve $\left[y[x] *(3 * x+y[x])+x *(x+y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{2}+\sqrt{x^{4}+e^{2 c_{1}}}}{x} \\
& y(x) \rightarrow-x+\frac{\sqrt{x^{4}+e^{2 c_{1}}}}{x} \\
& y(x) \rightarrow-\frac{\sqrt{x^{4}}+x^{2}}{x} \\
& y(x) \rightarrow \frac{\sqrt{x^{4}}}{x}-x
\end{aligned}
$$

5.16 problem 16

5.16.1 Solving as homogeneousTypeC ode 1141
5.16.2 Solving as first order ode lie symmetry lookup ode 1143

Internal problem ID [94]
Internal file name [DUTPUT/94_Sunday_June_05_2022_01_34_38_AM_14516920/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeC", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _dAlembert]

$$
y^{\prime}-\sqrt{1+x+y}=0
$$

5.16.1 Solving as homogeneousTypeC ode

Let

$$
\begin{equation*}
z=1+x+y \tag{1}
\end{equation*}
$$

Then

$$
z^{\prime}(x)=1+y^{\prime}
$$

Therefore

$$
y^{\prime}=z^{\prime}(x)-1
$$

Hence the given ode can now be written as

$$
z^{\prime}(x)-1=\sqrt{z}
$$

This is separable first order ode. Integrating

$$
\begin{aligned}
\int d x & =\int \frac{1}{\sqrt{z}+1} d z \\
x+c_{1} & =2 \sqrt{z}+\ln (-1+\sqrt{z})-\ln (\sqrt{z}+1)-\ln (z-1)
\end{aligned}
$$

Replacing z back by its value from (1) then the above gives the solution as

$$
2 \sqrt{1+x+y}+\ln (-1+\sqrt{1+x+y})-\ln (\sqrt{1+x+y}+1)-\ln (x+y)=x+c_{1}
$$

Summary

The solution(s) found are the following

$$
2 \sqrt{1+x+y}+\ln (-1+\sqrt{1+x+y})-\ln (\sqrt{1+x+y}+1)-\ln (x+y)=x+\left(\mathrm{d}_{1}\right)
$$

Figure 280: Slope field plot

Verification of solutions

$$
2 \sqrt{1+x+y}+\ln (-1+\sqrt{1+x+y})-\ln (\sqrt{1+x+y}+1)-\ln (x+y)=x+c_{1}
$$

Verified OK.

5.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\sqrt{x+y+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 206: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=1 \\
& \eta(x, y)=-1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{-1}{1} \\
& =-1
\end{aligned}
$$

This is easily solved to give

$$
y=-x+c_{1}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=x+y
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =x
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\sqrt{x+y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =1 \\
S_{x} & =1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{x+y+1}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R+1}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \sqrt{R+1}+\ln (-1+\sqrt{R+1})-\ln (\sqrt{R+1}+1)-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x=2 \sqrt{1+x+y}+\ln (-1+\sqrt{1+x+y})-\ln (\sqrt{1+x+y}+1)-\ln (x+y)+c_{1}
$$

Which simplifies to

$$
x=2 \sqrt{1+x+y}+\ln (-1+\sqrt{1+x+y})-\ln (\sqrt{1+x+y}+1)-\ln (x+y)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-2 \operatorname{LambertW}\left(-\mathrm{e}^{-\frac{x}{2}-1+\frac{c_{1}}{2}}\right)-x-2+c_{1}}-2 \mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-\frac{x}{2}-1+\frac{c_{1}}{2}}\right)-\frac{x}{2}-1+\frac{c_{1}}{2}}-x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 \operatorname{LambertW}\left(-\mathrm{e}^{-\frac{x}{2}-1+\frac{c_{1}}{2}}\right)-x-2+c_{1}}-2 \mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-\frac{x}{2}-1+\frac{c_{1}}{2}}\right)-\frac{x}{2}-1+\frac{c_{1}}{2}}-x \tag{1}
\end{equation*}
$$

Figure 281: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 \operatorname{LambertW}\left(-\mathrm{e}^{-\frac{x}{2}-1+\frac{c_{1}}{2}}\right)-x-2+c_{1}}-2 \mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-\frac{x}{2}-1+\frac{c_{1}}{2}}\right)-\frac{x}{2}-1+\frac{c_{1}}{2}}-x
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = -1, y(x)` *** Sublevel 2
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 44

```
dsolve(diff(y(x),x) = (1+x+y(x))^(1/2),y(x), singsol=all)
```

$$
\begin{aligned}
& x-2 \sqrt{1+x+y(x)}-\ln (-1+\sqrt{1+x+y(x)}) \\
& +\ln (1+\sqrt{1+x+y(x)})+\ln (x+y(x))-c_{1}=0
\end{aligned}
$$

Solution by Mathematica
Time used: 9.342 (sec). Leaf size: 56
DSolve[y'[x] == (1+x+y[x])~(1/2),y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow W\left(-e^{\frac{1}{2}\left(-x-3-c_{1}\right)}\right)^{2}+2 W\left(-e^{\frac{1}{2}\left(-x-3-c_{1}\right)}\right)-x \\
& y(x) \rightarrow-x
\end{aligned}
$$

5.17 problem 17

5.17.1 Solving as homogeneousTypeC ode 1149
5.17.2 Solving as first order ode lie symmetry lookup ode 1151
5.17.3 Solving as riccati ode . 1155

Internal problem ID [95]
Internal file name [OUTPUT/95_Sunday_June_05_2022_01_34_41_AM_1305094/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _Riccati]

$$
y^{\prime}-(4 x+y)^{2}=0
$$

5.17.1 Solving as homogeneousTypeC ode

Let

$$
\begin{equation*}
z=4 x+y \tag{1}
\end{equation*}
$$

Then

$$
z^{\prime}(x)=4+y^{\prime}
$$

Therefore

$$
y^{\prime}=z^{\prime}(x)-4
$$

Hence the given ode can now be written as

$$
z^{\prime}(x)-4=z^{2}
$$

This is separable first order ode. Integrating

$$
\begin{aligned}
\int d x & =\int \frac{1}{z^{2}+4} d z \\
x+c_{1} & =\frac{\arctan \left(\frac{z}{2}\right)}{2}
\end{aligned}
$$

Replacing z back by its value from (1) then the above gives the solution as

$$
\begin{aligned}
& y=-4 x+2 \tan \left(2 x+2 c_{1}\right) \\
& y=-4 x+2 \tan \left(2 x+2 c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 282: Slope field plot
Verification of solutions

$$
y=-4 x+2 \tan \left(2 x+2 c_{1}\right)
$$

Verified OK.

5.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=(4 x+y)^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 208: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=1 \\
& \eta(x, y)=-4 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{-4}{1} \\
& =-4
\end{aligned}
$$

This is easily solved to give

$$
y=-4 x+c_{1}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=4 x+y
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =x
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=(4 x+y)^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =4 \\
R_{y} & =1 \\
S_{x} & =1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{4+(4 x+y)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}+4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\arctan \left(\frac{R}{2}\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x=\frac{\arctan \left(2 x+\frac{y}{2}\right)}{2}+c_{1}
$$

Which simplifies to

$$
x=\frac{\arctan \left(2 x+\frac{y}{2}\right)}{2}+c_{1}
$$

Which gives

$$
y=-4 x-2 \tan \left(-2 x+2 c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=(4 x+y)^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}+4}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		\rightarrow
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$\operatorname{tax}_{4}+1+1+1+1$		\rightarrow
	$R=4 x+y$	\cdots
	$S=x$	
		$\xrightarrow{-\infty \rightarrow \rightarrow \rightarrow+}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-4 x-2 \tan \left(-2 x+2 c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 283: Slope field plot

Verification of solutions

$$
y=-4 x-2 \tan \left(-2 x+2 c_{1}\right)
$$

Verified OK.

5.17.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =(4 x+y)^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=16 x^{2}+8 y x+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=16 x^{2}, f_{1}(x)=8 x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =8 x \\
f_{2}^{2} f_{0} & =16 x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-8 x u^{\prime}(x)+16 x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{2 x^{2}}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The above shows that

$$
u^{\prime}(x)=2 \mathrm{e}^{2 x^{2}}\left(2 \cos (2 x) c_{1} x+2 \sin (2 x) c_{2} x+c_{2} \cos (2 x)-c_{1} \sin (2 x)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{2\left(2 \cos (2 x) c_{1} x+2 \sin (2 x) c_{2} x+c_{2} \cos (2 x)-c_{1} \sin (2 x)\right)}{c_{1} \cos (2 x)+c_{2} \sin (2 x)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-4 c_{3} x-2\right) \cos (2 x)-4 \sin (2 x)\left(x-\frac{c_{3}}{2}\right)}{c_{3} \cos (2 x)+\sin (2 x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-4 c_{3} x-2\right) \cos (2 x)-4 \sin (2 x)\left(x-\frac{c_{3}}{2}\right)}{c_{3} \cos (2 x)+\sin (2 x)} \tag{1}
\end{equation*}
$$

Figure 284: Slope field plot

Verification of solutions

$$
y=\frac{\left(-4 c_{3} x-2\right) \cos (2 x)-4 \sin (2 x)\left(x-\frac{c_{3}}{2}\right)}{c_{3} \cos (2 x)+\sin (2 x)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = -4, y(x)` *** Sublevel 2
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

```
dsolve(diff(y(x),x) = (4*x+y(x))^2,y(x), singsol=all)
```

$$
y(x)=-4 x-2 \tan \left(-2 x+2 c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 41
DSolve[y'[x] == (4*x+y[x])~2,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-4 x+\frac{1}{c_{1} e^{4 i x}-\frac{i}{4}}-2 i \\
& y(x) \rightarrow-4 x-2 i
\end{aligned}
$$

5.18 problem 18

5.18.1 Solving as quadrature ode . 1159
5.18.2 Maple step by step solution . 1160

Internal problem ID [96]
Internal file name [OUTPUT/96_Sunday_June_05_2022_01_34_42_AM_93737581/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
(x+y) y^{\prime}=0
$$

5.18.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$

Figure 285: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

5.18.2 Maple step by step solution

Let's solve
$(x+y) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int(x+y) y^{\prime} d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int(x+y) y^{\prime} d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve((x+y(x))*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-x \\
& y(x)=c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 14
DSolve $[(x+y[x]) * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x \\
& y(x) \rightarrow c_{1}
\end{aligned}
$$

5.19 problem 19

5.19.1 Solving as first order ode lie symmetry lookup ode 1162
5.19.2 Solving as bernoulli ode . 1166

Internal problem ID [97]
Internal file name [DUTPUT/97_Sunday_June_05_2022_01_34_42_AM_28173696/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
2 y x+y^{\prime} x^{2}-5 y^{3}=0
$$

5.19.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y\left(5 y^{2}-2 x\right)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 211: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{3} x^{4} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{3} x^{4}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2 x^{4} y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(5 y^{2}-2 x\right)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{x^{5} y^{2}} \\
S_{y} & =\frac{1}{y^{3} x^{4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{5}{x^{6}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{5}{R^{6}}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R^{5}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
-\frac{1}{2 x^{4} y^{2}}=-\frac{1}{x^{5}}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{2 x^{4} y^{2}}=-\frac{1}{x^{5}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(5 y^{2}-2 x\right)}{x^{2}}$		$\frac{d S}{d R}=\frac{5}{R^{6}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	
\rightarrow 为 \rightarrow 为	1	
1 为	$S=-\overline{2 x^{4} y^{2}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
－		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow}{ }^{\text {a }}$
\pm		
！！！		

Summary

The solution（s）found are the following

$$
\begin{equation*}
-\frac{1}{2 x^{4} y^{2}}=-\frac{1}{x^{5}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 286: Slope field plot
Verification of solutions

$$
-\frac{1}{2 x^{4} y^{2}}=-\frac{1}{x^{5}}+c_{1}
$$

Verified OK.

5.19.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(5 y^{2}-2 x\right)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2}{x} y+\frac{5}{x^{2}} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2}{x} \\
f_{1}(x) & =\frac{5}{x^{2}} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{2}{x y^{2}}+\frac{5}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{2 w(x)}{x}+\frac{5}{x^{2}} \\
w^{\prime} & =\frac{4 w}{x}-\frac{10}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=-\frac{10}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{4 w(x)}{x}=-\frac{10}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{10}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{4}}\right) & =\left(\frac{1}{x^{4}}\right)\left(-\frac{10}{x^{2}}\right) \\
\mathrm{d}\left(\frac{w}{x^{4}}\right) & =\left(-\frac{10}{x^{6}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{4}}=\int-\frac{10}{x^{6}} \mathrm{~d} x \\
& \frac{w}{x^{4}}=\frac{2}{x^{5}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{4}}$ results in

$$
w(x)=\frac{2}{x}+c_{1} x^{4}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\frac{2}{x}+c_{1} x^{4}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2} \\
& y(x)=-\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2} \tag{1}\\
& y=-\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2} \tag{2}
\end{align*}
$$

Figure 287: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2}
$$

Verified OK.

$$
y=-\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 50

```
dsolve(2*x*y(x)+x^2*diff (y(x),x) = 5*y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2} \\
& y(x)=-\frac{\sqrt{\left(c_{1} x^{5}+2\right) x}}{c_{1} x^{5}+2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.399 (sec). Leaf size: 51
DSolve[2*x*y[x]+x^2*y'[x]==5*y[x]^3,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) & \rightarrow-\frac{\sqrt{x}}{\sqrt{2+c_{1} x^{5}}} \\
y(x) & \rightarrow \frac{\sqrt{x}}{\sqrt{2+c_{1} x^{5}}} \\
y(x) & \rightarrow 0
\end{aligned}
$$

5.20 problem 20

5.20.1 Solving as separable ode . 1171
5.20.2 Solving as first order ode lie symmetry lookup ode 1173
5.20.3 Solving as bernoulli ode . 1177
5.20.4 Solving as exact ode . 1181
5.20.5 Maple step by step solution . 1185

Internal problem ID [98]
Internal file name [OUTPUT/98_Sunday_June_05_2022_01_34_43_AM_69592259/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 x y^{3}+y^{2} y^{\prime}=6 x
$$

5.20.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{2 x\left(y^{3}-3\right)}{y^{2}}
\end{aligned}
$$

Where $f(x)=-2 x$ and $g(y)=\frac{y^{3}-3}{y^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{3}-3}{y^{2}}} d y & =-2 x d x \\
\int \frac{1}{\frac{y^{3}-3}{y^{2}}} d y & =\int-2 x d x
\end{aligned}
$$

$$
\frac{\ln \left(y^{3}-3\right)}{3}=-x^{2}+c_{1}
$$

Raising both side to exponential gives

$$
\left(y^{3}-3\right)^{\frac{1}{3}}=\mathrm{e}^{-x^{2}+c_{1}}
$$

Which simplifies to

$$
\left(y^{3}-3\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-x^{2}}
$$

The solution is

$$
\left(y^{3}-3\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-x^{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(y^{3}-3\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-x^{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 288: Slope field plot

Verification of solutions

$$
\left(y^{3}-3\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-x^{2}+c_{1}}
$$

Verified OK.

5.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 x\left(y^{3}-3\right)}{y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 213: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x y^{n}}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{2 x}} d x
\end{aligned}
$$

Which results in

$$
S=-x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x\left(y^{3}-3\right)}{y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{2}}{y^{3}-3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{2}}{R^{3}-3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{3}-3\right)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x^{2}=\frac{\ln \left(y^{3}-3\right)}{3}+c_{1}
$$

Which simplifies to

$$
-x^{2}=\frac{\ln \left(y^{3}-3\right)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x\left(y^{3}-3\right)}{y^{2}}$		$\frac{d S}{d R}=\frac{R^{2}}{R^{3}-3}$
		为
	$R=y$	-
	$S=-x^{2}$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow$
		连
d		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-x^{2}=\frac{\ln \left(y^{3}-3\right)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 289: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
-x^{2}=\frac{\ln \left(y^{3}-3\right)}{3}+c_{1}
$$

Verified OK.

5.20.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{2 x\left(y^{3}-3\right)}{y^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-2 x y+6 x \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-2 x \\
f_{1}(x) & =6 x \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=-2 x y^{3}+6 x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =-2 w(x) x+6 x \\
w^{\prime} & =-6 w x+18 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =6 x \\
q(x) & =18 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+6 w(x) x=18 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 6 x d x} \\
& =\mathrm{e}^{3 x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(18 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{3 x^{2}} w\right) & =\left(\mathrm{e}^{3 x^{2}}\right)(18 x) \\
\mathrm{d}\left(\mathrm{e}^{3 x^{2}} w\right) & =\left(18 x \mathrm{e}^{3 x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 x^{2}} w=\int 18 x \mathrm{e}^{3 x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{3 x^{2}} w=3 \mathrm{e}^{3 x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 x^{2}}$ results in

$$
w(x)=3 \mathrm{e}^{-3 x^{2}} \mathrm{e}^{3 x^{2}}+c_{1} \mathrm{e}^{-3 x^{2}}
$$

which simplifies to

$$
w(x)=3+c_{1} \mathrm{e}^{-3 x^{2}}
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=3+c_{1} \mathrm{e}^{-3 x^{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}} \\
& y(x)=\frac{\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \\
& y(x)=-\frac{\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}} \tag{1}\\
& y=\frac{\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \tag{2}\\
& y=-\frac{\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \tag{3}
\end{align*}
$$

Figure 290: Slope field plot

Verification of solutions

$$
y=\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}}
$$

Verified OK.

$$
y=\frac{\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
$$

Verified OK.

$$
y=-\frac{\left(3+c_{1} \mathrm{e}^{-3 x^{2}}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
$$

Verified OK.

5.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y^{2}}{2\left(y^{3}-3\right)}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{y^{2}}{2\left(y^{3}-3\right)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{y^{2}}{2\left(y^{3}-3\right)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y^{2}}{2\left(y^{3}-3\right)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y^{2}}{2\left(y^{3}-3\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y^{2}}{2\left(y^{3}-3\right)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y^{2}}{2\left(y^{3}-3\right)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y^{2}}{2 y^{3}-6}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln \left(y^{3}-3\right)}{6}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln \left(y^{3}-3\right)}{6}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln \left(y^{3}-3\right)}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\frac{\ln \left(y^{3}-3\right)}{6}=c_{1} \tag{1}
\end{equation*}
$$

Figure 291: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}-\frac{\ln \left(y^{3}-3\right)}{6}=c_{1}
$$

Verified OK.

5.20.5 Maple step by step solution

Let's solve

$$
2 x y^{3}+y^{2} y^{\prime}=6 x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{2} y^{\prime}}{y^{3}-3}=-2 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{2} y^{\prime}}{y^{3}-3} d x=\int-2 x d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln \left(y^{3}-3\right)}{3}=-x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\left(3+\mathrm{e}^{-3 x^{2}+3 c_{1}}\right)^{\frac{1}{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 66
dsolve($2 * x * y(x) \sim 3+y(x) \sim 2 * \operatorname{diff}(y(x), x)=6 * x, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\left(\mathrm{e}^{-3 x^{2}} c_{1}+3\right)^{\frac{1}{3}} \\
& y(x)=-\frac{\left(\mathrm{e}^{-3 x^{2}} c_{1}+3\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \\
& y(x)=\frac{\left(\mathrm{e}^{-3 x^{2}} c_{1}+3\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.937 (sec). Leaf size: 115
DSolve $[2 * x * y[x] \sim 3+y[x] \sim 2 * y '[x]==6 * x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \sqrt[3]{3+e^{-3 x^{2}+3 c_{1}}} \\
& y(x) \rightarrow-\sqrt[3]{-1} \sqrt[3]{3+e^{-3 x^{2}+3 c_{1}}} \\
& y(x) \rightarrow(-1)^{2 / 3} \sqrt[3]{3+e^{-3 x^{2}+3 c_{1}}} \\
& y(x) \rightarrow-\sqrt[3]{-3} \\
& y(x) \rightarrow \sqrt[3]{3} \\
& y(x) \rightarrow(-1)^{2 / 3} \sqrt[3]{3}
\end{aligned}
$$

5.21 problem 21

5.21.1 Solving as quadrature ode . 1187
5.21.2 Maple step by step solution . 1188

Internal problem ID [99]
Internal file name [OUTPUT/99_Sunday_June_05_2022_01_34_44_AM_997980/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{3}-y=0
$$

5.21.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{3}+y} d y & =\int d x \\
\ln (y)-\frac{\ln \left(y^{2}+1\right)}{2} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y)-\frac{\ln \left(y^{2}+1\right)}{2}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{y}{\sqrt{y^{2}+1}}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{x} \sqrt{-\frac{1}{c_{2}^{2} \mathrm{e}^{2 x}-1}} \tag{1}
\end{equation*}
$$

Figure 292: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{x} \sqrt{-\frac{1}{c_{2}^{2} \mathrm{e}^{2 x}-1}}
$$

Verified OK.

5.21.2 Maple step by step solution

Let's solve
$y^{\prime}-y^{3}-y=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{3}+y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{3}+y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)-\frac{\ln \left(1+y^{2}\right)}{2}=x+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{-\left(\mathrm{e}^{2 x+2 c_{1}}-1\right) \mathrm{e}^{2 x+2 c_{1}}}}{\mathrm{e}^{2 x+2 c_{1}}-1}, y=-\frac{\sqrt{-\left(\mathrm{e}^{2 x+2 c_{1}}-1\right) \mathrm{e}^{2 x+2 c_{1}}}}{\mathrm{e}^{2 x+2 c_{1}}-1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x) = y(x)+y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{\mathrm{e}^{-2 x} c_{1}-1}} \\
& y(x)=-\frac{1}{\sqrt{\mathrm{e}^{-2 x} c_{1}-1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 60.06 (sec). Leaf size: 57
DSolve[y'[x] == $y[x]+y[x] \sim 3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{i e^{x+c_{1}}}{\sqrt{-1+e^{2\left(x+c_{1}\right)}}} \\
& y(x) \rightarrow \frac{i e^{x+c_{1}}}{\sqrt{-1+e^{2\left(x+c_{1}\right)}}}
\end{aligned}
$$

5.22 problem 22

5.22.1 Solving as first order ode lie symmetry lookup ode 1190
5.22.2 Solving as bernoulli ode . 1194

Internal problem ID [100]
Internal file name [OUTPUT/100_Sunday_June_05_2022_01_34_48_AM_80663676/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
2 y x+y^{\prime} x^{2}-5 y^{4}=0
$$

5.22.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y\left(5 y^{3}-2 x\right)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 217: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{4} x^{6} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{4} x^{6}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{3 x^{6} y^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(5 y^{3}-2 x\right)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{x^{7} y^{3}} \\
S_{y} & =\frac{1}{y^{4} x^{6}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{5}{x^{8}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{5}{R^{8}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{5}{7 R^{7}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{3 x^{6} y^{3}}=-\frac{5}{7 x^{7}}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{3 x^{6} y^{3}}=-\frac{5}{7 x^{7}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(5 y^{3}-2 x\right)}{x^{2}}$		$\frac{d S}{d R}=\frac{5}{R^{8}}$
$\uparrow \uparrow \uparrow$		$\rightarrow \rightarrow \rightarrow$ 促
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$		
	$S=-\frac{1}{3 x^{6} y^{3}}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}{ }_{\text {a }}$
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{3 x^{6} y^{3}}=-\frac{5}{7 x^{7}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 293: Slope field plot
Verification of solutions

$$
-\frac{1}{3 x^{6} y^{3}}=-\frac{5}{7 x^{7}}+c_{1}
$$

Verified OK.

5.22.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(5 y^{3}-2 x\right)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2}{x} y+\frac{5}{x^{2}} y^{4} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2}{x} \\
f_{1}(x) & =\frac{5}{x^{2}} \\
n & =4
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{4}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{4}}=-\frac{2}{x y^{3}}+\frac{5}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{y^{4}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{3} & =-\frac{2 w(x)}{x}+\frac{5}{x^{2}} \\
w^{\prime} & =\frac{6 w}{x}-\frac{15}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{6}{x} \\
& q(x)=-\frac{15}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{6 w(x)}{x}=-\frac{15}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{6}{x} d x} \\
& =\frac{1}{x^{6}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{15}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{6}}\right) & =\left(\frac{1}{x^{6}}\right)\left(-\frac{15}{x^{2}}\right) \\
\mathrm{d}\left(\frac{w}{x^{6}}\right) & =\left(-\frac{15}{x^{8}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{6}}=\int-\frac{15}{x^{8}} \mathrm{~d} x \\
& \frac{w}{x^{6}}=\frac{15}{7 x^{7}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{6}}$ results in

$$
w(x)=\frac{15}{7 x}+c_{1} x^{6}
$$

Replacing w in the above by $\frac{1}{y^{3}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{3}}=\frac{15}{7 x}+c_{1} x^{6}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}}{7 c_{1} x^{7}+15} \\
& y(x)=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{14 c_{1} x^{7}+30} \\
& y(x)=-\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{14 c_{1} x^{7}+30}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}}{7 c_{1} x^{7}+15} \tag{1}\\
& y=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{14 c_{1} x^{7}+30} \tag{2}\\
& y=-\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{14 c_{1} x^{7}+30} \tag{3}
\end{align*}
$$

Figure 294: Slope field plot

Verification of solutions

$$
y=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}}{7 c_{1} x^{7}+15}
$$

Verified OK.

$$
y=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{14 c_{1} x^{7}+30}
$$

Verified OK.

$$
y=-\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{14 c_{1} x^{7}+30}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 111

```
dsolve(2*x*y(x)+x^2*diff(y(x),x) = 5*y(x)^4,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}}{7 c_{1} x^{7}+15} \\
& y(x)=-\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{14 c_{1} x^{7}+30} \\
& y(x)=\frac{7^{\frac{1}{3}}\left(x\left(7 c_{1} x^{7}+15\right)^{2}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{14 c_{1} x^{7}+30}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.454 (sec). Leaf size: 96
DSolve[2*x*y[x]+x^2*y'[x]==5*y[x]^4,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt[3]{-7} \sqrt[3]{x}}{\sqrt[3]{15+7 c_{1} x^{7}}} \\
& y(x) \rightarrow \frac{\sqrt[3]{7} \sqrt[3]{x}}{\sqrt[3]{15+7 c_{1} x^{7}}} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3} \sqrt[3]{7} \sqrt[3]{x}}{\sqrt[3]{15+7 c_{1} x^{7}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.23 problem 23

5.23.1 Solving as first order ode lie symmetry lookup ode 1200
5.23.2 Solving as bernoulli ode . 1204

Internal problem ID [101]
Internal file name [OUTPUT/101_Sunday_June_05_2022_01_34_49_AM_42528764/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
6 y+y^{\prime} x-3 x y^{\frac{4}{3}}=0
$$

5.23.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3\left(-x y^{\frac{4}{3}}+2 y\right)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 219: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{\frac{4}{3}} x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{\frac{4}{3}} x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{3}{y^{\frac{1}{3}} x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3\left(-x y^{\frac{4}{3}}+2 y\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{6}{y^{\frac{1}{3}} x^{3}} \\
S_{y} & =\frac{1}{y^{\frac{4}{3}} x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3}{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{3}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{3}{y^{\frac{1}{3}} x^{2}}=-\frac{3}{x}+c_{1}
$$

Which simplifies to

$$
-\frac{3}{y^{\frac{1}{3}} x^{2}}=-\frac{3}{x}+c_{1}
$$

Which gives

$$
y=-\frac{27}{x^{3}\left(c_{1} x-3\right)^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{27}{x^{3}\left(c_{1} x-3\right)^{3}} \tag{1}
\end{equation*}
$$

Figure 295: Slope field plot
Verification of solutions

$$
y=-\frac{27}{x^{3}\left(c_{1} x-3\right)^{3}}
$$

Verified OK.

5.23.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{3\left(-x y^{\frac{4}{3}}+2 y\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{6}{x} y+3 y^{\frac{4}{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{6}{x} \\
f_{1}(x) & =3 \\
n & =\frac{4}{3}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\frac{4}{3}}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{\frac{4}{3}}}=-\frac{6}{x y^{\frac{1}{3}}}+3 \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{\frac{1}{3}}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{3 y^{\frac{4}{3}}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-3 w^{\prime}(x) & =-\frac{6 w(x)}{x}+3 \\
w^{\prime} & =\frac{2 w}{x}-1 \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-1
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=-1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)(-1) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =\left(-\frac{1}{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{2}} & =\int-\frac{1}{x^{2}} \mathrm{~d} x \\
\frac{w}{x^{2}} & =\frac{1}{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=c_{1} x^{2}+x
$$

Replacing w in the above by $\frac{1}{y^{\frac{1}{3}}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{\frac{1}{3}}}=c_{1} x^{2}+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{1}{y^{\frac{1}{3}}}=c_{1} x^{2}+x \tag{1}
\end{equation*}
$$

Figure 296: Slope field plot

Verification of solutions

$$
\frac{1}{y^{\frac{1}{3}}}=c_{1} x^{2}+x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve $(6 * y(x)+x * \operatorname{diff}(y(x), x)=3 * x * y(x) \sim(4 / 3), y(x)$, singsol=all)

$$
\frac{1}{y(x)^{\frac{1}{3}}}-x-c_{1} x^{2}=0
$$

\checkmark Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 22
DSolve[6*y[x] $+\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==3 * x * y[\mathrm{x}] \sim(4 / 3), \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{x^{3}\left(1+c_{1} x\right)^{3}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.24 problem 24

5.24.1 Solving as first order ode lie symmetry lookup ode 1209
5.24.2 Solving as bernoulli ode . 1213

Internal problem ID [102]
Internal file name [OUTPUT/102_Sunday_June_05_2022_01_34_50_AM_75999386/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{3} \mathrm{e}^{-2 x}+2 y^{\prime} x-2 y x=0
$$

5.24.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(y^{2}-2 x \mathrm{e}^{2 x}\right) \mathrm{e}^{-2 x}}{2 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 221: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{3} \mathrm{e}^{-2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{3} \mathrm{e}^{-2 x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\mathrm{e}^{2 x}}{2 y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(y^{2}-2 x \mathrm{e}^{2 x}\right) \mathrm{e}^{-2 x}}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{\mathrm{e}^{2 x}}{y^{2}} \\
S_{y} & =\frac{\mathrm{e}^{2 x}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\mathrm{e}^{2 x}}{2 y^{2}}=-\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{\mathrm{e}^{2 x}}{2 y^{2}}=-\frac{\ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(y^{2}-2 x \mathrm{e}^{2 x}\right) \mathrm{e}^{-2 x}}{2 x}$		$\frac{d S}{d R}=-\frac{1}{2 R}$
		$\rightarrow \rightarrow \infty$
- A A A A d		$\rightarrow \rightarrow \pm$ - 4
$y^{*}\left(x_{0}\right)^{\text {Q }}$		$\rightarrow \rightarrow-\infty$
		$\rightarrow 0$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$\mathrm{e}^{2 x}$	
	$S=-\frac{e^{2}}{2 y^{2}}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
,		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		$\rightarrow \pm$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\mathrm{e}^{2 x}}{2 y^{2}}=-\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 297: Slope field plot
Verification of solutions

$$
-\frac{\mathrm{e}^{2 x}}{2 y^{2}}=-\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.

5.24.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(y^{2}-2 x \mathrm{e}^{2 x}\right) \mathrm{e}^{-2 x}}{2 x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=y-\frac{\mathrm{e}^{-2 x}}{2 x} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =1 \\
f_{1}(x) & =-\frac{\mathrm{e}^{-2 x}}{2 x} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=\frac{1}{y^{2}}-\frac{\mathrm{e}^{-2 x}}{2 x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =w(x)-\frac{\mathrm{e}^{-2 x}}{2 x} \\
w^{\prime} & =-2 w+\frac{\mathrm{e}^{-2 x}}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =\frac{\mathrm{e}^{-2 x}}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+2 w(x)=\frac{\mathrm{e}^{-2 x}}{x}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 2 d x} \\
=\mathrm{e}^{2 x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{\mathrm{e}^{-2 x}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x} w\right) & =\left(\mathrm{e}^{2 x}\right)\left(\frac{\mathrm{e}^{-2 x}}{x}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 x} w\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 x} w=\int \frac{1}{x} \mathrm{~d} x \\
& \mathrm{e}^{2 x} w=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 x}$ results in

$$
w(x)=\mathrm{e}^{-2 x} \ln (x)+c_{1} \mathrm{e}^{-2 x}
$$

which simplifies to

$$
w(x)=\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)}} \\
& y(x)=-\frac{1}{\sqrt{\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)}} \tag{1}\\
& y=-\frac{1}{\sqrt{\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)}} \tag{2}
\end{align*}
$$

Figure 298: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{\mathrm{e}^{-2 x}\left(\ln (x)+c_{1}\right)}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
dsolve(y(x)^3/exp(2*x)+2*x*diff(y(x),x) = 2*x*y(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\left(\ln (x)+c_{1}\right) \mathrm{e}^{2 x}}}{\ln (x)+c_{1}} \\
& y(x)=\frac{\sqrt{\left(\ln (x)+c_{1}\right) \mathrm{e}^{2 x}}}{-\ln (x)-c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.342 (sec). Leaf size: 41
DSolve $\left[y[x] \wedge 3 / \operatorname{Exp}[2 * x]+2 * x * y{ }^{\prime}[x]==2 * x * y[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{e^{x}}{\sqrt{\log (x)+c_{1}}} \\
& y(x) \rightarrow \frac{e^{x}}{\sqrt{\log (x)+c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.25 problem 25

5.25.1 Solving as first order ode lie symmetry lookup ode 1218
5.25.2 Solving as bernoulli ode . 1222
5.25.3 Solving as exact ode . 1226

Internal problem ID [103]
Internal file name [OUTPUT/103_Sunday_June_05_2022_01_34_52_AM_240953/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
\sqrt{x^{4}+1} y^{2}\left(y+y^{\prime} x\right)=x
$$

5.25.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sqrt{x^{4}+1} y^{3}-x}{\sqrt{x^{4}+1} y^{2} x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 223: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{y^{2} x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y^{2} x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{3} x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sqrt{x^{4}+1} y^{3}-x}{\sqrt{x^{4}+1} y^{2} x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y^{3} x^{2} \\
S_{y} & =x^{3} y^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x^{3}}{\sqrt{x^{4}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{3}}{\sqrt{R^{4}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{R^{3}}{\sqrt{R^{4}+1}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{3} x^{3}}{3}=\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x+c_{1}
$$

Which simplifies to

$$
\frac{y^{3} x^{3}}{3}=\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\sqrt{x^{4}+1} y^{3}-x}{\sqrt{x^{4}+1 y^{2} x}}$		$\frac{d S}{d R}=\frac{R^{3}}{\sqrt{R^{4}+1}}$
	$R=x$	
	$s-y^{3} x^{3}$	
$\rightarrow \rightarrow \rightarrow \rightarrow 0 \rightarrow \infty$		
$\triangle \mathrm{arab}$		
		O_{1}

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3} x^{3}}{3}=\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x+c_{1} \tag{1}
\end{equation*}
$$

Figure 299: Slope field plot

Verification of solutions

$$
\frac{y^{3} x^{3}}{3}=\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x+c_{1}
$$

Verified OK.

5.25.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\sqrt{x^{4}+1} y^{3}-x}{\sqrt{x^{4}+1} y^{2} x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\frac{1}{\sqrt{x^{4}+1}} \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\frac{1}{\sqrt{x^{4}+1}} \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=-\frac{y^{3}}{x}+\frac{1}{\sqrt{x^{4}+1}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{x}+\frac{1}{\sqrt{x^{4}+1}} \\
w^{\prime} & =-\frac{3 w}{x}+\frac{3}{\sqrt{x^{4}+1}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{3}{\sqrt{x^{4}+1}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{3 w(x)}{x}=\frac{3}{\sqrt{x^{4}+1}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{3}{\sqrt{x^{4}+1}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} w\right) & =\left(x^{3}\right)\left(\frac{3}{\sqrt{x^{4}+1}}\right) \\
\mathrm{d}\left(x^{3} w\right) & =\left(\frac{3 x^{3}}{\sqrt{x^{4}+1}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{3} w=\int \frac{3 x^{3}}{\sqrt{x^{4}+1}} \mathrm{~d} x \\
& x^{3} w=\frac{3 \sqrt{x^{4}+1}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
w(x)=\frac{3 \sqrt{x^{4}+1}}{2 x^{3}}+\frac{c_{1}}{x^{3}}
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=\frac{3 \sqrt{x^{4}+1}}{2 x^{3}}+\frac{c_{1}}{x^{3}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}}{2 x} \\
& y(x)=\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4 x} \\
& y(x)=-\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4 x}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}}{2 x}$

$$
\begin{equation*}
y=\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4 x} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y=-\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4 x} \tag{2}
\end{equation*}
$$

Figure 300: Slope field plot

Verification of solutions

$$
y=\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}}{2 x}
$$

Verified OK.

$$
y=\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4 x}
$$

Verified OK.

$$
y=-\frac{\left(12 \sqrt{x^{4}+1}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4 x}
$$

Verified OK.

5.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\sqrt{x^{4}+1} y^{2} x\right) \mathrm{d} y & =\left(-\sqrt{x^{4}+1} y^{3}+x\right) \mathrm{d} x \\
\left(\sqrt{x^{4}+1} y^{3}-x\right) \mathrm{d} x+\left(\sqrt{x^{4}+1} y^{2} x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\sqrt{x^{4}+1} y^{3}-x \\
N(x, y) & =\sqrt{x^{4}+1} y^{2} x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\sqrt{x^{4}+1} y^{3}-x\right) \\
& =3 \sqrt{x^{4}+1} y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\sqrt{x^{4}+1} y^{2} x\right) \\
& =\frac{y^{2}\left(3 x^{4}+1\right)}{\sqrt{x^{4}+1}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{\sqrt{x^{4}+1} y^{2} x}\left(\left(3 \sqrt{x^{4}+1} y^{2}\right)-\left(\frac{2 y^{2} x^{4}}{\sqrt{x^{4}+1}}+\sqrt{x^{4}+1} y^{2}\right)\right) \\
& =\frac{2}{\left(x^{4}+1\right) x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{\left(x^{4}+1\right) x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln \left(x^{4}+1\right)}{2}+2 \ln (x)} \\
& =\frac{x^{2}}{\sqrt{x^{4}+1}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{x^{2}}{\sqrt{x^{4}+1}}\left(\sqrt{x^{4}+1} y^{3}-x\right) \\
& =-\frac{x^{2}\left(-\sqrt{x^{4}+1} y^{3}+x\right)}{\sqrt{x^{4}+1}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{x^{2}}{\sqrt{x^{4}+1}}\left(\sqrt{x^{4}+1} y^{2} x\right) \\
& =x^{3} y^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{x^{2}\left(-\sqrt{x^{4}+1} y^{3}+x\right)}{\sqrt{x^{4}+1}}\right)+\left(x^{3} y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x^{2}\left(-\sqrt{x^{4}+1} y^{3}+x\right)}{\sqrt{x^{4}+1}} \mathrm{~d} x \\
\phi & =\frac{y^{3} x^{3}}{3}-\frac{\sqrt{x^{4}+1}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{3} y^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3} y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3} y^{2}=x^{3} y^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y^{3} x^{3}}{3}-\frac{\sqrt{x^{4}+1}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y^{3} x^{3}}{3}-\frac{\sqrt{x^{4}+1}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3} x^{3}}{3}-\frac{\sqrt{x^{4}+1}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 301: Slope field plot

Verification of solutions

$$
\frac{y^{3} x^{3}}{3}-\frac{\sqrt{x^{4}+1}}{2}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 97

```
dsolve((x^4+1)^(1/2)*y(x)^2*(y(x)+x*diff (y(x),x)) = x,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\left(3\left(\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x\right)+c_{1}\right)^{\frac{1}{3}}}{x} \\
& y(x)=-\frac{\left(3\left(\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x\right)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2 x} \\
& y(x)=\frac{\left(3\left(\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x\right)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 3.932 (sec). Leaf size: 106
DSolve $\left[\left(x^{\wedge} 4+1\right)^{\wedge}(1 / 2) * y[x] \sim 2 *\left(y[x]+x * y y^{\prime}[x]\right)==x, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow \sqrt[3]{\frac{3 \sqrt{x^{4}+1}}{2 x^{3}}+\frac{c_{1}}{x^{3}}} \\
& y(x) \rightarrow-\sqrt[3]{-\frac{1}{2} \sqrt[3]{\frac{3 \sqrt{x^{4}+1}+2 c_{1}}{x^{3}}}} \\
& y(x) \rightarrow(-1)^{2 / 3} \sqrt[3]{\frac{3 \sqrt{x^{4}+1}}{2 x^{3}}+\frac{c_{1}}{x^{3}}}
\end{aligned}
$$

5.26 problem 26

5.26.1 Solving as first order ode lie symmetry lookup ode 1232
5.26.2 Solving as bernoulli ode . 1236
5.26.3 Solving as exact ode . 1240

Internal problem ID [104]
Internal file name [OUTPUT/104_Sunday_June_05_2022_01_34_54_AM_49783570/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_1st_order, _with_linear_symmetries], _Bernoulli]
```

$$
y^{3}+3 y^{2} y^{\prime}=\mathrm{e}^{-x}
$$

5.26.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y^{3}-\mathrm{e}^{-x}}{3 y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 225: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{\mathrm{e}^{-x}}{y^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\mathrm{e}^{-x}}{y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{3} \mathrm{e}^{x}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{3}-\mathrm{e}^{-x}}{3 y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y^{3} \mathrm{e}^{x}}{3} \\
S_{y} & =y^{2} \mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{3}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y^{3} \mathrm{e}^{x}}{3}=\frac{x}{3}+c_{1}
$$

Which simplifies to

$$
\frac{y^{3} \mathrm{e}^{x}}{3}=\frac{x}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{3}-\mathrm{e}^{-x}}{3 y^{2}}$		$\frac{d S}{d R}=\frac{1}{3}$
		＋i＋
		120
		，
	$R=x$	－
		＋$+\rightarrow+\rightarrow+\infty \rightarrow+\infty$
	$S-y^{3} \mathrm{e}^{x}$	边
		住迆
		过

Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{y^{3} \mathrm{e}^{x}}{3}=\frac{x}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 302: Slope field plot
Verification of solutions

$$
\frac{y^{3} \mathrm{e}^{x}}{3}=\frac{x}{3}+c_{1}
$$

Verified OK.

5.26.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{3}-\mathrm{e}^{-x}}{3 y^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{3} y+\frac{\mathrm{e}^{-x}}{3} \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{3} \\
f_{1}(x) & =\frac{\mathrm{e}^{-x}}{3} \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=-\frac{y^{3}}{3}+\frac{\mathrm{e}^{-x}}{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{3}+\frac{\mathrm{e}^{-x}}{3} \\
w^{\prime} & =-w+\mathrm{e}^{-x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\mathrm{e}^{-x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+w(x)=\mathrm{e}^{-x}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\mathrm{e}^{-x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(w \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{-x}\right) \\
\mathrm{d}\left(w \mathrm{e}^{x}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w \mathrm{e}^{x}=\int \mathrm{d} x \\
& w \mathrm{e}^{x}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
w(x)=x \mathrm{e}^{-x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
w(x)=\mathrm{e}^{-x}\left(x+c_{1}\right)
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=\mathrm{e}^{-x}\left(x+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}} \\
& y(x)=\frac{\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \\
& y(x)=-\frac{\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}} \tag{1}\\
& y=\frac{\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \tag{2}\\
& y=-\frac{\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \tag{3}
\end{align*}
$$

Figure 303: Slope field plot
Verification of solutions

$$
y=\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}}
$$

Verified OK.

$$
y=\frac{\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
$$

Verified OK.

$$
y=-\frac{\left(\mathrm{e}^{-x}\left(x+c_{1}\right)\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
$$

Verified OK.

5.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 y^{2}\right) \mathrm{d} y & =\left(-y^{3}+\mathrm{e}^{-x}\right) \mathrm{d} x \\
\left(y^{3}-\mathrm{e}^{-x}\right) \mathrm{d} x+\left(3 y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{3}-\mathrm{e}^{-x} \\
N(x, y) & =3 y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3}-\mathrm{e}^{-x}\right) \\
& =3 y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 y^{2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 y^{2}}\left(\left(3 y^{2}\right)-(0)\right) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y^{3}-\mathrm{e}^{-x}\right) \\
& =y^{3} \mathrm{e}^{x}-1
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}\left(3 y^{2}\right) \\
& =3 y^{2} \mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y^{3} \mathrm{e}^{x}-1\right)+\left(3 y^{2} \mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{3} \mathrm{e}^{x}-1 \mathrm{~d} x \\
\phi & =-x+y^{3} \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 y^{2} \mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 y^{2} \mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
3 y^{2} \mathrm{e}^{x}=3 y^{2} \mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+y^{3} \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+y^{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{3} \mathrm{e}^{x}-x=c_{1} \tag{1}
\end{equation*}
$$

Figure 304: Slope field plot

Verification of solutions

$$
y^{3} \mathrm{e}^{x}-x=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 73

```
dsolve(y(x)^3+3*y(x)^2*diff(y(x),x) = exp(-x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\mathrm{e}^{-x}\left(\left(c_{1}+x\right) \mathrm{e}^{2 x}\right)^{\frac{1}{3}} \\
& y(x)=-\frac{\left(\left(c_{1}+x\right) \mathrm{e}^{2 x}\right)^{\frac{1}{3}}(1+i \sqrt{3}) \mathrm{e}^{-x}}{2} \\
& y(x)=\frac{\left(\left(c_{1}+x\right) \mathrm{e}^{2 x}\right)^{\frac{1}{3}}(i \sqrt{3}-1) \mathrm{e}^{-x}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.307 (sec). Leaf size: 72
DSolve $[y[x] \sim 3+3 * y[x] \sim 2 * y$ ' $[x]==\operatorname{Exp}[-x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow e^{-x / 3} \sqrt[3]{x+c_{1}} \\
& y(x) \rightarrow-\sqrt[3]{-1} e^{-x / 3} \sqrt[3]{x+c_{1}} \\
& y(x) \rightarrow(-1)^{2 / 3} e^{-x / 3} \sqrt[3]{x+c_{1}}
\end{aligned}
$$

5.27 problem 27

5.27.1 Solving as first order ode lie symmetry lookup ode 1245
5.27.2 Solving as bernoulli ode . 1249
5.27.3 Solving as exact ode . 1253

Internal problem ID [105]
Internal file name [OUTPUT/105_Sunday_June_05_2022_01_34_55_AM_33710285/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
3 x y^{2} y^{\prime}-y^{3}=3 x^{4}
$$

5.27.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{3 x^{4}+y^{3}}{3 x y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 227: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{x}{y^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x}{y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{3}}{3 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 x^{4}+y^{3}}{3 x y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{3}}{3 x^{2}} \\
S_{y} & =\frac{y^{2}}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{3}}{3 x}=\frac{x^{3}}{3}+c_{1}
$$

Which simplifies to

$$
\frac{y^{3}}{3 x}=\frac{x^{3}}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 x^{4}+y^{3}}{3 x y^{2}}$		$\frac{d S}{d R}=R^{2}$
	$R=x$	
	$S=\frac{y^{3}}{}$	
	$S=\frac{y}{3 x}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3}}{3 x}=\frac{x^{3}}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 305: Slope field plot
Verification of solutions

$$
\frac{y^{3}}{3 x}=\frac{x^{3}}{3}+c_{1}
$$

Verified OK.

5.27.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{3 x^{4}+y^{3}}{3 x y^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{3 x} y+x^{3} \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{3 x} \\
f_{1}(x) & =x^{3} \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=\frac{y^{3}}{3 x}+x^{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =\frac{w(x)}{3 x}+x^{3} \\
w^{\prime} & =\frac{w}{x}+3 x^{3} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=3 x^{3}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=3 x^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(3 x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)\left(3 x^{3}\right) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int 3 x^{2} \mathrm{~d} x \\
& \frac{w}{x}=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=x^{4}+c_{1} x
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=x^{4}+c_{1} x
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}} \\
& y(x)=\frac{\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \\
& y(x)=-\frac{\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}} \tag{1}\\
& y=\frac{\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \tag{2}\\
& y=-\frac{\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \tag{3}
\end{align*}
$$

Figure 306: Slope field plot

Verification of solutions

$$
y=\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}}
$$

Verified OK.

$$
y=\frac{\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
$$

Verified OK.

$$
y=-\frac{\left(x\left(x^{3}+c_{1}\right)\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
$$

Verified OK.

5.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 x y^{2}\right) \mathrm{d} y & =\left(3 x^{4}+y^{3}\right) \mathrm{d} x \\
\left(-3 x^{4}-y^{3}\right) \mathrm{d} x+\left(3 x y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-3 x^{4}-y^{3} \\
N(x, y) & =3 x y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 x^{4}-y^{3}\right) \\
& =-3 y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 x y^{2}\right) \\
& =3 y^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 x y^{2}}\left(\left(-3 y^{2}\right)-\left(3 y^{2}\right)\right) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-3 x^{4}-y^{3}\right) \\
& =\frac{-3 x^{4}-y^{3}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}\left(3 x y^{2}\right) \\
& =\frac{3 y^{2}}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-3 x^{4}-y^{3}}{x^{2}}\right)+\left(\frac{3 y^{2}}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-3 x^{4}-y^{3}}{x^{2}} \mathrm{~d} x \\
\phi & =-x^{3}+\frac{y^{3}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{3 y^{2}}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{3 y^{2}}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{3 y^{2}}{x}=\frac{3 y^{2}}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{3}+\frac{y^{3}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{3}+\frac{y^{3}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x^{3}+\frac{y^{3}}{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 307: Slope field plot

Verification of solutions

$$
-x^{3}+\frac{y^{3}}{x}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 57

```
dsolve(3*x*y(x)^2*diff(y(x),x) = 3*x^4+y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\left(\left(x^{3}+c_{1}\right) x\right)^{\frac{1}{3}} \\
& y(x)=-\frac{\left(\left(x^{3}+c_{1}\right) x\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \\
& y(x)=\frac{\left(\left(x^{3}+c_{1}\right) x\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.217 (sec). Leaf size: 72
DSolve $[3 * x * y[x] \sim 2 * y$ ' $[x]==3 * x \wedge 4+y[x] \wedge 3, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \sqrt[3]{x} \sqrt[3]{x^{3}+c_{1}} \\
& y(x) \rightarrow-\sqrt[3]{-1} \sqrt[3]{x} \sqrt[3]{x^{3}+c_{1}} \\
& y(x) \rightarrow(-1)^{2 / 3} \sqrt[3]{x} \sqrt[3]{x^{3}+c_{1}}
\end{aligned}
$$

5.28 problem 28

5.28.1 Solving as exact ode

1258
Internal problem ID [106]
Internal file name [OUTPUT/106_Sunday_June_05_2022_01_34_56_AM_89190887/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_1st_order, - with_symmetry_ $[F(x), G(x)] `]$

$$
\mathrm{e}^{y} x y^{\prime}-2 \mathrm{e}^{y}=2 \mathrm{e}^{2 x} x^{3}
$$

5.28.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y} x\right) \mathrm{d} y & =\left(2 \mathrm{e}^{y}+2 \mathrm{e}^{2 x} x^{3}\right) \mathrm{d} x \\
\left(-2 \mathrm{e}^{y}-2 \mathrm{e}^{2 x} x^{3}\right) \mathrm{d} x+\left(\mathrm{e}^{y} x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 \mathrm{e}^{y}-2 \mathrm{e}^{2 x} x^{3} \\
N(x, y) & =\mathrm{e}^{y} x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 \mathrm{e}^{y}-2 \mathrm{e}^{2 x} x^{3}\right) \\
& =-2 \mathrm{e}^{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y} x\right) \\
& =\mathrm{e}^{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\mathrm{e}^{-y}}{x}\left(\left(-2 \mathrm{e}^{y}\right)-\left(\mathrm{e}^{y}\right)\right) \\
& =-\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (x)} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3}}\left(-2 \mathrm{e}^{y}-2 \mathrm{e}^{2 x} x^{3}\right) \\
& =\frac{-2 \mathrm{e}^{y}-2 \mathrm{e}^{2 x} x^{3}}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3}}\left(\mathrm{e}^{y} x\right) \\
& =\frac{\mathrm{e}^{y}}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-2 \mathrm{e}^{y}-2 \mathrm{e}^{2 x} x^{3}}{x^{3}}\right)+\left(\frac{\mathrm{e}^{y}}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-2 \mathrm{e}^{y}-2 \mathrm{e}^{2 x} x^{3}}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{-x^{2} \mathrm{e}^{2 x}+\mathrm{e}^{y}}{x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{y}}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{y}}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{y}}{x^{2}}=\frac{\mathrm{e}^{y}}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-x^{2} \mathrm{e}^{2 x}+\mathrm{e}^{y}}{x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-x^{2} \mathrm{e}^{2 x}+\mathrm{e}^{y}}{x^{2}}
$$

The solution becomes

$$
y=\ln \left(x^{2} \mathrm{e}^{2 x}+c_{1} x^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(x^{2} \mathrm{e}^{2 x}+c_{1} x^{2}\right) \tag{1}
\end{equation*}
$$

Figure 308: Slope field plot

Verification of solutions

$$
y=\ln \left(x^{2} \mathrm{e}^{2 x}+c_{1} x^{2}\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve $\left(\exp (y(x)) * x * \operatorname{diff}(y(x), x)=2 * \exp (y(x))+2 * \exp (2 * x) * x^{\wedge} 3, y(x)\right.$, singsol=all)

$$
y(x)=\ln \left(x^{2}\left(\mathrm{e}^{2 x}-c_{1}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 4.305 (sec). Leaf size: 18
DSolve[Exp $[y[x]] * x * y{ }^{\prime}[x]==2 * \operatorname{Exp}[y[x]]+2 * \operatorname{Exp}[2 * x] * x^{\wedge} 3, y[x], x$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow \log \left(x^{2}\left(e^{2 x}+c_{1}\right)\right)
$$

5.29 problem 29

5.29.1 Solving as exact ode

1264
Internal problem ID [107]
Internal file name [OUTPUT/107_Sunday_June_05_2022_01_34_57_AM_21095011/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
$\left[` y=-G\left(x, y^{\prime}\right) `\right]$

$$
2 x \cos (y) \sin (y) y^{\prime}-\sin (y)^{2}=4 x^{2}
$$

5.29.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 \cos (y) x \sin (y)) \mathrm{d} y & =\left(4 x^{2}+\sin (y)^{2}\right) \mathrm{d} x \\
\left(-4 x^{2}-\sin (y)^{2}\right) \mathrm{d} x+(2 \cos (y) x \sin (y)) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-4 x^{2}-\sin (y)^{2} \\
N(x, y) & =2 \cos (y) x \sin (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-4 x^{2}-\sin (y)^{2}\right) \\
& =-\sin (2 y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 \cos (y) x \sin (y)) \\
& =\sin (2 y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\sec (y) \csc (y)}{2 x}((-2 \cos (y) \sin (y))-(2 \cos (y) \sin (y))) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-4 x^{2}-\sin (y)^{2}\right) \\
& =\frac{-4 x^{2}-\sin (y)^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(2 \cos (y) x \sin (y)) \\
& =\frac{\sin (2 y)}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-4 x^{2}-\sin (y)^{2}}{x^{2}}\right)+\left(\frac{\sin (2 y)}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-4 x^{2}-\sin (y)^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =-4 x+\frac{\sin (y)^{2}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{2 \cos (y) \sin (y)}{x}+f^{\prime}(y) \tag{4}\\
& =\frac{\sin (2 y)}{x}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sin (2 y)}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sin (2 y)}{x}=\frac{\sin (2 y)}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-4 x+\frac{\sin (y)^{2}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-4 x+\frac{\sin (y)^{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-4 x+\frac{\sin (y)^{2}}{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 309: Slope field plot

Verification of solutions

$$
-4 x+\frac{\sin (y)^{2}}{x}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 31

```
dsolve(2*x*\operatorname{cos}(y(x))*\operatorname{sin}(y(x))*diff(y(x),x)=4*x^2+\operatorname{sin}(y(x))^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\arcsin \left(\sqrt{-x\left(c_{1}-4 x\right)}\right) \\
& y(x)=-\arcsin \left(\sqrt{-x\left(c_{1}-4 x\right)}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.406 (sec). Leaf size: 41
DSolve $\left[2 * x * \operatorname{Cos}[y[x]] * \operatorname{Sin}[y[x]] * y{ }^{\prime}[x]==4 * x^{\wedge} 2+\operatorname{Sin}[y[x]] \sim 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow

$$
\begin{aligned}
& y(x) \rightarrow-\arcsin \left(2 \sqrt{x\left(x+2 c_{1}\right)}\right) \\
& y(x) \rightarrow \arcsin \left(2 \sqrt{x\left(x+2 c_{1}\right)}\right)
\end{aligned}
$$

5.30 problem 30

5.30.1 Solving as first order ode lie symmetry calculated ode 1270
5.30.2 Solving as exact ode . 1276

Internal problem ID [108]
Internal file name [OUTPUT/108_Sunday_June_05_2022_01_35_00_AM_34058302/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie__symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
\left(\mathrm{e}^{y}+x\right) y^{\prime}-x \mathrm{e}^{-y}=-1
$$

5.30.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{-y}}{\mathrm{e}^{y}+x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{-y}\left(b_{3}-a_{2}\right)}{\mathrm{e}^{y}+x}-\frac{\left(\mathrm{e}^{y}-x\right)^{2} \mathrm{e}^{-2 y} a_{3}}{\left(\mathrm{e}^{y}+x\right)^{2}} \\
& -\left(\frac{\mathrm{e}^{-y}}{\mathrm{e}^{y}+x}+\frac{\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{-y}}{\left(\mathrm{e}^{y}+x\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{\mathrm{e}^{y}+x}+\frac{\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{-y}}{\mathrm{e}^{y}+x}+\frac{\mathrm{e}^{y}-x}{\left(\mathrm{e}^{y}+x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{\left(\mathrm{e}^{4 y} b_{2}+\mathrm{e}^{3 y} x b_{2}-\mathrm{e}^{3 y} y b_{3}+3 \mathrm{e}^{2 y} x^{2} b_{2}+2 \mathrm{e}^{2 y} x y b_{3}+\mathrm{e}^{y} x^{3} b_{2}+\mathrm{e}^{y} x^{2} y b_{3}+\mathrm{e}^{3 y} a_{2}-\mathrm{e}^{3 y} b_{1}-\mathrm{e}^{3 y} b_{3}-2 \mathrm{e}^{2 y} x a_{2}+2\right.}{\left(\mathrm{e}^{y}+x\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& \mathrm{e}^{4 y} b_{2}+\mathrm{e}^{3 y} x b_{2}-\mathrm{e}^{3 y} y b_{3}+3 \mathrm{e}^{2 y} x^{2} b_{2}+2 \mathrm{e}^{2 y} x y b_{3}+\mathrm{e}^{y} x^{3} b_{2}+\mathrm{e}^{y} x^{2} y b_{3} \tag{6E}\\
& +\mathrm{e}^{3 y} a_{2}-\mathrm{e}^{3 y} b_{1}-\mathrm{e}^{3 y} b_{3}-2 \mathrm{e}^{2 y} x a_{2}+2 \mathrm{e}^{2 y} x b_{1}-2 \mathrm{e}^{2 y} y a_{3}-\mathrm{e}^{y} x^{2} a_{2} \\
& +\mathrm{e}^{y} x^{2} b_{1}+\mathrm{e}^{y} x^{2} b_{3}-2 \mathrm{e}^{2 y} a_{1}-\mathrm{e}^{2 y} a_{3}+2 \mathrm{e}^{y} x a_{3}-x^{2} a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& \mathrm{e}^{4 y} b_{2}+\mathrm{e}^{3 y} x b_{2}-\mathrm{e}^{3 y} y b_{3}+3 \mathrm{e}^{2 y} x^{2} b_{2}+2 \mathrm{e}^{2 y} x y b_{3}+\mathrm{e}^{y} x^{3} b_{2}+\mathrm{e}^{y} x^{2} y b_{3} \tag{6E}\\
& +\mathrm{e}^{3 y} a_{2}-\mathrm{e}^{3 y} b_{1}-\mathrm{e}^{3 y} b_{3}-2 \mathrm{e}^{2 y} x a_{2}+2 \mathrm{e}^{2 y} x b_{1}-2 \mathrm{e}^{2 y} y a_{3}-\mathrm{e}^{y} x^{2} a_{2} \\
& +\mathrm{e}^{y} x^{2} b_{1}+\mathrm{e}^{y} x^{2} b_{3}-2 \mathrm{e}^{2 y} a_{1}-\mathrm{e}^{2 y} a_{3}+2 \mathrm{e}^{y} x a_{3}-x^{2} a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{y}, \mathrm{e}^{2 y}, \mathrm{e}^{3 y}, \mathrm{e}^{4 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{y}=v_{3}, \mathrm{e}^{2 y}=v_{4}, \mathrm{e}^{3 y}=v_{5}, \mathrm{e}^{4 y}=v_{6}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& v_{3} v_{1}^{3} b_{2}+v_{3} v_{1}^{2} v_{2} b_{3}-v_{3} v_{1}^{2} a_{2}+v_{3} v_{1}^{2} b_{1}+3 v_{4} v_{1}^{2} b_{2}+v_{3} v_{1}^{2} b_{3}+2 v_{4} v_{1} v_{2} b_{3} \tag{7E}\\
& \quad-2 v_{4} v_{1} a_{2}-v_{1}^{2} a_{3}+2 v_{3} v_{1} a_{3}-2 v_{4} v_{2} a_{3}+2 v_{4} v_{1} b_{1}+v_{5} v_{1} b_{2} \\
& -v_{5} v_{2} b_{3}-2 v_{4} a_{1}+v_{5} a_{2}-v_{4} a_{3}-v_{5} b_{1}+v_{6} b_{2}-v_{5} b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& v_{3} v_{1}^{3} b_{2}+v_{3} v_{1}^{2} v_{2} b_{3}+\left(-a_{2}+b_{1}+b_{3}\right) v_{1}^{2} v_{3}+3 v_{4} v_{1}^{2} b_{2}-v_{1}^{2} a_{3} \tag{8E}\\
& +2 v_{4} v_{1} v_{2} b_{3}+2 v_{3} v_{1} a_{3}+\left(-2 a_{2}+2 b_{1}\right) v_{1} v_{4}+v_{5} v_{1} b_{2}-2 v_{4} v_{2} a_{3} \\
& \quad-v_{5} v_{2} b_{3}+\left(-2 a_{1}-a_{3}\right) v_{4}+\left(a_{2}-b_{1}-b_{3}\right) v_{5}+v_{6} b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
b_{3} & =0 \\
-2 a_{3} & =0 \\
-a_{3} & =0 \\
2 a_{3} & =0 \\
3 b_{2} & =0 \\
-b_{3} & =0 \\
2 b_{3} & =0 \\
-2 a_{1}-a_{3} & =0 \\
-2 a_{2}+2 b_{1} & =0 \\
-a_{2}+b_{1}+b_{3} & =0 \\
a_{2}-b_{1}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{1} \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(-\frac{\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{-y}}{\mathrm{e}^{y}+x}\right)(x) \\
& =\frac{\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}}{\mathrm{e}^{2 y}+\mathrm{e}^{y} x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\mathrm{e}^{2} y+\mathrm{e}^{y} x-x^{2}}{\mathrm{e}^{2} y+\mathrm{e}^{y} x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{-y}}{\mathrm{e}^{y}+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{y}-x}{\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}} \\
S_{y} & =\frac{\mathrm{e}^{y}\left(\mathrm{e}^{y}+x\right)}{\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{-y}}{\mathrm{e}^{y}+x}$		$\frac{d S}{d R}=0$
\rightarrow		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$		$\rightarrow \rightarrow$
$\xrightarrow{\text { a }}$		
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	ln ($\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x$	$\xrightarrow{\rightarrow-4 \rightarrow \rightarrow \rightarrow-2 \rightarrow 0}$
	$S=\frac{\ln \left(e^{2 \prime}+2 e^{\prime} x\right.}{2}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2^{2} \rightarrow \rightarrow]{ }$
		$\rightarrow+$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 310: Slope field plot
Verification of solutions

$$
\frac{\ln \left(\mathrm{e}^{2 y}+2 \mathrm{e}^{y} x-x^{2}\right)}{2}=c_{1}
$$

Verified OK.

5.30.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}\left(\mathrm{e}^{y}+x\right)\right) \mathrm{d} y & =\left(-\mathrm{e}^{y}+x\right) \mathrm{d} x \\
\left(\mathrm{e}^{y}-x\right) \mathrm{d} x+\left(\mathrm{e}^{y}\left(\mathrm{e}^{y}+x\right)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\mathrm{e}^{y}-x \\
& N(x, y)=\mathrm{e}^{y}\left(\mathrm{e}^{y}+x\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{y}-x\right) \\
& =\mathrm{e}^{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}\left(\mathrm{e}^{y}+x\right)\right) \\
& =\mathrm{e}^{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{y}-x \mathrm{~d} x \\
\phi & =-\frac{x\left(-2 \mathrm{e}^{y}+x\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{y} x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}\left(\mathrm{e}^{y}+x\right)$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}\left(\mathrm{e}^{y}+x\right)=\mathrm{e}^{y} x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{2 y}\right) \mathrm{d} y \\
f(y) & =\frac{\mathrm{e}^{2 y}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x\left(-2 \mathrm{e}^{y}+x\right)}{2}+\frac{\mathrm{e}^{2 y}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x\left(-2 \mathrm{e}^{y}+x\right)}{2}+\frac{\mathrm{e}^{2 y}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x\left(-2 \mathrm{e}^{y}+x\right)}{2}+\frac{\mathrm{e}^{2 y}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 311: Slope field plot

Verification of solutions

$$
-\frac{x\left(-2 \mathrm{e}^{y}+x\right)}{2}+\frac{\mathrm{e}^{2 y}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = 1/x, y(x)` *** Sublevel 2
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    <- quadrature successful
<- 1st order, canonical coordinates successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 37

```
dsolve((exp(y(x))+x)*diff(y(x),x) = -1+x/exp(y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\ln \left(-x-\sqrt{2 x^{2}+c_{1}}\right) \\
& y(x)=\ln \left(-x+\sqrt{2 x^{2}+c_{1}}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 2.698 (sec). Leaf size: 52

```
DSolve[(Exp[y[x]]+x)*y'[x]== -1+x/Exp[y[x]],y[x],x,IncludeSingularSolutions ->> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \log \left(-x-\sqrt{2} \sqrt{x^{2}+c_{1}}\right) \\
& y(x) \rightarrow \log \left(-x+\sqrt{2} \sqrt{x^{2}+c_{1}}\right)
\end{aligned}
$$

5.31 problem 31

5.31.1 Solving as homogeneousTypeD2 ode 1281
5.31.2 Solving as differentialType ode 1283
5.31.3 Solving as first order ode lie symmetry calculated ode 1285
5.31.4 Solving as exact ode . 1290
5.31.5 Maple step by step solution . 1294

Internal problem ID [109]
Internal file name [OUTPUT/109_Sunday_June_05_2022_01_35_01_AM_80422406/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 31 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
3 y+(3 x+2 y) y^{\prime}=-2 x
$$

5.31.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
3 u(x) x+(3 x+2 u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-2 x
$$

In canonical form the $O D E$ is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2\left(u^{2}+3 u+1\right)}{x(2 u+3)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{u^{2}+3 u+1}{2 u+3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+3 u+1}{2 u+3}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{u^{2}+3 u+1}{2 u+3}} d u & =\int-\frac{2}{x} d x \\
\ln \left(u^{2}+3 u+1\right) & =-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u^{2}+3 u+1=\mathrm{e}^{-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
u^{2}+3 u+1=\frac{c_{3}}{x^{2}}
$$

Which simplifies to

$$
u(x)^{2}+3 u(x)+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

The solution is

$$
u(x)^{2}+3 u(x)+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}+\frac{3 y}{x}+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}} \\
& \frac{y^{2}}{x^{2}}+\frac{3 y}{x}+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
y^{2}+3 y x+x^{2}=c_{3} \mathrm{e}^{c_{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2}+3 y x+x^{2}=c_{3} \mathrm{e}^{c_{2}} \tag{1}
\end{equation*}
$$

Figure 312: Slope field plot
Verification of solutions

$$
y^{2}+3 y x+x^{2}=c_{3} \mathrm{e}^{c_{2}}
$$

Verified OK.

5.31.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-2 x-3 y}{3 x+2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y) d y=(-3 x) d y+(-2 x-3 y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-3 x) d y+(-2 x-3 y) d x=d\left(-x^{2}-3 y x\right)
$$

Hence (2) becomes

$$
(2 y) d y=d\left(-x^{2}-3 y x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{3 x}{2}+\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}+c_{1} \\
& y=-\frac{3 x}{2}-\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{3 x}{2}+\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}+c_{1} \tag{1}\\
& y=-\frac{3 x}{2}-\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}+c_{1} \tag{2}
\end{align*}
$$

Figure 313: Slope field plot

Verification of solutions

$$
y=-\frac{3 x}{2}+\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}+c_{1}
$$

Verified OK.

$$
y=-\frac{3 x}{2}-\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}+c_{1}
$$

Verified OK.

5.31.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 x+3 y}{3 x+2 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(2 x+3 y)\left(b_{3}-a_{2}\right)}{3 x+2 y}-\frac{(2 x+3 y)^{2} a_{3}}{(3 x+2 y)^{2}} \\
& -\left(-\frac{2}{3 x+2 y}+\frac{6 x+9 y}{(3 x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3}{3 x+2 y}+\frac{4 x+6 y}{(3 x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{6 x^{2} a_{2}-4 x^{2} a_{3}+14 x^{2} b_{2}-6 x^{2} b_{3}+8 x y a_{2}-12 x y a_{3}+12 x y b_{2}-8 x y b_{3}+6 y^{2} a_{2}-14 y^{2} a_{3}+4 y^{2} b_{2}-6 y^{2} b_{3}-}{(3 x+2 y)^{2}}$ $=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 6 x^{2} a_{2}-4 x^{2} a_{3}+14 x^{2} b_{2}-6 x^{2} b_{3}+8 x y a_{2}-12 x y a_{3}+12 x y b_{2} \tag{6E}\\
& \quad-8 x y b_{3}+6 y^{2} a_{2}-14 y^{2} a_{3}+4 y^{2} b_{2}-6 y^{2} b_{3}+5 x b_{1}-5 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 6 a_{2} v_{1}^{2}+8 a_{2} v_{1} v_{2}+6 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-12 a_{3} v_{1} v_{2}-14 a_{3} v_{2}^{2}+14 b_{2} v_{1}^{2} \tag{7E}\\
& \quad+12 b_{2} v_{1} v_{2}+4 b_{2} v_{2}^{2}-6 b_{3} v_{1}^{2}-8 b_{3} v_{1} v_{2}-6 b_{3} v_{2}^{2}-5 a_{1} v_{2}+5 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(6 a_{2}-4 a_{3}+14 b_{2}-6 b_{3}\right) v_{1}^{2}+\left(8 a_{2}-12 a_{3}+12 b_{2}-8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+5 b_{1} v_{1}+\left(6 a_{2}-14 a_{3}+4 b_{2}-6 b_{3}\right) v_{2}^{2}-5 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-5 a_{1} & =0 \\
5 b_{1} & =0 \\
6 a_{2}-14 a_{3}+4 b_{2}-6 b_{3} & =0 \\
6 a_{2}-4 a_{3}+14 b_{2}-6 b_{3} & =0 \\
8 a_{2}-12 a_{3}+12 b_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-3 b_{2}+b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 x+3 y}{3 x+2 y}\right)(x) \\
& =\frac{2 x^{2}+6 y x+2 y^{2}}{3 x+2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2}+6 y x+2 y^{2}}{3 x+2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+3 y x+y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x+3 y}{3 x+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x+3 y}{2 x^{2}+6 y x+2 y^{2}} \\
S_{y} & =\frac{3 x+2 y}{2 x^{2}+6 y x+2 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+3 y x+x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+3 y x+x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x+3 y}{3 x+2 y}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-S(R)}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$,
aravaray		$\xrightarrow{\rightarrow \rightarrow \longrightarrow}$
	$S=\underline{\ln \left(x^{2}+3 y x+y^{2}\right)}$	
	$S=\frac{2}{2}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+3 y x+x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 314: Slope field plot
Verification of solutions

$$
\frac{\ln \left(y^{2}+3 y x+x^{2}\right)}{2}=c_{1}
$$

Verified OK.

5.31.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3 x+2 y) \mathrm{d} y & =(-2 x-3 y) \mathrm{d} x \\
(2 x+3 y) \mathrm{d} x+(3 x+2 y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x+3 y \\
N(x, y) & =3 x+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x+3 y) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(3 x+2 y) \\
& =3
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x+3 y \mathrm{~d} x \\
\phi & =x(x+3 y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 x+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
3 x+2 y=3 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x(x+3 y)+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x(x+3 y)+y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x(x+3 y)+y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 315: Slope field plot
Verification of solutions

$$
x(x+3 y)+y^{2}=c_{1}
$$

Verified OK.

5.31.5 Maple step by step solution

Let's solve

$$
3 y+(3 x+2 y) y^{\prime}=-2 x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$3=3$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int(2 x+3 y) d x+f_{1}(y)$
- Evaluate integral

$$
F(x, y)=x^{2}+3 y x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$3 x+2 y=3 x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=2 y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{2}+3 y x+y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2}+3 y x+y^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{3 x}{2}-\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}, y=-\frac{3 x}{2}+\frac{\sqrt{5 x^{2}+4 c_{1}}}{2}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 53

```
dsolve(2*x+3*y(x)+(3*x+2*y(x))*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-3 c_{1} x-\sqrt{5 c_{1}^{2} x^{2}+4}}{2 c_{1}} \\
& y(x)=\frac{-3 c_{1} x+\sqrt{5 c_{1}^{2} x^{2}+4}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.445 (sec). Leaf size: 110
DSolve $22 * x+3 * y[x]+(3 * x+2 * y[x]) * y^{\prime}[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-3 x-\sqrt{5 x^{2}+4 e^{c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-3 x+\sqrt{5 x^{2}+4 e^{c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-\sqrt{5} \sqrt{x^{2}}-3 x\right) \\
& y(x) \rightarrow \frac{1}{2}\left(\sqrt{5} \sqrt{x^{2}}-3 x\right)
\end{aligned}
$$

5.32 problem 32

5.32.1 Solving as homogeneousTypeD2 ode 1297
5.32.2 Solving as differentialType ode 1299
5.32.3 Solving as first order ode lie symmetry calculated ode 1301
5.32.4 Solving as exact ode . 1306
5.32.5 Maple step by step solution . 1310

Internal problem ID [110]
Internal file name [OUTPUT/110_Sunday_June_05_2022_01_35_02_AM_31607378/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]
```

$$
-y+(-x+6 y) y^{\prime}=-4 x
$$

5.32.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x+(-x+6 u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-4 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2\left(3 u^{2}-u+2\right)}{x(6 u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{3 u^{2}-u+2}{6 u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{3 u^{2}-u+2}{6 u-1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{3 u^{2}-u+2}{6 u-1}} d u & =\int-\frac{2}{x} d x \\
\ln \left(3 u^{2}-u+2\right) & =-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
3 u^{2}-u+2=\mathrm{e}^{-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
3 u^{2}-u+2=\frac{c_{3}}{x^{2}}
$$

Which simplifies to

$$
3 u(x)^{2}-u(x)+2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

The solution is

$$
3 u(x)^{2}-u(x)+2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{3 y^{2}}{x^{2}}-\frac{y}{x}+2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}} \\
& \frac{3 y^{2}}{x^{2}}-\frac{y}{x}+2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
3 y^{2}-y x+2 x^{2}=c_{3} \mathrm{e}^{c_{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
3 y^{2}-y x+2 x^{2}=c_{3} \mathrm{e}^{c_{2}} \tag{1}
\end{equation*}
$$

Figure 316: Slope field plot
Verification of solutions

$$
3 y^{2}-y x+2 x^{2}=c_{3} \mathrm{e}^{c_{2}}
$$

Verified OK.

5.32.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-4 x+y}{-x+6 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-6 y) d y=(-x) d y+(4 x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(4 x-y) d x=d\left(2 x^{2}-y x\right)
$$

Hence (2) becomes

$$
(-6 y) d y=d\left(2 x^{2}-y x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{x}{6}+\frac{\sqrt{-23 x^{2}-12 c_{1}}}{6}+c_{1} \\
& y=\frac{x}{6}-\frac{\sqrt{-23 x^{2}-12 c_{1}}}{6}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& y=\frac{x}{6}+\frac{\sqrt{-23 x^{2}-12 c_{1}}}{6}+c_{1} \\
& y=\frac{x}{6}-\frac{\sqrt{-23 x^{2}-12 c_{1}}}{6}+c_{1}
\end{aligned}
$$

Figure 317: Slope field plot

Verification of solutions

$$
y=\frac{x}{6}+\frac{\sqrt{-23 x^{2}-12 c_{1}}}{6}+c_{1}
$$

Verified OK.

$$
y=\frac{x}{6}-\frac{\sqrt{-23 x^{2}-12 c_{1}}}{6}+c_{1}
$$

Verified OK.

5.32.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-4 x+y}{-x+6 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-4 x+y)\left(b_{3}-a_{2}\right)}{-x+6 y}-\frac{(-4 x+y)^{2} a_{3}}{(-x+6 y)^{2}} \\
& -\left(-\frac{4}{-x+6 y}+\frac{-4 x+y}{(-x+6 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{-x+6 y}-\frac{6(-4 x+y)}{(-x+6 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4 x^{2} a_{2}+16 x^{2} a_{3}+22 x^{2} b_{2}-4 x^{2} b_{3}-48 x y a_{2}-8 x y a_{3}+12 x y b_{2}+48 x y b_{3}+6 y^{2} a_{2}-22 y^{2} a_{3}-36 y^{2} b_{2}-6}{(x-6 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4 x^{2} a_{2}-16 x^{2} a_{3}-22 x^{2} b_{2}+4 x^{2} b_{3}+48 x y a_{2}+8 x y a_{3}-12 x y b_{2} \tag{6E}\\
& \quad-48 x y b_{3}-6 y^{2} a_{2}+22 y^{2} a_{3}+36 y^{2} b_{2}+6 y^{2} b_{3}-23 x b_{1}+23 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4 a_{2} v_{1}^{2}+48 a_{2} v_{1} v_{2}-6 a_{2} v_{2}^{2}-16 a_{3} v_{1}^{2}+8 a_{3} v_{1} v_{2}+22 a_{3} v_{2}^{2}-22 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-12 b_{2} v_{1} v_{2}+36 b_{2} v_{2}^{2}+4 b_{3} v_{1}^{2}-48 b_{3} v_{1} v_{2}+6 b_{3} v_{2}^{2}+23 a_{1} v_{2}-23 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-4 a_{2}-16 a_{3}-22 b_{2}+4 b_{3}\right) v_{1}^{2}+\left(48 a_{2}+8 a_{3}-12 b_{2}-48 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-23 b_{1} v_{1}+\left(-6 a_{2}+22 a_{3}+36 b_{2}+6 b_{3}\right) v_{2}^{2}+23 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
23 a_{1} & =0 \\
-23 b_{1} & =0 \\
-6 a_{2}+22 a_{3}+36 b_{2}+6 b_{3} & =0 \\
-4 a_{2}-16 a_{3}-22 b_{2}+4 b_{3} & =0 \\
48 a_{2}+8 a_{3}-12 b_{2}-48 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{b_{2}}{2}+b_{3} \\
a_{3} & =-\frac{3 b_{2}}{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{-4 x+y}{-x+6 y}\right)(x) \\
& =\frac{-4 x^{2}+2 y x-6 y^{2}}{x-6 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-4 x^{2}+2 y x-6 y^{2}}{x-6 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(2 x^{2}-y x+3 y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-4 x+y}{-x+6 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x-y}{4 x^{2}-2 y x+6 y^{2}} \\
S_{y} & =\frac{-x+6 y}{4 x^{2}-2 y x+6 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(3 y^{2}-y x+2 x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(3 y^{2}-y x+2 x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-4 x+y}{-x+6 y}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+40 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}$
	$S=\underline{\ln \left(2 x^{2}-y x+3 y^{2}\right)}$	
	$S=\frac{2}{2}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow]{ }$
-		
$\xrightarrow[\rightarrow \infty \rightarrow \infty]{ }$		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(3 y^{2}-y x+2 x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 318: Slope field plot

Verification of solutions

$$
\frac{\ln \left(3 y^{2}-y x+2 x^{2}\right)}{2}=c_{1}
$$

Verified OK.

5.32.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x+6 y) \mathrm{d} y & =(-4 x+y) \mathrm{d} x \\
(4 x-y) \mathrm{d} x+(-x+6 y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =4 x-y \\
N(x, y) & =-x+6 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(4 x-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x+6 y) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 4 x-y \mathrm{~d} x \\
\phi & =x(2 x-y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-x+6 y$. Therefore equation (4) becomes

$$
\begin{equation*}
-x+6 y=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=6 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(6 y) \mathrm{d} y \\
f(y) & =3 y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x(2 x-y)+3 y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x(2 x-y)+3 y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x(2 x-y)+3 y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 319: Slope field plot

Verification of solutions

$$
x(2 x-y)+3 y^{2}=c_{1}
$$

Verified OK.

5.32.5 Maple step by step solution

Let's solve

$$
-y+(-x+6 y) y^{\prime}=-4 x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
-1=-1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(4 x-y) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=2 x^{2}-y x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$-x+6 y=-x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=6 y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=3 y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=2 x^{2}-y x+3 y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$2 x^{2}-y x+3 y^{2}=c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{x}{6}-\frac{\sqrt{-23 x^{2}+12 c_{1}}}{6}, y=\frac{x}{6}+\frac{\sqrt{-23 x^{2}+12 c_{1}}}{6}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 51

```
dsolve(4*x-y(x)+(-x+6*y(x))*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{c_{1} x-\sqrt{-23 c_{1}^{2} x^{2}+12}}{6 c_{1}} \\
& y(x)=\frac{c_{1} x+\sqrt{-23 c_{1}^{2} x^{2}+12}}{6 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.446 (sec). Leaf size: 106
DSolve $[4 * x-y[x]+(-x+6 * y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{6}\left(x-\sqrt{-23 x^{2}+12 e^{c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{6}\left(x+\sqrt{-23 x^{2}+12 e^{c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{6}\left(x-\sqrt{23} \sqrt{-x^{2}}\right) \\
& y(x) \rightarrow \frac{1}{6}\left(\sqrt{23} \sqrt{-x^{2}}+x\right)
\end{aligned}
$$

5.33 problem 33

5.33.1 Solving as homogeneousTypeD2 ode 1313
5.33.2 Solving as first order ode lie symmetry calculated ode 1315
5.33.3 Solving as exact ode . 1321
5.33.4 Maple step by step solution . 1325

Internal problem ID [111]
Internal file name [OUTPUT/111_Sunday_June_05_2022_01_35_03_AM_2506565/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]

$$
2 y^{2}+\left(4 y x+6 y^{2}\right) y^{\prime}=-3 x^{2}
$$

5.33.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x)^{2} x^{2}+\left(4 u(x) x^{2}+6 u(x)^{2} x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=-3 x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3\left(2 u^{3}+2 u^{2}+1\right)}{2 u x(3 u+2)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{2 x}$ and $g(u)=\frac{2 u^{3}+2 u^{2}+1}{u(3 u+2)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 u^{3}+2 u^{2}+1}{u(3 u+2)}} d u & =-\frac{3}{2 x} d x \\
\int \frac{1}{\frac{2 u^{3}+2 x^{2}+1}{u(3 u+2)}} d u & =\int-\frac{3}{2 x} d x \\
\frac{\ln \left(2 u^{3}+2 u^{2}+1\right)}{2} & =-\frac{3 \ln (x)}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{2 u^{3}+2 u^{2}+1}=\mathrm{e}^{-\frac{3 \ln (x)}{2}+c_{2}}
$$

Which simplifies to

$$
\sqrt{2 u^{3}+2 u^{2}+1}=\frac{c_{3}}{x^{\frac{3}{2}}}
$$

Which simplifies to

$$
\sqrt{2 u(x)^{3}+2 u(x)^{2}+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{2}}}
$$

The solution is

$$
\sqrt{2 u(x)^{3}+2 u(x)^{2}+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{2}}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{2 y^{3}}{x^{3}}+\frac{2 y^{2}}{x^{2}}+1} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{2}}} \\
\sqrt{\frac{2 y^{3}+2 x y^{2}+x^{3}}{x^{3}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{2 y^{3}+2 x y^{2}+x^{3}}{x^{3}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

Figure 320: Slope field plot
Verification of solutions

$$
\sqrt{\frac{2 y^{3}+2 x y^{2}+x^{3}}{x^{3}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{2}}}
$$

Verified OK.

5.33.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x^{2}+2 y^{2}}{2 y(2 x+3 y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(3 x^{2}+2 y^{2}\right)\left(b_{3}-a_{2}\right)}{2 y(2 x+3 y)}-\frac{\left(3 x^{2}+2 y^{2}\right)^{2} a_{3}}{4 y^{2}(2 x+3 y)^{2}} \\
& -\left(-\frac{3 x}{y(2 x+3 y)}+\frac{3 x^{2}+2 y^{2}}{y(2 x+3 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2}{2 x+3 y}+\frac{3 x^{2}+2 y^{2}}{2 y^{2}(2 x+3 y)}+\frac{\frac{9 x^{2}}{2}+3 y^{2}}{y(2 x+3 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{9 x^{4} a_{3}+12 x^{4} b_{2}-24 x^{3} y a_{2}+36 x^{3} y b_{2}+24 x^{3} y b_{3}-54 x^{2} y^{2} a_{2}-24 x^{2} y^{2} b_{2}+54 x^{2} y^{2} b_{3}-36 x y^{3} a_{3}-48 x y^{3}}{4 y^{2}(2 x-} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -9 x^{4} a_{3}-12 x^{4} b_{2}+24 x^{3} y a_{2}-36 x^{3} y b_{2}-24 x^{3} y b_{3}+54 x^{2} y^{2} a_{2}+24 x^{2} y^{2} b_{2} \tag{6E}\\
& -54 x^{2} y^{2} b_{3}+36 x y^{3} a_{3}+48 x y^{3} b_{2}+12 y^{4} a_{2}-12 y^{4} a_{3}+36 y^{4} b_{2}-12 y^{4} b_{3} \\
& \quad-12 x^{3} b_{1}+12 x^{2} y a_{1}-36 x^{2} y b_{1}+36 x y^{2} a_{1}+8 x y^{2} b_{1}-8 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 24 a_{2} v_{1}^{3} v_{2}+54 a_{2} v_{1}^{2} v_{2}^{2}+12 a_{2} v_{2}^{4}-9 a_{3} v_{1}^{4}+36 a_{3} v_{1} v_{2}^{3}-12 a_{3} v_{2}^{4}-12 b_{2} v_{1}^{4} \tag{7E}\\
& \quad-36 b_{2} v_{1}^{3} v_{2}+24 b_{2} v_{1}^{2} v_{2}^{2}+48 b_{2} v_{1} v_{2}^{3}+36 b_{2} v_{2}^{4}-24 b_{3} v_{1}^{3} v_{2}-54 b_{3} v_{1}^{2} v_{2}^{2} \\
& \quad-12 b_{3} v_{2}^{4}+12 a_{1} v_{1}^{2} v_{2}+36 a_{1} v_{1} v_{2}^{2}-8 a_{1} v_{2}^{3}-12 b_{1} v_{1}^{3}-36 b_{1} v_{1}^{2} v_{2}+8 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-9 a_{3}-12 b_{2}\right) v_{1}^{4}+\left(24 a_{2}-36 b_{2}-24 b_{3}\right) v_{1}^{3} v_{2}-12 b_{1} v_{1}^{3} \tag{8E}\\
& \quad+\left(54 a_{2}+24 b_{2}-54 b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(12 a_{1}-36 b_{1}\right) v_{1}^{2} v_{2}+\left(36 a_{3}+48 b_{2}\right) v_{1} v_{2}^{3} \\
& \quad+\left(36 a_{1}+8 b_{1}\right) v_{1} v_{2}^{2}+\left(12 a_{2}-12 a_{3}+36 b_{2}-12 b_{3}\right) v_{2}^{4}-8 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-8 a_{1} & =0 \\
-12 b_{1} & =0 \\
12 a_{1}-36 b_{1} & =0 \\
36 a_{1}+8 b_{1} & =0 \\
-9 a_{3}-12 b_{2} & =0 \\
36 a_{3}+48 b_{2} & =0 \\
24 a_{2}-36 b_{2}-24 b_{3} & =0 \\
54 a_{2}+24 b_{2}-54 b_{3} & =0 \\
12 a_{2}-12 a_{3}+36 b_{2}-12 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{3 x^{2}+2 y^{2}}{2 y(2 x+3 y)}\right)(x) \\
& =\frac{3 x^{3}+6 x y^{2}+6 y^{3}}{4 y x+6 y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{3}+6 x y^{2}+6 y^{3}}{4 y x+6 y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{3}+2 x y^{2}+2 y^{3}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x^{2}+2 y^{2}}{2 y(2 x+3 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x^{2}+2 y^{2}}{3 x^{3}+6 x y^{2}+6 y^{3}} \\
S_{y} & =\frac{4 y x+6 y^{2}}{3 x^{3}+6 x y^{2}+6 y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(2 y^{3}+2 x y^{2}+x^{3}\right)}{3}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(2 y^{3}+2 x y^{2}+x^{3}\right)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x^{2}+2 y^{2}}{2 y(2 x+3 y)}$		$\frac{d S}{d R}=0$
dithyyyyyyyyy		$\rightarrow \rightarrow \rightarrow$ 边
		,
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	$\ln \left(x^{3}+2 x y^{2}+2 u^{3}\right)$	
	$S=\frac{\ln \left(x^{3}+2 x y^{2}+2 y^{3}\right)}{3}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+R^{+} \rightarrow \rightarrow \rightarrow \rightarrow}$
\rightarrow avtit!		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(2 y^{3}+2 x y^{2}+x^{3}\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 321: Slope field plot

Verification of solutions

$$
\frac{\ln \left(2 y^{3}+2 x y^{2}+x^{3}\right)}{3}=c_{1}
$$

Verified OK.

5.33.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(4 y x+6 y^{2}\right) \mathrm{d} y & =\left(-3 x^{2}-2 y^{2}\right) \mathrm{d} x \\
\left(3 x^{2}+2 y^{2}\right) \mathrm{d} x+\left(4 y x+6 y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2}+2 y^{2} \\
N(x, y) & =4 y x+6 y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}+2 y^{2}\right) \\
& =4 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(4 y x+6 y^{2}\right) \\
& =4 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2}+2 y^{2} \mathrm{~d} x \\
\phi & =x^{3}+2 x y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=4 y x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=4 y x+6 y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
4 y x+6 y^{2}=4 y x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=6 y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(6 y^{2}\right) \mathrm{d} y \\
f(y) & =2 y^{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{3}+2 x y^{2}+2 y^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{3}+2 x y^{2}+2 y^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 y^{3}+2 x y^{2}+x^{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 322: Slope field plot

Verification of solutions

$$
2 y^{3}+2 x y^{2}+x^{3}=c_{1}
$$

Verified OK.

5.33.4 Maple step by step solution

Let's solve

$$
2 y^{2}+\left(4 y x+6 y^{2}\right) y^{\prime}=-3 x^{2}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
4 y=4 y
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(3 x^{2}+2 y^{2}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=x^{3}+2 x y^{2}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
4 y x+6 y^{2}=4 y x+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=6 y^{2}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=2 y^{3}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{3}+2 x y^{2}+2 y^{3}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{3}+2 x y^{2}+2 y^{3}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(-62 x^{3}+54 c_{1}+6 \sqrt{105 x^{6}-186 c_{1} x^{3}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6}+\frac{2 x^{2}}{3\left(-62 x^{3}+54 c_{1}+6 \sqrt{105 x^{6}-186 c_{1} x^{3}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}-\frac{x}{3}, y=-\frac{\left(-62 x^{3}-1\right.}{}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 405

```
dsolve(3*x^2+2*y(x)^2+(4*x*y(x)+6*y(x)^2)*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\frac{\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{105 c_{1}^{6} x^{6}-186 x^{3} c_{1}^{3}+81}\right)^{\frac{1}{3}}}{2}+\frac{2 x^{2} c_{1}^{2}}{\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{105 c_{1}^{6} x^{6}-186 x^{3} c_{1}^{3}+81}\right)^{\frac{1}{3}}}-c_{1} x}{3 c_{1}} \\
& y(x) \\
& =\frac{4 i \sqrt{3} c_{1}^{2} x^{2}-i \sqrt{3}\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{105 c_{1}^{6} x^{6}-186 x^{3} c_{1}^{3}+81}\right)^{\frac{2}{3}}-4 c_{1}^{2} x^{2}-4 c_{1} x\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{105 c}\right.}{12\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{105 c_{1}^{6} x^{6}-186 x^{3} c_{1}^{3}}\right.} \\
& y(x) \\
& =\frac{(i \sqrt{3}-1)\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{105 c_{1}^{6} x^{6}-186 x^{3} c_{1}^{3}+81}\right)^{\frac{2}{3}}-4 x\left(i x c_{1} \sqrt{3}+c_{1} x+\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{10}\right.\right.}{12\left(54-62 x^{3} c_{1}^{3}+6 \sqrt{105 c_{1}^{6} x^{6}-186 x^{3} c_{1}^{3}+81}\right)^{\frac{1}{3}} c_{1}}
\end{aligned}
$$

Solution by Mathematica

Time used: 39.668 (sec). Leaf size: 679
DSolve $\left[3 * x^{\wedge} 2+2 * y[x] \sim 2+(4 * x * y[x]+6 * y[x] \sim 2) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
y(x) \rightarrow & \frac{\sqrt[3]{-124 x^{3}+\sqrt{-256 x^{6}+\left(-124 x^{3}+108 e^{\left.2 c_{1}\right)^{2}}+108 e^{2 c_{1}}\right.}}}{6 \sqrt[3]{2}} \\
& +\frac{2 \sqrt[3]{2} x^{2}}{3 \sqrt[3]{-124 x^{3}+\sqrt{-256 x^{6}+\left(-124 x^{3}+108 e^{\left.2 c_{1}\right)^{2}}+108 e^{2 c_{1}}\right.}}-\frac{x}{3}} \\
y(x) \rightarrow & \frac{1}{12} i(\sqrt{3}+i) \sqrt[3]{-62 x^{3}+6 \sqrt{3} \sqrt{35 x^{6}-62 e^{2 c_{1} x^{3}+27 e^{4 c_{1}}}+54 e^{2 c_{1}}}}-\frac{x}{3} \\
& \left.-\frac{3(\sqrt{3}-i) x^{2}}{3 \sqrt[3]{-62 x^{3}+6 \sqrt{3} \sqrt{35 x^{6}-62 e^{2 c_{1} x^{3}+27 e^{4 c_{1}}}+54 e^{2 c_{1}}}}} \begin{array}{rl}
y(x) \rightarrow & -\frac{1}{12} i(\sqrt{3}-i) \sqrt[3]{-62 x^{3}+6 \sqrt{3} \sqrt{35 x^{6}-62 e^{2 c_{1}} x^{3}+27 e^{4 c_{1}}}+54 e^{2 c_{1}}} \\
& +\frac{i(\sqrt{3}+i) x^{2}}{3 \sqrt[3]{-62 x^{3}+6 \sqrt{3} \sqrt{35 x^{6}-62 e^{2 c_{1}} x^{3}+27 e^{4 c_{1}}+54 e^{2 c_{1}}}}-\frac{x}{3}} \\
y(x) \rightarrow & \frac{1}{6}\left(\sqrt[3]{\left.6 \sqrt{105} \sqrt{x^{6}}-62 x^{3}+\frac{32^{2 / 3} x^{2}}{3 \sqrt{105} \sqrt{x^{6}}-31 x^{3}}\right)}\right. \\
y(x) \rightarrow & \frac{1}{12}\left(i(\sqrt{3}+i) \sqrt[3]{6 \sqrt{105} \sqrt{x^{6}}-62 x^{3}}-\frac{2 i 2^{2 / 3}(\sqrt{3}-i) x^{2}}{\sqrt[3]{3 \sqrt{105} \sqrt{x^{6}}-31 x^{3}}}-4 x\right)
\end{array}\right) \\
y(x) \rightarrow & \frac{1}{12}\left((-1-i \sqrt{3}) \sqrt[3]{6 \sqrt{105} \sqrt{x^{6}}-62 x^{3}}+\frac{2 i 2^{2 / 3}(\sqrt{3}+i) x^{2}}{\sqrt[3]{3 \sqrt{105} \sqrt{x^{6}}-31 x^{3}}}-4 x\right)
\end{aligned}
$$

5.34 problem 34

5.34.1 Solving as exact ode . 1329
5.34.2 Maple step by step solution 1332

Internal problem ID [112]
Internal file name [OUTPUT/112_Sunday_June_05_2022_01_35_04_AM_92740676/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 34.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, _rational]
```

$$
2 x y^{2}+\left(2 x^{2} y+4 y^{3}\right) y^{\prime}=-3 x^{2}
$$

5.34.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 y x^{2}+4 y^{3}\right) \mathrm{d} y & =\left(-2 x y^{2}-3 x^{2}\right) \mathrm{d} x \\
\left(2 x y^{2}+3 x^{2}\right) \mathrm{d} x+\left(2 y x^{2}+4 y^{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y^{2}+3 x^{2} \\
N(x, y) & =2 y x^{2}+4 y^{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y^{2}+3 x^{2}\right) \\
& =4 y x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 y x^{2}+4 y^{3}\right) \\
& =4 y x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y^{2}+3 x^{2} \mathrm{~d} x \\
\phi & =x^{2}\left(y^{2}+x\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 y x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y x^{2}+4 y^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y x^{2}+4 y^{3}=2 y x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=4 y^{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(4 y^{3}\right) \mathrm{d} y \\
f(y) & =y^{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2}\left(y^{2}+x\right)+y^{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2}\left(y^{2}+x\right)+y^{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x^{2}\left(y^{2}+x\right)+y^{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 323: Slope field plot

Verification of solutions

$$
x^{2}\left(y^{2}+x\right)+y^{4}=c_{1}
$$

Verified OK.

5.34.2 Maple step by step solution

Let's solve

$$
2 x y^{2}+\left(2 x^{2} y+4 y^{3}\right) y^{\prime}=-3 x^{2}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

$\square \quad$ Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$4 y x=4 y x$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 x y^{2}+3 x^{2}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=x^{2} y^{2}+x^{3}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 y x^{2}+4 y^{3}=2 y x^{2}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=4 y^{3}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y^{4}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=x^{2} y^{2}+y^{4}+x^{3}$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2} y^{2}+y^{4}+x^{3}=c_{1}
$$

- \quad Solve for y
$\left\{y=-\frac{\sqrt{-2 x^{2}-2 \sqrt{x^{4}-4 x^{3}+4 c_{1}}}}{2}, y=\frac{\sqrt{-2 x^{2}-2 \sqrt{x^{4}-4 x^{3}+4 c_{1}}}}{2}, y=-\frac{\sqrt{-2 x^{2}+2 \sqrt{x^{4}-4 x^{3}+4 c_{1}}}}{2}, y=\frac{\sqrt{-2 x^{2}+2 \sqrt{x^{4}}}}{2}\right.$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 117

```
dsolve(3*x^2+2*x*y(x)^2+(2*x^2*y(x)+4*y(x)^3)*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{-2 x^{2}-2 \sqrt{x^{4}-4 x^{3}-4 c_{1}}}}{2} \\
& y(x)=\frac{\sqrt{-2 x^{2}-2 \sqrt{x^{4}-4 x^{3}-4 c_{1}}}}{2} \\
& y(x)=-\frac{\sqrt{-2 x^{2}+2 \sqrt{x^{4}-4 x^{3}-4 c_{1}}}}{2} \\
& y(x)=\frac{\sqrt{-2 x^{2}+2 \sqrt{x^{4}-4 x^{3}-4 c_{1}}}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 5.897 (sec). Leaf size: 155
DSolve $\left[3 * x^{\wedge} 2+2 * x * y[x] \wedge 2+\left(2 * x^{\wedge} 2 * y[x]+4 * y[x] \sim 3\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow T

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-x^{2}-\sqrt{x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{-x^{2}-\sqrt{x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{-x^{2}+\sqrt{x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{-x^{2}+\sqrt{x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}}
\end{aligned}
$$

5.35 problem 35

5.35.1 Solving as exact ode
5.35.2 Maple step by step solution 1340

Internal problem ID [113]
Internal file name [OUTPUT/113_Sunday_June_05_2022_01_35_05_AM_36984241/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 35.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\frac{y}{x}+\left(\ln (x)+y^{2}\right) y^{\prime}=-x^{3}
$$

5.35.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\ln (x)+y^{2}\right) \mathrm{d} y & =\left(-x^{3}-\frac{y}{x}\right) \mathrm{d} x \\
\left(x^{3}+\frac{y}{x}\right) \mathrm{d} x+\left(\ln (x)+y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=x^{3}+\frac{y}{x} \\
& N(x, y)=\ln (x)+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{3}+\frac{y}{x}\right) \\
& =\frac{1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\ln (x)+y^{2}\right) \\
& =\frac{1}{x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x^{3}+\frac{y}{x} \mathrm{~d} x \\
\phi & =\frac{x^{4}}{4}+\ln (x) y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\ln (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\ln (x)+y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\ln (x)+y^{2}=\ln (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{4}}{4}+\ln (x) y+\frac{y^{3}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{4}}{4}+\ln (x) y+\frac{y^{3}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{4}}{4}+\ln (x) y+\frac{y^{3}}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 324: Slope field plot

Verification of solutions

$$
\frac{x^{4}}{4}+\ln (x) y+\frac{y^{3}}{3}=c_{1}
$$

Verified OK.

5.35.2 Maple step by step solution

Let's solve

$$
\frac{y}{x}+\left(\ln (x)+y^{2}\right) y^{\prime}=-x^{3}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\frac{1}{x}=\frac{1}{x}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(x^{3}+\frac{y}{x}\right) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=\frac{x^{4}}{4}+\ln (x) y+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$\ln (x)+y^{2}=\ln (x)+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=y^{2}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\frac{y^{3}}{3}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{x^{4}}{4}+\ln (x) y+\frac{y^{3}}{3}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{x^{4}}{4}+\ln (x) y+\frac{y^{3}}{3}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(-3 x^{4}+12 c_{1}+\sqrt{64 \ln (x)^{3}+9 x^{8}-72 c_{1} x^{4}+144 c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{2 \ln (x)}{\left(-3 x^{4}+12 c_{1}+\sqrt{64 \ln (x)^{3}+9 x^{8}-72 c_{1} x^{4}+144 c_{1}^{2}}\right)^{\frac{1}{3}}}, y=-\frac{\left(-\frac{3}{3}\right.}{3}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 307

```
dsolve( (x^3+y(x)/x+(ln}(x)+y(x)~2)*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9\left(x^{4}+4 c_{1}\right)^{2}}\right)^{\frac{2}{3}}-4 \ln (x)}{2\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9\left(x^{4}+4 c_{1}\right)^{2}}\right)^{\frac{1}{3}}}
$$

$$
y(x)
$$

$$
=\frac{i\left(-\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9\left(x^{4}+4 c_{1}\right)^{2}}\right)^{\frac{2}{3}}-4 \ln (x)\right) \sqrt{3}-\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9}\right.}{4\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9\left(x^{4}+4 c_{1}\right)^{2}}\right)^{\frac{1}{3}}}
$$

$$
y(x)
$$

$$
=\frac{i\left(\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9\left(x^{4}+4 c_{1}\right)^{2}}\right)^{\frac{2}{3}}+4 \ln (x)\right) \sqrt{3}-\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9(}\right)}{4\left(-3 x^{4}-12 c_{1}+\sqrt{64 \ln (x)^{3}+9\left(x^{4}+4 c_{1}\right)^{2}}\right)^{\frac{1}{3}}}
$$

Solution by Mathematica

Time used: 1.864 (sec). Leaf size: 307
DSolve $\left[x^{\wedge} 3+y[x] / x+(\log [x]+y[x] \sim 2) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True
$y(x) \rightarrow \frac{-4 \log (x)+\left(-3 x^{4}+\sqrt{64 \log ^{3}(x)+9\left(x^{4}-4 c_{1}\right)^{2}}+12 c_{1}\right)^{2 / 3}}{2 \sqrt[3]{-3 x^{4}+\sqrt{64 \log ^{3}(x)+9\left(x^{4}-4 c_{1}\right)^{2}}+12 c_{1}}}$
$y(x)$

$$
\begin{gathered}
\rightarrow \frac{i(\sqrt{3}+i)\left(-3 x^{4}+\sqrt{64 \log ^{3}(x)+9\left(x^{4}-4 c_{1}\right)^{2}}+12 c_{1}\right)^{2 / 3}+(4+4 i \sqrt{3}) \log (x)}{4 \sqrt[3]{-3 x^{4}+\sqrt{64 \log ^{3}(x)+9\left(x^{4}-4 c_{1}\right)^{2}}+12 c_{1}}} \\
y(x) \rightarrow \frac{(-1-i \sqrt{3})\left(-3 x^{4}+\sqrt{64 \log ^{3}(x)+9\left(x^{4}-4 c_{1}\right)^{2}}+12 c_{1}\right)^{2 / 3}+(4-4 i \sqrt{3}) \log (x)}{4 \sqrt[3]{-3 x^{4}+\sqrt{64 \log ^{3}(x)+9\left(x^{4}-4 c_{1}\right)^{2}}+12 c_{1}}}
\end{gathered}
$$

5.36 problem 36

5.36.1 Solving as exact ode . 1344
5.36.2 Maple step by step solution . 1347

Internal problem ID [114]
Internal file name [OUTPUT/114_Sunday_June_05_2022_01_35_07_AM_5611736/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 36.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\mathrm{e}^{y x} y+\left(\mathrm{e}^{y x} x+2 y\right) y^{\prime}=-1
$$

5.36.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y x} x+2 y\right) \mathrm{d} y & =\left(-1-\mathrm{e}^{y x} y\right) \mathrm{d} x \\
\left(\mathrm{e}^{y x} y+1\right) \mathrm{d} x+\left(\mathrm{e}^{y x} x+2 y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{y x} y+1 \\
N(x, y) & =\mathrm{e}^{y x} x+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{y x} y+1\right) \\
& =\mathrm{e}^{y x}(y x+1)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y x} x+2 y\right) \\
& =\mathrm{e}^{y x}(y x+1)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{y x} y+1 \mathrm{~d} x \\
\phi & =x+\mathrm{e}^{y x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{y x} x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y x} x+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y x} x+2 y=\mathrm{e}^{y x} x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x+\mathrm{e}^{y x}+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x+\mathrm{e}^{y x}+y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x+\mathrm{e}^{y x}+y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 325: Slope field plot

Verification of solutions

$$
x+\mathrm{e}^{y x}+y^{2}=c_{1}
$$

Verified OK.

5.36.2 Maple step by step solution

Let's solve

$$
\mathrm{e}^{y x} y+\left(\mathrm{e}^{y x} x+2 y\right) y^{\prime}=-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$\mathrm{e}^{y x} y x+\mathrm{e}^{y x}=\mathrm{e}^{y x} y x+\mathrm{e}^{y x}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\mathrm{e}^{y x} y+1\right) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=x+\mathrm{e}^{y x}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$\mathrm{e}^{y x} x+2 y=\mathrm{e}^{y x} x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=2 y
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=x+\mathrm{e}^{y x}+y^{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x+\mathrm{e}^{y x}+y^{2}=c_{1}
$$

- \quad Solve for y
$y=\operatorname{Root} O f\left(-x-\mathrm{e}^{Z x}-_^{2}+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve $(1+\exp (x * y(x)) * y(x)+(\exp (x * y(x)) * x+2 * y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
\mathrm{e}^{x y(x)}+x+y(x)^{2}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.216 (sec). Leaf size: 18
DSolve $\left[1+\operatorname{Exp}[x * y[x]] * y[x]+(\operatorname{Exp}[x * y[x]] * x+2 * y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\text { Solve }\left[y(x)^{2}+e^{x y(x)}+x=c_{1}, y(x)\right]
$$

5.37 problem 37

5.37.1 Solving as exact ode . 1350
5.37.2 Maple step by step solution . 1354

Internal problem ID [115]
Internal file name [OUTPUT/115_Sunday_June_05_2022_01_35_08_AM_30353114/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\ln (y)+\left(\mathrm{e}^{y}+\frac{x}{y}\right) y^{\prime}=-\cos (x)
$$

5.37.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}+\frac{x}{y}\right) \mathrm{d} y & =(-\ln (y)-\cos (x)) \mathrm{d} x \\
(\cos (x)+\ln (y)) \mathrm{d} x+\left(\mathrm{e}^{y}+\frac{x}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\cos (x)+\ln (y) \\
& N(x, y)=\mathrm{e}^{y}+\frac{x}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\cos (x)+\ln (y)) \\
& =\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}+\frac{x}{y}\right) \\
& =\frac{1}{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x)+\ln (y) \mathrm{d} x \\
\phi & =\sin (x)+x \ln (y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}+\frac{x}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}+\frac{x}{y}=\frac{x}{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (x)+x \ln (y)+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (x)+x \ln (y)+\mathrm{e}^{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sin (x)+x \ln (y)+\mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 326: Slope field plot

Verification of solutions

$$
\sin (x)+x \ln (y)+\mathrm{e}^{y}=c_{1}
$$

Verified OK.

5.37.2 Maple step by step solution

Let's solve
$\ln (y)+\left(\mathrm{e}^{y}+\frac{x}{y}\right) y^{\prime}=-\cos (x)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\frac{1}{y}=\frac{1}{y}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(\cos (x)+\ln (y)) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\sin (x)+x \ln (y)+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$\mathrm{e}^{y}+\frac{x}{y}=\frac{x}{y}+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\mathrm{e}^{y}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\mathrm{e}^{y}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\sin (x)+x \ln (y)+\mathrm{e}^{y}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\sin (x)+x \ln (y)+\mathrm{e}^{y}=c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\operatorname{Root} O f\left(\mathrm{e}^{Z}-\ln \left(--Z x+c_{1}-\sin (x)\right)\right)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 24

```
dsolve(cos(x)+ln(y(x))+(exp(y(x))+x/y(x))*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(\mathrm{e}^{Z}-\ln \left(-x-Z-c_{1}-\sin (x)\right)\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.36 (sec). Leaf size: 18
DSolve $\left[\operatorname{Cos}[x]+\log [y[x]]+(\operatorname{Exp}[y[x]]+x / y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
\text { Solve }\left[e^{y(x)}+x \log (y(x))+\sin (x)=c_{1}, y(x)\right]
$$

5.38 problem 38

5.38.1 Solving as exact ode . 1356
5.38.2 Maple step by step solution . 1360

Internal problem ID [116]
Internal file name [OUTPUT/116_Sunday_June_05_2022_01_35_10_AM_35287607/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\arctan (y)+\frac{(x+y) y^{\prime}}{1+y^{2}}=-x
$$

5.38.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x+y}{y^{2}+1}\right) \mathrm{d} y & =(-x-\arctan (y)) \mathrm{d} x \\
(x+\arctan (y)) \mathrm{d} x+\left(\frac{x+y}{y^{2}+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x+\arctan (y) \\
N(x, y) & =\frac{x+y}{y^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x+\arctan (y)) \\
& =\frac{1}{y^{2}+1}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x+y}{y^{2}+1}\right) \\
& =\frac{1}{y^{2}+1}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x+\arctan (y) \mathrm{d} x \\
\phi & =\frac{x(x+2 \arctan (y))}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}+1}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x+y}{y^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x+y}{y^{2}+1}=\frac{x}{y^{2}+1}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =\frac{\ln \left(y^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(x+2 \arctan (y))}{2}+\frac{\ln \left(y^{2}+1\right)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(x+2 \arctan (y))}{2}+\frac{\ln \left(y^{2}+1\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x(x+2 \arctan (y))}{2}+\frac{\ln \left(1+y^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 327: Slope field plot

Verification of solutions

$$
\frac{x(x+2 \arctan (y))}{2}+\frac{\ln \left(1+y^{2}\right)}{2}=c_{1}
$$

Verified OK.

5.38.2 Maple step by step solution

Let's solve
$\arctan (y)+\frac{(x+y) y^{\prime}}{1+y^{2}}=-x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\frac{1}{y^{2}+1}=\frac{1}{y^{2}+1}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x $F(x, y)=\int(x+\arctan (y)) d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=\frac{x^{2}}{2}+\arctan (y) x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$\frac{x+y}{y^{2}+1}=\frac{x}{y^{2}+1}+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-\frac{x}{y^{2}+1}+\frac{x+y}{y^{2}+1}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\frac{\ln \left(y^{2}+1\right)}{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{x^{2}}{2}+\arctan (y) x+\frac{\ln \left(y^{2}+1\right)}{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{x^{2}}{2}+\arctan (y) x+\frac{\ln \left(y^{2}+1\right)}{2}=c_{1}
$$

- \quad Solve for y

$$
y=\tan \left(\operatorname{RootOf}\left(-2 _Z x-x^{2}+2 \ln \left(\cos \left(_Z\right)\right)+2 c_{1}\right)\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve(x+arctan(y(x))+(x+y(x))*diff(y(x),x)/(1+y(x)^2) = 0,y(x), singsol=all)
```

$$
y(x)=\tan \left(\operatorname{RootOf}\left(2 x _Z+x^{2}-2 \ln \left(\cos \left(_Z\right)\right)+2 c_{1}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.137 (sec). Leaf size: 30
DSolve $\left[x+\operatorname{ArcTan}[y[x]]+(x+y[x]) * y^{\prime}[x] /\left(1+y[x]{ }^{\wedge} 2\right)==0, y[x], x\right.$, IncludeSingularSolutions $->$ True

Solve $\left[x \arctan (y(x))+\frac{x^{2}}{2}+\frac{1}{2} \log \left(y(x)^{2}+1\right)=c_{1}, y(x)\right]$

5.39 problem 39

5.39.1 Solving as exact ode . 1362
5.39.2 Maple step by step solution . 1365

Internal problem ID [117]
Internal file name [OUTPUT/117_Sunday_June_05_2022_01_35_11_AM_55785690/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, _rational]
```

$$
3 y^{3} x^{2}+y^{4}+\left(3 x^{3} y^{2}+4 x y^{3}+y^{4}\right) y^{\prime}=0
$$

5.39.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 x^{3} y^{2}+4 x y^{3}+y^{4}\right) \mathrm{d} y & =\left(-3 y^{3} x^{2}-y^{4}\right) \mathrm{d} x \\
\left(3 y^{3} x^{2}+y^{4}\right) \mathrm{d} x+\left(3 x^{3} y^{2}+4 x y^{3}+y^{4}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y^{3} x^{2}+y^{4} \\
N(x, y) & =3 x^{3} y^{2}+4 x y^{3}+y^{4}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y^{3} x^{2}+y^{4}\right) \\
& =9 x^{2} y^{2}+4 y^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 x^{3} y^{2}+4 x y^{3}+y^{4}\right) \\
& =9 x^{2} y^{2}+4 y^{3}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 y^{3} x^{2}+y^{4} \mathrm{~d} x \\
\phi & =y^{3} x\left(x^{2}+y\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =3 y^{2} x\left(x^{2}+y\right)+x y^{3}+f^{\prime}(y) \tag{4}\\
& =x y^{2}\left(3 x^{2}+4 y\right)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 x^{3} y^{2}+4 x y^{3}+y^{4}$. Therefore equation (4) becomes

$$
\begin{equation*}
3 x^{3} y^{2}+4 x y^{3}+y^{4}=x y^{2}\left(3 x^{2}+4 y\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{4}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{4}\right) \mathrm{d} y \\
f(y) & =\frac{y^{5}}{5}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y^{3} x\left(x^{2}+y\right)+\frac{y^{5}}{5}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y^{3} x\left(x^{2}+y\right)+\frac{y^{5}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y^{3} x\left(x^{2}+y\right)+\frac{y^{5}}{5}=c_{1} \tag{1}
\end{equation*}
$$

Figure 328: Slope field plot

Verification of solutions

$$
y^{3} x\left(x^{2}+y\right)+\frac{y^{5}}{5}=c_{1}
$$

Verified OK.

5.39.2 Maple step by step solution

Let's solve
$3 y^{3} x^{2}+y^{4}+\left(3 x^{3} y^{2}+4 x y^{3}+y^{4}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$9 x^{2} y^{2}+4 y^{3}=9 x^{2} y^{2}+4 y^{3}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(3 y^{3} x^{2}+y^{4}\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=y^{3}\left(x^{3}+y x\right)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$3 x^{3} y^{2}+4 x y^{3}+y^{4}=3 y^{2}\left(x^{3}+y x\right)+x y^{3}+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=3 x^{3} y^{2}+3 x y^{3}+y^{4}-3 y^{2}\left(x^{3}+y x\right)
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=\frac{y^{5}}{5}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=y^{3}\left(x^{3}+y x\right)+\frac{y^{5}}{5}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
y^{3}\left(x^{3}+y x\right)+\frac{y^{5}}{5}=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{Root} O f\left(5 x^{3} _Z^{3}+_Z^{5}+5 x _Z^{4}-5 c_{1}\right)
$$

Maple trace

```
`Classification methods on request
Methods to be used are: [exact]
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(3*x^2*y(x)^3+y(x)^4+(3*x^3*y(x)^2+4*x*y(x)^3+y(x)^4)*diff (y (x),x) = 0,y(x), singsol=a
```

$$
\begin{aligned}
y(x) & =0 \\
x y(x)^{4}+x^{3} y(x)^{3}+\frac{y(x)^{5}}{5}+c_{1} & =0
\end{aligned}
$$

Solution by Mathematica
Time used: 33.636 (sec). Leaf size: 171
DSolve $\left[3 * x^{\wedge} 2 * y[x] \leadsto 3+y[x] \wedge 4+\left(3 * x^{\wedge} 3 * y[x] \wedge 2+4 * x * y[x] \wedge 3+y[x] \wedge 4\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingula

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+5 \# 1^{4} x+5 \# 1^{3} x^{3}-5 c_{1} \&, 1\right] \\
& y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+5 \# 1^{4} x+5 \# 1^{3} x^{3}-5 c_{1} \&, 2\right] \\
& y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+5 \# 1^{4} x+5 \# 1^{3} x^{3}-5 c_{1} \&, 3\right] \\
& y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+5 \# 1^{4} x+5 \# 1^{3} x^{3}-5 c_{1} \&, 4\right] \\
& y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+5 \# 1^{4} x+5 \# 1^{3} x^{3}-5 c_{1} \&, 5\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.40 problem 40

5.40.1 Solving as exact ode . 1368
5.40.2 Maple step by step solution . 1371

Internal problem ID [118]
Internal file name [OUTPUT/118_Sunday_June_05_2022_01_35_13_AM_10704552/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact]
```

$$
\mathrm{e}^{x} \sin (y)+\tan (y)+\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) y^{\prime}=0
$$

5.40.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) \mathrm{d} y & =\left(-\mathrm{e}^{x} \sin (y)-\tan (y)\right) \mathrm{d} x \\
\left(\mathrm{e}^{x} \sin (y)+\tan (y)\right) \mathrm{d} x+\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\mathrm{e}^{x} \sin (y)+\tan (y) \\
& N(x, y)=\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x} \sin (y)+\tan (y)\right) \\
& =\mathrm{e}^{x} \cos (y)+\sec (y)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) \\
& =\mathrm{e}^{x} \cos (y)+\sec (y)^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} \sin (y)+\tan (y) \mathrm{d} x \\
\phi & =\mathrm{e}^{x} \sin (y)+x \tan (y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\mathrm{e}^{x} \cos (y)+x\left(1+\tan (y)^{2}\right)+f^{\prime}(y) \tag{4}\\
& =\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}=\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} \sin (y)+x \tan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} \sin (y)+x \tan (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{x} \sin (y)+x \tan (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 329: Slope field plot

Verification of solutions

$$
\mathrm{e}^{x} \sin (y)+x \tan (y)=c_{1}
$$

Verified OK.

5.40.2 Maple step by step solution

Let's solve

$$
\mathrm{e}^{x} \sin (y)+\tan (y)+\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

$\square \quad$ Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\mathrm{e}^{x} \cos (y)+1+\tan (y)^{2}=\mathrm{e}^{x} \cos (y)+\sec (y)^{2}
$$

- Simplify

$$
\mathrm{e}^{x} \cos (y)+\sec (y)^{2}=\mathrm{e}^{x} \cos (y)+\sec (y)^{2}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\mathrm{e}^{x} \sin (y)+\tan (y)\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\mathrm{e}^{x} \sin (y)+x \tan (y)+f_{1}(y)$
- Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}=\mathrm{e}^{x} \cos (y)+x\left(1+\tan (y)^{2}\right)+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=x \sec (y)^{2}-x\left(1+\tan (y)^{2}\right)
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\mathrm{e}^{x} \sin (y)+x \tan (y)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$\mathrm{e}^{x} \sin (y)+x \tan (y)=c_{1}$
- \quad Solve for y
$y=\arctan \left(\frac{c_{1} \operatorname{RootOf}\left(\left(\mathrm{e}^{x}\right)^{2}-Z^{4}+2 x \mathrm{e}^{x}-Z^{3}+\left(c_{1}^{2}+x^{2}-\left(\mathrm{e}^{x}\right)^{2}\right) _Z^{2}-2 x \mathrm{e}^{x}-Z-x^{2}\right)}{\operatorname{RootOf}\left(\left(\mathrm{e}^{x}\right)^{2}-Z^{4}+2 x \mathrm{e}^{x}-Z^{3}+\left(c_{1}^{2}+x^{2}-\left(\mathrm{e}^{x}\right)^{2}\right) _Z^{2}-2 x \mathrm{e}^{x}-Z-x^{2}\right) \mathrm{e}^{x}+x}, \operatorname{RootOf}\left(\left(\mathrm{e}^{x}\right)^{2}-Z^{4}+2 x \mathrm{e}\right.\right.$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 153
dsolve $\left(\exp (x) * \sin (y(x))+\tan (y(x))+\left(\exp (x) * \cos (y(x))+x * \sec (y(x))^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, si
$y(x)$
$=\arctan \left(-\frac{c_{1} \operatorname{RootOf}\left(\ldots Z^{4} \mathrm{e}^{2 x}+2 x \mathrm{e}^{x} _Z^{3}+\left(c_{1}^{2}+x^{2}-\mathrm{e}^{2 x}\right) _Z^{2}-2 x \mathrm{e}^{x} _Z-x^{2}\right)}{\operatorname{RootOf}\left(\ldots Z^{4} \mathrm{e}^{2 x}+2 x \mathrm{e}^{x} _Z^{3}+\left(c_{1}^{2}+x^{2}-\mathrm{e}^{2 x}\right) _Z^{2}-2 x \mathrm{e}^{x} _Z-x^{2}\right) \mathrm{e}^{x}+x}, \operatorname{RootOf}\left(\ldots Z^{4} \mathrm{e}^{2 x}\right.\right.$

$$
\left.\left.+2 x \mathrm{e}^{x} _Z^{3}+\left(c_{1}^{2}+x^{2}-\mathrm{e}^{2 x}\right) _Z^{2}-2 x \mathrm{e}^{x} _Z-x^{2}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 60.842 (sec). Leaf size: 5539

```
DSolve[Exp[x]*Sin[y[x]]+Tan[y[x]]+(Exp[x]*\operatorname{Cos}[y[x]]+x*Sec[y[x]]~2)*y'[x] == 0,y[x],x, Include
```

Too large to display

5.41 problem 41

5.41.1 Solving as exact ode . 1374
5.41.2 Maple step by step solution 1378

Internal problem ID [119]
Internal file name [OUTPUT/119_Sunday_June_05_2022_01_35_21_AM_68556579/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _rational]

$$
\frac{2 x}{y}-\frac{3 y^{2}}{x^{4}}+\left(-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}\right) y^{\prime}=0
$$

5.41.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}\right) \mathrm{d} y & =\left(-\frac{2 x}{y}+\frac{3 y^{2}}{x^{4}}\right) \mathrm{d} x \\
\left(\frac{2 x}{y}-\frac{3 y^{2}}{x^{4}}\right) \mathrm{d} x+\left(-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{2 x}{y}-\frac{3 y^{2}}{x^{4}} \\
& N(x, y)=-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 x}{y}-\frac{3 y^{2}}{x^{4}}\right) \\
& =-\frac{2 x}{y^{2}}-\frac{6 y}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}\right) \\
& =-\frac{2 x}{y^{2}}-\frac{6 y}{x^{4}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x}{y}-\frac{3 y^{2}}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{x^{5}+y^{3}}{y x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{3 y}{x^{3}}-\frac{x^{5}+y^{3}}{y^{2} x^{3}}+f^{\prime}(y) \tag{4}\\
& =\frac{-x^{5}+2 y^{3}}{x^{3} y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}=\frac{-x^{5}+2 y^{3}}{x^{3} y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{5}+y^{3}}{y x^{3}}+2 \sqrt{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{5}+y^{3}}{y x^{3}}+2 \sqrt{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{5}+y^{3}}{y x^{3}}+2 \sqrt{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 330: Slope field plot
Verification of solutions

$$
\frac{x^{5}+y^{3}}{y x^{3}}+2 \sqrt{y}=c_{1}
$$

Verified OK.

5.41.2 Maple step by step solution

Let's solve

$$
\frac{2 x}{y}-\frac{3 y^{2}}{x^{4}}+\left(-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$-\frac{2 x}{y^{2}}-\frac{6 y}{x^{4}}=-\frac{2 x}{y^{2}}-\frac{6 y}{x^{4}}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\frac{2 x}{y}-\frac{3 y^{2}}{x^{4}}\right) d x+f_{1}(y)
$$

- \quad Evaluate integral
$F(x, y)=\frac{x^{2}}{y}+\frac{y^{2}}{x^{3}}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$-\frac{x^{2}}{y^{2}}+\frac{1}{\sqrt{y}}+\frac{2 y}{x^{3}}=-\frac{x^{2}}{y^{2}}+\frac{2 y}{x^{3}}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=\frac{1}{\sqrt{y}}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=2 \sqrt{y}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{x^{2}}{y}+\frac{y^{2}}{x^{3}}+2 \sqrt{y}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{x^{2}}{y}+\frac{y^{2}}{x^{3}}+2 \sqrt{y}=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{RootOf}\left(-c_{1} x^{3} _Z^{2}+_Z^{6}+2 x^{3} _Z^{3}+x^{5}\right)^{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 35

```
dsolve(2*x/y(x)-3*y(x)^2/x^4+(-x^2/y(x)^2+1/y(x)^(1/2)+2*y(x)/x^3)*diff(y(x),x) = 0,y(x), si
```

$$
\frac{2 y(x)^{\frac{3}{2}} x^{3}+c_{1} x^{3} y(x)+x^{5}+y(x)^{3}}{x^{3} y(x)}=0
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[2 * x / y[x]-3 * y[x] \wedge 2 / x^{\wedge} 4+\left(-x^{\wedge} 2 / y[x] \wedge 2+1 / y[x]^{\wedge}(1 / 2)+2 * y[x] / x^{\wedge} 3\right) * y y^{\prime}[x]==0, y[x], x\right.$, Include

Not solved

5.42 problem 42

5.42.1 Solving as separable ode . 1380
5.42.2 Solving as linear ode . 1382
5.42.3 Solving as homogeneousTypeD2 ode 1383
5.42.4 Solving as first order ode lie symmetry lookup ode 1385
5.42.5 Solving as exact ode . 1389
5.42.6 Maple step by step solution . 1393

Internal problem ID [120]
Internal file name [OUTPUT/120_Sunday_June_05_2022_01_35_35_AM_74389913/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 1.6, Substitution methods and exact equations. Page 74
Problem number: 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _exact, _rational]

$$
\frac{2 x^{\frac{5}{2}}-3 y^{\frac{5}{3}}}{2 x^{\frac{5}{2}} y^{\frac{2}{3}}}+\frac{\left(-2 x^{\frac{5}{2}}+3 y^{\frac{5}{3}}\right) y^{\prime}}{3 x^{\frac{3}{2}} y^{\frac{5}{3}}}=0
$$

5.42.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{3 y}{2 x}
\end{aligned}
$$

Where $f(x)=\frac{3}{2 x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{3}{2 x} d x \\
\int \frac{1}{y} d y & =\int \frac{3}{2 x} d x \\
\ln (y) & =\frac{3 \ln (x)}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{3 \ln (x)}{2}+c_{1}} \\
& =x^{\frac{3}{2}} c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{3}{2}} c_{1} \tag{1}
\end{equation*}
$$

Figure 331: Slope field plot

Verification of solutions

$$
y=x^{\frac{3}{2}} c_{1}
$$

Verified OK.

5.42.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{2 x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{2 x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x^{\frac{3}{2}}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x^{\frac{3}{2}}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{\frac{3}{2}}}$ results in

$$
y=x^{\frac{3}{2}} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{3}{2}} c_{1} \tag{1}
\end{equation*}
$$

Figure 332: Slope field plot

Verification of solutions

$$
y=x^{\frac{3}{2}} c_{1}
$$

Verified OK.

5.42.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\frac{2 x^{\frac{5}{2}}-3(u(x) x)^{\frac{5}{3}}}{2 x^{\frac{5}{2}}(u(x) x)^{\frac{2}{3}}}+\frac{\left(-2 x^{\frac{5}{2}}+3(u(x) x)^{\frac{5}{3}}\right)\left(u^{\prime}(x) x+u(x)\right)}{3 x^{\frac{3}{2}}(u(x) x)^{\frac{5}{3}}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{2 x}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{2 x} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{2 x} d x \\
\ln (u) & =\frac{\ln (x)}{2}+c_{2} \\
u & =\mathrm{e}^{\frac{\ln (x)}{2}+c_{2}} \\
& =c_{2} \sqrt{x}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x^{\frac{3}{2}} c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{3}{2}} c_{2} \tag{1}
\end{equation*}
$$

Figure 333: Slope field plot

Verification of solutions

$$
y=x^{\frac{3}{2}} c_{2}
$$

Verified OK.

5.42.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{3 y}{2 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 240: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{\frac{3}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{\frac{3}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{\frac{3}{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 y}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y}{2 x^{\frac{5}{2}}} \\
S_{y} & =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{\frac{3}{2}}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{\frac{3}{2}}}=c_{1}
$$

Which gives

$$
y=x^{\frac{3}{2}} c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 y}{2 x}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+S(R)}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
\rightarrow ¢	$R=x$	$\xrightarrow{\rightarrow \rightarrow \longrightarrow}$
	$S=y$	
	$S=\frac{y}{x^{\frac{3}{2}}}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow+R^{+}}$
		$\xrightarrow{\rightarrow}$
		$\rightarrow \rightarrow \rightarrow+$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{3}{2}} c_{1} \tag{1}
\end{equation*}
$$

Figure 334: Slope field plot

Verification of solutions

$$
y=x^{\frac{3}{2}} c_{1}
$$

Verified OK.

5.42.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2}{3 y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{2}{3 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{2}{3 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2}{3 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2}{3 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2}{3 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{3 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{3 y}\right) \mathrm{d} y \\
f(y) & =\frac{2 \ln (y)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\frac{2 \ln (y)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\frac{2 \ln (y)}{3}
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{3 \ln (x)}{2}+\frac{3 c_{1}}{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{3 \ln (x)}{2}+\frac{3 c_{1}}{2}} \tag{1}
\end{equation*}
$$

Figure 335: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{3 \ln (x)}{2}+\frac{3 c_{1}}{2}}
$$

Verified OK.

5.42.6 Maple step by step solution

Let's solve

$$
\frac{2 x^{\frac{5}{2}}-3 y^{\frac{5}{3}}}{2 x^{\frac{5}{2}} y^{\frac{2}{3}}}+\frac{\left(-2 x^{\frac{5}{2}}+3 y^{\frac{5}{3}}\right) y^{\prime}}{3 x^{\frac{3}{2}} y^{\frac{5}{3}}}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-\frac{5}{2 x^{\frac{5}{2}}}-\frac{2 x^{\frac{5}{2}}-3 y^{\frac{5}{3}}}{3 x^{\frac{5}{2}} y^{\frac{5}{3}}}=-\frac{5}{3 y^{\frac{5}{3}}}-\frac{-2 x^{\frac{5}{2}}+3 y^{\frac{5}{3}}}{2 x^{\frac{5}{2}} y^{\frac{5}{3}}}
$$

- Simplify

$$
\frac{-9 y^{\frac{5}{3}}-4 x^{\frac{5}{2}}}{6 x^{\frac{5}{2}} y^{\frac{5}{3}}}=\frac{-9 y^{\frac{5}{3}}-4 x^{\frac{5}{2}}}{6 x^{\frac{5}{2}} y^{\frac{5}{3}}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int \frac{2 x^{\frac{5}{2}}-3 y^{\frac{5}{3}}}{2 x^{\frac{5}{2}} y^{\frac{2}{3}}} d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{2 x+\frac{2 y^{\frac{5}{3}}}{y^{2}}}{2 y^{\frac{2}{3}}}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\frac{-2 x^{\frac{5}{2}}+3 y^{\frac{5}{3}}}{3 x^{\frac{3}{2}} y^{\frac{3}{3}}}=-\frac{2 x+\frac{2 y^{\frac{5}{3}}}{x^{\frac{3}{2}}}}{3 y^{\frac{5}{3}}}+\frac{5}{3 x^{\frac{3}{2}}}+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{-2 x^{\frac{5}{2}}+3 y^{\frac{5}{3}}}{3 x^{\frac{3}{2}} y^{\frac{5}{3}}}+\frac{2 x+\frac{2 y^{\frac{5}{3}}}{x^{3}}}{3 y^{\frac{3}{3}}}-\frac{5}{3 x^{\frac{3}{2}}}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{2 x+\frac{2 y^{\frac{5}{3}}}{x^{\frac{3}{2}}}}{2 y^{\frac{2}{3}}}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{2 x+\frac{2 y^{\frac{5}{3}}}{x^{\frac{x^{2}}{2}}}}{2 y^{\frac{1}{3}}}=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{Root} O f\left(-c_{1} _Z^{2} x^{\frac{3}{2}}+_Z^{5}+x^{\frac{5}{2}}\right)^{3}
$$

Maple trace

```
`Classification methods on request
Methods to be used are: [exact]
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 185
dsolve(1/2*(2*x^(5/2)-3*y(x)^(5/3))/x^(5/2)/y(x)^(2/3)+1/3*(-2*x^(5/2)+3*y(x)-(5/3))*diff(y(.)

$$
\begin{aligned}
y(x) & =\frac{2^{\frac{3}{5}} 3^{\frac{2}{5}}\left(x^{\frac{5}{2}}\right)^{\frac{3}{5}}}{3} \\
y(x) & =-\frac{(i \sqrt{2} \sqrt{5-\sqrt{5}}+\sqrt{5}+1)^{3} 2^{\frac{3}{5}} 3^{\frac{2}{5}}\left(x^{\frac{5}{2}}\right)^{\frac{3}{5}}}{192} \\
y(x) & =\frac{(i \sqrt{2} \sqrt{5-\sqrt{5}}-\sqrt{5}-1)^{3} 2^{\frac{3}{5}} 3^{\frac{2}{5}}\left(x^{\frac{5}{2}}\right)^{\frac{3}{5}}}{192} \\
y(x) & =-\frac{(i \sqrt{2} \sqrt{5+\sqrt{5}}-\sqrt{5}+1)^{3} 2^{\frac{3}{5}} 3^{\frac{2}{5}}\left(x^{\frac{5}{2}}\right)^{\frac{3}{5}}}{192} \\
y(x) & =\frac{(i \sqrt{2} \sqrt{5+\sqrt{5}}+\sqrt{5}-1)^{3} 2^{\frac{3}{5}} 3^{\frac{2}{5}}\left(x^{\frac{5}{2}}\right)^{\frac{3}{5}}}{192} \\
\frac{x}{y(x)^{\frac{2}{3}}}+\frac{y(x)}{x^{\frac{3}{2}}}+c_{1} & =0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 260
DSolve $\left[1 / 2 *\left(2 * x^{\wedge}(5 / 2)-3 * y[x] \sim(5 / 3)\right) / x^{\wedge}(5 / 2) / y[x] \sim(2 / 3)+1 / 3 *\left(-2 * x^{\wedge}(5 / 2)+3 * y[x]-(5 / 3)\right) * y \cdot[x] / x\right.$

$$
\begin{aligned}
& y(x) \rightarrow\left(\frac{2}{3}\right)^{3 / 5}\left(x^{5 / 2}\right)^{3 / 5} \\
& y(x) \rightarrow c_{1} x^{3 / 2} \\
& y(x) \rightarrow-\left(-\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow\left(-\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow-\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow-\sqrt[5]{-1}\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow \sqrt[5]{-1}\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow-(-1)^{2 / 5}\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow(-1)^{2 / 5}\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow-(-1)^{4 / 5}\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow(-1)^{4 / 5}\left(\frac{2}{3}\right)^{3 / 5} x^{3 / 2} \\
& y(x) \rightarrow\left(\frac{2}{3}\right)^{3 / 5}\left(x^{5 / 2}\right)^{3 / 5}
\end{aligned}
$$

6 Chapter 1 review problems. Page 78
6.1 problem 1 1398
6.2 problem 2 1411
6.3 problem 3 1425
6.4 problem 4 1443
6.5 problem 5 1449
6.6 problem 6 1464
6.7 problem 7 1478
6.8 problem 8 1491
6.9 problem 9 1504
6.10 problem 10 1513
6.11 problem 11 1527
6.12 problem 12 1545
6.13 problem 13 1560
6.14 problem 14 1563
6.15 problem 15 1574
6.16 problem 16 1586
6.17 problem 17 1595
6.18 problem 18 1601
6.19 problem 19 1612
6.20 problem 20 1626
6.21 problem 21 1639
6.22 problem 22 1652
6.23 problem 23 1661
6.24 problem 24 1667
6.25 problem 25 1682
6.26 problem 26 1698
6.27 problem 27 1704
6.28 problem 28 1719
6.29 problem 29 1731
6.30 problem 31(a) 1744
6.31 problem 31 (b) 1757
6.32 problem 32 (b) 1770
6.33 problem 33 (a) 1785
6.34 problem 34 (a) 1799
6.35 problem 35 (a) 1813
6.36 problem 36 (a) 1826

6.1 problem 1

6.1.1 Solving as linear ode . 1398
6.1.2 Solving as first order ode lie symmetry lookup ode 1400
6.1.3 Solving as exact ode . 1404
6.1.4 Maple step by step solution . 1409

Internal problem ID [121]
Internal file name [OUTPUT/121_Sunday_June_05_2022_01_35_36_AM_29210918/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
3 y-y^{\prime} x=-x^{3}
$$

6.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{x}=x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{y}{x^{3}}\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{3}} & =\int \frac{1}{x} \mathrm{~d} x \\
\frac{y}{x^{3}} & =\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
y=\ln (x) x^{3}+c_{1} x^{3}
$$

which simplifies to

$$
y=x^{3}\left(\ln (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 336: Slope field plot

Verification of solutions

$$
y=x^{3}\left(\ln (x)+c_{1}\right)
$$

Verified OK.

6.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{3}+3 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 243: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{3}+3 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y}{x^{4}} \\
S_{y} & =\frac{1}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{3}}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{3}}=\ln (x)+c_{1}
$$

Which gives

$$
y=x^{3}\left(\ln (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{3}+3 y}{x}$		$\frac{d S}{d R}=\frac{1}{R}$
		-
		1) 1
	$R=x$	$\rightarrow \rightarrow \rightarrow$ -
	$S=\frac{y}{x^{3}}$	$\rightarrow \rightarrow+4$
	$S=\frac{}{x^{3}}$	$\rightarrow \rightarrow \rightarrow$ 为
		$\rightarrow \rightarrow$ ard
		为

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 337: Slope field plot

Verification of solutions

$$
y=x^{3}\left(\ln (x)+c_{1}\right)
$$

Verified OK.

6.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x) \mathrm{d} y & =\left(-x^{3}-3 y\right) \mathrm{d} x \\
\left(x^{3}+3 y\right) \mathrm{d} x+(-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{3}+3 y \\
N(x, y) & =-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{3}+3 y\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x}((3)-(-1)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(x^{3}+3 y\right) \\
& =\frac{x^{3}+3 y}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}(-x) \\
& =-\frac{1}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{3}+3 y}{x^{4}}\right)+\left(-\frac{1}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{3}+3 y}{x^{4}} \mathrm{~d} x \\
\phi & =-\frac{y}{x^{3}}+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{1}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{x^{3}}=-\frac{1}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{y}{x^{3}}+\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{y}{x^{3}}+\ln (x)
$$

The solution becomes

$$
y=\left(\ln (x)-c_{1}\right) x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\ln (x)-c_{1}\right) x^{3} \tag{1}
\end{equation*}
$$

Figure 338: Slope field plot

Verification of solutions

$$
y=\left(\ln (x)-c_{1}\right) x^{3}
$$

Verified OK.

6.1.4 Maple step by step solution

Let's solve
$3 y-y^{\prime} x=-x^{3}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{x}+x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{3 y}{x}=x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{3 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{3}}$
$y=x^{3}\left(\int \frac{1}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{3}\left(\ln (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(x^3+3*y(x)-x*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=\left(\ln (x)+c_{1}\right) x^{3}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 14
DSolve[x^3+3*y[x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x^{3}\left(\log (x)+c_{1}\right)
$$

6.2 problem 2

6.2.1 Solving as separable ode . 1411
6.2.2 Solving as first order ode lie symmetry lookup ode 1413
6.2.3 Solving as exact ode . 1417
6.2.4 Solving as riccati ode . 1421
6.2.5 Maple step by step solution . 1423

Internal problem ID [122]
Internal file name [OUTPUT/122_Sunday_June_05_2022_01_35_36_AM_37178771/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
3 y^{2}+x y^{2}-y^{\prime} x^{2}=0
$$

6.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y^{2}(x+3)}{x^{2}}
\end{aligned}
$$

Where $f(x)=\frac{x+3}{x^{2}}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =\frac{x+3}{x^{2}} d x \\
\int \frac{1}{y^{2}} d y & =\int \frac{x+3}{x^{2}} d x \\
-\frac{1}{y} & =\ln (x)-\frac{3}{x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{x}{-3+x \ln (x)+c_{1} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{-3+x \ln (x)+c_{1} x} \tag{1}
\end{equation*}
$$

Figure 339: Slope field plot

Verification of solutions

$$
y=-\frac{x}{-3+x \ln (x)+c_{1} x}
$$

Verified OK.

6.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}(x+3)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 246: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =\frac{x^{2}}{x+3} \\
\eta(x, y) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}}{x+3}} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)-\frac{3}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}(x+3)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x+3}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x \ln (x)-3}{x}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{x \ln (x)-3}{x}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=-\frac{x}{x \ln (x)-c_{1} x-3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}(x+3)}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow \infty$ ¢ \dagger^{+}¢
		$\xrightarrow{+1}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$	$x \ln (x)-3$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
	$S=\frac{x \ln (x)-3}{x}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{x \ln (x)-c_{1} x-3} \tag{1}
\end{equation*}
$$

Figure 340: Slope field plot

Verification of solutions

$$
y=-\frac{x}{x \ln (x)-c_{1} x-3}
$$

Verified OK.

6.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(\frac{x+3}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{x+3}{x^{2}}\right) \mathrm{d} x+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x+3}{x^{2}} \\
& N(x, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x+3}{x^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x+3}{x^{2}} \mathrm{~d} x \\
\phi & =-\ln (x)+\frac{3}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\frac{3}{x}-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\frac{3}{x}-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{x}{-3+x \ln (x)+c_{1} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{-3+x \ln (x)+c_{1} x} \tag{1}
\end{equation*}
$$

Figure 341: Slope field plot

Verification of solutions

$$
y=-\frac{x}{-3+x \ln (x)+c_{1} x}
$$

Verified OK.

6.2.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}(x+3)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{x}+\frac{3 y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=\frac{x+3}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{(x+3) u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2(x+3)}{x^{3}}+\frac{1}{x^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{(x+3) u^{\prime \prime}(x)}{x^{2}}-\left(-\frac{2(x+3)}{x^{3}}+\frac{1}{x^{2}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\left(\ln (x)-\frac{3}{x}\right) c_{2}
$$

The above shows that

$$
u^{\prime}(x)=\frac{(x+3) c_{2}}{x^{2}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{c_{1}+\left(\ln (x)-\frac{3}{x}\right) c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{x}{x \ln (x)+c_{3} x-3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{x \ln (x)+c_{3} x-3} \tag{1}
\end{equation*}
$$

Figure 342: Slope field plot

Verification of solutions

$$
y=-\frac{x}{x \ln (x)+c_{3} x-3}
$$

Verified OK.

6.2.5 Maple step by step solution

Let's solve

$$
3 y^{2}+x y^{2}-y^{\prime} x^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=\frac{x+3}{x^{2}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int \frac{x+3}{x^{2}} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=\ln (x)-\frac{3}{x}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{x}{-3+x \ln (x)+c_{1} x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(3*y(x)^ 2+x*y(x) ^2- x^ 2*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=\frac{x}{3-x \ln (x)+c_{1} x}
$$

\checkmark Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 25
DSolve $\left[3 * y[x] \wedge 2+x * y[x] \sim 2-x^{\wedge} 2 * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{x \log (x)+c_{1} x-3} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.3 problem 3

6.3.1 Solving as homogeneousTypeD2 ode 1425
6.3.2 Solving as first order ode lie symmetry lookup ode 1427
6.3.3 Solving as bernoulli ode . 1431
6.3.4 Solving as exact ode . 1435
6.3.5 Solving as riccati ode . 1440

Internal problem ID [123]
Internal file name [OUTPUT/123_Sunday_June_05_2022_01_35_37_AM_12516135/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y x+y^{2}-y^{\prime} x^{2}=0
$$

6.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x^{2}+u(x)^{2} x^{2}-\left(u^{\prime}(x) x+u(x)\right) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =\frac{1}{x} d x \\
\int \frac{1}{u^{2}} d u & =\int \frac{1}{x} d x \\
-\frac{1}{u} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x}{y}-\ln (x)-c_{2}=0 \\
& -\frac{x}{y}-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{y}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 343: Slope field plot
Verification of solutions

$$
-\frac{x}{y}-\ln (x)-c_{2}=0
$$

Verified OK.

6.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y(x+y)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 249: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{2}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(x+y)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{y} \\
S_{y} & =\frac{x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x}{y}=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{x}{y}=\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{x}{\ln (x)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(x+y)}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\rightarrow \rightarrow$ -
($\rightarrow \rightarrow+\infty$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1+$ + $\square_{\rightarrow \rightarrow \rightarrow \rightarrow \infty}$	$R=x$	$\cdots \times 1+0$
	$S=-\frac{x}{y}$	
	$S=-\frac{}{y}$	
		14
		+ ${ }^{+}$
		arady

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 344: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\ln (x)+c_{1}}
$$

Verified OK.

6.3.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x+y)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y+\frac{1}{x^{2}} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =\frac{1}{x^{2}} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{y x}+\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x}+\frac{1}{x^{2}} \\
w^{\prime} & =-\frac{w}{x}-\frac{1}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)\left(-\frac{1}{x^{2}}\right) \\
\mathrm{d}(w x) & =\left(-\frac{1}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int-\frac{1}{x} \mathrm{~d} x \\
& w x=-\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-\frac{\ln (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
w(x)=\frac{-\ln (x)+c_{1}}{x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{-\ln (x)+c_{1}}{x}
$$

Or

$$
y=\frac{x}{-\ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{-\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 345: Slope field plot

Verification of solutions

$$
y=\frac{x}{-\ln (x)+c_{1}}
$$

Verified OK.

6.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2}\right) \mathrm{d} y & =\left(-y x-y^{2}\right) \mathrm{d} x \\
\left(y x+y^{2}\right) \mathrm{d} x+\left(-x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y x+y^{2} \\
& N(x, y)=-x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y x+y^{2}\right) \\
& =x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2}\right) \\
& =-2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x y^{2}}$ is an integrating factor. Therefore by multiplying $M=y x+y^{2}$ and $N=-x^{2}$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{y x+y^{2}}{x y^{2}} \\
N & =-\frac{x}{y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{x}{y^{2}}\right) \mathrm{d} y & =\left(-\frac{y x+y^{2}}{x y^{2}}\right) \mathrm{d} x \\
\left(\frac{y x+y^{2}}{x y^{2}}\right) \mathrm{d} x+\left(-\frac{x}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y x+y^{2}}{x y^{2}} \\
& N(x, y)=-\frac{x}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y x+y^{2}}{x y^{2}}\right) \\
& =-\frac{1}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{x}{y^{2}}\right) \\
& =-\frac{1}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y x+y^{2}}{x y^{2}} \mathrm{~d} x \\
\phi & =\ln (x)+\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x}{y^{2}}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x)+\frac{x}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x)+\frac{x}{y}
$$

The solution becomes

$$
y=-\frac{x}{\ln (x)-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\ln (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 346: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\ln (x)-c_{1}}
$$

Verified OK.

6.3.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x+y)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =\frac{1}{x^{3}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}+\frac{u^{\prime}(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \ln (x)+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2} x}{c_{2} \ln (x)+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{x}{\ln (x)+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\ln (x)+c_{3}} \tag{1}
\end{equation*}
$$

Figure 347: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\ln (x)+c_{3}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(x*y(x)+y(x)^2-x^2*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=\frac{x}{c_{1}-\ln (x)}
$$

\checkmark Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 21

```
DSolve[x*y[x]+y[x]^2-x^2*y'[x]== 0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{-\log (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.4 problem 4

6.4.1 Solving as exact ode . 1443
6.4.2 Maple step by step solution . 1446

Internal problem ID [124]
Internal file name [OUTPUT/124_Sunday_June_05_2022_01_35_38_AM_97682275/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact]
```

$$
2 x y^{3}+\left(\sin (y)+3 x^{2} y^{2}\right) y^{\prime}=-\mathrm{e}^{x}
$$

6.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\sin (y)+3 x^{2} y^{2}\right) \mathrm{d} y & =\left(-\mathrm{e}^{x}-2 x y^{3}\right) \mathrm{d} x \\
\left(2 x y^{3}+\mathrm{e}^{x}\right) \mathrm{d} x+\left(\sin (y)+3 x^{2} y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y^{3}+\mathrm{e}^{x} \\
N(x, y) & =\sin (y)+3 x^{2} y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y^{3}+\mathrm{e}^{x}\right) \\
& =6 x y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\sin (y)+3 x^{2} y^{2}\right) \\
& =6 x y^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y^{3}+\mathrm{e}^{x} \mathrm{~d} x \\
\phi & =y^{3} x^{2}+\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 x^{2} y^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sin (y)+3 x^{2} y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\sin (y)+3 x^{2} y^{2}=3 x^{2} y^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\sin (y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\sin (y)) \mathrm{d} y \\
f(y) & =-\cos (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y^{3} x^{2}+\mathrm{e}^{x}-\cos (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y^{3} x^{2}+\mathrm{e}^{x}-\cos (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{3} x^{2}+\mathrm{e}^{x}-\cos (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 348: Slope field plot

Verification of solutions

$$
y^{3} x^{2}+\mathrm{e}^{x}-\cos (y)=c_{1}
$$

Verified OK.

6.4.2 Maple step by step solution

Let's solve

$$
2 x y^{3}+\left(\sin (y)+3 x^{2} y^{2}\right) y^{\prime}=-\mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
6 x y^{2}=6 x y^{2}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 x y^{3}+\mathrm{e}^{x}\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=y^{3} x^{2}+\mathrm{e}^{x}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\sin (y)+3 x^{2} y^{2}=3 x^{2} y^{2}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\sin (y)
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-\cos (y)$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=y^{3} x^{2}+\mathrm{e}^{x}-\cos (y)$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
y^{3} x^{2}+\mathrm{e}^{x}-\cos (y)=c_{1}
$$

- \quad Solve for y
$y=\operatorname{Root} O f\left(-x^{2} _Z^{3}+c_{1}+\cos \left(_Z\right)-\mathrm{e}^{x}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve $\left(\exp (x)+2 * x * y(x) \wedge 3+\left(\sin (y(x))+3 * x^{\wedge} 2 * y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad\right.$ singsol=all)

$$
x^{2} y(x)^{3}+\mathrm{e}^{x}-\cos (y(x))+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.255 (sec). Leaf size: 23
DSolve $\left[\operatorname{Exp}[x]+2 * x * y[x] \wedge 3+\left(\operatorname{Sin}[y[x]]+3 * x^{\wedge} 2 * y[x] \wedge 2\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\text { Solve }\left[x^{2} y(x)^{3}-\cos (y(x))+e^{x}=c_{1}, y(x)\right]
$$

6.5 problem 5

6.5.1 Solving as separable ode . 1449
6.5.2 Solving as linear ode . 1451
6.5.3 Solving as homogeneousTypeD2 ode 1452
6.5.4 Solving as first order ode lie symmetry lookup ode 1454
6.5.5 Solving as exact ode . 1458
6.5.6 Maple step by step solution . 1462

Internal problem ID [125]
Internal file name [OUTPUT/125_Sunday_June_05_2022_01_35_40_AM_3110566/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
3 y+x^{4} y^{\prime}-2 y x=0
$$

6.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y(-3+2 x)}{x^{4}}
\end{aligned}
$$

Where $f(x)=\frac{-3+2 x}{x^{4}}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{-3+2 x}{x^{4}} d x \\
\int \frac{1}{y} d y & =\int \frac{-3+2 x}{x^{4}} d x \\
\ln (y) & =\frac{1}{x^{3}}-\frac{1}{x^{2}}+c_{1} \\
y & =\mathrm{e}^{\frac{1}{x^{3}}-\frac{1}{x^{2}}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{1}{x^{3}}-\frac{1}{x^{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 349: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{1}{x^{3}}-\frac{1}{x^{2}}}
$$

Verified OK.

6.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-3+2 x}{x^{4}} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y(-3+2 x)}{x^{4}}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-3+2 x}{x^{4}} d x} \\
& =\mathrm{e}^{\frac{1}{x^{2}}-\frac{1}{x^{3}}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{1}{x^{2}}}-\frac{1}{x^{3}}\right. &)
\end{aligned}=0
$$

Integrating gives

$$
\mathrm{e}^{\frac{1}{x^{2}}-\frac{1}{x^{3}}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{1}{x^{2}}-\frac{1}{x^{3}}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{1-x}{x^{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{1-x}{x^{3}}} \tag{1}
\end{equation*}
$$

Figure 350: Slope field plot
Verification of solutions

$$
y=c_{1} e^{\frac{1-x}{x^{3}}}
$$

Verified OK.

6.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
3 u(x) x+x^{4}\left(u^{\prime}(x) x+u(x)\right)-2 u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(x^{3}-2 x+3\right)}{x^{4}}
\end{aligned}
$$

Where $f(x)=-\frac{x^{3}-2 x+3}{x^{4}}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{x^{3}-2 x+3}{x^{4}} d x \\
\int \frac{1}{u} d u & =\int-\frac{x^{3}-2 x+3}{x^{4}} d x \\
\ln (u) & =\frac{1}{x^{3}}-\ln (x)-\frac{1}{x^{2}}+c_{2} \\
u & =\mathrm{e}^{\frac{1}{x^{3}}-\ln (x)-\frac{1}{x^{2}}+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{1}{x^{3}}-\ln (x)-\frac{1}{x^{2}}}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{\frac{1}{x^{3}}} \mathrm{e}^{-\frac{1}{x^{2}}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =c_{2} \mathrm{e}^{\frac{1}{x^{3}}} \mathrm{e}^{-\frac{1}{x^{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{1}{x^{3}}} \mathrm{e}^{-\frac{1}{x^{2}}} \tag{1}
\end{equation*}
$$

Figure 351: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{1}{x^{3}}} \mathrm{e}^{-\frac{1}{x^{2}}}
$$

Verified OK.

6.5.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y(-3+2 x)}{x^{4}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 252: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{1}{x^{3}}-\frac{1}{x^{2}}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{x^{3}}-\frac{1}{x^{2}}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{1}{x^{2}}-\frac{1}{x^{3}}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(-3+2 x)}{x^{4}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{y(-2 x+3) \mathrm{e}^{\frac{x-1}{x^{3}}}}{x^{4}} \\
& S_{y}=\mathrm{e}^{\frac{x-1}{x^{3}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{\frac{x-1}{x^{3}}}=c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{\frac{x-1}{x^{3}}}=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{-\frac{x-1}{x^{3}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(-3+2 x)}{x^{4}}$		$\frac{d S}{d R}=0$
		\cdots
		$\xrightarrow{\sim}$
	$R=x$	
	$S=y \mathrm{e}^{\frac{x-1}{x^{3}}}$	
		$\xrightarrow{\rightarrow}$
$1+\sim \rightarrow+\infty$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow}$
-3, 140		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x-1}{x^{3}}} \tag{1}
\end{equation*}
$$

Figure 352: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x-1}{x^{3}}}
$$

Verified OK.

6.5.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{-3+2 x}{x^{4}}\right) \mathrm{d} x \\
\left(-\frac{-3+2 x}{x^{4}}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{-3+2 x}{x^{4}} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-3+2 x}{x^{4}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{-3+2 x}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{x-1}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x-1}{x^{3}}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x-1}{x^{3}}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{c_{1} x^{3}-x+1}{x^{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{c_{1} x^{3}-x+1}{x^{3}}} \tag{1}
\end{equation*}
$$

Figure 353: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{c_{1} x^{3}-x+1}{x^{3}}}
$$

Verified OK.

6.5.6 Maple step by step solution

Let's solve
$3 y+x^{4} y^{\prime}-2 y x=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{-3+2 x}{x^{4}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{-3+2 x}{x^{4}} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=\frac{1}{x^{3}}-\frac{1}{x^{2}}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{c_{1} x^{3}-x+1}{x^{3}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

```
dsolve(3*y(x)+x^4*diff(y(x),x) = 2*x*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{1-x}{x^{3}}}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 24
DSolve [3*y $[x]+x^{-} 4 * y$ ' $[x]==2 * x * y[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{1-x}{x^{3}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.6 problem 6

6.6.1 Solving as separable ode . 1464
6.6.2 Solving as first order ode lie symmetry lookup ode 1466
6.6.3 Solving as exact ode . 1470
6.6.4 Solving as riccati ode . 1474
6.6.5 Maple step by step solution . 1476

Internal problem ID [126]
Internal file name [OUTPUT/126_Sunday_June_05_2022_01_35_41_AM_56216560/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 x y^{2}+y^{\prime} x^{2}-y^{2}=0
$$

6.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y^{2}(2 x-1)}{x^{2}}
\end{aligned}
$$

Where $f(x)=-\frac{2 x-1}{x^{2}}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =-\frac{2 x-1}{x^{2}} d x \\
\int \frac{1}{y^{2}} d y & =\int-\frac{2 x-1}{x^{2}} d x \\
-\frac{1}{y} & =-2 \ln (x)-\frac{1}{x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\frac{x}{2 x \ln (x)-c_{1} x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{2 x \ln (x)-c_{1} x+1} \tag{1}
\end{equation*}
$$

Figure 354: Slope field plot

Verification of solutions

$$
y=\frac{x}{2 x \ln (x)-c_{1} x+1}
$$

Verified OK.

6.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y^{2}(2 x-1)}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 255: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x^{2}}{2 x-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{x^{2}}{2 x-1}} d x
\end{aligned}
$$

Which results in

$$
S=-2 \ln (x)-\frac{1}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}(2 x-1)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{-2 x+1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-2 x \ln (x)-1}{x}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{-2 x \ln (x)-1}{x}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{x}{1+2 x \ln (x)+c_{1} x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}(2 x-1)}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow-\infty 1$
049.10 .1		- 4.
	$R=y$	
	$S=-2 x \ln (x)-$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
	$S=\frac{2 x \ln (x)}{x}$	$\nabla 14 \uparrow$
		$\rightarrow{ }^{\text {P }}$
		$\rightarrow>+1+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		\rightarrow - $4+\downarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ -

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{1+2 x \ln (x)+c_{1} x} \tag{1}
\end{equation*}
$$

Figure 355: Slope field plot

Verification of solutions

$$
y=\frac{x}{1+2 x \ln (x)+c_{1} x}
$$

Verified OK.

6.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(\frac{2 x-1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{2 x-1}{x^{2}}\right) \mathrm{d} x+\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{2 x-1}{x^{2}} \\
& N(x, y)=-\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x-1}{x^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2 x-1}{x^{2}} \mathrm{~d} x \\
\phi & =-2 \ln (x)-\frac{1}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 \ln (x)-\frac{1}{x}+\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 \ln (x)-\frac{1}{x}+\frac{1}{y}
$$

The solution becomes

$$
y=\frac{x}{1+2 x \ln (x)+c_{1} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{1+2 x \ln (x)+c_{1} x} \tag{1}
\end{equation*}
$$

Figure 356: Slope field plot

Verification of solutions

$$
y=\frac{x}{1+2 x \ln (x)+c_{1} x}
$$

Verified OK.

6.6.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2}(2 x-1)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{2 y^{2}}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=-\frac{2 x-1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{(2 x-1) u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{4 x-2}{x^{3}}-\frac{2}{x^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{(2 x-1) u^{\prime \prime}(x)}{x^{2}}-\left(\frac{4 x-2}{x^{3}}-\frac{2}{x^{2}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\left(2 \ln (x)+\frac{1}{x}\right) c_{2}
$$

The above shows that

$$
u^{\prime}(x)=\frac{(2 x-1) c_{2}}{x^{2}}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2}}{c_{1}+\left(2 \ln (x)+\frac{1}{x}\right) c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x}{2 x \ln (x)+c_{3} x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{2 x \ln (x)+c_{3} x+1} \tag{1}
\end{equation*}
$$

Figure 357: Slope field plot

Verification of solutions

$$
y=\frac{x}{2 x \ln (x)+c_{3} x+1}
$$

Verified OK.

6.6.5 Maple step by step solution

Let's solve

$$
2 x y^{2}+y^{\prime} x^{2}-y^{2}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=-\frac{2 x-1}{x^{2}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int-\frac{2 x-1}{x^{2}} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=-2 \ln (x)-\frac{1}{x}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{x}{2 x \ln (x)-c_{1} x+1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(2*x*y(x)^ 2+x^2*diff(y(x),x) = y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{x}{1+2 x \ln (x)+c_{1} x}
$$

\checkmark Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 26
DSolve[2*x*y[x]~2+x^2*y'[x]==y[x]~2,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{2 x \log (x)+c_{1}(-x)+1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.7 problem 7

6.7.1 Solving as linear ode . 1478
6.7.2 Solving as first order ode lie symmetry lookup ode 1480
6.7.3 Solving as exact ode . 1484
6.7.4 Maple step by step solution . 1489

Internal problem ID [127]
Internal file name [OUTPUT/127_Sunday_June_05_2022_01_35_41_AM_15266296/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 x^{2} y+x^{3} y^{\prime}=1
$$

6.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{1}{x^{3}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{1}{x^{3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{2}\right) & =\left(x^{2}\right)\left(\frac{1}{x^{3}}\right) \\
\mathrm{d}\left(y x^{2}\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{2}=\int \frac{1}{x} \mathrm{~d} x \\
& y x^{2}=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{\ln (x)}{x^{2}}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
y=\frac{\ln (x)+c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 358: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)+c_{1}}{x^{2}}
$$

Verified OK.

6.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y x^{2}-1}{x^{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 258: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y x^{2}-1}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 y x \\
S_{y} & =x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2} y=\ln (x)+c_{1}
$$

Which simplifies to

$$
x^{2} y=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{\ln (x)+c_{1}}{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y x^{2}-1}{x^{3}}$		$\frac{d S}{d R}=\frac{1}{R}$
		. H^{4}
		coser
		\cdots
$x_{0 \rightarrow \infty} \rightarrow \infty \rightarrow \infty$	$R=x$	Pravy
$\rightarrow \pm \rightarrow$ 为	$S=y x^{2}$	\pm 为
		\cdots
,		
		-x,

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 359: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)+c_{1}}{x^{2}}
$$

Verified OK.

6.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{3}\right) \mathrm{d} y & =\left(-2 y x^{2}+1\right) \mathrm{d} x \\
\left(2 y x^{2}-1\right) \mathrm{d} x+\left(x^{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y x^{2}-1 \\
N(x, y) & =x^{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y x^{2}-1\right) \\
& =2 x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{3}\right) \\
& =3 x^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{3}}\left(\left(2 x^{2}\right)-\left(3 x^{2}\right)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(2 y x^{2}-1\right) \\
& =\frac{2 y x^{2}-1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}\left(x^{3}\right) \\
& =x^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 y x^{2}-1}{x}\right)+\left(x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 y x^{2}-1}{x} \mathrm{~d} x \\
\phi & =y x^{2}-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{2}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{2}-\ln (x)
$$

The solution becomes

$$
y=\frac{\ln (x)+c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 360: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)+c_{1}}{x^{2}}
$$

Verified OK.

6.7.4 Maple step by step solution

Let's solve
$2 x^{2} y+x^{3} y^{\prime}=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{x}+\frac{1}{x^{3}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=\frac{1}{x^{3}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\frac{\mu(x)}{x^{3}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x^{3}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x^{3}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x^{3}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$
$y=\frac{\int \frac{1}{x} d x+c_{1}}{x^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{\ln (x)+c_{1}}{x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(2*x^2*y(x)+x^3*diff(y(x),x) = 1,y(x), singsol=all)
```

$$
y(x)=\frac{\ln (x)+c_{1}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 14
DSolve[2*x^2*y[x]+x^3*y'[x] ==1,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{\log (x)+c_{1}}{x^{2}}
$$

6.8 problem 8

6.8.1 Solving as homogeneousTypeD2 ode 1491
6.8.2 Solving as first order ode lie symmetry lookup ode 1493
6.8.3 Solving as bernoulli ode . 1497
6.8.4 Solving as riccati ode . 1501

Internal problem ID [128]
Internal file name [OUTPUT/128_Sunday_June_05_2022_01_35_42_AM_40316007/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homogeneousTypeD2", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
2 y x+y^{\prime} x^{2}-y^{2}=0
$$

6.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x^{2}+\left(u^{\prime}(x) x+u(x)\right) x^{2}-u(x)^{2} x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(u-3)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u(u-3)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u-3)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u(u-3)} d u & =\int \frac{1}{x} d x \\
\frac{\ln (u-3)}{3}-\frac{\ln (u)}{3} & =\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{3}\right)(\ln (u-3)-\ln (u)) & =\ln (x)+2 c_{2} \\
\ln (u-3)-\ln (u) & =(3)\left(\ln (x)+2 c_{2}\right) \\
& =3 \ln (x)+6 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-3)-\ln (u)}=\mathrm{e}^{3 \ln (x)+3 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{u-3}{u} & =3 c_{2} x^{3} \\
& =c_{3} x^{3}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =-\frac{3 x}{c_{3} x^{3}-1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 x}{c_{3} x^{3}-1} \tag{1}
\end{equation*}
$$

Figure 361: Slope field plot

Verification of solutions

$$
y=-\frac{3 x}{c_{3} x^{3}-1}
$$

Verified OK.

6.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y(-2 x+y)}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 261: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} y^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2} y^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{x^{2} y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(-2 x+y)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{x^{3} y} \\
S_{y} & =\frac{1}{x^{2} y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x^{4}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{4}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{3 R^{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x^{2} y}=-\frac{1}{3 x^{3}}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{x^{2} y}=-\frac{1}{3 x^{3}}+c_{1}
$$

Which gives

$$
y=-\frac{3 x}{3 c_{1} x^{3}-1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(-2 x+y)}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R^{4}}$
		$\rightarrow \rightarrow+{ }^{\text {a }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ } \xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }(R)$
	$R=x$	
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$		
	$S=-\frac{1}{x^{2} y}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-}$
		$\rightarrow)^{\prime}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 x}{3 c_{1} x^{3}-1} \tag{1}
\end{equation*}
$$

Figure 362: Slope field plot

Verification of solutions

$$
y=-\frac{3 x}{3 c_{1} x^{3}-1}
$$

Verified OK.

6.8.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(-2 x+y)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2}{x} y+\frac{1}{x^{2}} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2}{x} \\
f_{1}(x) & =\frac{1}{x^{2}} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=-\frac{2}{y x}+\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =-\frac{2 w(x)}{x}+\frac{1}{x^{2}} \\
w^{\prime} & =\frac{2 w}{x}-\frac{1}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=-\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =\left(-\frac{1}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{2}}=\int-\frac{1}{x^{4}} \mathrm{~d} x \\
& \frac{w}{x^{2}}=\frac{1}{3 x^{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=\frac{1}{3 x}+c_{1} x^{2}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{1}{3 x}+c_{1} x^{2}
$$

Or

$$
y=\frac{1}{\frac{1}{3 x}+c_{1} x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\frac{1}{3 x}+c_{1} x^{2}} \tag{1}
\end{equation*}
$$

Figure 363: Slope field plot

Verification of solutions

$$
y=\frac{1}{\frac{1}{3 x}+c_{1} x^{2}}
$$

Verified OK.

6.8.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(-2 x+y)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{2 y}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=-\frac{2}{x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =-\frac{2}{x^{3}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}+\frac{4 u^{\prime}(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\frac{c_{2}}{x^{3}}
$$

The above shows that

$$
u^{\prime}(x)=-\frac{3 c_{2}}{x^{4}}
$$

Using the above in (1) gives the solution

$$
y=\frac{3 c_{2}}{x^{2}\left(c_{1}+\frac{c_{2}}{x^{3}}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{3 x}{c_{3} x^{3}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x}{c_{3} x^{3}+1} \tag{1}
\end{equation*}
$$

Figure 364: Slope field plot

Verification of solutions

$$
y=\frac{3 x}{c_{3} x^{3}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(2*x*y(x)+x^2*diff(y(x),x) = y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{3 x}{3 c_{1} x^{3}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.122 (sec). Leaf size: 24

```
DSolve[2*x*y[x]+x^2*y'[x] == y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{3 x}{1+3 c_{1} x^{3}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.9 problem 9

6.9.1 Solving as first order ode lie symmetry lookup ode 1504
6.9.2 Solving as bernoulli ode . 1508

Internal problem ID [129]
Internal file name [OUTPUT/129_Sunday_June_05_2022_01_35_43_AM_63988582/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
2 y+y^{\prime} x-6 x^{2} \sqrt{y}=0
$$

6.9.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2\left(-3 x^{2} \sqrt{y}+y\right)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 263: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{\sqrt{y}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\sqrt{y}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=2 x \sqrt{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2\left(-3 x^{2} \sqrt{y}+y\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 \sqrt{y} \\
S_{y} & =\frac{x}{\sqrt{y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 x \sqrt{y}=2 x^{3}+c_{1}
$$

Which simplifies to

$$
2 x \sqrt{y}=2 x^{3}+c_{1}
$$

Which gives

$$
y=\frac{\left(2 x^{3}+c_{1}\right)^{2}}{4 x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 x^{3}+c_{1}\right)^{2}}{4 x^{2}} \tag{1}
\end{equation*}
$$

Figure 365: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
y=\frac{\left(2 x^{3}+c_{1}\right)^{2}}{4 x^{2}}
$$

Verified OK.

6.9.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{2\left(-3 x^{2} \sqrt{y}+y\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2}{x} y+6 x \sqrt{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2}{x} \\
f_{1}(x) & =6 x \\
n & =\frac{1}{2}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\sqrt{y}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{\sqrt{y}}=-\frac{2 \sqrt{y}}{x}+6 x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\sqrt{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{1}{2 \sqrt{y}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
2 w^{\prime}(x) & =-\frac{2 w(x)}{x}+6 x \\
w^{\prime} & =-\frac{w}{x}+3 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=3 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=3 x
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(3 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)(3 x) \\
\mathrm{d}(w x) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int 3 x^{2} \mathrm{~d} x \\
& w x=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=x^{2}+\frac{c_{1}}{x}
$$

Replacing w in the above by \sqrt{y} using equation (5) gives the final solution.

$$
\sqrt{y}=x^{2}+\frac{c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y}=x^{2}+\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 366: Slope field plot

Verification of solutions

$$
\sqrt{y}=x^{2}+\frac{c_{1}}{x}
$$

Verified OK.
Maple trace
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve $\left(2 * y(x)+x * \operatorname{diff}(y(x), x)=6 * x^{\wedge} 2 * y(x)^{\wedge}(1 / 2), y(x)\right.$, singsol=all)

$$
\frac{-x^{3}+\sqrt{y(x)} x-c_{1}}{x}=0
$$

\checkmark Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 17
DSolve $\left[2 * y[x]+x * y\right.$ ' $[x]==6 * x^{\wedge} 2 * y[x] \sim(1 / 2), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\left(x^{3}+c_{1}\right)^{2}}{x^{2}}
$$

6.10 problem 10

6.10.1 Solving as separable ode . 1513
6.10.2 Solving as first order ode lie symmetry lookup ode 1515
6.10.3 Solving as exact ode . 1519
6.10.4 Solving as riccati ode . 1523
6.10.5 Maple step by step solution . 1525

Internal problem ID [130]
Internal file name [OUTPUT/130_Sunday_June_05_2022_01_35_44_AM_52766153/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y^{2}-x^{2} y^{2}=x^{2}+1
$$

6.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\left(y^{2}+1\right)\left(x^{2}+1\right)
\end{aligned}
$$

Where $f(x)=x^{2}+1$ and $g(y)=y^{2}+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}+1} d y & =x^{2}+1 d x \\
\int \frac{1}{y^{2}+1} d y & =\int x^{2}+1 d x \\
\arctan (y) & =\frac{1}{3} x^{3}+x+c_{1}
\end{aligned}
$$

Which results in

$$
y=\tan \left(\frac{1}{3} x^{3}+x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(\frac{1}{3} x^{3}+x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 367: Slope field plot

Verification of solutions

$$
y=\tan \left(\frac{1}{3} x^{3}+x+c_{1}\right)
$$

Verified OK.

6.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x^{2} y^{2}+x^{2}+y^{2}+1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 265: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}+1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\bar{\xi}} d x \\
& =\int \frac{1}{\frac{1}{x^{2}+1}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{1}{3} x^{3}+x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2} y^{2}+x^{2}+y^{2}+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2}+1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arctan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{1}{3} x^{3}+x=\arctan (y)+c_{1}
$$

Which simplifies to

$$
\frac{1}{3} x^{3}+x=\arctan (y)+c_{1}
$$

Which gives

$$
y=-\tan \left(-\frac{1}{3} x^{3}+c_{1}-x\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\tan \left(-\frac{1}{3} x^{3}+c_{1}-x\right) \tag{1}
\end{equation*}
$$

Figure 368: Slope field plot

Verification of solutions

$$
y=-\tan \left(-\frac{1}{3} x^{3}+c_{1}-x\right)
$$

Verified OK.

6.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}+1}\right) \mathrm{d} y & =\left(x^{2}+1\right) \mathrm{d} x \\
\left(-x^{2}-1\right) \mathrm{d} x+ & \left(\frac{1}{y^{2}+1}\right) \mathrm{d} y \tag{2~A}
\end{align*}=0
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2}-1 \\
& N(x, y)=\frac{1}{y^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2}-1 \mathrm{~d} x \\
\phi & =-\frac{1}{3} x^{3}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =\arctan (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-x+\arctan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-x+\arctan (y)
$$

The solution becomes

$$
y=\tan \left(\frac{1}{3} x^{3}+x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(\frac{1}{3} x^{3}+x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 369: Slope field plot

Verification of solutions

$$
y=\tan \left(\frac{1}{3} x^{3}+x+c_{1}\right)
$$

Verified OK.

6.10.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2} y^{2}+x^{2}+y^{2}+1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2} y^{2}+x^{2}+y^{2}+1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}+1, f_{1}(x)=0$ and $f_{2}(x)=x^{2}+1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(x^{2}+1\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 x \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(x^{2}+1\right)^{3}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(x^{2}+1\right) u^{\prime \prime}(x)-2 x u^{\prime}(x)+\left(x^{2}+1\right)^{3} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(\frac{1}{3} x^{3}+x\right)+c_{2} \cos \left(\frac{1}{3} x^{3}+x\right)
$$

The above shows that

$$
u^{\prime}(x)=\left(x^{2}+1\right)\left(c_{1} \cos \left(\frac{1}{3} x^{3}+x\right)-c_{2} \sin \left(\frac{1}{3} x^{3}+x\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} \cos \left(\frac{1}{3} x^{3}+x\right)-c_{2} \sin \left(\frac{1}{3} x^{3}+x\right)}{c_{1} \sin \left(\frac{1}{3} x^{3}+x\right)+c_{2} \cos \left(\frac{1}{3} x^{3}+x\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} \cos \left(\frac{1}{3} x^{3}+x\right)+\sin \left(\frac{1}{3} x^{3}+x\right)}{c_{3} \sin \left(\frac{1}{3} x^{3}+x\right)+\cos \left(\frac{1}{3} x^{3}+x\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3} \cos \left(\frac{1}{3} x^{3}+x\right)+\sin \left(\frac{1}{3} x^{3}+x\right)}{c_{3} \sin \left(\frac{1}{3} x^{3}+x\right)+\cos \left(\frac{1}{3} x^{3}+x\right)} \tag{1}
\end{equation*}
$$

Figure 370: Slope field plot

Verification of solutions

$$
y=\frac{-c_{3} \cos \left(\frac{1}{3} x^{3}+x\right)+\sin \left(\frac{1}{3} x^{3}+x\right)}{c_{3} \sin \left(\frac{1}{3} x^{3}+x\right)+\cos \left(\frac{1}{3} x^{3}+x\right)}
$$

Verified OK.

6.10.5 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}-x^{2} y^{2}=x^{2}+1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=x^{2}+1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1+y^{2}} d x=\int\left(x^{2}+1\right) d x+c_{1}
$$

- Evaluate integral

$$
\arctan (y)=\frac{1}{3} x^{3}+x+c_{1}
$$

- \quad Solve for y

$$
y=\tan \left(\frac{1}{3} x^{3}+x+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x) = 1+x^2+y(x)^2+x^2*y(x)^2,y(x), singsol=all)
```

$$
y(x)=\tan \left(\frac{1}{3} x^{3}+c_{1}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 17
DSolve $\left[y y^{\prime}[x]==1+x^{\wedge} 2+y[x]^{\wedge} 2+x^{\wedge} 2 * y[x] \sim 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \tan \left(\frac{x^{3}}{3}+x+c_{1}\right)
$$

6.11 problem 11

6.11.1 Solving as homogeneousTypeD2 ode 1527
6.11.2 Solving as first order ode lie symmetry lookup ode 1529
6.11.3 Solving as bernoulli ode . 1533
6.11.4 Solving as exact ode . 1537
6.11.5 Solving as riccati ode . 1542

Internal problem ID [131]
Internal file name [OUTPUT/131_Sunday_June_05_2022_01_35_44_AM_50146025/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y^{\prime} x^{2}-y x-3 y^{2}=0
$$

6.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x^{2}-u(x) x^{2}-3 u(x)^{2} x^{2}=0
$$

In canonical form the $O D E$ is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{3 u^{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{3}{x}$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =\frac{3}{x} d x \\
\int \frac{1}{u^{2}} d u & =\int \frac{3}{x} d x \\
-\frac{1}{u} & =3 \ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)}-3 \ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x}{y}-3 \ln (x)-c_{2}=0 \\
& -\frac{x}{y}-3 \ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{y}-3 \ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 371: Slope field plot
Verification of solutions

$$
-\frac{x}{y}-3 \ln (x)-c_{2}=0
$$

Verified OK.

6.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y(x+3 y)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 268: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{2}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(x+3 y)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{y} \\
S_{y} & =\frac{x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x}{y}=3 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{x}{y}=3 \ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{x}{3 \ln (x)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(x+3 y)}{x^{2}}$		$\frac{d S}{d R}=\frac{3}{R}$
		arixty
	$R=x$	
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$		
$\rightarrow \rightarrow-\infty \rightarrow 0{ }^{\text {a }}$	$S=-\frac{x}{y}$	- - * -
	y	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{3 \ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 372: Slope field plot

Verification of solutions

$$
y=-\frac{x}{3 \ln (x)+c_{1}}
$$

Verified OK.

6.11.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x+3 y)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y+\frac{3}{x^{2}} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =\frac{3}{x^{2}} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{y x}+\frac{3}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x}+\frac{3}{x^{2}} \\
w^{\prime} & =-\frac{w}{x}-\frac{3}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{3}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-\frac{3}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{3}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)\left(-\frac{3}{x^{2}}\right) \\
\mathrm{d}(w x) & =\left(-\frac{3}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int-\frac{3}{x} \mathrm{~d} x \\
& w x=-3 \ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-\frac{3 \ln (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
w(x)=\frac{-3 \ln (x)+c_{1}}{x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{-3 \ln (x)+c_{1}}{x}
$$

Or

$$
y=\frac{x}{-3 \ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{-3 \ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 373: Slope field plot

Verification of solutions

$$
y=\frac{x}{-3 \ln (x)+c_{1}}
$$

Verified OK.

6.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(y x+3 y^{2}\right) \mathrm{d} x \\
\left(-y x-3 y^{2}\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y x-3 y^{2} \\
N(x, y) & =x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y x-3 y^{2}\right) \\
& =-x-6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x y^{2}}$ is an integrating factor. Therefore by multiplying $M=-3 y^{2}-y x$ and $N=x^{2}$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{-3 y^{2}-y x}{x y^{2}} \\
N & =\frac{x}{y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =\left(-\frac{-y x-3 y^{2}}{x y^{2}}\right) \mathrm{d} x \\
\left(\frac{-y x-3 y^{2}}{x y^{2}}\right) \mathrm{d} x+\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\frac{-y x-3 y^{2}}{x y^{2}} \\
N(x, y) & =\frac{x}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-y x-3 y^{2}}{x y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y x-3 y^{2}}{x y^{2}} \mathrm{~d} x \\
\phi & =-3 \ln (x)-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 \ln (x)-\frac{x}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 \ln (x)-\frac{x}{y}
$$

The solution becomes

$$
y=-\frac{x}{3 \ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{3 \ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 374: Slope field plot

Verification of solutions

$$
y=-\frac{x}{3 \ln (x)+c_{1}}
$$

Verified OK.

6.11.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x+3 y)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y}{x}+\frac{3 y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{3}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{3 u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{6}{x^{3}} \\
f_{1} f_{2} & =\frac{3}{x^{3}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{3 u^{\prime \prime}(x)}{x^{2}}+\frac{3 u^{\prime}(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \ln (x)+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2} x}{3\left(c_{2} \ln (x)+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{x}{3 \ln (x)+3 c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{3 \ln (x)+3 c_{3}} \tag{1}
\end{equation*}
$$

Figure 375: Slope field plot

Verification of solutions

$$
y=-\frac{x}{3 \ln (x)+3 c_{3}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(x^2*diff(y(x),x) = x*y(x)+3*y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{x}{-3 \ln (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 21

```
DSolve[x^2*y'[x] == x*y[x]+3*y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{-3 \log (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.12 problem 12

6.12.1 Solving as homogeneousTypeD2 ode 1545
6.12.2 Solving as first order ode lie symmetry calculated ode 1547
6.12.3 Solving as exact ode . 1553
6.12.4 Maple step by step solution . 1556

Internal problem ID [132]
Internal file name [OUTPUT/132_Sunday_June_05_2022_01_35_45_AM_67072539/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "exact", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class B`]]
```

$$
6 x y^{3}+2 y^{4}+\left(9 x^{2} y^{2}+8 x y^{3}\right) y^{\prime}=0
$$

6.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
6 x^{4} u(x)^{3}+2 u(x)^{4} x^{4}+\left(9 x^{4} u(x)^{2}+8 x^{4} u(x)^{3}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u(2 u+3)}{x(8 u+9)}
\end{aligned}
$$

Where $f(x)=-\frac{5}{x}$ and $g(u)=\frac{u(2 u+3)}{8 u+9}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(2 u+3)}{8 u+9}} d u & =-\frac{5}{x} d x \\
\int \frac{1}{\frac{u(2 u+3)}{8 u+9}} d u & =\int-\frac{5}{x} d x \\
\ln (2 u+3)+3 \ln (u) & =-5 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (2 u+3)+3 \ln (u)}=\mathrm{e}^{-5 \ln (x)+c_{2}}
$$

Which simplifies to

$$
2 u^{4}+3 u^{3}=\frac{c_{3}}{x^{5}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =\operatorname{RootOf}\left(2 x _Z^{4}+3 x^{2} _Z^{3}-c_{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(2 x _Z^{4}+3 x^{2} _Z^{3}-c_{3}\right) \tag{1}
\end{equation*}
$$

Figure 376: Slope field plot
Verification of solutions

$$
y=\operatorname{RootOf}\left(2 x _Z^{4}+3 x^{2} _Z^{3}-c_{3}\right)
$$

Verified OK.

6.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y(3 x+y)}{x(9 x+8 y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2 y(3 x+y)\left(b_{3}-a_{2}\right)}{x(9 x+8 y)}-\frac{4 y^{2}(3 x+y)^{2} a_{3}}{x^{2}(9 x+8 y)^{2}} \\
& -\left(-\frac{6 y}{x(9 x+8 y)}+\frac{2 y(3 x+y)}{x^{2}(9 x+8 y)}+\frac{18 y(3 x+y)}{x(9 x+8 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2(3 x+y)}{x(9 x+8 y)}-\frac{2 y}{x(9 x+8 y)}+\frac{16 y(3 x+y)}{x(9 x+8 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{135 x^{4} b_{2}+180 x^{3} y b_{2}+30 x^{2} y^{2} a_{2}-90 x^{2} y^{2} a_{3}+80 x^{2} y^{2} b_{2}-30 x^{2} y^{2} b_{3}-60 x y^{3} a_{3}-20 y^{4} a_{3}+54 x^{3} b_{1}-54 x^{2}}{x^{2}(9 x+8 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 135 x^{4} b_{2}+180 x^{3} y b_{2}+30 x^{2} y^{2} a_{2}-90 x^{2} y^{2} a_{3}+80 x^{2} y^{2} b_{2}-30 x^{2} y^{2} b_{3}-60 x y^{3} a_{3} \tag{6E}\\
& \quad-20 y^{4} a_{3}+54 x^{3} b_{1}-54 x^{2} y a_{1}+36 x^{2} y b_{1}-36 x y^{2} a_{1}+16 x y^{2} b_{1}-16 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 30 a_{2} v_{1}^{2} v_{2}^{2}-90 a_{3} v_{1}^{2} v_{2}^{2}-60 a_{3} v_{1} v_{2}^{3}-20 a_{3} v_{2}^{4}+135 b_{2} v_{1}^{4}+180 b_{2} v_{1}^{3} v_{2}+80 b_{2} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& \quad-30 b_{3} v_{1}^{2} v_{2}^{2}-54 a_{1} v_{1}^{2} v_{2}-36 a_{1} v_{1} v_{2}^{2}-16 a_{1} v_{2}^{3}+54 b_{1} v_{1}^{3}+36 b_{1} v_{1}^{2} v_{2}+16 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 135 b_{2} v_{1}^{4}+180 b_{2} v_{1}^{3} v_{2}+54 b_{1} v_{1}^{3}+\left(30 a_{2}-90 a_{3}+80 b_{2}-30 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(-54 a_{1}+36 b_{1}\right) v_{1}^{2} v_{2}-60 a_{3} v_{1} v_{2}^{3}+\left(-36 a_{1}+16 b_{1}\right) v_{1} v_{2}^{2}-20 a_{3} v_{2}^{4}-16 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-16 a_{1} & =0 \\
-60 a_{3} & =0 \\
-20 a_{3} & =0 \\
54 b_{1} & =0 \\
135 b_{2} & =0 \\
180 b_{2} & =0 \\
-54 a_{1}+36 b_{1} & =0 \\
-36 a_{1}+16 b_{1} & =0 \\
30 a_{2}-90 a_{3}+80 b_{2}-30 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 y(3 x+y)}{x(9 x+8 y)}\right)(x) \\
& =\frac{15 y x+10 y^{2}}{9 x+8 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{15 y x+10 y^{2}}{9 x+8 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 \ln (y)}{5}+\frac{\ln (3 x+2 y)}{5}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y(3 x+y)}{x(9 x+8 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3}{15 x+10 y} \\
S_{y} & =\frac{9 x+8 y}{15 y x+10 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{5 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{5 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{5}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln (y)}{5}+\frac{\ln (3 x+2 y)}{5}=-\frac{\ln (x)}{5}+c_{1}
$$

Which simplifies to

$$
\frac{3 \ln (y)}{5}+\frac{\ln (3 x+2 y)}{5}=-\frac{\ln (x)}{5}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{3 \ln (y)}{5}+\frac{\ln (3 x+2 y)}{5}=-\frac{\ln (x)}{5}+c_{1} \tag{1}
\end{equation*}
$$

Figure 377: Slope field plot

Verification of solutions

$$
\frac{3 \ln (y)}{5}+\frac{\ln (3 x+2 y)}{5}=-\frac{\ln (x)}{5}+c_{1}
$$

Verified OK.

6.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(9 x^{2} y^{2}+8 x y^{3}\right) \mathrm{d} y & =\left(-6 x y^{3}-2 y^{4}\right) \mathrm{d} x \\
\left(6 x y^{3}+2 y^{4}\right) \mathrm{d} x+\left(9 x^{2} y^{2}+8 x y^{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=6 x y^{3}+2 y^{4} \\
& N(x, y)=9 x^{2} y^{2}+8 x y^{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(6 x y^{3}+2 y^{4}\right) \\
& =18 x y^{2}+8 y^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(9 x^{2} y^{2}+8 x y^{3}\right) \\
& =18 x y^{2}+8 y^{3}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 6 x y^{3}+2 y^{4} \mathrm{~d} x \\
\phi & =y^{3} x(3 x+2 y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =3 y^{2} x(3 x+2 y)+2 x y^{3}+f^{\prime}(y) \tag{4}\\
& =x y^{2}(9 x+8 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=9 x^{2} y^{2}+8 x y^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
9 x^{2} y^{2}+8 x y^{3}=x y^{2}(9 x+8 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y^{3} x(3 x+2 y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y^{3} x(3 x+2 y)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y^{3} x(3 x+2 y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 378: Slope field plot

Verification of solutions

$$
y^{3} x(3 x+2 y)=c_{1}
$$

Verified OK.

6.12.4 Maple step by step solution

Let's solve

$$
6 x y^{3}+2 y^{4}+\left(9 x^{2} y^{2}+8 x y^{3}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$18 x y^{2}+8 y^{3}=18 x y^{2}+8 y^{3}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(6 x y^{3}+2 y^{4}\right) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=2 y^{3}\left(\frac{3}{2} x^{2}+y x\right)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$9 x^{2} y^{2}+8 x y^{3}=6 y^{2}\left(\frac{3}{2} x^{2}+y x\right)+2 x y^{3}+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=9 x^{2} y^{2}+6 x y^{3}-6 y^{2}\left(\frac{3}{2} x^{2}+y x\right)$
- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=2 y^{3}\left(\frac{3}{2} x^{2}+y x\right)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$2 y^{3}\left(\frac{3}{2} x^{2}+y x\right)=c_{1}$
- \quad Solve for y

$$
y=\operatorname{Root} O f\left(2 x _Z^{4}+3 x^{2} _Z^{3}-c_{1}\right)
$$

Maple trace

```
`Classification methods on request
Methods to be used are: [exact]
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
dsolve $\left(6 * x * y(x)^{\wedge} 3+2 * y(x)^{\wedge} 4+\left(9 * x^{\wedge} 2 * y(x)^{\wedge} 2+8 * x * y(x)^{\wedge} 3\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{array}{r}
y(x)=0 \\
3 x^{2} y(x)^{3}+2 x y(x)^{4}+c_{1}=0
\end{array}
$$

Solution by Mathematica

Time used: 60.142 (sec). Leaf size: 1714
DSolve $\left[6 * x * y[x] \wedge 3+2 * y[x] \wedge 4+\left(9 * x^{\wedge} 2 * y[x] \wedge 2+8 * x * y[x] \wedge 3\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSoluti

$$
y(x) \rightarrow 0
$$

$y(x)$

$$
\rightarrow \frac{1}{2} \sqrt{\frac{9 x^{2}}{16}-\frac{4 \sqrt[3]{\frac{2}{3}} e^{c_{1}}}{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x^{4}}}}+\frac{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x^{4}}}{2 \sqrt[3]{2} 3^{2 / 3} x}
$$

$$
-\frac{1}{2} \sqrt[{4 \sqrt[3]{\frac{2}{3}} e^{c_{1}}}]{\frac{9 x^{2}}{8}+\frac{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x^{4}}}{\sqrt[{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x}}]{2 \sqrt[3]{2} 3^{2 / 3} x}} \text {. }+\frac{4}{\sqrt{2}}}
$$

$$
\sqrt{ }
$$

$$
-\frac{3 x}{8}
$$

$$
y(x)
$$

$$
\rightarrow \frac{1}{2} \sqrt{\frac{9 x^{2}}{16}-\frac{4 \sqrt[3]{\frac{2}{3}} e^{c_{1}}}{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x^{4}}}+\frac{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x^{4}}}{2 \sqrt[3]{2} 3^{2 / 3} x}}
$$

$$
+\frac{1}{2} \sqrt{\frac{9 x^{2}}{8}+\frac{4 \sqrt[3]{\frac{2}{3}} e^{c_{1}}}{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x^{4}}}-\frac{\sqrt[3]{\sqrt{3} \sqrt{e^{2 c_{1}} x^{3}\left(2187 x^{5}+2048 e^{c_{1}}\right)}-81 e^{c_{1}} x}}{2 \sqrt[3]{2} 3^{2 / 3} x}}
$$

$$
\begin{aligned}
& \sqrt{3 x} \\
- & \frac{3 x}{8} \\
(x) &
\end{aligned}
$$

6.13 problem 13

Internal problem ID [133]
Internal file name [OUTPUT/133_Sunday_June_05_2022_01_35_47_AM_87580713/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[{ }^{\prime} y==_{-}\left(x, y^{\prime}\right)^{`}\right]$
$\underline{\text { Unable to solve or complete the solution. }}$

$$
y^{\prime}-y^{2}-x^{2} y^{4}=x^{2}+1
$$

Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(diff(y(x),x) = 1+x^2+y(x)^2+x^2*y(x)^4,y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y'[x] == $1+x^{\wedge} 2+y[x] \wedge 2+x^{\wedge} 2 * y[x] \wedge 4, y[x], x$, IncludeSingularSolutions \rightarrow True]

Not solved

6.14 problem 14

6.14.1 Solving as homogeneousTypeD2 ode 1563
6.14.2 Solving as first order ode lie symmetry lookup ode 1565
6.14.3 Solving as bernoulli ode . 1569

Internal problem ID [134]
Internal file name [OUTPUT/134_Sunday_June_05_2022_01_35_47_AM_15054587/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
x^{3} y^{\prime}-x^{2} y+y^{3}=0
$$

6.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{3}\left(u^{\prime}(x) x+u(x)\right)-x^{3} u(x)+u(x)^{3} x^{3}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u^{3}$. Integrating both sides gives

$$
\frac{1}{u^{3}} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{u^{3}} d u & =\int-\frac{1}{x} d x \\
-\frac{1}{2 u^{2}} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{2 u(x)^{2}}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0 \\
& -\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 379: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0
$$

Verified OK.

6.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 271: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{3}}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2 y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{y^{2}} \\
S_{y} & =\frac{x^{2}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2 y^{2}}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2 y^{2}}=-\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow$ -
$\xrightarrow{\rightarrow}$		$\rightarrow \rightarrow \rightarrow \infty$
	$R=x$	$\rightarrow \infty$ -
	x^{2}	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \pm \rightarrow \infty$	$S=-\frac{x^{2}}{2 y^{2}}$	
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$
$\rightarrow \rightarrow \rightarrow \infty$		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$ -
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2 y^{2}}=-\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 380: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2 y^{2}}=-\ln (x)+c_{1}
$$

Verified OK.

6.14.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y-\frac{1}{x^{3}} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =-\frac{1}{x^{3}} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=\frac{1}{x y^{2}}-\frac{1}{x^{3}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{x}-\frac{1}{x^{3}} \\
w^{\prime} & =-\frac{2 w}{x}+\frac{2}{x^{3}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{2}{x^{3}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{2 w(x)}{x}=\frac{2}{x^{3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{2}{x^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(w x^{2}\right) & =\left(x^{2}\right)\left(\frac{2}{x^{3}}\right) \\
\mathrm{d}\left(w x^{2}\right) & =\left(\frac{2}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x^{2}=\int \frac{2}{x} \mathrm{~d} x \\
& w x^{2}=2 \ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
w(x)=\frac{2 \ln (x)}{x^{2}}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
w(x)=\frac{2 \ln (x)+c_{1}}{x^{2}}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\frac{2 \ln (x)+c_{1}}{x^{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{x}{\sqrt{2 \ln (x)+c_{1}}} \\
& y(x)=-\frac{x}{\sqrt{2 \ln (x)+c_{1}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{x}{\sqrt{2 \ln (x)+c_{1}}} \tag{1}\\
& y=-\frac{x}{\sqrt{2 \ln (x)+c_{1}}} \tag{2}
\end{align*}
$$

Figure 381: Slope field plot

Verification of solutions

$$
y=\frac{x}{\sqrt{2 \ln (x)+c_{1}}}
$$

Verified OK.

$$
y=-\frac{x}{\sqrt{2 \ln (x)+c_{1}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

```
dsolve(x^3*diff(y(x),x) = x^2*y(x)-y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{x}{\sqrt{2 \ln (x)+c_{1}}} \\
& y(x)=-\frac{x}{\sqrt{2 \ln (x)+c_{1}}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.166 (sec). Leaf size: 41

```
DSolve[x^3*y'[x] == x^2*y[x]-y[x]^3,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{\sqrt{2 \log (x)+c_{1}}} \\
& y(x) \rightarrow \frac{x}{\sqrt{2 \log (x)+c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.15 problem 15

6.15.1 Solving as linear ode . 1574
6.15.2 Solving as first order ode lie symmetry lookup ode 1576
6.15.3 Solving as exact ode . 1580
6.15.4 Maple step by step solution . 1584

Internal problem ID [135]
Internal file name [OUTPUT/135_Sunday_June_05_2022_01_35_49_AM_25014521/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
3 y+y^{\prime}=3 x^{2} \mathrm{e}^{-3 x}
$$

6.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =3 \\
q(x) & =3 x^{2} \mathrm{e}^{-3 x}
\end{aligned}
$$

Hence the ode is

$$
3 y+y^{\prime}=3 x^{2} \mathrm{e}^{-3 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(3 x^{2} \mathrm{e}^{-3 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{3 x}\right) & =\left(\mathrm{e}^{3 x}\right)\left(3 x^{2} \mathrm{e}^{-3 x}\right) \\
\mathrm{d}\left(y \mathrm{e}^{3 x}\right) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{3 x}=\int 3 x^{2} \mathrm{~d} x \\
& y \mathrm{e}^{3 x}=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 x}$ results in

$$
y=\mathrm{e}^{-3 x} x^{3}+c_{1} \mathrm{e}^{-3 x}
$$

which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 382: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

6.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-3\left(y \mathrm{e}^{3 x}-x^{2}\right) \mathrm{e}^{-3 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 273: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-3 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 x}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{3 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-3\left(y \mathrm{e}^{3 x}-x^{2}\right) \mathrm{e}^{-3 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 y \mathrm{e}^{3 x} \\
S_{y} & =\mathrm{e}^{3 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{3 x}=x^{3}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{3 x}=x^{3}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-3\left(y \mathrm{e}^{3 x}-x^{2}\right) \mathrm{e}^{-3 x}$		$\frac{d S}{d R}=3 R^{2}$
		¢ $1+1+\uparrow+4 \rightarrow 0+4+1$
		+ $\uparrow+1++\uparrow \rightarrow \rightarrow+1+\uparrow$
	$R=x$	
$-{ }^{-4}+{ }^{\text {a }}$	$S=y \mathrm{e}^{3 x}$	
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 383: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

6.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{3 x}\right) \mathrm{d} y & =\left(-3 y \mathrm{e}^{3 x}+3 x^{2}\right) \mathrm{d} x \\
\left(3 y \mathrm{e}^{3 x}-3 x^{2}\right) \mathrm{d} x+\left(\mathrm{e}^{3 x}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y \mathrm{e}^{3 x}-3 x^{2} \\
N(x, y) & =\mathrm{e}^{3 x}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y \mathrm{e}^{3 x}-3 x^{2}\right) \\
& =3 \mathrm{e}^{3 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{3 x}\right) \\
& =3 \mathrm{e}^{3 x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 y \mathrm{e}^{3 x}-3 x^{2} \mathrm{~d} x \\
\phi & =y \mathrm{e}^{3 x}-x^{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 x}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y \mathrm{e}^{3 x}-x^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y \mathrm{e}^{3 x}-x^{3}
$$

The solution becomes

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 384: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

6.15.4 Maple step by step solution

Let's solve
$3 y+y^{\prime}=\frac{3 x^{2}}{\mathrm{e}^{3 x}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-3 y+\frac{3 x^{2}}{\mathrm{e}^{3 x}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $3 y+y^{\prime}=\frac{3 x^{2}}{\mathrm{e}^{3 x}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(3 y+y^{\prime}\right)=\frac{3 \mu(x) x^{2}}{\mathrm{e}^{3 x}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(3 y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=3 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{3 \mu(x) x^{2}}{\mathrm{e}^{3 x}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{3 \mu(x) x^{2}}{\mathrm{e}^{3 x}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{3 \mu(x) x^{2}}{e^{3 x}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}$
$y=\frac{\int 3 x^{2} \mathrm{e}^{-3 x} \mathrm{e}^{3 x} d x+c_{1}}{\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{3}+c_{1}}{\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{e}^{-3 x}}$
- Simplify

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve $\left(3 * y(x)+\operatorname{diff}(y(x), x)=3 * x^{\wedge} 2 / \exp (3 * x), y(x)\right.$, singsol=all)

$$
y(x)=\left(x^{3}+c_{1}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 17
DSolve $\left[3 * y[x]+y '[x]==3 * x^{\wedge} 2 / \operatorname{Exp}[3 * x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-3 x}\left(x^{3}+c_{1}\right)
$$

6.16 problem 16

6.16.1 Solving as first order ode lie symmetry calculated ode 1586
6.16.2 Solving as riccati ode . 1591

Internal problem ID [136]
Internal file name [OUTPUT/136_Sunday_June_05_2022_01_35_49_AM_86607590/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _Riccati]

$$
2 y x+y^{\prime}-y^{2}=x^{2}
$$

6.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x^{2}-2 y x+y^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\left(x^{2}-2 y x+y^{2}\right)\left(b_{3}-a_{2}\right)-\left(x^{2}-2 y x+y^{2}\right)^{2} a_{3} \tag{5E}\\
& \quad-(2 x-2 y)\left(x a_{2}+y a_{3}+a_{1}\right)-(-2 x+2 y)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -x^{4} a_{3}+4 x^{3} y a_{3}-6 x^{2} y^{2} a_{3}+4 x y^{3} a_{3}-y^{4} a_{3}-3 x^{2} a_{2}+2 x^{2} b_{2}+x^{2} b_{3}+4 x y a_{2} \\
& \quad-2 x y a_{3}-2 x y b_{2}-y^{2} a_{2}+2 y^{2} a_{3}-y^{2} b_{3}-2 x a_{1}+2 x b_{1}+2 y a_{1}-2 y b_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{3}+4 x^{3} y a_{3}-6 x^{2} y^{2} a_{3}+4 x y^{3} a_{3}-y^{4} a_{3}-3 x^{2} a_{2}+2 x^{2} b_{2}+x^{2} b_{3}+4 x y a_{2} \tag{6E}\\
& \quad-2 x y a_{3}-2 x y b_{2}-y^{2} a_{2}+2 y^{2} a_{3}-y^{2} b_{3}-2 x a_{1}+2 x b_{1}+2 y a_{1}-2 y b_{1}+b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2}-6 a_{3} v_{1}^{2} v_{2}^{2}+4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}-3 a_{2} v_{1}^{2}+4 a_{2} v_{1} v_{2}-a_{2} v_{2}^{2}-2 a_{3} v_{1} v_{2} \tag{7E}\\
& +2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{3} v_{1}^{2}-b_{3} v_{2}^{2}-2 a_{1} v_{1}+2 a_{1} v_{2}+2 b_{1} v_{1}-2 b_{1} v_{2}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2}-6 a_{3} v_{1}^{2} v_{2}^{2}+\left(-3 a_{2}+2 b_{2}+b_{3}\right) v_{1}^{2} \tag{8E}\\
& \quad+4 a_{3} v_{1} v_{2}^{3}+\left(4 a_{2}-2 a_{3}-2 b_{2}\right) v_{1} v_{2}+\left(-2 a_{1}+2 b_{1}\right) v_{1} \\
& \quad-a_{3} v_{2}^{4}+\left(-a_{2}+2 a_{3}-b_{3}\right) v_{2}^{2}+\left(2 a_{1}-2 b_{1}\right) v_{2}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-6 a_{3} & =0 \\
-a_{3} & =0 \\
4 a_{3} & =0 \\
-2 a_{1}+2 b_{1} & =0 \\
2 a_{1}-2 b_{1} & =0 \\
-3 a_{2}+2 b_{2}+b_{3} & =0 \\
-a_{2}+2 a_{3}-b_{3} & =0 \\
4 a_{2}-2 a_{3}-2 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(x^{2}-2 y x+y^{2}\right)(1) \\
& =-x^{2}+2 y x-y^{2}+1 \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-x^{2}+2 y x-y^{2}+1} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (-1-x+y)}{2}+\frac{\ln (-x+y+1)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2}-2 y x+y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{(x-y+1)(x-y-1)} \\
S_{y} & =-\frac{1}{(x-y+1)(x-y-1)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (-1-x+y)}{2}+\frac{\ln (1-x+y)}{2}=-x+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (-1-x+y)}{2}+\frac{\ln (1-x+y)}{2}=-x+c_{1}
$$

Which gives

$$
y=\frac{x \mathrm{e}^{-2 x+2 c_{1}}+\mathrm{e}^{-2 x+2 c_{1}}-x+1}{-1+\mathrm{e}^{-2 x+2 c_{1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{2}-2 y x+y^{2}$			$\frac{d S}{d R}=-1$
			-dididididydidididy
时 1			
	$R=x$		did
	S $\quad \ln (-1-x+y)$		
	$S=-\frac{1}{2}$	$+$	$\cdots x^{2}$
$\xrightarrow{+1}$			
			didididydydidy

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \mathrm{e}^{-2 x+2 c_{1}}+\mathrm{e}^{-2 x+2 c_{1}}-x+1}{-1+\mathrm{e}^{-2 x+2 c_{1}}} \tag{1}
\end{equation*}
$$

Figure 385: Slope field plot

Verification of solutions

$$
y=\frac{x \mathrm{e}^{-2 x+2 c_{1}}+\mathrm{e}^{-2 x+2 c_{1}}-x+1}{-1+\mathrm{e}^{-2 x+2 c_{1}}}
$$

Verified OK.

6.16.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}-2 y x+y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}-2 y x+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}, f_{1}(x)=-2 x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-2 x \\
f_{2}^{2} f_{0} & =x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+2 x u^{\prime}(x)+x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{-\frac{x(-2+x)}{2}}+c_{2} \mathrm{e}^{-\frac{x(2+x)}{2}}
$$

The above shows that

$$
u^{\prime}(x)=-c_{1}(x-1) \mathrm{e}^{-\frac{x(-2+x)}{2}}-c_{2} \mathrm{e}^{-\frac{x(2+x)}{2}}(x+1)
$$

Using the above in (1) gives the solution

$$
y=-\frac{-c_{1}(x-1) \mathrm{e}^{-\frac{x(-2+x)}{2}}-c_{2} \mathrm{e}^{-\frac{x(2+x)}{2}}(x+1)}{c_{1} \mathrm{e}^{-\frac{x(-2+x)}{2}}+c_{2} \mathrm{e}^{-\frac{x(2+x)}{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{c_{3}(x-1) \mathrm{e}^{-\frac{x(-2+x)}{2}}+(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}}}{c_{3} \mathrm{e}^{-\frac{x(-2+x)}{2}}+\mathrm{e}^{-\frac{x(2+x)}{2}}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{3}(x-1) \mathrm{e}^{-\frac{x(-2+x)}{2}}+(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}}}{c_{3} \mathrm{e}^{-\frac{x(-2+x)}{2}}+\mathrm{e}^{-\frac{x(2+x)}{2}}} \tag{1}
\end{equation*}
$$

Figure 386: Slope field plot

Verification of solutions

$$
y=\frac{c_{3}(x-1) \mathrm{e}^{-\frac{x(-2+x)}{2}}+(x+1) \mathrm{e}^{-\frac{x(2+x)}{2}}}{c_{3} \mathrm{e}^{-\frac{x(-2+x)}{2}}+\mathrm{e}^{-\frac{x(2+x)}{2}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = 1, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

```
dsolve(diff(y(x),x) = x^2-2*x*y(x)+y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}(x-1) \mathrm{e}^{2 x}-x-1}{-1+\mathrm{e}^{2 x} c_{1}}
$$

Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 29

```
DSolve[y'[x] == x^2-2*x*y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow x+\frac{1}{\frac{1}{2}+c_{1} e^{2 x}}-1 \\
& y(x) \rightarrow x-1
\end{aligned}
$$

6.17 problem 17

6.17.1 Solving as exact ode
6.17.2 Maple step by step solution 1598

Internal problem ID [137]
Internal file name [OUTPUT/137_Sunday_June_05_2022_01_35_50_AM_8857866/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\mathrm{e}^{y x} y+\left(\mathrm{e}^{y}+\mathrm{e}^{y x} x\right) y^{\prime}=-\mathrm{e}^{x}
$$

6.17.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}+\mathrm{e}^{y x} x\right) \mathrm{d} y & =\left(-\mathrm{e}^{x}-\mathrm{e}^{y x} y\right) \mathrm{d} x \\
\left(\mathrm{e}^{x}+\mathrm{e}^{y x} y\right) \mathrm{d} x+\left(\mathrm{e}^{y}+\mathrm{e}^{y x} x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{x}+\mathrm{e}^{y x} y \\
N(x, y) & =\mathrm{e}^{y}+\mathrm{e}^{y x} x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x}+\mathrm{e}^{y x} y\right) \\
& =\mathrm{e}^{y x}(y x+1)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}+\mathrm{e}^{y x} x\right) \\
& =\mathrm{e}^{y x}(y x+1)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x}+\mathrm{e}^{y x} y \mathrm{~d} x \\
\phi & =\mathrm{e}^{y x}+\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{y x} x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}+\mathrm{e}^{y x} x$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}+\mathrm{e}^{y x} x=\mathrm{e}^{y x} x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{y x}+\mathrm{e}^{x}+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{y x}+\mathrm{e}^{x}+\mathrm{e}^{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{y x}+\mathrm{e}^{x}+\mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 387: Slope field plot

Verification of solutions

$$
\mathrm{e}^{y x}+\mathrm{e}^{x}+\mathrm{e}^{y}=c_{1}
$$

Verified OK.

6.17.2 Maple step by step solution

Let's solve
$\mathrm{e}^{y x} y+\left(\mathrm{e}^{y}+\mathrm{e}^{y x} x\right) y^{\prime}=-\mathrm{e}^{x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$\mathrm{e}^{y x} y x+\mathrm{e}^{y x}=\mathrm{e}^{y x} y x+\mathrm{e}^{y x}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\mathrm{e}^{x}+\mathrm{e}^{y x} y\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\mathrm{e}^{y x}+\mathrm{e}^{x}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$\mathrm{e}^{y}+\mathrm{e}^{y x} x=\mathrm{e}^{y x} x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\mathrm{e}^{y}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\mathrm{e}^{y}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\mathrm{e}^{y x}+\mathrm{e}^{x}+\mathrm{e}^{y}$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\mathrm{e}^{y x}+\mathrm{e}^{x}+\mathrm{e}^{y}=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{RootOf}\left(-\mathrm{e}^{Z x}-\mathrm{e}^{x}-\mathrm{e}^{Z}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve $(\exp (x)+\exp (x * y(x)) * y(x)+(\exp (y(x))+\exp (x * y(x)) * x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\mathrm{e}^{x y(x)}+\mathrm{e}^{x}+\mathrm{e}^{y(x)}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 20
DSolve $[\operatorname{Exp}[x]+\operatorname{Exp}[x * y[x]] * y[x]+(\operatorname{Exp}[y[x]]+\operatorname{Exp}[x * y[x]] * x) * y '[x]==0, y[x], x$, IncludeSingularSo

$$
\text { Solve }\left[e^{y(x)}+e^{x y(x)}+e^{x}=c_{1}, y(x)\right]
$$

6.18 problem 18

6.18.1 Solving as homogeneousTypeD2 ode 1601
6.18.2 Solving as first order ode lie symmetry lookup ode 1603
6.18.3 Solving as bernoulli ode . 1607

Internal problem ID [138]
Internal file name [OUTPUT/138_Sunday_June_05_2022_01_35_52_AM_85319751/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
2 x^{2} y-x^{3} y^{\prime}-y^{3}=0
$$

6.18.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 x^{3} u(x)-x^{3}\left(u^{\prime}(x) x+u(x)\right)-u(x)^{3} x^{3}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}-u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u^{3}-u$. Integrating both sides gives

$$
\frac{1}{u^{3}-u} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{u^{3}-u} d u & =\int-\frac{1}{x} d x \\
-\ln (u)+\frac{\ln (u+1)}{2}+\frac{\ln (u-1)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u)+\frac{\ln (u+1)}{2}+\frac{\ln (u-1)}{2}}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{\sqrt{u+1} \sqrt{u-1}}{u}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{\sqrt{u(x)+1} \sqrt{u(x)-1}}{u(x)}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{x \sqrt{1+\frac{y}{x}} \sqrt{\frac{y}{x}-1}}{y} & =\frac{c_{3}}{x} \\
\frac{x \sqrt{\frac{x+y}{x}} \sqrt{\frac{-x+y}{x}}}{y} & =\frac{c_{3}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x \sqrt{\frac{x+y}{x}} \sqrt{\frac{-x+y}{x}}}{y}=\frac{c_{3}}{x} \tag{1}
\end{equation*}
$$

Figure 388: Slope field plot
Verification of solutions

$$
\frac{x \sqrt{\frac{x+y}{x}} \sqrt{\frac{-x+y}{x}}}{y}=\frac{c_{3}}{x}
$$

Verified OK.

6.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 277: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{gather*}
\xi(x, y)=0 \\
\eta(x, y)=\frac{y^{3}}{x^{4}} \tag{A1}
\end{gather*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{4}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{4}}{2 y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 x^{3}}{y^{2}} \\
S_{y} & =\frac{x^{4}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{4}}{2 y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{4}}{2 y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x^{3}}$		$\frac{d S}{d R}=-R$
		1
	$R=x$	
	$S=-\frac{}{2 y^{2}}$	
11		

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{4}}{2 y^{2}}=-\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 389: Slope field plot
Verification of solutions

$$
-\frac{x^{4}}{2 y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

6.18.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(-2 x^{2}+y^{2}\right)}{x^{3}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{2}{x} y-\frac{1}{x^{3}} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{2}{x} \\
f_{1}(x) & =-\frac{1}{x^{3}} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=\frac{2}{x y^{2}}-\frac{1}{x^{3}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =\frac{2 w(x)}{x}-\frac{1}{x^{3}} \\
w^{\prime} & =-\frac{4 w}{x}+\frac{2}{x^{3}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{3}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{4 w(x)}{x}=\frac{2}{x^{3}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{4}{x} d x} \\
=x^{4}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{2}{x^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{4} w\right) & =\left(x^{4}\right)\left(\frac{2}{x^{3}}\right) \\
\mathrm{d}\left(x^{4} w\right) & =(2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{4} w=\int 2 x \mathrm{~d} x \\
& x^{4} w=x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{4}$ results in

$$
w(x)=\frac{1}{x^{2}}+\frac{c_{1}}{x^{4}}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\frac{1}{x^{2}}+\frac{c_{1}}{x^{4}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{\sqrt{x^{2}+c_{1}}} \\
& y(x)=-\frac{x^{2}}{\sqrt{x^{2}+c_{1}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{x^{2}}{\sqrt{x^{2}+c_{1}}} \tag{1}\\
& y=-\frac{x^{2}}{\sqrt{x^{2}+c_{1}}} \tag{2}
\end{align*}
$$

Figure 390: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}}{\sqrt{x^{2}+c_{1}}}
$$

Verified OK.

$$
y=-\frac{x^{2}}{\sqrt{x^{2}+c_{1}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
dsolve $\left(2 * x^{\wedge} 2 * y(x)-x^{\wedge} 3 * \operatorname{diff}(y(x), x)=y(x) \wedge 3, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{\sqrt{x^{2}+c_{1}}} \\
& y(x)=-\frac{x^{2}}{\sqrt{x^{2}+c_{1}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.194 (sec). Leaf size: 43
DSolve[2*x^2*y[x]-x^3*y'[x]==y[x]^3,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{2}}{\sqrt{x^{2}+c_{1}}} \\
& y(x) \rightarrow \frac{x^{2}}{\sqrt{x^{2}+c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.19 problem 19

6.19.1 Solving as separable ode . 1612
6.19.2 Solving as first order ode lie symmetry lookup ode 1614
6.19.3 Solving as exact ode . 1618
6.19.4 Solving as riccati ode . 1622
6.19.5 Maple step by step solution . 1624

Internal problem ID [139]
Internal file name [OUTPUT/139_Sunday_June_05_2022_01_35_53_AM_56391137/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
3 y^{2} x^{5}+x^{3} y^{\prime}-2 y^{2}=0
$$

6.19.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y^{2}\left(3 x^{5}-2\right)}{x^{3}}
\end{aligned}
$$

Where $f(x)=-\frac{3 x^{5}-2}{x^{3}}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =-\frac{3 x^{5}-2}{x^{3}} d x \\
\int \frac{1}{y^{2}} d y & =\int-\frac{3 x^{5}-2}{x^{3}} d x
\end{aligned}
$$

$$
-\frac{1}{y}=-x^{3}-\frac{1}{x^{2}}+c_{1}
$$

Which results in

$$
y=-\frac{x^{2}}{-x^{5}+c_{1} x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{-x^{5}+c_{1} x^{2}-1} \tag{1}
\end{equation*}
$$

Figure 391: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2}}{-x^{5}+c_{1} x^{2}-1}
$$

Verified OK.

6.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y^{2}\left(3 x^{5}-2\right)}{x^{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 279: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x^{3}}{3 x^{5}-2} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{x^{3}}{3 x^{5}-2}} d x
\end{aligned}
$$

Which results in

$$
S=-x^{3}-\frac{1}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}\left(3 x^{5}-2\right)}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=0 \\
& R_{y}=1 \\
& S_{x}=\frac{-3 x^{5}+2}{x^{3}} \\
& S_{y}=0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-x^{5}-1}{x^{2}}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{-x^{5}-1}{x^{2}}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{x^{2}}{x^{5}+c_{1} x^{2}+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}\left(3 x^{5}-2\right)}{x^{3}}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		他
${ }^{4}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$y(x)!$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-5}$
$1{ }^{1}+$		
1. \square_{1}	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$
	S $-x^{5}-1$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow-28}$
.	$S=\frac{x^{2}}{}$	(${ }_{\rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
-		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{x^{5}+c_{1} x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 392: Slope field plot
Verification of solutions

$$
y=\frac{x^{2}}{x^{5}+c_{1} x^{2}+1}
$$

Verified OK.

6.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(\frac{3 x^{5}-2}{x^{3}}\right) \mathrm{d} x \\
\left(-\frac{3 x^{5}-2}{x^{3}}\right) \mathrm{d} x+\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{3 x^{5}-2}{x^{3}} \\
& N(x, y)=-\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 x^{5}-2}{x^{3}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{3 x^{5}-2}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{-x^{5}-1}{x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-x^{5}-1}{x^{2}}+\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-x^{5}-1}{x^{2}}+\frac{1}{y}
$$

The solution becomes

$$
y=\frac{x^{2}}{x^{5}+c_{1} x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{x^{5}+c_{1} x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 393: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}}{x^{5}+c_{1} x^{2}+1}
$$

Verified OK.

6.19.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2}\left(3 x^{5}-2\right)}{x^{3}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-3 x^{2} y^{2}+\frac{2 y^{2}}{x^{3}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=-\frac{3 x^{5}-2}{x^{3}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(3 x^{5}-2\right) u}{x^{3}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-15 x+\frac{9 x^{5}-6}{x^{4}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(3 x^{5}-2\right) u^{\prime \prime}(x)}{x^{3}}-\left(-15 x+\frac{9 x^{5}-6}{x^{4}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\frac{\left(x^{5}+1\right) c_{2}}{x^{2}}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}\left(3 x^{5}-2\right)}{x^{3}}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2}}{c_{1}+\frac{\left(x^{5}+1\right) c_{2}}{x^{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x^{2}}{x^{5}+c_{3} x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{x^{5}+c_{3} x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 394: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}}{x^{5}+c_{3} x^{2}+1}
$$

Verified OK.

6.19.5 Maple step by step solution

Let's solve

$$
3 y^{2} x^{5}+x^{3} y^{\prime}-2 y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=-\frac{3 x^{5}-2}{x^{3}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int-\frac{3 x^{5}-2}{x^{3}} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=-x^{3}-\frac{1}{x^{2}}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{x^{2}}{-x^{5}+c_{1} x^{2}-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(3*x^5*y(x)^2+x^3*diff(y(x),x) = 2*y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{x^{2}}{x^{5}+c_{1} x^{2}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 28
DSolve[3*x^5*y[x] $2+x^{\wedge} 3 * y$ ' $[x]==2 * y[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{x^{2}}{x^{5}-c_{1} x^{2}+1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.20 problem 20

6.20.1 Solving as linear ode . 1626
6.20.2 Solving as first order ode lie symmetry lookup ode 1628
6.20.3 Solving as exact ode . 1632
6.20.4 Maple step by step solution . 1637

Internal problem ID [140]
Internal file name [OUTPUT/140_Sunday_June_05_2022_01_35_53_AM_10000095/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
3 y+y^{\prime} x=\frac{3}{x^{\frac{3}{2}}}
$$

6.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{3}{x^{\frac{5}{2}}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=\frac{3}{x^{\frac{5}{2}}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{3}{x} d x} \\
=x^{3}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{3}{x^{\frac{5}{2}}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{3}\right) & =\left(x^{3}\right)\left(\frac{3}{x^{\frac{5}{2}}}\right) \\
\mathrm{d}\left(y x^{3}\right) & =(3 \sqrt{x}) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{3}=\int 3 \sqrt{x} \mathrm{~d} x \\
& y x^{3}=2 x^{\frac{3}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{2}{x^{\frac{3}{2}}}+\frac{c_{1}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2}{x^{\frac{3}{2}}}+\frac{c_{1}}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 395: Slope field plot
Verification of solutions

$$
y=\frac{2}{x^{\frac{3}{2}}}+\frac{c_{1}}{x^{3}}
$$

Verified OK.

6.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3\left(y x^{\frac{3}{2}}-1\right)}{x^{\frac{5}{2}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 282: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3\left(y x^{\frac{3}{2}}-1\right)}{x^{\frac{5}{2}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=3 y x^{2} \\
& S_{y}=x^{3}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \sqrt{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \sqrt{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R^{\frac{3}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x^{3}=c_{1}+2 x^{\frac{3}{2}}
$$

Which simplifies to

$$
y x^{3}=c_{1}+2 x^{\frac{3}{2}}
$$

Which gives

$$
y=\frac{c_{1}+2 x^{\frac{3}{2}}}{x^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}+2 x^{\frac{3}{2}}}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 396: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}+2 x^{\frac{3}{2}}}{x^{3}}
$$

Verified OK.

6.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-3 y+\frac{3}{x^{\frac{3}{2}}}\right) \mathrm{d} x \\
\left(3 y-\frac{3}{x^{\frac{3}{2}}}\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=3 y-\frac{3}{x^{\frac{3}{2}}} \\
& N(x, y)=x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y-\frac{3}{x^{\frac{3}{2}}}\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((3)-(1)) \\
& =\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(3 y-\frac{3}{x^{\frac{3}{2}}}\right) \\
& =3\left(y-\frac{1}{x^{\frac{3}{2}}}\right) x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}(x) \\
& =x^{3}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3\left(y-\frac{1}{x^{\frac{3}{2}}}\right) x^{2}\right)+\left(x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3\left(y-\frac{1}{x^{\frac{3}{2}}}\right) x^{2} \mathrm{~d} x \\
\phi & =-2 x^{\frac{3}{2}}+y x^{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{3}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3}=x^{3}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 x^{\frac{3}{2}}+y x^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 x^{\frac{3}{2}}+y x^{3}
$$

The solution becomes

$$
y=\frac{c_{1}+2 x^{\frac{3}{2}}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}+2 x^{\frac{3}{2}}}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 397: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}+2 x^{\frac{3}{2}}}{x^{3}}
$$

Verified OK.

6.20.4 Maple step by step solution

Let's solve
$3 y+y^{\prime} x=\frac{3}{x^{\frac{3}{2}}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{3 y}{x}+\frac{3}{x^{\frac{5}{2}}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{3 y}{x}=\frac{3}{x^{\frac{5}{2}}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{3 y}{x}\right)=\frac{3 \mu(x)}{x^{\frac{5}{2}}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{3 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{3 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x^{3}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{3 \mu(x)}{x^{\frac{5}{2}}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{3 \mu(x)}{x^{\frac{5}{2}}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{3 \mu(x)}{x^{\frac{5}{2}}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{3}$
$y=\frac{\int 3 \sqrt{x} d x+c_{1}}{x^{3}}$
- Evaluate the integrals on the rhs

$$
y=\frac{c_{1}+2 x^{\frac{3}{2}}}{x^{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(3*y(x)+x*diff(y(x),x) = 3/x^(3/2),y(x), singsol=all)
```

$$
y(x)=\frac{2 x^{\frac{3}{2}}+c_{1}}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 19
DSolve[3*y[x]+x*y'[x]==3/x~(3/2),y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{2 x^{3 / 2}+c_{1}}{x^{3}}
$$

6.21 problem 21

6.21.1 Solving as linear ode . 1639
6.21.2 Solving as first order ode lie symmetry lookup ode 1641
6.21.3 Solving as exact ode . 1645
6.21.4 Maple step by step solution . 1650

Internal problem ID [141]
Internal file name [OUTPUT/141_Sunday_June_05_2022_01_35_54_AM_47359439/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y(x-1)+\left(x^{2}-1\right) y^{\prime}=1
$$

6.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x+1} \\
& q(x)=\frac{1}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x+1}=\frac{1}{x^{2}-1}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{x+1} d x} \\
=x+1
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x^{2}-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((x+1) y) & =(x+1)\left(\frac{1}{x^{2}-1}\right) \\
\mathrm{d}((x+1) y) & =\frac{1}{x-1} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (x+1) y=\int \frac{1}{x-1} \mathrm{~d} x \\
& (x+1) y=\ln (x-1)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x+1$ results in

$$
y=\frac{\ln (x-1)}{x+1}+\frac{c_{1}}{x+1}
$$

which simplifies to

$$
y=\frac{\ln (x-1)+c_{1}}{x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x-1)+c_{1}}{x+1} \tag{1}
\end{equation*}
$$

Figure 398: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x-1)+c_{1}}{x+1}
$$

Verified OK.

6.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y x-y-1}{x^{2}-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 285: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x+1} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x+1}} d y
\end{aligned}
$$

Which results in

$$
S=(x+1) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y x-y-1}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x+1
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x-1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R-1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R-1)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(x+1) y=\ln (x-1)+c_{1}
$$

Which simplifies to

$$
(x+1) y=\ln (x-1)+c_{1}
$$

Which gives

$$
y=\frac{\ln (x-1)+c_{1}}{x+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y x-y-1}{x^{2}-1}$		$\frac{d S}{d R}=\frac{1}{R-1}$
		(R)
$\rightarrow \rightarrow \infty \rightarrow \infty$	$R=x$	$\rightarrow \rightarrow \rightarrow \Delta y y y$.
$\rightarrow \rightarrow$ 边	$S=(x+1) y$	$\rightarrow \rightarrow \Delta$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x-1)+c_{1}}{x+1} \tag{1}
\end{equation*}
$$

Figure 399: Slope field plot
Verification of solutions

$$
y=\frac{\ln (x-1)+c_{1}}{x+1}
$$

Verified OK.

6.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}-1\right) \mathrm{d} y & =(-y(x-1)+1) \mathrm{d} x \\
(-1+y(x-1)) \mathrm{d} x+\left(x^{2}-1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-1+y(x-1) \\
N(x, y) & =x^{2}-1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-1+y(x-1)) \\
& =x-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}-1\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}-1}((x-1)-(2 x)) \\
& =-\frac{1}{x-1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x-1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x-1)} \\
& =\frac{1}{x-1}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x-1}(-1+y(x-1)) \\
& =\frac{-1+y(x-1)}{x-1}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x-1}\left(x^{2}-1\right) \\
& =x+1
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-1+y(x-1)}{x-1}\right)+(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-1+y(x-1)}{x-1} \mathrm{~d} x \\
\phi & =y x-\ln (x-1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x+1$. Therefore equation (4) becomes

$$
\begin{equation*}
x+1=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x-\ln (x-1)+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x-\ln (x-1)+y
$$

The solution becomes

$$
y=\frac{\ln (x-1)+c_{1}}{x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x-1)+c_{1}}{x+1} \tag{1}
\end{equation*}
$$

Figure 400: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x-1)+c_{1}}{x+1}
$$

Verified OK.

6.21.4 Maple step by step solution

Let's solve
$y(x-1)+\left(x^{2}-1\right) y^{\prime}=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x+1}+\frac{1}{x^{2}-1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x+1}=\frac{1}{x^{2}-1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+1}\right)=\frac{\mu(x)}{x^{2}-1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x+1}$
- Solve to find the integrating factor
$\mu(x)=\frac{\sqrt{x-1}(x+1)^{\frac{3}{2}}}{\sqrt{-(x-1)(x+1)}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x^{2}-1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x^{2}-1} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x^{2}-1} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\sqrt{x-1}(x+1)^{\frac{3}{2}}}{\sqrt{-(x-1)(x+1)}}$
$y=\frac{\sqrt{-(x-1)(x+1)}\left(\int \frac{\sqrt{x-1}(x+1)^{\frac{3}{2}}}{\sqrt{-(x-1)(x+1)}\left(x^{2}-1\right)} d x+c_{1}\right)}{\sqrt{x-1}(x+1)^{\frac{3}{2}}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\sqrt{-(x-1)(x+1)}\left(\frac{\ln (x-1) \sqrt{x+1} \sqrt{x-1}}{\sqrt{-(x-1)(x+1)}}+c_{1}\right)}{\sqrt{x-1}(x+1)^{\frac{3}{2}}}
$$

- Simplify

$$
y=\frac{\ln (x-1) \sqrt{x+1} \sqrt{x-1}+c_{1} \sqrt{-x^{2}+1}}{\sqrt{x-1}(x+1)^{\frac{3}{2}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve((-1+x)*y(x)+(x^2-1)*diff(y(x),x) = 1,y(x), singsol=all)
```

$$
y(x)=\frac{\ln (x-1)+c_{1}}{x+1}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 18

```
DSolve[(-1+x)*y[x]+(x^2-1)*y'[x] == 1,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{\log (x-1)+c_{1}}{x+1}
$$

6.22 problem 22

6.22.1 Solving as first order ode lie symmetry lookup ode 1652
6.22.2 Solving as bernoulli ode . 1656

Internal problem ID [142]
Internal file name [OUTPUT/142_Sunday_June_05_2022_01_35_55_AM_28775600/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

$$
\begin{aligned}
& \text { [[_homogeneous, `class G`], _rational, _Bernoulli] } \\
& \qquad y^{\prime} x-12 x^{4} y^{\frac{2}{3}}-6 y=0
\end{aligned}
$$

6.22.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{12 x^{4} y^{\frac{2}{3}}+6 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 288: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} y^{\frac{2}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2} y^{\frac{2}{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 y^{\frac{1}{3}}}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{12 x^{4} y^{\frac{2}{3}}+6 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{6 y^{\frac{1}{3}}}{x^{3}} \\
& S_{y}=\frac{1}{x^{2} y^{\frac{2}{3}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=12 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=12 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=6 R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 y^{\frac{1}{3}}}{x^{2}}=6 x^{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 y^{\frac{1}{3}}}{x^{2}}=6 x^{2}+c_{1}
$$

Which gives

$$
y=8 x^{12}+4 x^{10} c_{1}+\frac{2}{3} x^{8} c_{1}^{2}+\frac{1}{27} c_{1}^{3} x^{6}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{12 x^{4} y^{\frac{2}{3}}+6 y}{x}$	$\begin{aligned} R & =x \\ S & =\frac{3 y^{\frac{1}{3}}}{x^{2}} \end{aligned}$	

Summary
The solution(s) found are the following

Figure 401: Slope field plot

Verification of solutions

$$
y=8 x^{12}+4 x^{10} c_{1}+\frac{2}{3} x^{8} c_{1}^{2}+\frac{1}{27} c_{1}^{3} x^{6}
$$

Verified OK.

6.22.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{12 x^{4} y^{\frac{2}{3}}+6 y}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{6}{x} y+12 x^{3} y^{\frac{2}{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{6}{x} \\
f_{1}(x) & =12 x^{3} \\
n & =\frac{2}{3}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\frac{2}{3}}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{\frac{2}{3}}}=\frac{6 y^{\frac{1}{3}}}{x}+12 x^{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{\frac{1}{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{1}{3 y^{\frac{2}{3}}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
3 w^{\prime}(x) & =\frac{6 w(x)}{x}+12 x^{3} \\
w^{\prime} & =\frac{2 w}{x}+4 x^{3} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=4 x^{3}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=4 x^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(4 x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(4 x^{3}\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =(4 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{2}}=\int 4 x \mathrm{~d} x \\
& \frac{w}{x^{2}}=2 x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=2 x^{4}+c_{1} x^{2}
$$

Replacing w in the above by $y^{\frac{1}{3}}$ using equation (5) gives the final solution.

$$
y^{\frac{1}{3}}=2 x^{4}+c_{1} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{\frac{1}{3}}=2 x^{4}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Figure 402: Slope field plot

Verification of solutions

$$
y^{\frac{1}{3}}=2 x^{4}+c_{1} x^{2}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve($x * \operatorname{diff}(y(x), x)=12 * x^{\wedge} 4 * y(x)^{\wedge}(2 / 3)+6 * y(x), y(x)$, singsol=all)

$$
-2 x^{4}-c_{1} x^{2}+y(x)^{\frac{1}{3}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 19
DSolve $\left[x * y\right.$ ' $[x]==12 * x^{\wedge} 4 * y[x]^{\sim}(2 / 3)+6 * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{6}\left(2 x^{2}+c_{1}\right)^{3}
$$

6.23 problem 23

6.23.1 Solving as exact ode . 1661
6.23.2 Maple step by step solution . 1664

Internal problem ID [143]
Internal file name [OUTPUT/143_Sunday_June_05_2022_01_35_56_AM_10395588/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact]
```

$$
\mathrm{e}^{y}+\cos (x) y+\left(\mathrm{e}^{y} x+\sin (x)\right) y^{\prime}=0
$$

6.23.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y} x+\sin (x)\right) \mathrm{d} y & =\left(-\cos (x) y-\mathrm{e}^{y}\right) \mathrm{d} x \\
\left(\mathrm{e}^{y}+\cos (x) y\right) \mathrm{d} x+\left(\mathrm{e}^{y} x+\sin (x)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{gathered}
M(x, y)=\mathrm{e}^{y}+\cos (x) y \\
N(x, y)=\mathrm{e}^{y} x+\sin (x)
\end{gathered}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{y}+\cos (x) y\right) \\
& =\mathrm{e}^{y}+\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y} x+\sin (x)\right) \\
& =\mathrm{e}^{y}+\cos (x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{y}+\cos (x) y \mathrm{~d} x \\
\phi & =\sin (x) y+\mathrm{e}^{y} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{y} x+\sin (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y} x+\sin (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y} x+\sin (x)=\mathrm{e}^{y} x+\sin (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (x) y+\mathrm{e}^{y} x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (x) y+\mathrm{e}^{y} x
$$

The solution becomes

$$
y=- \text { LambertW }\left(\frac{x \mathrm{e}^{\frac{c_{1}}{\sin (x)}}}{\sin (x)}\right)+\frac{c_{1}}{\sin (x)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=- \text { LambertW }\left(\frac{x \mathrm{e}^{\frac{c_{1}}{\sin (x)}}}{\sin (x)}\right)+\frac{c_{1}}{\sin (x)} \tag{1}
\end{equation*}
$$

Figure 403: Slope field plot

Verification of solutions

$$
y=- \text { LambertW }\left(\frac{x \mathrm{e}^{\frac{c_{1}}{\sin (x)}}}{\sin (x)}\right)+\frac{c_{1}}{\sin (x)}
$$

Verified OK.

6.23.2 Maple step by step solution

Let's solve

$$
\mathrm{e}^{y}+\cos (x) y+\left(\mathrm{e}^{y} x+\sin (x)\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\mathrm{e}^{y}+\cos (x)=\mathrm{e}^{y}+\cos (x)$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int\left(\mathrm{e}^{y}+\cos (x) y\right) d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=\sin (x) y+\mathrm{e}^{y} x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$\mathrm{e}^{y} x+\sin (x)=\sin (x)+\mathrm{e}^{y} x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\sin (x) y+\mathrm{e}^{y} x
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$\sin (x) y+\mathrm{e}^{y} x=c_{1}$
- \quad Solve for y
$y=-$ Lambert $W\left(\frac{x e^{\frac{c_{1}}{\sin (x)}}}{\sin (x)}\right)+\frac{c_{1}}{\sin (x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23
dsolve $(\exp (y(x))+\cos (x) * y(x)+(\exp (y(x)) * x+\sin (x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=- \text { LambertW }\left(\csc (x) \mathrm{e}^{-\csc (x) c_{1}} x\right)-\csc (x) c_{1}
$$

\checkmark Solution by Mathematica
Time used: 4.553 (sec). Leaf size: 25
DSolve $[\operatorname{Exp}[y[x]]+\operatorname{Cos}[x] * y[x]+(\operatorname{Exp}[y[x]] * x+\operatorname{Sin}[x]) * y \cdot[x]==0, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow c_{1} \csc (x)-W\left(x \csc (x) e^{c_{1} \csc (x)}\right)
$$

6.24 problem 24

6.24.1 Solving as separable ode . 1667
6.24.2 Solving as first order ode lie symmetry lookup ode 1669
6.24.3 Solving as exact ode . 1673
6.24.4 Solving as riccati ode . 1677
6.24.5 Maple step by step solution . 1680

Internal problem ID [144]
Internal file name [OUTPUT/144_Sunday_June_05_2022_01_35_59_AM_24068941/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
9 x^{2} y^{2}+x^{\frac{3}{2}} y^{\prime}-y^{2}=0
$$

6.24.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y^{2}\left(9 x^{2}-1\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Where $f(x)=-\frac{9 x^{2}-1}{x^{\frac{3}{2}}}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =-\frac{9 x^{2}-1}{x^{\frac{3}{2}}} d x \\
\int \frac{1}{y^{2}} d y & =\int-\frac{9 x^{2}-1}{x^{\frac{3}{2}}} d x
\end{aligned}
$$

$$
-\frac{1}{y}=-\frac{2\left(3 x^{2}+1\right)}{\sqrt{x}}+c_{1}
$$

Which results in

$$
y=-\frac{\sqrt{x}}{-2+\sqrt{x} c_{1}-6 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sqrt{x}}{-2+\sqrt{x} c_{1}-6 x^{2}} \tag{1}
\end{equation*}
$$

Figure 404: Slope field plot

Verification of solutions

$$
y=-\frac{\sqrt{x}}{-2+\sqrt{x} c_{1}-6 x^{2}}
$$

Verified OK.

6.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{2}\left(9 x^{2}-1\right)}{x^{\frac{3}{2}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 291: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}}{}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x^{\frac{3}{2}}}{9 x^{2}-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{x^{\frac{3}{2}}}{9 x^{2}-1}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{2\left(3 x^{2}+1\right)}{\sqrt{x}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}\left(9 x^{2}-1\right)}{x^{\frac{3}{2}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=0 \\
& R_{y}=1 \\
& S_{x}=\frac{-9 x^{2}+1}{x^{\frac{3}{2}}} \\
& S_{y}=0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-6 x^{2}-2}{\sqrt{x}}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{-6 x^{2}-2}{\sqrt{x}}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{\sqrt{x}}{2+\sqrt{x} c_{1}+6 x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}\left(9 x^{2}-1\right)}{x^{\frac{3}{2}}}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
11		
$y(x)$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }+\dagger^{+}$
$\begin{array}{llll}-4 & -2 & 0 & \\ 0\end{array}$	$S=\underline{-6 x^{2}-2}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow- \pm \rightarrow \rightarrow-2}$
	$S=\frac{\sqrt{x}}{\sqrt{x}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
早! ! ! ! ! ! !		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x}}{2+\sqrt{x} c_{1}+6 x^{2}} \tag{1}
\end{equation*}
$$

Figure 405: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x}}{2+\sqrt{x} c_{1}+6 x^{2}}
$$

Verified OK.

6.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(\frac{9 x^{2}-1}{x^{\frac{3}{2}}}\right) \mathrm{d} x \\
\left(-\frac{9 x^{2}-1}{x^{\frac{3}{2}}}\right) \mathrm{d} x+\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{9 x^{2}-1}{x^{\frac{3}{2}}} \\
& N(x, y)=-\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{9 x^{2}-1}{x^{\frac{3}{2}}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{9 x^{2}-1}{x^{\frac{3}{2}}} \mathrm{~d} x \\
\phi & =\frac{-6 x^{2}-2}{\sqrt{x}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-6 x^{2}-2}{\sqrt{x}}+\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-6 x^{2}-2}{\sqrt{x}}+\frac{1}{y}
$$

The solution becomes

$$
y=\frac{\sqrt{x}}{2+\sqrt{x} c_{1}+6 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x}}{2+\sqrt{x} c_{1}+6 x^{2}} \tag{1}
\end{equation*}
$$

Figure 406: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x}}{2+\sqrt{x} c_{1}+6 x^{2}}
$$

Verified OK.

6.24.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2}\left(9 x^{2}-1\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-9 \sqrt{x} y^{2}+\frac{y^{2}}{x^{\frac{3}{2}}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=-\frac{9 x^{2}-1}{x^{\frac{3}{2}}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(9 x^{2}-1\right) u}{x^{\frac{3}{2}}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{18}{\sqrt{x}}+\frac{\frac{27 x^{2}}{2}-\frac{3}{2}}{x^{\frac{5}{2}}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(9 x^{2}-1\right) u^{\prime \prime}(x)}{x^{\frac{3}{2}}}-\left(-\frac{18}{\sqrt{x}}+\frac{\frac{27 x^{2}}{2}-\frac{3}{2}}{x^{\frac{5}{2}}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\frac{\left(3 x^{2}+1\right) c_{2}}{\sqrt{x}}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}\left(9 x^{2}-1\right)}{2 x^{\frac{3}{2}}}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2}}{2 c_{1}+\frac{2\left(3 x^{2}+1\right) c_{2}}{\sqrt{x}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\sqrt{x}}{2 c_{3} \sqrt{x}+6 x^{2}+2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x}}{2 c_{3} \sqrt{x}+6 x^{2}+2} \tag{1}
\end{equation*}
$$

Figure 407: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x}}{2 c_{3} \sqrt{x}+6 x^{2}+2}
$$

Verified OK.

6.24.5 Maple step by step solution

Let's solve

$$
9 x^{2} y^{2}+x^{\frac{3}{2}} y^{\prime}-y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=-\frac{(3 x+1)(3 x-1)}{x^{\frac{3}{2}}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int-\frac{(3 x+1)(3 x-1)}{x^{\frac{3}{2}}} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=-\frac{2\left(3 x^{2}+1\right)}{\sqrt{x}}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{\sqrt{x}}{-2+\sqrt{x} c_{1}-6 x^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

```
dsolve(9*x^2*y(x)^2+x^(3/2)*diff(y(x),x) = y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{x}}{2+6 x^{2}+c_{1} \sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.168 (sec). Leaf size: 34
DSolve[9*x^2*y[x] $\wedge^{\wedge}+x^{\wedge}(3 / 2) * y y^{\prime}[x]==y[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt{x}}{6 x^{2}-c_{1} \sqrt{x}+2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.25 problem 25

6.25.1 Solving as linear ode . 1682
6.25.2 Solving as homogeneousTypeMapleC ode 1684
6.25.3 Solving as first order ode lie symmetry lookup ode 1687
6.25.4 Solving as exact ode . 1691
6.25.5 Maple step by step solution . 1696

Internal problem ID [145]
Internal file name [OUTPUT/145_Sunday_June_05_2022_01_36_00_AM_10031191/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeMapleC", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+(x+1) y^{\prime}=3+3 x
$$

6.25.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x+1} \\
& q(x)=3
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x+1}=3
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x+1} d x} \\
& =(x+1)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(3) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((x+1)^{2} y\right) & =\left((x+1)^{2}\right)(3) \\
\mathrm{d}\left((x+1)^{2} y\right) & =\left(3(x+1)^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (x+1)^{2} y=\int 3(x+1)^{2} \mathrm{~d} x \\
& (x+1)^{2} y=(x+1)^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=(x+1)^{2}$ results in

$$
y=x+1+\frac{c_{1}}{(x+1)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+1+\frac{c_{1}}{(x+1)^{2}} \tag{1}
\end{equation*}
$$

Figure 408: Slope field plot
Verification of solutions

$$
y=x+1+\frac{c_{1}}{(x+1)^{2}}
$$

Verified OK.

6.25.2 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{-3-3 X-3 x_{0}+2 Y(X)+2 y_{0}}{X+x_{0}+1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =-1 \\
y_{0} & =0
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{-3 X+2 Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{-3 X+2 Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=3 X-2 Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =3-2 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{3-3 u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{3-3 u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X+3 u(X)-3=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{3-3 u}{X}
\end{aligned}
$$

Where $f(X)=\frac{1}{X}$ and $g(u)=3-3 u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{3-3 u} d u & =\frac{1}{X} d X \\
\int \frac{1}{3-3 u} d u & =\int \frac{1}{X} d X \\
-\frac{\ln (-1+u)}{3} & =\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(-1+u)^{\frac{1}{3}}}=\mathrm{e}^{\ln (X)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{(-1+u)^{\frac{1}{3}}}=c_{3} X
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}} X^{3}+1\right) \mathrm{e}^{-3 c_{2}}}{X^{2} c_{3}^{3}}
$$

Using the solution for $Y(X)$

$$
Y(X)=\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}} X^{3}+1\right) \mathrm{e}^{-3 c_{2}}}{X^{2} c_{3}^{3}}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
Y & =y \\
X & =x-1
\end{aligned}
$$

Then the solution in y becomes

$$
y=\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}}(x+1)^{3}+1\right) \mathrm{e}^{-3 c_{2}}}{(x+1)^{2} c_{3}^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}}(x+1)^{3}+1\right) \mathrm{e}^{-3 c_{2}}}{(x+1)^{2} c_{3}^{3}} \tag{1}
\end{equation*}
$$

Figure 409: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}}(x+1)^{3}+1\right) \mathrm{e}^{-3 c_{2}}}{(x+1)^{2} c_{3}^{3}}
$$

Verified OK.

6.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 y-3-3 x}{x+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 294: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{(x+1)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{(x+1)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=(x+1)^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y-3-3 x}{x+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=2(x+1) y \\
& S_{y}=(x+1)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3(x+1)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3(R+1)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=(R+1)^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(x+1)^{2} y=(x+1)^{3}+c_{1}
$$

Which simplifies to

$$
(x+1)^{2} y=(x+1)^{3}+c_{1}
$$

Which gives

$$
y=\frac{x^{3}+3 x^{2}+c_{1}+3 x+1}{(x+1)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y-3-3 x}{x+1}$		$\frac{d S}{d R}=3(R+1)^{2}$
+ ${ }_{\text {+ }}$		
$)^{+}$		
¢ ¢ ¢ ¢ ¢ ¢ - J ¢ ¢ ¢ ¢ ¢ ¢		
\% ${ }^{\text {a }}$	$S=(x+1)^{2} y$	
	$S=(x+1)^{2} y$	
		+ $+\rightarrow \rightarrow \rightarrow 4$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+3 x^{2}+c_{1}+3 x+1}{(x+1)^{2}} \tag{1}
\end{equation*}
$$

Figure 410: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+3 x^{2}+c_{1}+3 x+1}{(x+1)^{2}}
$$

Verified OK.

6.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x+1) \mathrm{d} y & =(-2 y+3+3 x) \mathrm{d} x \\
(2 y-3-3 x) \mathrm{d} x+(x+1) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y-3-3 x \\
N(x, y) & =x+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y-3-3 x) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+1) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x+1}((2)-(1)) \\
& =\frac{1}{x+1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x+1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x+1)} \\
& =x+1
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x+1(2 y-3-3 x) \\
& =(x+1)(2 y-3-3 x)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x+1(x+1) \\
& =(x+1)^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
((x+1)(2 y-3-3 x))+\left((x+1)^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(x+1)(2 y-3-3 x) \mathrm{d} x \\
\phi & =-\left(x^{2}+(-y+3) x-2 y+3\right) x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-(-x-2) x+f^{\prime}(y) \tag{4}\\
& =x(2+x)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(x+1)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
(x+1)^{2}=x(2+x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\left(x^{2}+(-y+3) x-2 y+3\right) x+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\left(x^{2}+(-y+3) x-2 y+3\right) x+y
$$

The solution becomes

$$
y=\frac{x^{3}+3 x^{2}+c_{1}+3 x}{x^{2}+2 x+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+3 x^{2}+c_{1}+3 x}{x^{2}+2 x+1} \tag{1}
\end{equation*}
$$

Figure 411: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+3 x^{2}+c_{1}+3 x}{x^{2}+2 x+1}
$$

Verified OK.

6.25.5 Maple step by step solution

Let's solve
$2 y+(x+1) y^{\prime}=3+3 x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=3-\frac{2 y}{x+1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x+1}=3$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x+1}\right)=3 \mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x+1}$
- Solve to find the integrating factor
$\mu(x)=(x+1)^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 3 \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=(x+1)^{2}$
$y=\frac{\int 3(x+1)^{2} d x+c_{1}}{(x+1)^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{(x+1)^{3}+c_{1}}{(x+1)^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(2*y(x)+(1+x)*diff(y(x),x) = 3+3*x,y(x), singsol=all)
```

$$
y(x)=x+1+\frac{c_{1}}{(x+1)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 25
DSolve $\left[2 * y[x]+(1+x) * y^{\prime}[x]==3+3 * x, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{x^{3}+3 x^{2}+3 x+c_{1}}{(x+1)^{2}}
$$

6.26 problem 26

6.26.1 Solving as exact ode . 1698
6.26.2 Maple step by step solution 1701

Internal problem ID [146]
Internal file name [OUTPUT/146_Sunday_June_05_2022_01_36_01_AM_19870957/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _exact, _rational]
```

$$
9 \sqrt{x} y^{\frac{4}{3}}-12 x^{\frac{1}{5}} y^{\frac{3}{2}}+\left(8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}\right) y^{\prime}=0
$$

6.26.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}\right) \mathrm{d} y & =\left(-9 \sqrt{x} y^{\frac{4}{3}}+12 x^{\frac{1}{5}} y^{\frac{3}{2}}\right) \mathrm{d} x \\
\left(9 \sqrt{x} y^{\frac{4}{3}}-12 x^{\frac{1}{5}} y^{\frac{3}{2}}\right) \mathrm{d} x+\left(8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =9 \sqrt{x} y^{\frac{4}{3}}-12 x^{\frac{1}{5}} y^{\frac{3}{2}} \\
N(x, y) & =8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(9 \sqrt{x} y^{\frac{4}{3}}-12 x^{\frac{1}{5}} y^{\frac{3}{2}}\right) \\
& =12 \sqrt{x} y^{\frac{1}{3}}-18 x^{\frac{1}{5}} \sqrt{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}\right) \\
& =12 \sqrt{x} y^{\frac{1}{3}}-18 x^{\frac{1}{5}} \sqrt{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 9 \sqrt{x} y^{\frac{4}{3}}-12 x^{\frac{1}{5}} y^{\frac{3}{2}} \mathrm{~d} x \\
\phi & =6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}=8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 412: Slope field plot

Verification of solutions

$$
6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}=c_{1}
$$

Verified OK.

6.26.2 Maple step by step solution

Let's solve

$$
9 \sqrt{x} y^{\frac{4}{3}}-12 x^{\frac{1}{5}} y^{\frac{3}{2}}+\left(8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
12 \sqrt{x} y^{\frac{1}{3}}-18 x^{\frac{1}{5}} \sqrt{y}=12 \sqrt{x} y^{\frac{1}{3}}-18 x^{\frac{1}{5}} \sqrt{y}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(9 \sqrt{x} y^{\frac{4}{3}}-12 x^{\frac{1}{5}} y^{\frac{3}{2}}\right) d x+f_{1}(y)
$$

- \quad Evaluate integral
$F(x, y)=6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}=8 x^{\frac{3}{2}} y^{\frac{1}{3}}-15 x^{\frac{6}{5}} \sqrt{y}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
6 y^{\frac{4}{3}} x^{\frac{3}{2}}-10 y^{\frac{3}{2}} x^{\frac{6}{5}}=c_{1}
$$

- \quad Solve for y
$y=\operatorname{RootOf}\left(10 _Z^{9} x^{\frac{6}{5}}-6 _Z^{8} x^{\frac{3}{2}}+c_{1}\right)^{6}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 43
dsolve $\left(9 * x^{\wedge}(1 / 2) * y(x)^{\wedge}(4 / 3)-12 * x^{\wedge}(1 / 5) * y(x)^{\wedge}(3 / 2)+\left(8 * x^{\wedge}(3 / 2) * y(x)^{\wedge}(1 / 3)-15 * x^{\wedge}(6 / 5) * y(x)^{\wedge}(1 / 2\right.\right.$

$$
125 y(x)^{\frac{9}{2}} x^{\frac{18}{5}}-225 y(x)^{\frac{13}{3}} x^{\frac{39}{10}}+135 y(x)^{\frac{25}{6}} x^{\frac{21}{5}}-27 y(x)^{4} x^{\frac{9}{2}}-c_{1}=0
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[9*x^(1/2)*y[x]^ (4/3)-12*x^(1/5)*y[x]^(3/2)+(8*x^(3/2)*y[x]^ (1/3)-15*x^ (6/5)*y[x]^ (1/2
```

Timed out

6.27 problem 27

6.27.1 Solving as first order ode lie symmetry lookup ode 1704
6.27.2 Solving as bernoulli ode . 1708
6.27.3 Solving as exact ode . 1712

Internal problem ID [147]
Internal file name [OUTPUT/147_Sunday_June_05_2022_01_36_02_AM_15229146/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
3 y+x^{3} y^{4}+3 y^{\prime} x=0
$$

6.27.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(y^{3} x^{3}+3\right)}{3 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 298: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{3} y^{4} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{3} y^{4}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{3 x^{3} y^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(y^{3} x^{3}+3\right)}{3 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y^{3} x^{4}} \\
S_{y} & =\frac{1}{x^{3} y^{4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{3 R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
-\frac{1}{3 x^{3} y^{3}}=-\frac{\ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{3 x^{3} y^{3}}=-\frac{\ln (x)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(y^{3} x^{3}+3\right)}{3 x}$		$\frac{d S}{d R}=-\frac{1}{3 R}$
		\rightarrow 小
－ 40.1		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow-3$
	$R=x$	\rightarrow 黾
	1	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
b $)^{1}$	$S=-\overline{3 x^{3} y^{3}}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
－		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { 为 }]{ }$
		$\rightarrow \rightarrow N_{1}$
．．．		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Summary
The solution（s）found are the following

$$
\begin{equation*}
-\frac{1}{3 x^{3} y^{3}}=-\frac{\ln (x)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 413: Slope field plot
Verification of solutions

$$
-\frac{1}{3 x^{3} y^{3}}=-\frac{\ln (x)}{3}+c_{1}
$$

Verified OK.

6.27.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(y^{3} x^{3}+3\right)}{3 x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y-\frac{x^{2}}{3} y^{4} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =-\frac{x^{2}}{3} \\
n & =4
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{4}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{4}}=-\frac{1}{x y^{3}}-\frac{x^{2}}{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{y^{4}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{x}-\frac{x^{2}}{3} \\
w^{\prime} & =\frac{3 w}{x}+x^{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x^{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{3}} & =\int \frac{1}{x} \mathrm{~d} x \\
\frac{w}{x^{3}} & =\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=\ln (x) x^{3}+c_{1} x^{3}
$$

which simplifies to

$$
w(x)=x^{3}\left(\ln (x)+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y^{3}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{3}}=x^{3}\left(\ln (x)+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
y(x) & =\frac{1}{\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x} \\
y(x) & =\frac{i \sqrt{3}-1}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x} \\
y(x) & =-\frac{1+i \sqrt{3}}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y & =\frac{1}{\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x} \tag{1}\\
y & =\frac{i \sqrt{3}-1}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x} \tag{2}\\
y & =-\frac{1+i \sqrt{3}}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x} \tag{3}
\end{align*}
$$

Figure 414: Slope field plot

Verification of solutions

$$
y=\frac{1}{\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

$$
y=\frac{i \sqrt{3}-1}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

$$
y=-\frac{1+i \sqrt{3}}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

6.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3 x) \mathrm{d} y & =\left(-x^{3} y^{4}-3 y\right) \mathrm{d} x \\
\left(x^{3} y^{4}+3 y\right) \mathrm{d} x+(3 x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{3} y^{4}+3 y \\
N(x, y) & =3 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{3} y^{4}+3 y\right) \\
& =4 y^{3} x^{3}+3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(3 x) \\
& =3
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 x}\left(\left(4 y^{3} x^{3}+3\right)-(3)\right) \\
& =\frac{4 y^{3} x^{2}}{3}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{x^{3} y^{4}+3 y}\left((3)-\left(4 y^{3} x^{3}+3\right)\right) \\
& =-\frac{4 y^{2} x^{3}}{y^{3} x^{3}+3}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(3)-\left(4 y^{3} x^{3}+3\right)}{x\left(x^{3} y^{4}+3 y\right)-y(3 x)} \\
& =-\frac{4}{y x}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{4}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{4}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (t)} \\
& =\frac{1}{t^{4}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{y^{4} x^{4}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{4} x^{4}}\left(x^{3} y^{4}+3 y\right) \\
& =\frac{y^{3} x^{3}+3}{x^{4} y^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{4} x^{4}}(3 x) \\
& =\frac{3}{x^{3} y^{4}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y^{3} x^{3}+3}{x^{4} y^{3}}\right)+\left(\frac{3}{x^{3} y^{4}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y^{3} x^{3}+3}{x^{4} y^{3}} \mathrm{~d} x \\
\phi & =-\frac{1}{x^{3} y^{3}}+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{3}{x^{3} y^{4}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{3}{x^{3} y^{4}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{3}{x^{3} y^{4}}=\frac{3}{x^{3} y^{4}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{x^{3} y^{3}}+\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{x^{3} y^{3}}+\ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{x^{3} y^{3}}+\ln (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 415: Slope field plot

Verification of solutions

$$
-\frac{1}{x^{3} y^{3}}+\ln (x)=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 58
dsolve $\left(3 * y(x)+x^{\wedge} 3 * y(x) \wedge 4+3 * x * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1}{\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(\ln (x)+c_{1}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.437 (sec). Leaf size: 70
DSolve $\left[3 * y[x]+x^{\wedge} 3 * y[x] \sim 4+3 * x * y\right.$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{\sqrt[3]{x^{3}\left(\log (x)+c_{1}\right)}} \\
& y(x) \rightarrow-\frac{\sqrt[3]{-1}}{\sqrt[3]{x^{3}\left(\log (x)+c_{1}\right)}} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3}}{\sqrt[3]{x^{3}\left(\log (x)+c_{1}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.28 problem 28

$$
\text { 6.28.1 Solving as linear ode . } 1719
$$

6.28.2 Solving as first order ode lie symmetry lookup ode 1721
6.28.3 Solving as exact ode . 1725
6.28.4 Maple step by step solution . 1729

Internal problem ID [148]
Internal file name [OUTPUT/148_Sunday_June_05_2022_01_36_03_AM_61601935/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y+y^{\prime} x=2 \mathrm{e}^{2 x}
$$

6.28.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{2 \mathrm{e}^{2 x}}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{2 \mathrm{e}^{2 x}}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 \mathrm{e}^{2 x}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(y x) & =(x)\left(\frac{2 \mathrm{e}^{2 x}}{x}\right) \\
\mathrm{d}(y x) & =\left(2 \mathrm{e}^{2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x=\int 2 \mathrm{e}^{2 x} \mathrm{~d} x \\
& y x=\mathrm{e}^{2 x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{\mathrm{e}^{2 x}}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 416: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x}
$$

Verified OK.

6.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-y+2 \mathrm{e}^{2 x}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 300: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
$$

Which results in

$$
S=y x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y+2 \mathrm{e}^{2 x}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \mathrm{e}^{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{2 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
y x=\mathrm{e}^{2 x}+c_{1}
$$

Which simplifies to

$$
y x=\mathrm{e}^{2 x}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-y+2 \mathrm{e}^{2 x}}{x}$		$\frac{d S}{d R}=2 \mathrm{e}^{2 R}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+3(R)^{-}}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty-\infty$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
\rightarrow 为 $\rightarrow \rightarrow \rightarrow- \pm$ 为		
，	$S=y x$	$\rightarrow \rightarrow \rightarrow+$
人vatht		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
N1．1．		$\rightarrow \rightarrow+$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 417: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x}
$$

Verified OK.

6.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-y+2 \mathrm{e}^{2 x}\right) \mathrm{d} x \\
\left(y-2 \mathrm{e}^{2 x}\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y-2 \mathrm{e}^{2 x} \\
& N(x, y)=x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-2 \mathrm{e}^{2 x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y-2 \mathrm{e}^{2 x} \mathrm{~d} x \\
\phi & =y x-\mathrm{e}^{2 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x-\mathrm{e}^{2 x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x-\mathrm{e}^{2 x}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 418: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x}+c_{1}}{x}
$$

Verified OK.

6.28.4 Maple step by step solution

Let's solve
$y+y^{\prime} x=2 \mathrm{e}^{2 x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x}+\frac{2 e^{2 x}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x}=\frac{2 \mathrm{e}^{2 x}}{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\frac{2 \mu(x) \mathrm{e}^{2 x}}{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{2 \mu(x) \mathrm{e}^{2 x}}{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{2 \mu(x) \text { e }^{2 x}}{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{2 \mu(x) \mathrm{e}^{2 x}}{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x$
$y=\frac{\int 2 \mathrm{e}^{2 x} d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{2 x}+c_{1}}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(y(x)+x*diff(y(x),x) = 2*exp(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{2 x}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 17
DSolve[y[x]+x*y'[x] == 2*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{e^{2 x}+c_{1}}{x}
$$

6.29 problem 29

6.29.1 Solving as linear ode . 1731
6.29.2 Solving as first order ode lie symmetry lookup ode 1733
6.29.3 Solving as exact ode . 1737
6.29.4 Maple step by step solution . 1742

Internal problem ID [149]
Internal file name [OUTPUT/149_Sunday_June_05_2022_01_36_04_AM_15895275/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y+(1+2 x) y^{\prime}=(1+2 x)^{\frac{3}{2}}
$$

6.29.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{1+2 x} \\
& q(x)=\sqrt{1+2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{1+2 x}=\sqrt{1+2 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{1+2 x} d x} \\
& =\sqrt{1+2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sqrt{1+2 x}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{1+2 x} y) & =(\sqrt{1+2 x})(\sqrt{1+2 x}) \\
\mathrm{d}(\sqrt{1+2 x} y) & =(1+2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{1+2 x} y=\int 1+2 x \mathrm{~d} x \\
& \sqrt{1+2 x} y=x^{2}+x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{1+2 x}$ results in

$$
y=\frac{x^{2}+x}{\sqrt{1+2 x}}+\frac{c_{1}}{\sqrt{1+2 x}}
$$

which simplifies to

$$
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}} \tag{1}
\end{equation*}
$$

Figure 419: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}
$$

Verified OK.

6.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y+(1+2 x)^{\frac{3}{2}}}{1+2 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 303: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{\sqrt{1+2 x}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sqrt{1+2 x}}} d y
\end{aligned}
$$

Which results in

$$
S=\sqrt{1+2 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y+(1+2 x)^{\frac{3}{2}}}{1+2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{\sqrt{1+2 x}} \\
S_{y} & =\sqrt{1+2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1+2 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1+2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{1+2 x} y=x^{2}+c_{1}+x
$$

Which simplifies to

$$
\sqrt{1+2 x} y=x^{2}+c_{1}+x
$$

Which gives

$$
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-y+(1+2 x)^{\frac{3}{2}}}{1+2 x}$		$\frac{d S}{d R}=1+2 R$
		!
$\begin{array}{llll}-4 & -2\end{array}$	$S=\sqrt{1+2 x} y$	
		1 l_{1}
+ ${ }^{\text {a }}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}} \tag{1}
\end{equation*}
$$

Figure 420: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}
$$

Verified OK.

6.29.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(1+2 x) \mathrm{d} y & =\left(-y+(1+2 x)^{\frac{3}{2}}\right) \mathrm{d} x \\
\left(-(1+2 x)^{\frac{3}{2}}+y\right) \mathrm{d} x+(1+2 x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-(1+2 x)^{\frac{3}{2}}+y \\
N(x, y) & =1+2 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-(1+2 x)^{\frac{3}{2}}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1+2 x) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{1+2 x}((1)-(2)) \\
& =-\frac{1}{1+2 x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{1+2 x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (1+2 x)}{2}} \\
& =\frac{1}{\sqrt{1+2 x}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\sqrt{1+2 x}}\left(-(1+2 x)^{\frac{3}{2}}+y\right) \\
& =\frac{(-1-2 x) \sqrt{1+2 x}+y}{\sqrt{1+2 x}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\sqrt{1+2 x}}(1+2 x) \\
& =\sqrt{1+2 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{(-1-2 x) \sqrt{1+2 x}+y}{\sqrt{1+2 x}}\right)+(\sqrt{1+2 x}) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{(-1-2 x) \sqrt{1+2 x}+y}{\sqrt{1+2 x}} \mathrm{~d} x \\
\phi & =\sqrt{1+2 x} y-x-x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sqrt{1+2 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sqrt{1+2 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\sqrt{1+2 x}=\sqrt{1+2 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sqrt{1+2 x} y-x-x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sqrt{1+2 x} y-x-x^{2}
$$

The solution becomes

$$
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}} \tag{1}
\end{equation*}
$$

Figure 421: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}
$$

Verified OK.

6.29.4 Maple step by step solution

Let's solve
$y+(1+2 x) y^{\prime}=(1+2 x)^{\frac{3}{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{1+2 x}+\sqrt{1+2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{1+2 x}=\sqrt{1+2 x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{1+2 x}\right)=\mu(x) \sqrt{1+2 x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{1+2 x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{1+2 x}$
- Solve to find the integrating factor
$\mu(x)=\sqrt{1+2 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sqrt{1+2 x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sqrt{1+2 x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sqrt{1+2 x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sqrt{1+2 x}$
$y=\frac{\int(1+2 x) d x+c_{1}}{\sqrt{1+2 x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(y(x)+(1+2*x)*diff(y(x),x) = (1+2*x)^(3/2),y(x), singsol=all)
```

$$
y(x)=\frac{x^{2}+c_{1}+x}{\sqrt{1+2 x}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 43

```
DSolve[y[x]+(1+2*x)*y'[x] == (1+2*x)^(3/2),y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{\frac{x \sqrt{-(2 x+1)^{2}}(x+1)}{2 x+1}+c_{1}}{\sqrt{-2 x-1}}
$$

6.30 problem 31(a)

6.30.1 Solving as separable ode . 1744
6.30.2 Solving as linear ode . 1746
6.30.3 Solving as first order ode lie symmetry lookup ode 1747
6.30.4 Solving as exact ode . 1751
6.30.5 Maple step by step solution . 1755

Internal problem ID [150]
Internal file name [OUTPUT/150_Sunday_June_05_2022_01_36_05_AM_91460194/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 31(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-3 x^{2}(7+y)=0
$$

6.30.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x^{2}(21+3 y)
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=21+3 y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{21+3 y} d y & =x^{2} d x \\
\int \frac{1}{21+3 y} d y & =\int x^{2} d x \\
\frac{\ln (7+y)}{3} & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
(7+y)^{\frac{1}{3}}=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}
$$

Which simplifies to

$$
(7+y)^{\frac{1}{3}}=c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}^{3} \mathrm{e}^{x^{3}+3 c_{1}}-7 \tag{1}
\end{equation*}
$$

Figure 422: Slope field plot
Verification of solutions

$$
y=c_{2}^{3} \mathrm{e}^{x^{3}+3 c_{1}}-7
$$

Verified OK.

6.30.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-3 x^{2} \\
& q(x)=21 x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 x^{2} y=21 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-3 x^{2} d x} \\
& =\mathrm{e}^{-x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(21 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{3}} y\right) & =\left(\mathrm{e}^{-x^{3}}\right)\left(21 x^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{-x^{3}} y\right) & =\left(21 x^{2} \mathrm{e}^{-x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{3}} y=\int 21 x^{2} \mathrm{e}^{-x^{3}} \mathrm{~d} x \\
& \mathrm{e}^{-x^{3}} y=-7 \mathrm{e}^{-x^{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{3}}$ results in

$$
y=-7 \mathrm{e}^{x^{3}} \mathrm{e}^{-x^{3}}+c_{1} \mathrm{e}^{x^{3}}
$$

which simplifies to

$$
y=-7+c_{1} \mathrm{e}^{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-7+c_{1} \mathrm{e}^{x^{3}} \tag{1}
\end{equation*}
$$

Figure 423: Slope field plot

Verification of solutions

$$
y=-7+c_{1} \mathrm{e}^{x^{3}}
$$

Verified OK.

6.30.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 x^{2}(7+y) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 306: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x^{2}(7+y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-3 x^{2} \mathrm{e}^{-x^{3}} y \\
S_{y} & =\mathrm{e}^{-x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=21 x^{2} \mathrm{e}^{-x^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=21 R^{2} \mathrm{e}^{-R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-7 \mathrm{e}^{-R^{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x^{3}} y=-7 \mathrm{e}^{-x^{3}}+c_{1}
$$

Which simplifies to

$$
(7+y) \mathrm{e}^{-x^{3}}-c_{1}=0
$$

Which gives

$$
y=-\left(7 \mathrm{e}^{-x^{3}}-c_{1}\right) \mathrm{e}^{x^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=3 x^{2}(7+y)$		$\frac{d S}{d R}=21 R^{2} \mathrm{e}^{-R^{3}}$
$1+$		
	$R=x$	
	$S=\mathrm{e}^{-x^{3}} y$	
$2^{2}+11^{x_{1}} 1+1+$	$S=\mathrm{e}^{-2} y$	$1{ }^{1}$
- 4 +1t111t		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(7 \mathrm{e}^{-x^{3}}-c_{1}\right) \mathrm{e}^{x^{3}} \tag{1}
\end{equation*}
$$

Figure 424: Slope field plot

Verification of solutions

$$
y=-\left(7 \mathrm{e}^{-x^{3}}-c_{1}\right) \mathrm{e}^{x^{3}}
$$

Verified OK.

6.30.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{21+3 y}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{21+3 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =\frac{1}{21+3 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{21+3 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{21+3 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{21+3 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{21+3 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{21+3 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (7+y)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}+\frac{\ln (7+y)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}+\frac{\ln (7+y)}{3}
$$

The solution becomes

$$
y=\mathrm{e}^{x^{3}+3 c_{1}}-7
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{3}+3 c_{1}}-7 \tag{1}
\end{equation*}
$$

Figure 425: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{3}+3 c_{1}}-7
$$

Verified OK.

6.30.5 Maple step by step solution

Let's solve

$$
y^{\prime}-3 x^{2}(7+y)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{7+y}=3 x^{2}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{7+y} d x=\int 3 x^{2} d x+c_{1}$
- Evaluate integral

$$
\ln (7+y)=x^{3}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x^{3}+c_{1}}-7
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x) = 3*x^2*(7+y(x)),y(x), singsol=all)
```

$$
y(x)=-7+\mathrm{e}^{x^{3}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 20

```
DSolve[y'[x] == 3*x^2*(7+y[x]),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-7+c_{1} e^{x^{3}} \\
& y(x) \rightarrow-7
\end{aligned}
$$

6.31 problem 31 (b)

6.31.1 Solving as separable ode . 1757
6.31.2 Solving as linear ode . 1759
6.31.3 Solving as first order ode lie symmetry lookup ode 1760
6.31.4 Solving as exact ode . 1764
6.31.5 Maple step by step solution . 1768

Internal problem ID [151]
Internal file name [OUTPUT/151_Sunday_June_05_2022_01_36_05_AM_54149176/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 31 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-3 x^{2}(7+y)=0
$$

6.31.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x^{2}(21+3 y)
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=21+3 y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{21+3 y} d y & =x^{2} d x \\
\int \frac{1}{21+3 y} d y & =\int x^{2} d x \\
\frac{\ln (7+y)}{3} & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
(7+y)^{\frac{1}{3}}=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}
$$

Which simplifies to

$$
(7+y)^{\frac{1}{3}}=c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}^{3} \mathrm{e}^{x^{3}+3 c_{1}}-7 \tag{1}
\end{equation*}
$$

Figure 426: Slope field plot
Verification of solutions

$$
y=c_{2}^{3} \mathrm{e}^{x^{3}+3 c_{1}}-7
$$

Verified OK.

6.31.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-3 x^{2} \\
& q(x)=21 x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 x^{2} y=21 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-3 x^{2} d x} \\
& =\mathrm{e}^{-x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(21 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{3}} y\right) & =\left(\mathrm{e}^{-x^{3}}\right)\left(21 x^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{-x^{3}} y\right) & =\left(21 x^{2} \mathrm{e}^{-x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{3}} y=\int 21 x^{2} \mathrm{e}^{-x^{3}} \mathrm{~d} x \\
& \mathrm{e}^{-x^{3}} y=-7 \mathrm{e}^{-x^{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{3}}$ results in

$$
y=-7 \mathrm{e}^{x^{3}} \mathrm{e}^{-x^{3}}+c_{1} \mathrm{e}^{x^{3}}
$$

which simplifies to

$$
y=-7+c_{1} \mathrm{e}^{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-7+c_{1} \mathrm{e}^{x^{3}} \tag{1}
\end{equation*}
$$

Figure 427: Slope field plot

Verification of solutions

$$
y=-7+c_{1} \mathrm{e}^{x^{3}}
$$

Verified OK.

6.31.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =3 x^{2}(7+y) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 309: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x^{2}(7+y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-3 x^{2} \mathrm{e}^{-x^{3}} y \\
S_{y} & =\mathrm{e}^{-x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=21 x^{2} \mathrm{e}^{-x^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=21 R^{2} \mathrm{e}^{-R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-7 \mathrm{e}^{-R^{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x^{3}} y=-7 \mathrm{e}^{-x^{3}}+c_{1}
$$

Which simplifies to

$$
(7+y) \mathrm{e}^{-x^{3}}-c_{1}=0
$$

Which gives

$$
y=-\left(7 \mathrm{e}^{-x^{3}}-c_{1}\right) \mathrm{e}^{x^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=3 x^{2}(7+y)$		$\frac{d S}{d R}=21 R^{2} \mathrm{e}^{-R^{3}}$
$1+$		
	$R=x$	
	$S=\mathrm{e}^{-x^{3}} y$	
$2^{2}+11^{x_{1}} 1+1+$	$S=\mathrm{e}^{-2} y$	$1{ }^{1}$
- 4 +1t111t		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(7 \mathrm{e}^{-x^{3}}-c_{1}\right) \mathrm{e}^{x^{3}} \tag{1}
\end{equation*}
$$

Figure 428: Slope field plot

Verification of solutions

$$
y=-\left(7 \mathrm{e}^{-x^{3}}-c_{1}\right) \mathrm{e}^{x^{3}}
$$

Verified OK.

6.31.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{21+3 y}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{21+3 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =\frac{1}{21+3 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{21+3 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{21+3 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{21+3 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{21+3 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{21+3 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (7+y)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}+\frac{\ln (7+y)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}+\frac{\ln (7+y)}{3}
$$

The solution becomes

$$
y=\mathrm{e}^{x^{3}+3 c_{1}}-7
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{3}+3 c_{1}}-7 \tag{1}
\end{equation*}
$$

Figure 429: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{3}+3 c_{1}}-7
$$

Verified OK.

6.31.5 Maple step by step solution

Let's solve

$$
y^{\prime}-3 x^{2}(7+y)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{7+y}=3 x^{2}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{7+y} d x=\int 3 x^{2} d x+c_{1}$
- Evaluate integral

$$
\ln (7+y)=x^{3}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x^{3}+c_{1}}-7
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x) = 3*x^2*(7+y(x)),y(x), singsol=all)
```

$$
y(x)=-7+\mathrm{e}^{x^{3}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 20

```
DSolve[y'[x] == 3*x^2*(7+y[x]),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-7+c_{1} e^{x^{3}} \\
& y(x) \rightarrow-7
\end{aligned}
$$

6.32 problem 32 (b)

6.32.1 Solving as separable ode . 1770
6.32.2 Solving as first order ode lie symmetry lookup ode 1772
6.32.3 Solving as bernoulli ode . 1776
6.32.4 Solving as exact ode . 1779
6.32.5 Maple step by step solution . 1783

Internal problem ID [152]
Internal file name [OUTPUT/152_Sunday_June_05_2022_01_36_06_AM_67086637/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 32 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+y x-x y^{3}=0
$$

6.32.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x\left(y^{3}-y\right)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y^{3}-y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{3}-y} d y & =x d x \\
\int \frac{1}{y^{3}-y} d y & =\int x d x \\
-\ln (y)+\frac{\ln (y+1)}{2}+\frac{\ln (y-1)}{2} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (y)+\frac{\ln (y+1)}{2}+\frac{\ln (y-1)}{2}}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{\sqrt{y+1} \sqrt{y-1}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

The solution is

$$
\frac{\sqrt{1+y} \sqrt{y-1}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\sqrt{1+y} \sqrt{y-1}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 430: Slope field plot
Verification of solutions

$$
\frac{\sqrt{1+y} \sqrt{y-1}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

6.32.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x y^{3}-y x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 312: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x y^{3}-y x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{3}-y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+\frac{\ln (R+1)}{2}+\frac{\ln (R-1)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=-\ln (y)+\frac{\ln (1+y)}{2}+\frac{\ln (y-1)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=-\ln (y)+\frac{\ln (1+y)}{2}+\frac{\ln (y-1)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x y^{3}-y x$		$\frac{d S}{d R}=\frac{1}{R^{3}-R}$
		$\rightarrow \rightarrow \rightarrow+1{ }^{\text {a }}$
,		
		$\rightarrow \rightarrow \rightarrow \rightarrow+p$ ¢
	$R=y$	
	x^{2}	
	$S=\frac{x}{2}$	
	2	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$ \& $^{2}+$
\%		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=-\ln (y)+\frac{\ln (1+y)}{2}+\frac{\ln (y-1)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 431: Slope field plot
Verification of solutions

$$
\frac{x^{2}}{2}=-\ln (y)+\frac{\ln (1+y)}{2}+\frac{\ln (y-1)}{2}+c_{1}
$$

Verified OK.

6.32.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x y^{3}-y x
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-x y+x y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-x \\
f_{1}(x) & =x \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{x}{y^{2}}+x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-w(x) x+x \\
w^{\prime} & =2 x w-2 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 x \\
& q(x)=-2 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-2 w(x) x=-2 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-2 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} w\right) & =\left(\mathrm{e}^{-x^{2}}\right)(-2 x) \\
\mathrm{d}\left(\mathrm{e}^{-x^{2}} w\right) & =\left(-2 x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{2}} w=\int-2 x \mathrm{e}^{-x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{-x^{2}} w=\mathrm{e}^{-x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}}$ results in

$$
w(x)=\mathrm{e}^{x^{2}} \mathrm{e}^{-x^{2}}+c_{1} \mathrm{e}^{x^{2}}
$$

which simplifies to

$$
w(x)=1+c_{1} \mathrm{e}^{x^{2}}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=1+c_{1} \mathrm{e}^{x^{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{1+c_{1} \mathrm{e}^{x^{2}}}} \\
& y(x)=-\frac{1}{\sqrt{1+c_{1} \mathrm{e}^{x^{2}}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{1+c_{1} \mathrm{e}^{x^{2}}}} \tag{1}\\
& y=-\frac{1}{\sqrt{1+c_{1} \mathrm{e}^{x^{2}}}} \tag{2}
\end{align*}
$$

Figure 432: Slope field plot
Verification of solutions

$$
y=\frac{1}{\sqrt{1+c_{1} \mathrm{e}^{x^{2}}}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{1+c_{1} \mathrm{e}^{x^{2}}}}
$$

Verified OK.

6.32.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{3}-y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{y^{3}-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{y^{3}-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{3}-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{3}-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{3}-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{1}{y\left(y^{2}-1\right)} \\
& =\frac{1}{y^{3}-y}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{3}-y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+\frac{\ln (y+1)}{2}+\frac{\ln (y-1)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\ln (y)+\frac{\ln (y+1)}{2}+\frac{\ln (y-1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\ln (y)+\frac{\ln (y+1)}{2}+\frac{\ln (y-1)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\ln (y)+\frac{\ln (1+y)}{2}+\frac{\ln (y-1)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 433: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}-\ln (y)+\frac{\ln (1+y)}{2}+\frac{\ln (y-1)}{2}=c_{1}
$$

Verified OK.

6.32.5 Maple step by step solution

Let's solve

$$
y^{\prime}+y x-x y^{3}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(y-1)(1+y)}=x$
- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y(y-1)(1+y)} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
-\ln (y)+\frac{\ln (1+y)}{2}+\frac{\ln (y-1)}{2}=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{1}{\sqrt{1-\mathrm{e}^{x^{2}+2 c_{1}}}}, y=-\frac{1}{\sqrt{1-\mathrm{e}^{x^{2}+2 c_{1}}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
    Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x) = -x*y(x)+x*y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{\mathrm{e}^{x^{2}} c_{1}+1}} \\
& y(x)=-\frac{1}{\sqrt{\mathrm{e}^{x^{2}} c_{1}+1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.917 (sec). Leaf size: 58
DSolve[y'[x] == -x*y[x]+x*y[x]~3,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt{1+e^{x^{2}+2 c_{1}}}} \\
& y(x) \rightarrow \frac{1}{\sqrt{1+e^{x^{2}+2 c_{1}}}} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1
\end{aligned}
$$

6.33 problem 33 (a)

6.33.1 Solving as homogeneousTypeD2 ode 1785
6.33.2 Solving as first order ode lie symmetry lookup ode 1787
6.33.3 Solving as bernoulli ode . 1791
6.33.4 Solving as exact ode . 1795

Internal problem ID [153]
Internal file name [OUTPUT/153_Sunday_June_05_2022_01_36_07_AM_68160363/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 33 (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y^{\prime}-\frac{-3 x^{2}-2 y^{2}}{4 y x}=0
$$

6.33.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{-3 x^{2}-2 u(x)^{2} x^{2}}{4 u(x) x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3\left(2 u^{2}+1\right)}{4 x u}
\end{aligned}
$$

Where $f(x)=-\frac{3}{4 x}$ and $g(u)=\frac{2 u^{2}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 u^{2}+1}{u}} d u & =-\frac{3}{4 x} d x \\
\int \frac{1}{\frac{2 u^{2}+1}{u}} d u & =\int-\frac{3}{4 x} d x \\
\frac{\ln \left(2 u^{2}+1\right)}{4} & =-\frac{3 \ln (x)}{4}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(2 u^{2}+1\right)^{\frac{1}{4}}=\mathrm{e}^{-\frac{3 \ln (x)}{4}+c_{2}}
$$

Which simplifies to

$$
\left(2 u^{2}+1\right)^{\frac{1}{4}}=\frac{c_{3}}{x^{\frac{3}{4}}}
$$

Which simplifies to

$$
\left(2 u(x)^{2}+1\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{4}}}
$$

The solution is

$$
\left(2 u(x)^{2}+1\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{4}}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{2 y^{2}}{x^{2}}+1\right)^{\frac{1}{4}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{4}}} \\
\left(\frac{2 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{4}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{4}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{2 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{4}}} \tag{1}
\end{equation*}
$$

Figure 434: Slope field plot

Verification of solutions

$$
\left(\frac{2 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{\frac{3}{4}}}
$$

Verified OK.

6.33.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x^{2}+2 y^{2}}{4 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 315: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{y x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x y^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x^{2}+2 y^{2}}{4 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y^{2}}{2} \\
S_{y} & =y x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3 x^{2}}{4} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3 R^{2}}{4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R^{3}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x y^{2}}{2}=-\frac{x^{3}}{4}+c_{1}
$$

Which simplifies to

$$
\frac{x y^{2}}{2}=-\frac{x^{3}}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x^{2}+2 y^{2}}{4 y x}$		$\frac{d S}{d R}=-\frac{3 R^{2}}{4}$
		${ }^{2}$ S (R)
	$R=x$	
	$x y^{2}$	
	$S=\frac{x y^{2}}{2}$	
	2	
-1-1*		
		$!!!!!t \rightarrow 0 \rightarrow \pm!!!!!!!~$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x y^{2}}{2}=-\frac{x^{3}}{4}+c_{1} \tag{1}
\end{equation*}
$$

Figure 435: Slope field plot
Verification of solutions

$$
\frac{x y^{2}}{2}=-\frac{x^{3}}{4}+c_{1}
$$

Verified OK.

6.33.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{3 x^{2}+2 y^{2}}{4 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{2 x} y-\frac{3 x}{4} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{2 x} \\
f_{1}(x) & =-\frac{3 x}{4} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{2 x}-\frac{3 x}{4} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{2 x}-\frac{3 x}{4} \\
w^{\prime} & =-\frac{w}{x}-\frac{3 x}{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{3 x}{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-\frac{3 x}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{3 x}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)\left(-\frac{3 x}{2}\right) \\
\mathrm{d}(x w) & =\left(-\frac{3 x^{2}}{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x w=\int-\frac{3 x^{2}}{2} \mathrm{~d} x \\
& x w=-\frac{x^{3}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-\frac{x^{2}}{2}+\frac{c_{1}}{x}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-\frac{x^{2}}{2}+\frac{c_{1}}{x}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x} \\
& y(x)=-\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x} \tag{1}\\
& y=-\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x} \tag{2}
\end{align*}
$$

Figure 436: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x}
$$

Verified OK.

$$
y=-\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x}
$$

Verified OK.

6.33.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(4 y x) \mathrm{d} y & =\left(-3 x^{2}-2 y^{2}\right) \mathrm{d} x \\
\left(3 x^{2}+2 y^{2}\right) \mathrm{d} x+(4 y x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2}+2 y^{2} \\
N(x, y) & =4 y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}+2 y^{2}\right) \\
& =4 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(4 y x) \\
& =4 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2}+2 y^{2} \mathrm{~d} x \\
\phi & =x^{3}+2 x y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=4 y x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=4 y x$. Therefore equation (4) becomes

$$
\begin{equation*}
4 y x=4 y x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{3}+2 x y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{3}+2 x y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{3}+2 x y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 437: Slope field plot

Verification of solutions

$$
x^{3}+2 x y^{2}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 47

```
dsolve(diff (y(x),x) = 1/4*(-3*x^2-2*y(x)^2)/(x*y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x} \\
& y(x)=\frac{\sqrt{2} \sqrt{-x\left(x^{3}-2 c_{1}\right)}}{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 60
DSolve $\left[y^{\prime}[\mathrm{x}]==1 / 4 *\left(-3 * \mathrm{x}^{\wedge} 2-2 * y[\mathrm{x}]^{\sim} 2\right) /(\mathrm{x} * \mathrm{y}[\mathrm{x}]), \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-x^{3}+2 c_{1}}}{\sqrt{2} \sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{-x^{3}+2 c_{1}}}{\sqrt{2} \sqrt{x}}
\end{aligned}
$$

6.34 problem 34 (a)

6.34.1 Solving as homogeneousTypeD2 ode 1799
6.34.2 Solving as differentialType ode 1801
6.34.3 Solving as first order ode lie symmetry calculated ode 1803
6.34.4 Solving as exact ode . 1808

Internal problem ID [154]
Internal file name [OUTPUT/154_Sunday_June_05_2022_01_36_08_AM_34506927/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 34 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, class A`]]

$$
y^{\prime}-\frac{x+3 y}{-3 x+y}=0
$$

6.34.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x+3 u(x) x}{-3 x+u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-6 u-1}{x(u-3)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-6 u-1}{u-3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-6 u-1}{u-3}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-6 u-1}{u-3}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}-6 u-1\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}-6 u-1}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}-6 u-1}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}-6 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}-6 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}-\frac{6 y}{x}-1} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y^{2}-6 y x-x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y^{2}-6 y x-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 438: Slope field plot

Verification of solutions

$$
\sqrt{\frac{y^{2}-6 y x-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

6.34.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x+3 y}{-3 x+y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-y) d y=(-3 x) d y+(-x-3 y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-3 x) d y+(-x-3 y) d x=d\left(-\frac{1}{2} x^{2}-3 y x\right)
$$

Hence (2) becomes

$$
(-y) d y=d\left(-\frac{1}{2} x^{2}-3 y x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=3 x+\sqrt{10 x^{2}-2 c_{1}}+c_{1} \\
& y=3 x-\sqrt{10 x^{2}-2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=3 x+\sqrt{10 x^{2}-2 c_{1}}+c_{1} \tag{1}\\
& y=3 x-\sqrt{10 x^{2}-2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 439: Slope field plot
Verification of solutions

$$
y=3 x+\sqrt{10 x^{2}-2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=3 x-\sqrt{10 x^{2}-2 c_{1}}+c_{1}
$$

Verified OK.

6.34.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x+3 y}{-3 x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(x+3 y)\left(b_{3}-a_{2}\right)}{-3 x+y}-\frac{(x+3 y)^{2} a_{3}}{(-3 x+y)^{2}} \\
& -\left(\frac{1}{-3 x+y}+\frac{3 x+9 y}{(-3 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{3}{-3 x+y}-\frac{x+3 y}{(-3 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{3 x^{2} a_{2}-x^{2} a_{3}+19 x^{2} b_{2}-3 x^{2} b_{3}-2 x y a_{2}-6 x y a_{3}-6 x y b_{2}+2 x y b_{3}-3 y^{2} a_{2}-19 y^{2} a_{3}+y^{2} b_{2}+3 y^{2} b_{3}+10 x}{(3 x-y)^{2}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{2} a_{2}-x^{2} a_{3}+19 x^{2} b_{2}-3 x^{2} b_{3}-2 x y a_{2}-6 x y a_{3}-6 x y b_{2} \tag{6E}\\
& \quad+2 x y b_{3}-3 y^{2} a_{2}-19 y^{2} a_{3}+y^{2} b_{2}+3 y^{2} b_{3}+10 x b_{1}-10 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 3 a_{2} v_{1}^{2}-2 a_{2} v_{1} v_{2}-3 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-6 a_{3} v_{1} v_{2}-19 a_{3} v_{2}^{2}+19 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-6 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-3 b_{3} v_{1}^{2}+2 b_{3} v_{1} v_{2}+3 b_{3} v_{2}^{2}-10 a_{1} v_{2}+10 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(3 a_{2}-a_{3}+19 b_{2}-3 b_{3}\right) v_{1}^{2}+\left(-2 a_{2}-6 a_{3}-6 b_{2}+2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+10 b_{1} v_{1}+\left(-3 a_{2}-19 a_{3}+b_{2}+3 b_{3}\right) v_{2}^{2}-10 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-10 a_{1} & =0 \\
10 b_{1} & =0 \\
-3 a_{2}-19 a_{3}+b_{2}+3 b_{3} & =0 \\
-2 a_{2}-6 a_{3}-6 b_{2}+2 b_{3} & =0 \\
3 a_{2}-a_{3}+19 b_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-6 b_{2}+b_{3} \\
& a_{3}=b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x+3 y}{-3 x+y}\right)(x) \\
& =\frac{x^{2}+6 y x-y^{2}}{3 x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}+6 y x-y^{2}}{3 x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{2}-6 y x+y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+3 y}{-3 x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+3 y}{x^{2}+6 y x-y^{2}} \\
S_{y} & =\frac{3 x-y}{x^{2}+6 y x-y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}-6 y x-x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}-6 y x-x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x+3 y}{-3 x+y}$		$\frac{d S}{d R}=0$
		$\xrightarrow{+S(R)}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+22 \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}$
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
lax^{2}	$S=\ln \left(-x^{2}-6 y x+y^{2}\right)$	
	$S=\frac{2}{2}$	
发的		

Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}-6 y x-x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 440: Slope field plot

Verification of solutions

$$
\frac{\ln \left(y^{2}-6 y x-x^{2}\right)}{2}=c_{1}
$$

Verified OK.

6.34.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-3 x+y) \mathrm{d} y & =(x+3 y) \mathrm{d} x \\
(-x-3 y) \mathrm{d} x+(-3 x+y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x-3 y \\
N(x, y) & =-3 x+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-3 y) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-3 x+y) \\
& =-3
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x-3 y \mathrm{~d} x \\
\phi & =-\frac{x(x+6 y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-3 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-3 x+y$. Therefore equation (4) becomes

$$
\begin{equation*}
-3 x+y=-3 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x(x+6 y)}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x(x+6 y)}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x(x+6 y)}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 441: Slope field plot

Verification of solutions

$$
-\frac{x(x+6 y)}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 51

```
dsolve(diff(y(x),x) = (x+3*y(x))/(-3*x+y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{3 c_{1} x-\sqrt{10 c_{1}^{2} x^{2}+1}}{c_{1}} \\
& y(x)=\frac{3 c_{1} x+\sqrt{10 c_{1}^{2} x^{2}+1}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.482 (sec). Leaf size: 94
DSolve[y'[x] == $(x+3 * y[x]) /(-3 * x+y[x]), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow 3 x-\sqrt{10 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow 3 x+\sqrt{10 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow 3 x-\sqrt{10} \sqrt{x^{2}} \\
& y(x) \rightarrow \sqrt{10} \sqrt{x^{2}}+3 x
\end{aligned}
$$

6.35 problem 35 (a)

6.35.1 Solving as separable ode . 1813
6.35.2 Solving as linear ode . 1815
6.35.3 Solving as first order ode lie symmetry lookup ode 1816
6.35.4 Solving as exact ode . 1820
6.35.5 Maple step by step solution . 1824

Internal problem ID [155]
Internal file name [OUTPUT/155_Sunday_June_05_2022_01_36_09_AM_97041794/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 35 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 x+2 y x}{x^{2}+1}=0
$$

6.35.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x(2 y+2)}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}+1}$ and $g(y)=2 y+2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{2 y+2} d y & =\frac{x}{x^{2}+1} d x \\
\int \frac{1}{2 y+2} d y & =\int \frac{x}{x^{2}+1} d x
\end{aligned}
$$

$$
\frac{\ln (y+1)}{2}=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\sqrt{y+1}=\mathrm{e}^{\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y+1}=c_{2} \sqrt{x^{2}+1}
$$

Which simplifies to

$$
y=c_{2}^{2}\left(x^{2}+1\right) \mathrm{e}^{2 c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}^{2}\left(x^{2}+1\right) \mathrm{e}^{2 c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 442: Slope field plot
Verification of solutions

$$
y=c_{2}^{2}\left(x^{2}+1\right) \mathrm{e}^{2 c_{1}}-1
$$

Verified OK.

6.35.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{2 x}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 x y}{x^{2}+1}=\frac{2 x}{x^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x}{x^{2}+1} d x} \\
& =\frac{1}{x^{2}+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 x}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}+1}\right) & =\left(\frac{1}{x^{2}+1}\right)\left(\frac{2 x}{x^{2}+1}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}+1}\right) & =\left(\frac{2 x}{\left(x^{2}+1\right)^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x^{2}+1}=\int \frac{2 x}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x \\
& \frac{y}{x^{2}+1}=-\frac{1}{x^{2}+1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}+1}$ results in

$$
y=-1+c_{1}\left(x^{2}+1\right)
$$

which simplifies to

$$
y=c_{1} x^{2}+c_{1}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{1}-1 \tag{1}
\end{equation*}
$$

Figure 443: Slope field plot

Verification of solutions

$$
y=c_{1} x^{2}+c_{1}-1
$$

Verified OK.

6.35.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x(y+1)}{x^{2}+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 317: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2}+1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}+1} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x(y+1)}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 y x}{\left(x^{2}+1\right)^{2}} \\
S_{y} & =\frac{1}{x^{2}+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2 x}{\left(x^{2}+1\right)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2 R}{\left(R^{2}+1\right)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R^{2}+1}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{2}+1}=-\frac{1}{x^{2}+1}+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}+1}=-\frac{1}{x^{2}+1}+c_{1}
$$

Which gives

$$
y=c_{1} x^{2}+c_{1}-1
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x(y+1)}{x^{2}+1}$		$\frac{d S}{d R}=\frac{2 R}{\left(R^{2}+1\right)^{2}}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow{\text { N }}$ N
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
	$S=y$	$\xrightarrow[\substack{4 \\ \rightarrow \rightarrow \rightarrow- \pm}]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$	$=\frac{}{x^{2}+1}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow+\infty$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		- $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{1}-1 \tag{1}
\end{equation*}
$$

Figure 444: Slope field plot
Verification of solutions

$$
y=c_{1} x^{2}+c_{1}-1
$$

Verified OK.

6.35.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y+2}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+\left(\frac{1}{2 y+2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+1} \\
N(x, y) & =\frac{1}{2 y+2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y+2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y+2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y+2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y+2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y+2}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y+1)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y+1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y+1)}{2}
$$

The solution becomes

$$
y=x^{2} \mathrm{e}^{2 c_{1}}+\mathrm{e}^{2 c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \mathrm{e}^{2 c_{1}}+\mathrm{e}^{2 c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 445: Slope field plot
Verification of solutions

$$
y=x^{2} \mathrm{e}^{2 c_{1}}+\mathrm{e}^{2 c_{1}}-1
$$

Verified OK.

6.35.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{2 x+2 y x}{x^{2}+1}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y}=\frac{2 x}{x^{2}+1}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1+y} d x=\int \frac{2 x}{x^{2}+1} d x+c_{1}$
- Evaluate integral

$$
\ln (1+y)=\ln \left(x^{2}+1\right)+c_{1}
$$

- \quad Solve for y

$$
y=x^{2} \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}-1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve(diff(y(x),x) = (2*x+2*x*y(x))/(x^2+1),y(x), singsol=all)
```

$$
y(x)=c_{1} x^{2}+c_{1}-1
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 20
DSolve[y'[x] == $(2 * x+2 * x * y[x]) /\left(x^{\wedge} 2+1\right), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-1+c_{1}\left(x^{2}+1\right) \\
& y(x) \rightarrow-1
\end{aligned}
$$

6.36 problem 36 (a)

6.36.1 Solving as separable ode . 1826
6.36.2 Solving as first order ode lie symmetry lookup ode 1828
6.36.3 Solving as bernoulli ode . 1832
6.36.4 Solving as exact ode . 1835
6.36.5 Maple step by step solution . 1839

Internal problem ID [156]
Internal file name [OUTPUT/156_Sunday_June_05_2022_01_36_10_AM_96305306/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Chapter 1 review problems. Page 78
Problem number: 36 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\cot (x)(\sqrt{y}-y)=0
$$

6.36.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\cot (x)(\sqrt{y}-y)
\end{aligned}
$$

Where $f(x)=\cot (x)$ and $g(y)=\sqrt{y}-y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}-y} d y & =\cot (x) d x \\
\int \frac{1}{\sqrt{y}-y} d y & =\int \cot (x) d x \\
2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1) & =\ln (\sin (x))+c_{1}
\end{aligned}
$$

The solution is

$$
2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)-\ln (\sin (x))-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)-\ln (\sin (x))-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 446: Slope field plot

Verification of solutions

$$
2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)-\ln (\sin (x))-c_{1}=0
$$

Verified OK.

6.36.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\cot (x)(-\sqrt{y}+y) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 320: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{\cot (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{\cot (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\ln (\sin (x))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\cot (x)(-\sqrt{y}+y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\cot (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{y}-y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R}-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \operatorname{arctanh}(\sqrt{R})-\ln (R-1)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (\sin (x))=2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)+c_{1}
$$

Which simplifies to

$$
\ln (\sin (x))=2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
	$\begin{aligned} R & =y \\ S & =\ln (\sin (x)) \end{aligned}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (\sin (x))=2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)+c_{1} \tag{1}
\end{equation*}
$$

Figure 447: Slope field plot
Verification of solutions

$$
\ln (\sin (x))=2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)+c_{1}
$$

Verified OK.

6.36.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\cot (x)(-\sqrt{y}+y)
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\cot (x) y+\cot (x) \sqrt{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\cot (x) \\
f_{1}(x) & =\cot (x) \\
n & =\frac{1}{2}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\sqrt{y}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{\sqrt{y}}=-\cot (x) \sqrt{y}+\cot (x) \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\sqrt{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{1}{2 \sqrt{y}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
2 w^{\prime}(x) & =-\cot (x) w(x)+\cot (x) \\
w^{\prime} & =-\frac{\cot (x) w}{2}+\frac{\cot (x)}{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{\cot (x)}{2} \\
& q(x)=\frac{\cot (x)}{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{\cot (x) w(x)}{2}=\frac{\cot (x)}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{\cot (x)}{2} d x} \\
& =\sqrt{\sin (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{\cot (x)}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{\sin (x)} w) & =(\sqrt{\sin (x)})\left(\frac{\cot (x)}{2}\right) \\
\mathrm{d}(\sqrt{\sin (x)} w) & =\left(\frac{\cos (x)}{2 \sqrt{\sin (x)}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{\sin (x)} w=\int \frac{\cos (x)}{2 \sqrt{\sin (x)}} \mathrm{d} x \\
& \sqrt{\sin (x)} w=\sqrt{\sin (x)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{\sin (x)}$ results in

$$
w(x)=1+\frac{c_{1}}{\sqrt{\sin (x)}}
$$

Replacing w in the above by \sqrt{y} using equation (5) gives the final solution.

$$
\sqrt{y}=1+\frac{c_{1}}{\sqrt{\sin (x)}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y}=1+\frac{c_{1}}{\sqrt{\sin (x)}} \tag{1}
\end{equation*}
$$

Figure 448: Slope field plot
Verification of solutions

$$
\sqrt{y}=1+\frac{c_{1}}{\sqrt{\sin (x)}}
$$

Verified OK.

6.36.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{y}-y}\right) \mathrm{d} y & =(\cot (x)) \mathrm{d} x \\
(-\cot (x)) \mathrm{d} x+\left(\frac{1}{\sqrt{y}-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\cot (x) \\
N(x, y) & =\frac{1}{\sqrt{y}-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\cot (x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{y}-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cot (x) \mathrm{d} x \\
\phi & =-\ln (\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}-y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}-y}\right) \mathrm{d} y \\
f(y) & =2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (\sin (x))+2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (\sin (x))+2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)-\ln (\sin (x))=c_{1} \tag{1}
\end{equation*}
$$

Figure 449: Slope field plot

Verification of solutions

$$
2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)-\ln (\sin (x))=c_{1}
$$

Verified OK.

6.36.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\cot (x)(\sqrt{y}-y)=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}-y}=\cot (x)
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y}-y} d x=\int \cot (x) d x+c_{1}$
- Evaluate integral

$$
2 \operatorname{arctanh}(\sqrt{y})-\ln (y-1)=\ln (\sin (x))+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x) = cot(x)*(y(x)^(1/2)-y(x)),y(x), singsol=all)
```

$$
\sqrt{y(x)}-\frac{\int \frac{\cos (x)}{\sqrt{\sin (x)}} d x+2 c_{1}}{2 \sqrt{\sin (x)}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.272 (sec). Leaf size: 35
DSolve[y'[x] $==\operatorname{Cot}[x] *(y[x] \sim(1 / 2)-y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \csc (x)\left(\sqrt{\sin (x)}+e^{\frac{c_{1}}{2}}\right)^{2} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1
\end{aligned}
$$

7 Section 5.1, second order linear equations. Page 299
7.1 problem 1 1842
7.2 problem 2 1855
7.3 problem 3 1867
7.4 problem 4 1880
7.5 problem 5 1893
7.6 problem 6 1903
7.7 problem 7 1913
7.8 problem 8 1931
7.9 problem 9 1948
7.10 problem 10 1960
7.11 problem 11 1972
7.12 problem 12 1982
7.13 problem 13 1992
7.14 problem 14 2021
7.15 problem 15 2041
7.16 problem 16 2067
7.17 problem 33 2090
7.18 problem 34 2098
7.19 problem 35 2106
7.20 problem 36 2121
7.21 problem 37 2136
7.22 problem 38 2144
7.23 problem 39 2152
7.24 problem 40 2161
7.25 problem 41 2170
7.26 problem 42 2178
7.27 problem 52 2186
7.28 problem 53 2209
7.29 problem 54 2223
7.30 problem 55 2238
7.31 problem 56 2249

7.1 problem 1

7.1.1 Existence and uniqueness analysis 1842
7.1.2 Solving as second order linear constant coeff ode 1843
7.1.3 Solving as second order ode can be made integrable ode 1845
7.1.4 Solving using Kovacic algorithm 1849
7.1.5 Maple step by step solution . 1853

Internal problem ID [157]
Internal file name [OUTPUT/157_Sunday_June_05_2022_01_36_11_AM_42210530/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_oode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=5\right]
$$

7.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.1.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{5}{2} \\
& c_{2}=-\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Verified OK.

7.1.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\sqrt{y^{2}+2 c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
y+\sqrt{y^{2}+2 c_{1}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{3}^{2}-2 c_{1}}{2 c_{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}}+c_{3} \mathrm{e}^{x}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=\frac{c_{3}^{2}+2 c_{1}}{2 c_{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25}{2} \\
& c_{3}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{-x}\left(-1+\mathrm{e}^{2 x}\right)}{2}
$$

Which simplifies to

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{-2 c_{1} c_{5}^{2}+1}{2 c_{5}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{5} \mathrm{e}^{x} c_{1}+\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=\frac{-2 c_{1} c_{5}^{2}-1}{2 c_{5}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25}{2} \\
& c_{5}=-\frac{1}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{-x}\left(-1+\mathrm{e}^{2 x}\right)}{2}
$$

Which simplifies to

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2} \tag{1}\\
& y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2} \tag{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Verified OK.

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Verified OK.

7.1.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 323: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{5}{2} \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Verified OK.

7.1.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

\square
Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$

$$
5=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{5}{2}, c_{2}=\frac{5}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(y(x),x$2)-y(x)=0,y(0) = 0, D(y)(0) = 5],y(x), singsol=all)
```

$$
y(x)=\frac{5 \mathrm{e}^{x}}{2}-\frac{5 \mathrm{e}^{-x}}{2}
$$

Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 21

```
DSolve[{y''[x]-y[x]==0,{y[0]==0,y'[0]==5}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{5}{2} e^{-x}\left(e^{2 x}-1\right)
$$

7.2 problem 2

7.2.1 Existence and uniqueness analysis 1855
7.2.2 Solving as second order linear constant coeff ode 1856
7.2.3 Solving as second order ode can be made integrable ode 1858
7.2.4 Solving using Kovacic algorithm 1861
7.2.5 Maple step by step solution . 1865

Internal problem ID [158]
Internal file name [OUTPUT/158_Sunday_June_05_2022_01_36_11_AM_42038455/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-9 y=0
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=15\right]
$$

7.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-9 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-9 y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.2.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-9)} \\
& = \pm 3
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 \\
& \lambda_{2}=-3
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=15$ and $x=0$ in the above gives

$$
\begin{equation*}
15=3 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x}
$$

Verified OK.

7.2.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-9 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-9 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{9 y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{9 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{9 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{9 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+\sqrt{9 y^{2}+2 c_{1}}\right)^{\frac{1}{3}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{9 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\left(3 y+\sqrt{9 y^{2}+2 c_{1}}\right)^{\frac{1}{3}}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{6 x} c_{3}^{6}-2 c_{1}\right) \mathrm{e}^{-3 x}}{6 c_{3}^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{3}^{6}-2 c_{1}}{6 c_{3}^{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\left(\mathrm{e}^{6 x} c_{3}^{6}-2 c_{1}\right) \mathrm{e}^{-3 x}}{2 c_{3}^{3}}+c_{3}^{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=15$ and $x=0$ in the above gives

$$
\begin{equation*}
15=\frac{c_{3}^{6}+2 c_{1}}{2 c_{3}^{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{\left(2 c_{1} c_{5}^{6} \mathrm{e}^{6 x}-1\right) \mathrm{e}^{-3 x}}{6 c_{5}^{3}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=\frac{-2 c_{1} c_{5}^{6}+1}{6 c_{5}^{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{5}^{3} \mathrm{e}^{3 x} c_{1}+\frac{\left(2 c_{1} c_{5}^{6} \mathrm{e}^{6 x}-1\right) \mathrm{e}^{-3 x}}{2 c_{5}^{3}}
$$

substituting $y^{\prime}=15$ and $x=0$ in the above gives

$$
\begin{equation*}
15=\frac{-2 c_{1} c_{5}^{6}-1}{2 c_{5}^{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Warning, unable to solve for constants of integrations.
Verification of solutions N/A

7.2.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 325: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-3 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-3 x} \int \frac{1}{\mathrm{e}^{-6 x}} d x \\
& =\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}+\frac{c_{2}}{6} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{2}
$$

substituting $y^{\prime}=15$ and $x=0$ in the above gives

$$
\begin{equation*}
15=-3 c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=12
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x}
$$

Verified OK.

7.2.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-9 y=0, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=15\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-9=0
$$

- Factor the characteristic polynomial

$$
(r-3)(r+3)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,3)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{3 x}
$$

\square

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{3 x}$

- Use initial condition $y(0)=-1$

$$
-1=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+3 c_{2} \mathrm{e}^{3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=15$

$$
15=-3 c_{1}+3 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-3, c_{2}=2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x}
$$

- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{3 x}-3 \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff(y(x),x$2)-9*y(x)=0,y(0) = -1, D(y)(0) = 15],y(x), singsol=all)
```

$$
y(x)=-3 \mathrm{e}^{-3 x}+2 \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20

```
DSolve[{y''[x]-9*y[x]==0,{y[0]==-1,y'[0]==15}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-3 x}\left(2 e^{6 x}-3\right)
$$

7.3 problem 3

7.3.1 Existence and uniqueness analysis 1867
7.3.2 Solving as second order linear constant coeff ode 1868
7.3.3 Solving as second order ode can be made integrable ode 1870
7.3.4 Solving using Kovacic algorithm 1873
7.3.5 Maple step by step solution . 1877

Internal problem ID [159]
Internal file name [OUTPUT/159_Sunday_June_05_2022_01_36_12_AM_224056/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_oode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=8\right]
$$

7.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =4 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.3.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=2 c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \cos (2 x)+4 \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \cos (2 x)+4 \sin (2 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \cos (2 x)+4 \sin (2 x)
$$

Verified OK.

7.3.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+4 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+4 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-4 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =c_{3}+x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{\arctan \left(\frac{6}{\sqrt{-36+2 c_{1}}}\right)}{2}=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\left(2 \tan \left(2 x+2 c_{2}\right)^{2}+2\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(2 x+2 c_{2}\right)^{2}+1}}}{2}-\frac{\tan \left(2 x+2 c_{2}\right)^{2} \sqrt{2} c_{1}\left(2 \tan \left(2 x+2 c_{2}\right)^{2}+2\right)}{2 \sqrt{\frac{c_{1}}{\tan \left(2 x+2 c_{2}\right)^{2}+1}}\left(\tan \left(2 x+2 c_{2}\right)^{2}+1\right)^{2}}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=\frac{\cos \left(2 c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(2 c_{2}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=50 \\
& c_{2}=\frac{\arctan \left(\frac{3}{4}\right)}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
\frac{\arctan \left(\frac{y}{\sqrt{25-y^{2}}}\right)}{2}=x+\frac{\arctan \left(\frac{3}{4}\right)}{2}
$$

Looking at the Second solution

$$
\begin{equation*}
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=c_{3}+x \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{\arctan \left(\frac{6}{\sqrt{-36+2 c_{1}}}\right)}{2}=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\left(2 \tan \left(2 c_{3}+2 x\right)^{2}+2\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(2 c_{3}+2 x\right)^{2}+1}}}{2}+\frac{\tan \left(2 c_{3}+2 x\right)^{2} \sqrt{2} c_{1}\left(2 \tan \left(2 c_{3}+2 x\right)^{2}+2\right)}{2 \sqrt{\frac{c_{1}}{\tan \left(2 c_{3}+2 x\right)^{2}+1}}\left(\tan \left(2 c_{3}+2 x\right)^{2}+1\right)^{2}}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=-\frac{\cos \left(2 c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(2 c_{3}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.
Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\arctan \left(\frac{y}{\sqrt{25-y^{2}}}\right)}{2}=x+\frac{\arctan \left(\frac{3}{4}\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\arctan \left(\frac{y}{\sqrt{25-y^{2}}}\right)}{2}=x+\frac{\arctan \left(\frac{3}{4}\right)}{2}
$$

Verified OK.

7.3.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 327: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+c_{2} \cos (2 x)
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \cos (2 x)+4 \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \cos (2 x)+4 \sin (2 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \cos (2 x)+4 \sin (2 x)
$$

Verified OK.

7.3.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=8\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Check validity of solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$

- Use initial condition $y(0)=3$

$$
3=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=8$
$8=2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=4\right\}$
- Substitute constant values into general solution and simplify

$$
y=3 \cos (2 x)+4 \sin (2 x)
$$

- \quad Solution to the IVP

$$
y=3 \cos (2 x)+4 \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)+4 * y(x)=0, y(0)=3, D(y)(0)=8], y(x)$, singsol=all)

$$
y(x)=4 \sin (2 x)+3 \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+4 * y[x]==0,\left\{y[0]==3, y^{\prime}[0]==8\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 4 \sin (2 x)+3 \cos (2 x)
$$

7.4 problem 4

7.4.1 Existence and uniqueness analysis 1880
7.4.2 Solving as second order linear constant coeff ode 1881
7.4.3 Solving as second order ode can be made integrable ode 1883
7.4.4 Solving using Kovacic algorithm 1886
7.4.5 Maple step by step solution . 1890

Internal problem ID [160]
Internal file name [OUTPUT/160_Sunday_June_05_2022_01_36_13_AM_37831864/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+25 y=0
$$

With initial conditions

$$
\left[y(0)=10, y^{\prime}(0)=-10\right]
$$

7.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =25 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+25 y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=25$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(25)} \\
& = \pm 5 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+5 i \\
& \lambda_{2}=-5 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=5 i \\
& \lambda_{2}=-5 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=5$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (5 x)+c_{2} \sin (5 x)\right)
$$

Or

$$
y=c_{1} \cos (5 x)+c_{2} \sin (5 x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (5 x)+c_{2} \sin (5 x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-5 c_{1} \sin (5 x)+5 c_{2} \cos (5 x)
$$

substituting $y^{\prime}=-10$ and $x=0$ in the above gives

$$
\begin{equation*}
-10=5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=10 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=10 \cos (5 x)-2 \sin (5 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=10 \cos (5 x)-2 \sin (5 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=10 \cos (5 x)-2 \sin (5 x)
$$

Verified OK.

7.4.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+25 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+25 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{25 y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-25 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-25 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-25 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{5 y}{\sqrt{-25 y^{2}+2 c_{1}}}\right)}{5} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-25 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{5 y}{\sqrt{-25 y^{2}+2 c_{1}}}\right)}{5} & =c_{3}+x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{\arctan \left(\frac{5 y}{\sqrt{-25 y^{2}+2 c_{1}}}\right)}{5}=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{\arctan \left(\frac{50}{\sqrt{-2500+2 c_{1}}}\right)}{5}=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\left(5 \tan \left(5 x+5 c_{2}\right)^{2}+5\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(5 x+5 c_{2}\right)^{2}+1}}}{5}-\frac{\tan \left(5 x+5 c_{2}\right)^{2} \sqrt{2} c_{1}\left(5 \tan \left(5 x+5 c_{2}\right)^{2}+5\right)}{5 \sqrt{\frac{c_{1}}{\tan \left(5 x+5 c_{2}\right)^{2}+1}}\left(\tan \left(5 x+5 c_{2}\right)^{2}+1\right)^{2}}
$$

substituting $y^{\prime}=-10$ and $x=0$ in the above gives

$$
\begin{equation*}
-10=\frac{\cos \left(5 c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(5 c_{2}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\frac{\arctan \left(\frac{5 y}{\sqrt{-25 y^{2}+2 c_{1}}}\right)}{5}=c_{3}+x \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{\arctan \left(\frac{50}{\sqrt{-2500+2 c_{1}}}\right)}{5}=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\left(5 \tan \left(5 c_{3}+5 x\right)^{2}+5\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(5 c_{3}+5 x\right)^{2}+1}}}{5}+\frac{\tan \left(5 c_{3}+5 x\right)^{2} \sqrt{2} c_{1}\left(5 \tan \left(5 c_{3}+5 x\right)^{2}+5\right)}{5 \sqrt{\frac{c_{1}}{\tan \left(5 c_{3}+5 x\right)^{2}+1}}\left(\tan \left(5 c_{3}+5 x\right)^{2}+1\right)^{2}}
$$

substituting $y^{\prime}=-10$ and $x=0$ in the above gives

$$
\begin{equation*}
-10=-\frac{\cos \left(5 c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(5 c_{3}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1300 \\
& c_{3}=-\frac{\arctan (5)}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
-\frac{\arctan \left(\frac{y}{\sqrt{-y^{2}+104}}\right)}{5}=-\frac{\arctan (5)}{5}+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\arctan \left(\frac{y}{\sqrt{-y^{2}+104}}\right)}{5}=-\frac{\arctan (5)}{5}+x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\arctan \left(\frac{y}{\sqrt{-y^{2}+104}}\right)}{5}=-\frac{\arctan (5)}{5}+x
$$

Verified OK.

7.4.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+25 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-25}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-25 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-25 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 329: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-25$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (5 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (5 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (5 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (5 x) \int \frac{1}{\cos (5 x)^{2}} d x \\
& =\cos (5 x)\left(\frac{\tan (5 x)}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (5 x))+c_{2}\left(\cos (5 x)\left(\frac{\tan (5 x)}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (5 x)+\frac{c_{2} \sin (5 x)}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-5 c_{1} \sin (5 x)+c_{2} \cos (5 x)
$$

substituting $y^{\prime}=-10$ and $x=0$ in the above gives

$$
\begin{equation*}
-10=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=10 \\
& c_{2}=-10
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=10 \cos (5 x)-2 \sin (5 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=10 \cos (5 x)-2 \sin (5 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=10 \cos (5 x)-2 \sin (5 x)
$$

Verified OK.

7.4.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+25 y=0, y(0)=10,\left.y^{\prime}\right|_{\{x=0\}}=-10\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+25=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-100})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-5 \mathrm{I}, 5 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (5 x)
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\sin (5 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \cos (5 x)+c_{2} \sin (5 x)
$$

$\square \quad$ Check validity of solution $y=c_{1} \cos (5 x)+c_{2} \sin (5 x)$

- Use initial condition $y(0)=10$
$10=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-5 c_{1} \sin (5 x)+5 c_{2} \cos (5 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-10$
$-10=5 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=10, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify

$$
y=10 \cos (5 x)-2 \sin (5 x)
$$

- \quad Solution to the IVP

$$
y=10 \cos (5 x)-2 \sin (5 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)+25 * y(x)=0, y(0)=10, D(y)(0)=-10], y(x)$, singsol=all)

$$
y(x)=-2 \sin (5 x)+10 \cos (5 x)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18
DSolve[\{y'' $\left.[x]+25 * y[x]==0,\left\{y[0]==10, y^{\prime}[0]==-10\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 10 \cos (5 x)-2 \sin (5 x)
$$

7.5 problem 5

7.5.1 Existence and uniqueness analysis 1893
7.5.2 Solving as second order linear constant coeff ode 1894
7.5.3 Solving using Kovacic algorithm 1896
7.5.4 Maple step by step solution . 1900

Internal problem ID [161]
Internal file name [OUTPUT/161_Sunday_June_05_2022_01_36_14_AM_44083784/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

7.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-3 \\
q(x) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

The domain of $p(x)=-3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.5.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x}
$$

Verified OK.

7.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 331: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+2 c_{2} \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x}
$$

Verified OK.

7.5.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-3 y^{\prime}+2 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-2)=0
$$

- Roots of the characteristic polynomial $r=(1,2)$
- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=-1\right\}$
- Substitute constant values into general solution and simplify $y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x}$
- \quad Solution to the IVP

$$
y=-\mathrm{e}^{2 x}+2 \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve([diff $(y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(0)=1, D(y)(0)=0], y(x)$, singsol=all)

$$
y(x)=2 \mathrm{e}^{x}-\mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 15
DSolve $\left[\left\{y^{\prime \prime}[x]-3 * y\right.\right.$ ' $\left.[x]+2 * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow-e^{x}\left(e^{x}-2\right)
$$

7.6 problem 6

7.6.1 Existence and uniqueness analysis 1903
7.6.2 Solving as second order linear constant coeff ode 1904
7.6.3 Solving using Kovacic algorithm 1906
7.6.4 Maple step by step solution . 1910

Internal problem ID [162]
Internal file name [OUTPUT/162_Sunday_June_05_2022_01_36_14_AM_7119039/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

With initial conditions

$$
\left[y(0)=7, y^{\prime}(0)=-1\right]
$$

7.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-6 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.6.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=2 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{2 x}+3 \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{2 x}+3 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=4 \mathrm{e}^{2 x}+3 \mathrm{e}^{-3 x}
$$

Verified OK.

7.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 333: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=c_{1}+\frac{c_{2}}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{5}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-3 c_{1}+\frac{2 c_{2}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=20
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{2 x}+3 \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{2 x}+3 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=4 \mathrm{e}^{2 x}+3 \mathrm{e}^{-3 x}
$$

Verified OK.

7.6.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=7,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Characteristic polynomial of ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=7$

$$
7=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$

$$
-1=-3 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=4\right\}$
- Substitute constant values into general solution and simplify

$$
y=\left(4 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-3 x}
$$

- \quad Solution to the IVP

$$
y=\left(4 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=0, y(0)=7, D(y)(0)=-1], y(x)$, singsol=all)

$$
y(x)=\left(4 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+y\right.\right.$ ' $\left.[x]-6 * y[x]==0,\left\{y[0]==7, y^{\prime}[0]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(4 e^{5 x}+3\right)
$$

7.7 problem 7

7.7.1 Existence and uniqueness analysis 1914
7.7.2 Solving as second order linear constant coeff ode 1914
7.7.3 Solving as second order integrable as is ode 1916
7.7.4 Solving as second order ode missing y ode 1918
$\begin{array}{ll}\text { 7.7.5 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 1920\end{array}$
7.7.6 Solving using Kovacic algorithm 1922
7.7.7 Solving as exact linear second order ode ode 1926
7.7.8 Maple step by step solution . 1929

Internal problem ID [163]
Internal file name [OUTPUT/163_Sunday_June_05_2022_01_36_15_AM_33044451/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order__ode_missing_y", "second__order_linear__constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}=0
$$

With initial conditions

$$
\left[y(0)=-2, y^{\prime}(0)=8\right]
$$

7.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. Hence solution exists and is unique.

7.7.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(0)} \\
& =-\frac{1}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=-8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=6-8 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=6-8 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=6-8 \mathrm{e}^{-x}
$$

Verified OK.

7.7.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+y^{\prime}\right) d x=0 \\
y^{\prime}+y=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y+c_{1}} d y & =\int d x \\
-\ln \left(-y+c_{1}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-y+c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{-y+c_{1}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{c_{3}}+c_{1} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=\frac{c_{1} c_{3}-1}{c_{3}} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\mathrm{e}^{-x}}{c_{3}}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=\frac{1}{c_{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{3}=\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=6-8 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=6-8 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=6-8 \mathrm{e}^{-x}
$$

Verified OK.

7.7.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{p} d p & =\int d x \\
-\ln (p) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{p}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{p}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $p=8$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 8=\frac{1}{c_{2}} \\
& c_{2}=\frac{1}{8}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
p(x)=8 \mathrm{e}^{-x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=8 \mathrm{e}^{-x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int 8 \mathrm{e}^{-x} \mathrm{~d} x \\
& =-8 \mathrm{e}^{-x}+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-8+c_{3} \\
c_{3}=6
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=6-8 \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=6-8 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=6-8 \mathrm{e}^{-x}
$$

Verified OK.

7.7.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+y^{\prime}\right) d x=0 \\
y^{\prime}+y=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y+c_{1}} d y & =\int d x \\
-\ln \left(-y+c_{1}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-y+c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{-y+c_{1}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{c_{3}}+c_{1} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=\frac{c_{1} c_{3}-1}{c_{3}} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\mathrm{e}^{-x}}{c_{3}}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=\frac{1}{c_{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{3}=\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=6-8 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=6-8 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=6-8 \mathrm{e}^{-x}
$$

Verified OK.

7.7.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 335: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=-c_{1} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-8 \\
& c_{2}=6
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=6-8 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=6-8 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=6-8 \mathrm{e}^{-x}
$$

Verified OK.

7.7.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =1 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}+y=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime}+y=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y+c_{1}} d y & =\int d x \\
-\ln \left(-y+c_{1}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-y+c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{-y+c_{1}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{c_{3}}+c_{1} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=\frac{c_{1} c_{3}-1}{c_{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\mathrm{e}^{-x}}{c_{3}}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=\frac{1}{c_{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{3}=\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=6-8 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=6-8 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=6-8 \mathrm{e}^{-x}
$$

Verified OK.

7.7.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}=0, y(0)=-2,\left.y^{\prime}\right|_{\{x=0\}}=8\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r=0
$$

- Factor the characteristic polynomial

$$
r(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,0)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=1
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2}$

- Use initial condition $y(0)=-2$

$$
-2=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=8$
$8=-c_{1}$
- Solve for c_{1} and c_{2} $\left\{c_{1}=-8, c_{2}=6\right\}$
- Substitute constant values into general solution and simplify

$$
y=6-8 \mathrm{e}^{-x}
$$

- \quad Solution to the IVP

$$
y=6-8 \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve([diff(y(x),x$2)+diff(y(x),x)=0,y(0) = -2, D(y)(0) = 8],y(x), singsol=all)
```

$$
y(x)=6-8 \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 14
DSolve $\left\{\left\{y^{\prime}{ }^{\prime}[x]+y{ }^{\prime}[x]==0,\left\{y[0]==-2, y^{\prime}[0]==8\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 6-8 e^{-x}
$$

7.8 problem 8

7.8.1 Existence and uniqueness analysis 1932
7.8.2 Solving as second order linear constant coeff ode 1932
7.8.3 Solving as second order integrable as is ode 1934
7.8.4 Solving as second order ode missing y ode 1936
$\begin{array}{ll}\text { 7.8.5 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 1938\end{array}$
7.8.6 Solving using Kovacic algorithm 1939
7.8.7 Solving as exact linear second order ode ode 1943
7.8.8 Maple step by step solution . 1945

Internal problem ID [164]
Internal file name [OUTPUT/164_Sunday_June_05_2022_01_36_15_AM_47605589/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-3 y^{\prime}=0
$$

With initial conditions

$$
\left[y(0)=4, y^{\prime}(0)=-2\right]
$$

7.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-3 \\
q(x) & =0 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-3 y^{\prime}=0
$$

The domain of $p(x)=-3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. Hence solution exists and is unique.

7.8.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(0)} \\
& =\frac{3}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{3}{2}+\frac{3}{2} \\
\lambda_{2} & =\frac{3}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =0
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(0) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=3 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{2}{3} \\
& c_{2}=\frac{14}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

Verified OK.

7.8.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}-3 y^{\prime}\right) d x=0 \\
& -3 y+y^{\prime}=c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y+c_{1}} d y & =\int d x \\
\frac{\ln \left(3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 y+c_{1}\right)^{\frac{1}{3}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+c_{1}\right)^{\frac{1}{3}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{3}^{3} \mathrm{e}^{3 x}}{3}-\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=\frac{c_{3}^{3}}{3}-\frac{c_{1}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{3}^{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{3}^{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.

Verification of solutions N/A

7.8.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-3 p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 p} d p & =\int d x \\
\frac{\ln (p)}{3} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
p^{\frac{1}{3}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
p^{\frac{1}{3}}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $p=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=c_{2}^{3} \\
c_{2}=-2^{\frac{1}{3}}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
p(x)=-2 \mathrm{e}^{3 x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-2 \mathrm{e}^{3 x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-2 \mathrm{e}^{3 x} \mathrm{~d} x \\
& =-\frac{2 \mathrm{e}^{3 x}}{3}+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=-\frac{2}{3}+c_{3} \\
c_{3}=\frac{14}{3}
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

Verified OK.

7.8.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}-3 y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}-3 y^{\prime}\right) d x=0 \\
& -3 y+y^{\prime}=c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y+c_{1}} d y & =\int d x \\
\frac{\ln \left(3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 y+c_{1}\right)^{\frac{1}{3}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+c_{1}\right)^{\frac{1}{3}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{3}^{3} \mathrm{e}^{3 x}}{3}-\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=\frac{c_{3}^{3}}{3}-\frac{c_{1}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{3}^{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{3}^{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.

7.8.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-3 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 337: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1}+\frac{c_{2} \mathrm{e}^{3 x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}+\frac{c_{2}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{14}{3} \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

Verified OK.

7.8.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-3 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
-3 y+y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
-3 y+y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y+c_{1}} d y & =\int d x \\
\frac{\ln \left(3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 y+c_{1}\right)^{\frac{1}{3}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+c_{1}\right)^{\frac{1}{3}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{3}^{3} \mathrm{e}^{3 x}}{3}-\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=\frac{c_{3}^{3}}{3}-\frac{c_{1}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{3}^{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{3}^{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.
Verification of solutions N/A

7.8.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-3 y^{\prime}=0, y(0)=4,\left.y^{\prime}\right|_{\{x=0\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-3 r=0
$$

- Factor the characteristic polynomial

$$
r(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(0,3)
$$

- 1st solution of the ODE

$$
y_{1}(x)=1
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{3 x}
$$

Check validity of solution $y=c_{1}+c_{2} \mathrm{e}^{3 x}$

- Use initial condition $y(0)=4$

$$
4=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=3 c_{2} \mathrm{e}^{3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-2$

$$
-2=3 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{14}{3}, c_{2}=-\frac{2}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

- \quad Solution to the IVP

$$
y=-\frac{2 \mathrm{e}^{3 x}}{3}+\frac{14}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([diff(y(x),x$2)-3*\operatorname{diff}(y(x),x)=0,y(0) = 4, D(y)(0) = -2],y(x), singsol=all)
```

$$
y(x)=\frac{14}{3}-\frac{2 \mathrm{e}^{3 x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 16
DSolve[\{y''[x]-3*y'[x]==0,\{y[0]==4,y'[0]==-2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{2}{3}\left(e^{3 x}-7\right)
$$

7.9 problem 9

7.9.1 Existence and uniqueness analysis 1948
7.9.2 Solving as second order linear constant coeff ode 1949
$\begin{array}{ll}\text { 7.9.3 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1951\end{array}$
7.9.4 Solving using Kovacic algorithm 1953
7.9.5 Maple step by step solution . 1957

Internal problem ID [165]
Internal file name [OUTPUT/165_Sunday_June_05_2022_01_36_16_AM_4167586/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-1\right]
$$

7.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The domain of $p(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.9.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}-c_{2} x \mathrm{e}^{-x}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}(2+x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}(2+x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}(2+x)
$$

Verified OK.

7.9.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-x}-c_{1} x \mathrm{e}^{-x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}(2+x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}(2+x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}(2+x)
$$

Verified OK.

7.9.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =2 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 339: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}-c_{2} x \mathrm{e}^{-x}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}(2+x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}(2+x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}(2+x)
$$

Verified OK.

7.9.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}$
Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}$
- Use initial condition $y(0)=2$
$2=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}-c_{2} x \mathrm{e}^{-x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$
$-1=-c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-x}(2+x)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-x}(2+x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve([diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+y(x)=0, y(0)=2, D(y)(0)=-1], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x}(2+x)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 14
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+2 * y\right.\right.$ ' $\left.[x]+y[x]==0,\left\{y[0]==2, y^{\prime}[0]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}(x+2)
$$

7.10 problem 10

7.10.1 Existence and uniqueness analysis 1960
7.10.2 Solving as second order linear constant coeff ode 1961
7.10.3 Solving as linear second order ode solved by an integrating factor
ode . 1963
7.10.4 Solving using Kovacic algorithm 1965
7.10.5 Maple step by step solution . 1969

Internal problem ID [166]
Internal file name [OUTPUT/166_Sunday_June_05_2022_01_36_17_AM_76300682/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-10 y^{\prime}+25 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=13\right]
$$

7.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-10 \\
q(x) & =25 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-10 y^{\prime}+25 y=0
$$

The domain of $p(x)=-10$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=25$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.10.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-10, C=25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-10 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-10 \lambda+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-10, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{10}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-10)^{2}-(4)(1)(25)} \\
& =5
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-5$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x}+5 c_{2} x \mathrm{e}^{5 x}
$$

substituting $y^{\prime}=13$ and $x=0$ in the above gives

$$
\begin{equation*}
13=5 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{5 x}+3 \mathrm{e}^{5 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{5 x}(-2 x+3) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

Verified OK.

7.10.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-10$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-10 d x} \\
& =\mathrm{e}^{-5 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-5 x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-5 x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-5 x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-5 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{5 x}+5 c_{1} x \mathrm{e}^{5 x}+5 c_{2} \mathrm{e}^{5 x}
$$

substituting $y^{\prime}=13$ and $x=0$ in the above gives

$$
\begin{equation*}
13=c_{1}+5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{5 x}+3 \mathrm{e}^{5 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{5 x}(-2 x+3) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

Verified OK.

7.10.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-10 y^{\prime}+25 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-10 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 341: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{10}{1} d x} \\
& =z_{1} e^{5 x} \\
& =z_{1}\left(\mathrm{e}^{5 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-10}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{10 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{5 x}\right)+c_{2}\left(\mathrm{e}^{5 x}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x}+5 c_{2} x \mathrm{e}^{5 x}
$$

substituting $y^{\prime}=13$ and $x=0$ in the above gives

$$
\begin{equation*}
13=5 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{5 x}+3 \mathrm{e}^{5 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{5 x}(-2 x+3) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

Verified OK.

7.10.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-10 y^{\prime}+25 y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=13\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-10 r+25=0
$$

- Factor the characteristic polynomial
$(r-5)^{2}=0$
- Root of the characteristic polynomial
$r=5$
- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{5 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{5 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}$
Check validity of solution $y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}$
- Use initial condition $y(0)=3$
$3=c_{1}$
- Compute derivative of the solution
$y^{\prime}=5 c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x}+5 c_{2} x \mathrm{e}^{5 x}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=13$
$13=5 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{5 x}(-2 x+3)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve([diff $(y(x), x \$ 2)-10 * \operatorname{diff}(y(x), x)+25 * y(x)=0, y(0)=3, D(y)(0)=13], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{5 x}(3-2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 16
DSolve $\left\{\left\{y y^{\prime} '[x]-10 * y^{\prime}[x]+25 * y[x]==0,\left\{y[0]==3, y^{\prime}[0]==13\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $\rightarrow T$

$$
y(x) \rightarrow e^{5 x}(3-2 x)
$$

7.11 problem 11

7.11.1 Existence and uniqueness analysis 1972
7.11.2 Solving as second order linear constant coeff ode 1973
7.11.3 Solving using Kovacic algorithm 1975
7.11.4 Maple step by step solution . 1979

Internal problem ID [167]
Internal file name [OUTPUT/167_Sunday_June_05_2022_01_36_17_AM_60101299/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=5\right]
$$

7.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.11.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(2)} \\
& =1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 \sin (x) \mathrm{e}^{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=5 \sin (x) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=5 \sin (x) \mathrm{e}^{x}
$$

Verified OK.

7.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 343: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x) \mathrm{e}^{x}+c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} c_{2} \sin (x)+\mathrm{e}^{x} c_{2} \cos (x)
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 \sin (x) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=5 \sin (x) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=5 \sin (x) \mathrm{e}^{x}
$$

Verified OK.

7.11.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-2 y^{\prime}+2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=5\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}-2 r+2=0
$$

- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I}, 1+\mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\sin (x) \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions
$y=c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} c_{2} \sin (x)$
$\square \quad$ Check validity of solution $y=c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} c_{2} \sin (x)$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (x) \mathrm{e}^{x}+c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} c_{2} \sin (x)+\mathrm{e}^{x} c_{2} \cos (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$

$$
5=c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=5\right\}$
- Substitute constant values into general solution and simplify

$$
y=5 \sin (x) \mathrm{e}^{x}
$$

- \quad Solution to the IVP

$$
y=5 \sin (x) \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve([diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(0)=0, D(y)(0)=5], y(x)$, singsol=all)

$$
y(x)=5 \sin (x) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 12
DSolve $\left[\left\{y^{\prime} \quad[x]-2 * y\right.\right.$ ' $\left.[x]+2 * y[x]==0,\left\{y[0]==0, y^{\prime}[0]==5\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True

$$
y(x) \rightarrow 5 e^{x} \sin (x)
$$

7.12 problem 12

7.12.1 Existence and uniqueness analysis 1982
7.12.2 Solving as second order linear constant coeff ode 1983
7.12.3 Solving using Kovacic algorithm 1985
7.12.4 Maple step by step solution . 1989

Internal problem ID [168]
Internal file name [OUTPUT/168_Sunday_June_05_2022_01_36_18_AM_74995814/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0\right]
$$

7.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =6 \\
q(x) & =13 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

The domain of $p(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=13$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.12.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(13)} \\
& =-3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+2 i \\
& \lambda_{2}=-3-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{-3 x}\left(-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)\right)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x))
$$

Verified OK.

7.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 345: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-3 x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-3 x} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x} \cos (2 x)-2 c_{1} \mathrm{e}^{-3 x} \sin (2 x)-\frac{3 c_{2} \mathrm{e}^{-3 x} \sin (2 x)}{2}+c_{2} \mathrm{e}^{-3 x} \cos (2 x)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=6
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-3 x} \cos (2 x)+3 \mathrm{e}^{-3 x} \sin (2 x)
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x))
$$

Verified OK.

7.12.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+13 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+6 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{ }-16)}{2}$
- Roots of the characteristic polynomial

$$
r=(-3-2 \mathrm{I},-3+2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x} \cos (2 x)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-3 x} \sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+c_{2} \mathrm{e}^{-3 x} \sin (2 x)$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+c_{2} \mathrm{e}^{-3 x} \sin (2 x)$
- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x} \cos (2 x)-2 c_{1} \mathrm{e}^{-3 x} \sin (2 x)-3 c_{2} \mathrm{e}^{-3 x} \sin (2 x)+2 c_{2} \mathrm{e}^{-3 x} \cos (2 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=-3 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=3\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x))
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-3 x}(2 \cos (2 x)+3 \sin (2 x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve([diff $(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+13 * y(x)=0, y(0)=2, D(y)(0)=0], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}(3 \sin (2 x)+2 \cos (2 x))
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 24
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+6 * y\right.\right.$ ' $\left.[x]+13 * y[x]==0,\left\{y[0]==2, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow e^{-3 x}(3 \sin (2 x)+2 \cos (2 x))
$$

7.13 problem 13

7.13.1 Existence and uniqueness analysis 1993
7.13.2 Solving as second order euler ode ode 1993
7.13.3 Solving as linear second order ode solved by an integrating factor ode 1995
7.13.4 Solving as second order change of variable on x method 2 ode 1997
7.13.5 Solving as second order change of variable on x method 1 ode 2001
7.13.6 Solving as second order change of variable on y method 1 ode 2005
7.13.7 Solving as second order change of variable on y method 2 ode 2007
7.13.8 Solving as second order ode non constant coeff transformation on B ode 2011
7.13.9 Solving using Kovacic algorithm 2014
7.13.10 Maple step by step solution 2018
Internal problem ID [169]
Internal file name [OUTPUT/169_Sunday_June_05_2022_01_36_19_AM_51144929/index.tex]

Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of__variable_on_y_method_2", "linear_second_order_ode_solved__by__an_integrating_factor", "second__order__ode__non_constant__coeff_transformation_on_(B"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, - with_symmetry_ [0, F(x)]•]

$$
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

With initial conditions

$$
\left[y(1)=3, y^{\prime}(1)=1\right]
$$

7.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{x} \\
q(x) & =\frac{2}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{2}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.13.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-2 x r x^{r-1}+2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-2 r x^{r}+2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-2 r+2=0
$$

Or

$$
\begin{equation*}
r^{2}-3 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{2}+c_{1} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{2} x+c_{1}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{2}+5 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}+5 x \tag{1}
\end{equation*}
$$

Figure 482: Solution plot

Verification of solutions

$$
y=-2 x^{2}+5 x
$$

Verified OK.

7.13.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{2}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x}}
$$

Or

$$
y=c_{1} x^{2}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} x+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{2}+5 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}+5 x \tag{1}
\end{equation*}
$$

Figure 483: Solution plot

Verification of solutions

$$
y=-2 x^{2}+5 x
$$

Verified OK.

7.13.4 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{x} d x\right)} d x \\
& =\int e^{2 \ln (x)} d x \\
& =\int x^{2} d x \\
& =\frac{x^{3}}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{x^{2}}}{x^{4}} \\
& =\frac{2}{x^{6}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{x^{6}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{2}{x^{6}}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=\frac{3^{\frac{1}{3}}\left(c_{1} 3^{\frac{1}{3}}+c_{2}\right)}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} 3^{\frac{2}{3}} x^{2}}{3\left(x^{3}\right)^{\frac{2}{3}}}+\frac{2 c_{2} 3^{\frac{1}{3}} x^{2}}{3\left(x^{3}\right)^{\frac{1}{3}}}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{3^{\frac{1}{3}}\left(c_{1} 3^{\frac{1}{3}}+2 c_{2}\right)}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=53^{\frac{1}{3}} \\
& c_{2}=-23^{\frac{2}{3}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2\left(x^{3}\right)^{\frac{2}{3}}+5\left(x^{3}\right)^{\frac{1}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2\left(x^{3}\right)^{\frac{2}{3}}+5\left(x^{3}\right)^{\frac{1}{3}} \tag{1}
\end{equation*}
$$

Figure 484: Solution plot

Verification of solutions

$$
y=-2\left(x^{3}\right)^{\frac{2}{3}}+5\left(x^{3}\right)^{\frac{1}{3}}
$$

Verified OK.

7.13.5 Solving as second order change of variable on x method 1 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{2}{x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{3 \sqrt{x}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{3}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{3 c_{1}}{2}+\frac{i c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=7 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-7 x^{\frac{3}{2}} \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{3}{2}}
$$

Which simplifies to

$$
y=\left(-7 \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{3}{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-7 \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Figure 485: Solution plot

Verification of solutions

$$
y=\left(-7 \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{3}{2}}
$$

Verified OK.

7.13.6 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(-\frac{2}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{2}{x}\right)^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(\frac{2}{x^{2}}\right)}{2}-\frac{\left(\frac{4}{x^{2}}\right)}{4} \\
& =\frac{2}{x^{2}}-\left(\frac{1}{x^{2}}\right)-\frac{1}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2}{x}} \\
& =x \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{3} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} x+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x(2 x-5)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x(2 x-5) \tag{1}
\end{equation*}
$$

Figure 486: Solution plot

Verification of solutions

$$
y=-x(2 x-5)
$$

Verified OK.

7.13.7 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}}+\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2} \\
& =\left(c_{2} x-c_{1}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=-c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+2\left(-\frac{c_{1}}{x}+c_{2}\right) x
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-5 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x(2 x-5)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x(2 x-5) \tag{1}
\end{equation*}
$$

Figure 487: Solution plot

Verification of solutions

$$
y=-x(2 x-5)
$$

Verified OK.

7.13.8 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=-2 x \\
& C=2 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-2 x)(-2)+(2)(-2 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2 x^{3} v^{\prime \prime}+(0) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-2 x^{3} u^{\prime}(x)=0
$$

Which is now solved for u. Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-2 x)\left(c_{1} x+c_{2}\right) \\
& =-2\left(c_{1} x+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-2\left(c_{1} x+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=-2 c_{1}-2 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} x-2 c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-4 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x(2 x-5)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x(2 x-5) \tag{1}
\end{equation*}
$$

Figure 488: Solution plot

Verification of solutions

$$
y=-x(2 x-5)
$$

Verified OK.

7.13.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-2 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 347: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x}{x^{2}} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\ln (x)} \\
& =z_{1}(x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}(x(x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{2} x+c_{1}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{2}+5 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}+5 x \tag{1}
\end{equation*}
$$

Figure 489: Solution plot

Verification of solutions

$$
y=-2 x^{2}+5 x
$$

Verified OK.

7.13.10 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0, y(1)=3,\left.y^{\prime}\right|_{\{x=1\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{2 y^{\prime}}{x}-\frac{2 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 2 \frac{d}{x^{2}} y(t)+2 y(t)=0\right.$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-3 \frac{d}{d t} y(t)+2 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(1,2)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}$
- Change variables back using $t=\ln (x)$
$y=c_{2} x^{2}+c_{1} x$
- Simplify
$y=x\left(c_{2} x+c_{1}\right)$
Check validity of solution $y=x\left(c_{2} x+c_{1}\right)$
- Use initial condition $y(1)=3$

$$
3=c_{1}+c_{2}
$$

- Compute derivative of the solution
$y^{\prime}=2 c_{2} x+c_{1}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=1$
$1=c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=5, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify $y=-2 x^{2}+5 x$
- \quad Solution to the IVP

$$
y=-2 x^{2}+5 x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([x^2*\operatorname{diff}(y(x),x$2)-2*x*\operatorname{diff}(y(x),x)+2*y(x)=0,y(1) = 3, D(y)(1) = 1],y(x), singsol=al
```

$$
y(x)=-2 x^{2}+5 x
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 12
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]-2 * x * y\right.\right.$ ' $\left.[x]+2 * y[x]==0,\left\{y[1]==3, y^{\prime}[1]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions -

$$
y(x) \rightarrow(5-2 x) x
$$

7.14 problem 14

7.14.1 Existence and uniqueness analysis 2021
7.14.2 Solving as second order euler ode ode 2022
7.14.3 Solving as second order change of variable on x method 2 ode . 2024
7.14.4 Solving as second order change of variable on y method 2 ode . 2028
7.14.5 Solving using Kovacic algorithm 2031
7.14.6 Maple step by step solution . 2038

Internal problem ID [170]
Internal file name [OUTPUT/170_Sunday_June_05_2022_01_36_19_AM_52710539/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second__order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(x)]•]

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0
$$

With initial conditions

$$
\left[y(2)=10, y^{\prime}(2)=15\right]
$$

7.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =-\frac{6}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{6 y}{x^{2}}=0
$$

The domain of $p(x)=\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=-\frac{6}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

7.14.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}-6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+2 r x^{r}-6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+2 r-6=0
$$

Or

$$
\begin{equation*}
r^{2}+r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=2$ in the above gives

$$
\begin{equation*}
10=\frac{c_{1}}{8}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{3 c_{1}}{x^{4}}+2 c_{2} x
$$

substituting $y^{\prime}=15$ and $x=2$ in the above gives

$$
\begin{equation*}
15=-\frac{3 c_{1}}{16}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-16 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{5}-16}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 490: Solution plot
Verification of solutions

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Verified OK.

7.14.3 Solving as second order change of variable on x method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{6}{x^{2}}}{\frac{1}{x^{4}}} \\
& =-6 x^{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-6 x^{2} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-6 x^{2}=-\frac{6}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{6 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-6 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-6=0
$$

Or

$$
\begin{equation*}
r^{2}-r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau^{2}}+c_{2} \tau^{3}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=2$ in the above gives

$$
\begin{equation*}
10=4 c_{1}-\frac{c_{2}}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 c_{1} x-\frac{3\left(c_{1} x^{5}-c_{2}\right)}{x^{4}}
$$

substituting $y^{\prime}=15$ and $x=2$ in the above gives

$$
\begin{equation*}
15=4 c_{1}+\frac{3 c_{2}}{16} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=16
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{5}-16}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 491: Solution plot
Verification of solutions

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Verified OK.

7.14.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{6 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{6 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{6}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{6}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{6}{x} d x \\
\ln (u) & =-6 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-6 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{6}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{5 x^{5}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2} \\
& =\frac{5 c_{2} x^{5}-c_{1}}{5 x^{3}}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=2$ in the above gives

$$
\begin{equation*}
10=-\frac{c_{1}}{40}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{x^{4}}+2\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x
$$

substituting $y^{\prime}=15$ and $x=2$ in the above gives

$$
\begin{equation*}
15=\frac{3 c_{1}}{80}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=80 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{5}-16}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 492: Solution plot

Verification of solutions

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Verified OK.

7.14.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{6}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=6 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{6}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 349: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{6}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{6}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{6}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	3	-2

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	3	-2

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-2$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-2-(-2) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{2}{x}+(-)(0) \\
& =-\frac{2}{x} \\
& =-\frac{2}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{2}{x}\right)(0)+\left(\left(\frac{2}{x^{2}}\right)+\left(-\frac{2}{x}\right)^{2}-\left(\frac{6}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{5}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{3}}\right)+c_{2}\left(\frac{1}{x^{3}}\left(\frac{x^{5}}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=10$ and $x=2$ in the above gives

$$
\begin{equation*}
10=\frac{c_{1}}{8}+\frac{4 c_{2}}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{3 c_{1}}{x^{4}}+\frac{2 c_{2} x}{5}
$$

substituting $y^{\prime}=15$ and $x=2$ in the above gives

$$
\begin{equation*}
15=-\frac{3 c_{1}}{16}+\frac{4 c_{2}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-16 \\
& c_{2}=15
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{5}-16}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 493: Solution plot

Verification of solutions

$$
y=\frac{3 x^{5}-16}{x^{3}}
$$

Verified OK.

7.14.6 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0, y(2)=10,\left.y^{\prime}\right|_{\{x=2\}}=15\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{6 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0
$$

- Make a change of variables
$t=\ln (x)$
\square
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right)+2 \frac{d}{d t} y(t)-6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-6 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}+r-6=0$
- Factor the characteristic polynomial
$(r+3)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}$
- Change variables back using $t=\ln (x)$
$y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}$
- \quad Simplify
$y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}$
Check validity of solution $y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}$
- Use initial condition $y(2)=10$
$10=\frac{c_{1}}{8}+4 c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-\frac{3 c_{1}}{x^{4}}+2 c_{2} x
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=15$
$15=-\frac{3 c_{1}}{16}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-16, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\frac{16}{x^{3}}+3 x^{2}
$$

- \quad Solution to the IVP

$$
y=-\frac{16}{x^{3}}+3 x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([x^2*diff (y (x),x$2)+2*x*diff (y (x),x)-6*y(x)=0,y(2) = 10, D(y)(2) = 15],y(x), singsol=
```

$$
y(x)=-\frac{16}{x^{3}}+3 x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]+2 * x * y\right.\right.$ ' $\left.[x]-6 * y[x]==0,\left\{y[2]==10, y^{\prime}[2]==15\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{3 x^{5}-16}{x^{3}}
$$

7.15 problem 15

7.15.1 Existence and uniqueness analysis 2042
7.15.2 Solving as second order euler ode ode 2042
7.15.3 Solving as second order change of variable on x method 2 ode . 2044
7.15.4 Solving as second order change of variable on x method 1 ode . 2048
7.15.5 Solving as second order change of variable on y method 2 ode . 2050
7.15.6 Solving as second order ode non constant coeff transformation on B ode

2054
7.15.7 Solving using Kovacic algorithm 2057
7.15.8 Maple step by step solution . 2063

Internal problem ID [171]
Internal file name [OUTPUT/171_Sunday_June_05_2022_01_36_20_AM_14166642/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-y^{\prime} x+y=0
$$

With initial conditions

$$
\left[y(1)=7, y^{\prime}(1)=2\right]
$$

7.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =\frac{1}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.15.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-r+1=0
$$

Or

$$
\begin{equation*}
r^{2}-2 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x+\ln (x) c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x+\ln (x) c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+c_{2}+c_{2} \ln (x)
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=7 \\
& c_{2}=-5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5 x \ln (x)+7 x
$$

Which simplifies to

$$
y=(-5 \ln (x)+7) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-5 \ln (x)+7) x \tag{1}
\end{equation*}
$$

Figure 494: Solution plot

Verification of solutions

$$
y=(-5 \ln (x)+7) x
$$

Verified OK.

7.15.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{2}}}{x^{2}} \\
& =\frac{1}{x^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{x^{4}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{1}{x^{4}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{x \sqrt{2}\left(c_{1}+2 c_{2} \ln (x)-c_{2} \ln (2)\right)}{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{x \sqrt{2}\left(c_{1}+2 c_{2} \ln (x)-c_{2} \ln (2)\right)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=\frac{\sqrt{2}\left(c_{1}-c_{2} \ln (2)\right)}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\sqrt{2}\left(c_{1}+2 c_{2} \ln (x)-c_{2} \ln (2)\right)}{2}+\sqrt{2} c_{2}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=\frac{\left(-c_{2} \ln (2)+c_{1}+2 c_{2}\right) \sqrt{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{(5 \ln (2)-14) \sqrt{2}}{2} \\
& c_{2}=-\frac{5 \sqrt{2}}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5 x \ln (x)+7 x
$$

Which simplifies to

$$
y=(-5 \ln (x)+7) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-5 \ln (x)+7) x \tag{1}
\end{equation*}
$$

Figure 495: Solution plot
Verification of solutions

$$
y=(-5 \ln (x)+7) x
$$

Verified OK.
7.15.4 Solving as second order change of variable on x method 1 ode In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{1}{x} \frac{\sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

7.15.5 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x^{2}}+\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x \\
& =\left(c_{1} \ln (x)+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+c_{1} \ln (x)+c_{2}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-5 \\
& c_{2}=7
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5 x \ln (x)+7 x
$$

Which simplifies to

$$
y=(-5 \ln (x)+7) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-5 \ln (x)+7) x \tag{1}
\end{equation*}
$$

Figure 496: Solution plot

Verification of solutions

$$
y=(-5 \ln (x)+7) x
$$

Verified OK.

7.15.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=-x \\
& C=1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-x)(-1)+(1)(-x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-x^{3} v^{\prime \prime}+\left(-x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-x^{2}\left(u^{\prime}(x) x+u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-x)\left(c_{1} \ln (x)+c_{2}\right) \\
& =-\left(c_{1} \ln (x)+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\left(c_{1} \ln (x)+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=-c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1}-c_{1} \ln (x)-c_{2}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=-c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=-7
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5 x \ln (x)+7 x
$$

Which simplifies to

$$
y=(-5 \ln (x)+7) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-5 \ln (x)+7) x \tag{1}
\end{equation*}
$$

Figure 497: Solution plot

Verification of solutions

$$
y=(-5 \ln (x)+7) x
$$

Verified OK.

7.15.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-y^{\prime} x+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 351: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}(x(\ln (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x+\ln (x) c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+c_{2}+c_{2} \ln (x)
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=7 \\
& c_{2}=-5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5 x \ln (x)+7 x
$$

Which simplifies to

$$
y=(-5 \ln (x)+7) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-5 \ln (x)+7) x \tag{1}
\end{equation*}
$$

Figure 498: Solution plot

Verification of solutions

$$
y=(-5 \ln (x)+7) x
$$

Verified OK.

7.15.8 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime \prime}-y^{\prime} x+y=0, y(1)=7,\left.y^{\prime}\right|_{\{x=1\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x}-\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-y^{\prime} x+y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{\frac{d}{t} t} y(t), ~-\frac{d}{d t} y(t)+y(t)=0\right.$

- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)+y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-2 r+1=0$
- Factor the characteristic polynomial
$(r-1)^{2}=0$
- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} x+\ln (x) c_{2} x$
- Simplify
$y=x\left(c_{2} \ln (x)+c_{1}\right)$
Check validity of solution $y=x\left(c_{2} \ln (x)+c_{1}\right)$
- Use initial condition $y(1)=7$
$7=c_{1}$
- Compute derivative of the solution
$y^{\prime}=c_{1}+c_{2}+c_{2} \ln (x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=2$
$2=c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=7, c_{2}=-5\right\}$
- Substitute constant values into general solution and simplify
$y=(-5 \ln (x)+7) x$
- \quad Solution to the IVP
$y=(-5 \ln (x)+7) x$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([x~ 2*diff(y(x),x$2)-x*diff (y(x),x)+y(x)=0,y(1) = 7, D(y)(1) = 2],y(x), singsol=all)
```

$$
y(x)=x(7-5 \ln (x))
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 13
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime \prime}[x]-x * y '[x]+y[x]==0,\{y[1]==7, y\right.\right.$ ' $\left.[1]==2\}\right\}, y[x], x$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow x(7-5 \log (x))
$$

7.16 problem 16

7.16.1 Existence and uniqueness analysis 2068
7.16.2 Solving as second order euler ode ode 2068
7.16.3 Solving as second order change of variable on x method 2 ode . 2071
7.16.4 Solving as second order change of variable on x method 1 ode . 2075
7.16.5 Solving as second order change of variable on y method 2 ode . 2078
7.16.6 Solving using Kovacic algorithm 2081
7.16.7 Maple step by step solution . 2086

Internal problem ID [172]
Internal file name [OUTPUT/172_Sunday_June_05_2022_01_36_21_AM_40336962/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=0
$$

With initial conditions

$$
\left[y(1)=2, y^{\prime}(1)=3\right]
$$

7.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{1}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.16.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+1=0
$$

Or

$$
\begin{equation*}
r^{2}+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-i \\
& r_{2}=i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-1$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-i \ln (x)}+c_{2} e^{i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \sin (\ln (x))}{x}+\frac{c_{2} \cos (\ln (x))}{x}
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \cos (\ln (x))+3 \sin (\ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \cos (\ln (x))+3 \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Figure 499: Solution plot

Verification of solutions

$$
y=2 \cos (\ln (x))+3 \sin (\ln (x))
$$

Verified OK.

7.16.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (\tau)+c_{2} \sin (\tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (\tau)+c_{2} \sin (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \sin (\ln (x))}{x}+\frac{c_{2} \cos (\ln (x))}{x}
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \cos (\ln (x))+3 \sin (\ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \cos (\ln (x))+3 \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Figure 500: Solution plot

Verification of solutions

$$
y=2 \cos (\ln (x))+3 \sin (\ln (x))
$$

Verified OK.

7.16.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \sin (\ln (x))}{x}+\frac{c_{2} \cos (\ln (x))}{x}
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \cos (\ln (x))+3 \sin (\ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \cos (\ln (x))+3 \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Figure 501: Solution plot

Verification of solutions

$$
y=2 \cos (\ln (x))+3 \sin (\ln (x))
$$

Verified OK.

7.16.5 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+2 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+2 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-2 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-2 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-2 i}{x} d x \\
\ln (u) & =(-1-2 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-2 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-2 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-2 i}}{2}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-2 i}}{2}+c_{2}\right) x^{i} \\
& =x^{i} c_{2}+\frac{i x^{-i} c_{1}}{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-2 i}}{2}+c_{2}\right) x^{i} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=\frac{i c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} x^{-i}}{x}+\frac{i\left(\frac{i c_{1} x^{-2 i}}{2}+c_{2}\right) x^{i}}{x}
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=\frac{c_{1}}{2}+i c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3-2 i \\
& c_{2}=1-\frac{3 i}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 i x^{i} x^{-2 i}}{2}-\frac{3 i x^{i}}{2}+x^{i} x^{-2 i}+x^{i}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(1+\frac{3 i}{2}\right) x^{-i}+\left(1-\frac{3 i}{2}\right) x^{i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(1+\frac{3 i}{2}\right) x^{-i}+\left(1-\frac{3 i}{2}\right) x^{i}
$$

Verified OK.

7.16.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}+y^{\prime} x+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-5 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{5}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 353: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{5}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{5}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{5}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i-\left(\frac{1}{2}-i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-i}{x} \\
& =\frac{\frac{1}{2}-i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-i}{x}\right)^{2}-\left(-\frac{5}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-i} x d x \\
& =x^{\frac{1}{2}-i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{2 i}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-i}\right)+c_{2}\left(x^{-i}\left(-\frac{i x^{2 i}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{-i}-\frac{i c_{2} x^{i}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1}-\frac{i c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{i x^{-i} c_{1}}{x}+\frac{c_{2} x^{i}}{2 x}
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=-i c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1+\frac{3 i}{2} \\
& c_{2}=3+2 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 i x^{-i}}{2}-\frac{3 i x^{i}}{2}+x^{-i}+x^{i}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(1+\frac{3 i}{2}\right) x^{-i}+\left(1-\frac{3 i}{2}\right) x^{i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(1+\frac{3 i}{2}\right) x^{-i}+\left(1-\frac{3 i}{2}\right) x^{i}
$$

Verified OK.

7.16.7 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime \prime}+y^{\prime} x+y=0, y(1)=2,\left.y^{\prime}\right|_{\{x=1\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}+y^{\prime} x+y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), ~+\frac{d}{d t} y(t)+y(t)=0\right.
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- 1st solution of the ODE
$y_{1}(t)=\cos (t)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\sin (t)$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \cos (t)+c_{2} \sin (t)$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))$
Check validity of solution $y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))$
- Use initial condition $y(1)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \sin (\ln (x))}{x}+\frac{c_{2} \cos (\ln (x))}{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=3$
$3=c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=2 \cos (\ln (x))+3 \sin (\ln (x))
$$

- \quad Solution to the IVP
$y=2 \cos (\ln (x))+3 \sin (\ln (x))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([x~ 2*diff(y(x),x$2)+x*diff (y(x),x)+y(x)=0,y(1) = 2,D(y)(1) = 3],y(x), singsol=all)
```

$$
y(x)=3 \sin (\ln (x))+2 \cos (\ln (x))
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 16
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+x * y{ }^{\prime}[x]+y[x]==0,\left\{y[1]==2, y^{\prime}[1]==3\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(x) \rightarrow 3 \sin (\log (x))+2 \cos (\log (x))
$$

7.17 problem 33

7.17.1 Solving as second order linear constant coeff ode 2090
7.17.2 Solving using Kovacic algorithm 2092
7.17.3 Maple step by step solution . 2096

Internal problem ID [173]
Internal file name [OUTPUT/173_Sunday_June_05_2022_01_36_22_AM_42065670/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 33.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

7.17.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 502: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

7.17.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 355: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 503: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
$$

Verified OK.

7.17.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18
DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} e^{x}+c_{1}\right)
$$

7.18 problem 34

7.18.1 Solving as second order linear constant coeff ode 2098
7.18.2 Solving using Kovacic algorithm 2100
7.18.3 Maple step by step solution . 2104

Internal problem ID [174]
Internal file name [OUTPUT/174_Sunday_June_05_2022_01_36_22_AM_51221852/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+2 y^{\prime}-15 y=0
$$

7.18.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=-15$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-15 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda-15=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=-15$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-15)} \\
& =-1 \pm 4
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+4 \\
& \lambda_{2}=-1-4
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-5
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Figure 504: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-5 x}
$$

Verified OK.

7.18.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-15 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=-15
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =16 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 357: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-4 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{e^{8 x}}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{8 x}}{8}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{3 x}}{8} \tag{1}
\end{equation*}
$$

Figure 505: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{3 x}}{8}
$$

Verified OK.

7.18.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+2 y^{\prime}-15 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r-15=0$
- Factor the characteristic polynomial

$$
(r+5)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(-5,3)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-5 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{3 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)-15 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{2} \mathrm{e}^{8 x}+c_{1}\right) \mathrm{e}^{-5 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 22
DSolve[y''[x] $+2 * y^{\prime}[x]-15 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-5 x}\left(c_{2} e^{8 x}+c_{1}\right)
$$

7.19 problem 35

7.19.1 Solving as second order linear constant coeff ode 2106

7.19.2 Solving as second order integrable as is ode 2108
7.19.3 Solving as second order ode missing y ode 2110
7.19.4 Solving as type second_order_integrable_as_is (not using ABC version) 2111
7.19.5 Solving using Kovacic algorithm 2113
7.19.6 Solving as exact linear second order ode ode 2116
7.19.7 Maple step by step solution 2119

Internal problem ID [175]
Internal file name [OUTPUT/175_Sunday_June_05_2022_01_36_23_AM_39130710/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+5 y^{\prime}=0
$$

7.19.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(0)} \\
& =-\frac{5}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-5
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1}+c_{2} \mathrm{e}^{-5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Figure 506: Slope field plot
Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{-5 x}
$$

Verified OK.

7.19.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+5 y^{\prime}\right) d x=0 \\
5 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-5 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-5 y+c_{1}\right)}{5} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5} \tag{1}
\end{equation*}
$$

Figure 507: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5}
$$

Verified OK.

7.19.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+5 p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{5 p} d p & =\int d x \\
-\frac{\ln (p)}{5} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{p^{\frac{1}{5}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{p^{\frac{1}{5}}}=c_{2} \mathrm{e}^{x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{\mathrm{e}^{-5 x}}{c_{2}^{5}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\mathrm{e}^{-5 x}}{c_{2}^{5}} \mathrm{~d} x \\
& =-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+c_{3} \tag{1}
\end{equation*}
$$

Figure 508: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+c_{3}
$$

Verified OK.

7.19.4 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+5 y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+5 y^{\prime}\right) d x=0 \\
5 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-5 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-5 y+c_{1}\right)}{5} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5} \tag{1}
\end{equation*}
$$

Figure 509: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5}
$$

Verified OK.

7.19.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 359: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2}}{5} \tag{1}
\end{equation*}
$$

Figure 510: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2}}{5}
$$

Verified OK.

7.19.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =5 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
5 y+y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
5 y+y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-5 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-5 y+c_{1}\right)}{5} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5} \tag{1}
\end{equation*}
$$

Figure 511: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5}
$$

Verified OK.

7.19.7 Maple step by step solution

Let's solve
$y^{\prime \prime}+5 y^{\prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+5 r=0$
- Factor the characteristic polynomial

$$
r(r+5)=0
$$

- Roots of the characteristic polynomial
$r=(-5,0)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-5 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=1$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve(diff $(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{-5 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 19
DSolve[y'' $[x]+5 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2}-\frac{1}{5} c_{1} e^{-5 x}
$$

7.20 problem 36

7.20.1 Solving as second order linear constant coeff ode 2121

7.20.2 Solving as second order integrable as is ode 2123
7.20.3 Solving as second order ode missing y ode 2125

7.20.5 Solving using Kovacic algorithm 2128
7.20.6 Solving as exact linear second order ode ode 2131
7.20.7 Maple step by step solution . 2134

Internal problem ID [176]
Internal file name [OUTPUT/176_Sunday_June_05_2022_01_36_23_AM_33921551/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 36 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 y^{\prime \prime}+3 y^{\prime}=0
$$

7.20.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=3, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}+3 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=3, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{3^{2}-(4)(2)(0)} \\
& =-\frac{3}{4} \pm \frac{3}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{4}+\frac{3}{4} \\
& \lambda_{2}=-\frac{3}{4}-\frac{3}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=-\frac{3}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{\left(-\frac{3}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 512: Slope field plot

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Verified OK.

7.20.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 y^{\prime \prime}+3 y^{\prime}\right) d x=0 \\
2 y^{\prime}+3 y=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{3 y}{2}+\frac{c_{1}}{2}} d y & =\int d x \\
-\frac{2 \ln \left(-3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{2}{3}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{2}{3}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{3\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Figure 513: Slope field plot

Verification of solutions

$$
y=-\frac{1}{3\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+\frac{c_{1}}{3}
$$

Verified OK.

7.20.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
2 p^{\prime}(x)+3 p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2}{3 p} d p & =\int d x \\
-\frac{2 \ln (p)}{3} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{p^{\frac{2}{3}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{p^{\frac{2}{3}}}=c_{2} \mathrm{e}^{x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{1}{\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}} \mathrm{~d} x \\
& =-\frac{2}{3\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{3\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+c_{3} \tag{1}
\end{equation*}
$$

Figure 514: Slope field plot

Verification of solutions

$$
y=-\frac{2}{3\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+c_{3}
$$

Verified OK.
7.20.4 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
2 y^{\prime \prime}+3 y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 y^{\prime \prime}+3 y^{\prime}\right) d x=0 \\
2 y^{\prime}+3 y=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{3 y}{2}+\frac{c_{1}}{2}} d y & =\int d x \\
-\frac{2 \ln \left(-3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{2}{3}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{2}{3}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{3\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Figure 515: Slope field plot

Verification of solutions

$$
y=-\frac{1}{3\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+\frac{c_{1}}{3}
$$

Verified OK.

7.20.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
2 y^{\prime \prime}+3 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =2 \\
B & =3 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 361: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{2} d x} \\
& =z_{1} e^{-\frac{3 x}{4}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{3 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 e^{\frac{3 x}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{2}}\left(\frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{2 c_{2}}{3} \tag{1}
\end{equation*}
$$

Figure 516: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{2 c_{2}}{3}
$$

Verified OK.

7.20.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =3 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
2 y^{\prime}+3 y=c_{1}
$$

We now have a first order ode to solve which is

$$
2 y^{\prime}+3 y=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{3 y}{2}+\frac{c_{1}}{2}} d y & =\int d x \\
-\frac{2 \ln \left(-3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{2}{3}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{2}{3}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{3\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Figure 517: Slope field plot

Verification of solutions

$$
y=-\frac{1}{3\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}+\frac{c_{1}}{3}
$$

Verified OK.

7.20.7 Maple step by step solution

Let's solve
$2 y^{\prime \prime}+3 y^{\prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{3 y^{\prime}}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{2}=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{3}{2} r=0$
- Factor the characteristic polynomial
$\frac{r(2 r+3)}{2}=0$
- Roots of the characteristic polynomial
$r=\left(0,-\frac{3}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=1$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{3 x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(2*diff(y(x),x$2)+3*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 21
DSolve[2*y'' $[x]+3 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2}-\frac{2}{3} c_{1} e^{-3 x / 2}
$$

7.21 problem 37

7.21.1 Solving as second order linear constant coeff ode 2136
7.21.2 Solving using Kovacic algorithm 2138
7.21.3 Maple step by step solution . 2142

Internal problem ID [177]
Internal file name [OUTPUT/177_Sunday_June_05_2022_01_36_24_AM_23455174/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
2 y^{\prime \prime}-y^{\prime}-y=0
$$

7.21.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=-1, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}-\lambda-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=-1, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{-1^{2}-(4)(2)(-1)} \\
& =\frac{1}{4} \pm \frac{3}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{4}+\frac{3}{4} \\
& \lambda_{2}=\frac{1}{4}-\frac{3}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{\left(-\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 518: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

7.21.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}-y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=-1 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 363: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{2} d x} \\
& =z_{1} e^{\frac{x}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}\left(\frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+\frac{2 c_{2} \mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Figure 519: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+\frac{2 c_{2} \mathrm{e}^{x}}{3}
$$

Verified OK.

7.21.3 Maple step by step solution

Let's solve
$2 y^{\prime \prime}-y^{\prime}-y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y^{\prime}}{2}+\frac{y}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{2}-\frac{y}{2}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{1}{2} r-\frac{1}{2}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r+1)(r-1)}{2}=0
$$

- Roots of the characteristic polynomial
$r=\left(1,-\frac{1}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(2*diff(y(x),x$2)-diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 22
DSolve[2*y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{-x / 2}+c_{2} e^{x}
$$

7.22 problem 38

7.22.1 Solving as second order linear constant coeff ode 2144
7.22.2 Solving using Kovacic algorithm 2146
7.22.3 Maple step by step solution . 2150

Internal problem ID [178]
Internal file name [OUTPUT/178_Sunday_June_05_2022_01_36_24_AM_82526729/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
4 y^{\prime \prime}+8 y^{\prime}+3 y=0
$$

7.22.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=8, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+8 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+8 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=8, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-8}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{8^{2}-(4)(4)(3)} \\
& =-1 \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+\frac{1}{2} \\
& \lambda_{2}=-1-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2} \\
\lambda_{2} & =-\frac{3}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{3}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 520: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Verified OK.

7.22.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
4 y^{\prime \prime}+8 y^{\prime}+3 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=8 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 365: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{4} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{8}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{2}}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 521: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

7.22.3 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}+8 y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-2 y^{\prime}-\frac{3 y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+2 y^{\prime}+\frac{3 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}+2 r+\frac{3}{4}=0
$$

- Factor the characteristic polynomial
$\frac{(2 r+3)(2 r+1)}{4}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{3}{2},-\frac{1}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}$
- \quad 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2)+8*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 22
DSolve[4*y' ' $[\mathrm{x}]+8 * y$ ' $[\mathrm{x}]+3 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x / 2}\left(c_{2} e^{x}+c_{1}\right)
$$

7.23 problem 39

7.23.1 Solving as second order linear constant coeff ode 2152
7.23.2 Solving as linear second order ode solved by an integrating factor
ode . 2154$]$
7.23.3 Solving using Kovacic algorithm 2155
7.23.4 Maple step by step solution . 2159

Internal problem ID [179]
Internal file name [OUTPUT/179_Sunday_June_05_2022_01_36_25_AM_83565190/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 39.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

7.23.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=4, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+4 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=4, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(4)^{2}-(4)(4)(1)} \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=\frac{1}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 522: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

7.23.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=1$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 1 d x} \\
& =\mathrm{e}^{\frac{x}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{array}{r}
(M(x) y)^{\prime \prime}=0 \\
\left(\mathrm{e}^{\frac{x}{2}} y\right)^{\prime \prime}=0
\end{array}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{x}{2}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{\frac{x}{2}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{x}{2}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 523: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

7.23.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}+4 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =4 \\
B & =4 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 367: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{4} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 524: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

7.23.4 Maple step by step solution

Let's solve
$4 y^{\prime \prime}+4 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-y^{\prime}-\frac{y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}+\frac{y}{4}=0$
- Characteristic polynomial of ODE
$r^{2}+r+\frac{1}{4}=0$
- Factor the characteristic polynomial
$\frac{(2 r+1)^{2}}{4}=0$
- Root of the characteristic polynomial
$r=-\frac{1}{2}$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-\frac{x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(4*diff (y (x),x$2)+4*diff (y (x),x)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve[4*y''[x]+4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-x / 2}\left(c_{2} x+c_{1}\right)
$$

7.24 problem 40

7.24.1 Solving as second order linear constant coeff ode 2161
7.24.2 Solving as linear second order ode solved by an integrating factor
ode . 2163
7.24.3 Solving using Kovacic algorithm 2164
7.24.4 Maple step by step solution . 2168

Internal problem ID [180]
Internal file name [OUTPUT/180_Sunday_June_05_2022_01_36_25_AM_6498307/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
9 y^{\prime \prime}-12 y^{\prime}+4 y=0
$$

7.24.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=9, B=-12, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda x}-12 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
9 \lambda^{2}-12 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=-12, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{12}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{(-12)^{2}-(4)(9)(4)} \\
& =\frac{2}{3}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{2}{3}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} x \mathrm{e}^{\frac{2 x}{3}} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} x \mathrm{e}^{\frac{2 x}{3}} \tag{1}
\end{equation*}
$$

Figure 525: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} x \mathrm{e}^{\frac{2 x}{3}}
$$

Verified OK.

7.24.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{3}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{3} d x} \\
& =\mathrm{e}^{-\frac{2 x}{3}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
& (M(x) y)^{\prime \prime}=0 \\
& \left(\mathrm{e}^{-\frac{2 x}{3}} y\right)^{\prime \prime}=0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{2 x}{3}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{2 x}{3}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-\frac{2 x}{3}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{\frac{2 x}{3}}+\mathrm{e}^{\frac{2 x}{3}} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{2 x}{3}}+\mathrm{e}^{\frac{2 x}{3}} c_{2} \tag{1}
\end{equation*}
$$

Figure 526: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{\frac{2 x}{3}}+\mathrm{e}^{\frac{2 x}{3}} c_{2}
$$

Verified OK.

7.24.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
9 y^{\prime \prime}-12 y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9 \\
& B=-12 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 369: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-12}{9} d x} \\
& =z_{1} e^{\frac{2 x}{3}} \\
& =z_{1}\left(\mathrm{e}^{\frac{2 x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{2 x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-12}{9} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{4 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{2 x}{3}}\right)+c_{2}\left(\mathrm{e}^{\frac{2 x}{3}}(x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} x \mathrm{e}^{\frac{2 x}{3}} \tag{1}
\end{equation*}
$$

Figure 527: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} x \mathrm{e}^{\frac{2 x}{3}}
$$

Verified OK.

7.24.4 Maple step by step solution

Let's solve
$9 y^{\prime \prime}-12 y^{\prime}+4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{4 y^{\prime}}{3}-\frac{4 y}{9}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{4 y^{\prime}}{3}+\frac{4 y}{9}=0$
- Characteristic polynomial of ODE
$r^{2}-\frac{4}{3} r+\frac{4}{9}=0$
- Factor the characteristic polynomial
$\frac{(3 r-2)^{2}}{9}=0$
- Root of the characteristic polynomial
$r=\frac{2}{3}$
- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{2 x}{3}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{\frac{2 x}{3}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} x \mathrm{e}^{\frac{2 x}{3}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(9*diff(y(x),x$2)-12*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{2 x}{3}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[9*y''[x]-12*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{2 x / 3}\left(c_{2} x+c_{1}\right)
$$

7.25 problem 41

7.25.1 Solving as second order linear constant coeff ode 2170
7.25.2 Solving using Kovacic algorithm 2172
7.25.3 Maple step by step solution . 2176

Internal problem ID [181]
Internal file name [OUTPUT/181_Sunday_June_05_2022_01_36_26_AM_38496875/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
6 y^{\prime \prime}-7 y^{\prime}-20 y=0
$$

7.25.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=6, B=-7, C=-20$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
6 \lambda^{2} \mathrm{e}^{\lambda x}-7 \lambda \mathrm{e}^{\lambda x}-20 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
6 \lambda^{2}-7 \lambda-20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=6, B=-7, C=-20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{7}{(2)(6)} \pm \frac{1}{(2)(6)} \sqrt{-7^{2}-(4)(6)(-20)} \\
& =\frac{7}{12} \pm \frac{23}{12}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{7}{12}+\frac{23}{12} \\
& \lambda_{2}=\frac{7}{12}-\frac{23}{12}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{5}{2} \\
\lambda_{2} & =-\frac{4}{3}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{5}{2}\right) x}+c_{2} e^{\left(-\frac{4}{3}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{5 x}{2}}+c_{2} \mathrm{e}^{-\frac{4 x}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{5 x}{2}}+c_{2} \mathrm{e}^{-\frac{4 x}{3}} \tag{1}
\end{equation*}
$$

Figure 528: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{5 x}{2}}+c_{2} \mathrm{e}^{-\frac{4 x}{3}}
$$

Verified OK.

7.25.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
6 y^{\prime \prime}-7 y^{\prime}-20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=6 \\
& B=-7 \tag{3}\\
& C=-20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{529}{144} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=529 \\
& t=144
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{529 z(x)}{144} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 371: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{529}{144}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{23 x}{12}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-7}{6} d x} \\
& =z_{1} e^{\frac{7 x}{12}} \\
& =z_{1}\left(\mathrm{e}^{\frac{7 x}{12}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{4 x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-7}{6} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{7 x}{6}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{6 \mathrm{e}^{\frac{23 x}{6}}}{23}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{4 x}{3}}\right)+c_{2}\left(\mathrm{e}^{-\frac{4 x}{3}}\left(\frac{6 \mathrm{e}^{\frac{23 x}{6}}}{23}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{4 x}{3}}+\frac{6 c_{2} \mathrm{e}^{\frac{5 x}{2}}}{23} \tag{1}
\end{equation*}
$$

Figure 529: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{4 x}{3}}+\frac{6 c_{2} \mathrm{e}^{\frac{5 x}{2}}}{23}
$$

Verified OK.

7.25.3 Maple step by step solution

Let's solve
$6 y^{\prime \prime}-7 y^{\prime}-20 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{7 y^{\prime}}{6}+\frac{10 y}{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{7 y^{\prime}}{6}-\frac{10 y}{3}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{7}{6} r-\frac{10}{3}=0
$$

- Factor the characteristic polynomial
$\frac{(3 r+4)(2 r-5)}{6}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{4}{3}, \frac{5}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{4 x}{3}}$
- $\quad 2 \mathrm{nd}$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{5 x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{4 x}{3}}+c_{2} \mathrm{e}^{\frac{5 x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(6*diff(y(x),x$2)-7*diff(y(x),x)-20*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} \mathrm{e}^{\frac{23 x}{6}}+c_{2}\right) \mathrm{e}^{-\frac{4 x}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 26
DSolve[6*y''[x]-7*y'[x]-20*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{-4 x / 3}+c_{2} e^{5 x / 2}
$$

7.26 problem 42

7.26.1 Solving as second order linear constant coeff ode 2178
7.26.2 Solving using Kovacic algorithm 2180
7.26.3 Maple step by step solution . 2184

Internal problem ID [182]
Internal file name [OUTPUT/182_Sunday_June_05_2022_01_36_26_AM_13739999/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
35 y^{\prime \prime}-y^{\prime}-12 y=0
$$

7.26.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=35, B=-1, C=-12$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
35 \lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-12 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
35 \lambda^{2}-\lambda-12=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=35, B=-1, C=-12$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(35)} \pm \frac{1}{(2)(35)} \sqrt{-1^{2}-(4)(35)(-12)} \\
& =\frac{1}{70} \pm \frac{41}{70}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{70}+\frac{41}{70} \\
& \lambda_{2}=\frac{1}{70}-\frac{41}{70}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{5} \\
& \lambda_{2}=-\frac{4}{7}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{3}{5}\right) x}+c_{2} e^{\left(-\frac{4}{7}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{5}}+c_{2} \mathrm{e}^{-\frac{4 x}{7}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{5}}+c_{2} \mathrm{e}^{-\frac{4 x}{7}} \tag{1}
\end{equation*}
$$

Figure 530: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{5}}+c_{2} \mathrm{e}^{-\frac{4 x}{7}}
$$

Verified OK.

7.26.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
35 y^{\prime \prime}-y^{\prime}-12 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=35 \\
& B=-1 \tag{3}\\
& C=-12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1681}{4900} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1681 \\
& t=4900
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{1681 z(x)}{4900} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 373: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1681}{4900}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{41 x}{70}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{35} d x} \\
& =z_{1} e^{\frac{x}{70}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{70}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{4 x}{7}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{35} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x}{35}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{35 e^{\frac{41 x}{35}}}{41}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{4 x}{7}}\right)+c_{2}\left(\mathrm{e}^{-\frac{4 x}{7}}\left(\frac{35 \mathrm{e}^{\frac{41 x}{35}}}{41}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{4 x}{7}}+\frac{35 c_{2} \mathrm{e}^{\frac{3 x}{5}}}{41} \tag{1}
\end{equation*}
$$

Figure 531: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{4 x}{7}}+\frac{35 c_{2} \mathrm{e}^{\frac{3 x}{5}}}{41}
$$

Verified OK.

7.26.3 Maple step by step solution

Let's solve
$35 y^{\prime \prime}-y^{\prime}-12 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y^{\prime}}{35}+\frac{12 y}{35}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{35}-\frac{12 y}{35}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{1}{35} r-\frac{12}{35}=0
$$

- Factor the characteristic polynomial
$\frac{(7 r+4)(5 r-3)}{35}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{4}{7}, \frac{3}{5}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{4 x}{7}}$
- $\quad 2 \mathrm{nd}$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{3 x}{5}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{4 x}{7}}+c_{2} \mathrm{e}^{\frac{3 x}{5}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(35*diff (y (x),x$2)-diff(y(x),x)-12*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} \mathrm{e}^{\frac{41 x}{35}}+c_{2}\right) \mathrm{e}^{-\frac{4 x}{7}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 26
DSolve[35*y' ' $[\mathrm{x}]-\mathrm{y}$ ' $[\mathrm{x}]-12 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} e^{-4 x / 7}+c_{2} e^{3 x / 5}
$$

7.27 problem 52

7.27.1 Solving as second order euler ode ode 2187
7.27.2 Solving as second order change of variable on x method 2 ode . 2188
7.27.3 Solving as second order change of variable on x method 1 ode . 2190
7.27.4 Solving as second order change of variable on y method 2 ode . 2192
7.27.5 Solving as second order integrable as is ode 2194
7.27.6 Solving as second order ode non constant coeff transformation on B ode 2196
7.27.7 Solving as type second_order_integrable_as_is (not using ABC version) 2198
7.27.8 Solving using Kovacic algorithm 2199
7.27.9 Solving as exact linear second order ode ode 2204
7.27.10 Maple step by step solution 2206

Internal problem ID [183]

Internal file name [OUTPUT/183_Sunday_June_05_2022_01_36_27_AM_77948201/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 52 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable__as_is", "second_order_change_of_variable_on__x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_2", "second__order__ode__non__constant__coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

7.27.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
r^{2}-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Verified OK.

7.27.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(1) \tau}+c_{2} e^{(-1) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\tau}+c_{2} \mathrm{e}^{-\tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Verified OK.

7.27.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Verified OK.

7.27.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Verified OK.

7.27.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+y^{\prime} x-y\right) d x=0 \\
y^{\prime} x^{2}-y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

7.27.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=x \\
& C=-1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{3} v^{\prime \prime}+\left(3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x^{2}\left(u^{\prime}(x) x+3 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(x)\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Verified OK.

7.27.7 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+y^{\prime} x-y\right) d x=0 \\
y^{\prime} x^{2}-y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

7.27.8 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 375: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2}
$$

Verified OK.

7.27.9 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=x \\
& r(x)=-1 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =1
\end{aligned}
$$

Therefore (1) becomes

$$
2-(1)+(-1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} x^{2}-y x=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime} x^{2}-y x=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

7.27.10 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}+y^{\prime} x-y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-y(t)=0$
- Simplify
$\frac{d^{2}}{d t^{2}} y(t)-y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-1=0$
- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-1,1)$
- \quad 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

- Simplify

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(x^2*diff (y (x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{2}+c_{2}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{c_{1}}{x}+c_{2} x
$$

7.28 problem 53

7.28.1 Solving as second order euler ode ode 2209
7.28.2 Solving as second order change of variable on x method 2 ode . 2210
7.28.3 Solving as second order change of variable on y method 2 ode . 2213
7.28.4 Solving using Kovacic algorithm 2215
7.28.5 Maple step by step solution . 2220

Internal problem ID [184]
Internal file name [OUTPUT/184_Sunday_June_05_2022_01_36_27_AM_20255227/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 53 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of__variable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-12 y=0
$$

7.28.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}-12 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+2 r x^{r}-12 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+2 r-12=0
$$

Or

$$
\begin{equation*}
r^{2}+r-12=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-4 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}
$$

Verified OK.

7.28.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-12 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{12}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{12}{x^{2}}}{\frac{1}{x^{4}}} \\
& =-12 x^{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-12 x^{2} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-12 x^{2}=-\frac{12}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{12 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-12 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-12 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-12 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-12=0
$$

Or

$$
\begin{equation*}
r^{2}-r-12=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=4
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau^{3}}+c_{2} \tau^{4}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{-c_{1} x^{7}+c_{2}}{x^{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{1} x^{7}+c_{2}}{x^{4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-c_{1} x^{7}+c_{2}}{x^{4}}
$$

Verified OK.

7.28.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-12 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{12}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{12}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{8 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{8 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{8}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{8}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{8}{x} d x \\
\ln (u) & =-8 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-8 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{8}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{7 x^{7}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{3} \\
& =\frac{7 c_{2} x^{7}-c_{1}}{7 x^{4}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{3}
$$

Verified OK.

7.28.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}+2 y^{\prime} x-12 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{12}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=12 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{12}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 377: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{12}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=12$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{12}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=12$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{12}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	4	-3

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	4	-3

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-3$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-3-(-3) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{x}+(-)(0) \\
& =-\frac{3}{x} \\
& =-\frac{3}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{x}\right)(0)+\left(\left(\frac{3}{x^{2}}\right)+\left(-\frac{3}{x}\right)^{2}-\left(\frac{12}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{12 x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{4}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{7}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{4}}\right)+c_{2}\left(\frac{1}{x^{4}}\left(\frac{x^{7}}{7}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{3}}{7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{3}}{7}
$$

Verified OK.

7.28.5 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-12 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{12 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{12 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-12 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{d^{2} t^{2} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+2 \frac{d}{d t} y(t)-12 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-12 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}+r-12=0$
- Factor the characteristic polynomial
$(r+4)(r-3)=0$
- Roots of the characteristic polynomial
$r=(-4,3)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\mathrm{e}^{3 t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{3 t}$
- \quad Change variables back using $t=\ln (x)$ $y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}$
- \quad Simplify
$y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-12*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} x^{7}+c_{1}}{x^{4}}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 18
DSolve $\left[x^{\sim} 2 * y^{\prime \prime}\right.$ ' $[x]+2 * x * y$ ' $[x]-12 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} x^{7}+c_{1}}{x^{4}}
$$

7.29 problem 54

7.29.1 Solving as second order euler ode ode 2223
7.29.2 Solving as second order change of variable on x method 2 ode . 2224
7.29.3 Solving as second order change of variable on y method 2 ode . 2227
7.29.4 Solving using Kovacic algorithm 2229
7.29.5 Maple step by step solution . 2234

Internal problem ID [185]
Internal file name [OUTPUT/185_Sunday_June_05_2022_01_36_28_AM_48273024/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 54.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_2", "second_order_change_of__variable__on_y__method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, - _with_symmetry_ [0,F(x)] •]

$$
4 x^{2} y^{\prime \prime}+8 y^{\prime} x-3 y=0
$$

7.29.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
4 x^{2}(r(r-1)) x^{r-2}+8 x r x^{r-1}-3 x^{r}=0
$$

Simplifying gives

$$
4 r(r-1) x^{r}+8 r x^{r}-3 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
4 r(r-1)+8 r-3=0
$$

Or

$$
\begin{equation*}
4 r^{2}+4 r-3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{3}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{\frac{3}{2}}}+c_{2} \sqrt{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{\frac{3}{2}}}+c_{2} \sqrt{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{\frac{3}{2}}}+c_{2} \sqrt{x}
$$

Verified OK.

7.29.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}+8 y^{\prime} x-3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{3}{4 x^{2}}}{\frac{1}{x^{4}}} \\
& =-\frac{3 x^{2}}{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 x^{2} y(\tau)}{4} & =0
\end{aligned}
$$

But in terms of τ

$$
-\frac{3 x^{2}}{4}=-\frac{3}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-3 \tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}-3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0-3=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r-3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{1}{2} \\
& r_{2}=\frac{3}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\sqrt{\tau}}+c_{2} \tau^{\frac{3}{2}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{2}+c_{2}}{x^{2} \sqrt{-\frac{1}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2}+c_{2}}{x^{2} \sqrt{-\frac{1}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}+c_{2}}{x^{2} \sqrt{-\frac{1}{x}}}
$$

Verified OK.

7.29.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}+8 y^{\prime} x-3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =-\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{3}{4 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=\frac{1}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \sqrt{x} \\
& =\frac{2 c_{2} x^{2}-c_{1}}{2 x^{\frac{3}{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \sqrt{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \sqrt{x}
$$

Verified OK.

7.29.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 x^{2} y^{\prime \prime}+8 y^{\prime} x-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 x^{2} \\
& B=8 x \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 379: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8 x}{4 x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{\frac{3}{2}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{8 x}{4 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{\frac{3}{2}}}\right)+c_{2}\left(\frac{1}{x^{\frac{3}{2}}}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{\frac{3}{2}}}+\frac{c_{2} \sqrt{x}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{\frac{3}{2}}}+\frac{c_{2} \sqrt{x}}{2}
$$

Verified OK.

7.29.5 Maple step by step solution

Let's solve
$4 x^{2} y^{\prime \prime}+8 y^{\prime} x-3 y=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{3 y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{3 y}{4 x^{2}}=0$
- Multiply by denominators of the ODE
$4 x^{2} y^{\prime \prime}+8 y^{\prime} x-3 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$4 x^{2}\left(\frac{\frac{d^{2}}{d t} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+8 \frac{d}{d t} y(t)-3 y(t)=0$
- \quad Simplify
$4 \frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)-3 y(t)=0$
- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=-\frac{d}{d t} y(t)+\frac{3 y(t)}{4}
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-\frac{3 y(t)}{4}=0$
- Characteristic polynomial of ODE
$r^{2}+r-\frac{3}{4}=0$
- Factor the characteristic polynomial
$\frac{(2 r+3)(2 r-1)}{4}=0$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{3}{2}, \frac{1}{2}\right)
$$

- \quad 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{\frac{t}{2}}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-\frac{3 t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}}
$$

- Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{\frac{3}{2}}}+c_{2} \sqrt{x}
$$

- Simplify

$$
y=\frac{c_{1}}{x^{\frac{3}{2}}}+c_{2} \sqrt{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(4*x^2*diff (y(x),x$2)+8*x*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{2}+c_{2}}{x^{\frac{3}{2}}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[4*x^2*y' ' $[\mathrm{x}]+8 * x * y$ ' $[\mathrm{x}]-3 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{2} x^{2}+c_{1}}{x^{3 / 2}}
$$

7.30 problem 55

7.30.1 Solving as second order euler ode ode 2239
7.30.2 Solving as second order ode missing y ode 2240
7.30.3 Solving using Kovacic algorithm 2241
7.30.4 Maple step by step solution . 2246

Internal problem ID [186]
Internal file name [OUTPUT/186_Sunday_June_05_2022_01_36_28_AM_14840970/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 55 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

The ODE is

$$
x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

Or

$$
x\left(y^{\prime \prime} x+y^{\prime}\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
y^{\prime \prime} x+y^{\prime}=0
$$

7.30.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+0=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+0=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+0=0
$$

Or

$$
\begin{equation*}
r^{2}=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{2} \ln (x)+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \ln (x)+c_{1}
$$

Verified OK. \{x <> 0\}

7.30.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{2} p^{\prime}(x)+p(x) x=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-\frac{p}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =-\frac{1}{x} d x \\
\int \frac{1}{p} d p & =\int-\frac{1}{x} d x \\
\ln (p) & =-\ln (x)+c_{1} \\
p & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{c_{1}}{x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (x)+c_{2}
$$

Verified OK. $\{x<>0\}$

7.30.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 381: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(\ln (x)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \ln (x)+c_{1}
$$

Verified OK. \{x <> 0\}

7.30.4 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+y^{\prime} x=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x+y^{\prime}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x+\frac{\frac{d}{d t} y(t)}{x}=0$
- Simplify

$$
\frac{\frac{d^{2}}{d t^{2}} y(t)}{x}=0
$$

- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial

$$
r=0
$$

- 1st solution of the ODE

$$
y_{1}(t)=1
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{2} t+c_{1}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{2} \ln (x)+c_{1}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{2} \ln (x)+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 13
DSolve[x^2*y''[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \log (x)+c_{2}
$$

7.31 problem 56

7.31.1 Solving as second order euler ode ode 2249
7.31.2 Solving as second order change of variable on x method 2 ode . 2250
7.31.3 Solving as second order change of variable on x method 1 ode . 2253
7.31.4 Solving as second order change of variable on y method 2 ode . 2255
7.31.5 Solving using Kovacic algorithm 2257
7.31.6 Maple step by step solution . 2262

Internal problem ID [187]
Internal file name [OUTPUT/187_Sunday_June_05_2022_01_36_29_AM_37289031/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.1, second order linear equations. Page 299
Problem number: 56.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second__order_change__of_variable_on_u__method_2", "second_order_change_of_cvariable_on_y_method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(x)] 〕]

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

7.31.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

7.31.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(x^{4}\right)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(x^{4}\right)+c_{1}\right) \sqrt{x^{4}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(x^{4}\right)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Verified OK.
7.31.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

7.31.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2}
$$

Verified OK.

7.31.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 383: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

7.31.6 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{4 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d} t y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 3 \frac{d}{x^{2}} y(t)+4 y(t)=0\right.$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+4 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-4 r+4=0$
- Factor the characteristic polynomial

$$
(r-2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=2
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} t \mathrm{e}^{2 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

- \quad Simplify

$$
y=x^{2}\left(c_{2} \ln (x)+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(x^2*diff(y(x),x$2)-3*x*diff (y(x),x)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{2} \ln (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18
DSolve[$x^{\wedge} 2 * y^{\prime \prime}$ ' $[\mathrm{x}]-3 * x * y$ ' $[x]+4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(2 c_{2} \log (x)+c_{1}\right)
$$

8 Section 5.2, second order linear equations. Page311
8.1 problem 21 2266
8.2 problem 22 2279
8.3 problem 23 2295
8.4 problem 24 2308
8.5 problem 26(a.1) 2321
8.6 problem 26(a.2) 2334
8.7 problem 26(b) 2345

8.1 problem 21

8.1.1 Existence and uniqueness analysis 2266
8.1.2 Solving as second order linear constant coeff ode 2267
8.1.3 Solving using Kovacic algorithm 2271
8.1.4 Maple step by step solution . 2276

Internal problem ID [188]
Internal file name [OUTPUT/188_Sunday_June_05_2022_01_36_29_AM_38650824/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.2, second order linear equations. Page 311
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y=3 x
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-2\right]
$$

8.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =3 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y=3 x
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=3 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.1.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=3 x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{2} x+A_{1}=3 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(3 x)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+3 x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)+3
$$

substituting $y^{\prime}=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=3+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \cos (x)-5 \sin (x)+3 x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \cos (x)-5 \sin (x)+3 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \cos (x)-5 \sin (x)+3 x
$$

Verified OK.

8.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 385: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{2} x+A_{1}=3 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(3 x)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+3 x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)+3
$$

substituting $y^{\prime}=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=3+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \cos (x)-5 \sin (x)+3 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \cos (x)-5 \sin (x)+3 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \cos (x)-5 \sin (x)+3 x
$$

Verified OK.

8.1.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=3 x, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 x\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-3 \cos (x)\left(\int \sin (x) x d x\right)+3 \sin (x)\left(\int x \cos (x) d x\right)
$$

- Compute integrals
$y_{p}(x)=3 x$
- \quad Substitute particular solution into general solution to ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+3 x$
Check validity of solution $y=c_{1} \cos (x)+c_{2} \sin (x)+3 x$
- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)+3
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-2$

$$
-2=3+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=-5\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=2 \cos (x)-5 \sin (x)+3 x
$$

- \quad Solution to the IVP

$$
y=2 \cos (x)-5 \sin (x)+3 x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve([diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{y}(\mathrm{x})=3 * \mathrm{x}, \mathrm{y}(0)=2, \mathrm{D}(\mathrm{y})(0)=-2], y(\mathrm{x})$, singsol=all)

$$
y(x)=-5 \sin (x)+2 \cos (x)+3 x
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 17
DSolve[\{y'' $\left.[x]+y[x]==3 * x,\left\{y[0]==2, y^{\prime}[0]==-2\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 x-5 \sin (x)+2 \cos (x)
$$

8.2 problem 22

8.2.1 Existence and uniqueness analysis 2279
8.2.2 Solving as second order linear constant coeff ode 2280
8.2.3 Solving as second order ode can be made integrable ode 2284
8.2.4 Solving using Kovacic algorithm 2287
8.2.5 Maple step by step solution . 2292

Internal problem ID [189]
Internal file name [OUTPUT/189_Sunday_June_05_2022_01_36_30_AM_70119664/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.2, second order linear equations. Page 311
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y=12
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=10\right]
$$

8.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-4 \\
F & =12
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y=12
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=12$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.2.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=12$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1}=12
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}\right)+(-3)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}-3 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-3 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=2 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

Verified OK.

8.2.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-4 y y^{\prime}-12 y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-4 y y^{\prime}-12 y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-2 y^{2}-12 y=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{4 y^{2}+24 y+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{4 y^{2}+24 y+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{4 y^{2}+2 c_{1}+24 y}} d y & =\int d x \\
\frac{\ln \left(\frac{(4 y+12) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+24 y}\right) \sqrt{4}}{4} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(\frac{(4 y+12) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+24 y}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\sqrt{2 y+6+\sqrt{4 y^{2}+2 c_{1}+24 y}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{4 y^{2}+2 c_{1}+24 y}} d y & =\int d x \\
-\frac{\ln \left(\frac{(4 y+12) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+24 y}\right) \sqrt{4}}{4} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(\frac{(4 y+12) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+24 y}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{2 y+6+\sqrt{4 y^{2}+2 c_{1}+24 y}}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-12 \mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}+36\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{3}^{4}-12 c_{3}^{2}-2 c_{1}+36}{4 c_{3}^{2}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\left(4 \mathrm{e}^{4 x} c_{3}^{4}-24 \mathrm{e}^{2 x} c_{3}^{2}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}}-\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-12 \mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}+36\right) \mathrm{e}^{-2 x}}{2 c_{3}^{2}}
$$

substituting $y^{\prime}=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=\frac{c_{3}^{4}+2 c_{1}-36}{2 c_{3}^{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=50 \\
& c_{3}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-2 x}\left(4 \mathrm{e}^{4 x}-3 \mathrm{e}^{2 x}-1\right)
$$

Which simplifies to

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-36 c_{5}^{4} \mathrm{e}^{4 x}+12 c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{1+\left(-2 c_{1}+36\right) c_{5}^{4}-12 c_{5}^{2}}{4 c_{5}^{2}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\left(8 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-144 c_{5}^{4} \mathrm{e}^{4 x}+24 c_{5}^{2} \mathrm{e}^{2 x}\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}}+\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-36 c_{5}^{4} \mathrm{e}^{4 x}+12 c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-2 x}}{2 c_{5}^{2}}
$$

substituting $y^{\prime}=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=\frac{-1+\left(-2 c_{1}+36\right) c_{5}^{4}}{2 c_{5}^{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Warning, unable to solve for constants of Summary
integrations. The solution(s) found are the following

$$
\begin{equation*}
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

Verified OK.

8.2.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 387: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{4}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1}=12
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+(-3)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-3 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{4}-3 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{2}
$$

substituting $y^{\prime}=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=-2 c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=16
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

Verified OK.

8.2.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y=12, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=10\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=12\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\ -2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-3 \mathrm{e}^{-2 x}\left(\int \mathrm{e}^{2 x} d x\right)+3 \mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x} d x\right)$
- Compute integrals
$y_{p}(x)=-3$
- \quad Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}-3$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}-3$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-3$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=10$

$$
10=-2 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-1, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

- \quad Solution to the IVP

$$
y=-3+4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve([diff(y(x),x$2)-4*y(x)=12,y(0) = 0, D(y)(0) = 10],y(x), singsol=all)
```

$$
y(x)=4 \mathrm{e}^{2 x}-\mathrm{e}^{-2 x}-3
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21
DSolve[\{y''[x]-4*y[x]==12,\{y[0]==0,y'[0]==10\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-e^{-2 x}+4 e^{2 x}-3
$$

8.3 problem 23

8.3.1 Existence and uniqueness analysis 2295
8.3.2 Solving as second order linear constant coeff ode 2296
8.3.3 Solving using Kovacic algorithm 2300
8.3.4 Maple step by step solution . 2305

Internal problem ID [190]
Internal file name [OUTPUT/190_Sunday_June_05_2022_01_36_31_AM_52050187/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.2, second order linear equations. Page 311
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime}-3 y=6
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=11\right]
$$

8.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =-3 \\
F & =6
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}-3 y=6
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.3.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=-3, f(x)=6$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-3)} \\
& =1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+2 \\
& \lambda_{2}=1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1}=6
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}\right)+(-2)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}-2 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2}-2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=11$ and $x=0$ in the above gives

$$
\begin{equation*}
11=3 c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x}
$$

Verified OK.

8.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 389: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{3 x}}{4}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1}=6
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}\right)+(-2)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}-2 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1}+\frac{c_{2}}{4}-2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{3 c_{2} \mathrm{e}^{3 x}}{4}
$$

substituting $y^{\prime}=11$ and $x=0$ in the above gives

$$
\begin{equation*}
11=-c_{1}+\frac{3 c_{2}}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=16
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x}
$$

Verified OK.

8.3.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}-3 y=6, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=11\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-2 r-3=0$
- Factor the characteristic polynomial

$$
(r+1)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,3)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=6\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{3 x} \\ -\mathrm{e}^{-x} & 3 \mathrm{e}^{3 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4 \mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{3 \mathrm{e}^{-x}\left(\int \mathrm{e}^{x} d x\right)}{2}+\frac{3 \mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x} d x\right)}{2}$
- Compute integrals
$y_{p}(x)=-2$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}-2$
Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}-2$
- Use initial condition $y(0)=3$
$3=c_{1}+c_{2}-2$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=11$ $11=-c_{1}+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x}
$$

- \quad Solution to the IVP

$$
y=-2+4 \mathrm{e}^{3 x}+\mathrm{e}^{-x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve([diff(y(x),x$2)-2*diff(y(x),x)-3*y(x)=6,y(0) = 3, D(y)(0) = 11],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x}+4 \mathrm{e}^{3 x}-2
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 19

```
DSolve[{y''[x]-2*y'[x]-3*y[x]==6,{y[0]==3,y'[0]==11}},y[x],x,IncludeSingularSolutions -> Tru
```

$$
y(x) \rightarrow e^{-x}+4 e^{3 x}-2
$$

8.4 problem 24

8.4.1 Existence and uniqueness analysis 2308
8.4.2 Solving as second order linear constant coeff ode 2309
8.4.3 Solving using Kovacic algorithm 2313
8.4.4 Maple step by step solution . 2318

Internal problem ID [191]
Internal file name [OUTPUT/191_Sunday_June_05_2022_01_36_32_AM_11390539/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.2, second order linear equations. Page 311
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 y^{\prime}+2 y=2 x
$$

With initial conditions

$$
\left[y(0)=4, y^{\prime}(0)=8\right]
$$

8.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =2 \\
F & =2 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+2 y=2 x
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=2 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.4.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=2, f(x)=2 x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(2)} \\
& =1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}-2 A_{2}=2 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x+1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+(x+1)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x+1 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=1+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)+1
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=c_{1}+c_{2}+1 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=1+3 \cos (x) \mathrm{e}^{x}+4 \sin (x) \mathrm{e}^{x}+x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=1+3 \cos (x) \mathrm{e}^{x}+4 \sin (x) \mathrm{e}^{x}+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+3 \cos (x) \mathrm{e}^{x}+4 \sin (x) \mathrm{e}^{x}+x
$$

Verified OK.

8.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 391: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} \sin (x) c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}-2 A_{2}=2 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x+1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} \sin (x) c_{2}\right)+(x+1)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x+1
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x+1 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=1+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)+1
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=c_{1}+c_{2}+1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=1+3 \cos (x) \mathrm{e}^{x}+4 \sin (x) \mathrm{e}^{x}+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+3 \cos (x) \mathrm{e}^{x}+4 \sin (x) \mathrm{e}^{x}+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+3 \cos (x) \mathrm{e}^{x}+4 \sin (x) \mathrm{e}^{x}+x
$$

Verified OK.

8.4.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+2 y=2 x, y(0)=4,\left.y^{\prime}\right|_{\{x=0\}}=8\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{2 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I}, 1+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x) \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} \sin (x) c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 x\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{x} & \sin (x) \mathrm{e}^{x} \\
-\sin (x) \mathrm{e}^{x}+\cos (x) \mathrm{e}^{x} & \cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{x}\left(\cos (x)\left(\int \sin (x) x \mathrm{e}^{-x} d x\right)-\sin (x)\left(\int x \cos (x) \mathrm{e}^{-x} d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=x+1
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} \sin (x) c_{2}+x+1
$$

Check validity of solution $y=c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} \sin (x) c_{2}+x+1$

- Use initial condition $y(0)=4$

$$
4=1+c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (x) \mathrm{e}^{x}+c_{1} \cos (x) \mathrm{e}^{x}+\mathrm{e}^{x} \sin (x) c_{2}+\mathrm{e}^{x} \cos (x) c_{2}+1
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=8$

$$
8=c_{1}+c_{2}+1
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=3, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=x+1+(3 \cos (x)+4 \sin (x)) \mathrm{e}^{x}
$$

- \quad Solution to the IVP

$$
y=x+1+(3 \cos (x)+4 \sin (x)) \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 19
dsolve([diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+2 * y(x)=2 * x, y(0)=4, D(y)(0)=8], y(x)$, singsol=all)

$$
y(x)=x+1+(4 \sin (x)+3 \cos (x)) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 22
DSolve[\{y''[x]-2*y'[x]+2*y[x]==2*x,\{y[0]==4,y'[0]==8\}\},y[x],x,IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow x+4 e^{x} \sin (x)+3 e^{x} \cos (x)+1
$$

8.5 problem 26(a.1)

8.5.1 Solving as second order linear constant coeff ode 2321
8.5.2 Solving as second order ode can be made integrable ode 2324
8.5.3 Solving using Kovacic algorithm 2326
8.5.4 Maple step by step solution . 2331

Internal problem ID [192]
Internal file name [OUTPUT/192_Sunday_June_05_2022_01_36_33_AM_62275496/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.2, second order linear equations. Page 311
Problem number: 26(a.1).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y=4
$$

8.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=2, f(x)=4$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(2)} \\
& = \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)
$$

Or

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (\sqrt{2} x), \sin (\sqrt{2} x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)+(2)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+2 \tag{1}
\end{equation*}
$$

Figure 541: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+2
$$

Verified OK.

8.5.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+2 y y^{\prime}-4 y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+2 y y^{\prime}-4 y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+y^{2}-4 y=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-2 y^{2}+8 y+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-2 y^{2}+8 y+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-2 y^{2}+2 c_{1}+8 y}} d y & =\int d x \\
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y-2)}{\sqrt{-2 y^{2}+8 y+2 c_{1}}}\right)}{2} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-2 y^{2}+2 c_{1}+8 y}} d y & =\int d x \\
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y-2)}{\sqrt{-2 y^{2}+8 y+2 c_{1}}}\right)}{2} & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y-2)}{\sqrt{-2 y^{2}+8 y+2 c_{1}}}\right)}{2} & =x+c_{2} \tag{1}\\
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y-2)}{\sqrt{-2 y^{2}+8 y+2 c_{1}}}\right)}{2} & =c_{3}+x \tag{2}
\end{align*}
$$

Figure 542: Slope field plot

Verification of solutions

$$
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y-2)}{\sqrt{-2 y^{2}+8 y+2 c_{1}}}\right)}{2}=x+c_{2}
$$

Verified OK.

$$
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y-2)}{\sqrt{-2 y^{2}+8 y+2 c_{1}}}\right)}{2}=c_{3}+x
$$

Verified OK.

8.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-2 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 393: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (\sqrt{2} x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{2} x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{2} x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (\sqrt{2} x) \int \frac{1}{\cos (\sqrt{2} x)^{2}} d x \\
& =\cos (\sqrt{2} x)\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{2} x))+c_{2}\left(\cos (\sqrt{2} x)\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1
Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sqrt{2} \sin (\sqrt{2} x)}{2}, \cos (\sqrt{2} x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}\right)+(2)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}+2 \tag{1}
\end{equation*}
$$

Figure 543: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}+2
$$

Verified OK.

8.5.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y=4
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-8})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (\sqrt{2} x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (\sqrt{2} x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (\sqrt{2} x) & \sin (\sqrt{2} x) \\
-\sqrt{2} \sin (\sqrt{2} x) & \sqrt{2} \cos (\sqrt{2} x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\sqrt{2}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \sqrt{2}\left(\cos (\sqrt{2} x)\left(\int \sin (\sqrt{2} x) d x\right)-\sin (\sqrt{2} x)\left(\int \cos (\sqrt{2} x) d x\right)\right)
$$

- Compute integrals
$y_{p}(x)=2$
- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+2
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(x),x$2)+2*y(x)=4,y(x), singsol=all)
```

$$
y(x)=\sin (\sqrt{2} x) c_{2}+\cos (\sqrt{2} x) c_{1}+2
$$

Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 29
DSolve[y'' $[x]+2 * y[x]==4, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+2
$$

8.6 problem 26(a.2)

8.6.1 Solving as second order linear constant coeff ode 2334
8.6.2 Solving using Kovacic algorithm 2337
8.6.3 Maple step by step solution . 2342

Internal problem ID [193]
Internal file name [OUTPUT/193_Sunday_June_05_2022_01_36_34_AM_12734694/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.2, second order linear equations. Page 311
Problem number: 26(a.2).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+2 y=6 x
$$

8.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=2, f(x)=6 x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(2)} \\
& = \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)
$$

Or

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (\sqrt{2} x), \sin (\sqrt{2} x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}=6 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)+(3 x)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+3 x \tag{1}
\end{equation*}
$$

Figure 544: Slope field plot
Verification of solutions

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+3 x
$$

Verified OK.

8.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-2 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 395: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (\sqrt{2} x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{2} x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{2} x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (\sqrt{2} x) \int \frac{1}{\cos (\sqrt{2} x)^{2}} d x \\
& =\cos (\sqrt{2} x)\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{2} x))+c_{2}\left(\cos (\sqrt{2} x)\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sqrt{2} \sin (\sqrt{2} x)}{2}, \cos (\sqrt{2} x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}=6 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}\right)+(3 x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}+3 x \tag{1}
\end{equation*}
$$

Figure 545: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}+3 x
$$

Verified OK.

8.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y=6 x
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-8})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2})
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (\sqrt{2} x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (\sqrt{2} x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=6 x\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (\sqrt{2} x) & \sin (\sqrt{2} x) \\
-\sqrt{2} \sin (\sqrt{2} x) & \sqrt{2} \cos (\sqrt{2} x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\sqrt{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-3 \sqrt{2}\left(\cos (\sqrt{2} x)\left(\int \sin (\sqrt{2} x) x d x\right)-\sin (\sqrt{2} x)\left(\int \cos (\sqrt{2} x) x d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=3 x
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+3 x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)+2*y(x)=6*x,y(x), singsol=all)
```

$$
y(x)=\sin (\sqrt{2} x) c_{2}+\cos (\sqrt{2} x) c_{1}+3 x
$$

Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 31
DSolve[y''[x]+2*y[x]==6*x,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 x+c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

8.7 problem 26(b)

8.7.1 Solving as second order linear constant coeff ode 2345
8.7.2 Solving using Kovacic algorithm 2348
8.7.3 Maple step by step solution . 2353

Internal problem ID [194]
Internal file name [OUTPUT/194_Sunday_June_05_2022_01_36_35_AM_18444330/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.2, second order linear equations. Page 311
Problem number: 26(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+2 y=6 x+4
$$

8.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=2, f(x)=6 x+4$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(2)} \\
& = \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)
$$

Or

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (\sqrt{2} x), \sin (\sqrt{2} x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}=6 x+4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x+2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)+(3 x+2)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+3 x+2 \tag{1}
\end{equation*}
$$

Figure 546: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+3 x+2
$$

Verified OK.

8.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-2 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 397: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (\sqrt{2} x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{2} x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{2} x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (\sqrt{2} x) \int \frac{1}{\cos (\sqrt{2} x)^{2}} d x \\
& =\cos (\sqrt{2} x)\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{2} x))+c_{2}\left(\cos (\sqrt{2} x)\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sqrt{2} \sin (\sqrt{2} x)}{2}, \cos (\sqrt{2} x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}=6 x+4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x+2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}\right)+(3 x+2)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}+3 x+2 \tag{1}
\end{equation*}
$$

Figure 547: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (\sqrt{2} x)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} x)}{2}+3 x+2
$$

Verified OK.

8.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y=6 x+4
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-8})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2})
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (\sqrt{2} x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (\sqrt{2} x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=6 x+4\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (\sqrt{2} x) & \sin (\sqrt{2} x) \\
-\sqrt{2} \sin (\sqrt{2} x) & \sqrt{2} \cos (\sqrt{2} x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\sqrt{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\sqrt{2}\left(-\cos (\sqrt{2} x)\left(\int \sin (\sqrt{2} x)(3 x+2) d x\right)+\sin (\sqrt{2} x)\left(\int \cos (\sqrt{2} x)(3 x+2) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=3 x+2
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+3 x+2
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)+2*y(x)=6*x+4,y(x), singsol=all)
```

$$
y(x)=\sin (\sqrt{2} x) c_{2}+\cos (\sqrt{2} x) c_{1}+3 x+2
$$

Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 32
DSolve $[y$ ' ' $[x]+2 * y[x]==6 * x+4, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 x+c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+2
$$

9 Section 5.3, second order linear equations. Page 323
9.1 problem 1 2357
9.2 problem 2 2367
9.3 problem 3 2382
9.4 problem 4 2390
9.5 problem 5 2398
9.6 problem 6 2407
9.7 problem 7 2415
9.8 problem 8 2424
9.9 problem 9 2432
9.10 problem 21 2440
9.11 problem 22 2450
9.12 problem 23 2461
9.13 problem 45 2471
9.14 problem 46 2479
9.15 problem 47 2487
9.16 problem 52 2498
9.17 problem 53 2515

9.1 problem 1

9.1.1 Solving as second order linear constant coeff ode

9.1.2 Solving as second order ode can be made integrable ode 2359
9.1.3 Solving using Kovacic algorithm 2361
9.1.4 Maple step by step solution . 2365

Internal problem ID [195]
Internal file name [OUTPUT/195_Sunday_June_05_2022_01_36_36_AM_14768880/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y=0
$$

9.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 548: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

9.1.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-4 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-4 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{4 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}} \tag{2}
\end{align*}
$$

Figure 549: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}}
$$

Verified OK.

9.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{gathered}
s=4 \\
t=1
\end{gathered}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 399: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4} \tag{1}
\end{equation*}
$$

Figure 550: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

Verified OK.

9.1.4 Maple step by step solution

Let's solve
$y^{\prime \prime}-4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 22

```
DSolve[y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-2 x}\left(c_{1} e^{4 x}+c_{2}\right)
$$

9.2 problem 2

9.2.1 Solving as second order linear constant coeff ode 2367

9.2.2 Solving as second order integrable as is ode 2369
9.2.3 Solving as second order ode missing y ode 2371
$\begin{array}{ll}\text { 9.2.4 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 2372\end{array}$
9.2.5 Solving using Kovacic algorithm 2374
9.2.6 Solving as exact linear second order ode ode 2377
9.2.7 Maple step by step solution . 2380

Internal problem ID [196]
Internal file name [DUTPUT/196_Sunday_June_05_2022_01_36_36_AM_2377207/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 y^{\prime \prime}-3 y^{\prime}=0
$$

9.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=-3, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}-3 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=-3, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{-3^{2}-(4)(2)(0)} \\
& =\frac{3}{4} \pm \frac{3}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{4}+\frac{3}{4} \\
& \lambda_{2}=\frac{3}{4}-\frac{3}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{3}{2} \\
\lambda_{2} & =0
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{3}{2}\right) x}+c_{2} e^{(0) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} \tag{1}
\end{equation*}
$$

Figure 551: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2}
$$

Verified OK.

9.2.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 y^{\prime \prime}-3 y^{\prime}\right) d x=0 \\
2 y^{\prime}-3 y=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\frac{3 y}{2}+\frac{c_{1}}{2}} d y & =\int d x \\
\frac{2 \ln \left(3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 y+c_{1}\right)^{\frac{2}{3}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+c_{1}\right)^{\frac{2}{3}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
y=\frac{\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}-\frac{c_{1}}{3}
$$

Figure 552: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}-\frac{c_{1}}{3}
$$

Verified OK.

9.2.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
2 p^{\prime}(x)-3 p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{3 p} d p & =\int d x \\
\frac{2 \ln (p)}{3} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
p^{\frac{2}{3}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
p^{\frac{2}{3}}=c_{2} \mathrm{e}^{x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}} \mathrm{~d} x \\
& =\frac{2\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}+c_{3} \tag{1}
\end{equation*}
$$

Figure 553: Slope field plot

Verification of solutions

$$
y=\frac{2\left(c_{2} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}+c_{3}
$$

Verified OK.

9.2.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
2 y^{\prime \prime}-3 y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 y^{\prime \prime}-3 y^{\prime}\right) d x=0 \\
2 y^{\prime}-3 y=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\frac{3 y}{2}+\frac{c_{1}}{2}} d y & =\int d x \\
\frac{2 \ln \left(3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 y+c_{1}\right)^{\frac{2}{3}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+c_{1}\right)^{\frac{2}{3}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}-\frac{c_{1}}{3} \tag{1}
\end{align*}
$$

Figure 554: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}-\frac{c_{1}}{3}
$$

Verified OK.

9.2.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}-3 y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=-3 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 401: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{2} d x} \\
& =z_{1} e^{\frac{3 x}{4}} \\
& =z_{1}\left(e^{\frac{3 x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{3 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\frac{2 c_{2} \mathrm{e}^{\frac{3 x}{2}}}{3} \tag{1}
\end{equation*}
$$

Figure 555: Slope field plot

Verification of solutions

$$
y=c_{1}+\frac{2 c_{2} \mathrm{e}^{\frac{3 x}{2}}}{3}
$$

Verified OK.

9.2.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=2 \\
& q(x)=-3 \\
& r(x)=0 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
2 y^{\prime}-3 y=c_{1}
$$

We now have a first order ode to solve which is

$$
2 y^{\prime}-3 y=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\frac{3 y}{2}+\frac{c_{1}}{2}} d y & =\int d x \\
\frac{2 \ln \left(3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 y+c_{1}\right)^{\frac{2}{3}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+c_{1}\right)^{\frac{2}{3}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
y=\frac{\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}-\frac{c_{1}}{3}
$$

Figure 556: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}{3}-\frac{c_{1}}{3}
$$

Verified OK.

9.2.7 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime}-3 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{2}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{3}{2} r=0
$$

- Factor the characteristic polynomial
$\frac{r(2 r-3)}{2}=0$
- Roots of the characteristic polynomial
$r=\left(0, \frac{3}{2}\right)$
- 1 st solution of the ODE
$y_{1}(x)=1$
- $\quad 2 \mathrm{nd}$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{3 x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(2*diff(y(x),x$2)-3*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21
DSolve[2*y'' $[x]-3 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{2}{3} c_{1} e^{3 x / 2}+c_{2}
$$

9.3 problem 3

9.3.1 Solving as second order linear constant coeff ode

9.3.2 Solving using Kovacic algorithm 2384
9.3.3 Maple step by step solution 2388

Internal problem ID [197]
Internal file name [OUTPUT/197_Sunday_June_05_2022_01_36_37_AM_65436008/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 3 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+3 y^{\prime}-10 y=0
$$

9.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=-10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}-10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda-10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=-10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(-10)} \\
& =-\frac{3}{2} \pm \frac{7}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{7}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{7}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-5
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Figure 557: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x}
$$

Verified OK.

9.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}-10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=-10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{49}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=49 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{49 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 403: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{49}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{7 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{7 x}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{7 x}}{7}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{2 x}}{7} \tag{1}
\end{equation*}
$$

Figure 558: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{2 x}}{7}
$$

Verified OK.

9.3.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+3 y^{\prime}-10 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+3 r-10=0$
- Factor the characteristic polynomial

$$
(r+5)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-5,2)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-5 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{2 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)-10 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{2} \mathrm{e}^{7 x}+c_{1}\right) \mathrm{e}^{-5 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 22
DSolve $\left[y^{\prime \prime}[x]+3 * y\right.$ ' $[x]-10 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-5 x}\left(c_{2} e^{7 x}+c_{1}\right)
$$

9.4 problem 4

9.4.1 Solving as second order linear constant coeff ode

9.4.2 Solving using Kovacic algorithm 2392
9.4.3 Maple step by step solution 2396

Internal problem ID [198]
Internal file name [OUTPUT/198_Sunday_June_05_2022_01_36_37_AM_84432007/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
2 y^{\prime \prime}-7 y^{\prime}+3 y=0
$$

9.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=-7, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}-7 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}-7 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=-7, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{7}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{-7^{2}-(4)(2)(3)} \\
& =\frac{7}{4} \pm \frac{5}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{7}{4}+\frac{5}{4} \\
& \lambda_{2}=\frac{7}{4}-\frac{5}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{\left(\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 559: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Verified OK.

9.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}-7 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=-7 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 405: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7}{2} d x} \\
& =z_{1} e^{\frac{7 x}{4}} \\
& =z_{1}\left(e^{\frac{7 x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-7}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{7 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \mathrm{e}^{\frac{5 x}{2}}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{x}{2}}\left(\frac{2 \mathrm{e}^{\frac{5 x}{2}}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+\frac{2 c_{2} \mathrm{e}^{3 x}}{5} \tag{1}
\end{equation*}
$$

Figure 560: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+\frac{2 c_{2} \mathrm{e}^{3 x}}{5}
$$

Verified OK.

9.4.3 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime}-7 y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{7 y^{\prime}}{2}-\frac{3 y}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{7 y^{\prime}}{2}+\frac{3 y}{2}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{7}{2} r+\frac{3}{2}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-1)(r-3)}{2}=0
$$

- Roots of the characteristic polynomial
$r=\left(3, \frac{1}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{3 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(2*diff(y(x),x$2)-7*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 24
DSolve[2*y''[x]-7*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{x / 2}+c_{2} e^{3 x}
$$

9.5 problem 5

9.5.1 Solving as second order linear constant coeff ode 2398

$\begin{array}{ll}\text { 9.5.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 2400\end{array}$
9.5.3 Solving using Kovacic algorithm 2401
9.5.4 Maple step by step solution . 2405

Internal problem ID [199]
Internal file name [OUTPUT/199_Sunday_June_05_2022_01_36_38_AM_61218353/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

9.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

Figure 561: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

Verified OK.

9.5.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(y \mathrm{e}^{3 x}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(y \mathrm{e}^{3 x}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(y \mathrm{e}^{3 x}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+\mathrm{e}^{-3 x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-3 x}+\mathrm{e}^{-3 x} c_{2} \tag{1}
\end{equation*}
$$

Figure 562: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-3 x}+\mathrm{e}^{-3 x} c_{2}
$$

Verified OK.

9.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 407: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 563: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

Verified OK.

9.5.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+6 r+9=0$
- Factor the characteristic polynomial
$(r+3)^{2}=0$
- Root of the characteristic polynomial

$$
r=-3
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve[y'' $[x]+6 * y$ ' $[x]+9 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(c_{2} x+c_{1}\right)
$$

9.6 problem 6

9.6.1 Solving as second order linear constant coeff ode

9.6.2 Solving using Kovacic algorithm 2409
9.6.3 Maple step by step solution 2413

Internal problem ID [200]
Internal file name [OUTPUT/200_Sunday_June_05_2022_01_36_39_AM_34186377/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+5 y^{\prime}+5 y=0
$$

9.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(5)} \\
& =-\frac{5}{2} \pm \frac{\sqrt{5}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{5}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} e^{\left(-\frac{5}{2}-\frac{\sqrt{5}}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{5}}{2}\right) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{5}}{2}\right) x} \tag{1}
\end{equation*}
$$

Figure 564: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{5}}{2}\right) x}
$$

Verified OK.

9.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{5}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=5 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{5 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 409: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{5}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x \sqrt{5}}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{(5+\sqrt{5}) x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{5} \mathrm{e}^{x \sqrt{5}}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{(5+\sqrt{5}) x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{(5+\sqrt{5}) x}{2}}\left(\frac{\sqrt{5} \mathrm{e}^{x \sqrt{5}}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{(5+\sqrt{5}) x}{2}}+\frac{c_{2} \sqrt{5} \mathrm{e}^{\frac{(-5+\sqrt{5}) x}{2}}}{5} \tag{1}
\end{equation*}
$$

Figure 565: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{(5+\sqrt{5}) x}{2}}+\frac{c_{2} \sqrt{5} \mathrm{e}^{\frac{(-5+\sqrt{5}) x}{2}}}{5}
$$

Verified OK.

9.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+5 y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+5 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{(-5) \pm(\sqrt{5})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{5}{2}-\frac{\sqrt{5}}{2},-\frac{5}{2}+\frac{\sqrt{5}}{2}\right)$
- 1 st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{5}}{2}\right) x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{5}}{2}\right) x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{5}}{2}\right) x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve(diff $(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{\frac{(-5+\sqrt{5}) x}{2}}+c_{2} \mathrm{e}^{-\frac{(5+\sqrt{5}) x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 35
DSolve[y''[x]+5*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-\frac{1}{2}(5+\sqrt{5}) x}\left(c_{2} e^{\sqrt{5} x}+c_{1}\right)
$$

9.7 problem 7

9.7.1 Solving as second order linear constant coeff ode 2415
9.7.2 Solving as linear second order ode solved by an integrating factor ode 2417
9.7.3 Solving using Kovacic algorithm 2418
9.7.4 Maple step by step solution . 2422

Internal problem ID [201]
Internal file name [OUTPUT/201_Sunday_June_05_2022_01_36_39_AM_83462194/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 7 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
$$

9.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=-12, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-12 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-12 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=-12, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{12}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(-12)^{2}-(4)(4)(9)} \\
& =\frac{3}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{3}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 566: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}
$$

Verified OK.

9.7.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-3$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-3 d x} \\
& =\mathrm{e}^{-\frac{3 x}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
& (M(x) y)^{\prime \prime}=0 \\
& \left(\mathrm{e}^{-\frac{3 x}{2}} y\right)^{\prime \prime}=0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{3 x}{2}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{3 x}{2}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-\frac{3 x}{2}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 567: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
$$

Verified OK.

9.7.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-12 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=-12 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 411: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-12}{4} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-12}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{3 x}{2}}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 568: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}
$$

Verified OK.

9.7.4 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=3 y^{\prime}-\frac{9 y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-3 y^{\prime}+\frac{9 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}-3 r+\frac{9}{4}=0
$$

- Factor the characteristic polynomial
$\frac{(2 r-3)^{2}}{4}=0$
- Root of the characteristic polynomial
$r=\frac{3}{2}$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{3 x}{2}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{\frac{3 x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(4*diff(y(x),x$2)-12*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{3 x}{2}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[4*y''[x]-12*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{3 x / 2}\left(c_{2} x+c_{1}\right)
$$

9.8 problem 8

$$
\text { 9.8.1 Solving as second order linear constant coeff ode } 2424
$$

9.8.2 Solving using Kovacic algorithm 2426
9.8.3 Maple step by step solution . 2430

Internal problem ID [202]
Internal file name [OUTPUT/202_Sunday_June_05_2022_01_36_40_AM_18678395/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-6 y^{\prime}+13 y=0
$$

9.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(13)} \\
& =3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+2 i \\
& \lambda_{2}=3-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3+2 i \\
& \lambda_{2}=3-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Figure 569: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Verified OK.

9.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-6 y^{\prime}+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 413: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{3 x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Figure 570: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (2 x)}{2}
$$

Verified OK.

9.8.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-6 y^{\prime}+13 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-6 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{6 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(3-2 \mathrm{I}, 3+2 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{3 x} \cos (2 x)$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x} \sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{3 x} \cos (2 x)+c_{2} \mathrm{e}^{3 x} \sin (2 x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve($\operatorname{diff}(y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+13 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{3 x}\left(\sin (2 x) c_{1}+c_{2} \cos (2 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 26
DSolve[y'' $[x]-6 * y$ ' $[x]+13 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{3 x}\left(c_{2} \cos (2 x)+c_{1} \sin (2 x)\right)
$$

9.9 problem 9

9.9.1 Solving as second order linear constant coeff ode 2432

9.9.2 Solving using Kovacic algorithm 2434
9.9.3 Maple step by step solution . 2438

Internal problem ID [203]
Internal file name [OUTPUT/203_Sunday_June_05_2022_01_36_40_AM_20550739/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+8 y^{\prime}+25 y=0
$$

9.9.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=8, C=25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+8 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+8 \lambda+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=8, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{8^{2}-(4)(1)(25)} \\
& =-4 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-4+3 i \\
\lambda_{2}=-4-3 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-4+3 i \\
\lambda_{2}=-4-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-4$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-4 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-4 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right) \tag{1}
\end{equation*}
$$

Figure 571: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-4 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Verified OK.

9.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+8 y^{\prime}+25 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=8 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 415: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d x} \\
& =z_{1} e^{-4 x} \\
& =z_{1}\left(\mathrm{e}^{-4 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{8}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-8 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{-4 x} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x} \cos (3 x)+\frac{c_{2} \mathrm{e}^{-4 x} \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 572: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 x} \cos (3 x)+\frac{c_{2} \mathrm{e}^{-4 x} \sin (3 x)}{3}
$$

Verified OK.

9.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+8 y^{\prime}+25 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+8 r+25=0$
- Use quadratic formula to solve for r
$r=\frac{(-8) \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-4-3 \mathrm{I},-4+3 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-4 x} \cos (3 x)$
- $\quad 2 \mathrm{nd}$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-4 x} \sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-4 x} \cos (3 x)+c_{2} \mathrm{e}^{-4 x} \sin (3 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve($\operatorname{diff}(y(x), x \$ 2)+8 * \operatorname{diff}(y(x), x)+25 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-4 x}\left(c_{1} \sin (3 x)+c_{2} \cos (3 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 26
DSolve $\left[y^{\prime \prime}[x]+8 * y\right.$ ' $[x]+25 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow e^{-4 x}\left(c_{2} \cos (3 x)+c_{1} \sin (3 x)\right)
$$

9.10 problem 21

9.10.1 Existence and uniqueness analysis 2440
9.10.2 Solving as second order linear constant coeff ode 2441
9.10.3 Solving using Kovacic algorithm 2443
9.10.4 Maple step by step solution . 2447

Internal problem ID [204]
Internal file name [OUTPUT/204_Sunday_June_05_2022_01_36_41_AM_14205893/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0
$$

With initial conditions

$$
\left[y(0)=7, y^{\prime}(0)=11\right]
$$

9.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-4 \\
q(x) & =3 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.10.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(3)} \\
& =2 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=2+1 \\
& \lambda_{2}=2-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}
$$

substituting $y^{\prime}=11$ and $x=0$ in the above gives

$$
\begin{equation*}
11=3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

.
(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x}
$$

Verified OK.

9.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 417: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-4}{2} \frac{4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{3 x}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+\frac{3 c_{2} \mathrm{e}^{3 x}}{2}
$$

substituting $y^{\prime}=11$ and $x=0$ in the above gives

$$
\begin{equation*}
11=c_{1}+\frac{3 c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x}
$$

Verified OK.

9.10.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y^{\prime}+3 y=0, y(0)=7,\left.y^{\prime}\right|_{\{x=0\}}=11\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-4 r+3=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(1,3)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{3 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{3 x}$

- Use initial condition $y(0)=7$

$$
7=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+3 c_{2} \mathrm{e}^{3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=11$
$11=c_{1}+3 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=5, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x}
$$

- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{3 x}+5 \mathrm{e}^{x}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve([diff $(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+3 * y(x)=0, y(0)=7, D(y)(0)=11], y(x)$, singsol=all)

$$
y(x)=5 \mathrm{e}^{x}+2 \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime \prime}[x]-4 * y\right.\right.$ ' $\left.[x]+3 * y[x]==0,\left\{y[0]==7, y^{\prime}[0]==11\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ Tru

$$
y(x) \rightarrow e^{x}\left(2 e^{2 x}+5\right)
$$

9.11 problem 22

9.11.1 Existence and uniqueness analysis 2450
9.11.2 Solving as second order linear constant coeff ode 2451
9.11.3 Solving using Kovacic algorithm 2454
9.11.4 Maple step by step solution . 2458

Internal problem ID [205]
Internal file name [OUTPUT/205_Sunday_June_05_2022_01_36_42_AM_62818003/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
9 y^{\prime \prime}+6 y^{\prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=4\right]
$$

9.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{3} \\
q(x) & =\frac{4}{9} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{3}+\frac{4 y}{9}=0
$$

The domain of $p(x)=\frac{2}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{4}{9}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.11.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=9, B=6, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
9 \lambda^{2}+6 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=6, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{6^{2}-(4)(9)(4)} \\
& =-\frac{1}{3} \pm \frac{i \sqrt{3}}{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{3}+\frac{i \sqrt{3}}{3} \\
& \lambda_{2}=-\frac{1}{3}-\frac{i \sqrt{3}}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{3}+\frac{i \sqrt{3}}{3} \\
& \lambda_{2}=-\frac{1}{3}-\frac{i \sqrt{3}}{3}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{3}$ and $\beta=\frac{\sqrt{3}}{3}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{3}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{3}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{3}\right)\right)}{3}+\mathrm{e}^{-\frac{x}{3}}\left(-\frac{c_{1} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)}{3}+\frac{c_{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{3}\right)}{3}\right)
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=-\frac{c_{1}}{3}+\frac{\sqrt{3} c_{2}}{3} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=5 \sqrt{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 \mathrm{e}^{-\frac{x}{3}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)
$$

Which simplifies to

$$
y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

9.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9 y^{\prime \prime}+6 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =9 \\
B & =6 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{3} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=3
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{z(x)}{3} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 419: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1}{3}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{3}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{9} d x} \\
& =z_{1} e^{-\frac{x}{3}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{9} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{2 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\sqrt{3} \tan \left(\frac{\sqrt{3} x}{3}\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)\left(\sqrt{3} \tan \left(\frac{\sqrt{3} x}{3}\right)\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)+c_{2} \mathrm{e}^{-\frac{x}{3}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)}{3}-\frac{c_{1} \mathrm{e}^{-\frac{x}{3}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)}{3}-\frac{c_{2} \mathrm{e}^{-\frac{x}{3}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)}{3}+c_{2} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)$
substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=-\frac{c_{1}}{3}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 \mathrm{e}^{-\frac{x}{3}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)
$$

Which simplifies to

$$
y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

9.11.4 Maple step by step solution

Let's solve

$$
\left[9 y^{\prime \prime}+6 y^{\prime}+4 y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{3}-\frac{4 y}{9}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{3}+\frac{4 y}{9}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+\frac{2}{3} r+\frac{4}{9}=0
$$

- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{2}{3}\right) \pm\left(\sqrt{-\frac{4}{3}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{3}-\frac{\mathrm{I} \sqrt{3}}{3},-\frac{1}{3}+\frac{\mathrm{I} \sqrt{3}}{3}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)$
- 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{\sqrt{3} x}{3}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)+\mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{\sqrt{3} x}{3}\right) c_{2}$
Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)+\mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{\sqrt{3} x}{3}\right) c_{2}$
- Use initial condition $y(0)=3$

$$
3=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{3} x}{3}\right)}{3}-\frac{c_{1} \mathrm{e}^{-\frac{x}{3}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)}{3}-\frac{\mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{\sqrt{3} x}{3}\right) c_{2}}{3}+\frac{\mathrm{e}^{-\frac{x}{3} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{3}\right) c_{2}}}{3}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=4$
$4=-\frac{c_{1}}{3}+\frac{\sqrt{3} c_{2}}{3}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=5 \sqrt{3}\right\}$
- Substitute constant values into general solution and simplify
$y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}}$
- \quad Solution to the IVP
$y=\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right) \mathrm{e}^{-\frac{x}{3}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

```
dsolve([9*diff (y (x),x$2)+6*diff (y (x),x)+4*y(x)=0,y(0)=3, D(y)(0) = 4],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{3}}\left(5 \sqrt{3} \sin \left(\frac{\sqrt{3} x}{3}\right)+3 \cos \left(\frac{\sqrt{3} x}{3}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 39
DSolve $[\{9 * y$ '' $[x]+6 * y$ ' $[x]+4 * y[x]==0,\{y[0]==3, y$ ' $[0]==4\}\}, y[x], x$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow e^{-x / 3}\left(5 \sqrt{3} \sin \left(\frac{x}{\sqrt{3}}\right)+3 \cos \left(\frac{x}{\sqrt{3}}\right)\right)
$$

9.12 problem 23

9.12.1 Existence and uniqueness analysis 2461
9.12.2 Solving as second order linear constant coeff ode 2462
9.12.3 Solving using Kovacic algorithm 2464
9.12.4 Maple step by step solution . 2469

Internal problem ID [206]
Internal file name [OUTPUT/206_Sunday_June_05_2022_01_36_43_AM_21669027/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-6 y^{\prime}+25 y=0
$$

With initial conditions

$$
\left[y(0)=4, y^{\prime}(0)=1\right]
$$

9.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-6 \\
q(x) & =25 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-6 y^{\prime}+25 y=0
$$

The domain of $p(x)=-6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=25$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.12.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(25)} \\
& =3 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=3$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 \mathrm{e}^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)+\mathrm{e}^{3 x}\left(-4 c_{1} \sin (4 x)+4 c_{2} \cos (4 x)\right)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=3 c_{1}+4 c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=-\frac{11}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4}
$$

Verified OK.

9.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-6 y^{\prime}+25 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 421: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (4 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x} \cos (4 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x} \cos (4 x)\right)+c_{2}\left(\mathrm{e}^{3 x} \cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (4 x)}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x} \cos (4 x)-4 c_{1} \mathrm{e}^{3 x} \sin (4 x)+\frac{3 c_{2} \mathrm{e}^{3 x} \sin (4 x)}{4}+c_{2} \mathrm{e}^{3 x} \cos (4 x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=-11
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{3 x} \cos (4 x)-\frac{11 \mathrm{e}^{3 x} \sin (4 x)}{4}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4}
$$

Verified OK.

9.12.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-6 y^{\prime}+25 y=0, y(0)=4,\left.y^{\prime}\right|_{\{x=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}-6 r+25=0
$$

- Use quadratic formula to solve for r
$r=\frac{6 \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(3-4 \mathrm{I}, 3+4 \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{3 x} \cos (4 x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x} \sin (4 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+c_{2} \mathrm{e}^{3 x} \sin (4 x)$
Check validity of solution $y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+c_{2} \mathrm{e}^{3 x} \sin (4 x)$
- Use initial condition $y(0)=4$
$4=c_{1}$
- Compute derivative of the solution
$y^{\prime}=3 c_{1} \mathrm{e}^{3 x} \cos (4 x)-4 c_{1} \mathrm{e}^{3 x} \sin (4 x)+3 c_{2} \mathrm{e}^{3 x} \sin (4 x)+4 c_{2} \mathrm{e}^{3 x} \cos (4 x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=3 c_{1}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=4, c_{2}=-\frac{11}{4}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{3 x}(16 \cos (4 x)-11 \sin (4 x))}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve([diff(y(x),x$2)-6*diff (y (x),x)+25*y(x)=0,y(0) = 4, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{\mathrm{e}^{3 x}(11 \sin (4 x)-16 \cos (4 x))}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 27

```
DSolve[{y''[x]-6*y'[x]+25*y[x]==0,{y[0]==4,y'[0]==1}},y[x],x,IncludeSingularSolutions -> Tru
```

$$
y(x) \rightarrow \frac{1}{4} e^{3 x}(16 \cos (4 x)-11 \sin (4 x))
$$

9.13 problem 45

9.13.1 Solving as second order linear constant coeff ode 2471
9.13.2 Solving using Kovacic algorithm 2473
9.13.3 Maple step by step solution . 2477

Internal problem ID [207]
Internal file name [OUTPUT/207_Sunday_June_05_2022_01_36_44_AM_77074291/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 45 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 i y^{\prime}+3 y=0
$$

9.13.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2 i, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 i \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 i \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2 i, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2 i^{2}-(4)(1)(3)} \\
& =i \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=i+2 i \\
& \lambda_{2}=i-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 i \\
\lambda_{2} & =-i
\end{aligned}
$$

The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is

$$
\begin{gathered}
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
=c_{1} e^{3 i x}+c_{2} e^{-i x}
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 i x}+c_{2} \mathrm{e}^{-i x} \tag{1}
\end{equation*}
$$

Figure 579: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 i x}+c_{2} \mathrm{e}^{-i x}
$$

Verified OK.

9.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 i y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 i \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 423: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 i}{1} d x} \\
& =z_{1} e^{i x} \\
& =z_{1}\left(\mathrm{e}^{i x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x) \mathrm{e}^{i x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 i}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 i x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (2 x) \mathrm{e}^{i x}\right)+c_{2}\left(\cos (2 x) \mathrm{e}^{i x}\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x) \mathrm{e}^{i x}+\frac{c_{2} \sin (2 x) \mathrm{e}^{i x}}{2} \tag{1}
\end{equation*}
$$

Figure 580: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x) \mathrm{e}^{i x}+\frac{c_{2} \sin (2 x) \mathrm{e}^{i x}}{2}
$$

Verified OK.

9.13.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-2 \mathrm{I} y^{\prime}+3 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-2 \mathrm{I} r+3=0$
- Factor the characteristic polynomial
$-(r+\mathrm{I})(-r+3 \mathrm{I})=0$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos (x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19
dsolve(diff $(y(x), x \$ 2)-2 * I * \operatorname{diff}(y(x), x)+3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{3 i x}+c_{2} \mathrm{e}^{-i x}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 26
DSolve[y''[x]-2*I*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-i x}\left(c_{1} e^{4 i x}+c_{2}\right)
$$

9.14 problem 46

9.14.1 Solving as second order linear constant coeff ode 2479
9.14.2 Solving using Kovacic algorithm 2481
9.14.3 Maple step by step solution . 2485

Internal problem ID [208]
Internal file name [OUTPUT/208_Sunday_June_05_2022_01_36_44_AM_46166529/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 46.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-i y^{\prime}+6 y=0
$$

9.14.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-i, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-i \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-i \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-i, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-i^{2}-(4)(1)(6)} \\
& =\frac{i}{2} \pm \frac{5 i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{i}{2}+\frac{5 i}{2} \\
\lambda_{2} & =\frac{i}{2}-\frac{5 i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 i \\
\lambda_{2} & =-2 i
\end{aligned}
$$

The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is

$$
\begin{array}{r}
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
=c_{1} e^{3 i x}+c_{2} e^{-2 i x}
\end{array}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 i x}+c_{2} \mathrm{e}^{-2 i x} \tag{1}
\end{equation*}
$$

Figure 581: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 i x}+c_{2} \mathrm{e}^{-2 i x}
$$

Verified OK.

9.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-i y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-i \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-25 \\
t & =4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 425: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{5 x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-i}{1} d x} \\
& =z_{1} e^{\frac{i x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{i x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos \left(\frac{5 x}{2}\right) \mathrm{e}^{\frac{i x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-i}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{i x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \tan \left(\frac{5 x}{2}\right)}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos \left(\frac{5 x}{2}\right) \mathrm{e}^{\frac{i x}{2}}\right)+c_{2}\left(\cos \left(\frac{5 x}{2}\right) \mathrm{e}^{\frac{i x}{2}}\left(\frac{2 \tan \left(\frac{5 x}{2}\right)}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{5 x}{2}\right) \mathrm{e}^{\frac{i x}{2}}+\frac{2 c_{2} \sin \left(\frac{5 x}{2}\right) \mathrm{e}^{\frac{i x}{2}}}{5} \tag{1}
\end{equation*}
$$

Figure 582: Slope field plot

Verification of solutions

$$
y=c_{1} \cos \left(\frac{5 x}{2}\right) \mathrm{e}^{\frac{i x}{2}}+\frac{2 c_{2} \sin \left(\frac{5 x}{2}\right) \mathrm{e}^{\frac{i x}{2}}}{5}
$$

Verified OK.

9.14.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-\mathrm{I} y^{\prime}+6 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-\mathrm{I} r+6=0
$$

- Factor the characteristic polynomial

$$
-(-r+3 \mathrm{I})(r+2 \mathrm{I})=0
$$

- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve(diff $(y(x), x \$ 2)-I * \operatorname{diff}(y(x), x)+6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{3 i x}+c_{2} \mathrm{e}^{-2 i x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 26
DSolve [y' $\quad[\mathrm{x}]-\mathrm{I} * \mathrm{y}^{\prime}[\mathrm{x}]+6 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 i x}\left(c_{1} e^{5 i x}+c_{2}\right)
$$

9.15 problem 47

9.15.1 Solving as second order linear constant coeff ode 2487
9.15.2 Solving as second order ode can be made integrable ode 2489
9.15.3 Solving using Kovacic algorithm 2492
9.15.4 Maple step by step solution . 2496

Internal problem ID [209]
Internal file name [OUTPUT/209_Sunday_June_05_2022_01_36_45_AM_17138043/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-(-2+2 i \sqrt{3}) y=0
$$

9.15.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=i, B=0, C=2 i+2 \sqrt{3}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
i \lambda^{2} \mathrm{e}^{\lambda x}+(2 i+2 \sqrt{3}) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
i \lambda^{2}+2 i+2 \sqrt{3}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=i, B=0, C=2 i+2 \sqrt{3}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(i)} \pm \frac{1}{(2)(i)} \sqrt{0^{2}-(4)(i)(2 i+2 \sqrt{3})} \\
& = \pm-i \sqrt{-i(2 i+2 \sqrt{3})}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+-i \sqrt{-i(2 i+2 \sqrt{3})} \\
& \lambda_{2}=--i \sqrt{-i(2 i+2 \sqrt{3})}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-i \sqrt{3}-1 \\
& \lambda_{2}=1+i \sqrt{3}
\end{aligned}
$$

The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is

$$
\begin{aligned}
y & =c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& =c_{1} e^{(-i \sqrt{3}-1) x}+c_{2} e^{(1+i \sqrt{3}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{(-i \sqrt{3}-1) x}+c_{2} \mathrm{e}^{(1+i \sqrt{3}) x} \tag{1}
\end{equation*}
$$

Figure 583: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{(-i \sqrt{3}-1) x}+c_{2} \mathrm{e}^{(1+i \sqrt{3}) x}
$$

Verified OK.
9.15.2 Solving as second order ode can be made integrable ode Multiplying the ode by y^{\prime} gives

$$
i y^{\prime} y^{\prime \prime}+(2 i+2 \sqrt{3}) y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(i y^{\prime} y^{\prime \prime}+(2 i+2 \sqrt{3}) y^{\prime} y\right) d x=0 \\
\frac{i y^{\prime 2}}{2}+\frac{(2 i+2 \sqrt{3}) y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=-i \sqrt{2} \sqrt{-i\left(i y^{2}+y^{2} \sqrt{3}-c_{1}\right)} \tag{1}\\
& y^{\prime}=i \sqrt{2} \sqrt{-i\left(i y^{2}+y^{2} \sqrt{3}-c_{1}\right)} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
& \int \frac{i \sqrt{2}}{2 \sqrt{-i\left(i y^{2}+y^{2} \sqrt{3}-c_{1}\right)}} d y=\int d x \\
& \frac{i \sqrt{2} \arctan \left(\frac{\sqrt{i(\sqrt{3}+i)} y}{\sqrt{-i(\sqrt{3}+i) y^{2}+i c_{1}}}\right)}{2 \sqrt{i(\sqrt{3}+i)}}=x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{i \sqrt{2}}{2 \sqrt{-i\left(i y^{2}+y^{2} \sqrt{3}-c_{1}\right)}} d y & =\int d x \\
-\frac{i \sqrt{2} \arctan \left(\frac{\sqrt{i(\sqrt{3}+i)} y}{\sqrt{-i(\sqrt{3}+i) y^{2}+i c_{1}}}\right)}{2 \sqrt{i(\sqrt{3}+i)}} & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 584: Slope field plot

Verification of solutions

$$
\frac{i \sqrt{2} \arctan \left(\frac{\sqrt{i(\sqrt{3}+i)} y}{\sqrt{-i(\sqrt{3}+i) y^{2}+i c_{1}}}\right)}{2 \sqrt{i(\sqrt{3}+i)}}=x+c_{2}
$$

Verified OK.

$$
-\frac{i \sqrt{2} \arctan \left(\frac{\sqrt{i(\sqrt{3}+i)} y}{\sqrt{-i(\sqrt{3}+i) y^{2}+i c_{1}}}\right)}{2 \sqrt{i(\sqrt{3}+i)}}=c_{3}+x
$$

Verified OK.

9.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
i y^{\prime \prime}+(2 i+2 \sqrt{3}) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=i \\
& B=0 \tag{3}\\
& C=2 i+2 \sqrt{3}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2 i(\sqrt{3}+i)}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 i(\sqrt{3}+i) \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=(2 i(\sqrt{3}+i)) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 427: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=2 i(\sqrt{3}+i)$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\sqrt{2} \sqrt{i(\sqrt{3}+i)} x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{2} \sqrt{i(\sqrt{3}+i)} x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\sqrt{2} \sqrt{i \sqrt{3}-1} x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\sqrt{2} \sqrt{i \sqrt{3}-1} x} \int \frac{1}{\mathrm{e}^{2 x \sqrt{-2+2 i \sqrt{3}}} d x} \\
& =\mathrm{e}^{\sqrt{2} \sqrt{i \sqrt{3}-1} x}\left(\frac{(i \sqrt{3}-1) \mathrm{e}^{-2(1+i \sqrt{3}) x}}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{2} \sqrt{i \sqrt{3}-1} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{2} \sqrt{i \sqrt{3}-1} x}\left(\frac{(i \sqrt{3}-1) \mathrm{e}^{-2(1+i \sqrt{3}) x}}{8}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{2} \sqrt{i \sqrt{3}-1} x}+\frac{c_{2}(i \sqrt{3}-1) \mathrm{e}^{-(1+i \sqrt{3}) x}}{8} \tag{1}
\end{equation*}
$$

Figure 585: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{2} \sqrt{i \sqrt{3}-1} x}+\frac{c_{2}(i \sqrt{3}-1) \mathrm{e}^{-(1+i \sqrt{3}) x}}{8}
$$

Verified OK.

9.15.4 Maple step by step solution

Let's solve
$\mathrm{I} y^{\prime \prime}+(2 \mathrm{I}+2 \sqrt{3}) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=2 \mathrm{I}(\sqrt{3}+\mathrm{I}) y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-2 \mathrm{I}(\sqrt{3}+\mathrm{I}) y=0$
- Characteristic polynomial of ODE
$r^{2}-2 \mathrm{I}(\sqrt{3}+\mathrm{I})=0$
- Factor the characteristic polynomial
$-(r+1+\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-r+1)=0$
- Roots of the characteristic polynomial
$r=(1+\mathrm{I} \sqrt{3},-\mathrm{I} \sqrt{3}-1)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x} \cos (\sqrt{3} x)$
- 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (\sqrt{3} x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{x} \cos (\sqrt{3} x)+c_{2} \mathrm{e}^{x} \sin (\sqrt{3} x)$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$2)=(-2+2*I*sqrt(3))*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-(1+i \sqrt{3}) x}+c_{2} \mathrm{e}^{(1+i \sqrt{3}) x}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 41
DSolve[y''[x]==(-2+2*I*Sqrt[3])*y[x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} e^{x+i \sqrt{3} x}+c_{2} e^{(-1-i \sqrt{3}) x}
$$

9.16 problem 52

9.16.1 Solving as second order euler ode ode 2498
9.16.2 Solving as second order change of variable on x method 2 ode . 2500
9.16.3 Solving as second order change of variable on x method 1 ode . 2502
9.16.4 Solving as second order change of variable on y method 2 ode . 2504
9.16.5 Solving using Kovacic algorithm 2507
9.16.6 Maple step by step solution . 2512

Internal problem ID [210]
Internal file name [OUTPUT/210_Sunday_June_05_2022_01_36_46_AM_41684352/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 52 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_u__method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
```

 x)]•]
 $$
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0
$$

9.16.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+9 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+9 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+9=0
$$

Or

$$
\begin{equation*}
r^{2}+9=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 i \\
& r_{2}=3 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-3$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-3$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-3 i \ln (x)}+c_{2} e^{3 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

9.16.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{9}{x^{2}}}{\frac{1}{x^{2}}} \\
& =9 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+9 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+9 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (3 \tau)+c_{2} \sin (3 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (3 \tau)+c_{2} \sin (3 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

9.16.3 Solving as second order change of variable on x method 1 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{3 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{3 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 3 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

9.16.4 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{9}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{6 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+6 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+6 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-6 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-6 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-6 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-6 i}{x} d x \\
\ln (u) & =(-1-6 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-6 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-6 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-6 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-6 i}}{6}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i} \\
& =x^{3 i} c_{2}+\frac{i x^{-3 i} c_{1}}{6}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i}
$$

Verified OK.

9.16.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-37}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-37 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{37}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 429: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{37}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{37}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{37}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-3 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-3 i-\left(\frac{1}{2}-3 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-3 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-3 i}{x} \\
& =\frac{\frac{1}{2}-3 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-3 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+3 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-3 i}{x}\right)^{2}-\left(-\frac{37}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-3 i} x \\
& =x^{\frac{1}{2}-3 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-3 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{6 i}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-3 i}\right)+c_{2}\left(x^{-3 i}\left(-\frac{i x^{6 i}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6}
$$

Verified OK.

9.16.6 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{9 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{9 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)+9 y(t)=0$
- Simplify
$\frac{d^{2}}{d t^{2}} y(t)+9 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\cos (3 t)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\sin (3 t)
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

- Change variables back using $t=\ln (x)$
$y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff (y (x),x$2)+x*diff (y(x),x)+9*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (3 \ln (x))+c_{2} \cos (3 \ln (x))
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}\right.$ ' $[x]+x * y$ ' $[x]+9 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos (3 \log (x))+c_{2} \sin (3 \log (x))
$$

9.17 problem 53

9.17.1 Solving as second order euler ode ode 2515
9.17.2 Solving as second order change of variable on x method 2 ode . 2517
9.17.3 Solving as second order change of variable on x method 1 ode . 2520
9.17.4 Solving as second order change of variable on y method 2 ode . 2522
9.17.5 Solving using Kovacic algorithm 2524
9.17.6 Maple step by step solution . 2529

Internal problem ID [211]
Internal file name [OUTPUT/211_Sunday_June_05_2022_01_36_46_AM_36350048/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.3, second order linear equations. Page 323
Problem number: 53 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_u__method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}+7 y^{\prime} x+25 y=0
$$

9.17.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+7 x r x^{r-1}+25 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+7 r x^{r}+25 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+7 r+25=0
$$

Or

$$
\begin{equation*}
r^{2}+6 r+25=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3-4 i \\
& r_{2}=-3+4 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=-3$ and $\beta=-4$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=-3, \beta=-4$, the above becomes

$$
y=x^{-3}\left(c_{1} e^{-4 i \ln (x)}+c_{2} e^{4 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=\frac{1}{x^{3}}\left(c_{1} \cos (4 \ln (x))+c_{2} \sin (4 \ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (4 \ln (x))+c_{2} \sin (4 \ln (x))}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (4 \ln (x))+c_{2} \sin (4 \ln (x))}{x^{3}}
$$

Verified OK.

9.17.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+7 y^{\prime} x+25 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{7}{x} \\
& q(x)=\frac{25}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{7}{x} d x\right)} d x \\
& =\int e^{-7 \ln (x)} d x \\
& =\int \frac{1}{x^{7}} d x \\
& =-\frac{1}{6 x^{6}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{25}{x^{2}}}{\frac{1}{x^{14}}} \\
& =25 x^{12} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+25 x^{12} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
25 x^{12}=\frac{25}{36 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{25 y(\tau)}{36 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
36\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+25 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
36 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+25 \tau^{r}=0
$$

Simplifying gives

$$
36 r(r-1) \tau^{r}+0 \tau^{r}+25 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
36 r(r-1)+0+25=0
$$

Or

$$
\begin{equation*}
36 r^{2}-36 r+25=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{2 i}{3} \\
& r_{2}=\frac{1}{2}+\frac{2 i}{3}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{2}{3}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{2}{3}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{2 i \ln (\tau)}{3}}+c_{2} e^{\frac{2 i \ln (\tau)}{3}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{2 \ln (\tau)}{3}\right)+c_{2} \sin \left(\frac{2 \ln (\tau)}{3}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in
$y=\frac{\left(c_{1} \cos \left(-\frac{2 \ln (2)}{3}-\frac{2 \ln (3)}{3}+\frac{2 \ln \left(-\frac{1}{x^{6}}\right)}{3}\right)+c_{2} \sin \left(-\frac{2 \ln (2)}{3}-\frac{2 \ln (3)}{3}+\frac{2 \ln \left(-\frac{1}{x^{6}}\right)}{3}\right)\right) \sqrt{6} \sqrt{-\frac{1}{x^{6}}}}{6}$

Summary

The solution(s) found are the following
y
$=\frac{\left(c_{1} \cos \left(-\frac{2 \ln (2)}{3}-\frac{2 \ln (3)}{3}+\frac{2 \ln \left(-\frac{1}{x^{6}}\right)}{3}\right)+c_{2} \sin \left(-\frac{2 \ln (2)}{3}-\frac{2 \ln (3)}{3}+\frac{2 \ln \left(-\frac{1}{x^{6}}\right)}{3}\right)\right) \sqrt{6} \sqrt{-\frac{1}{x^{6}}}}{6}$

Verification of solutions

y
$=\frac{\left(c_{1} \cos \left(-\frac{2 \ln (2)}{3}-\frac{2 \ln (3)}{3}+\frac{2 \ln \left(-\frac{1}{x^{6}}\right)}{3}\right)+c_{2} \sin \left(-\frac{2 \ln (2)}{3}-\frac{2 \ln (3)}{3}+\frac{2 \ln \left(-\frac{1}{x^{6}}\right)}{3}\right)\right) \sqrt{6} \sqrt{-\frac{1}{x^{6}}}}{6}$
Verified OK.

9.17.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+7 y^{\prime} x+25 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{7}{x} \\
& q(x)=\frac{25}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{5 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{5}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{5}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{7}{x} \frac{5 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{5 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{6 c}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 c\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 c \tau}{5}}\left(c_{1} \cos \left(\frac{4 c \tau}{5}\right)+c_{2} \sin \left(\frac{4 c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 5 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{5 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cos (4 \ln (x))+c_{2} \sin (4 \ln (x))}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (4 \ln (x))+c_{2} \sin (4 \ln (x))}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (4 \ln (x))+c_{2} \sin (4 \ln (x))}{x^{3}}
$$

Verified OK.

9.17.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+7 y^{\prime} x+25 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{7}{x} \\
& q(x)=\frac{25}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{7 n}{x^{2}}+\frac{25}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-3+4 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-6+8 i}{x}+\frac{7}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+8 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+8 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-8 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-8 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-8 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-8 i}{x} d x \\
\ln (u) & =(-1-8 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-8 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-8 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-8 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-8 i}}{8}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-8 i}}{8}+c_{2}\right) x^{-3+4 i} \\
& =c_{2} x^{-3+4 i}+\frac{i c_{1} x^{-3-4 i}}{8}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-8 i}}{8}+c_{2}\right) x^{-3+4 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} x^{-8 i}}{8}+c_{2}\right) x^{-3+4 i}
$$

Verified OK.

9.17.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}+7 y^{\prime} x+25 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=7 x \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-65}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-65 \\
t & =4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{65}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 431: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{65}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{65}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+4 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-4 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{65}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{65}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+4 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-4 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{65}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+4 i$	$\frac{1}{2}-4 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+4 i$	$\frac{1}{2}-4 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-4 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-4 i-\left(\frac{1}{2}-4 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-4 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-4 i}{x} \\
& =\frac{\frac{1}{2}-4 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-4 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+4 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-4 i}{x}\right)^{2}-\left(-\frac{65}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-4 i} x d x \\
& =x^{\frac{1}{2}-4 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7 x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{7 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{7}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-3-4 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-7 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{8 i}}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-3-4 i}\right)+c_{2}\left(x^{-3-4 i}\left(-\frac{i x^{8 i}}{8}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{-3-4 i}-\frac{i c_{2} x^{-3+4 i}}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{-3-4 i}-\frac{i c_{2} x^{-3+4 i}}{8}
$$

Verified OK.

9.17.6 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+7 y^{\prime} x+25 y=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{7 y^{\prime}}{x}-\frac{25 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{7 y^{\prime}}{x}+\frac{25 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+7 y^{\prime} x+25 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+7 \frac{d}{d t} y(t)+25 y(t)=0$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+6 \frac{d}{d t} y(t)+25 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}+6 r+25=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-3-4 \mathrm{I},-3+4 \mathrm{I})$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-3 t} \cos (4 t)$
- 2nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{-3 t} \sin (4 t)$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-3 t} \cos (4 t)+c_{2} \mathrm{e}^{-3 t} \sin (4 t)$
- Change variables back using $t=\ln (x)$
$y=\frac{c_{1} \cos (4 \ln (x))}{x^{3}}+\frac{c_{2} \sin (4 \ln (x))}{x^{3}}$
- \quad Simplify
$y=\frac{c_{1} \cos (4 \ln (x))}{x^{3}}+\frac{c_{2} \sin (4 \ln (x))}{x^{3}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+7*x*\operatorname{diff}(y(x),x)+25*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} \sin (4 \ln (x))+c_{2} \cos (4 \ln (x))}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 26
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+7 * x * y$ ' $[x]+25 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} \cos (4 \log (x))+c_{1} \sin (4 \log (x))}{x^{3}}
$$

10 Section 5.4, Mechanical Vibrations. Page 337
10.1 problem 15 2533
10.2 problem 16 2543
10.3 problem 17 2553
10.4 problem 18 2565
10.5 problem 19 2575
10.6 problem 20 2585
10.7 problem 21 2595

10.1 problem 15

10.1.1 Existence and uniqueness analysis 2533
10.1.2 Solving as second order linear constant coeff ode 2534
10.1.3 Solving using Kovacic algorithm 2536
10.1.4 Maple step by step solution . 2541

Internal problem ID [212]
Internal file name [OUTPUT/212_Sunday_June_05_2022_01_36_47_AM_48138665/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.4, Mechanical Vibrations. Page 337
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
\frac{x^{\prime \prime}}{2}+3 x^{\prime}+4 x=0
$$

With initial conditions

$$
\left[x(0)=2, x^{\prime}(0)=0\right]
$$

10.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =8 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+6 x^{\prime}+8 x=0
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.1.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=\frac{1}{2}, B=3, C=4$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\frac{\lambda^{2} \mathrm{e}^{\lambda t}}{2}+3 \lambda \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\frac{1}{2} \lambda^{2}+3 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=\frac{1}{2}, B=3, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)\left(\frac{1}{2}\right)} \pm \frac{1}{(2)\left(\frac{1}{2}\right)} \sqrt{3^{2}-(4)\left(\frac{1}{2}\right)(4)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& x=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& x=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
x=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-4 c_{2} \mathrm{e}^{-4 t}
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t}
$$

Verified OK.

10.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\frac{x^{\prime \prime}}{2}+3 x^{\prime}+4 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =\frac{1}{2} \\
B & =3 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 433: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{2}} d t \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-4 t}
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{3}{2} \frac{1}{2}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-6 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-2 t}
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}-c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t}
$$

Verified OK.

10.1.4 Maple step by step solution

Let's solve

$$
\left[\frac{x^{\prime \prime}}{2}+3 x^{\prime}+4 x=0, x(0)=2,\left.x^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Isolate 2nd derivative
$x^{\prime \prime}=-6 x^{\prime}-8 x$
- \quad Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $x^{\prime \prime}+6 x^{\prime}+8 x=0$
- Characteristic polynomial of ODE
$r^{2}+6 r+8=0$
- Factor the characteristic polynomial
$(r+4)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-4,-2)
$$

- 1st solution of the ODE
$x_{1}(t)=\mathrm{e}^{-4 t}$
- $\quad 2$ nd solution of the ODE
$x_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)$
- \quad Substitute in solutions
$x=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}$
$\square \quad$ Check validity of solution $x=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}$
- Use initial condition $x(0)=2$
$2=c_{1}+c_{2}$
- Compute derivative of the solution

$$
x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-2 c_{2} \mathrm{e}^{-2 t}
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$

$$
0=-4 c_{1}-2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-2, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t}
$$

- \quad Solution to the IVP

$$
x=4 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-4 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve([1/2*diff(x(t),t$2)+3*diff(x(t),t)+4*x(t)=0,x(0) = 2, D(x)(0) = 0],x(t), singsol=all)
```

$$
x(t)=-2 \mathrm{e}^{-4 t}+4 \mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve $\left[\left\{1 / 2 * x^{\prime}{ }^{\prime}[t]+3 * x^{\prime}[t]+4 * x[t]==0,\left\{x[0]==2, x^{\prime}[0]==0\right\}\right\}, x[t], t\right.$, IncludeSingularSolutions $->$

$$
x(t) \rightarrow e^{-4 t}\left(4 e^{2 t}-2\right)
$$

10.2 problem 16

10.2.1 Existence and uniqueness analysis 2543
10.2.2 Solving as second order linear constant coeff ode 2544
10.2.3 Solving using Kovacic algorithm 2546
10.2.4 Maple step by step solution . 2550

Internal problem ID [213]
Internal file name [OUTPUT/213_Sunday_June_05_2022_01_36_48_AM_60553072/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.4, Mechanical Vibrations. Page 337
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
3 x^{\prime \prime}+30 x^{\prime}+63 x=0
$$

With initial conditions

$$
\left[x(0)=2, x^{\prime}(0)=2\right]
$$

10.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =10 \\
q(t) & =21 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+10 x^{\prime}+21 x=0
$$

The domain of $p(t)=10$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=21$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.2.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=3, B=30, C=63$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
3 \lambda^{2} \mathrm{e}^{\lambda t}+30 \lambda \mathrm{e}^{\lambda t}+63 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
3 \lambda^{2}+30 \lambda+63=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=3, B=30, C=63$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-30}{(2)(3)} \pm \frac{1}{(2)(3)} \sqrt{30^{2}-(4)(3)(63)} \\
& =-5 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-5+2 \\
& \lambda_{2}=-5-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=-7
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& x=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& x=c_{1} e^{(-3) t}+c_{2} e^{(-7) t}
\end{aligned}
$$

Or

$$
x=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-7 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-7 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-3 c_{1} \mathrm{e}^{-3 t}-7 c_{2} \mathrm{e}^{-7 t}
$$

substituting $x^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-3 c_{1}-7 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t}
$$

Verified OK.

10.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
3 x^{\prime \prime}+30 x^{\prime}+63 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=3 \\
& B=30 \tag{3}\\
& C=63
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 435: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-2 t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{30}{3} d t} \\
& =z_{1} e^{-5 t} \\
& =z_{1}\left(\mathrm{e}^{-5 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-7 t}
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{30}{3}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-10 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\mathrm{e}^{4 t}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-7 t}\right)+c_{2}\left(\mathrm{e}^{-7 t}\left(\frac{\mathrm{e}^{4 t}}{4}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-7 t}+\frac{c_{2} \mathrm{e}^{-3 t}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{c_{2}}{4} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-7 c_{1} \mathrm{e}^{-7 t}-\frac{3 c_{2} \mathrm{e}^{-3 t}}{4}
$$

substituting $x^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-7 c_{1}-\frac{3 c_{2}}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=16
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t}
$$

Verified OK.

10.2.4 Maple step by step solution

Let's solve

$$
\left[3 x^{\prime \prime}+30 x^{\prime}+63 x=0, x(0)=2,\left.x^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Isolate 2nd derivative

$$
x^{\prime \prime}=-10 x^{\prime}-21 x
$$

- \quad Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
x^{\prime \prime}+10 x^{\prime}+21 x=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+10 r+21=0
$$

- Factor the characteristic polynomial
$(r+7)(r+3)=0$
- Roots of the characteristic polynomial
$r=(-7,-3)$
- 1st solution of the ODE
$x_{1}(t)=\mathrm{e}^{-7 t}$
- $\quad 2 n d$ solution of the ODE
$x_{2}(t)=\mathrm{e}^{-3 t}$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)$
- Substitute in solutions
$x=c_{1} \mathrm{e}^{-7 t}+c_{2} \mathrm{e}^{-3 t}$
Check validity of solution $x=c_{1} \mathrm{e}^{-7 t}+c_{2} \mathrm{e}^{-3 t}$
- Use initial condition $x(0)=2$

$$
2=c_{1}+c_{2}
$$

- Compute derivative of the solution
$x^{\prime}=-7 c_{1} \mathrm{e}^{-7 t}-3 c_{2} \mathrm{e}^{-3 t}$
- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=2$
$2=-7 c_{1}-3 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-2, c_{2}=4\right\}$
- Substitute constant values into general solution and simplify
$x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t}$
- Solution to the IVP
$x=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t}$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([3*diff(x(t),t$2)+30*diff(x(t),t)+63*x(t)=0,x(0) = 2, D(x)(0) = 2],x(t), singsol=all)
```

$$
x(t)=4 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-7 t}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve $\left[\left\{3 * x x^{\prime \prime}[t]+30 * x^{\prime}[t]+63 * x[t]==0,\left\{x[0]==2, x^{\prime}[0]==2\right\}\right\}, x[t], t\right.$, IncludeSingularSolutions $->$

$$
x(t) \rightarrow e^{-7 t}\left(4 e^{4 t}-2\right)
$$

10.3 problem 17

10.3.1 Existence and uniqueness analysis 2553
10.3.2 Solving as second order linear constant coeff ode 2554
10.3.3 Solving as linear second order ode solved by an integrating factor
ode . 2556 .
10.3.4 Solving using Kovacic algorithm 2558
10.3.5 Maple step by step solution . 2562

Internal problem ID [214]
Internal file name [OUTPUT/214_Sunday_June_05_2022_01_36_48_AM_90769389/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.4, Mechanical Vibrations. Page 337
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
x^{\prime \prime}+8 x^{\prime}+16 x=0
$$

With initial conditions

$$
\left[x(0)=5, x^{\prime}(0)=-10\right]
$$

10.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =8 \\
q(t) & =16 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+8 x^{\prime}+16 x=0
$$

The domain of $p(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=16$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.3.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=8, C=16$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+8 \lambda \mathrm{e}^{\lambda t}+16 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+8 \lambda+16=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=8, C=16$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(8)^{2}-(4)(1)(16)} \\
& =-4
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=4$. Therefore the solution is

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-4 t}+c_{2} t \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-4 t}+c_{2} t \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=5$ and $t=0$ in the above gives

$$
\begin{equation*}
5=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-4 t}-4 c_{2} t \mathrm{e}^{-4 t}
$$

substituting $x^{\prime}=-10$ and $t=0$ in the above gives

$$
\begin{equation*}
-10=-4 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=10
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=10 t \mathrm{e}^{-4 t}+5 \mathrm{e}^{-4 t}
$$

Which simplifies to

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=(5+10 t) \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

Verified OK.

10.3.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
x^{\prime \prime}+p(t) x^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) x}{2}=f(t)
$$

Where $p(t)=8$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 8 d x} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) x)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{4 t} x\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{4 t} x\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{4 t} x\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
x=\frac{c_{1} t+c_{2}}{\mathrm{e}^{4 t}}
$$

Or

$$
x=c_{1} t \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} t \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=5$ and $t=0$ in the above gives

$$
\begin{equation*}
5=c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=c_{1} \mathrm{e}^{-4 t}-4 c_{1} t \mathrm{e}^{-4 t}-4 c_{2} \mathrm{e}^{-4 t}
$$

substituting $x^{\prime}=-10$ and $t=0$ in the above gives

$$
\begin{equation*}
-10=c_{1}-4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=10 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=10 t \mathrm{e}^{-4 t}+5 \mathrm{e}^{-4 t}
$$

Which simplifies to

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=(5+10 t) \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

Verified OK.

10.3.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+8 x^{\prime}+16 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=8 \tag{3}\\
& C=16
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 437: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d t} \\
& =z_{1} e^{-4 t} \\
& =z_{1}\left(\mathrm{e}^{-4 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-4 t}
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{8}{1} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-8 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}(t)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-4 t}+c_{2} t \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=5$ and $t=0$ in the above gives

$$
\begin{equation*}
5=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-4 t}-4 c_{2} t \mathrm{e}^{-4 t}
$$

substituting $x^{\prime}=-10$ and $t=0$ in the above gives

$$
\begin{equation*}
-10=-4 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=10
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=10 t \mathrm{e}^{-4 t}+5 \mathrm{e}^{-4 t}
$$

Which simplifies to

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=(5+10 t) \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

Verified OK.

10.3.5 Maple step by step solution

Let's solve
$\left[x^{\prime \prime}+8 x^{\prime}+16 x=0, x(0)=5,\left.x^{\prime}\right|_{\{t=0\}}=-10\right]$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+8 r+16=0$
- Factor the characteristic polynomial

$$
(r+4)^{2}=0
$$

- Root of the characteristic polynomial
$r=-4$
- 1st solution of the ODE
$x_{1}(t)=\mathrm{e}^{-4 t}$
- Repeated root, multiply $x_{1}(t)$ by t to ensure linear independence
$x_{2}(t)=t \mathrm{e}^{-4 t}$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)$
- \quad Substitute in solutions
$x=c_{1} \mathrm{e}^{-4 t}+c_{2} t \mathrm{e}^{-4 t}$
Check validity of solution $x=c_{1} \mathrm{e}^{-4 t}+c_{2} t \mathrm{e}^{-4 t}$
- Use initial condition $x(0)=5$
$5=c_{1}$
- Compute derivative of the solution

$$
x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-4 t}-4 c_{2} t \mathrm{e}^{-4 t}
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=-10$

$$
-10=-4 c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=5, c_{2}=10\right\}$
- Substitute constant values into general solution and simplify

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

- \quad Solution to the IVP

$$
x=(5+10 t) \mathrm{e}^{-4 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve([diff $(x(t), t \$ 2)+8 * \operatorname{diff}(x(t), t)+16 * x(t)=0, x(0)=5, D(x)(0)=-10], x(t)$, singsol=all)

$$
x(t)=(5+10 t) \mathrm{e}^{-4 t}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 17
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+8 * x^{\prime}[t]+16 * x[t]==0,\left\{x[0]==5, x^{\prime}[0]==-10\right\}\right\}, x[t], t\right.$, IncludeSingularSolutions $->$ I

$$
x(t) \rightarrow 5 e^{-4 t}(2 t+1)
$$

10.4 problem 18

10.4.1 Existence and uniqueness analysis 2565
10.4.2 Solving as second order linear constant coeff ode 2566
10.4.3 Solving using Kovacic algorithm 2568
10.4.4 Maple step by step solution . 2572

Internal problem ID [215]
Internal file name [OUTPUT/215_Sunday_June_05_2022_01_36_49_AM_38051970/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.4, Mechanical Vibrations. Page 337
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 x^{\prime \prime}+12 x^{\prime}+50 x=0
$$

With initial conditions

$$
\left[x(0)=0, x^{\prime}(0)=-8\right]
$$

10.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =25 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+6 x^{\prime}+25 x=0
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=25$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=2, B=12, C=50$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda t}+12 \lambda \mathrm{e}^{\lambda t}+50 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
2 \lambda^{2}+12 \lambda+50=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=12, C=50$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-12}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{12^{2}-(4)(2)(50)} \\
& =-3 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-3+4 i \\
\lambda_{2}=-3-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-3+4 i \\
\lambda_{2}=-3-4 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-3 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-3 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-3 \mathrm{e}^{-3 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\mathrm{e}^{-3 t}\left(-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)\right)
$$

substituting $x^{\prime}=-8$ and $t=0$ in the above gives

$$
\begin{equation*}
-8=-3 c_{1}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=-2 \mathrm{e}^{-3 t} \sin (4 t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=-2 \mathrm{e}^{-3 t} \sin (4 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=-2 \mathrm{e}^{-3 t} \sin (4 t)
$$

Verified OK.

10.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{\prime \prime}+12 x^{\prime}+50 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=12 \tag{3}\\
& C=50
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 439: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{12}{2} d t} \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-3 t} \cos (4 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{12}{2}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-6 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t} \cos (4 t)\right)+c_{2}\left(\mathrm{e}^{-3 t} \cos (4 t)\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-3 t} \cos (4 t)+\frac{\mathrm{e}^{-3 t} c_{2} \sin (4 t)}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (4 t)-4 c_{1} \mathrm{e}^{-3 t} \sin (4 t)-\frac{3 \mathrm{e}^{-3 t} c_{2} \sin (4 t)}{4}+\mathrm{e}^{-3 t} c_{2} \cos (4 t)
$$

substituting $x^{\prime}=-8$ and $t=0$ in the above gives

$$
\begin{equation*}
-8=-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=-2 \mathrm{e}^{-3 t} \sin (4 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=-2 \mathrm{e}^{-3 t} \sin (4 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=-2 \mathrm{e}^{-3 t} \sin (4 t)
$$

Verified OK.

10.4.4 Maple step by step solution

Let's solve

$$
\left[2 x^{\prime \prime}+12 x^{\prime}+50 x=0, x(0)=0,\left.x^{\prime}\right|_{\{t=0\}}=-8\right]
$$

- Highest derivative means the order of the ODE is 2

$$
x^{\prime \prime}
$$

- Isolate 2nd derivative

$$
x^{\prime \prime}=-6 x^{\prime}-25 x
$$

- \quad Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $x^{\prime \prime}+6 x^{\prime}+25 x=0$
- Characteristic polynomial of ODE

$$
r^{2}+6 r+25=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-3-4 \mathrm{I},-3+4 \mathrm{I})$
- 1st solution of the ODE
$x_{1}(t)=\mathrm{e}^{-3 t} \cos (4 t)$
- $\quad 2$ nd solution of the ODE
$x_{2}(t)=\mathrm{e}^{-3 t} \sin (4 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)$
- \quad Substitute in solutions
$x=c_{1} \mathrm{e}^{-3 t} \cos (4 t)+\mathrm{e}^{-3 t} c_{2} \sin (4 t)$
Check validity of solution $x=c_{1} \mathrm{e}^{-3 t} \cos (4 t)+\mathrm{e}^{-3 t} c_{2} \sin (4 t)$
- Use initial condition $x(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$x^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (4 t)-4 c_{1} \mathrm{e}^{-3 t} \sin (4 t)-3 \mathrm{e}^{-3 t} c_{2} \sin (4 t)+4 \mathrm{e}^{-3 t} c_{2} \cos (4 t)$
- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=-8$
$-8=-3 c_{1}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify
$x=-2 \mathrm{e}^{-3 t} \sin (4 t)$
- \quad Solution to the IVP
$x=-2 \mathrm{e}^{-3 t} \sin (4 t)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([2*diff(x(t),t$2)+12*diff(x(t),t)+50*x(t)=0,x(0) = 0, D(x)(0) = -8],x(t), singsol=all
```

$$
x(t)=-2 \mathrm{e}^{-3 t} \sin (4 t)
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 16

```
DSolve[{2*x''[t]+12*x'[t]+50*x[t]==0,{x[0]==0, x'[0]==-8}},x[t],t,IncludeSingularSolutions ->
```

$$
x(t) \rightarrow-2 e^{-3 t} \sin (4 t)
$$

10.5 problem 19

10.5.1 Existence and uniqueness analysis 2575
10.5.2 Solving as second order linear constant coeff ode 2576
10.5.3 Solving using Kovacic algorithm 2578
10.5.4 Maple step by step solution . 2583

Internal problem ID [216]
Internal file name [OUTPUT/216_Sunday_June_05_2022_01_36_50_AM_3008356/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.4, Mechanical Vibrations. Page 337
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 x^{\prime \prime}+20 x^{\prime}+169 x=0
$$

With initial conditions

$$
\left[x(0)=4, x^{\prime}(0)=16\right]
$$

10.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =\frac{169}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+5 x^{\prime}+\frac{169 x}{4}=0
$$

The domain of $p(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\frac{169}{4}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.5.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=4, B=20, C=169$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda t}+20 \lambda \mathrm{e}^{\lambda t}+169 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
4 \lambda^{2}+20 \lambda+169=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=20, C=169$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-20}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{20^{2}-(4)(4)(169)} \\
& =-\frac{5}{2} \pm 6 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+6 i \\
& \lambda_{2}=-\frac{5}{2}-6 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =-\frac{5}{2}+6 i \\
\lambda_{2} & =-\frac{5}{2}-6 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{5}{2}$ and $\beta=6$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-\frac{5 t}{2}}\left(c_{1} \cos (6 t)+c_{2} \sin (6 t)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{5 t}{2}}\left(c_{1} \cos (6 t)+c_{2} \sin (6 t)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=4$ and $t=0$ in the above gives

$$
\begin{equation*}
4=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-\frac{5 \mathrm{e}^{-\frac{5 t}{2}}\left(c_{1} \cos (6 t)+c_{2} \sin (6 t)\right)}{2}+\mathrm{e}^{-\frac{5 t}{2}}\left(-6 c_{1} \sin (6 t)+6 c_{2} \cos (6 t)\right)
$$

substituting $x^{\prime}=16$ and $t=0$ in the above gives

$$
\begin{equation*}
16=-\frac{5 c_{1}}{2}+6 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=\frac{13}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3}
$$

Verified OK.

10.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 x^{\prime \prime}+20 x^{\prime}+169 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =4 \\
B & =20 \tag{3}\\
C & =169
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-36}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-36 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-36 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 441: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-36$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (6 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{20}{4} d t} \\
& =z_{1} e^{-\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{20}{4} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-5 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (6 t)}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)\right)+c_{2}\left(\mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)\left(\frac{\tan (6 t)}{6}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)+\frac{c_{2} \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)}{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=4$ and $t=0$ in the above gives

$$
\begin{equation*}
4=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-\frac{5 c_{1} \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)}{2}-6 c_{1} \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)-\frac{5 c_{2} \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)}{12}+c_{2} \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)
$$

substituting $x^{\prime}=16$ and $t=0$ in the above gives

$$
\begin{equation*}
16=-\frac{5 c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=26
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=4 \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)+\frac{13 \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)}{3}
$$

Which simplifies to

$$
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3}
$$

Verified OK.

10.5.4 Maple step by step solution

Let's solve

$$
\left[4 x^{\prime \prime}+20 x^{\prime}+169 x=0, x(0)=4,\left.x^{\prime}\right|_{\{t=0\}}=16\right]
$$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Isolate 2nd derivative
$x^{\prime \prime}=-5 x^{\prime}-\frac{169 x}{4}$
- \quad Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $x^{\prime \prime}+5 x^{\prime}+\frac{169 x}{4}=0$
- Characteristic polynomial of ODE
$r^{2}+5 r+\frac{169}{4}=0$
- Use quadratic formula to solve for r
$r=\frac{(-5) \pm(\sqrt{-144})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{5}{2}-6 \mathrm{I},-\frac{5}{2}+6 \mathrm{I}\right)
$$

- 1st solution of the ODE
$x_{1}(t)=\mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)$
- $\quad 2$ nd solution of the ODE
$x_{2}(t)=\mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)$
- \quad Substitute in solutions
$x=c_{1} \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)+c_{2} \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)$
$\square \quad$ Check validity of solution $x=c_{1} \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)+c_{2} \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)$
- Use initial condition $x(0)=4$
$4=c_{1}$
- Compute derivative of the solution

$$
x^{\prime}=-\frac{5 c_{1} \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)}{2}-6 c_{1} \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)-\frac{5 c_{2} \mathrm{e}^{-\frac{5 t}{2}} \sin (6 t)}{2}+6 c_{2} \mathrm{e}^{-\frac{5 t}{2}} \cos (6 t)
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=16$

$$
16=-\frac{5 c_{1}}{2}+6 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=4, c_{2}=\frac{13}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3}
$$

- \quad Solution to the IVP

$$
x=\frac{\mathrm{e}^{-\frac{5 t}{2}}(12 \cos (6 t)+13 \sin (6 t))}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([4*diff (x (t),t$2)+20*diff (x (t),t)+169*x (t)=0,x(0) = 4, D(x)(0) = 16],x(t), singsol=al
```

$$
x(t)=\frac{\mathrm{e}^{-\frac{5 t}{2}}(13 \sin (6 t)+12 \cos (6 t))}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 29

```
DSolve[{4*x''[t]+20*x'[t]+169*x[t]==0,{x[0]==4, x'[0]==16}},x[t],t,IncludeSingularSolutions -
```

$$
x(t) \rightarrow \frac{1}{3} e^{-5 t / 2}(13 \sin (6 t)+12 \cos (6 t))
$$

10.6 problem 20

10.6.1 Existence and uniqueness analysis 2585
10.6.2 Solving as second order linear constant coeff ode 2586
10.6.3 Solving using Kovacic algorithm 2588
10.6.4 Maple step by step solution . 2592

Internal problem ID [217]
Internal file name [OUTPUT/217_Sunday_June_05_2022_01_36_51_AM_35899030/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.4, Mechanical Vibrations. Page 337
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 x^{\prime \prime}+16 x^{\prime}+40 x=0
$$

With initial conditions

$$
\left[x(0)=5, x^{\prime}(0)=4\right]
$$

10.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =8 \\
q(t) & =20 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+8 x^{\prime}+20 x=0
$$

The domain of $p(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=20$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.6.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=2, B=16, C=40$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda t}+16 \lambda \mathrm{e}^{\lambda t}+40 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
2 \lambda^{2}+16 \lambda+40=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=16, C=40$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-16}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{16^{2}-(4)(2)(40)} \\
& =-4 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-4+2 i \\
& \lambda_{2}=-4-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-4+2 i \\
\lambda_{2}=-4-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-4$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-4 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-4 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=5$ and $t=0$ in the above gives

$$
\begin{equation*}
5=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-4 \mathrm{e}^{-4 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\mathrm{e}^{-4 t}\left(-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)\right)
$$

substituting $x^{\prime}=4$ and $t=0$ in the above gives

$$
\begin{equation*}
4=-4 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=12
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t))
$$

Verified OK.

10.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{\prime \prime}+16 x^{\prime}+40 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=16 \tag{3}\\
& C=40
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 443: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{16}{2} d t} \\
& =z_{1} e^{-4 t} \\
& =z_{1}\left(\mathrm{e}^{-4 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-4 t} \cos (2 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{16}{2}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-8 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t} \cos (2 t)\right)+c_{2}\left(\mathrm{e}^{-4 t} \cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-4 t} \cos (2 t)+\frac{c_{2} \mathrm{e}^{-4 t} \sin (2 t)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=5$ and $t=0$ in the above gives

$$
\begin{equation*}
5=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-4 t} \sin (2 t)-2 c_{2} \mathrm{e}^{-4 t} \sin (2 t)+c_{2} \mathrm{e}^{-4 t} \cos (2 t)
$$

substituting $x^{\prime}=4$ and $t=0$ in the above gives

$$
\begin{equation*}
4=-4 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=24
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=5 \mathrm{e}^{-4 t} \cos (2 t)+12 \mathrm{e}^{-4 t} \sin (2 t)
$$

Which simplifies to

$$
x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t)) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t))
$$

Verified OK.

10.6.4 Maple step by step solution

Let's solve

$$
\left[2 x^{\prime \prime}+16 x^{\prime}+40 x=0, x(0)=5,\left.x^{\prime}\right|_{\{t=0\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Isolate 2 nd derivative

$$
x^{\prime \prime}=-8 x^{\prime}-20 x
$$

- Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $x^{\prime \prime}+8 x^{\prime}+20 x=0$
- Characteristic polynomial of ODE

$$
r^{2}+8 r+20=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-8) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-4-2 \mathrm{I},-4+2 \mathrm{I})$
- 1st solution of the ODE
$x_{1}(t)=\mathrm{e}^{-4 t} \cos (2 t)$
- \quad 2nd solution of the ODE
$x_{2}(t)=\mathrm{e}^{-4 t} \sin (2 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)$
- Substitute in solutions
$x=c_{1} \mathrm{e}^{-4 t} \cos (2 t)+c_{2} \mathrm{e}^{-4 t} \sin (2 t)$
Check validity of solution $x=c_{1} \mathrm{e}^{-4 t} \cos (2 t)+c_{2} \mathrm{e}^{-4 t} \sin (2 t)$
- Use initial condition $x(0)=5$
$5=c_{1}$
- Compute derivative of the solution
$x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-4 t} \sin (2 t)-4 c_{2} \mathrm{e}^{-4 t} \sin (2 t)+2 c_{2} \mathrm{e}^{-4 t} \cos (2 t)$
- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=4$
$4=-4 c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=5, c_{2}=12\right\}$
- Substitute constant values into general solution and simplify
$x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t))$
- \quad Solution to the IVP
$x=\mathrm{e}^{-4 t}(5 \cos (2 t)+12 \sin (2 t))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

```
dsolve([2*diff(x(t),t$2)+16*diff(x(t),t)+40*x(t)=0,x(0) = 5, D(x)(0) = 4],x(t), singsol=all)
```

$$
x(t)=\mathrm{e}^{-4 t}(12 \sin (2 t)+5 \cos (2 t))
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 24
DSolve $\left[\left\{2 * x^{\prime \prime}[t]+16 * x^{\prime}[t]+40 * x[t]==0,\left\{x[0]==5, x^{\prime}[0]==4\right\}\right\}, x[t], t\right.$, IncludeSingularSolutions $->$

$$
x(t) \rightarrow e^{-4 t}(12 \sin (2 t)+5 \cos (2 t))
$$

10.7 problem 21

10.7.1 Existence and uniqueness analysis 2595
10.7.2 Solving as second order linear constant coeff ode 2596
10.7.3 Solving using Kovacic algorithm 2598
10.7.4 Maple step by step solution . 2602

Internal problem ID [218]
Internal file name [OUTPUT/218_Sunday_June_05_2022_01_36_52_AM_8777435/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.4, Mechanical Vibrations. Page 337
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
x^{\prime \prime}+10 x^{\prime}+125 x=0
$$

With initial conditions

$$
\left[x(0)=6, x^{\prime}(0)=50\right]
$$

10.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =10 \\
q(t) & =125 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+10 x^{\prime}+125 x=0
$$

The domain of $p(t)=10$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=125$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.7.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=10, C=125$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+10 \lambda \mathrm{e}^{\lambda t}+125 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+10 \lambda+125=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=10, C=125$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-10}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{10^{2}-(4)(1)(125)} \\
& =-5 \pm 10 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-5+10 i \\
& \lambda_{2}=-5-10 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-5+10 i \\
& \lambda_{2}=-5-10 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-5$ and $\beta=10$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-5 t}\left(c_{1} \cos (10 t)+c_{2} \sin (10 t)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-5 t}\left(c_{1} \cos (10 t)+c_{2} \sin (10 t)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=6$ and $t=0$ in the above gives

$$
\begin{equation*}
6=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-5 \mathrm{e}^{-5 t}\left(c_{1} \cos (10 t)+c_{2} \sin (10 t)\right)+\mathrm{e}^{-5 t}\left(-10 c_{1} \sin (10 t)+10 c_{2} \cos (10 t)\right)
$$

substituting $x^{\prime}=50$ and $t=0$ in the above gives

$$
\begin{equation*}
50=-5 c_{1}+10 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=2 \mathrm{e}^{-5 t}(3 \cos (10 t)+4 \sin (10 t))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=2 \mathrm{e}^{-5 t}(3 \cos (10 t)+4 \sin (10 t)) \tag{1}
\end{equation*}
$$

(a) Solution plot

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-100}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-100 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-100 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 445: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-100$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (10 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{10}{1} d t} \\
& =z_{1} e^{-5 t} \\
& =z_{1}\left(\mathrm{e}^{-5 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-5 t} \cos (10 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{10}{1}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-10 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (10 t)}{10}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 t} \cos (10 t)\right)+c_{2}\left(\mathrm{e}^{-5 t} \cos (10 t)\left(\frac{\tan (10 t)}{10}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-5 t} \cos (10 t)+\frac{c_{2} \mathrm{e}^{-5 t} \sin (10 t)}{10} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=6$ and $t=0$ in the above gives

$$
\begin{equation*}
6=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-5 c_{1} \mathrm{e}^{-5 t} \cos (10 t)-10 c_{1} \mathrm{e}^{-5 t} \sin (10 t)-\frac{c_{2} \mathrm{e}^{-5 t} \sin (10 t)}{2}+c_{2} \mathrm{e}^{-5 t} \cos (10 t)
$$

substituting $x^{\prime}=50$ and $t=0$ in the above gives

$$
\begin{equation*}
50=-5 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=80
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=6 \mathrm{e}^{-5 t} \cos (10 t)+8 \mathrm{e}^{-5 t} \sin (10 t)
$$

Which simplifies to

$$
x=2 \mathrm{e}^{-5 t}(3 \cos (10 t)+4 \sin (10 t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=2 \mathrm{e}^{-5 t}(3 \cos (10 t)+4 \sin (10 t)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=2 \mathrm{e}^{-5 t}(3 \cos (10 t)+4 \sin (10 t))
$$

Verified OK.

10.7.4 Maple step by step solution

Let's solve

$$
\left[x^{\prime \prime}+10 x^{\prime}+125 x=0, x(0)=6,\left.x^{\prime}\right|_{\{t=0\}}=50\right]
$$

- Highest derivative means the order of the ODE is 2

$$
x^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+10 r+125=0$
- Use quadratic formula to solve for r
$r=\frac{(-10) \pm(\sqrt{-400})}{2}$
- Roots of the characteristic polynomial

$$
r=(-5-10 \mathrm{I},-5+10 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
x_{1}(t)=\mathrm{e}^{-5 t} \cos (10 t)
$$

- \quad 2nd solution of the ODE

$$
x_{2}(t)=\mathrm{e}^{-5 t} \sin (10 t)
$$

- General solution of the ODE

$$
x=c_{1} x_{1}(t)+c_{2} x_{2}(t)
$$

- \quad Substitute in solutions
$x=c_{1} \mathrm{e}^{-5 t} \cos (10 t)+c_{2} \mathrm{e}^{-5 t} \sin (10 t)$
Check validity of solution $x=c_{1} \mathrm{e}^{-5 t} \cos (10 t)+c_{2} \mathrm{e}^{-5 t} \sin (10 t)$
- Use initial condition $x(0)=6$

$$
6=c_{1}
$$

- Compute derivative of the solution

$$
x^{\prime}=-5 c_{1} \mathrm{e}^{-5 t} \cos (10 t)-10 c_{1} \mathrm{e}^{-5 t} \sin (10 t)-5 c_{2} \mathrm{e}^{-5 t} \sin (10 t)+10 c_{2} \mathrm{e}^{-5 t} \cos (10 t)
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=50$

$$
50=-5 c_{1}+10 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=6, c_{2}=8\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=2 \mathrm{e}^{-5 t}(3 \cos (10 t)+4 \sin (10 t))
$$

- Solution to the IVP

$$
x=2 \mathrm{e}^{-5 t}(3 \cos (10 t)+4 \sin (10 t))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23
dsolve([diff $(x(t), t \$ 2)+10 * \operatorname{diff}(x(t), t)+125 * x(t)=0, x(0)=6, D(x)(0)=50], x(t)$, singsol=all)

$$
x(t)=2 \mathrm{e}^{-5 t}(4 \sin (10 t)+3 \cos (10 t))
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 24
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+10 * x^{\prime}[t]+125 * x[t]==0,\left\{x[0]==6, x^{\prime}[0]==50\right\}\right\}, x[t], t\right.$, IncludeSingularSolutions $->$

$$
x(t) \rightarrow e^{-5 t}(8 \sin (10 t)+6 \cos (10 t))
$$

11 Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351

11.1 problem 1260711.2 problem 2 2618
11.3 problem 3 2629
11.4 problem 4 2640
11.5 problem 5 2653
11.6 problem 6 2665
11.7 problem 7 2677
11.8 problem 8 2692
11.9 problem 9 2706
11.10problem 10 2718
11.11problem 16 2729
11.12problem 21 2740
11.13problem 23 2751
11.14problem 25 2762
11.15problem 26 2773
11.16problem 31 2784
11.17problem 32 2797
11.18problem 33 2811
11.19problem 34 2824
11.20problem 35 2838
11.21 problem 44 2851
11.22problem 45 2863
11.23problem 46 2874
11.24problem 47 2885
11.25problem 48 2895
11.26problem 49 2906
11.27problem 50 2918
11.28problem 51 2932
11.29problem 52 2943
11.30problem 53 2954
11.31problem 54 2967
11.32problem 55 2980
11.33problem 56 2991
11.34problem 57 3002
11.35problem 58 3038
11.36problem 59 3068
11.37problem 60 3096
11.38problem 61 3127
11.39problem 62 3155

11.1 problem 1

11.1.1 Solving as second order linear constant coeff ode 2607
11.1.2 Solving using Kovacic algorithm 2610
11.1.3 Maple step by step solution . 2615

Internal problem ID [219]
Internal file name [OUTPUT/219_Sunday_June_05_2022_01_36_53_AM_52974580/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+16 y=\mathrm{e}^{3 x}
$$

11.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=16, f(x)=\mathrm{e}^{3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+16 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=16$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+16 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+16=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=16$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(16)} \\
& = \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+4 i \\
& \lambda_{2}=-4 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 i \\
& \lambda_{2}=-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Or

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (4 x), \sin (4 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
25 A_{1} \mathrm{e}^{3 x}=\mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{3 x}}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)+\left(\frac{\mathrm{e}^{3 x}}{25}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+\frac{\mathrm{e}^{3 x}}{25} \tag{1}
\end{equation*}
$$

Figure 601: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+\frac{\mathrm{e}^{3 x}}{25}
$$

Verified OK.

11.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+16 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=16
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 447: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (4 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (4 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (4 x) \int \frac{1}{\cos (4 x)^{2}} d x \\
& =\cos (4 x)\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (4 x))+c_{2}\left(\cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+16 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (4 x)}{4}, \cos (4 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
25 A_{1} \mathrm{e}^{3 x}=\mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{3 x}}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}\right)+\left(\frac{\mathrm{e}^{3 x}}{25}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}+\frac{\mathrm{e}^{3 x}}{25} \tag{1}
\end{equation*}
$$

Figure 602: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}+\frac{\mathrm{e}^{3 x}}{25}
$$

Verified OK.

11.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+16 y=\mathrm{e}^{3 x}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE $r^{2}+16=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-4 \mathrm{I}, 4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (4 x)$
- 2nd solution of the homogeneous ODE
$y_{2}(x)=\sin (4 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{3 x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (4 x) & \sin (4 x) \\ -4 \sin (4 x) & 4 \cos (4 x)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\cos (4 x)\left(\int \mathrm{e}^{3 x} \sin (4 x) d x\right)}{4}+\frac{\sin (4 x)\left(\int \mathrm{e}^{3 x} \cos (4 x) d x\right)}{4}$
- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{3 x}}{25}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+\frac{\mathrm{e}^{3 x}}{25}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+16*y(x)=exp(3*x),y(x), singsol=all)
```

$$
y(x)=\sin (4 x) c_{2}+\cos (4 x) c_{1}+\frac{\mathrm{e}^{3 x}}{25}
$$

\checkmark Solution by Mathematica
Time used: 0.144 (sec). Leaf size: 29
DSolve[y'' $[\mathrm{x}]+16 * y[\mathrm{x}]==\operatorname{Exp}[3 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{3 x}}{25}+c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

11.2 problem 2

11.2.1 Solving as second order linear constant coeff ode 2618
11.2.2 Solving using Kovacic algorithm 2621
11.2.3 Maple step by step solution . 2626

Internal problem ID [220]
Internal file name [OUTPUT/220_Sunday_June_05_2022_01_36_54_AM_59806796/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-y^{\prime}-2 y=3 x+4
$$

11.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-1, C=-2, f(x)=3 x+4$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{2} x-2 A_{1}-A_{2}=3 x+4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{4}, A_{2}=-\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 x}{2}-\frac{5}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(-\frac{3 x}{2}-\frac{5}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}-\frac{3 x}{2}-\frac{5}{4} \tag{1}
\end{equation*}
$$

Figure 603: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}-\frac{3 x}{2}-\frac{5}{4}
$$

Verified OK.

11.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 449: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{3}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{2} x-2 A_{1}-A_{2}=3 x+4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{4}, A_{2}=-\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 x}{2}-\frac{5}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}\right)+\left(-\frac{3 x}{2}-\frac{5}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-\frac{3 x}{2}-\frac{5}{4} \tag{1}
\end{equation*}
$$

Figure 604: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-\frac{3 x}{2}-\frac{5}{4}
$$

Verified OK.

11.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-2 y=3 x+4
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}-r-2=0$
- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 x+4\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{2 x} \\ -\mathrm{e}^{-x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\int(3 x+4) \mathrm{e}^{x} d x\right)}{3}+\frac{\mathrm{e}^{2 x}\left(\int(3 x+4) \mathrm{e}^{-2 x} d x\right)}{3}$
- Compute integrals
$y_{p}(x)=-\frac{3 x}{2}-\frac{5}{4}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}-\frac{3 x}{2}-\frac{5}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-2 * y(x)=3 * x+4, y(x)$, singsol=all)

$$
y(x)=c_{2} \mathrm{e}^{-x}+\mathrm{e}^{2 x} c_{1}-\frac{3 x}{2}-\frac{5}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 30
DSolve[y'' $[x]-y$ ' $[x]-2 * y[x]==3 * x+4, y[x], x$, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{3 x}{2}+c_{1} e^{-x}+c_{2} e^{2 x}-\frac{5}{4}
$$

11.3 problem 3

11.3.1 Solving as second order linear constant coeff ode 2629
11.3.2 Solving using Kovacic algorithm 2632
11.3.3 Maple step by step solution . 2637

Internal problem ID [221]
Internal file name [DUTPUT/221_Sunday_June_05_2022_01_36_54_AM_9534624/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-y^{\prime}-6 y=2 \sin (3 x)
$$

11.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-1, C=-6, f(x)=2 \sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-6)} \\
& =\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-15 A_{1} \cos (3 x)-15 A_{2} \sin (3 x)+3 A_{1} \sin (3 x)-3 A_{2} \cos (3 x)=2 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{39}, A_{2}=-\frac{5}{39}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39} \tag{1}
\end{equation*}
$$

Figure 605: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}
$$

Verified OK.

11.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 451: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{3 x}}{5}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-15 A_{1} \cos (3 x)-15 A_{2} \sin (3 x)+3 A_{1} \sin (3 x)-3 A_{2} \cos (3 x)=2 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{39}, A_{2}=-\frac{5}{39}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}\right)+\left(\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}+\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39} \tag{1}
\end{equation*}
$$

Figure 606: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}+\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}
$$

Verified OK.

11.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-6 y=2 \sin (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}-r-6=0$
- Factor the characteristic polynomial

$$
(r+2)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(-2,3)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{3 x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \sin (3 x)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{3 x} \\ -2 \mathrm{e}^{-2 x} & 3 \mathrm{e}^{3 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{2\left(\mathrm{e}^{5 x}\left(\int \sin (3 x) \mathrm{e}^{-3 x} d x\right)-\left(\int \sin (3 x) \mathrm{e}^{2 x} d x\right)\right) \mathrm{e}^{-2 x}}{5}$
- Compute integrals
$y_{p}(x)=\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{3 x}+\frac{\cos (3 x)}{39}-\frac{5 \sin (3 x)}{39}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-6*y(x)=2*sin(3*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(\frac{(\cos (3 x)-5 \sin (3 x)) \mathrm{e}^{2 x}}{39}+c_{2} \mathrm{e}^{5 x}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 37
DSolve[y''[x]-y'[x]-6*y[x]==2*Sin[3*x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} e^{-2 x}+c_{2} e^{3 x}+\frac{1}{39}(\cos (3 x)-5 \sin (3 x))
$$

11.4 problem 4

11.4.1 Solving as second order linear constant coeff ode
11.4.2 Solving as linear second order ode solved by an integrating factor
ode . 2643
11.4.3 Solving using Kovacic algorithm 2645
11.4.4 Maple step by step solution . 2650

Internal problem ID [222]
Internal file name [OUTPUT/222_Sunday_June_05_2022_01_36_55_AM_76986988/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
4 y^{\prime \prime}+4 y^{\prime}+y=3 x \mathrm{e}^{x}
$$

11.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=4, B=4, C=1, f(x)=3 x \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=4, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+4 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=4, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(4)^{2}-(4)(4)(1)} \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=\frac{1}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-\frac{x}{2}}, \mathrm{e}^{-\frac{x}{2}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}+9 A_{1} x \mathrm{e}^{x}+9 A_{2} \mathrm{e}^{x}=3 x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=-\frac{4}{9}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}\right)+\left(\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)+\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)+\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9} \tag{1}
\end{equation*}
$$

Figure 607: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)+\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}
$$

Verified OK.

11.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=1$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 1 d x} \\
& =\mathrm{e}^{\frac{x}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{3 \mathrm{e}^{\frac{x}{2}} x \mathrm{e}^{x}}{4} \\
\left(\mathrm{e}^{\frac{x}{2}} y\right)^{\prime \prime} & =\frac{3 \mathrm{e}^{\frac{x}{2}} x \mathrm{e}^{x}}{4}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{x}{2}} y\right)^{\prime}=\frac{(3 x-2) \mathrm{e}^{\frac{3 x}{2}}}{6}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{\frac{x}{2}} y\right)=\frac{(3 x-4) \mathrm{e}^{\frac{3 x}{2}}}{9}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{(3 x-4) \mathrm{e}^{\frac{3 x}{2}}}{9}+c_{1} x+c_{2}}{\mathrm{e}^{\frac{x}{2}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+\frac{x \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{3 x}{2}}}{3}+c_{2} \mathrm{e}^{-\frac{x}{2}}-\frac{4 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{3 x}{2}}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+\frac{x \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{3 x}{2}}}{3}+c_{2} \mathrm{e}^{-\frac{x}{2}}-\frac{4 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{3 x}{2}}}{9} \tag{1}
\end{equation*}
$$

Figure 608: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+\frac{x \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{3 x}{2}}}{3}+c_{2} \mathrm{e}^{-\frac{x}{2}}-\frac{4 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{3 x}{2}}}{9}
$$

Verified OK.

11.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}+4 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =4 \\
B & =4 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 453: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{4} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-\frac{x}{2}}, \mathrm{e}^{-\frac{x}{2}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}+9 A_{1} x \mathrm{e}^{x}+9 A_{2} \mathrm{e}^{x}=3 x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=-\frac{4}{9}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}\right)+\left(\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)+\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)+\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9} \tag{1}
\end{equation*}
$$

Figure 609: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)+\frac{x \mathrm{e}^{x}}{3}-\frac{4 \mathrm{e}^{x}}{9}
$$

Verified OK.

11.4.4 Maple step by step solution

Let's solve
$4 y^{\prime \prime}+4 y^{\prime}+y=3 x \mathrm{e}^{x}$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-y^{\prime}-\frac{y}{4}+\frac{3 x \mathrm{e}^{x}}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}+\frac{y}{4}=\frac{3 x e^{x}}{4}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r+\frac{1}{4}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r+1)^{2}}{4}=0
$$

- Root of the characteristic polynomial

$$
r=-\frac{1}{2}
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-\frac{x}{2}}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{3 x \mathrm{e}^{x}}{4}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} & x \mathrm{e}^{-\frac{x}{2}} \\
-\frac{\mathrm{e}^{-\frac{x}{2}}}{2} & \mathrm{e}^{-\frac{x}{2}}-\frac{x \mathrm{e}^{-\frac{x}{2}}}{2}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{3 \mathrm{e}^{-\frac{x}{2}}\left(\int x^{2} \mathrm{e}^{\frac{3 x}{2}} d x-\left(\int x \mathrm{e}^{\frac{3 x}{2}} d x\right) x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}(3 x-4)}{9}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{x}(3 x-4)}{9}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve(4*diff(y(x),x$2)+4*diff(y(x),x)+y(x)=3*x*exp(x),y(x), singsol=all)
```

$$
y(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{-\frac{x}{2}}+\frac{(3 x-4) \mathrm{e}^{x}}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 33
DSolve[4*y''[x]+4*y'[x]+y[x]==3*x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{9} e^{x}(3 x-4)+e^{-x / 2}\left(c_{2} x+c_{1}\right)
$$

11.5 problem 5

11.5.1 Solving as second order linear constant coeff ode 2653
11.5.2 Solving using Kovacic algorithm 2657
11.5.3 Maple step by step solution 2662

Internal problem ID [223]
Internal file name [OUTPUT/223_Sunday_June_05_2022_01_36_56_AM_87598048/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y^{\prime}+y=\sin (x)^{2}
$$

11.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=1, f(x)=\sin (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{2} \cos (2 x)-3 A_{3} \sin (2 x)-2 A_{2} \sin (2 x)+2 A_{3} \cos (2 x)+A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{3}{26}, A_{3}=-\frac{1}{13}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)\right)+\left(\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)+\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13} \tag{1}
\end{equation*}
$$

Figure 610: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)+\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13}
$$

Verified OK.

11.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 455: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{3}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{2} \cos (2 x)-3 A_{3} \sin (2 x)-2 A_{2} \sin (2 x)+2 A_{3} \cos (2 x)+A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{3}{26}, A_{3}=-\frac{1}{13}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right)+\left(\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13} \tag{1}
\end{equation*}
$$

Figure 611: Slope field plot

Verification of solutions

$$
y=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13}
$$

Verified OK.

11.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}+y=\sin (x)^{2}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-3})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)$
- \quad 1st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)$
- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{2 \mathrm{e}^{-\frac{x}{2}} \sqrt{3}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x)^{2} \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x)^{2} \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{1}{2}+\frac{3 \cos (2 x)}{26}-\frac{\sin (2 x)}{13}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{2}-\frac{\sin (2 x)}{13}+\frac{3 \cos (2 x)}{26}+\frac{1}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 44

```
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=\operatorname{sin}(x)~2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}-\frac{\sin (2 x)}{13}+\frac{3 \cos (2 x)}{26}+\frac{1}{2}
$$

\checkmark Solution by Mathematica
Time used: 1.827 (sec). Leaf size: 67
DSolve[y''[x]+y'[x]+y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{13} \sin (2 x)+\frac{3}{26} \cos (2 x)+c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)+\frac{1}{2}
$$

11.6 problem 6

11.6.1 Solving as second order linear constant coeff ode 2665
11.6.2 Solving using Kovacic algorithm 2669
11.6.3 Maple step by step solution . 2674

Internal problem ID [224]
Internal file name [OUTPUT/224_Sunday_June_05_2022_01_36_58_AM_69153529/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 6 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
2 y^{\prime \prime}+4 y^{\prime}+7 y=x^{2}
$$

11.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=2, B=4, C=7, f(x)=x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
2 y^{\prime \prime}+4 y^{\prime}+7 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=4, C=7$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+7 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}+4 \lambda+7=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=4, C=7$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{4^{2}-(4)(2)(7)} \\
& =-1 \pm \frac{i \sqrt{10}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+\frac{i \sqrt{10}}{2} \\
& \lambda_{2}=-1-\frac{i \sqrt{10}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+\frac{i \sqrt{10}}{2} \\
& \lambda_{2}=-1-\frac{i \sqrt{10}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=\frac{\sqrt{10}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos \left(\frac{\sqrt{10} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos \left(\frac{\sqrt{10} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right), \mathrm{e}^{-x} \sin \left(\frac{\sqrt{10} x}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{3} x^{2}+7 A_{2} x+8 x A_{3}+7 A_{1}+4 A_{2}+4 A_{3}=x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{343}, A_{2}=-\frac{8}{49}, A_{3}=\frac{1}{7}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{7} x^{2}-\frac{8}{49} x+\frac{4}{343}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos \left(\frac{\sqrt{10} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right)\right)\right)+\left(\frac{1}{7} x^{2}-\frac{8}{49} x+\frac{4}{343}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos \left(\frac{\sqrt{10} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right)\right)+\frac{x^{2}}{7}-\frac{8 x}{49}+\frac{4}{343} \tag{1}
\end{equation*}
$$

Figure 612: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos \left(\frac{\sqrt{10} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right)\right)+\frac{x^{2}}{7}-\frac{8 x}{49}+\frac{4}{343}
$$

Verified OK.

11.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}+4 y^{\prime}+7 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=4 \tag{3}\\
& C=7
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{2} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-5 \\
& t=2
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{5 z(x)}{2} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 457: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{5}{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{10} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{2} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{10} \tan \left(\frac{\sqrt{10} x}{2}\right)}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right)\left(\frac{\sqrt{10} \tan \left(\frac{\sqrt{10} x}{2}\right)}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
2 y^{\prime \prime}+4 y^{\prime}+7 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{1}+\frac{c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} \sqrt{10}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right), \frac{\sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} \sqrt{10}}{5}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{3} x^{2}+7 A_{2} x+8 x A_{3}+7 A_{1}+4 A_{2}+4 A_{3}=x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{343}, A_{2}=-\frac{8}{49}, A_{3}=\frac{1}{7}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{7} x^{2}-\frac{8}{49} x+\frac{4}{343}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{1}+\frac{c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} \sqrt{10}}{5}\right)+\left(\frac{1}{7} x^{2}-\frac{8}{49} x+\frac{4}{343}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{1}+\frac{c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} \sqrt{10}}{5}+\frac{x^{2}}{7}-\frac{8 x}{49}+\frac{4}{343} \tag{1}
\end{equation*}
$$

Figure 613: Slope field plot

Verification of solutions

$$
y=\cos \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{1}+\frac{c_{2} \sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} \sqrt{10}}{5}+\frac{x^{2}}{7}-\frac{8 x}{49}+\frac{4}{343}
$$

Verified OK.

11.6.3 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime}+4 y^{\prime}+7 y=x^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-2 y^{\prime}-\frac{7 y}{2}+\frac{x^{2}}{2}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+2 y^{\prime}+\frac{7 y}{2}=\frac{x^{2}}{2}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+\frac{7}{2}=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-10})}{2}$
- Roots of the characteristic polynomial
$r=\left(-1-\frac{\mathrm{I} \sqrt{10}}{2},-1+\frac{\mathrm{I} \sqrt{10}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right)
$$

- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{-x} \sin \left(\frac{\sqrt{10} x}{2}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\cos \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{1}+\sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{2}+y_{p}(x)$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{x^{2}}{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right) & \mathrm{e}^{-x} \sin \left(\frac{\sqrt{10} x}{2}\right) \\
-\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right)-\frac{\sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} \sqrt{10}}{2} & -\mathrm{e}^{-x} \sin \left(\frac{\sqrt{10} x}{2}\right)+\frac{\mathrm{e}^{-x} \sqrt{10} \cos \left(\frac{\sqrt{10} x}{2}\right)}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{10} \mathrm{e}^{-2 x}}{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x} \sqrt{10}\left(\cos \left(\frac{\sqrt{10} x}{2}\right)\left(\int x^{2} \mathrm{e}^{x} \sin \left(\frac{\sqrt{10} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{10} x}{2}\right)\left(\int x^{2} \mathrm{e}^{x} \cos \left(\frac{\sqrt{10} x}{2}\right) d x\right)\right)}{10}
$$

- Compute integrals

$$
y_{p}(x)=\frac{1}{7} x^{2}-\frac{8}{49} x+\frac{4}{343}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{1}+\sin \left(\frac{\sqrt{10} x}{2}\right) \mathrm{e}^{-x} c_{2}+\frac{x^{2}}{7}-\frac{8 x}{49}+\frac{4}{343}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 40
dsolve($2 * \operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+7 * y(x)=x^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x} \sin \left(\frac{\sqrt{10} x}{2}\right) c_{2}+\mathrm{e}^{-x} \cos \left(\frac{\sqrt{10} x}{2}\right) c_{1}+\frac{x^{2}}{7}-\frac{8 x}{49}+\frac{4}{343}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 56
DSolve[2*y'' $[x]+4 * y$ ' $[x]+7 * y[x]==x^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{343}\left(49 x^{2}-56 x+4\right)+c_{2} e^{-x} \cos \left(\sqrt{\frac{5}{2}} x\right)+c_{1} e^{-x} \sin \left(\sqrt{\frac{5}{2}} x\right)
$$

11.7 problem 7

11.7.1 Solving as second order linear constant coeff ode 2677
11.7.2 Solving using Kovacic algorithm 2682
11.7.3 Maple step by step solution . 2689

Internal problem ID [225]
Internal file name [OUTPUT/225_Sunday_June_05_2022_01_36_59_AM_18542131/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-4 y=\sinh (x)
$$

11.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=\sinh (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+2 \\
\lambda_{2}=-2
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{cc}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
2 \mathrm{e}^{2 x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=-4 \mathrm{e}^{2 x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=-4
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-2 x} \sinh (x)}{-4} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-2 x} \sinh (x)}{4} d x
$$

Hence

$$
u_{1}=\frac{\sinh (x)}{8}-\frac{\sinh (3 x)}{24}-\frac{\cosh (x)}{8}+\frac{\cosh (3 x)}{24}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} \sinh (x)}{-4} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{2 x} \sinh (x)}{4} d x
$$

Hence

$$
u_{2}=\frac{\sinh (x)}{8}-\frac{\sinh (3 x)}{24}+\frac{\cosh (x)}{8}-\frac{\cosh (3 x)}{24}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(\cosh (x)-\sinh (x)) \sinh (x)^{2}}{6}-\frac{\cosh (x)}{12} \\
& u_{2}=-\frac{(\cosh (x)+\sinh (x)) \sinh (x)^{2}}{6}+\frac{\cosh (x)}{12}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\frac{(\cosh (x)-\sinh (x)) \sinh (x)^{2}}{6}-\frac{\cosh (x)}{12}\right) \mathrm{e}^{2 x} \\
& +\left(-\frac{(\cosh (x)+\sinh (x)) \sinh (x)^{2}}{6}+\frac{\cosh (x)}{12}\right) \mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12} \\
& +\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12}\right. \\
& \left.\quad+\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12} \\
& +\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6} \tag{1}
\end{align*}
$$

Figure 614: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12} \\
& +\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}
\end{aligned}
$$

Verified OK.

11.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 459: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
-2 \mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{\mathrm{e}^{2 x}}{2}\right)-\left(\frac{\mathrm{e}^{2 x}}{4}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x} \sinh (x)}{4}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{2 x} \sinh (x)}{4} d x
$$

Hence

$$
u_{1}=\frac{\sinh (x)}{8}-\frac{\sinh (3 x)}{24}+\frac{\cosh (x)}{8}-\frac{\cosh (3 x)}{24}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x} \sinh (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-2 x} \sinh (x) d x
$$

Hence

$$
u_{2}=\frac{\sinh (x)}{2}-\frac{\sinh (3 x)}{6}-\frac{\cosh (x)}{2}+\frac{\cosh (3 x)}{6}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{(\cosh (x)+\sinh (x)) \sinh (x)^{2}}{6}+\frac{\cosh (x)}{12} \\
& u_{2}=\frac{2(\cosh (x)-\sinh (x)) \sinh (x)^{2}}{3}-\frac{\cosh (x)}{3}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\frac{(\cosh (x)+\sinh (x)) \sinh (x)^{2}}{6}+\frac{\cosh (x)}{12}\right) \mathrm{e}^{-2 x} \\
& +\frac{\left(\frac{2(\cosh (x)-\sinh (x)) \sinh (x)^{2}}{3}-\frac{\cosh (x)}{3}\right) \mathrm{e}^{2 x}}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12} \\
& +\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+\left(\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12}\right. \\
& \left.\quad+\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12} \\
& +\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6} \tag{1}
\end{align*}
$$

Figure 615: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12} \\
& +\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}
\end{aligned}
$$

Verified OK.

11.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=\sinh (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sinh (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=4
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{2 x} \sinh (x) d x\right)}{4}+\frac{\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x} \sinh (x) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12}+\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\frac{\left(-2 \sinh (x)^{3}-2 \sinh (x)^{2} \cosh (x)+\cosh (x)\right) \mathrm{e}^{-2 x}}{12}+\frac{\left(-\sinh (x)^{3}+\sinh (x)^{2} \cosh (x)-\frac{\cosh (x)}{2}\right) \mathrm{e}^{2 x}}{6}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 56

```
dsolve(diff(y(x),x$2)-4*y(x)=sinh(x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \frac{\left(-2 \sinh (x)^{2} \cosh (x)-2 \sinh (x)^{3}+12 c_{1}+\cosh (x)\right) \mathrm{e}^{-2 x}}{12} \\
& +\mathrm{e}^{2 x}\left(\frac{\sinh (x)^{2} \cosh (x)}{6}-\frac{\sinh (x)^{3}}{6}+c_{2}-\frac{\cosh (x)}{12}\right)
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 38
DSolve[y'' $[\mathrm{x}]-4 * \mathrm{y}[\mathrm{x}]==\operatorname{Sinh}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{6} e^{-2 x}\left(e^{x}-e^{3 x}+6 c_{1} e^{4 x}+6 c_{2}\right)
$$

11.8 problem 8

11.8.1 Solving as second order linear constant coeff ode 2692
11.8.2 Solving using Kovacic algorithm 2697
11.8.3 Maple step by step solution . 2703

Internal problem ID [226]
Internal file name [OUTPUT/226_Sunday_June_05_2022_01_37_00_AM_49499764/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-4 y=\cosh (2 x)
$$

11.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=\cosh (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+2 \\
\lambda_{2}=-2
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{cc}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
2 \mathrm{e}^{2 x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=-4 \mathrm{e}^{2 x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=-4
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-2 x} \cosh (2 x)}{-4} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-2 x} \cosh (2 x)}{4} d x
$$

Hence

$$
u_{1}=\frac{x}{8}+\frac{\sinh (4 x)}{32}-\frac{\cosh (4 x)}{32}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} \cosh (2 x)}{-4} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{2 x} \cosh (2 x)}{4} d x
$$

Hence

$$
u_{2}=-\frac{\cosh (2 x)^{2}}{16}-\frac{\cosh (2 x) \sinh (2 x)}{16}-\frac{x}{8}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{x}{8}+\frac{\sinh (4 x)}{32}-\frac{\cosh (4 x)}{32} \\
& u_{2}=-\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{x}{8}+\frac{\sinh (4 x)}{32}-\frac{\cosh (4 x)}{32}\right) \mathrm{e}^{2 x}+\left(-\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32}\right) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}\right) \\
& +\left(\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}+\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32} \\
& +\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8} \tag{1}
\end{align*}
$$

Figure 616: Slope field plot

Verification of solutions

$y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}+\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}$
Verified OK.

11.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 461: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
-2 \mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{\mathrm{e}^{2 x}}{2}\right)-\left(\frac{\mathrm{e}^{2 x}}{4}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x} \cosh (2 x)}{4}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{2 x} \cosh (2 x)}{4} d x
$$

Hence

$$
u_{1}=-\frac{\cosh (2 x)^{2}}{16}-\frac{\cosh (2 x) \sinh (2 x)}{16}-\frac{x}{8}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x} \cosh (2 x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-2 x} \cosh (2 x) d x
$$

Hence

$$
u_{2}=\frac{x}{2}+\frac{\sinh (4 x)}{8}-\frac{\cosh (4 x)}{8}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32} \\
& u_{2}=\frac{x}{2}+\frac{\sinh (4 x)}{8}-\frac{\cosh (4 x)}{8}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32}\right) \mathrm{e}^{-2 x}+\frac{\left(\frac{x}{2}+\frac{\sinh (4 x)}{8}-\frac{\cosh (4 x)}{8}\right) \mathrm{e}^{2 x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right) \\
& +\left(\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32} \\
& +\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8} \tag{1}
\end{align*}
$$

Figure 617: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32} \\
& +\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
\end{aligned}
$$

Verified OK.

11.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=\cosh (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cosh (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=4
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{2 x} \cosh (2 x) d x\right)}{4}+\frac{\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x} \cosh (2 x) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\frac{(-4 x-1-\cosh (4 x)-\sinh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x+\frac{\sinh (4 x)}{4}-\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(x),x$2)-4*y(x)=cosh(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-4 x+32 c_{1}-2\right) \mathrm{e}^{-2 x}}{32}+\frac{\mathrm{e}^{2 x}\left(x+8 c_{2}-\frac{1}{4}\right)}{8}
$$

Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 38
DSolve[y'' $[\mathrm{x}]-4 * y[\mathrm{x}]==\operatorname{Cosh}[2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{32} e^{-2 x}\left(-4 x+e^{4 x}\left(4 x-1+32 c_{1}\right)-1+32 c_{2}\right)
$$

11.9 problem 9

11.9.1 Solving as second order linear constant coeff ode 2706
11.9.2 Solving using Kovacic algorithm 2709
11.9.3 Maple step by step solution . 2716

Internal problem ID [227]
Internal file name [OUTPUT/227_Sunday_June_05_2022_01_37_01_AM_77252817/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}-3 y=1+x \mathrm{e}^{x}
$$

11.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=-3, f(x)=1+x \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-3)} \\
& =-1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 \\
& \lambda_{2}=-1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1+x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-3 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{1\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x \mathrm{e}^{x}+A_{3} x^{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{2} \mathrm{e}^{x}+2 A_{3} \mathrm{e}^{x}+8 A_{3} x \mathrm{e}^{x}-3 A_{1}=1+x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}, A_{2}=-\frac{1}{16}, A_{3}=\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{3}-\frac{x \mathrm{e}^{x}}{16}+\frac{x^{2} \mathrm{e}^{x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2}\right)+\left(-\frac{1}{3}-\frac{x \mathrm{e}^{x}}{16}+\frac{x^{2} \mathrm{e}^{x}}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2}-\frac{1}{3}-\frac{x \mathrm{e}^{x}}{16}+\frac{x^{2} \mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
$$

Figure 618: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2}-\frac{1}{3}-\frac{x \mathrm{e}^{x}}{16}+\frac{x^{2} \mathrm{e}^{x}}{8}
$$

Verified OK.

11.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 463: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{x}}{4} \\
-3 \mathrm{e}^{-3 x} & \frac{\mathrm{e}^{x}}{4}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\frac{\mathrm{e}^{x}}{4}\right)-\left(\frac{\mathrm{e}^{x}}{4}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-3 x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{x}\left(1+x \mathrm{e}^{x}\right)}{4}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(1+x \mathrm{e}^{x}\right) \mathrm{e}^{3 x}}{4} d x
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{3 x}}{12}-\frac{x \mathrm{e}^{4 x}}{16}+\frac{\mathrm{e}^{4 x}}{64}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-3 x}\left(1+x \mathrm{e}^{x}\right)}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(\mathrm{e}^{-x}+x\right) d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{2}-\mathrm{e}^{-x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(1-4 x) \mathrm{e}^{4 x}}{64}-\frac{\mathrm{e}^{3 x}}{12} \\
& u_{2}=\frac{x^{2}}{2}-\mathrm{e}^{-x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{(1-4 x) \mathrm{e}^{4 x}}{64}-\frac{\mathrm{e}^{3 x}}{12}\right) \mathrm{e}^{-3 x}+\frac{\left(\frac{x^{2}}{2}-\mathrm{e}^{-x}\right) \mathrm{e}^{x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{1}{3}+\frac{\left(8 x^{2}-4 x+1\right) \mathrm{e}^{x}}{64}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}\right)+\left(-\frac{1}{3}+\frac{\left(8 x^{2}-4 x+1\right) \mathrm{e}^{x}}{64}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}-\frac{1}{3}+\frac{\left(8 x^{2}-4 x+1\right) \mathrm{e}^{x}}{64} \tag{1}
\end{equation*}
$$

Figure 619: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}-\frac{1}{3}+\frac{\left(8 x^{2}-4 x+1\right) \mathrm{e}^{x}}{64}
$$

Verified OK.

11.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}-3 y=1+x \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r-3=0$
- Factor the characteristic polynomial
$(r+3)(r-1)=0$
- Roots of the characteristic polynomial
$r=(-3,1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=1+x \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & \mathrm{e}^{x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=4 \mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{4 x}\left(\int\left(\mathrm{e}^{-x}+x\right) d x\right)-\left(\int\left(1+x \mathrm{e}^{x}\right) \mathrm{e}^{3 x} d x\right)\right) \mathrm{e}^{-3 x}}{4}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{1}{3}+\frac{\left(8 x^{2}-4 x+1\right) \mathrm{e}^{x}}{64}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{x}-\frac{1}{3}+\frac{\left(8 x^{2}-4 x+1\right) \mathrm{e}^{x}}{64}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$2)+2*\operatorname{diff}(y(x),x)-3*y(x)=1+x*exp(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{-3 x}\left(\left(x^{2}-\frac{1}{2} x+8 c_{2}+\frac{1}{8}\right) \mathrm{e}^{4 x}+8 c_{1}-\frac{8 \mathrm{e}^{3 x}}{3}\right)}{8}
$$

Solution by Mathematica
Time used: 0.092 (sec). Leaf size: 38

```
DSolve[y''[x]+2*y'[x]-3*y[x]==1+x*Exp[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{64} e^{x}\left(8 x^{2}-4 x+1+64 c_{2}\right)+c_{1} e^{-3 x}-\frac{1}{3}
$$

11.10 problem 10

11.10.1 Solving as second order linear constant coeff ode 2718
11.10.2 Solving using Kovacic algorithm 2722
11.10.3 Maple step by step solution . 2727

Internal problem ID [228]
Internal file name [OUTPUT/228_Sunday_June_05_2022_01_37_02_AM_22619764/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+9 y=2 \cos (3 x)+3 \sin (3 x)
$$

11.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=2 \cos (3 x)+3 \sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (3 x)+3 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since $\cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (3 x), x \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (3 x)+A_{2} x \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=2 \cos (3 x)+3 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 620: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3}
$$

Verified OK.

11.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 465: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (3 x)+3 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since $\cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (3 x), x \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (3 x)+A_{2} x \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=2 \cos (3 x)+3 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 621: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{x \cos (3 x)}{2}+\frac{x \sin (3 x)}{3}
$$

Verified OK.

11.10.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+9 y=2 \cos (3 x)+3 \sin (3 x)$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \cos (3 x)+3 \sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int(3-3 \cos (6 x)+2 \sin (6 x)) d x\right)}{6}+\frac{\sin (3 x)\left(\int(3 \sin (6 x)+2+2 \cos (6 x)) d x\right)}{6}
$$

- Compute integrals

$$
y_{p}(x)=\frac{(-9 x+1) \cos (3 x)}{18}+\frac{(4 x+1) \sin (3 x)}{12}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{(-9 x+1) \cos (3 x)}{18}+\frac{(4 x+1) \sin (3 x)}{12}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$2)+9*y(x)=2*cos(3*x)+3*\operatorname{sin}(3*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(18 c_{1}-9 x+2\right) \cos (3 x)}{18}+\frac{\sin (3 x)\left(x+3 c_{2}\right)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.231 (sec). Leaf size: 39

```
DSolve[y''[x]+9*y[x]==2*Cos[3*x]+3*Sin[3*x],y[x],x,IncludeSingularSolutions }->\mathrm{ True]
```

$$
y(x) \rightarrow\left(-\frac{x}{2}+\frac{1}{9}+c_{1}\right) \cos (3 x)+\frac{1}{12}\left(4 x+1+12 c_{2}\right) \sin (3 x)
$$

11.11 problem 16

11.11.1 Solving as second order linear constant coeff ode 2729
11.11.2 Solving using Kovacic algorithm 2732
11.11.3 Maple step by step solution . 2737

Internal problem ID [229]
Internal file name [OUTPUT/229_Sunday_June_05_2022_01_37_03_AM_65712223/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+9 y=2 x^{2} \mathrm{e}^{3 x}+5
$$

11.11.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=2 x^{2} \mathrm{e}^{3 x}+5$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 x^{2} \mathrm{e}^{3 x}+5
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{x \mathrm{e}^{3 x}, x^{2} \mathrm{e}^{3 x}, \mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} x \mathrm{e}^{3 x}+A_{3} x^{2} \mathrm{e}^{3 x}+A_{4} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{2} \mathrm{e}^{3 x}+18 A_{2} x \mathrm{e}^{3 x}+2 A_{3} \mathrm{e}^{3 x}+12 A_{3} x \mathrm{e}^{3 x}+18 A_{3} x^{2} \mathrm{e}^{3 x}+18 A_{4} \mathrm{e}^{3 x}+9 A_{1}=2 x^{2} \mathrm{e}^{3 x}+5
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{9}, A_{2}=-\frac{2}{27}, A_{3}=\frac{1}{9}, A_{4}=\frac{1}{81}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81} \tag{1}
\end{equation*}
$$

Figure 622: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81}
$$

Verified OK.

11.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 467: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 x^{2} \mathrm{e}^{3 x}+5
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{x \mathrm{e}^{3 x}, x^{2} \mathrm{e}^{3 x}, \mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} x \mathrm{e}^{3 x}+A_{3} x^{2} \mathrm{e}^{3 x}+A_{4} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{2} \mathrm{e}^{3 x}+18 A_{2} x \mathrm{e}^{3 x}+2 A_{3} \mathrm{e}^{3 x}+12 A_{3} x \mathrm{e}^{3 x}+18 A_{3} x^{2} \mathrm{e}^{3 x}+18 A_{4} \mathrm{e}^{3 x}+9 A_{1}=2 x^{2} \mathrm{e}^{3 x}+5
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{9}, A_{2}=-\frac{2}{27}, A_{3}=\frac{1}{9}, A_{4}=\frac{1}{81}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81} \tag{1}
\end{equation*}
$$

Figure 623: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{5}{9}-\frac{2 x \mathrm{e}^{3 x}}{27}+\frac{x^{2} \mathrm{e}^{3 x}}{9}+\frac{\mathrm{e}^{3 x}}{81}
$$

Verified OK.

11.11.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=2 x^{2} \mathrm{e}^{3 x}+5
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 x^{2} \mathrm{e}^{3 x}+5\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (3 x) & \sin (3 x) \\ -3 \sin (3 x) & 3 \cos (3 x)\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int\left(2 x^{2} \mathrm{e}^{3 x} \sin (3 x)+5 \sin (3 x)\right) d x\right)}{3}+\frac{\sin (3 x)\left(\int \cos (3 x)\left(2 x^{2} \mathrm{e}^{3 x}+5\right) d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{5}{9}+\frac{\left(x-\frac{1}{3}\right)^{2} \mathrm{e}^{3 x}}{9}
$$

- Substitute particular solution into general solution to ODE
$y=\frac{\left(x-\frac{1}{3}\right)^{2} \mathrm{e}^{3 x}}{9}+c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{5}{9}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$2)+9*y(x)=2*x^2*exp(3*x)+5,y(x), singsol=all)
```

$$
y(x)=\sin (3 x) c_{2}+\cos (3 x) c_{1}+\frac{5}{9}+\frac{\left(x-\frac{1}{3}\right)^{2} \mathrm{e}^{3 x}}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 50
DSolve[y' $\quad[x]+9 * y[x]==2 * x^{\wedge} 2 * \operatorname{Exp}[3 * x]+5, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{81}\left(9 e^{3 x} x^{2}-6 e^{3 x} x+e^{3 x}+81 c_{1} \cos (3 x)+81 c_{2} \sin (3 x)+45\right)
$$

11.12 problem 21

11.12.1 Solving as second order linear constant coeff ode 2740
11.12.2 Solving using Kovacic algorithm 2743
11.12.3 Maple step by step solution . 2748

Internal problem ID [230]
Internal file name [OUTPUT/230_Sunday_June_05_2022_01_37_04_AM_46500331/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\sin (x) \mathrm{e}^{x}
$$

11.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=2, f(x)=\sin (x) \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(2)} \\
& =1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x) \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
$$

Since $\cos (x) \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (x) \mathrm{e}^{x}, x \sin (x) \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (x) \mathrm{e}^{x}+A_{2} x \sin (x) \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \sin (x) \mathrm{e}^{x}+2 A_{2} \cos (x) \mathrm{e}^{x}=\sin (x) \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (x) \mathrm{e}^{x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(-\frac{x \cos (x) \mathrm{e}^{x}}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{x \cos (x) \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Figure 624: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{x \cos (x) \mathrm{e}^{x}}{2}
$$

Verified OK.

11.12.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 469: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x) \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
$$

Since $\cos (x) \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (x) \mathrm{e}^{x}, x \sin (x) \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (x) \mathrm{e}^{x}+A_{2} x \sin (x) \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \sin (x) \mathrm{e}^{x}+2 A_{2} \cos (x) \mathrm{e}^{x}=\sin (x) \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (x) \mathrm{e}^{x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}\right)+\left(-\frac{x \cos (x) \mathrm{e}^{x}}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{x \cos (x) \mathrm{e}^{x}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{x \cos (x) \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Figure 625: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{x \cos (x) \mathrm{e}^{x}}{2}
$$

Verified OK.

11.12.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\sin (x) \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{2 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I}, 1+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{x}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x) \mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x) \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{x} & \sin (x) \mathrm{e}^{x} \\
-\sin (x) \mathrm{e}^{x}+\cos (x) \mathrm{e}^{x} & \cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(\sin (x)\left(\int \sin (2 x) d x\right)-2 \cos (x)\left(\int \sin (x)^{2} d x\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{(\sin (x)-2 x \cos (x)) \mathrm{e}^{x}}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}+\frac{(\sin (x)-2 x \cos (x)) \mathrm{e}^{x}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+2*y(x)=exp(x)*sin(x),y(x), singsol=all)
```

$$
y(x)=-\frac{\left(\left(x-2 c_{1}\right) \cos (x)+\left(-2 c_{2}-1\right) \sin (x)\right) \mathrm{e}^{x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 28
DSolve[y''[x]-2*y'[x]+2*y[x]==Exp[x]*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{2} e^{x}\left(\left(x-2 c_{2}\right) \cos (x)-2 c_{1} \sin (x)\right)
$$

11.13 problem 23

11.13.1 Solving as second order linear constant coeff ode 2751
11.13.2 Solving using Kovacic algorithm 2755
11.13.3 Maple step by step solution . 2760

Internal problem ID [231]
Internal file name [OUTPUT/231_Sunday_June_05_2022_01_37_05_AM_26728427/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y=3 x \cos (2 x)
$$

11.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=3 x \cos (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \cos (2 x), x \sin (2 x), \cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (2 x), x \sin (2 x), x^{2} \cos (2 x), x^{2} \sin (2 x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} x \sin (2 x)+A_{3} x^{2} \cos (2 x)+A_{4} x^{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)+2 A_{3} \cos (2 x)-8 A_{3} x \sin (2 x) \\
& +2 A_{4} \sin (2 x)+8 A_{4} x \cos (2 x)=3 x \cos (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{16}, A_{2}=0, A_{3}=0, A_{4}=\frac{3}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8} \tag{1}
\end{equation*}
$$

Figure 626: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8}
$$

Verified OK.

11.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 471: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \cos (2 x), x \sin (2 x), \cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (2 x), x \sin (2 x), x^{2} \cos (2 x), x^{2} \sin (2 x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} x \sin (2 x)+A_{3} x^{2} \cos (2 x)+A_{4} x^{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)+2 A_{3} \cos (2 x)-8 A_{3} x \sin (2 x) \\
& +2 A_{4} \sin (2 x)+8 A_{4} x \cos (2 x)=3 x \cos (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{16}, A_{2}=0, A_{3}=0, A_{4}=\frac{3}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8} \tag{1}
\end{equation*}
$$

Figure 627: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{3 x \cos (2 x)}{16}+\frac{3 x^{2} \sin (2 x)}{8}
$$

Verified OK.

11.13.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=3 x \cos (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 x \cos (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{3 \cos (2 x)\left(\int \sin (4 x) x d x\right)}{4}+\frac{3 \sin (2 x)\left(\int \cos (2 x)^{2} x d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{3 x^{2} \sin (2 x)}{8}-\frac{3 \sin (2 x)}{32}+\frac{3 x \cos (2 x)}{16}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{3 x^{2} \sin (2 x)}{8}-\frac{3 \sin (2 x)}{32}+\frac{3 x \cos (2 x)}{16}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$2)+4*y(x)=3*x*\operatorname{cos}(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(24 x^{2}+64 c_{2}-3\right) \sin (2 x)}{64}+\frac{3\left(x+\frac{16 c_{1}}{3}\right) \cos (2 x)}{16}
$$

\checkmark Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 38
DSolve[y'' $[x]+4 * y[x]==3 * x * \operatorname{Cos}[2 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{64}\left(24 x^{2}-3+64 c_{2}\right) \sin (2 x)+\left(\frac{3 x}{16}+c_{1}\right) \cos (2 x)
$$

11.14 problem 25

11.14.1 Solving as second order linear constant coeff ode 2762
11.14.2 Solving using Kovacic algorithm 2766
11.14.3 Maple step by step solution . 2771

Internal problem ID [232]
Internal file name [OUTPUT/232_Sunday_June_05_2022_01_37_06_AM_91972790/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+3 y^{\prime}+2 y=x\left(\mathrm{e}^{-x}-\mathrm{e}^{-2 x}\right)
$$

11.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=3, C=2, f(x)=-x \mathrm{e}^{-x}\left(\mathrm{e}^{-x}-1\right)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-x \mathrm{e}^{-x}\left(\mathrm{e}^{-x}-1\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{-2 x} x, \mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{-2 x} x, \mathrm{e}^{-2 x}\right\}\right]
$$

Since $\mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}\right\},\left\{x^{2} \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-x}+A_{2} x^{2} \mathrm{e}^{-x}+A_{3} x^{2} \mathrm{e}^{-2 x}+A_{4} \mathrm{e}^{-2 x} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-x}+2 A_{2} \mathrm{e}^{-x}+2 A_{2} x \mathrm{e}^{-x}+2 A_{3} \mathrm{e}^{-2 x}-2 A_{3} x \mathrm{e}^{-2 x}-A_{4} \mathrm{e}^{-2 x}=-x \mathrm{e}^{-x}\left(\mathrm{e}^{-x}-1\right)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=\frac{1}{2}, A_{3}=\frac{1}{2}, A_{4}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x \tag{1}
\end{equation*}
$$

Figure 628: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x
$$

Verified OK.

11.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 473: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-x \mathrm{e}^{-x}\left(\mathrm{e}^{-x}-1\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{-2 x} x, \mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
$$

Since $\mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\},\left\{x^{2} \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} x\right\}\right]
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}\right\},\left\{x^{2} \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-x}+A_{2} x^{2} \mathrm{e}^{-x}+A_{3} x^{2} \mathrm{e}^{-2 x}+A_{4} \mathrm{e}^{-2 x} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-x}+2 A_{2} \mathrm{e}^{-x}+2 A_{2} x \mathrm{e}^{-x}+2 A_{3} \mathrm{e}^{-2 x}-2 A_{3} x \mathrm{e}^{-2 x}-A_{4} \mathrm{e}^{-2 x}=-x \mathrm{e}^{-x}\left(\mathrm{e}^{-x}-1\right)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=\frac{1}{2}, A_{3}=\frac{1}{2}, A_{4}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x \tag{1}
\end{equation*}
$$

Figure 629: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}-x \mathrm{e}^{-x}+\frac{x^{2} \mathrm{e}^{-x}}{2}+\frac{x^{2} \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{-2 x} x
$$

Verified OK.

11.14.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=-x \mathrm{e}^{-x}\left(\mathrm{e}^{-x}-1\right)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-x \mathrm{e}^{-x}\left(\mathrm{e}^{-x}-1\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\int x\left(\mathrm{e}^{x}-1\right) d x\right)-\mathrm{e}^{-x}\left(\int\left(\mathrm{e}^{-x}-1\right) x d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(x^{2}+2 x+2\right) \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-x}\left(x^{2}-2 x+2\right)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\frac{\left(x^{2}+2 x+2\right) \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-x}\left(x^{2}-2 x+2\right)}{2}
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful-
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 36
dsolve (diff $(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+2 * y(x)=x *(\exp (-x)-\exp (-2 * x)), y(x)$, singsol=all)

$$
y(x)=\frac{\mathrm{e}^{-x}\left(\left(x^{2}-2 c_{1}+2 x+2\right) \mathrm{e}^{-x}+x^{2}-2 x+2 c_{2}\right)}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 42
DSolve $[y$ '' $[x]+3 * y$ ' $[x]+2 * y[x]==x *(\operatorname{Exp}[-x]-\operatorname{Exp}[-2 * x]), y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{1}{2} e^{-2 x}\left(x^{2}+e^{x}\left(x^{2}-2 x+2+2 c_{2}\right)+2 x+2+2 c_{1}\right)
$$

11.15 problem 26

11.15.1 Solving as second order linear constant coeff ode 2773
11.15.2 Solving using Kovacic algorithm 2777
11.15.3 Maple step by step solution . 2782

Internal problem ID [233]
Internal file name [OUTPUT/233_Sunday_June_05_2022_01_37_07_AM_82096344/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-6 y^{\prime}+13 y=x \mathrm{e}^{3 x} \sin (2 x)
$$

11.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-6, C=13, f(x)=x \mathrm{e}^{3 x} \sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(13)} \\
& =3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+2 i \\
& \lambda_{2}=3-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3+2 i \\
& \lambda_{2}=3-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{3 x} \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 x} \cos (2 x), \mathrm{e}^{3 x} \sin (2 x), x \cos (2 x) \mathrm{e}^{3 x}, x \mathrm{e}^{3 x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{3 x} \cos (2 x), \mathrm{e}^{3 x} \sin (2 x)\right\}
$$

Since $\mathrm{e}^{3 x} \cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (2 x) \mathrm{e}^{3 x}, x \mathrm{e}^{3 x} \sin (2 x), x^{2} \cos (2 x) \mathrm{e}^{3 x}, x^{2} \mathrm{e}^{3 x} \sin (2 x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x) \mathrm{e}^{3 x}+A_{2} x \mathrm{e}^{3 x} \sin (2 x)+A_{3} x^{2} \cos (2 x) \mathrm{e}^{3 x}+A_{4} x^{2} \mathrm{e}^{3 x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 8 A_{4} x \mathrm{e}^{3 x} \cos (2 x)+2 A_{3} \cos (2 x) \mathrm{e}^{3 x}-8 A_{3} x \sin (2 x) \mathrm{e}^{3 x} \\
& \quad+2 A_{4} \mathrm{e}^{3 x} \sin (2 x)+4 A_{2} \mathrm{e}^{3 x} \cos (2 x)-4 A_{1} \sin (2 x) \mathrm{e}^{3 x}=x \mathrm{e}^{3 x} \sin (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{16}, A_{3}=-\frac{1}{8}, A_{4}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8} \tag{1}
\end{equation*}
$$

Figure 630: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8}
$$

Verified OK.

11.15.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 475: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{3 x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{3 x} \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 x} \cos (2 x), \mathrm{e}^{3 x} \sin (2 x), x \cos (2 x) \mathrm{e}^{3 x}, x \mathrm{e}^{3 x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{3 x} \cos (2 x), \frac{\mathrm{e}^{3 x} \sin (2 x)}{2}\right\}
$$

Since $\mathrm{e}^{3 x} \cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (2 x) \mathrm{e}^{3 x}, x \mathrm{e}^{3 x} \sin (2 x), x^{2} \cos (2 x) \mathrm{e}^{3 x}, x^{2} \mathrm{e}^{3 x} \sin (2 x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x) \mathrm{e}^{3 x}+A_{2} x \mathrm{e}^{3 x} \sin (2 x)+A_{3} x^{2} \cos (2 x) \mathrm{e}^{3 x}+A_{4} x^{2} \mathrm{e}^{3 x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{3} \cos (2 x) \mathrm{e}^{3 x}-8 A_{3} x \sin (2 x) \mathrm{e}^{3 x}+2 A_{4} \mathrm{e}^{3 x} \sin (2 x) \\
& \quad+8 A_{4} x \mathrm{e}^{3 x} \cos (2 x)+4 A_{2} \mathrm{e}^{3 x} \cos (2 x)-4 A_{1} \sin (2 x) \mathrm{e}^{3 x}=x \mathrm{e}^{3 x} \sin (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{16}, A_{3}=-\frac{1}{8}, A_{4}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (2 x)}{2}\right)+\left(\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (2 x)}{2}+\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8} \tag{1}
\end{equation*}
$$

Figure 631: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (2 x)}{2}+\frac{x \mathrm{e}^{3 x} \sin (2 x)}{16}-\frac{x^{2} \cos (2 x) \mathrm{e}^{3 x}}{8}
$$

Verified OK.

11.15.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+13 y=x \mathrm{e}^{3 x} \sin (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-6 r+13=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{6 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(3-2 \mathrm{I}, 3+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{3 x} \cos (2 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{3 x} \sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{3 x} \cos (2 x)+c_{2} \mathrm{e}^{3 x} \sin (2 x)+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{3 x} \sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{3 x} \cos (2 x) & \mathrm{e}^{3 x} \sin (2 x) \\
3 \mathrm{e}^{3 x} \cos (2 x)-2 \mathrm{e}^{3 x} \sin (2 x) & 3 \mathrm{e}^{3 x} \sin (2 x)+2 \mathrm{e}^{3 x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{6 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\mathrm{e}^{3 x}\left(\sin (2 x)\left(\int \sin (4 x) x d x\right)-2 \cos (2 x)\left(\int x \sin (2 x)^{2} d x\right)\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\left(x \cos (2 x)-\frac{\sin (2 x)}{2}\right) x \mathrm{e}^{3 x}}{8}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{3 x} \cos (2 x)+c_{2} \mathrm{e}^{3 x} \sin (2 x)-\frac{\left(x \cos (2 x)-\frac{\sin (2 x)}{2}\right) x \mathrm{e}^{3 x}}{8}
$$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)-6*diff (y(x),x)+13*y (x)=x*exp(3*x)*\operatorname{sin}(2*x),y(x), singsol=all)
```

$$
y(x)=-\frac{\left(\left(x^{2}-8 c_{1}\right) \cos (2 x)-\frac{\sin (2 x)\left(x+16 c_{2}\right)}{2}\right) \mathrm{e}^{3 x}}{8}
$$

\checkmark Solution by Mathematica
Time used: 0.105 (sec). Leaf size: 43

```
DSolve[y''[x]-6*y'[x]+13*y[x]==x*Exp[3*x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{64} e^{3 x}\left(\left(-8 x^{2}+1+64 c_{2}\right) \cos (2 x)+4\left(x+16 c_{1}\right) \sin (2 x)\right)
$$

11.16 problem 31

11.16.1 Existence and uniqueness analysis 2784
11.16.2 Solving as second order linear constant coeff ode 2785
11.16.3 Solving using Kovacic algorithm 2789
11.16.4 Maple step by step solution . 2794

Internal problem ID [234]
Internal file name [OUTPUT/234_Sunday_June_05_2022_01_37_08_AM_19462801/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 31 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y=2 x
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=2\right]
$$

11.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =4 \\
F & =2 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=2 x
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=2 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.16.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=2 x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{2} x+4 A_{1}=2 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{x}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{x}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)+\frac{1}{2}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=\frac{1}{2}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{3}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2}
$$

Verified OK.

11.16.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 477: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{2} x+4 A_{1}=2 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{x}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{x}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+c_{2} \cos (2 x)+\frac{1}{2}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=\frac{1}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{3}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2}
$$

Verified OK.

11.16.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=2 x, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 x\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (2 x)\left(\int x \sin (2 x) d x\right)+\sin (2 x)\left(\int x \cos (2 x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{x}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{x}{2}
$$

Check validity of solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{x}{2}$

- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)+\frac{1}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=2$

$$
2=\frac{1}{2}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=\frac{3}{4}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2}
$$

- \quad Solution to the IVP

$$
y=\cos (2 x)+\frac{3 \sin (2 x)}{4}+\frac{x}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve([diff(y(x),x$2)+4*y(x)=2*x,y(0) = 1, D(y)(0) = 2],y(x), singsol=all)
```

$$
y(x)=\frac{3 \sin (2 x)}{4}+\cos (2 x)+\frac{x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22
DSolve[\{y'' $\left.[x]+4 * y[x]==2 * x,\left\{y[0]==1, y^{\prime}[0]==2\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \cos (2 x)+\frac{1}{2}(x+3 \sin (x) \cos (x))
$$

11.17 problem 32

11.17.1 Existence and uniqueness analysis 2797
11.17.2 Solving as second order linear constant coeff ode 2798
11.17.3 Solving using Kovacic algorithm 2802
11.17.4 Maple step by step solution . 2808

Internal problem ID [235]
Internal file name [OUTPUT/235_Sunday_June_05_2022_01_37_09_AM_2830899/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=3\right]
$$

11.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =3 \\
q(x) & =2 \\
F & =\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{x}
$$

The domain of $p(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.17.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=3, C=2, f(x)=\mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\frac{\mathrm{e}^{x}}{6}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{1}{6} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}-2 c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{6}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-c_{1}-2 c_{2}+\frac{1}{6} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{5}{2} \\
& c_{2}=-\frac{8}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{8 \mathrm{e}^{-2 x}}{3}+\frac{\mathrm{e}^{x}}{6}
$$

Which simplifies to

$$
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6}
$$

Verified OK.

11.17.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 479: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(\frac{\mathrm{e}^{x}}{6}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{1}{6} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}-c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{6}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-2 c_{1}-c_{2}+\frac{1}{6} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{8}{3} \\
& c_{2}=\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{8 \mathrm{e}^{-2 x}}{3}+\frac{\mathrm{e}^{x}}{6}
$$

Which simplifies to

$$
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6}
$$

Verified OK.

11.17.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{x}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial

$$
(r+2)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{3 x} d x\right)+\mathrm{e}^{-x}\left(\int \mathrm{e}^{2 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}}{6}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{6}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{6}$

- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}+\frac{1}{6}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}-c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{6}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=3$

$$
3=-2 c_{1}-c_{2}+\frac{1}{6}
$$

- Solve for c_{1} and c_{2} $\left\{c_{1}=-\frac{8}{3}, c_{2}=\frac{5}{2}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6}
$$

- Solution to the IVP

$$
y=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 20
dsolve $([\operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+2 * y(x)=\exp (x), y(0)=0, D(y)(0)=3], y(x)$, singsol=all

$$
y(x)=\frac{\left(\mathrm{e}^{3 x}+15 \mathrm{e}^{x}-16\right) \mathrm{e}^{-2 x}}{6}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+3 * y\right.\right.$ ' $\left.[x]+2 * y[x]==\operatorname{Exp}[x],\left\{y[0]==0, y^{\prime}[0]==3\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{6} e^{-2 x}\left(15 e^{x}+e^{3 x}-16\right)
$$

11.18 problem 33

11.18.1 Existence and uniqueness analysis 2811
11.18.2 Solving as second order linear constant coeff ode 2812
11.18.3 Solving using Kovacic algorithm 2816
11.18.4 Maple step by step solution . 2821

Internal problem ID [236]
Internal file name [OUTPUT/236_Sunday_June_05_2022_01_37_11_AM_67843875/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 33.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=\sin (2 x)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

11.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =\sin (2 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=\sin (2 x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\sin (2 x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.18.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=\sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 x)+5 A_{2} \sin (2 x)=\sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\sin (2 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(\frac{\sin (2 x)}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\sin (2 x)}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)+\frac{2 \cos (2 x)}{5}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{2}{5}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\frac{2}{15}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5}
$$

Verified OK.

11.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 481: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 x)+5 A_{2} \sin (2 x)=\sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\sin (2 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(\frac{\sin (2 x)}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{\sin (2 x)}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 x)+c_{2} \cos (3 x)+\frac{2 \cos (2 x)}{5}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{2}{5}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\frac{2}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5}
$$

Verified OK.

11.18.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=\sin (2 x), y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int(\cos (x)-\cos (5 x)) d x\right)}{6}+\frac{\sin (3 x)\left(\int(\sin (5 x)-\sin (x)) d x\right)}{6}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (2 x)}{5}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\sin (2 x)}{5}$
Check validity of solution $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\sin (2 x)}{5}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)+\frac{2 \cos (2 x)}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=\frac{2}{5}+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=-\frac{2}{15}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5}
$$

- \quad Solution to the IVP

$$
y=\cos (3 x)-\frac{2 \sin (3 x)}{15}+\frac{\sin (2 x)}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([diff(y(x),x$2)+9*y(x)=sin(2*x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=-\frac{2 \sin (3 x)}{15}+\cos (3 x)+\frac{\sin (2 x)}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 26

```
DSolve[{y''[x]+9*y[x]==Sin[2*x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{5} \sin (2 x)-\frac{2}{15} \sin (3 x)+\cos (3 x)
$$

11.19 problem 34

11.19.1 Existence and uniqueness analysis 2824
11.19.2 Solving as second order linear constant coeff ode 2825
11.19.3 Solving using Kovacic algorithm 2829
11.19.4 Maple step by step solution . 2835

Internal problem ID [237]
Internal file name [OUTPUT/237_Sunday_June_05_2022_01_37_12_AM_59525582/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\cos (x)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1\right]
$$

11.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y=\cos (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.19.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (x), \sin (x) x\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (x)+A_{2} \sin (x) x
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\sin (x) x}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{\sin (x) x}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x) x}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)+\frac{x \cos (x)}{2}+\frac{\sin (x)}{2}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (x)-\sin (x)+\frac{\sin (x) x}{2}
$$

Which simplifies to

$$
y=\frac{(-2+x) \sin (x)}{2}+\cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(-2+x) \sin (x)}{2}+\cos (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{(-2+x) \sin (x)}{2}+\cos (x)
$$

Verified OK.

11.19.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 483: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (x), \sin (x) x\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (x)+A_{2} \sin (x) x
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\sin (x) x}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{\sin (x) x}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x) x}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)+\frac{x \cos (x)}{2}+\frac{\sin (x)}{2}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (x)-\sin (x)+\frac{\sin (x) x}{2}
$$

Which simplifies to

$$
y=\frac{(-2+x) \sin (x)}{2}+\cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(-2+x) \sin (x)}{2}+\cos (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{(-2+x) \sin (x)}{2}+\cos (x)
$$

Verified OK.

11.19.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=\cos (x), y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\cos (x)\left(\int \sin (2 x) d x\right)}{2}+\sin (x)\left(\int \cos (x)^{2} d x\right)$
- Compute integrals
$y_{p}(x)=\frac{\cos (x)}{4}+\frac{\sin (x) x}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\cos (x)}{4}+\frac{\sin (x) x}{2}$
Check validity of solution $y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\cos (x)}{4}+\frac{\sin (x) x}{2}$
- Use initial condition $y(0)=1$

$$
1=c_{1}+\frac{1}{4}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)+\frac{\sin (x)}{4}+\frac{x \cos (x)}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$

$$
-1=c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{3}{4}, c_{2}=-1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{(-2+x) \sin (x)}{2}+\cos (x)
$$

- \quad Solution to the IVP

$$
y=\frac{(-2+x) \sin (x)}{2}+\cos (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve([diff $(y(x), x \$ 2)+y(x)=\cos (x), y(0)=1, D(y)(0)=-1], y(x)$, singsol=all)

$$
y(x)=\frac{(-2+x) \sin (x)}{2}+\cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 17
DSolve[\{y'' $\left.[x]+y[x]==\operatorname{Cos}[x],\left\{y[0]==1, y^{\prime}[0]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2}(x-2) \sin (x)+\cos (x)
$$

11.20 problem 35

11.20.1 Existence and uniqueness analysis 2838
11.20.2 Solving as second order linear constant coeff ode 2839
11.20.3 Solving using Kovacic algorithm 2843
11.20.4 Maple step by step solution . 2848

Internal problem ID [238]
Internal file name [OUTPUT/238_Sunday_June_05_2022_01_37_13_AM_39482632/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 y^{\prime}+2 y=x+1
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=0\right]
$$

11.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =2 \\
F & =x+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+2 y=x+1
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=x+1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.20.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=2, f(x)=x+1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(2)} \\
& =1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}-2 A_{2}=x+1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x}{2}+1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(\frac{x}{2}+1\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\frac{x}{2}+1 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=1+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)+\frac{1}{2}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=1-\frac{5 \sin (x) \mathrm{e}^{x}}{2}+2 \cos (x) \mathrm{e}^{x}+\frac{x}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1-\frac{5 \sin (x) \mathrm{e}^{x}}{2}+2 \cos (x) \mathrm{e}^{x}+\frac{x}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1-\frac{5 \sin (x) \mathrm{e}^{x}}{2}+2 \cos (x) \mathrm{e}^{x}+\frac{x}{2}
$$

Verified OK.

11.20.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 485: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} x+2 A_{1}-2 A_{2}=x+1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x}{2}+1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}\right)+\left(\frac{x}{2}+1\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\frac{x}{2}+1
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\frac{x}{2}+1 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=1+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)+\frac{1}{2}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=1-\frac{5 \sin (x) \mathrm{e}^{x}}{2}+2 \cos (x) \mathrm{e}^{x}+\frac{x}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1-\frac{5 \sin (x) \mathrm{e}^{x}}{2}+2 \cos (x) \mathrm{e}^{x}+\frac{x}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1-\frac{5 \sin (x) \mathrm{e}^{x}}{2}+2 \cos (x) \mathrm{e}^{x}+\frac{x}{2}
$$

Verified OK.

11.20.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+2 y=x+1, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-2 r+2=0$
- Use quadratic formula to solve for r

$$
r=\frac{2 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I}, 1+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x) \mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x+1\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{x} & \sin (x) \mathrm{e}^{x} \\
-\sin (x) \mathrm{e}^{x}+\cos (x) \mathrm{e}^{x} & \cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\mathrm{e}^{x}\left(\cos (x)\left(\int(x+1) \sin (x) \mathrm{e}^{-x} d x\right)-\sin (x)\left(\int(x+1) \cos (x) \mathrm{e}^{-x} d x\right)\right)$
- Compute integrals

$$
y_{p}(x)=\frac{x}{2}+1
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}+\frac{x}{2}+1$
Check validity of solution $y=\mathrm{e}^{x} \cos (x) c_{1}+\sin (x) \mathrm{e}^{x} c_{2}+\frac{x}{2}+1$
- Use initial condition $y(0)=3$

$$
3=1+c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x} \cos (x) c_{1}-\mathrm{e}^{x} \sin (x) c_{1}+\cos (x) \mathrm{e}^{x} c_{2}+\sin (x) \mathrm{e}^{x} c_{2}+\frac{1}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=c_{1}+\frac{1}{2}+c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=-\frac{5}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{(4 \cos (x)-5 \sin (x)) \mathrm{e}^{x}}{2}+\frac{x}{2}+1
$$

- \quad Solution to the IVP

$$
y=\frac{(4 \cos (x)-5 \sin (x)) \mathrm{e}^{x}}{2}+\frac{x}{2}+1
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+2*y(x)=x+1,y(0) = 3, D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{(-5 \sin (x)+4 \cos (x)) \mathrm{e}^{x}}{2}+1+\frac{x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 26

```
DSolve[{y''[x]-2*y'[x]+2*y[x]==x+1,{y[0]==3,y'[0]==0}},y[x],x,IncludeSingularSolutions -> Tr
```

$$
y(x) \rightarrow \frac{1}{2}\left(x-5 e^{x} \sin (x)+4 e^{x} \cos (x)+2\right)
$$

11.21 problem 44

11.21.1 Solving as second order linear constant coeff ode 2851
11.21.2 Solving using Kovacic algorithm 2855
11.21.3 Maple step by step solution . 2860

Internal problem ID [239]
Internal file name [OUTPUT/239_Sunday_June_05_2022_01_37_14_AM_39087720/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 44.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}+y=\sin (x) \sin (3 x)
$$

11.21.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=1, f(x)=\sin (x) \sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x) \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\},\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)+A_{3} \cos (4 x)+A_{4} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -3 A_{1} \cos (2 x)-3 A_{2} \sin (2 x)-15 A_{3} \cos (4 x)-15 A_{4} \sin (4 x)-2 A_{1} \sin (2 x) \\
& +2 A_{2} \cos (2 x)-4 A_{3} \sin (4 x)+4 A_{4} \cos (4 x)=\sin (x) \sin (3 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{26}, A_{2}=\frac{1}{13}, A_{3}=\frac{15}{482}, A_{4}=-\frac{2}{241}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)\right) \\
& +\left(-\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \\
& -\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}
\end{aligned}
$$

Figure 642: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \\
& -\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}
\end{aligned}
$$

Verified OK.

11.21.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 487: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{3}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x) \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\},\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)+A_{3} \cos (4 x)+A_{4} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -3 A_{1} \cos (2 x)-3 A_{2} \sin (2 x)-15 A_{3} \cos (4 x)-15 A_{4} \sin (4 x)-2 A_{1} \sin (2 x) \\
& +2 A_{2} \cos (2 x)-4 A_{3} \sin (4 x)+4 A_{4} \cos (4 x)=\sin (x) \sin (3 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{26}, A_{2}=\frac{1}{13}, A_{3}=\frac{15}{482}, A_{4}=-\frac{2}{241}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right) \\
& +\left(-\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3} \tag{1}\\
& -\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}
\end{align*}
$$

Figure 643: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3} \\
& -\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}
\end{aligned}
$$

Verified OK.

11.21.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}+y=\sin (x) \sin (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}+r+1=0$
- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-3})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
$$

- \quad 1st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x) \sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2} \sqrt{3}}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{2 \mathrm{e}^{-\frac{x}{2} \sqrt{3}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \sin (3 x) \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \sin (3 x) \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}}{3}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}+\frac{15 \cos (4 x)}{482}-\frac{2 \sin (4 x)}{241}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{2}+\frac{\sin (2 x)}{13}-\frac{2 \sin (4 x)}{241}-\frac{3 \cos (2 x)}{26}+\frac{15 \cos (4 x)}{482}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 55

```
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=sin(x)*sin(3*x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1} \\
& -\frac{3 \cos (2 x)}{26}+\frac{\sin (2 x)}{13}-\frac{2 \sin (4 x)}{241}+\frac{15 \cos (4 x)}{482}
\end{aligned}
$$

Solution by Mathematica

Time used: 5.225 (sec). Leaf size: 80
DSolve[y''[x]+y'[x]+y[x]==Sin[x]*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
y(x) \rightarrow & \frac{1}{13} \sin (2 x)-\frac{2}{241} \sin (4 x)-\frac{3}{26} \cos (2 x)+\frac{15}{482} \cos (4 x) \\
& +c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{aligned}
$$

11.22 problem 45

11.22.1 Solving as second order linear constant coeff ode 2863
11.22.2 Solving using Kovacic algorithm 2866
11.22.3 Maple step by step solution . 2871

Internal problem ID [240]
Internal file name [OUTPUT/240_Sunday_June_05_2022_01_37_16_AM_36621995/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 45.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=\sin (x)^{4}
$$

11.22.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=\sin (x)^{4}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{4}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\},\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)+A_{4} \cos (4 x)+A_{5} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{2} \cos (2 x)+5 A_{3} \sin (2 x)-7 A_{4} \cos (4 x)-7 A_{5} \sin (4 x)+9 A_{1}=\sin (x)^{4}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{24}, A_{2}=-\frac{1}{10}, A_{3}=0, A_{4}=-\frac{1}{56}, A_{5}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56} \tag{1}
\end{equation*}
$$

Figure 644: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56}
$$

Verified OK.

11.22.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 489: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{4}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\},\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)+A_{4} \cos (4 x)+A_{5} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{2} \cos (2 x)+5 A_{3} \sin (2 x)-7 A_{4} \cos (4 x)-7 A_{5} \sin (4 x)+9 A_{1}=\sin (x)^{4}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{24}, A_{2}=-\frac{1}{10}, A_{3}=0, A_{4}=-\frac{1}{56}, A_{5}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56} \tag{1}
\end{equation*}
$$

Figure 645: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{1}{24}-\frac{\cos (2 x)}{10}-\frac{\cos (4 x)}{56}
$$

Verified OK.

11.22.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=\sin (x)^{4}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)^{4}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x) \sin (x)^{4} d x\right)}{3}+\frac{\sin (3 x)\left(\int \cos (3 x) \sin (x)^{4} d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\cos (x)^{4}}{7}-\frac{2 \cos (x)^{2}}{35}+\frac{13}{105}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{\cos (x)^{4}}{7}-\frac{2 \cos (x)^{2}}{35}+\frac{13}{105}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$2)+9*y(x)=sin(x)^4,y(x), singsol=all)
```

$$
y(x)=\sin (3 x) c_{2}+\cos (3 x) c_{1}-\frac{\cos (2 x)}{10}-\frac{\cos (2 x)^{2}}{28}+\frac{5}{84}
$$

\checkmark Solution by Mathematica
Time used: 0.215 (sec). Leaf size: 39
DSolve[y' ' $[\mathrm{x}]+9 * \mathrm{y}[\mathrm{x}]==\operatorname{Sin}[\mathrm{x}] \sim 4, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{1}{10} \cos (2 x)-\frac{1}{56} \cos (4 x)+c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{1}{24}
$$

11.23 problem 46

11.23.1 Solving as second order linear constant coeff ode 2874
11.23.2 Solving using Kovacic algorithm 2878
11.23.3 Maple step by step solution . 2883

Internal problem ID [241]
Internal file name [OUTPUT/241_Sunday_June_05_2022_01_37_17_AM_79584620/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 46.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=x \cos (x)^{3}
$$

11.23.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=x \cos (x)^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \cos (x)^{3}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \cos (x), \sin (x) x, \cos (x), \sin (x)\},\{x \cos (3 x), x \sin (3 x), \cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (x), x^{2} \cos (x), \sin (x) x, \sin (x) x^{2}\right\},\{x \cos (3 x), x \sin (3 x), \cos (3 x), \sin (3 x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
\begin{aligned}
y_{p}= & A_{1} x \cos (x)+A_{2} x^{2} \cos (x)+A_{3} \sin (x) x+A_{4} \sin (x) x^{2} \\
& +A_{5} x \cos (3 x)+A_{6} x \sin (3 x)+A_{7} \cos (3 x)+A_{8} \sin (3 x)
\end{aligned}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{1} \sin (x)+2 A_{2} \cos (x)-4 A_{2} x \sin (x)+2 A_{3} \cos (x)+4 A_{4} \cos (x) x \\
& +2 A_{4} \sin (x)-6 A_{5} \sin (3 x)-8 A_{5} x \cos (3 x)+6 A_{6} \cos (3 x) \\
& -8 A_{6} x \sin (3 x)-8 A_{7} \cos (3 x)-8 A_{8} \sin (3 x)=x \cos (x)^{3}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{16}, A_{2}=0, A_{3}=0, A_{4}=\frac{3}{16}, A_{5}=-\frac{1}{32}, A_{6}=0, A_{7}=0, A_{8}=\frac{3}{128}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128} \tag{1}
\end{equation*}
$$

Figure 646: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128}
$$

Verified OK.

11.23.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 491: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \cos (x)^{3}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \cos (x), \sin (x) x, \cos (x), \sin (x)\},\{x \cos (3 x), x \sin (3 x), \cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \cos (x), x^{2} \cos (x), \sin (x) x, \sin (x) x^{2}\right\},\{x \cos (3 x), x \sin (3 x), \cos (3 x), \sin (3 x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
\begin{aligned}
y_{p}= & A_{1} x \cos (x)+A_{2} x^{2} \cos (x)+A_{3} \sin (x) x+A_{4} \sin (x) x^{2} \\
& +A_{5} x \cos (3 x)+A_{6} x \sin (3 x)+A_{7} \cos (3 x)+A_{8} \sin (3 x)
\end{aligned}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{1} \sin (x)+2 A_{2} \cos (x)-4 A_{2} x \sin (x)+2 A_{3} \cos (x)+4 A_{4} \cos (x) x \\
& +2 A_{4} \sin (x)-6 A_{5} \sin (3 x)-8 A_{5} x \cos (3 x)+6 A_{6} \cos (3 x) \\
& -8 A_{6} x \sin (3 x)-8 A_{7} \cos (3 x)-8 A_{8} \sin (3 x)=x \cos (x)^{3}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{16}, A_{2}=0, A_{3}=0, A_{4}=\frac{3}{16}, A_{5}=-\frac{1}{32}, A_{6}=0, A_{7}=0, A_{8}=\frac{3}{128}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128} \tag{1}
\end{equation*}
$$

Figure 647: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 x \cos (x)}{16}+\frac{3 \sin (x) x^{2}}{16}-\frac{x \cos (3 x)}{32}+\frac{3 \sin (3 x)}{128}
$$

Verified OK.

11.23.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y=x \cos (x)^{3}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (x)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \cos (x)^{3}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x) x \cos (x)^{3} d x\right)+\sin (x)\left(\int \cos (x)^{4} x d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(6 \cos (x)^{2}+12 x^{2}+9\right) \sin (x)}{64}-\frac{x \cos (x)^{3}}{8}+\frac{9 x \cos (x)}{32}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\left(6 \cos (x)^{2}+12 x^{2}+9\right) \sin (x)}{64}-\frac{x \cos (x)^{3}}{8}+\frac{9 x \cos (x)}{32}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

$$
\begin{aligned}
& \text { dsolve }(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{y}(\mathrm{x})=\mathrm{x} * \cos (\mathrm{x}) \wedge 3, \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
& y(x)=-\frac{x \cos (x)^{3}}{8}+\frac{3 \sin (x) \cos (x)^{2}}{32}+\frac{\left(9 x+32 c_{1}\right) \cos (x)}{32}+\frac{3\left(x^{2}+\frac{16 c_{2}}{3}+\frac{3}{4}\right) \sin (x)}{16}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 49
DSolve[y'' $[x]+y[x]==x * \operatorname{Cos}[x] \sim 3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{128}\left(\sin (x)\left(24 x^{2}+6 \cos (2 x)-9+128 c_{2}\right)-4 x \cos (3 x)+8\left(3 x+16 c_{1}\right) \cos (x)\right)
$$

11.24 problem 47

11.24.1 Solving as second order linear constant coeff ode 2885
11.24.2 Solving using Kovacic algorithm 2888
11.24.3 Maple step by step solution . 2893

Internal problem ID [242]
Internal file name [OUTPUT/242_Sunday_June_05_2022_01_37_18_AM_30887006/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 \mathrm{e}^{x}
$$

11.24.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=3, C=2, f(x)=4 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{x}=4 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{2}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{2 \mathrm{e}^{x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\frac{2 \mathrm{e}^{x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\frac{2 \mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Figure 648: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\frac{2 \mathrm{e}^{x}}{3}
$$

Verified OK.

11.24.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 493: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{x}=4 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{2}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{2 \mathrm{e}^{x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(\frac{2 \mathrm{e}^{x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 649: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\frac{2 \mathrm{e}^{x}}{3}
$$

Verified OK.

11.24.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{-2 x}\left(\int \mathrm{e}^{3 x} d x\right)+4 \mathrm{e}^{-x}\left(\int \mathrm{e}^{2 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{2 \mathrm{e}^{x}}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\frac{2 \mathrm{e}^{x}}{3}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form $[x i=0$, eta=F (x)] successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=4*exp(x),y(x), singsol=all)
```

$$
y(x)=-\left(-\mathrm{e}^{x} c_{2}+c_{1}-\frac{2 \mathrm{e}^{3 x}}{3}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 29
DSolve[y''[x]+3*y'[x]+2*y[x]==4*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{2 e^{x}}{3}+c_{1} e^{-2 x}+c_{2} e^{-x}
$$

11.25 problem 48

11.25.1 Solving as second order linear constant coeff ode 2895
11.25.2 Solving using Kovacic algorithm 2898
11.25.3 Maple step by step solution . 2903

Internal problem ID [243]
Internal file name [OUTPUT/243_Sunday_June_05_2022_01_37_19_AM_86049182/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 48.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-2 y^{\prime}-8 y=3 \mathrm{e}^{-2 x}
$$

11.25.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=-8, f(x)=3 \mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-8$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-8)} \\
& =1 \pm 3
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+3 \\
& \lambda_{2}=1-3
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =4 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{4 x}\right\}
$$

Since $\mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-2 x} x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x} x
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \mathrm{e}^{-2 x}=3 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{-2 x} x}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-\frac{\mathrm{e}^{-2 x} x}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x} x}{2} \tag{1}
\end{equation*}
$$

Figure 650: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x} x}{2}
$$

Verified OK.

11.25.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 495: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-3 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{e^{6 x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{4 x}}{6}, \mathrm{e}^{-2 x}\right\}
$$

Since $\mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-2 x} x\right\}\right]
$$

Since there was duplication between the basis functions in the UC__set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x} x
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \mathrm{e}^{-2 x}=3 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{-2 x} x}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}\right)+\left(-\frac{\mathrm{e}^{-2 x} x}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}-\frac{\mathrm{e}^{-2 x} x}{2} \tag{1}
\end{equation*}
$$

Figure 651: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}-\frac{\mathrm{e}^{-2 x} x}{2}
$$

Verified OK.

11.25.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}-8 y=3 \mathrm{e}^{-2 x}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r-8=0
$$

- Factor the characteristic polynomial
$(r+2)(r-4)=0$
- Roots of the characteristic polynomial
$r=(-2,4)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{4 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \mathrm{e}^{-2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{4 x} \\ -2 \mathrm{e}^{-2 x} & 4 \mathrm{e}^{4 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=6 \mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int 1 d x\right)}{2}+\frac{\mathrm{e}^{4 x}\left(\int \mathrm{e}^{-6 x} d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}(1+6 x)}{12}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{4 x}-\frac{\mathrm{e}^{-2 x}(1+6 x)}{12}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)-8*y(x)=3*exp(-2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-x+2 c_{1}\right) \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{4 x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 32
DSolve[y''[x]-2*y'[x]-8*y[x]==3*Exp[-2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{12} e^{-2 x}\left(-6 x+12 c_{2} e^{6 x}-1+12 c_{1}\right)
$$

11.26 problem 49

11.26.1 Solving as second order linear constant coeff ode
11.26.2 Solving as linear second order ode solved by an integrating factor
ode . 2909
11.26.3 Solving using Kovacic algorithm 2911
11.26.4 Maple step by step solution . 2916

Internal problem ID [244]
Internal file name [OUTPUT/244_Sunday_June_05_2022_01_37_20_AM_71664465/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 49.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-4 y^{\prime}+4 y=2 \mathrm{e}^{2 x}
$$

11.26.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=4, f(x)=2 \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-4)^{2}-(4)(1)(4)} \\
& =2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{2 x}=2 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x^{2} \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x}\right)+\left(x^{2} \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 652: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x}
$$

Verified OK.

11.26.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-4 d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =2 \mathrm{e}^{2 x} \mathrm{e}^{-2 x} \\
\left(\mathrm{e}^{-2 x} y\right)^{\prime \prime} & =2 \mathrm{e}^{2 x} \mathrm{e}^{-2 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-2 x} y\right)^{\prime}=2 x+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-2 x} y\right)=x\left(x+c_{1}\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{x\left(x+c_{1}\right)+c_{2}}{\mathrm{e}^{-2 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{2 x}+x^{2} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

Figure 653: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{2 x}+x^{2} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x}
$$

Verified OK.

11.26.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 497: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{2 x}=2 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x^{2} \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x}\right)+\left(x^{2} \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 654: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x}
$$

Verified OK.

11.26.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=2 \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-4 r+4=0$
- Factor the characteristic polynomial
$(r-2)^{2}=0$
- Root of the characteristic polynomial

$$
r=2
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{2 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} & x \mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} & \mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{4 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{2 x}\left(\int x d x-\left(\int 1 d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=x^{2} \mathrm{e}^{2 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x \mathrm{e}^{2 x}+x^{2} \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=2*exp(2*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x}\left(c_{1} x+x^{2}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 21

```
DSolve[y''[x]-4*y'[x]+4*y[x]==2*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{2 x}\left(x^{2}+c_{2} x+c_{1}\right)
$$

11.27 problem 50

11.27.1 Solving as second order linear constant coeff ode 2918
11.27.2 Solving using Kovacic algorithm 2923
11.27.3 Maple step by step solution . 2929

Internal problem ID [245]
Internal file name [OUTPUT/245_Sunday_June_05_2022_01_37_21_AM_41560567/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 50.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-4 y=\sinh (2 x)
$$

11.27.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=\sinh (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+2 \\
\lambda_{2}=-2
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{cc}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
2 \mathrm{e}^{2 x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=-4 \mathrm{e}^{2 x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=-4
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-2 x} \sinh (2 x)}{-4} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-2 x} \sinh (2 x)}{4} d x
$$

Hence

$$
u_{1}=\frac{x}{8}-\frac{\sinh (4 x)}{32}+\frac{\cosh (4 x)}{32}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} \sinh (2 x)}{-4} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{2 x} \sinh (2 x)}{4} d x
$$

Hence

$$
u_{2}=-\frac{\cosh (2 x) \sinh (2 x)}{16}+\frac{x}{8}-\frac{\cosh (2 x)^{2}}{16}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{x}{8}-\frac{\sinh (4 x)}{32}+\frac{\cosh (4 x)}{32} \\
& u_{2}=\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{x}{8}-\frac{\sinh (4 x)}{32}+\frac{\cosh (4 x)}{32}\right) \mathrm{e}^{2 x}+\left(\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32}\right) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}\right) \\
& +\left(\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}+\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32} \\
& +\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8} \tag{1}
\end{align*}
$$

Figure 655: Slope field plot

Verification of solutions

$y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}+\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}$
Verified OK.

11.27.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 499: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
-2 \mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{\mathrm{e}^{2 x}}{2}\right)-\left(\frac{\mathrm{e}^{2 x}}{4}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x} \sinh (2 x)}{4}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{2 x} \sinh (2 x)}{4} d x
$$

Hence

$$
u_{1}=-\frac{\cosh (2 x) \sinh (2 x)}{16}+\frac{x}{8}-\frac{\cosh (2 x)^{2}}{16}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x} \sinh (2 x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-2 x} \sinh (2 x) d x
$$

Hence

$$
u_{2}=\frac{x}{2}-\frac{\sinh (4 x)}{8}+\frac{\cosh (4 x)}{8}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32} \\
& u_{2}=\frac{x}{2}-\frac{\sinh (4 x)}{8}+\frac{\cosh (4 x)}{8}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{x}{8}-\frac{\cosh (4 x)}{32}-\frac{1}{32}-\frac{\sinh (4 x)}{32}\right) \mathrm{e}^{-2 x}+\frac{\left(\frac{x}{2}-\frac{\sinh (4 x)}{8}+\frac{\cosh (4 x)}{8}\right) \mathrm{e}^{2 x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right) \\
& +\left(\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32} \tag{1}\\
& +\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
\end{align*}
$$

Figure 656: Slope field plot

Verification of solutions

$y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}$ Verified OK.

11.27.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=\sinh (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial
$r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sinh (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{2 x} \sinh (2 x) d x\right)}{4}+\frac{\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x} \sinh (2 x) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\frac{(4 x-1-\sinh (4 x)-\cosh (4 x)) \mathrm{e}^{-2 x}}{32}+\frac{\left(x-\frac{\sinh (4 x)}{4}+\frac{\cosh (4 x)}{4}\right) \mathrm{e}^{2 x}}{8}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$2)-4*y(x)=sinh(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{2 x}\left(4 x+32 c_{2}-1\right)}{32}+\frac{\mathrm{e}^{-2 x}\left(x+8 c_{1}\right)}{8}
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 38
DSolve[y'' $[x]-4 * y[x]==\operatorname{Sinh}[2 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{32} e^{-2 x}\left(4 x+e^{4 x}\left(4 x-1+32 c_{1}\right)+1+32 c_{2}\right)
$$

11.28 problem 51

11.28.1 Solving as second order linear constant coeff ode 2932
11.28.2 Solving using Kovacic algorithm 2935
11.28.3 Maple step by step solution . 2940

Internal problem ID [246]
Internal file name [OUTPUT/246_Sunday_June_05_2022_01_37_22_AM_52057044/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 51.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y=\cos (3 x)
$$

11.28.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\cos (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 x)-5 A_{2} \sin (3 x)=\cos (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{5}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\cos (3 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(-\frac{\cos (3 x)}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\cos (3 x)}{5} \tag{1}
\end{equation*}
$$

Figure 657: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\cos (3 x)}{5}
$$

Verified OK.

11.28.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 501: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 x)-5 A_{2} \sin (3 x)=\cos (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{5}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\cos (3 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(-\frac{\cos (3 x)}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-\frac{\cos (3 x)}{5} \tag{1}
\end{equation*}
$$

Figure 658: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-\frac{\cos (3 x)}{5}
$$

Verified OK.

11.28.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=\cos (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (2 x) & \sin (2 x) \\ -2 \sin (2 x) & 2 \cos (2 x)\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int(\sin (5 x)-\sin (x)) d x\right)}{4}+\frac{\sin (2 x)\left(\int(\cos (x)+\cos (5 x)) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\cos (3 x)}{5}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\cos (3 x)}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+4*y(x)=cos(3*x),y(x), singsol=all)
```

$$
y(x)=\sin (2 x) c_{2}+\cos (2 x) c_{1}-\frac{\cos (3 x)}{5}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 28
DSolve[y'' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==\operatorname{Cos}[3 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{5} \cos (3 x)+c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

11.29 problem 52

11.29.1 Solving as second order linear constant coeff ode 2943
11.29.2 Solving using Kovacic algorithm 2947
11.29.3 Maple step by step solution . 2952

Internal problem ID [247]
Internal file name [OUTPUT/247_Sunday_June_05_2022_01_37_23_AM_89292267/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 52.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+9 y=\sin (3 x)
$$

11.29.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=\sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since $\cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (3 x), x \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (3 x)+A_{2} x \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=\sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{6}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (3 x)}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(-\frac{x \cos (3 x)}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{x \cos (3 x)}{6} \tag{1}
\end{equation*}
$$

Figure 659: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{x \cos (3 x)}{6}
$$

Verified OK.

11.29.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 503: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since $\cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (3 x), x \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (3 x)+A_{2} x \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=\sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{6}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (3 x)}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(-\frac{x \cos (3 x)}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{x \cos (3 x)}{6} \tag{1}
\end{equation*}
$$

Figure 660: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{x \cos (3 x)}{6}
$$

Verified OK.

11.29.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+9 y=\sin (3 x)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (3 x)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x)^{2} d x\right)}{3}+\frac{\sin (3 x)\left(\int \sin (6 x) d x\right)}{6}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (3 x)}{36}-\frac{x \cos (3 x)}{6}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\sin (3 x)}{36}-\frac{x \cos (3 x)}{6}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)+9*y(x)=sin(3*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-x+6 c_{1}\right) \cos (3 x)}{6}+\sin (3 x) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 33

```
DSolve[y''[x]+9*y[x]==Sin[3*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow\left(-\frac{x}{6}+c_{1}\right) \cos (3 x)+\frac{1}{36}\left(1+36 c_{2}\right) \sin (3 x)
$$

11.30 problem 53

11.30.1 Solving as second order linear constant coeff ode 2954
11.30.2 Solving using Kovacic algorithm 2959
11.30.3 Maple step by step solution . 2965

Internal problem ID [248]
Internal file name [OUTPUT/248_Sunday_June_05_2022_01_37_24_AM_81343399/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 53 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+9 y=2 \sec (3 x)
$$

11.30.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=2 \sec (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\sin (3 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}(\sin (3 x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 x))(3 \cos (3 x))-(\sin (3 x))(-3 \sin (3 x))
$$

Which simplifies to

$$
W=3 \cos (3 x)^{2}+3 \sin (3 x)^{2}
$$

Which simplifies to

$$
W=3
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \sin (3 x) \sec (3 x)}{3} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 \tan (3 x)}{3} d x
$$

Hence

$$
u_{1}=-\frac{\ln \left(1+\tan (3 x)^{2}\right)}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \cos (3 x) \sec (3 x)}{3} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{3} d x
$$

Hence

$$
u_{2}=\frac{2 x}{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\ln \left(\sec (3 x)^{2}\right)}{9} \\
& u_{2}=\frac{2 x}{3}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 661: Slope field plot
Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}
$$

Verified OK.

11.30.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 505: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\frac{\sin (3 x)}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}\left(\frac{\sin (3 x)}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
-3 \sin (3 x) & \cos (3 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 x))(\cos (3 x))-\left(\frac{\sin (3 x)}{3}\right)(-3 \sin (3 x))
$$

Which simplifies to

$$
W=\cos (3 x)^{2}+\sin (3 x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 \sin (3 x) \sec (3 x)}{3}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 \tan (3 x)}{3} d x
$$

Hence

$$
u_{1}=-\frac{\ln \left(1+\tan (3 x)^{2}\right)}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \cos (3 x) \sec (3 x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 2 d x
$$

Hence

$$
u_{2}=2 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\ln \left(\sec (3 x)^{2}\right)}{9} \\
& u_{2}=2 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 662: Slope field plot
Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}
$$

Verified OK.

11.30.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+9 y=2 \sec (3 x)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \sec (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{2 \cos (3 x)\left(\int \tan (3 x) d x\right)}{3}+\frac{2 \sin (3 x)\left(\int 1 d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{\ln \left(\sec (3 x)^{2}\right) \cos (3 x)}{9}+\frac{2 x \sin (3 x)}{3}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-

\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(x),x$2)+9*y(x)=2*sec(3*x),y(x), singsol=all)
```

$$
y(x)=-\frac{2 \ln (\sec (3 x)) \cos (3 x)}{9}+\cos (3 x) c_{1}+\frac{2 \sin (3 x)\left(x+\frac{3 c_{2}}{2}\right)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 39
DSolve[y'' $[\mathrm{x}]+9 * \mathrm{y}[\mathrm{x}]==2 * \operatorname{Sec}[3 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3}\left(2 x+3 c_{2}\right) \sin (3 x)+\cos (3 x)\left(\frac{2}{9} \log (\cos (3 x))+c_{1}\right)
$$

11.31 problem 54

11.31.1 Solving as second order linear constant coeff ode 2967
11.31.2 Solving using Kovacic algorithm 2972
11.31.3 Maple step by step solution . 2977

Internal problem ID [249]
Internal file name [OUTPUT/249_Sunday_June_05_2022_01_37_25_AM_14519892/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 54.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\csc (x)^{2}
$$

11.31.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\csc (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\sin (x)^{2}+\cos (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \csc (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \csc (x) d x
$$

Hence

$$
u_{1}=\ln (\csc (x)+\cot (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \csc (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \csc (x) \cot (x) d x
$$

Hence

$$
u_{2}=-\csc (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\csc (x)+\cot (x)) \cos (x)-\csc (x) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\ln (\csc (x)+\cot (x)) \cos (x)-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\csc (x)+\cot (x)) \cos (x)-1)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\csc (x)+\cot (x)) \cos (x)-1 \tag{1}
\end{equation*}
$$

Figure 663: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\csc (x)+\cot (x)) \cos (x)-1
$$

Verified OK.

11.31.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 507: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\sin (x)^{2}+\cos (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \csc (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \csc (x) d x
$$

Hence

$$
u_{1}=\ln (\csc (x)+\cot (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \csc (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \csc (x) \cot (x) d x
$$

Hence

$$
u_{2}=-\csc (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\csc (x)+\cot (x)) \cos (x)-\csc (x) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\ln (\csc (x)+\cot (x)) \cos (x)-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\csc (x)+\cot (x)) \cos (x)-1)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\csc (x)+\cot (x)) \cos (x)-1 \tag{1}
\end{equation*}
$$

Figure 664: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\csc (x)+\cot (x)) \cos (x)-1
$$

Verified OK.

11.31.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\csc (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x) y_{2}(x)\right)} d x\right), f(x)=\csc (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \csc (x) d x\right)+\sin (x)\left(\int \csc (x) \cot (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\ln (\csc (x)+\cot (x)) \cos (x)-1
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\csc (x)+\cot (x)) \cos (x)-1
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 26
dsolve(diff $(y(x), x \$ 2)+y(x)=\csc (x) \wedge 2, y(x)$, singsol=all)

$$
y(x)=\sin (x) c_{2}+\cos (x) c_{1}-1-\ln (\csc (x)-\cot (x)) \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 23
DSolve[y''[x]+y[x]==Csc[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \cos (x) \operatorname{arctanh}(\cos (x))+c_{1} \cos (x)+c_{2} \sin (x)-1
$$

11.32 problem 55

11.32.1 Solving as second order linear constant coeff ode 2980
11.32.2 Solving using Kovacic algorithm 2984
11.32.3 Maple step by step solution . 2989

Internal problem ID [250]
Internal file name [OUTPUT/250_Sunday_June_05_2022_01_37_26_AM_59411339/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 55.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\sin (x)^{2}
$$

11.32.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\sin (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{1\},\{x \cos (2 x), x \sin (2 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x \cos (2 x)+A_{3} x \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{2} \sin (2 x)+4 A_{3} \cos (2 x)+4 A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=0, A_{3}=-\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{8}-\frac{x \sin (2 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{1}{8}-\frac{x \sin (2 x)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{1}{8}-\frac{x \sin (2 x)}{8} \tag{1}
\end{equation*}
$$

Figure 665: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{1}{8}-\frac{x \sin (2 x)}{8}
$$

Verified OK.

11.32.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 509: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{1\},\{x \cos (2 x), x \sin (2 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x \cos (2 x)+A_{3} x \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{2} \sin (2 x)+4 A_{3} \cos (2 x)+4 A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=0, A_{3}=-\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{8}-\frac{x \sin (2 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{1}{8}-\frac{x \sin (2 x)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{1}{8}-\frac{x \sin (2 x)}{8} \tag{1}
\end{equation*}
$$

Figure 666: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{1}{8}-\frac{x \sin (2 x)}{8}
$$

Verified OK.

11.32.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+4 y=\sin (x)^{2}$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x) \sin (x)^{2} d x\right)}{2}+\frac{\sin (2 x)\left(\int \cos (2 x) \sin (x)^{2} d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{x \sin (2 x)}{8}+\frac{1}{8}-\frac{\cos (2 x)}{8}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{x \sin (2 x)}{8}+\frac{1}{8}-\frac{\cos (2 x)}{8}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff (y(x),x$2)+4*y(x)=sin(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{\left(8 c_{1}-1\right) \cos (2 x)}{8}+\frac{1}{8}+\frac{\left(-x+8 c_{2}\right) \sin (2 x)}{8}
$$

Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 71

```
DSolve[y''[x]+4*y[x]==sin[x]~2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
y(x) \rightarrow & \cos (2 x) \int_{1}^{x}-\cos (K[1]) \sin (K[1])^{2} \sin (K[1]) d K[1] \\
& +\sin (2 x) \int_{1}^{x} \frac{1}{2} \cos (2 K[2]) \sin (K[2])^{2} d K[2]+c_{1} \cos (2 x)+c_{2} \sin (2 x)
\end{aligned}
$$

11.33 problem 56

11.33.1 Solving as second order linear constant coeff ode 2991
11.33.2 Solving using Kovacic algorithm 2994
11.33.3 Maple step by step solution . 2999

Internal problem ID [251]
Internal file name [OUTPUT/251_Sunday_June_05_2022_01_37_28_AM_63226036/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 56.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-4 y=x \mathrm{e}^{x}
$$

11.33.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=x \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}-3 A_{1} x \mathrm{e}^{x}-3 A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}, A_{2}=-\frac{2}{9}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9} \tag{1}
\end{equation*}
$$

Figure 667: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9}
$$

Verified OK.

11.33.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 511: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{4}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}-3 A_{1} x \mathrm{e}^{x}-3 A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}, A_{2}=-\frac{2}{9}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+\left(-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9} \tag{1}
\end{equation*}
$$

Figure 668: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-\frac{x \mathrm{e}^{x}}{3}-\frac{2 \mathrm{e}^{x}}{9}
$$

Verified OK.

11.33.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=x \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial
$r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\ -2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int x \mathrm{e}^{3 x} d x\right)}{4}+\frac{\mathrm{e}^{2 x}\left(\int x \mathrm{e}^{-x} d x\right)}{4}$
- Compute integrals
$y_{p}(x)=-\frac{\mathrm{e}^{x}(3 x+2)}{9}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}-\frac{\mathrm{e}^{x}(3 x+2)}{9}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)-4*y(x)=x*exp(x),y(x), singsol=all)
```

$$
y(x)=-\frac{\left(-9 \mathrm{e}^{4 x} c_{2}+3 x \mathrm{e}^{3 x}+2 \mathrm{e}^{3 x}-9 c_{1}\right) \mathrm{e}^{-2 x}}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 34
DSolve[y''[x]-4*y[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{1}{9} e^{x}(3 x+2)+c_{1} e^{2 x}+c_{2} e^{-2 x}
$$

11.34 problem 57

11.34.1 Solving as second order euler ode ode 3003
11.34.2 Solving as second order change of variable on x method 2 ode . 3006
11.34.3 Solving as second order change of variable on x method 1 ode . 3011
11.34.4 Solving as second order change of variable on y method 2 ode . 3015
11.34.5 Solving as second order integrable as is ode 3020
11.34.6 Solving as second order ode non constant coeff transformation
on B ode . 3021$]$
11.34.7 Solving as type second_order_integrable_as_is (not using ABC
version) . 3025
11.34.8 Solving using Kovacic algorithm 3027
11.34.9 Solving as exact linear second order ode ode 3034

Internal problem ID [252]
Internal file name [OUTPUT/252_Sunday_June_05_2022_01_37_29_AM_43258265/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 57.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable__as_is", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of__variable__on_x_method_2", "second_order_change_of_variable_on_y_method_2", "second__order__ode__non__constant__coeff__transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=72 x^{5}
$$

11.34.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-1, f(x)=72 x^{5}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
r^{2}-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=72 x^{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & x \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}(x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & x \\
-\frac{1}{x^{2}} & 1
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)(1)-(x)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{2}{x}
$$

Which simplifies to

$$
W=\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{72 x^{6}}{2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int 36 x^{5} d x
$$

Hence

$$
u_{1}=-6 x^{6}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{72 x^{4}}{2 x} d x
$$

Which simplifies to

$$
u_{2}=\int 36 x^{3} d x
$$

Hence

$$
u_{2}=9 x^{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =3 x^{5}+\frac{c_{1}}{x}+c_{2} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{5}+\frac{c_{1}}{x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 x^{5}+\frac{c_{1}}{x}+c_{2} x
$$

Verified OK.

11.34.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(1) \tau}+c_{2} e^{(-1) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\tau}+c_{2} \mathrm{e}^{-\tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} x^{2}+c_{2}}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
1 & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(x)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)(1 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{72 x^{4}}{-2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int-36 x^{3} d x
$$

Hence

$$
u_{1}=9 x^{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{72 x^{6}}{-2 x} d x
$$

Which simplifies to

$$
u_{2}=\int-36 x^{5} d x
$$

Hence

$$
u_{2}=-6 x^{6}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x^{2}+c_{2}}{x}\right)+\left(3 x^{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2}+c_{2}}{x}+3 x^{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}+3 x^{5}
$$

Verified OK.

11.34.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-1, f(x)=72 x^{5}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=72 x^{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{cc}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
1 & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(x)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{72 x^{4}}{-2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int-36 x^{3} d x
$$

Hence

$$
u_{1}=9 x^{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{72 x^{6}}{-2 x} d x
$$

Which simplifies to

$$
u_{2}=\int-36 x^{5} d x
$$

Hence

$$
u_{2}=-6 x^{6}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}\right)+\left(3 x^{5}\right) \\
& =3 x^{5}+\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
\end{aligned}
$$

Which simplifies to

$$
y=3 x^{5}+\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{5}+\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 x^{5}+\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Verified OK.

11.34.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-1, f(x)=72 x^{5}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=72 x^{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
1 & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{72 x^{4}}{-2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int-36 x^{3} d x
$$

Hence

$$
u_{1}=9 x^{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{72 x^{6}}{-2 x} d x
$$

Which simplifies to

$$
u_{2}=\int-36 x^{5} d x
$$

Hence

$$
u_{2}=-6 x^{6}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x\right)+\left(3 x^{5}\right) \\
& =3 x^{5}+\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Which simplifies to

$$
y=3 x^{5}+\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{5}+\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 x^{5}+\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Verified OK.

11.34.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+y^{\prime} x-y\right) d x=\int 72 x^{5} d x \\
& y^{\prime} x^{2}-y x=12 x^{6}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{12 x^{6}+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{12 x^{6}+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{12 x^{6}+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{12 x^{6}+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{12 x^{6}+c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{12 x^{6}+c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=3 x^{4}-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x
$$

Verified OK.

11.34.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=x \\
& C=-1 \\
& F=72 x^{5}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{3} v^{\prime \prime}+\left(3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x^{2}\left(u^{\prime}(x) x+3 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(x)\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{1}{x} \\
1 & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)(1
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{72 x^{4}}{-2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int-36 x^{3} d x
$$

Hence

$$
u_{1}=9 x^{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{72 x^{6}}{-2 x} d x
$$

Which simplifies to

$$
u_{2}=\int-36 x^{5} d x
$$

Hence

$$
u_{2}=-6 x^{6}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{5}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x\right)+\left(3 x^{5}\right) \\
& =\frac{6 x^{6}+2 c_{2} x^{2}-c_{1}}{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{6 x^{6}+2 c_{2} x^{2}-c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{6 x^{6}+2 c_{2} x^{2}-c_{1}}{2 x}
$$

Verified OK.

11.34.7 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=72 x^{5}
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+y^{\prime} x-y\right) d x=\int 72 x^{5} d x \\
& y^{\prime} x^{2}-y x=12 x^{6}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{12 x^{6}+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{12 x^{6}+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{12 x^{6}+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{12 x^{6}+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{12 x^{6}+c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{12 x^{6}+c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=3 x^{4}-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x
$$

Verified OK.

11.34.8 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 513: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.

Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x}+\frac{c_{2} x}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x} \\
y_{2} & =\frac{x}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{x}{2} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{x}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{x}{2} \\
-\frac{1}{x^{2}} & \frac{1}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(\frac{1}{2}\right)-\left(\frac{x}{2}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{36 x^{6}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int 36 x^{5} d x
$$

Hence

$$
u_{1}=-6 x^{6}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{72 x^{4}}{x} d x
$$

Which simplifies to

$$
u_{2}=\int 72 x^{3} d x
$$

Hence

$$
u_{2}=18 x^{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+\frac{c_{2} x}{2}\right)+\left(3 x^{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2}+3 x^{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2}+3 x^{5}
$$

Verified OK.

11.34.9 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x^{2} \\
q(x) & =x \\
r(x) & =-1 \\
s(x) & =72 x^{5}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =1
\end{aligned}
$$

Therefore (1) becomes

$$
2-(1)+(-1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} x^{2}-y x=\int 72 x^{5} d x
$$

We now have a first order ode to solve which is

$$
y^{\prime} x^{2}-y x=12 x^{6}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{12 x^{6}+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{12 x^{6}+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{12 x^{6}+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{12 x^{6}+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{12 x^{6}+c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{12 x^{6}+c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=3 x^{4}-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(3 x^{4}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)-y(x)=72 * x^{\wedge} 5, y(x)$, singsol=all)

$$
y(x)=\frac{3 x^{6}+c_{2} x^{2}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21
DSolve $\left[x^{\wedge} 2 *\right.$ y' $^{\prime}[x]+x * y$ ' $[x]-y[x]==72 * x^{\wedge} 5, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 x^{5}+c_{2} x+\frac{c_{1}}{x}
$$

11.35 problem 58

11.35.1 Solving as second order euler ode ode 3038
11.35.2 Solving as linear second order ode solved by an integrating factor ode
11.35.3 Solving as second order change of variable on x method 2 ode . 3043
11.35.4 Solving as second order change of variable on x method 1 ode . 3048
11.35.5 Solving as second order change of variable on y method 1 ode . 3053
11.35.6 Solving as second order change of variable on y method 2 ode . 3057
11.35.7 Solving using Kovacic algorithm 3062

Internal problem ID [253]
Internal file name [OUTPUT/253_Sunday_June_05_2022_01_37_30_AM_97347265/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 58.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of__variable_on_y_method_2", "linear_second_oorder_ode__solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=x^{3}
$$

11.35.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{5}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x} d x
$$

Hence

$$
u_{2}=\ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{3}+\ln (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=x^{3}(-1+\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{3}(-1+\ln (x))+c_{2} x^{3}+c_{1} x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}(-1+\ln (x))+c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{3}(-1+\ln (x))+c_{2} x^{3}+c_{1} x^{2}
$$

Verified OK.

11.35.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{1}{x} \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =\frac{1}{x}
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=\ln (x)+c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=x\left(\ln (x)+c_{1}-1\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{x\left(\ln (x)+c_{1}-1\right)+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+x^{3} \ln (x)+c_{2} x^{2}-x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+x^{3} \ln (x)+c_{2} x^{2}-x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+x^{3} \ln (x)+c_{2} x^{2}-x^{3}
$$

Verified OK.

11.35.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{3}}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{5}\right)^{\frac{3}{5}}}{x^{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{3}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}}{x^{3}} d x
$$

Hence

$$
u_{2}=\frac{\left(x^{5}\right)^{\frac{2}{5}} \ln (x)}{x^{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{3}+x^{3} \ln (x)
$$

Which simplifies to

$$
y_{p}(x)=x^{3}(-1+\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}\right)+\left(x^{3}(-1+\ln (x))\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}+x^{3}(-1+\ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}+x^{3}(-1+\ln (x))
$$

Verified OK.

11.35.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{3}}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{5}\right)^{\frac{3}{5}}}{x^{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{3}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}}{x^{3}} d x
$$

Hence

$$
u_{2}=\frac{\left(x^{5}\right)^{\frac{2}{5}} \ln (x)}{x^{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{3}+x^{3} \ln (x)
$$

Which simplifies to

$$
y_{p}(x)=x^{3}(-1+\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)\right)+\left(x^{3}(-1+\ln (x))\right) \\
& =x^{3}(-1+\ln (x))+x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}+x^{3} \ln (x)-x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}+x^{3} \ln (x)-x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}+x^{3} \ln (x)-x^{3}
$$

Verified OK.

11.35.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-4}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x v^{\prime \prime}(x)=1
$$

Which is now solved for $v(x)$ Simplyfing the ode gives

$$
v^{\prime \prime}(x)=\frac{1}{x}
$$

Integrating once gives

$$
v^{\prime}(x)=\ln (x)+c_{1}
$$

Integrating again gives

$$
v(x)=x \ln (x)-x+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+x \ln (x)-x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=x^{2}\left(c_{1} x+x \ln (x)-x+c_{2}\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=x^{2}\left(c_{1} x+x \ln (x)-x+c_{2}\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{3}}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{5}\right)^{\frac{3}{5}}}{x^{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{3}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}}{x^{3}} d x
$$

Hence

$$
u_{2}=\frac{\left(x^{5}\right)^{\frac{2}{5}} \ln (x)}{x^{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{3}+x^{3} \ln (x)
$$

Which simplifies to

$$
y_{p}(x)=x^{3}(-1+\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{2}\left(c_{1} x+x \ln (x)-x+c_{2}\right)\right)+\left(x^{3}(-1+\ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(x \ln (x)+\left(c_{1}-1\right) x+c_{2}\right) x^{2}+x^{3}(-1+\ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \ln (x)+\left(c_{1}-1\right) x+c_{2}\right) x^{2}+x^{3}(-1+\ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(x \ln (x)+\left(c_{1}-1\right) x+c_{2}\right) x^{2}+x^{3}(-1+\ln (x))
$$

Verified OK.

11.35.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{5}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x} d x
$$

Hence

$$
u_{2}=\ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{3}+x^{3} \ln (x)
$$

Which simplifies to

$$
y_{p}(x)=x^{3}(-1+\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}\right)+\left(x^{3}(-1+\ln (x))\right) \\
& =x^{3}(-1+\ln (x))+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(x \ln (x)+c_{2} x-c_{1}-x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(x \ln (x)+c_{2} x-c_{1}-x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(x \ln (x)+c_{2} x-c_{1}-x\right)
$$

Verified OK.

11.35.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 514: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x^{3}+c_{1} x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{5}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x} d x
$$

Hence

$$
u_{2}=\ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{3}+x^{3} \ln (x)
$$

Which simplifies to

$$
y_{p}(x)=x^{3}(-1+\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x^{3}+c_{1} x^{2}\right)+\left(x^{3}(-1+\ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{2} x+c_{1}\right)+x^{3}(-1+\ln (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} x+c_{1}\right)+x^{3}(-1+\ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} x+c_{1}\right)+x^{3}(-1+\ln (x))
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=x^3,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(x \ln (x)+\left(c_{1}-1\right) x+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22
DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==x^3,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(x \log (x)+\left(-1+c_{2}\right) x+c_{1}\right)
$$

11.36 problem 59

11.36.1 Solving as second order euler ode ode 3068
11.36.2 Solving as second order change of variable on x method 2 ode . 3072
11.36.3 Solving as second order change of variable on x method 1 ode . 3077
11.36.4 Solving as second order change of variable on y method 2 ode . 3082
11.36.5 Solving using Kovacic algorithm 3087

Internal problem ID [254]
Internal file name [OUTPUT/254_Sunday_June_05_2022_01_37_31_AM_11178115/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 59.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=x^{4}
$$

11.36.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=x^{4}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=x^{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 x \ln (x)
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 x \ln (x))-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x) x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{\ln (x) x^{2}}{2}+\frac{x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int x d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=\frac{x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{4}(-1+2 \ln (x))}{4}+\frac{x^{4} \ln (x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{4}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{x^{4}}{4}+c_{1} x^{2}+c_{2} x^{2} \ln (x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}}{4}+c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{4}}{4}+c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

11.36.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & -\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore
$W=\left(\sqrt{x^{4}}\right)\left(-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}\right)-\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)$
Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right) x^{4}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int x\left(-\frac{\ln (2)}{2}+\ln (x)\right) d x
$$

Hence

$$
u_{1}=\frac{x^{2}(1+\ln (2)-2 \ln (x))}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{4}} x^{4}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{x}{2} d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{2}(1+\ln (2)-2 \ln (x)) \sqrt{x^{4}}}{4}+\frac{x^{2}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{4}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}\right)+\left(\frac{x^{4}}{4}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\frac{x^{4}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\frac{x^{4}}{4}
$$

Verified OK. $\{0<x\}$

11.36.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=x^{4}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{2}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=x^{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & -\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\sqrt{x^{4}}\right)\left(-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}\right)-\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)
$$

Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right) x^{4}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int x\left(-\frac{\ln (2)}{2}+\ln (x)\right) d x
$$

Hence

$$
u_{1}=\frac{x^{2}(1+\ln (2)-2 \ln (x))}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{4}} x^{4}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{x}{2} d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{2}(1+\ln (2)-2 \ln (x)) \sqrt{x^{4}}}{4}+\frac{x^{2}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{4}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}\right)+\left(\frac{x^{4}}{4}\right) \\
& =\frac{1}{4} x^{4}+c_{1} x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{1}{4} x^{4}+c_{1} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{4} x^{4}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{4} x^{4}+c_{1} x^{2}
$$

Verified OK. $\{0<\mathrm{x}\}$

11.36.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=x^{4}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \\
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=x^{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 x \ln (x)
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 x \ln (x))-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x) x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int x d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{4}(-1+2 \ln (x))}{4}+\frac{x^{4} \ln (x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{4}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \ln (x)+c_{2}\right) x^{2}\right)+\left(\frac{x^{4}}{4}\right) \\
& =\frac{x^{4}}{4}+\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{x^{4}}{4}+\left(c_{1} \ln (x)+c_{2}\right) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}}{4}+\left(c_{1} \ln (x)+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{4}}{4}+\left(c_{1} \ln (x)+c_{2}\right) x^{2}
$$

Verified OK. $\{0<x\}$

11.36.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 515: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 x \ln (x)
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 x \ln (x))-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x) x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int x d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{4}(-1+2 \ln (x))}{4}+\frac{x^{4} \ln (x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{4}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+c_{2} x^{2} \ln (x)\right)+\left(\frac{x^{4}}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{2} \ln (x)+c_{1}\right)+\frac{x^{4}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} \ln (x)+c_{1}\right)+\frac{x^{4}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} \ln (x)+c_{1}\right)+\frac{x^{4}}{4}
$$

Verified OK. $\{0<x\}$
Maple trace
'Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-3 * x * \operatorname{diff}(y(x), x)+4 * y(x)=x^{\wedge} 4, y(x)$, singsol=all)

$$
y(x)=\frac{x^{2}\left(4 \ln (x) c_{1}+x^{2}+4 c_{2}\right)}{4}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 26
DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==x^4,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{4} x^{2}\left(x^{2}+8 c_{2} \log (x)+4 c_{1}\right)
$$

11.37 problem 60

11.37.1 Solving as second order euler ode ode3096
11.37.2 Solving as linear second order ode solved by an integrating factor ode
11.37.3 Solving as second order change of variable on x method 2 ode . 3101
11.37.4 Solving as second order change of variable on x method 1 ode . 3106
11.37.5 Solving as second order change of variable on y method 1 ode . 3111
11.37.6 Solving as second order change of variable on y method 2 ode . 3115
11.37.7 Solving using Kovacic algorithm

Internal problem ID [255]
Internal file name [OUTPUT/255_Sunday_June_05_2022_01_37_32_AM_45537403/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 60.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of_cvariable_on_y_method_2", "linear_second_order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=8 x^{\frac{4}{3}}
$$

11.37.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=4 x^{2}, B=-4 x, C=3, f(x)=8 x^{\frac{4}{3}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
4 x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+3 x^{r}=0
$$

Simplifying gives

$$
4 r(r-1) x^{r}-4 r x^{r}+3 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
4 r(r-1)-4 r+3=0
$$

Or

$$
\begin{equation*}
4 r^{2}-8 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{3}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\sqrt{x} c_{1}+c_{2} x^{\frac{3}{2}}
$$

Next, we find the particular solution to the ODE

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=8 x^{\frac{4}{3}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \\
& y_{2}=x^{\frac{3}{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} & x^{\frac{3}{2}} \\
\frac{d}{d x}(\sqrt{x}) & \frac{d}{d x}\left(x^{\frac{3}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x} & x^{\frac{3}{2}} \\
\frac{1}{2 \sqrt{x}} & \frac{3 \sqrt{x}}{2}
\end{array}\right|
$$

Therefore

$$
W=(\sqrt{x})\left(\frac{3 \sqrt{x}}{2}\right)-\left(x^{\frac{3}{2}}\right)\left(\frac{1}{2 \sqrt{x}}\right)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8 x^{\frac{17}{6}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2}{x^{\frac{1}{6}}} d x
$$

Hence

$$
u_{1}=-\frac{12 x^{\frac{5}{6}}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{\frac{11}{6}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{\frac{7}{6}}} d x
$$

Hence

$$
u_{2}=-\frac{12}{x^{\frac{1}{6}}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{72 x^{\frac{4}{3}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-\frac{72 x^{\frac{4}{3}}}{5}+\sqrt{x} c_{1}+c_{2} x^{\frac{3}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{72 x^{\frac{4}{3}}}{5}+\sqrt{x} c_{1}+c_{2} x^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{72 x^{\frac{4}{3}}}{5}+\sqrt{x} c_{1}+c_{2} x^{\frac{3}{2}}
$$

Verified OK.

11.37.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{1}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{1}{x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{2}{x^{\frac{7}{6}}} \\
\left(\frac{y}{\sqrt{x}}\right)^{\prime \prime} & =\frac{2}{x^{\frac{7}{6}}}
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{\sqrt{x}}\right)^{\prime}=-\frac{12}{x^{\frac{1}{6}}}+c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{\sqrt{x}}\right)=c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}}{\frac{1}{\sqrt{x}}}
$$

Or

$$
y=c_{1} x^{\frac{3}{2}}+c_{2} \sqrt{x}-\frac{72 x^{\frac{4}{3}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{3}{2}}+c_{2} \sqrt{x}-\frac{72 x^{\frac{4}{3}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{3}{2}}+c_{2} \sqrt{x}-\frac{72 x^{\frac{4}{3}}}{5}
$$

Verified OK.

11.37.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{3}{4 x^{2}}}{x^{2}} \\
& =\frac{3}{4 x^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{4 x^{4}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{3}{4 x^{4}}=\frac{3}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+3 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+3=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=\frac{3}{4}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{4}}+c_{2} \tau^{\frac{3}{4}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{2}\right)^{\frac{1}{4}} \\
& y_{2}=\left(x^{2}\right)^{\frac{3}{4}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{2}\right)^{\frac{1}{4}} & \left(x^{2}\right)^{\frac{3}{4}} \\
\frac{d}{d x}\left(\left(x^{2}\right)^{\frac{1}{4}}\right) & \frac{d}{d x}\left(\left(x^{2}\right)^{\frac{3}{4}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{2}\right)^{\frac{1}{4}} & \left(x^{2}\right)^{\frac{3}{4}} \\
\frac{x}{2\left(x^{2}\right)^{\frac{3}{4}}} & \frac{3 x}{2\left(x^{2}\right)^{\frac{1}{4}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{2}\right)^{\frac{1}{4}}\right)\left(\frac{3 x}{2\left(x^{2}\right)^{\frac{1}{4}}}\right)-\left(\left(x^{2}\right)^{\frac{3}{4}}\right)\left(\frac{x}{2\left(x^{2}\right)^{\frac{3}{4}}}\right)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8\left(x^{2}\right)^{\frac{3}{4}} x^{\frac{4}{3}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2\left(x^{2}\right)^{\frac{3}{4}}}{x^{\frac{5}{3}}} d x
$$

Hence

$$
u_{1}=-\frac{12\left(x^{2}\right)^{\frac{3}{4}}}{5 x^{\frac{2}{3}}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8\left(x^{2}\right)^{\frac{1}{4}} x^{\frac{4}{3}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2\left(x^{2}\right)^{\frac{1}{4}}}{x^{\frac{5}{3}}} d x
$$

Hence

$$
u_{2}=-\frac{12\left(x^{2}\right)^{\frac{1}{4}}}{x^{\frac{2}{3}}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{72 x^{\frac{4}{3}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2}\right)+\left(-\frac{72 x^{\frac{4}{3}}}{5}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2}-\frac{72 x^{\frac{4}{3}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2}-\frac{72 x^{\frac{4}{3}}}{5}
$$

Verified OK.

11.37.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=4 x^{2}, B=-4 x, C=3, f(x)=8 x^{\frac{4}{3}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{3}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{3}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{1}{x} \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2 c}}{\left(\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2 c}\right)^{2}} \\
& =-\frac{4 c \sqrt{3}}{3}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{4 c \sqrt{3}\left(\frac{d}{d \tau} y(\tau)\right)}{3}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{2 \sqrt{3} c \tau}{3}}\left(c_{1} \cosh \left(\frac{\sqrt{3} c \tau}{3}\right)+i c_{2} \sinh \left(\frac{\sqrt{3} c \tau}{3}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2} d x}{c} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=8 x^{\frac{4}{3}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{2}\right)^{\frac{1}{4}} \\
& y_{2}=\left(x^{2}\right)^{\frac{3}{4}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{2}\right)^{\frac{1}{4}} & \left(x^{2}\right)^{\frac{3}{4}} \\
\frac{d}{d x}\left(\left(x^{2}\right)^{\frac{1}{4}}\right) & \frac{d}{d x}\left(\left(x^{2}\right)^{\frac{3}{4}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{2}\right)^{\frac{1}{4}} & \left(x^{2}\right)^{\frac{3}{4}} \\
\frac{x}{2\left(x^{2}\right)^{\frac{3}{4}}} & \frac{3 x}{2\left(x^{2}\right)^{\frac{1}{4}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{2}\right)^{\frac{1}{4}}\right)\left(\frac{3 x}{2\left(x^{2}\right)^{\frac{1}{4}}}\right)-\left(\left(x^{2}\right)^{\frac{3}{4}}\right)\left(\frac{x}{2\left(x^{2}\right)^{\frac{3}{4}}}\right)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8\left(x^{2}\right)^{\frac{3}{4}} x^{\frac{4}{3}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2\left(x^{2}\right)^{\frac{3}{4}}}{x^{\frac{5}{3}}} d x
$$

Hence

$$
u_{1}=-\frac{12\left(x^{2}\right)^{\frac{3}{4}}}{5 x^{\frac{2}{3}}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8\left(x^{2}\right)^{\frac{1}{4}} x^{\frac{4}{3}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2\left(x^{2}\right)^{\frac{1}{4}}}{x^{\frac{5}{3}}} d x
$$

Hence

$$
u_{2}=-\frac{12\left(x^{2}\right)^{\frac{1}{4}}}{x^{\frac{2}{3}}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{72 x^{\frac{4}{3}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)\right)+\left(-\frac{72 x^{\frac{4}{3}}}{5}\right) \\
& =-\frac{72 x^{\frac{4}{3}}}{5}+x\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{72 x^{\frac{4}{3}}}{5}+i \sinh \left(\frac{\ln (x)}{2}\right) c_{2} x+\cosh \left(\frac{\ln (x)}{2}\right) c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{72 x^{\frac{4}{3}}}{5}+i \sinh \left(\frac{\ln (x)}{2}\right) c_{2} x+\cosh \left(\frac{\ln (x)}{2}\right) c_{1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{72 x^{\frac{4}{3}}}{5}+i \sinh \left(\frac{\ln (x)}{2}\right) c_{2} x+\cosh \left(\frac{\ln (x)}{2}\right) c_{1} x
$$

Verified OK.

11.37.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{3}{4 x^{2}}-\frac{\left(-\frac{1}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{1}{x}\right)^{2}}{4} \\
& =\frac{3}{4 x^{2}}-\frac{\left(\frac{1}{x^{2}}\right)}{2}-\frac{\left(\frac{1}{x^{2}}\right)}{4} \\
& =\frac{3}{4 x^{2}}-\left(\frac{1}{2 x^{2}}\right)-\frac{1}{4 x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{1}{x}}{2}} \\
& =\sqrt{x} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \sqrt{x} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{\frac{7}{6}} v^{\prime \prime}(x)=2
$$

Which is now solved for $v(x)$ Simplyfing the ode gives

$$
v^{\prime \prime}(x)=\frac{2}{x^{\frac{7}{6}}}
$$

Integrating once gives

$$
v^{\prime}(x)=-\frac{12}{x^{\frac{1}{6}}}+c_{1}
$$

Integrating again gives

$$
v(x)=-\frac{72 x^{\frac{5}{6}}}{5}+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\sqrt{x}
$$

Hence (7) becomes

$$
y=\left(c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}\right) \sqrt{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}\right) \sqrt{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{2}\right)^{\frac{1}{4}} \\
& y_{2}=\left(x^{2}\right)^{\frac{3}{4}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{2}\right)^{\frac{1}{4}} & \left(x^{2}\right)^{\frac{3}{4}} \\
\frac{d}{d x}\left(\left(x^{2}\right)^{\frac{1}{4}}\right) & \frac{d}{d x}\left(\left(x^{2}\right)^{\frac{3}{4}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{2}\right)^{\frac{1}{4}} & \left(x^{2}\right)^{\frac{3}{4}} \\
\frac{x}{2\left(x^{2}\right)^{\frac{3}{4}}} & \frac{3 x}{2\left(x^{2}\right)^{\frac{1}{4}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{2}\right)^{\frac{1}{4}}\right)\left(\frac{3 x}{2\left(x^{2}\right)^{\frac{1}{4}}}\right)-\left(\left(x^{2}\right)^{\frac{3}{4}}\right)\left(\frac{x}{2\left(x^{2}\right)^{\frac{3}{4}}}\right)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8\left(x^{2}\right)^{\frac{3}{4}} x^{\frac{4}{3}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2\left(x^{2}\right)^{\frac{3}{4}}}{x^{\frac{5}{3}}} d x
$$

Hence

$$
u_{1}=-\frac{12\left(x^{2}\right)^{\frac{3}{4}}}{5 x^{\frac{2}{3}}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8\left(x^{2}\right)^{\frac{1}{4}} x^{\frac{4}{3}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2\left(x^{2}\right)^{\frac{1}{4}}}{x^{\frac{5}{3}}} d x
$$

Hence

$$
u_{2}=-\frac{12\left(x^{2}\right)^{\frac{1}{4}}}{x^{\frac{2}{3}}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{72 x^{\frac{4}{3}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}\right) \sqrt{x}\right)+\left(-\frac{72 x^{\frac{4}{3}}}{5}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}\right) \sqrt{x}-\frac{72 x^{\frac{4}{3}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} x-\frac{72 x^{\frac{5}{6}}}{5}+c_{2}\right) \sqrt{x}-\frac{72 x^{\frac{4}{3}}}{5}
$$

Verified OK.

11.37.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=4 x^{2}, B=-4 x, C=3, f(x)=8 x^{\frac{4}{3}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x^{2}}+\frac{3}{4 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=\frac{3}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}} \\
& =\left(c_{2} x-c_{1}\right) \sqrt{x}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=8 x^{\frac{4}{3}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \\
& y_{2}=x^{\frac{3}{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} & x^{\frac{3}{2}} \\
\frac{d}{d x}(\sqrt{x}) & \frac{d}{d x}\left(x^{\frac{3}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x} & x^{\frac{3}{2}} \\
\frac{1}{2 \sqrt{x}} & \frac{3 \sqrt{x}}{2}
\end{array}\right|
$$

Therefore

$$
W=(\sqrt{x})\left(\frac{3 \sqrt{x}}{2}\right)-\left(x^{\frac{3}{2}}\right)\left(\frac{1}{2 \sqrt{x}}\right)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8 x^{\frac{17}{6}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2}{x^{\frac{1}{6}}} d x
$$

Hence

$$
u_{1}=-\frac{12 x^{\frac{5}{6}}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{\frac{11}{6}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{\frac{7}{6}}} d x
$$

Hence

$$
u_{2}=-\frac{12}{x^{\frac{1}{6}}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{72 x^{\frac{4}{3}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}}\right)+\left(-\frac{72 x^{\frac{4}{3}}}{5}\right) \\
& =-\frac{72 x^{\frac{4}{3}}}{5}+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{72 x^{\frac{4}{3}}}{5}+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{72 x^{\frac{4}{3}}}{5}+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{72 x^{\frac{4}{3}}}{5}+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}}
$$

Verified OK.

11.37.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 x^{2} \\
& B=-4 x \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 516: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{4 x^{2}} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\sqrt{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{4 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\sqrt{x})+c_{2}(\sqrt{x}(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\sqrt{x} c_{1}+c_{2} x^{\frac{3}{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \\
& y_{2}=x^{\frac{3}{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} & x^{\frac{3}{2}} \\
\frac{d}{d x}(\sqrt{x}) & \frac{d}{d x}\left(x^{\frac{3}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x} & x^{\frac{3}{2}} \\
\frac{1}{2 \sqrt{x}} & \frac{3 \sqrt{x}}{2}
\end{array}\right|
$$

Therefore

$$
W=(\sqrt{x})\left(\frac{3 \sqrt{x}}{2}\right)-\left(x^{\frac{3}{2}}\right)\left(\frac{1}{2 \sqrt{x}}\right)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8 x^{\frac{17}{6}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2}{x^{\frac{1}{6}}} d x
$$

Hence

$$
u_{1}=-\frac{12 x^{\frac{5}{6}}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{\frac{11}{6}}}{4 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{\frac{7}{6}}} d x
$$

Hence

$$
u_{2}=-\frac{12}{x^{\frac{1}{6}}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{72 x^{\frac{4}{3}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\sqrt{x} c_{1}+c_{2} x^{\frac{3}{2}}\right)+\left(-\frac{72 x^{\frac{4}{3}}}{5}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\sqrt{x}\left(c_{2} x+c_{1}\right)-\frac{72 x^{\frac{4}{3}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{x}\left(c_{2} x+c_{1}\right)-\frac{72 x^{\frac{4}{3}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{x}\left(c_{2} x+c_{1}\right)-\frac{72 x^{\frac{4}{3}}}{5}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

$$
\begin{aligned}
& \text { dsolve }\left(4 * x^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-4 * \mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+3 * \mathrm{y}(\mathrm{x})=8 * \mathrm{x}^{\wedge}(4 / 3), \mathrm{y}(\mathrm{x}), \text { singsol=all }\right) \\
& y(x)=x^{\frac{3}{2}} c_{2}+c_{1} \sqrt{x}-\frac{72 x^{\frac{4}{3}}}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 31
DSolve $\left[4 * x^{\wedge} 2 * y\right.$ ' ' $[x]-4 * x * y$ ' $[x]+3 * y[x]==8 * x^{\wedge}(4 / 3), y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{5} \sqrt{x}\left(-72 x^{5 / 6}+5 c_{2} x+5 c_{1}\right)
$$

11.38 problem 61

11.38.1 Solving as second order euler ode ode 3127
11.38.2 Solving as second order change of variable on x method 2 ode . 3131
11.38.3 Solving as second order change of variable on x method 1 ode . 3136
11.38.4 Solving as second order change of variable on y method 2 ode . 3141
11.38.5 Solving using Kovacic algorithm 3146

Internal problem ID [256]
Internal file name [OUTPUT/256_Sunday_June_05_2022_01_37_33_AM_73416235/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 61.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order__change__of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=\ln (x)
$$

11.38.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=1, f(x)=\ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+1=0
$$

Or

$$
\begin{equation*}
r^{2}+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-i \\
& r_{2}=i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-1$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-i \ln (x)}+c_{2} e^{i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=\ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (\ln (x)) \\
& y_{2}=-\sin (\ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (\ln (x)) & -\sin (\ln (x)) \\
\frac{d}{d x}(\cos (\ln (x))) & \frac{d}{d x}(-\sin (\ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (\ln (x)) & -\sin (\ln (x)) \\
-\frac{\sin (\ln (x))}{x} & -\frac{\cos (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
W=(\cos (\ln (x)))\left(-\frac{\cos (\ln (x))}{x}\right)-(-\sin (\ln (x)))\left(-\frac{\sin (\ln (x))}{x}\right)
$$

Which simplifies to

$$
W=-\frac{\cos (\ln (x))^{2}+\sin (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=-\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\sin (\ln (x)) \ln (x)}{-x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (\ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{1}=\cos (\ln (x)) \ln (x)-\sin (\ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (\ln (x)) \ln (x)}{-x} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\cos (\ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{2}=-\cos (\ln (x))-\sin (\ln (x)) \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & (\cos (\ln (x)) \ln (x)-\sin (\ln (x))) \cos (\ln (x)) \\
& -(-\cos (\ln (x))-\sin (\ln (x)) \ln (x)) \sin (\ln (x))
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Verified OK.

11.38.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (\tau)+c_{2} \sin (\tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (\tau)+c_{2} \sin (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (\ln (x)) \\
& y_{2}=\sin (\ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (\ln (x)) & \sin (\ln (x)) \\
\frac{d}{d x}(\cos (\ln (x))) & \frac{d}{d x}(\sin (\ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (\ln (x)) & \sin (\ln (x)) \\
-\frac{\sin (\ln (x))}{x} & \frac{\cos (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
W=(\cos (\ln (x)))\left(\frac{\cos (\ln (x))}{x}\right)-(\sin (\ln (x)))\left(-\frac{\sin (\ln (x))}{x}\right)
$$

Which simplifies to

$$
W=\frac{\cos (\ln (x))^{2}+\sin (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (\ln (x)) \ln (x)}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (\ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{1}=\cos (\ln (x)) \ln (x)-\sin (\ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (\ln (x)) \ln (x)}{x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (\ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{2}=\cos (\ln (x))+\sin (\ln (x)) \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & (\cos (\ln (x)) \ln (x)-\sin (\ln (x))) \cos (\ln (x)) \\
& +(\cos (\ln (x))+\sin (\ln (x)) \ln (x)) \sin (\ln (x))
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)+(\ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Verified OK.
11.38.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=1, f(x)=\ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=\ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (\ln (x)) \\
& y_{2}=\sin (\ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (\ln (x)) & \sin (\ln (x)) \\
\frac{d}{d x}(\cos (\ln (x))) & \frac{d}{d x}(\sin (\ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (\ln (x)) & \sin (\ln (x)) \\
-\frac{\sin (\ln (x))}{x} & \frac{\cos (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
W=(\cos (\ln (x)))\left(\frac{\cos (\ln (x))}{x}\right)-(\sin (\ln (x)))\left(-\frac{\sin (\ln (x))}{x}\right)
$$

Which simplifies to

$$
W=\frac{\cos (\ln (x))^{2}+\sin (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (\ln (x)) \ln (x)}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (\ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{1}=\cos (\ln (x)) \ln (x)-\sin (\ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (\ln (x)) \ln (x)}{x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (\ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{2}=\cos (\ln (x))+\sin (\ln (x)) \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & (\cos (\ln (x)) \ln (x)-\sin (\ln (x))) \cos (\ln (x)) \\
& +(\cos (\ln (x))+\sin (\ln (x)) \ln (x)) \sin (\ln (x))
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)+(\ln (x)) \\
& =\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x)+c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Verified OK.

11.38.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=1, f(x)=\ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+2 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+2 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-2 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-2 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-2 i}{x} d x \\
\ln (u) & =(-1-2 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-2 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-2 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-2 i}}{2}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-2 i}}{2}+c_{2}\right) x^{i} \\
& =x^{i} c_{2}+\frac{i x^{-i} c_{1}}{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=\ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{i} \\
& y_{2}=x^{-i}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{i} & x^{-i} \\
\frac{d}{d x}\left(x^{i}\right) & \frac{d}{d x}\left(x^{-i}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{i} & x^{-i} \\
\frac{i x^{i}}{x} & -\frac{i x^{-i}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{i}\right)\left(-\frac{i x^{-i}}{x}\right)-\left(x^{-i}\right)\left(\frac{i x^{i}}{x}\right)
$$

Which simplifies to

$$
W=-\frac{2 i}{x}
$$

Which simplifies to

$$
W=-\frac{2 i}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{-i} \ln (x)}{-2 i x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{i x^{-1-i} \ln (x)}{2} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\ln (x) x^{i}}{-2 i x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{i x^{-1+i} \ln (x)}{2} d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{i}+\text { undefined } x^{-i}
$$

Which simplifies to

$$
y_{p}(x)=\operatorname{undefined}\left(x^{i}+x^{-i}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{i c_{1} x^{-2 i}}{2}+c_{2}\right) x^{i}\right)+\left(\text { undefined }\left(x^{i}+x^{-i}\right)\right) \\
& =\text { undefined }\left(x^{i}+x^{-i}\right)+\left(\frac{i c_{1} x^{-2 i}}{2}+c_{2}\right) x^{i}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{x^{-i}\left(\left(\text { undefined }+2 c_{2}\right) x^{2 i}+i c_{1}+\text { undefined }\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{-i}\left(\left(\text { undefined }+2 c_{2}\right) x^{2 i}+i c_{1}+\text { undefined }\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{-i}\left(\left(\text { undefined }+2 c_{2}\right) x^{2 i}+i c_{1}+\text { undefined }\right)}{2}
$$

Verified OK.

11.38.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-5 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{5}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 517: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{5}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{5}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{5}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i-\left(\frac{1}{2}-i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-i}{x} \\
& =\frac{\frac{1}{2}-i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-i}{x}\right)^{2}-\left(-\frac{5}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-i} x d x \\
& =x^{\frac{1}{2}-i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{2 i}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-i}\right)+c_{2}\left(x^{-i}\left(-\frac{i x^{2 i}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=x^{-i} c_{1}-\frac{i c_{2} x^{i}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =x^{-i} \\
y_{2} & =-\frac{i x^{i}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-i} & -\frac{i x^{i}}{2} \\
\frac{d}{d x}\left(x^{-i}\right) & \frac{d}{d x}\left(-\frac{i x^{i}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-i} & -\frac{i x^{i}}{2} \\
-\frac{i x^{-i}}{x} & \frac{x^{i}}{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-i}\right)\left(\frac{x^{i}}{2 x}\right)-\left(-\frac{i x^{i}}{2}\right)\left(-\frac{i x^{-i}}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{i} x^{-i}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{i x^{i} \ln (x)}{2}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{i x^{-1+i} \ln (x)}{2} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-i} \ln (x)}{x} d x
$$

Which simplifies to

$$
u_{2}=\int x^{-1-i} \ln (x) d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{-i}-i \text { undefined } x^{i}
$$

Which simplifies to

$$
y_{p}(x)=\left(i x^{i}+x^{-i}\right) \text { undefined }
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{-i} c_{1}-\frac{i c_{2} x^{i}}{2}\right)+\left(\left(i x^{i}+x^{-i}\right) \text { undefined }\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{-i} c_{1}-\frac{i c_{2} x^{i}}{2}+\left(i x^{i}+x^{-i}\right) \text { undefined } \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-i} c_{1}-\frac{i c_{2} x^{i}}{2}+\left(i x^{i}+x^{-i}\right) \text { undefined }
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)+y(x)=\ln (x), y(x), \quad$ singsol $\left.=a l l\right)$

$$
y(x)=\sin (\ln (x)) c_{2}+\cos (\ln (x)) c_{1}+\ln (x)
$$

\checkmark Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 20
DSolve $\left[x^{\wedge} 2 *\right.$ ' ' ' $^{\prime}[x]+x * y$ ' $[x]+y[x]==\log [x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \log (x)+c_{1} \cos (\log (x))+c_{2} \sin (\log (x))
$$

11.39 problem 62

11.39.1 Solving as second order change of variable on y method 2 ode . 3155
11.39.2 Solving as second order ode non constant coeff transformation on B ode
11.39.3 Solving using Kovacic algorithm 3165

Internal problem ID [257]
Internal file name [OUTPUT/257_Sunday_June_05_2022_01_37_34_AM_29204451/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number: 62 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=x^{2}-1
$$

11.39.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}-1, B=-2 x, C=2, f(x)=x^{2}-1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2 x}{x^{2}-1} \\
& q(x)=\frac{2}{x^{2}-1}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}-1}+\frac{2}{x^{2}-1}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{2 x}{x^{2}-1}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)-\frac{2 v^{\prime}(x)}{x^{3}-x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)-\frac{2 u(x)}{x^{3}-x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{x\left(x^{2}-1\right)}
\end{aligned}
$$

Where $f(x)=\frac{2}{x\left(x^{2}-1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{x\left(x^{2}-1\right)} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{x\left(x^{2}-1\right)} d x \\
\ln (u) & =-2 \ln (x)+\ln (x+1)+\ln (x-1)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+\ln (x+1)+\ln (x-1)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)+\ln (x+1)+\ln (x-1)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(1-\frac{1}{x^{2}}\right)
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1}\left(x+\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) x \\
& =c_{1} x^{2}+c_{2} x+c_{1}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=x^{2}-1
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2}+1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & x^{2}+1 \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{2}+1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & x^{2}+1 \\
1 & 2 x
\end{array}\right|
$$

Therefore

$$
W=(x)(2 x)-\left(x^{2}+1\right)(1)
$$

Which simplifies to

$$
W=x^{2}-1
$$

Which simplifies to

$$
W=x^{2}-1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{2}+1\right)\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{2}+1}{x^{2}-1} d x
$$

Hence

$$
u_{1}=-x-\ln (x-1)+\ln (x+1)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x}{x^{2}-1} d x
$$

Hence

$$
u_{2}=\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-x-\ln (x-1)+\ln (x+1)) x+\left(\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}\right)\left(x^{2}+1\right)
$$

Which simplifies to

$$
y_{p}(x)=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) x\right)+\left(\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}\right) \\
& =\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}+\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) x
\end{aligned}
$$

Which simplifies to

$$
y=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}+\left(c_{1}-1\right) x^{2}+c_{2} x+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}+\left(c_{1}-1\right) x^{2}+c_{2} x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}+\left(c_{1}-1\right) x^{2}+c_{2} x+c_{1}
$$

Verified OK.

11.39.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2}-1 \\
& B=-2 x \\
& C=2 \\
& F=x^{2}-1
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}-1\right)(0)+(-2 x)(-2)+(2)(-2 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2 x^{3}+2 x v^{\prime \prime}+(4) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(-2 x^{3}+2 x\right) u^{\prime}(x)+4 u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{x\left(x^{2}-1\right)}
\end{aligned}
$$

Where $f(x)=\frac{2}{x\left(x^{2}-1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{x\left(x^{2}-1\right)} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{x\left(x^{2}-1\right)} d x \\
\ln (u) & =-2 \ln (x)+\ln (x+1)+\ln (x-1)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+\ln (x+1)+\ln (x-1)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)+\ln (x+1)+\ln (x-1)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(1-\frac{1}{x^{2}}\right)
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(1-\frac{1}{x^{2}}\right)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}\left(x^{2}-1\right)}{x^{2}} \mathrm{~d} x \\
& =c_{1}\left(x+\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(-2 x)\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) \\
& =-2 c_{1} x^{2}-2 c_{2} x-2 c_{1}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=-2 x^{2}-2
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & -2 x^{2}-2 \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(-2 x^{2}-2\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & -2 x^{2}-2 \\
1 & -4 x
\end{array}\right|
$$

Therefore

$$
W=(x)(-4 x)-\left(-2 x^{2}-2\right)(1)
$$

Which simplifies to

$$
W=-2 x^{2}+2
$$

Which simplifies to

$$
W=-2 x^{2}+2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-2 x^{2}-2\right)\left(x^{2}-1\right)}{\left(x^{2}-1\right)\left(-2 x^{2}+2\right)} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{2}+1}{x^{2}-1} d x
$$

Hence

$$
u_{1}=-x-\ln (x-1)+\ln (x+1)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x\left(x^{2}-1\right)}{\left(x^{2}-1\right)\left(-2 x^{2}+2\right)} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{x}{2 x^{2}-2} d x
$$

Hence

$$
u_{2}=-\frac{\ln (x-1)}{4}-\frac{\ln (x+1)}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-x-\ln (x-1)+\ln (x+1)) x+\left(-\frac{\ln (x-1)}{4}-\frac{\ln (x+1)}{4}\right)\left(-2 x^{2}-2\right)
$$

Which simplifies to

$$
y_{p}(x)=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-2 c_{1} x^{2}-2 c_{2} x-2 c_{1}\right)+\left(\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}\right) \\
& =\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}+\left(-1-2 c_{1}\right) x^{2}-2 c_{2} x-2 c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}+\left(-1-2 c_{1}\right) x^{2}-2 c_{2} x-2 c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}+\left(-1-2 c_{1}\right) x^{2}-2 c_{2} x-2 c_{1}
$$

Verified OK.

11.39.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}-1 \\
& B=-2 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=\left(x^{2}-1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 518: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(x^{2}-1\right)^{2}$. There is a pole at $x=1$ of order 2 . There is a pole at $x=-1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{3}{4(x-1)}+\frac{3}{4(x+1)}+\frac{3}{4(x+1)^{2}}+\frac{3}{4(x-1)^{2}}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=-1$ let b be the coefficient of $\frac{1}{(x+1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{\left(x^{2}-1\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
1	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
-1	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
4	0	0	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(x-1)}+\frac{3}{2(x+1)}+(-)(0) \\
& =-\frac{1}{2(x-1)}+\frac{3}{2(x+1)} \\
& =\frac{-2+x}{x^{2}-1}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(-\frac{1}{2(x-1)}+\frac{3}{2(x+1)}\right)(0)+\left(\left(\frac{1}{2(x-1)^{2}}-\frac{3}{2(x+1)^{2}}\right)+\left(-\frac{1}{2(x-1)}+\frac{3}{2(x+1)}\right)^{2}-(\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(x-1)}+\frac{3}{2(x+1)}\right) d x} \\
& =\frac{(x+1)^{\frac{3}{2}}}{\sqrt{x-1}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x}{x^{2}-1} d x} \\
& =z_{1} e^{\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}} \\
& =z_{1}(\sqrt{x-1} \sqrt{x+1})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+1)^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}-1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x-1)+\ln (x+1)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{x}{(x+1)^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+1)^{2}\right)+c_{2}\left((x+1)^{2}\left(-\frac{x}{(x+1)^{2}}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+1)^{2}-c_{2} x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+1)^{2} \\
& y_{2}=-x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+1)^{2} & -x \\
\frac{d}{d x}\left((x+1)^{2}\right) & \frac{d}{d x}(-x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
(x+1)^{2} & -x \\
2+2 x & -1
\end{array}\right|
$$

Therefore

$$
W=\left((x+1)^{2}\right)(-1)-(-x)(2+2 x)
$$

Which simplifies to

$$
W=x^{2}-1
$$

Which simplifies to

$$
W=x^{2}-1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-x\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{x}{x^{2}-1} d x
$$

Hence

$$
u_{1}=\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+1)^{2}\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x+1}{x-1} d x
$$

Hence

$$
u_{2}=x+2 \ln (x-1)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}\right)(x+1)^{2}-(x+2 \ln (x-1)) x
$$

Which simplifies to

$$
y_{p}(x)=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}(x+1)^{2}-c_{2} x\right)+\left(\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(x+1)^{2}-c_{2} x+\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}(x+1)^{2}-c_{2} x+\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}-x^{2}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 38

```
dsolve((x^2-1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=x^2-1,y(x), singsol=all)
```

$$
y(x)=\frac{(x-1)^{2} \ln (x-1)}{2}+\frac{(x+1)^{2} \ln (x+1)}{2}+\left(c_{1}-1\right) x^{2}+c_{2} x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 22
DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow x^{2}\left(x \log (x)+\left(-1+c_{2}\right) x+c_{1}\right)
$$

12 Section 5.6, Forced Oscillations and Resonance. Page 362
12.1 problem 1 3175
12.2 problem 2 3188
12.3 problem 3 3201
12.4 problem 4 3214
12.5 problem 5 3227
12.6 problem 7 3238
12.7 problem 8 3251
12.8 problem 9 3263
12.9 problem 10 3275
12.10problem 11 3287
12.11problem 12 3301
12.12problem 12 3315
12.13problem 13 3329
12.14problem 14 3343

12.1 problem 1

12.1.1 Existence and uniqueness analysis 3175
12.1.2 Solving as second order linear constant coeff ode 3176
12.1.3 Solving using Kovacic algorithm 3180
12.1.4 Maple step by step solution . 3185

Internal problem ID [258]
Internal file name [OUTPUT/258_Sunday_June_05_2022_01_37_36_AM_66724802/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+9 x=10 \cos (2 t)
$$

With initial conditions

$$
\left[x(0)=0, x^{\prime}(0)=0\right]
$$

12.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =9 \\
F & =10 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+9 x=10 \cos (2 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10 \cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.1.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=0, C=9, f(t)=10 \cos (2 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+9 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{0}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Or

$$
x=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 t), \sin (3 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 t)+5 A_{2} \sin (2 t)=10 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=0\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=2 \cos (2 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+(2 \cos (2 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (3 t)+c_{2} \sin (3 t)+2 \cos (2 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)-4 \sin (2 t)
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=2 \cos (2 t)-2 \cos (3 t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=2 \cos (2 t)-2 \cos (3 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=2 \cos (2 t)-2 \cos (3 t)
$$

Verified OK.

12.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{\prime \prime}+9 x=0 \\
A x^{\prime \prime}+B x^{\prime}+C x=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 519: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
x_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
x_{1} & =z_{1} \\
& =\cos (3 t)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\cos (3 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{1}{x_{1}^{2}} d t \\
& =\cos (3 t) \int \frac{1}{\cos (3 t)^{2}} d t \\
& =\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}(\cos (3 t))+c_{2}\left(\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+9 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 t)}{3}, \cos (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 t)+5 A_{2} \sin (2 t)=10 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=0\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=2 \cos (2 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}\right)+(2 \cos (2 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+2 \cos (2 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-3 c_{1} \sin (3 t)+c_{2} \cos (3 t)-4 \sin (2 t)
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=2 \cos (2 t)-2 \cos (3 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=2 \cos (2 t)-2 \cos (3 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=2 \cos (2 t)-2 \cos (3 t)
$$

Verified OK.

12.1.4 Maple step by step solution

Let's solve

$$
\left[x^{\prime \prime}+9 x=10 \cos (2 t), x(0)=0,\left.x^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
x^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\cos (3 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$x_{2}(t)=\sin (3 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \cos (3 t)+c_{2} \sin (3 t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=10 \cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=3$
- Substitute functions into equation for $x_{p}(t)$
$x_{p}(t)=-\frac{5 \cos (3 t)\left(\int(\sin (5 t)+\sin (t)) d t\right)}{3}+\frac{5 \sin (3 t)\left(\int(\cos (t)+\cos (5 t)) d t\right)}{3}$
- Compute integrals

$$
x_{p}(t)=2 \cos (2 t)
$$

- Substitute particular solution into general solution to ODE
$x=c_{1} \cos (3 t)+c_{2} \sin (3 t)+2 \cos (2 t)$
Check validity of solution $x=c_{1} \cos (3 t)+c_{2} \sin (3 t)+2 \cos (2 t)$
- Use initial condition $x(0)=0$

$$
0=c_{1}+2
$$

- Compute derivative of the solution

$$
x^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)-4 \sin (2 t)
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$
$0=3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-2, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=4 \cos (t)^{2}-2-8 \cos (t)^{3}+6 \cos (t)
$$

- \quad Solution to the IVP

$$
x=4 \cos (t)^{2}-2-8 \cos (t)^{3}+6 \cos (t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve([diff(x(t),t$2)+9*x(t)=10*\operatorname{cos}(2*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)
```

$$
x(t)=-8 \cos (t)^{3}+6 \cos (t)+4 \cos (t)^{2}-2
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 18

```
DSolve[{x''[t]+9*x[t]==10*Cos[2*t],{x[0]==0, x'[0]==0}}, x[t],t,IncludeSingularSolutions -> Tr
```

$$
x(t) \rightarrow 2(\cos (2 t)-\cos (3 t))
$$

12.2 problem 2

12.2.1 Existence and uniqueness analysis 3188
12.2.2 Solving as second order linear constant coeff ode 3189
12.2.3 Solving using Kovacic algorithm 3193
12.2.4 Maple step by step solution . 3198

Internal problem ID [259]
Internal file name [OUTPUT/259_Sunday_June_05_2022_01_37_37_AM_67793643/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+4 x=5 \sin (3 t)
$$

With initial conditions

$$
\left[x(0)=0, x^{\prime}(0)=0\right]
$$

12.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =5 \sin (3 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+4 x=5 \sin (3 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=5 \sin (3 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.2.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=5 \sin (3 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+4 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
x=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 t)-5 A_{2} \sin (3 t)=5 \sin (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=-1\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\sin (3 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+(-\sin (3 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\sin (3 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-3 \cos (3 t)
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3+2 c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{3}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{3 \sin (2 t)}{2}-\sin (3 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{3 \sin (2 t)}{2}-\sin (3 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\frac{3 \sin (2 t)}{2}-\sin (3 t)
$$

Verified OK.

12.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{\prime \prime}+4 x=0 \\
A x^{\prime \prime}+B x^{\prime}+C x=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 521: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
x_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
x_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\cos (2 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{1}{x_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+4 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \sin (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 t)-5 A_{2} \sin (3 t)=5 \sin (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=-1\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\sin (3 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+(-\sin (3 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\sin (3 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-2 c_{1} \sin (2 t)+c_{2} \cos (2 t)-3 \cos (3 t)
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{3 \sin (2 t)}{2}-\sin (3 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{3 \sin (2 t)}{2}-\sin (3 t) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=\frac{3 \sin (2 t)}{2}-\sin (3 t)
$$

Verified OK.

12.2.4 Maple step by step solution

Let's solve

$$
\left[x^{\prime \prime}+4 x=5 \sin (3 t), x(0)=0,\left.x^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\cos (2 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$x_{2}(t)=\sin (2 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \cos (2 t)+c_{2} \sin (2 t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=5 \sin (3 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=2$
- Substitute functions into equation for $x_{p}(t)$
$x_{p}(t)=-\frac{5 \cos (2 t)\left(\int(\cos (t)-\cos (5 t)) d t\right)}{4}+\frac{5 \sin (2 t)\left(\int(\sin (5 t)+\sin (t)) d t\right)}{4}$
- Compute integrals

$$
x_{p}(t)=-\sin (3 t)
$$

- Substitute particular solution into general solution to ODE
$x=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\sin (3 t)$
Check validity of solution $x=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\sin (3 t)$
- Use initial condition $x(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-3 \cos (3 t)$
- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$
$0=-3+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=\frac{3}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=\frac{3 \sin (2 t)}{2}-\sin (3 t)
$$

- \quad Solution to the IVP

$$
x=\frac{3 \sin (2 t)}{2}-\sin (3 t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve([diff(x(t),t$2)+4*x(t)=5*sin(3*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)
```

$$
x(t)=\frac{3 \sin (2 t)}{2}-\sin (3 t)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 18
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+4 * x[t]==5 * \operatorname{Sin}[3 * t],\left\{x[0]==0, x^{\prime}[0]==0\right\}\right\}, x[t], t\right.$, IncludeSingularSolutions \rightarrow Tru

$$
x(t) \rightarrow 3 \sin (t) \cos (t)-\sin (3 t)
$$

12.3 problem 3

12.3.1 Existence and uniqueness analysis 3201
12.3.2 Solving as second order linear constant coeff ode 3202
12.3.3 Solving using Kovacic algorithm 3206
12.3.4 Maple step by step solution . 3211

Internal problem ID [260]
Internal file name [OUTPUT/260_Sunday_June_05_2022_01_37_38_AM_54155777/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+100 x=225 \cos (5 t)+300 \sin (5 t)
$$

With initial conditions

$$
\left[x(0)=375, x^{\prime}(0)=0\right]
$$

12.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =100 \\
F & =225 \cos (5 t)+300 \sin (5 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+100 x=225 \cos (5 t)+300 \sin (5 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=100$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=225 \cos (5 t)+$ $300 \sin (5 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.3.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=0, C=100, f(t)=225 \cos (5 t)+300 \sin (5 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+100 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=0, C=100$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+100 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+100=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=100$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(100)} \\
& = \pm 10 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+10 i \\
& \lambda_{2}=-10 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=10 i \\
& \lambda_{2}=-10 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=10$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{0}\left(c_{1} \cos (10 t)+c_{2} \sin (10 t)\right)
$$

Or

$$
x=c_{1} \cos (10 t)+c_{2} \sin (10 t)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=c_{1} \cos (10 t)+c_{2} \sin (10 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
225 \cos (5 t)+300 \sin (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (10 t), \sin (10 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
75 A_{1} \cos (5 t)+75 A_{2} \sin (5 t)=225 \cos (5 t)+300 \sin (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=4\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=3 \cos (5 t)+4 \sin (5 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (10 t)+c_{2} \sin (10 t)\right)+(3 \cos (5 t)+4 \sin (5 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (10 t)+c_{2} \sin (10 t)+3 \cos (5 t)+4 \sin (5 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=375$ and $t=0$ in the above gives

$$
\begin{equation*}
375=3+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-10 c_{1} \sin (10 t)+10 c_{2} \cos (10 t)-15 \sin (5 t)+20 \cos (5 t)
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=20+10 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=372 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t)
$$

Verified OK.

12.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+100 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=100
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-100}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-100 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-100 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 523: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-100$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (10 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
x_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
x_{1} & =z_{1} \\
& =\cos (10 t)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\cos (10 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{1}{x_{1}^{2}} d t \\
& =\cos (10 t) \int \frac{1}{\cos (10 t)^{2}} d t \\
& =\cos (10 t)\left(\frac{\tan (10 t)}{10}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}(\cos (10 t))+c_{2}\left(\cos (10 t)\left(\frac{\tan (10 t)}{10}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+100 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \cos (10 t)+\frac{c_{2} \sin (10 t)}{10}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
225 \cos (5 t)+300 \sin (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (10 t)}{10}, \cos (10 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
75 A_{1} \cos (5 t)+75 A_{2} \sin (5 t)=225 \cos (5 t)+300 \sin (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=4\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=3 \cos (5 t)+4 \sin (5 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (10 t)+\frac{c_{2} \sin (10 t)}{10}\right)+(3 \cos (5 t)+4 \sin (5 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (10 t)+\frac{c_{2} \sin (10 t)}{10}+3 \cos (5 t)+4 \sin (5 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=375$ and $t=0$ in the above gives

$$
\begin{equation*}
375=3+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-10 c_{1} \sin (10 t)+c_{2} \cos (10 t)-15 \sin (5 t)+20 \cos (5 t)
$$

substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=20+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=372 \\
& c_{2}=-20
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t)
$$

Verified OK.

12.3.4 Maple step by step solution

Let's solve

$$
\left[x^{\prime \prime}+100 x=225 \cos (5 t)+300 \sin (5 t), x(0)=375,\left.x^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+100=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-400})}{2}$
- Roots of the characteristic polynomial

$$
r=(-10 \mathrm{I}, 10 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
x_{1}(t)=\cos (10 t)
$$

- $\quad 2$ nd solution of the homogeneous ODE
$x_{2}(t)=\sin (10 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \cos (10 t)+c_{2} \sin (10 t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=225 \cos (5 t)+300 \sin (5 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\cos (10 t) & \sin (10 t) \\
-10 \sin (10 t) & 10 \cos (10 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=10$
- Substitute functions into equation for $x_{p}(t)$
$x_{p}(t)=-\frac{15 \cos (10 t)\left(\int \sin (10 t)(3 \cos (5 t)+4 \sin (5 t)) d t\right)}{2}+\frac{15 \sin (10 t)\left(\int \cos (10 t)(3 \cos (5 t)+4 \sin (5 t)) d t\right)}{2}$
- Compute integrals
$x_{p}(t)=3 \cos (5 t)+4 \sin (5 t)$
- Substitute particular solution into general solution to ODE
$x=c_{1} \cos (10 t)+c_{2} \sin (10 t)+3 \cos (5 t)+4 \sin (5 t)$
Check validity of solution $x=c_{1} \cos (10 t)+c_{2} \sin (10 t)+3 \cos (5 t)+4 \sin (5 t)$
- Use initial condition $x(0)=375$
$375=3+c_{1}$
- Compute derivative of the solution
$x^{\prime}=-10 c_{1} \sin (10 t)+10 c_{2} \cos (10 t)-15 \sin (5 t)+20 \cos (5 t)$
- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$
$0=20+10 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=372, c_{2}=-2\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t)
$$

- \quad Solution to the IVP

$$
x=4 \sin (5 t)+3 \cos (5 t)+372 \cos (10 t)-2 \sin (10 t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

```
dsolve([diff (x (t),t$2)+100*x(t)=225*\operatorname{cos}(5*t)+300*\operatorname{sin}(5*t),x(0)=375,D(x)(0)=0],x(t), sin
```

$$
x(t)=-2 \sin (10 t)+372 \cos (10 t)+3 \cos (5 t)+4 \sin (5 t)
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 30
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+100 * x[t]==225 * \operatorname{Cos}[5 * t]+300 * \operatorname{Sin}[5 * t],\left\{x[0]==375, x^{\prime}[0]==0\right\}\right\}, x[t], t\right.$, IncludeSingu

$$
x(t) \rightarrow 4 \sin (5 t)-2 \sin (10 t)+3 \cos (5 t)+372 \cos (10 t)
$$

12.4 problem 4

12.4.1 Existence and uniqueness analysis 3214
12.4.2 Solving as second order linear constant coeff ode 3215
12.4.3 Solving using Kovacic algorithm 3219
12.4.4 Maple step by step solution . 3224

Internal problem ID [261]
Internal file name [OUTPUT/261_Sunday_June_05_2022_01_37_40_AM_36557915/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+25 x=90 \cos (4 t)
$$

With initial conditions

$$
\left[x(0)=0, x^{\prime}(0)=90\right]
$$

12.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =25 \\
F & =90 \cos (4 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+25 x=90 \cos (4 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=25$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=90 \cos (4 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.4.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=0, C=25, f(t)=90 \cos (4 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+25 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=0, C=25$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+25 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(25)} \\
& = \pm 5 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+5 i \\
& \lambda_{2}=-5 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=5 i \\
& \lambda_{2}=-5 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=5$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{0}\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)
$$

Or

$$
x=c_{1} \cos (5 t)+c_{2} \sin (5 t)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=c_{1} \cos (5 t)+c_{2} \sin (5 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
90 \cos (4 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 t), \sin (4 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (5 t), \sin (5 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (4 t)+A_{2} \sin (4 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \cos (4 t)+9 A_{2} \sin (4 t)=90 \cos (4 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=10, A_{2}=0\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=10 \cos (4 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)+(10 \cos (4 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (5 t)+c_{2} \sin (5 t)+10 \cos (4 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=10+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-5 c_{1} \sin (5 t)+5 c_{2} \cos (5 t)-40 \sin (4 t)
$$

substituting $x^{\prime}=90$ and $t=0$ in the above gives

$$
\begin{equation*}
90=5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-10 \\
& c_{2}=18
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t)
$$

Verified OK.

12.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+25 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-25}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-25 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-25 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 525: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-25$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (5 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
x_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
x_{1} & =z_{1} \\
& =\cos (5 t)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\cos (5 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{1}{x_{1}^{2}} d t \\
& =\cos (5 t) \int \frac{1}{\cos (5 t)^{2}} d t \\
& =\cos (5 t)\left(\frac{\tan (5 t)}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}(\cos (5 t))+c_{2}\left(\cos (5 t)\left(\frac{\tan (5 t)}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+25 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \cos (5 t)+\frac{c_{2} \sin (5 t)}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
90 \cos (4 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 t), \sin (4 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (5 t)}{5}, \cos (5 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (4 t)+A_{2} \sin (4 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \cos (4 t)+9 A_{2} \sin (4 t)=90 \cos (4 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=10, A_{2}=0\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=10 \cos (4 t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \cos (5 t)+\frac{c_{2} \sin (5 t)}{5}\right)+(10 \cos (4 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \cos (5 t)+\frac{c_{2} \sin (5 t)}{5}+10 \cos (4 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=10+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
x^{\prime}=-5 c_{1} \sin (5 t)+c_{2} \cos (5 t)-40 \sin (4 t)
$$

substituting $x^{\prime}=90$ and $t=0$ in the above gives

$$
\begin{equation*}
90=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-10 \\
& c_{2}=90
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t)
$$

Verified OK.

12.4.4 Maple step by step solution

Let's solve
$\left[x^{\prime \prime}+25 x=90 \cos (4 t), x(0)=0,\left.x^{\prime}\right|_{\{t=0\}}=90\right]$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+25=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-100})}{2}$
- Roots of the characteristic polynomial
$r=(-5 \mathrm{I}, 5 \mathrm{I})$
- \quad 1st solution of the homogeneous ODE
$x_{1}(t)=\cos (5 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$x_{2}(t)=\sin (5 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \cos (5 t)+c_{2} \sin (5 t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=90 \cos (4 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\cos (5 t) & \sin (5 t) \\
-5 \sin (5 t) & 5 \cos (5 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=5$
- Substitute functions into equation for $x_{p}(t)$
$x_{p}(t)=-9 \cos (5 t)\left(\int(\sin (9 t)+\sin (t)) d t\right)+9 \sin (5 t)\left(\int(\cos (t)+\cos (9 t)) d t\right)$
- Compute integrals
$x_{p}(t)=10 \cos (4 t)$
- Substitute particular solution into general solution to ODE
$x=c_{1} \cos (5 t)+c_{2} \sin (5 t)+10 \cos (4 t)$
Check validity of solution $x=c_{1} \cos (5 t)+c_{2} \sin (5 t)+10 \cos (4 t)$
- Use initial condition $x(0)=0$
$0=10+c_{1}$
- Compute derivative of the solution

$$
x^{\prime}=-5 c_{1} \sin (5 t)+5 c_{2} \cos (5 t)-40 \sin (4 t)
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=90$
$90=5 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-10, c_{2}=18\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t)
$$

- \quad Solution to the IVP

$$
x=10 \cos (4 t)-10 \cos (5 t)+18 \sin (5 t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 23

```
dsolve([diff(x(t),t$2)+25*x(t)=90*\operatorname{cos}(4*t),x(0) = 0, D(x)(0) = 90],x(t), singsol=all)
```

$$
x(t)=18 \sin (5 t)-10 \cos (5 t)+10 \cos (4 t)
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 26
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+25 * x[t]==90 * \operatorname{Cos}[4 * t],\left\{x[0]==0, x^{\prime}[0]==90\right\}\right\}, x[t], t\right.$, IncludeSingularSolutions $->$

$$
x(t) \rightarrow 2(9 \sin (5 t)+5 \cos (4 t)-5 \cos (5 t))
$$

12.5 problem 5

12.5.1 Solving as second order linear constant coeff ode 3227
12.5.2 Solving using Kovacic algorithm 3230
12.5.3 Maple step by step solution . 3235

Internal problem ID [262]
Internal file name [OUTPUT/262_Sunday_June_05_2022_01_37_41_AM_45300286/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

12.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=m, B=0, C=k, f(t)=F_{0} \cos (\omega t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
m x^{\prime \prime}+k x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=m, B=0, C=k$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
m \lambda^{2} \mathrm{e}^{\lambda t}+k \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
m \lambda^{2}+k=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=m, B=0, C=k$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(m)} \pm \frac{1}{(2)(m)} \sqrt{0^{2}-(4)(m)(k)} \\
& = \pm \frac{\sqrt{-m k}}{m}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{\sqrt{-m k}}{m} \\
& \lambda_{2}=-\frac{\sqrt{-m k}}{m}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{-m k}}{m} \\
& \lambda_{2}=-\frac{\sqrt{-m k}}{m}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& x=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& x=c_{1} e^{\left(\frac{\sqrt{-m k}}{m}\right) t}+c_{2} e^{\left(-\frac{\sqrt{-m k}}{m}\right) t}
\end{aligned}
$$

Or

$$
x=c_{1} \mathrm{e}^{\frac{\sqrt{-m k} t}{m}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=c_{1} \mathrm{e}^{\frac{\sqrt{-m k} t}{m}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
F_{0} \cos (\omega t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (\omega t), \sin (\omega t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{\frac{\sqrt{-m k} t}{m}}, \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (\omega t)+A_{2} \sin (\omega t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
m\left(-A_{1} \omega^{2} \cos (\omega t)-A_{2} \omega^{2} \sin (\omega t)\right)+k\left(A_{1} \cos (\omega t)+A_{2} \sin (\omega t)\right)=F_{0} \cos (\omega t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{F_{0}}{-m \omega^{2}+k}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{\sqrt{ }-m k t}{m}}+c_{2} \mathrm{e}^{-\frac{\sqrt{ }-m k t}{m}}\right)+\left(\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{\frac{\sqrt{-m k} t}{m}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}+\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=c_{1} \mathrm{e}^{\frac{\sqrt{-m k} t}{m}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}+\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}
$$

Verified OK.

12.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
m x^{\prime \prime}+k x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=m \\
& B=0 \tag{3}\\
& C=k
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-k}{m} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-k \\
t & =m
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{k}{m}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 527: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{k}{m}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{\sqrt{-\frac{k}{m}} t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
x_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
& x_{1}=z_{1} \\
& \quad=\mathrm{e}^{\sqrt{-\frac{k}{m}} t}
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{\sqrt{-\frac{k}{m}} t}
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{1}{x_{1}^{2}} d t \\
& =\mathrm{e}^{\sqrt{-\frac{k}{m}} t} \int \frac{1}{\mathrm{e}^{2 \sqrt{-\frac{k}{m}} t} d t} \\
& =\mathrm{e}^{\sqrt{-\frac{k}{m}} t}\left(\frac{\sqrt{-\frac{k}{m}} m \mathrm{e}^{-2 \sqrt{-\frac{k}{m}} t}}{2 k}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-\frac{k}{m}} t}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-\frac{k}{m}} t}\left(\frac{\sqrt{-\frac{k}{m}} m \mathrm{e}^{-2 \sqrt{-\frac{k}{m}} t}}{2 k}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
m x^{\prime \prime}+k x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \mathrm{e}^{\sqrt{-\frac{k}{m}} t}+\frac{c_{2} m \sqrt{-\frac{k}{m}} \mathrm{e}^{-\sqrt{-\frac{k}{m}} t}}{2 k}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
F_{0} \cos (\omega t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (\omega t), \sin (\omega t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{m \sqrt{-\frac{k}{m}} \mathrm{e}^{-\sqrt{-\frac{k}{m}} t}}{2 k}, \mathrm{e}^{\sqrt{-\frac{k}{m}} t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (\omega t)+A_{2} \sin (\omega t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
m\left(-A_{1} \omega^{2} \cos (\omega t)-A_{2} \omega^{2} \sin (\omega t)\right)+k\left(A_{1} \cos (\omega t)+A_{2} \sin (\omega t)\right)=F_{0} \cos (\omega t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{F_{0}}{-m \omega^{2}+k}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{\sqrt{-\frac{k}{m}}} t+\frac{c_{2} m \sqrt{-\frac{k}{m}} \mathrm{e}^{-\sqrt{-\frac{k}{m}} t}}{2 k}\right)+\left(\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{\sqrt{-\frac{k}{m}} t}+\frac{c_{2} m \sqrt{-\frac{k}{m}} \mathrm{e}^{-\sqrt{-\frac{k}{m}} t}}{2 k}+\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=c_{1} \mathrm{e}^{\sqrt{-\frac{k}{m}} t}+\frac{c_{2} m \sqrt{-\frac{k}{m}} \mathrm{e}^{-\sqrt{-\frac{k}{m}} t}}{2 k}+\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}
$$

Verified OK.

12.5.3 Maple step by step solution

Let's solve

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Isolate 2nd derivative

$$
x^{\prime \prime}=\frac{F_{0} \cos (\omega t)}{m}-\frac{k x}{m}
$$

- \quad Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $x^{\prime \prime}+\frac{k x}{m}=\frac{F_{0} \cos (\omega t)}{m}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+\frac{k}{m}=0$
- Factor the characteristic polynomial

$$
\frac{r^{2} m+k}{m}=0
$$

- Roots of the characteristic polynomial
$r=\left(\frac{\sqrt{-m k}}{m},-\frac{\sqrt{-m k}}{m}\right)$
- \quad 1st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{\frac{\sqrt{-m k} t}{m}}$
- $\quad 2 n d$ solution of the homogeneous ODE
$x_{2}(t)=\mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \mathrm{e}^{\frac{\sqrt{-m k} t}{m}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=\frac{F_{0} \cos (\omega t)}{m}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{\sqrt{-m k} t}{m}} & \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}} \\
\frac{\sqrt{-m k} \mathrm{e}^{\frac{\sqrt{-m k} t}{m}}}{m} & -\frac{\sqrt{-m k} \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}}{m}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(x_{1}(t), x_{2}(t)\right)=-\frac{2 \sqrt{-m k}}{m}
$$

- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=\frac{F_{0}\left(\mathrm{e}^{\frac{\sqrt{-m k} t}{m}}\left(\int \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}} \cos (\omega t) d t\right)-\mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}\left(\int \mathrm{e}^{\frac{\sqrt{-m k} t}{m} t} \cos (\omega t) d t\right)\right)}{2 \sqrt{-m k}}
$$

- Compute integrals

$$
x_{p}(t)=\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}
$$

- Substitute particular solution into general solution to ODE

$$
x=c_{1} \mathrm{e}^{\frac{\sqrt{-m k} t}{m}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-m k} t}{m}}+\frac{F_{0} \cos (\omega t)}{-m \omega^{2}+k}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 60

```
dsolve(m*diff(x(t),t$2)+k*x(t)=F__0*cos(omega*t),x(t), singsol=all)
```

$$
x(t)=\frac{c_{1}\left(-m \omega^{2}+k\right) \cos \left(\frac{\sqrt{k} t}{\sqrt{m}}\right)+c_{2}\left(-m \omega^{2}+k\right) \sin \left(\frac{\sqrt{k} t}{\sqrt{m}}\right)+F_{0} \cos (\omega t)}{-m \omega^{2}+k}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 54
DSolve[m*x''[t]+k*x[t]==F0*Cos[omega*t],x[t],t,IncludeSingularSolutions \rightarrow True]

$$
x(t) \rightarrow \frac{\mathrm{F} 0 \cos (\omega t)}{k-m \omega^{2}}+c_{1} \cos \left(\frac{\sqrt{k} t}{\sqrt{m}}\right)+c_{2} \sin \left(\frac{\sqrt{k} t}{\sqrt{m}}\right)
$$

12.6 problem 7

12.6.1 Solving as second order linear constant coeff ode
12.6.2
Solving as linear second order ode solved by an integrating factor

ode . 3241
12.6.3 Solving using Kovacic algorithm 3243
12.6.4 Maple step by step solution . 3248

Internal problem ID [263]
Internal file name [OUTPUT/263_Sunday_June_05_2022_01_37_43_AM_58046521/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+4 x^{\prime}+4 x=10 \cos (3 t)
$$

12.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=4, C=4, f(t)=10 \cos (3 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+4 x^{\prime}+4 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-2 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 t)-5 A_{2} \sin (3 t)-12 A_{1} \sin (3 t)+12 A_{2} \cos (3 t)=10 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{50}{169}, A_{2}=\frac{120}{169}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}
$$

Therefore the general solution is

$$
\begin{aligned}
& x=x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}\right)+\left(-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}\right)
\end{aligned}
$$

Which simplifies to

$$
x=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169} \tag{1}
\end{equation*}
$$

Figure 677: Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}
$$

Verified OK.

12.6.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
x^{\prime \prime}+p(t) x^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) x}{2}=f(t)
$$

Where $p(t)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) x)^{\prime \prime} & =10 \mathrm{e}^{2 t} \cos (3 t) \\
\left(\mathrm{e}^{2 t} x\right)^{\prime \prime} & =10 \mathrm{e}^{2 t} \cos (3 t)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{2 t} x\right)^{\prime}=\frac{10 \mathrm{e}^{2 t}(2 \cos (3 t)+3 \sin (3 t))}{13}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{2 t} x\right)=\frac{10 \mathrm{e}^{2 t}(-5 \cos (3 t)+12 \sin (3 t))}{169}+c_{1} t+c_{2}
$$

Hence the solution is

$$
x=\frac{\frac{10 \mathrm{e}^{2 t}(-5 \cos (3 t)+12 \sin (3 t))}{169}+c_{1} t+c_{2}}{\mathrm{e}^{2 t}}
$$

Or

$$
x=-\frac{200 \cos (t)^{3}}{169}+\frac{480 \cos (t)^{2} \sin (t)}{169}+\frac{150 \cos (t)}{169}-\frac{120 \sin (t)}{169}+c_{1} t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2}
$$

Summary

The solution(s) found are the following

$$
x=-\frac{200 \cos (t)^{3}}{169}+\frac{480 \cos (t)^{2} \sin (t)}{169}+\frac{150 \cos (t)}{169}-\frac{120 \sin (t)}{169}+c_{1} t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t}(x)
$$

Figure 678: Slope field plot

Verification of solutions

$$
x=-\frac{200 \cos (t)^{3}}{169}+\frac{480 \cos (t)^{2} \sin (t)}{169}+\frac{150 \cos (t)}{169}-\frac{120 \sin (t)}{169}+c_{1} t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2}
$$

Verified OK.

12.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{\prime \prime}+4 x^{\prime}+4 x=0 \\
A x^{\prime \prime}+B x^{\prime}+C x=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 529: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-2 t}
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-4 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+4 x^{\prime}+4 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-2 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 t)-5 A_{2} \sin (3 t)-12 A_{1} \sin (3 t)+12 A_{2} \cos (3 t)=10 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{50}{169}, A_{2}=\frac{120}{169}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}\right)+\left(-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}\right)
\end{aligned}
$$

Which simplifies to

$$
x=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169} \tag{1}
\end{equation*}
$$

Figure 679: Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}
$$

Verified OK.

12.6.4 Maple step by step solution

Let's solve
$x^{\prime \prime}+4 x^{\prime}+4 x=10 \cos (3 t)$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+4=0$
- Factor the characteristic polynomial
$(r+2)^{2}=0$
- Root of the characteristic polynomial
$r=-2$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-2 t}$
- \quad Repeated root, multiply $x_{1}(t)$ by t to ensure linear independence
$x_{2}(t)=t \mathrm{e}^{-2 t}$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}+x_{p}(t)$Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=10 \cos (3 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}-2 t \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=\mathrm{e}^{-4 t}$
- Substitute functions into equation for $x_{p}(t)$
$x_{p}(t)=10 \mathrm{e}^{-2 t}\left(-\left(\int \cos (3 t) t \mathrm{e}^{2 t} d t\right)+t\left(\int \mathrm{e}^{2 t} \cos (3 t) d t\right)\right)$
- Compute integrals
$x_{p}(t)=-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}$
- Substitute particular solution into general solution to ODE
$x=c_{2} t \mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-2 t}-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(x(t),t$2)+4*diff(x(t),t)+4*x(t)=10*\operatorname{cos}(3*t),x(t), singsol=all)
```

$$
x(t)=\left(c_{1} t+c_{2}\right) \mathrm{e}^{-2 t}-\frac{50 \cos (3 t)}{169}+\frac{120 \sin (3 t)}{169}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 35
DSolve[x''[t]+4*x'[t]+4*x[t]==10*Cos[3*t],x[t],t,IncludeSingularSolutions \rightarrow True]

$$
x(t) \rightarrow \frac{120}{169} \sin (3 t)-\frac{50}{169} \cos (3 t)+e^{-2 t}\left(c_{2} t+c_{1}\right)
$$

12.7 problem 8

12.7.1 Solving as second order linear constant coeff ode 3251
12.7.2 Solving using Kovacic algorithm 3255
12.7.3 Maple step by step solution . 3260

Internal problem ID [264]
Internal file name [OUTPUT/264_Sunday_June_05_2022_01_37_44_AM_45998882/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
x^{\prime \prime}+3 x^{\prime}+5 x=-4 \cos (5 t)
$$

12.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=3, C=5, f(t)=-4 \cos (5 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+3 x^{\prime}+5 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=3, C=5$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+5 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(5)} \\
& =-\frac{3}{2} \pm \frac{i \sqrt{11}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{i \sqrt{11}}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{i \sqrt{11}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{i \sqrt{11}}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{i \sqrt{11}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{3}{2}$ and $\beta=\frac{\sqrt{11}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-4 \cos (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right), \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-20 A_{1} \cos (5 t)-20 A_{2} \sin (5 t)-15 A_{1} \sin (5 t)+15 A_{2} \cos (5 t)=-4 \cos (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{16}{125}, A_{2}=-\frac{12}{125}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right)\right)\right)+\left(\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right)\right)+\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125} \tag{1}
\end{equation*}
$$

Figure 680: Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right)\right)+\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}
$$

Verified OK.

12.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+3 x^{\prime}+5 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-11}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-11 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-\frac{11 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 531: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{11}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos \left(\frac{\sqrt{11} t}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-3 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{2 \sqrt{11} \tan \left(\frac{\sqrt{11} t}{2}\right)}{11}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)\left(\frac{2 \sqrt{11} \tan \left(\frac{\sqrt{11} t}{2}\right)}{11}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+3 x^{\prime}+5 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{11}}{11}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-4 \cos (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right), \frac{2 \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{11}}{11}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-20 A_{1} \cos (5 t)-20 A_{2} \sin (5 t)-15 A_{1} \sin (5 t)+15 A_{2} \cos (5 t)=-4 \cos (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{16}{125}, A_{2}=-\frac{12}{125}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{11}}{11}\right)+\left(\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{11}}{11}+\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125} \tag{1}
\end{equation*}
$$

Figure 681: Slope field plot

Verification of solutions

$$
x=\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{11}}{11}+\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}
$$

Verified OK.

12.7.3 Maple step by step solution

Let's solve
$x^{\prime \prime}+3 x^{\prime}+5 x=-4 \cos (5 t)$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{(-3) \pm(\sqrt{-11})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{3}{2}-\frac{\mathrm{I} \sqrt{11}}{2},-\frac{3}{2}+\frac{\mathrm{I} \sqrt{11}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)$
- $\quad 2 n d$ solution of the homogeneous ODE
$x_{2}(t)=\mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=\cos \left(\frac{\sqrt{11 t}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\sin \left(\frac{\sqrt{11 t}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{2}+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=-4 \cos (5 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right) & \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right) \\
-\frac{3 \mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2} \sqrt{11}}}{2} & -\frac{3 \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{3 t}{2}} \sqrt{11} \cos \left(\frac{\sqrt{11} t}{2}\right)}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(x_{1}(t), x_{2}(t)\right)=\frac{\sqrt{11} \mathrm{e}^{-3 t}}{2}
$$

- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=\frac{8 \mathrm{e}^{-\frac{3 t}{2}} \sqrt{11}\left(\cos \left(\frac{\sqrt{11} t}{2}\right)\left(\int \cos (5 t) \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right) d t\right)-\sin \left(\frac{\sqrt{11} t}{2}\right)\left(\int \cos (5 t) \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right) d t\right)\right)}{11}
$$

- Compute integrals

$$
x_{p}(t)=\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}
$$

- \quad Substitute particular solution into general solution to ODE

$$
x=\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{2}+\frac{16 \cos (5 t)}{125}-\frac{12 \sin (5 t)}{125}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

```
dsolve(diff(x(t),t$2)+3*diff(x(t),t)+5*x(t)=-4*\operatorname{cos}(5*t),x(t), singsol=all)
```

$$
x(t)=\mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right) c_{2}+\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right) c_{1}-\frac{12 \sin (5 t)}{125}+\frac{16 \cos (5 t)}{125}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 65
DSolve[x''[t]+3*x'[t]+5*x[t]==-4*Cos[5*t],x[t],t,IncludeSingularSolutions $->$ True]

$$
x(t) \rightarrow \frac{4}{125}(4 \cos (5 t)-3 \sin (5 t))+c_{2} e^{-3 t / 2} \cos \left(\frac{\sqrt{11} t}{2}\right)+c_{1} e^{-3 t / 2} \sin \left(\frac{\sqrt{11} t}{2}\right)
$$

12.8 problem 9

12.8.1 Solving as second order linear constant coeff ode 3263
12.8.2 Solving using Kovacic algorithm 3266
12.8.3 Maple step by step solution . 3272

Internal problem ID [265]
Internal file name [OUTPUT/265_Sunday_June_05_2022_01_37_45_AM_13586252/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
2 x^{\prime \prime}+2 x^{\prime}+x=3 \sin (10 t)
$$

12.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=2, B=2, C=1, f(t)=3 \sin (10 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
2 x^{\prime \prime}+2 x^{\prime}+x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=2, B=2, C=1$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
2 \lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{2^{2}-(4)(2)(1)} \\
& =-\frac{1}{2} \pm \frac{i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}+\frac{i}{2} \\
\lambda_{2} & =-\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}+\frac{i}{2} \\
\lambda_{2} & =-\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{1}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \sin (10 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (10 t), \sin (10 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right), \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (10 t)+A_{2} \sin (10 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-199 A_{1} \cos (10 t)-199 A_{2} \sin (10 t)-20 A_{1} \sin (10 t)+20 A_{2} \cos (10 t)=3 \sin (10 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{60}{40001}, A_{2}=-\frac{597}{40001}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right)\right)\right)+\left(-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right)\right)-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001} \tag{1}
\end{equation*}
$$

Figure 682: Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right)\right)-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001}
$$

Verified OK.

12.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{\prime \prime}+2 x^{\prime}+x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 533: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos \left(\frac{t}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{2} d t} \\
& =z_{1} e^{-\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{2}{2}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(2 \tan \left(\frac{t}{2}\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)\left(2 \tan \left(\frac{t}{2}\right)\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
2 x^{\prime \prime}+2 x^{\prime}+x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}+2 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \sin (10 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (10 t), \sin (10 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right), 2 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (10 t)+A_{2} \sin (10 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-199 A_{1} \cos (10 t)-199 A_{2} \sin (10 t)-20 A_{1} \sin (10 t)+20 A_{2} \cos (10 t)=3 \sin (10 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{60}{40001}, A_{2}=-\frac{597}{40001}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}+2 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}\right)+\left(-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001}\right)
\end{aligned}
$$

Which simplifies to

$$
x=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+2 c_{2} \sin \left(\frac{t}{2}\right)\right)-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+2 c_{2} \sin \left(\frac{t}{2}\right)\right)-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001} \tag{1}
\end{equation*}
$$

Figure 683: Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)+2 c_{2} \sin \left(\frac{t}{2}\right)\right)-\frac{60 \cos (10 t)}{40001}-\frac{597 \sin (10 t)}{40001}
$$

Verified OK.

12.8.3 Maple step by step solution

Let's solve
$2 x^{\prime \prime}+2 x^{\prime}+x=3 \sin (10 t)$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Isolate 2nd derivative
$x^{\prime \prime}=-x^{\prime}-\frac{x}{2}+\frac{3 \sin (10 t)}{2}$
- Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $x^{\prime \prime}+x^{\prime}+\frac{x}{2}=\frac{3 \sin (10 t)}{2}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+r+\frac{1}{2}=0$
- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-1})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I}}{2},-\frac{1}{2}+\frac{\mathrm{I}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)$
- $\quad 2 n d$ solution of the homogeneous ODE
$x_{2}(t)=\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$x=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}+\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=\frac{3 \sin (10 t)}{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)}{2} & -\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{t}{2}\right)}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(x_{1}(t), x_{2}(t)\right)=\frac{\mathrm{e}^{-t}}{2}
$$

- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=-3 \mathrm{e}^{-\frac{t}{2}}\left(\cos \left(\frac{t}{2}\right)\left(\int \sin \left(\frac{t}{2}\right) \sin (10 t) \mathrm{e}^{\frac{t}{2}} d t\right)-\sin \left(\frac{t}{2}\right)\left(\int \cos \left(\frac{t}{2}\right) \sin (10 t) \mathrm{e}^{\frac{t}{2}} d t\right)\right)
$$

- Compute integrals

$$
x_{p}(t)=\frac{3\left(-221 \cos \left(\frac{19 t}{2}\right)-4199 \sin \left(\frac{19 t}{2}\right)+181 \cos \left(\frac{21 t}{2}\right)+3801 \sin \left(\frac{21 t}{2}\right)\right) \cos \left(\frac{t}{2}\right)}{80002}-\frac{57 \sin \left(\frac{t}{2}\right)\left(\cos \left(\frac{19 t}{2}\right)+\frac{3801 \cos \left(\frac{21 t}{2}\right)}{4199}-\frac{\sin \left(\frac{19}{2}\right)}{19}\right.}{362}
$$

- Substitute particular solution into general solution to ODE

$$
x=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}+\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}+\frac{3\left(-221 \cos \left(\frac{19 t}{2}\right)-4199 \sin \left(\frac{19 t}{2}\right)+181 \cos \left(\frac{21 t}{2}\right)+3801 \sin \left(\frac{21 t}{2}\right)\right) \cos \left(\frac{t}{2}\right)}{80002}-\frac{57 \sin (}{}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

```
dsolve(2*\operatorname{diff}(x(t),t$2)+2*\operatorname{diff}(x(t),t)+x(t)=3*\operatorname{sin}(10*t),x(t), singsol=all)
```

$$
x(t)=\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}+\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}-\frac{597 \sin (10 t)}{40001}-\frac{60 \cos (10 t)}{40001}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 55
DSolve[2*x''[t] $+2 * x^{\prime}[t]+x[t]==3 * \operatorname{Sin}[10 * t], x[t], t$, IncludeSingularSolutions \rightarrow True]

$$
x(t) \rightarrow-\frac{3(199 \sin (10 t)+20 \cos (10 t))}{40001}+c_{2} e^{-t / 2} \cos \left(\frac{t}{2}\right)+c_{1} e^{-t / 2} \sin \left(\frac{t}{2}\right)
$$

12.9 problem 10

12.9.1 Solving as second order linear constant coeff ode 3275
12.9.2 Solving using Kovacic algorithm 3279
12.9.3 Maple step by step solution . 3284

Internal problem ID [266]
Internal file name [OUTPUT/266_Sunday_June_05_2022_01_37_48_AM_17526350/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
x^{\prime \prime}+3 x^{\prime}+3 x=8 \cos (10 t)+6 \sin (10 t)
$$

12.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=3, C=3, f(t)=8 \cos (10 t)+6 \sin (10 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+3 x^{\prime}+3 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=3, C=3$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+3 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(3)} \\
& =-\frac{3}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{3}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \cos (10 t)+6 \sin (10 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (10 t), \sin (10 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right), \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (10 t)+A_{2} \sin (10 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
$-97 A_{1} \cos (10 t)-97 A_{2} \sin (10 t)-30 A_{1} \sin (10 t)+30 A_{2} \cos (10 t)=8 \cos (10 t)+6 \sin (10 t)$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{956}{10309}, A_{2}=-\frac{342}{10309}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right)\right)\right)+\left(-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right)\right)-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309} \tag{1}
\end{equation*}
$$

Figure 684: Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{3 t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right)\right)-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309}
$$

Verified OK.

12.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+3 x^{\prime}+3 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-\frac{3 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 535: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{3}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos \left(\frac{\sqrt{3} t}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-3 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} t}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} t}{2}\right)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+3 x^{\prime}+3 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{3}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \cos (10 t)+6 \sin (10 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (10 t), \sin (10 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right), \frac{2 \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{3}}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (10 t)+A_{2} \sin (10 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
$-97 A_{1} \cos (10 t)-97 A_{2} \sin (10 t)-30 A_{1} \sin (10 t)+30 A_{2} \cos (10 t)=8 \cos (10 t)+6 \sin (10 t)$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{956}{10309}, A_{2}=-\frac{342}{10309}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309}
$$

Therefore the general solution is

$$
x=x_{h}+x_{p}
$$

$$
=\left(\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2} \sqrt{3}}}{3}\right)+\left(-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{3}}{3}-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309} \tag{1}
\end{equation*}
$$

Figure 685: Slope field plot

Verification of solutions

$$
x=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} \sqrt{3}}{3}-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309}
$$

Verified OK.

12.9.3 Maple step by step solution

Let's solve
$x^{\prime \prime}+3 x^{\prime}+3 x=8 \cos (10 t)+6 \sin (10 t)$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+3=0$
- Use quadratic formula to solve for r
$r=\frac{(-3) \pm(\sqrt{-3})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)$
- \quad 2nd solution of the homogeneous ODE
$x_{2}(t)=\mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{2}+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=8 \cos (10 t)+6 \sin (10 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) & \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right) \\
-\frac{3 \mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2} \sqrt{3}}}{2} & -\frac{3 \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{3 t}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)}}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(x_{1}(t), x_{2}(t)\right)=\frac{\sqrt{3} \mathrm{e}^{-3 t}}{2}
$$

- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=-\frac{4 \mathrm{e}^{-\frac{3 t}{2}} \sqrt{3}\left(\cos \left(\frac{\sqrt{3} t}{2}\right)\left(\int \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)(4 \cos (10 t)+3 \sin (10 t)) d t\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)\left(\int \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)(4 \cos (10 t)+3 \sin (10 t))\right.\right.}{3}
$$

- Compute integrals

$$
x_{p}(t)=-\frac{956 \cos (10 t)}{10309}-\frac{342 \sin (10 t)}{10309}
$$

- \quad Substitute particular solution into general solution to ODE

$$
x=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{2}-\frac{342 \sin (10 t)}{10309}-\frac{956 \cos (10 t)}{10309}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

```
dsolve(diff(x(t),t$2)+3*\operatorname{diff}(x(t),t)+3*x(t)=8*\operatorname{cos}(10*t)+6*\operatorname{sin}(10*t),x(t), singsol=all)
```

$$
x(t)=\mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right) c_{2}+\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) c_{1}-\frac{342 \sin (10 t)}{10309}-\frac{956 \cos (10 t)}{10309}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 65
DSolve[x''[t]+3*x'[t]+3*x[t]==8*Cos[10*t]+6*Sin[10*t],x[t],t,IncludeSingularSolutions $->$ Tru

$$
x(t) \rightarrow-\frac{2(171 \sin (10 t)+478 \cos (10 t))}{10309}+c_{2} e^{-3 t / 2} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{1} e^{-3 t / 2} \sin \left(\frac{\sqrt{3} t}{2}\right)
$$

12.10 problem 11

12.10.1 Existence and uniqueness analysis 3287
12.10.2 Solving as second order linear constant coeff ode 3288
12.10.3 Solving using Kovacic algorithm 3292
12.10.4 Maple step by step solution . 3298

Internal problem ID [267]
Internal file name [OUTPUT/267_Sunday_June_05_2022_01_37_49_AM_78390413/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+4 x^{\prime}+5 x=10 \cos (3 t)
$$

With initial conditions

$$
\left[x(0)=0, x^{\prime}(0)=0\right]
$$

12.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =5 \\
F & =10 \cos (3 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+4 x^{\prime}+5 x=10 \cos (3 t)
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10 \cos (3 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.10.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=4, C=5, f(t)=10 \cos (3 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+4 x^{\prime}+5 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=4, C=5$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+5 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(5)} \\
& =-2 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (t), \mathrm{e}^{-2 t} \sin (t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \cos (3 t)-4 A_{2} \sin (3 t)-12 A_{1} \sin (3 t)+12 A_{2} \cos (3 t)=10 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{4}, A_{2}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)\right)+\left(-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{1}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-2 \mathrm{e}^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)+\mathrm{e}^{-2 t}\left(-c_{1} \sin (t)+c_{2} \cos (t)\right)+\frac{3 \sin (3 t)}{4}+\frac{9 \cos (3 t)}{4}$ substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+\frac{9}{4}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{4} \\
& c_{2}=-\frac{7}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{\mathrm{e}^{-2 t} \cos (t)}{4}-\frac{7 \mathrm{e}^{-2 t} \sin (t)}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Which simplifies to

$$
x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Verified OK.

12.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+4 x^{\prime}+5 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 537: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-2 t} \cos (t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-4 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}(\tan (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t} \cos (t)\right)+c_{2}\left(\mathrm{e}^{-2 t} \cos (t)(\tan (t))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+4 x^{\prime}+5 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \mathrm{e}^{-2 t} \cos (t)+\mathrm{e}^{-2 t} c_{2} \sin (t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (t), \mathrm{e}^{-2 t} \sin (t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \cos (3 t)-4 A_{2} \sin (3 t)-12 A_{1} \sin (3 t)+12 A_{2} \cos (3 t)=10 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{4}, A_{2}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t} \cos (t)+\mathrm{e}^{-2 t} c_{2} \sin (t)\right)+\left(-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
x=\mathrm{e}^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{1}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-2 \mathrm{e}^{-2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)+\mathrm{e}^{-2 t}\left(-c_{1} \sin (t)+c_{2} \cos (t)\right)+\frac{3 \sin (3 t)}{4}+\frac{9 \cos (3 t)}{4}$ substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+\frac{9}{4}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{4} \\
& c_{2}=-\frac{7}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{\mathrm{e}^{-2 t} \cos (t)}{4}-\frac{7 \mathrm{e}^{-2 t} \sin (t)}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Which simplifies to

$$
x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

Verified OK.

12.10.4 Maple step by step solution

Let's solve
$\left[x^{\prime \prime}+4 x^{\prime}+5 x=10 \cos (3 t), x(0)=0,\left.x^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-2-\mathrm{I},-2+\mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-2 t} \cos (t)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
x_{2}(t)=\mathrm{e}^{-2 t} \sin (t)
$$

- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \mathrm{e}^{-2 t} \cos (t)+\mathrm{e}^{-2 t} c_{2} \sin (t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function $\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=10 \cos (3 t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (t) & \mathrm{e}^{-2 t} \sin (t) \\
-2 \mathrm{e}^{-2 t} \cos (t)-\mathrm{e}^{-2 t} \sin (t) & -2 \mathrm{e}^{-2 t} \sin (t)+\mathrm{e}^{-2 t} \cos (t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=\mathrm{e}^{-4 t}$
- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=10 \mathrm{e}^{-2 t}\left(-\cos (t)\left(\int \sin (t) \cos (3 t) \mathrm{e}^{2 t} d t\right)+\sin (t)\left(\int \cos (t) \cos (3 t) \mathrm{e}^{2 t} d t\right)\right)
$$

- Compute integrals
$x_{p}(t)=-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}$
- Substitute particular solution into general solution to ODE
$x=c_{1} \mathrm{e}^{-2 t} \cos (t)+\mathrm{e}^{-2 t} c_{2} \sin (t)-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}$
$\square \quad$ Check validity of solution $x=c_{1} \mathrm{e}^{-2 t} \cos (t)+\mathrm{e}^{-2 t} c_{2} \sin (t)-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}$
- Use initial condition $x(0)=0$
$0=c_{1}-\frac{1}{4}$
- Compute derivative of the solution

$$
x^{\prime}=-2 c_{1} \mathrm{e}^{-2 t} \cos (t)-c_{1} \mathrm{e}^{-2 t} \sin (t)-2 \mathrm{e}^{-2 t} c_{2} \sin (t)+\mathrm{e}^{-2 t} c_{2} \cos (t)+\frac{3 \sin (3 t)}{4}+\frac{9 \cos (3 t)}{4}
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$
$0=-2 c_{1}+\frac{9}{4}+c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{4}, c_{2}=-\frac{7}{4}\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

- \quad Solution to the IVP
$x=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 30
dsolve([diff $(x(t), t \$ 2)+4 * \operatorname{diff}(x(t), t)+5 * x(t)=10 * \cos (3 * t), x(0)=0, D(x)(0)=0], x(t)$, singso

$$
x(t)=\frac{(\cos (t)-7 \sin (t)) \mathrm{e}^{-2 t}}{4}-\frac{\cos (3 t)}{4}+\frac{3 \sin (3 t)}{4}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 43
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+4 * x^{\prime}[t]+5 * x[t]==10 * \operatorname{Cos}[3 * t],\left\{x[0]==0, x^{\prime}[0]==0\right\}\right\}, x[t], t\right.$, IncludeSingularSolutio

$$
x(t) \rightarrow \frac{1}{4} e^{-2 t}\left(-7 \sin (t)+3 e^{2 t} \sin (3 t)+\cos (t)-e^{2 t} \cos (3 t)\right)
$$

12.11 problem 12

12.11.1 Existence and uniqueness analysis 3301
12.11.2 Solving as second order linear constant coeff ode 3302
12.11.3 Solving using Kovacic algorithm 3306
12.11.4 Maple step by step solution . 3312

Internal problem ID [268]
Internal file name [OUTPUT/268_Sunday_June_05_2022_01_37_50_AM_73786296/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin (5 t)
$$

With initial conditions

$$
\left[x(0)=0, x^{\prime}(0)=0\right]
$$

12.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =13 \\
F & =10 \sin (5 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin (5 t)
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=13$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10 \sin (5 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=6, C=13, f(t)=10 \sin (5 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+6 x^{\prime}+13 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=6, C=13$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+13 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(13)} \\
& =-3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t} \cos (2 t), \mathrm{e}^{-3 t} \sin (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-12 A_{1} \cos (5 t)-12 A_{2} \sin (5 t)-30 A_{1} \sin (5 t)+30 A_{2} \cos (5 t)=10 \sin (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{25}{87}, A_{2}=-\frac{10}{87}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)\right)+\left(-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{25}{87} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-3 \mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\mathrm{e}^{-3 t}\left(-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)\right)+\frac{125 \sin (5 t)}{87}-\frac{50 \cos (5 t)}{87}$
substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-\frac{50}{87}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25}{87} \\
& c_{2}=\frac{125}{174}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{25 \mathrm{e}^{-3 t} \cos (2 t)}{87}+\frac{125 \mathrm{e}^{-3 t} \sin (2 t)}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Which simplifies to

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Verified OK.

12.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+6 x^{\prime}+13 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 539: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t} \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-3 t} \cos (2 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{6}{1}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-6 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t} \cos (2 t)\right)+c_{2}\left(\mathrm{e}^{-3 t} \cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+6 x^{\prime}+13 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\frac{\mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \sin (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t} \cos (2 t), \frac{\mathrm{e}^{-3 t} \sin (2 t)}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-12 A_{1} \cos (5 t)-12 A_{2} \sin (5 t)-30 A_{1} \sin (5 t)+30 A_{2} \cos (5 t)=10 \sin (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{25}{87}, A_{2}=-\frac{10}{87}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\frac{\mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}\right)+\left(-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\frac{\mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{25}{87} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-3 t} \sin (2 t)-\frac{3 \mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}+\mathrm{e}^{-3 t} c_{2} \cos (2 t)+\frac{125 \sin (5 t)}{87}-\frac{50 \cos (5 t)}{87}$
substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-\frac{50}{87}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25}{87} \\
& c_{2}=\frac{125}{87}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{25 \mathrm{e}^{-3 t} \cos (2 t)}{87}+\frac{125 \mathrm{e}^{-3 t} \sin (2 t)}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Which simplifies to

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Verified OK.

12.11.4 Maple step by step solution

Let's solve
$\left[x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin (5 t), x(0)=0,\left.x^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-3-2 \mathrm{I},-3+2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-3 t} \cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
x_{2}(t)=\mathrm{e}^{-3 t} \sin (2 t)
$$

- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\mathrm{e}^{-3 t} c_{2} \sin (2 t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function $\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=10 \sin (5 t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} \cos (2 t) & \mathrm{e}^{-3 t} \sin (2 t) \\
-3 \mathrm{e}^{-3 t} \cos (2 t)-2 \mathrm{e}^{-3 t} \sin (2 t) & -3 \mathrm{e}^{-3 t} \sin (2 t)+2 \mathrm{e}^{-3 t} \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=-5 \mathrm{e}^{-3 t}\left(\cos (2 t)\left(\int \sin (2 t) \sin (5 t) \mathrm{e}^{3 t} d t\right)-\sin (2 t)\left(\int \cos (2 t) \sin (5 t) \mathrm{e}^{3 t} d t\right)\right)
$$

- Compute integrals
$x_{p}(t)=-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$
- Substitute particular solution into general solution to ODE
$x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\mathrm{e}^{-3 t} c_{2} \sin (2 t)-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$
$\square \quad$ Check validity of solution $x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\mathrm{e}^{-3 t} c_{2} \sin (2 t)-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$
- Use initial condition $x(0)=0$
$0=c_{1}-\frac{25}{87}$
- Compute derivative of the solution

$$
x^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-3 t} \sin (2 t)-3 \mathrm{e}^{-3 t} c_{2} \sin (2 t)+2 \mathrm{e}^{-3 t} c_{2} \cos (2 t)+\frac{125 \sin (5 t)}{87}-\frac{50 \cos (5 t)}{87}
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$

$$
0=-3 c_{1}-\frac{50}{87}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{25}{87}, c_{2}=\frac{125}{174}\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

- \quad Solution to the IVP
$x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 37
dsolve $([\operatorname{diff}(x(t), t \$ 2)+6 * \operatorname{diff}(x(t), t)+13 * x(t)=10 * \sin (5 * t), x(0)=0, D(x)(0)=0], x(t)$, sings

$$
x(t)=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 49
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+6 * x^{\prime}[t]+13 * x[t]==10 * \operatorname{Sin}[5 * t],\left\{x[0]==0, x^{\prime}[0]==0\right\}\right\}, x[t], t\right.$, IncludeSingularSoluti

$$
x(t) \rightarrow \frac{5}{174} e^{-3 t}\left(25 \sin (2 t)-4 e^{3 t} \sin (5 t)+10 \cos (2 t)-10 e^{3 t} \cos (5 t)\right)
$$

12.12 problem 12

12.12.1 Existence and uniqueness analysis 3315
12.12.2 Solving as second order linear constant coeff ode 3316
12.12.3 Solving using Kovacic algorithm 3320
12.12.4 Maple step by step solution . 3326

Internal problem ID [269]
Internal file name [OUTPUT/269_Sunday_June_05_2022_01_37_52_AM_83086868/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin (5 t)
$$

With initial conditions

$$
\left[x(0)=0, x^{\prime}(0)=0\right]
$$

12.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =13 \\
F & =10 \sin (5 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin (5 t)
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=13$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10 \sin (5 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.12.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=6, C=13, f(t)=10 \sin (5 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+6 x^{\prime}+13 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=6, C=13$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+13 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(13)} \\
& =-3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-3+2 i \\
& \lambda_{2}=-3-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t} \cos (2 t), \mathrm{e}^{-3 t} \sin (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-12 A_{1} \cos (5 t)-12 A_{2} \sin (5 t)-30 A_{1} \sin (5 t)+30 A_{2} \cos (5 t)=10 \sin (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{25}{87}, A_{2}=-\frac{10}{87}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)\right)+\left(-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{25}{87} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-3 \mathrm{e}^{-3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\mathrm{e}^{-3 t}\left(-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)\right)+\frac{125 \sin (5 t)}{87}-\frac{50 \cos (5 t)}{87}$
substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-\frac{50}{87}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25}{87} \\
& c_{2}=\frac{125}{174}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{25 \mathrm{e}^{-3 t} \cos (2 t)}{87}+\frac{125 \mathrm{e}^{-3 t} \sin (2 t)}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Which simplifies to

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Verified OK.

12.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+6 x^{\prime}+13 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 541: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t} \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-3 t} \cos (2 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{6}{1}} d t}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-6 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t} \cos (2 t)\right)+c_{2}\left(\mathrm{e}^{-3 t} \cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+6 x^{\prime}+13 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\frac{\mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \sin (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t} \cos (2 t), \frac{\mathrm{e}^{-3 t} \sin (2 t)}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-12 A_{1} \cos (5 t)-12 A_{2} \sin (5 t)-30 A_{1} \sin (5 t)+30 A_{2} \cos (5 t)=10 \sin (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{25}{87}, A_{2}=-\frac{10}{87}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\frac{\mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}\right)+\left(-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\frac{\mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{25}{87} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-3 t} \sin (2 t)-\frac{3 \mathrm{e}^{-3 t} c_{2} \sin (2 t)}{2}+\mathrm{e}^{-3 t} c_{2} \cos (2 t)+\frac{125 \sin (5 t)}{87}-\frac{50 \cos (5 t)}{87}$
substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-\frac{50}{87}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25}{87} \\
& c_{2}=\frac{125}{87}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{25 \mathrm{e}^{-3 t} \cos (2 t)}{87}+\frac{125 \mathrm{e}^{-3 t} \sin (2 t)}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Which simplifies to

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

Verified OK.

12.12.4 Maple step by step solution

Let's solve
$\left[x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin (5 t), x(0)=0,\left.x^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-3-2 \mathrm{I},-3+2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-3 t} \cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
x_{2}(t)=\mathrm{e}^{-3 t} \sin (2 t)
$$

- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\mathrm{e}^{-3 t} c_{2} \sin (2 t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function $\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=10 \sin (5 t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} \cos (2 t) & \mathrm{e}^{-3 t} \sin (2 t) \\
-3 \mathrm{e}^{-3 t} \cos (2 t)-2 \mathrm{e}^{-3 t} \sin (2 t) & -3 \mathrm{e}^{-3 t} \sin (2 t)+2 \mathrm{e}^{-3 t} \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=-5 \mathrm{e}^{-3 t}\left(\cos (2 t)\left(\int \sin (2 t) \sin (5 t) \mathrm{e}^{3 t} d t\right)-\sin (2 t)\left(\int \cos (2 t) \sin (5 t) \mathrm{e}^{3 t} d t\right)\right)
$$

- Compute integrals
$x_{p}(t)=-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$
- Substitute particular solution into general solution to ODE
$x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\mathrm{e}^{-3 t} c_{2} \sin (2 t)-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$
$\square \quad$ Check validity of solution $x=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+\mathrm{e}^{-3 t} c_{2} \sin (2 t)-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$
- Use initial condition $x(0)=0$
$0=c_{1}-\frac{25}{87}$
- Compute derivative of the solution

$$
x^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-3 t} \sin (2 t)-3 \mathrm{e}^{-3 t} c_{2} \sin (2 t)+2 \mathrm{e}^{-3 t} c_{2} \cos (2 t)+\frac{125 \sin (5 t)}{87}-\frac{50 \cos (5 t)}{87}
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$

$$
0=-3 c_{1}-\frac{50}{87}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{25}{87}, c_{2}=\frac{125}{174}\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

- \quad Solution to the IVP
$x=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 37
dsolve([diff $(x(t), t \$ 2)+6 * \operatorname{diff}(x(t), t)+13 * x(t)=10 * \sin (5 * t), x(0)=0, D(x)(0)=0], x(t)$, sings

$$
x(t)=\frac{25(2 \cos (2 t)+5 \sin (2 t)) \mathrm{e}^{-3 t}}{174}-\frac{25 \cos (5 t)}{87}-\frac{10 \sin (5 t)}{87}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 49
DSolve $\left[\left\{x^{\prime}{ }^{\prime}[t]+6 * x^{\prime}[t]+13 * x[t]==10 * \operatorname{Sin}[5 * t],\left\{x[0]==0, x^{\prime}[0]==0\right\}\right\}, x[t], t\right.$, IncludeSingularSoluti

$$
x(t) \rightarrow \frac{5}{174} e^{-3 t}\left(25 \sin (2 t)-4 e^{3 t} \sin (5 t)+10 \cos (2 t)-10 e^{3 t} \cos (5 t)\right)
$$

12.13 problem 13

12.13.1 Existence and uniqueness analysis 3329
12.13.2 Solving as second order linear constant coeff ode 3330
12.13.3 Solving using Kovacic algorithm 3334
12.13.4 Maple step by step solution . 3340

Internal problem ID [270]
Internal file name [OUTPUT/270_Sunday_June_05_2022_01_37_53_AM_76490170/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+2 x^{\prime}+26 x=600 \cos (10 t)
$$

With initial conditions

$$
\left[x(0)=10, x^{\prime}(0)=0\right]
$$

12.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =26 \\
F & =600 \cos (10 t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+2 x^{\prime}+26 x=600 \cos (10 t)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=26$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=600 \cos (10 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.13.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=2, C=26, f(t)=600 \cos (10 t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+2 x^{\prime}+26 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=2, C=26$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+26 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+26=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=26$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(26)} \\
& =-1 \pm 5 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+5 i \\
& \lambda_{2}=-1-5 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1+5 i \\
\lambda_{2}=-1-5 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=5$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-t}\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-t}\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
600 \cos (10 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (10 t), \sin (10 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-t} \cos (5 t), \mathrm{e}^{-t} \sin (5 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (10 t)+A_{2} \sin (10 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-74 A_{1} \cos (10 t)-74 A_{2} \sin (10 t)-20 A_{1} \sin (10 t)+20 A_{2} \cos (10 t)=600 \cos (10 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{11100}{1469}, A_{2}=\frac{3000}{1469}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-t}\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)\right)+\left(-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-t}\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=10$ and $t=0$ in the above gives

$$
\begin{equation*}
10=c_{1}-\frac{11100}{1469} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-\mathrm{e}^{-t}\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)+\mathrm{e}^{-t}\left(-5 c_{1} \sin (5 t)+5 c_{2} \cos (5 t)\right)+\frac{111000 \sin (10 t)}{1469}+\frac{30000 \cos (10 t)}{1469}$
substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}+\frac{30000}{1469}+5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25790}{1469} \\
& c_{2}=-\frac{842}{1469}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{25790 \mathrm{e}^{-t} \cos (5 t)}{1469}-\frac{842 \mathrm{e}^{-t} \sin (5 t)}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Which simplifies to

$$
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Verified OK.

12.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+2 x^{\prime}+26 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=26
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-25}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-25 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-25 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 543: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-25$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (5 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-t} \cos (5 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-2 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (5 t)}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-t} \cos (5 t)\right)+c_{2}\left(\mathrm{e}^{-t} \cos (5 t)\left(\frac{\tan (5 t)}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+2 x^{\prime}+26 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \mathrm{e}^{-t} \cos (5 t)+\frac{\mathrm{e}^{-t} c_{2} \sin (5 t)}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
600 \cos (10 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (10 t), \sin (10 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-t} \cos (5 t), \frac{\mathrm{e}^{-t} \sin (5 t)}{5}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (10 t)+A_{2} \sin (10 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-74 A_{1} \cos (10 t)-74 A_{2} \sin (10 t)-20 A_{1} \sin (10 t)+20 A_{2} \cos (10 t)=600 \cos (10 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{11100}{1469}, A_{2}=\frac{3000}{1469}\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{-t} \cos (5 t)+\frac{\mathrm{e}^{-t} c_{2} \sin (5 t)}{5}\right)+\left(-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-t} \cos (5 t)+\frac{\mathrm{e}^{-t} c_{2} \sin (5 t)}{5}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=10$ and $t=0$ in the above gives

$$
\begin{equation*}
10=c_{1}-\frac{11100}{1469} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (5 t)-5 c_{1} \mathrm{e}^{-t} \sin (5 t)-\frac{\mathrm{e}^{-t} c_{2} \sin (5 t)}{5}+\mathrm{e}^{-t} c_{2} \cos (5 t)+\frac{111000 \sin (10 t)}{1469}+\frac{30000 \cos (10 t)}{1469}$
substituting $x^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}+\frac{30000}{1469}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{25790}{1469} \\
& c_{2}=-\frac{4210}{1469}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=\frac{25790 \mathrm{e}^{-t} \cos (5 t)}{1469}-\frac{842 \mathrm{e}^{-t} \sin (5 t)}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Which simplifies to

$$
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Verified OK.

12.13.4 Maple step by step solution

Let's solve
$\left[x^{\prime \prime}+2 x^{\prime}+26 x=600 \cos (10 t), x(0)=10,\left.x^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$x^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r+26=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-100})}{2}$
- Roots of the characteristic polynomial
$r=(-1-5 \mathrm{I},-1+5 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-t} \cos (5 t)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
x_{2}(t)=\mathrm{e}^{-t} \sin (5 t)
$$

- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \mathrm{e}^{-t} \cos (5 t)+\mathrm{e}^{-t} c_{2} \sin (5 t)+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=600 \cos (10 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (5 t) & \mathrm{e}^{-t} \sin (5 t) \\
-\mathrm{e}^{-t} \cos (5 t)-5 \mathrm{e}^{-t} \sin (5 t) & -\mathrm{e}^{-t} \sin (5 t)+5 \mathrm{e}^{-t} \cos (5 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=5 \mathrm{e}^{-2 t}$
- Substitute functions into equation for $x_{p}(t)$

$$
x_{p}(t)=60 \mathrm{e}^{-t}\left(\cos (5 t)\left(\int(-\sin (15 t)+\sin (5 t)) \mathrm{e}^{t} d t\right)+\sin (5 t)\left(\int(\cos (5 t)+\cos (15 t)) \mathrm{e}^{t} d t\right)\right)
$$

- Compute integrals
$x_{p}(t)=-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}$
- Substitute particular solution into general solution to ODE

$$
x=c_{1} \mathrm{e}^{-t} \cos (5 t)+\mathrm{e}^{-t} c_{2} \sin (5 t)-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

$\square \quad$ Check validity of solution $x=c_{1} \mathrm{e}^{-t} \cos (5 t)+\mathrm{e}^{-t} c_{2} \sin (5 t)-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}$

- Use initial condition $x(0)=10$
$10=c_{1}-\frac{11100}{1469}$
- Compute derivative of the solution

$$
x^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (5 t)-5 c_{1} \mathrm{e}^{-t} \sin (5 t)-\mathrm{e}^{-t} c_{2} \sin (5 t)+5 \mathrm{e}^{-t} c_{2} \cos (5 t)+\frac{111000 \sin (10 t)}{1469}+\frac{30000 \cos (10 t}{1469}
$$

- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=0$
$0=-c_{1}+\frac{30000}{1469}+5 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{25790}{1469}, c_{2}=-\frac{842}{1469}\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

- \quad Solution to the IVP

$$
x=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 37
dsolve $([\operatorname{diff}(x(t), t \$ 2)+2 * \operatorname{diff}(x(t), t)+26 * x(t)=600 * \cos (10 * t), x(0)=10, D(x)(0)=0], x(t)$, si

$$
x(t)=\frac{(25790 \cos (5 t)-842 \sin (5 t)) \mathrm{e}^{-t}}{1469}-\frac{11100 \cos (10 t)}{1469}+\frac{3000 \sin (10 t)}{1469}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 45
DSolve $\left[\left\{x^{\prime}\right]^{\prime}[t]+2 * x^{\prime}[t]+26 * x[t]==600 * \operatorname{Cos}[10 * t],\left\{x[0]==10, x^{\prime}[0]==0\right\}\right\}, x[t], t$, IncludeSingularSol

$$
x(t) \rightarrow-\frac{2 e^{-t}\left(421 \sin (5 t)-1500 e^{t} \sin (10 t)-12895 \cos (5 t)+5550 e^{t} \cos (10 t)\right)}{1469}
$$

12.14 problem 14

12.14.1 Existence and uniqueness analysis 3343
12.14.2 Solving as second order linear constant coeff ode 3344
12.14.3 Solving using Kovacic algorithm 3348
12.14.4 Maple step by step solution . 3353

Internal problem ID [271]
Internal file name [OUTPUT/271_Sunday_June_05_2022_01_37_55_AM_36694649/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{\prime \prime}+8 x^{\prime}+25 x=200 \cos (t)+520 \sin (t)
$$

With initial conditions

$$
\left[x(0)=-30, x^{\prime}(0)=-10\right]
$$

12.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=F
$$

Where here

$$
\begin{aligned}
p(t) & =8 \\
q(t) & =25 \\
F & =200 \cos (t)+520 \sin (t)
\end{aligned}
$$

Hence the ode is

$$
x^{\prime \prime}+8 x^{\prime}+25 x=200 \cos (t)+520 \sin (t)
$$

The domain of $p(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=25$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=200 \cos (t)+$ $520 \sin (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.14.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)
$$

Where $A=1, B=8, C=25, f(t)=200 \cos (t)+520 \sin (t)$. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the non-homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+8 x^{\prime}+25 x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0
$$

Where in the above $A=1, B=8, C=25$. Let the solution be $x=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+8 \lambda \mathrm{e}^{\lambda t}+25 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+8 \lambda+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=8, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{8^{2}-(4)(1)(25)} \\
& =-4 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-4+3 i \\
& \lambda_{2}=-4-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-4+3 i \\
\lambda_{2}=-4-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-4$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
x=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
x=e^{-4 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Therefore the homogeneous solution x_{h} is

$$
x_{h}=\mathrm{e}^{-4 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
200 \cos (t)+520 \sin (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t} \cos (3 t), \mathrm{e}^{-4 t} \sin (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 A_{1} \cos (t)+24 A_{2} \sin (t)-8 A_{1} \sin (t)+8 A_{2} \cos (t)=200 \cos (t)+520 \sin (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=22\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=\cos (t)+22 \sin (t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(\mathrm{e}^{-4 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)\right)+(\cos (t)+22 \sin (t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
x=\mathrm{e}^{-4 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\cos (t)+22 \sin (t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=-30$ and $t=0$ in the above gives

$$
\begin{equation*}
-30=1+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-4 \mathrm{e}^{-4 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\mathrm{e}^{-4 t}\left(-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)\right)-\sin (t)+22 \cos (t)$ substituting $x^{\prime}=-10$ and $t=0$ in the above gives

$$
\begin{equation*}
-10=-4 c_{1}+3 c_{2}+22 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-31 \\
& c_{2}=-52
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=-31 \mathrm{e}^{-4 t} \cos (3 t)-52 \mathrm{e}^{-4 t} \sin (3 t)+22 \sin (t)+\cos (t)
$$

Which simplifies to

$$
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t)
$$

Verified OK.

12.14.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{\prime \prime}+8 x^{\prime}+25 x & =0 \tag{1}\\
A x^{\prime \prime}+B x^{\prime}+C x & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=8 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=x e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then x is found using the inverse transformation

$$
x=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 545: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in x is found from

$$
\begin{aligned}
x_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-4 t} \\
& =z_{1}\left(\mathrm{e}^{-4 t}\right)
\end{aligned}
$$

Which simplifies to

$$
x_{1}=\mathrm{e}^{-4 t} \cos (3 t)
$$

The second solution x_{2} to the original ode is found using reduction of order

$$
x_{2}=x_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{x_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
x_{2} & =x_{1} \int \frac{e^{\int-\frac{8}{1} d t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1} \int \frac{e^{-8 t}}{\left(x_{1}\right)^{2}} d t \\
& =x_{1}\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
x & =c_{1} x_{1}+c_{2} x_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t} \cos (3 t)\right)+c_{2}\left(\mathrm{e}^{-4 t} \cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
x=x_{h}+x_{p}
$$

Where x_{h} is the solution to the homogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=0$, and x_{p} is a particular solution to the nonhomogeneous ODE $A x^{\prime \prime}(t)+B x^{\prime}(t)+C x(t)=f(t)$. x_{h} is the solution to

$$
x^{\prime \prime}+8 x^{\prime}+25 x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
x_{h}=c_{1} \mathrm{e}^{-4 t} \cos (3 t)+\frac{\mathrm{e}^{-4 t} \sin (3 t) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
200 \cos (t)+520 \sin (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t} \cos (3 t), \frac{\mathrm{e}^{-4 t} \sin (3 t)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
x_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution x_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 A_{1} \cos (t)+24 A_{2} \sin (t)-8 A_{1} \sin (t)+8 A_{2} \cos (t)=200 \cos (t)+520 \sin (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=22\right]
$$

Substituting the above back in the above trial solution x_{p}, gives the particular solution

$$
x_{p}=\cos (t)+22 \sin (t)
$$

Therefore the general solution is

$$
\begin{aligned}
x & =x_{h}+x_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t} \cos (3 t)+\frac{\mathrm{e}^{-4 t} \sin (3 t) c_{2}}{3}\right)+(\cos (t)+22 \sin (t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
x=c_{1} \mathrm{e}^{-4 t} \cos (3 t)+\frac{\mathrm{e}^{-4 t} \sin (3 t) c_{2}}{3}+\cos (t)+22 \sin (t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $x=-30$ and $t=0$ in the above gives

$$
\begin{equation*}
-30=1+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t} \cos (3 t)-3 c_{1} \mathrm{e}^{-4 t} \sin (3 t)-\frac{4 \mathrm{e}^{-4 t} \sin (3 t) c_{2}}{3}+\mathrm{e}^{-4 t} \cos (3 t) c_{2}-\sin (t)+22 \cos (t)$
substituting $x^{\prime}=-10$ and $t=0$ in the above gives

$$
\begin{equation*}
-10=-4 c_{1}+22+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-31 \\
& c_{2}=-156
\end{aligned}
$$

Substituting these values back in above solution results in

$$
x=-31 \mathrm{e}^{-4 t} \cos (3 t)-52 \mathrm{e}^{-4 t} \sin (3 t)+22 \sin (t)+\cos (t)
$$

Which simplifies to

$$
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t)
$$

Verified OK.

12.14.4 Maple step by step solution

Let's solve

$$
\left[x^{\prime \prime}+8 x^{\prime}+25 x=200 \cos (t)+520 \sin (t), x(0)=-30,\left.x^{\prime}\right|_{\{t=0\}}=-10\right]
$$

- Highest derivative means the order of the ODE is 2

$$
x^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+8 r+25=0$
- Use quadratic formula to solve for r
$r=\frac{(-8) \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-4-3 \mathrm{I},-4+3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$x_{1}(t)=\mathrm{e}^{-4 t} \cos (3 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$x_{2}(t)=\mathrm{e}^{-4 t} \sin (3 t)$
- General solution of the ODE
$x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$x=c_{1} \mathrm{e}^{-4 t} \cos (3 t)+\mathrm{e}^{-4 t} \sin (3 t) c_{2}+x_{p}(t)$
Find a particular solution $x_{p}(t)$ of the ODE
- Use variation of parameters to find x_{p} here $f(t)$ is the forcing function

$$
\left[x_{p}(t)=-x_{1}(t)\left(\int \frac{x_{2}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right)+x_{2}(t)\left(\int \frac{x_{1}(t) f(t)}{W\left(x_{1}(t), x_{2}(t)\right)} d t\right), f(t)=200 \cos (t)+520 \sin (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(x_{1}(t), x_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} \cos (3 t) & \mathrm{e}^{-4 t} \sin (3 t) \\
-4 \mathrm{e}^{-4 t} \cos (3 t)-3 \mathrm{e}^{-4 t} \sin (3 t) & -4 \mathrm{e}^{-4 t} \sin (3 t)+3 \mathrm{e}^{-4 t} \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(x_{1}(t), x_{2}(t)\right)=3 \mathrm{e}^{-8 t}$
- Substitute functions into equation for $x_{p}(t)$
$x_{p}(t)=-\frac{40 \mathrm{e}^{-4 t}\left(\cos (3 t)\left(\int \sin (3 t)(5 \cos (t)+13 \sin (t)) \mathrm{e}^{4 t} d t\right)-\sin (3 t)\left(\int \cos (3 t)(5 \cos (t)+13 \sin (t)) \mathrm{e}^{4 t} d t\right)\right)}{3}$
- Compute integrals
$x_{p}(t)=\cos (t)+22 \sin (t)$
- Substitute particular solution into general solution to ODE
$x=c_{1} \mathrm{e}^{-4 t} \cos (3 t)+\mathrm{e}^{-4 t} \sin (3 t) c_{2}+\cos (t)+22 \sin (t)$
Check validity of solution $x=c_{1} \mathrm{e}^{-4 t} \cos (3 t)+\mathrm{e}^{-4 t} \sin (3 t) c_{2}+\cos (t)+22 \sin (t)$
- Use initial condition $x(0)=-30$

$$
-30=1+c_{1}
$$

- Compute derivative of the solution $x^{\prime}=-4 c_{1} \mathrm{e}^{-4 t} \cos (3 t)-3 c_{1} \mathrm{e}^{-4 t} \sin (3 t)-4 \mathrm{e}^{-4 t} \sin (3 t) c_{2}+3 \mathrm{e}^{-4 t} \cos (3 t) c_{2}-\sin (t)+22 \cos (t)$
- Use the initial condition $\left.x^{\prime}\right|_{\{t=0\}}=-10$ $-10=-4 c_{1}+3 c_{2}+22$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-31, c_{2}=-52\right\}
$$

- Substitute constant values into general solution and simplify

$$
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t)
$$

- \quad Solution to the IVP

$$
x=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+\cos (t)+22 \sin (t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 31

```
dsolve([diff (x (t),t$2)+8*diff (x (t),t)+25*x(t)=200*\operatorname{cos}(t)+520*\operatorname{sin}(t),x(0)=-30,D(x)(0)=-1
```

$$
x(t)=(-31 \cos (3 t)-52 \sin (3 t)) \mathrm{e}^{-4 t}+22 \sin (t)+\cos (t)
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 34

```
DSolve[{x''[t]+8*x'[t]+25*x[t]==200*Cos[t]+520*Sin[t],{x[0]==-30, x'[0]==-10}}, x[t],t,Include
```

$$
x(t) \rightarrow 22 \sin (t)-52 e^{-4 t} \sin (3 t)+\cos (t)-31 e^{-4 t} \cos (3 t)
$$

13 Section 7.2, Matrices and Linear systems. Page 417
13.1 problem problem 3 3357
13.2 problem problem 4 3365
13.3 problem problem 5 3374
13.4 problem problem 7 3388
13.5 problem problem 11 3400
13.6 problem problem 12 3418

13.1 problem problem 3

13.1.1 Solution using Matrix exponential method 3357
13.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3358
13.1.3 Maple step by step solution . 3362

Internal problem ID [272]
Internal file name [OUTPUT/272_Sunday_June_05_2022_01_37_56_AM_33254347/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 417
Problem number: problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime} & =-3 y(t) \\
y^{\prime}(t) & =3 x
\end{aligned}
$$

13.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (3 t) & -\sin (3 t) \\
\sin (3 t) & \cos (3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (3 t) & -\sin (3 t) \\
\sin (3 t) & \cos (3 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos (3 t) c_{1}-\sin (3 t) c_{2} \\
\sin (3 t) c_{1}+\cos (3 t) c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

13.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -3 \\
3 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+9=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =3 i \\
\lambda_{2} & =-3 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-3 i$	1	complex eigenvalue
$3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right]-(-3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
3 i & -3 \\
3 & 3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3 i & -3 & 0 \\
3 & 3 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
3 i & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 i & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right]-(3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 i & -3 \\
3 & -3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 i & -3 & 0 \\
3 & -3 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-3 i & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 i & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$3 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$
$-3 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{3 i t} \\
\mathrm{e}^{3 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{-3 i t} \\
\mathrm{e}^{-3 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{2} \mathrm{e}^{-3 i t}-c_{1} \mathrm{e}^{3 i t}\right) \\
c_{1} \mathrm{e}^{3 i t}+c_{2} \mathrm{e}^{-3 i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 696: Phase plot

13.1.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}=-3 y(t), y^{\prime}(t)=3 x\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-3 \mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]\right],\left[3 \mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-3 \mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-3 \mathrm{I} t} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (3 t)-\mathrm{I} \sin (3 t)) \\
\cos (3 t)-\mathrm{I} \sin (3 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\left[\begin{array}{c}
-\sin (3 t) \\
\cos (3 t)
\end{array}\right], \vec{x}_{2}(t)=\left[\begin{array}{c}
-\cos (3 t) \\
-\sin (3 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
-c_{2} \cos (3 t)-c_{1} \sin (3 t) \\
-c_{2} \sin (3 t)+c_{1} \cos (3 t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=\left[\begin{array}{l}
-c_{2} \cos (3 t)-c_{1} \sin (3 t) \\
-c_{2} \sin (3 t)+c_{1} \cos (3 t)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x=-c_{2} \cos (3 t)-c_{1} \sin (3 t), y(t)=-c_{2} \sin (3 t)+c_{1} \cos (3 t)\right\}
$$

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 35

```
dsolve([diff (x (t),t)=-3*y(t),\operatorname{diff}(y(t),t)=3*x(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \sin (3 t)+c_{2} \cos (3 t) \\
& y(t)=-c_{1} \cos (3 t)+c_{2} \sin (3 t)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 68

```
DSolve[{x'[t]==3*y[t], y'[t]==3*x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-3 t}\left(c_{1}\left(e^{6 t}+1\right)+c_{2}\left(e^{6 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{2} e^{-3 t}\left(c_{1}\left(e^{6 t}-1\right)+c_{2}\left(e^{6 t}+1\right)\right)
\end{aligned}
$$

13.2 problem problem 4

13.2.1 Solution using Matrix exponential method 3365
13.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3366
13.2.3 Maple step by step solution . 3371

Internal problem ID [273]
Internal file name [OUTPUT/273_Sunday_June_05_2022_01_37_57_AM_31748718/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 417
Problem number: problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime} & =3 x-2 y(t) \\
y^{\prime}(t) & =2 x+y(t)
\end{aligned}
$$

13.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{2 t} \cos (\sqrt{3} t)+\frac{\mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & -\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} \\
\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & \mathrm{e}^{2 t} \cos (\sqrt{3} t)-\frac{\mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}(\sin (\sqrt{3} t) \sqrt{3}+3 \cos (\sqrt{3} t))}{3} & -\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} \\
\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & -\frac{\mathrm{e}^{2 t}(\sin (\sqrt{3} t) \sqrt{3}-3 \cos (\sqrt{3} t))}{3}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}(\sin (\sqrt{3} t) \sqrt{3}+3 \cos (\sqrt{3} t))}{3} & -\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} \\
\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & -\frac{\mathrm{e}^{2 t}(\sin (\sqrt{3} t) \sqrt{3}-3 \cos (\sqrt{3} t))}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}(\sin (\sqrt{3} t) \sqrt{3}+3 \cos (\sqrt{3} t)) c_{1}}{3}-\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3} c_{2}}{3} \\
\frac{2 \mathrm{e}^{2 t} \sin (\sqrt{3} t) \sqrt{3} c_{1}}{3}-\frac{\mathrm{e}^{2 t}(\sin (\sqrt{3} t) \sqrt{3}-3 \cos (\sqrt{3} t)) c_{2}}{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(\sqrt{3}\left(c_{1}-2 c_{2}\right) \sin (\sqrt{3} t)+3 \cos (\sqrt{3} t) c_{1}\right) \mathrm{e}^{2 t}}{3} \\
\frac{2\left(\sqrt{3}\left(c_{1}-\frac{c_{2}}{2}\right) \sin (\sqrt{3} t)+\frac{3 \cos (\sqrt{3} t) c_{2}}{2}\right) \mathrm{e}^{2 t}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

13.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -2 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+7=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+i \sqrt{3} \\
& \lambda_{2}=2-i \sqrt{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2-i \sqrt{3}$	1	complex eigenvalue
$2+i \sqrt{3}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2-i \sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]-(2-i \sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1+i \sqrt{3} & -2 \\
2 & i \sqrt{3}-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1+i \sqrt{3} & -2 & 0 \\
2 & i \sqrt{3}-1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{1+i \sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
1+i \sqrt{3} & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+i \sqrt{3} & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{1+i \sqrt{3}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{1+i \sqrt{3}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2+i \sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]-(2+i \sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
1-i \sqrt{3} & -2 \\
2 & -i \sqrt{3}-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1-i \sqrt{3} & -2 & 0 \\
2 & -i \sqrt{3}-1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{1-i \sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
1-i \sqrt{3} & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-i \sqrt{3} & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{i \sqrt{3}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{i \sqrt{3}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2+i \sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\frac{2}{i \sqrt{3}-1} \\ 1\end{array}\right]$
$2-i \sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\frac{2}{-i \sqrt{3}-1} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{(2+i \sqrt{3}) t}}{i \sqrt{3}-1} \\
\mathrm{e}^{(2+i \sqrt{3}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{(2-i \sqrt{3}) t}}{-i \sqrt{3}-1} \\
\mathrm{e}^{(2-i \sqrt{3}) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{i(\sqrt{3}+i) c_{2} \mathrm{e}^{-(i \sqrt{3}-2) t}}{2}-\frac{i(i-\sqrt{3}) c_{1} \mathrm{e}^{(2+i \sqrt{3}) t}}{2} \\
c_{1} \mathrm{e}^{(2+i \sqrt{3}) t}+c_{2} \mathrm{e}^{-(i \sqrt{3}-2) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 697: Phase plot

13.2.3 Maple step by step solution

Let's solve
$\left[x^{\prime}=3 x-2 y(t), y^{\prime}(t)=2 x+y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & -2 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & -2 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right],\left[2+\mathrm{I} \sqrt{3},\left[\begin{array}{c}
-\frac{2}{\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(2-\mathrm{I} \sqrt{3}) t} \cdot\left[\begin{array}{c}-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{2 t} \cdot(\cos (\sqrt{3} t)-\mathrm{I} \sin (\sqrt{3} t)) \cdot\left[\begin{array}{c}
-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{2(\cos (\sqrt{3} t)-\mathrm{I} \sin (\sqrt{3} t))}{-\mathrm{I} \sqrt{3}-1} \\
\cos (\sqrt{3} t)-\mathrm{I} \sin (\sqrt{3} t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} t)}{2}-\frac{\sin (\sqrt{3} t) \sqrt{3}}{2} \\
\cos (\sqrt{3} t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} t) \sqrt{3}}{2}-\frac{\sin (\sqrt{3} t)}{2} \\
-\sin (\sqrt{3} t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} t)}{2}-\frac{\sin (\sqrt{3} t) \sqrt{3}}{2} \\
\cos (\sqrt{3} t)
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} t) \sqrt{3}}{2}-\frac{\sin (\sqrt{3} t)}{2} \\
-\sin (\sqrt{3} t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(\left(\sqrt{3} c_{2}-c_{1}\right) \cos (\sqrt{3} t)+\sin (\sqrt{3} t)\left(\sqrt{3} c_{1}+c_{2}\right)\right) \mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}\left(\cos (\sqrt{3} t) c_{1}-\sin (\sqrt{3} t) c_{2}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x=-\frac{\left(\left(\sqrt{3} c_{2}-c_{1}\right) \cos (\sqrt{3} t)+\sin (\sqrt{3} t)\left(\sqrt{3} c_{1}+c_{2}\right)\right) \mathrm{e}^{2 t}}{2}, y(t)=\mathrm{e}^{2 t}\left(\cos (\sqrt{3} t) c_{1}-\sin (\sqrt{3} t) c_{2}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 76

```
dsolve([diff(x(t),t)=3*x(t)-2*y(t), diff (y(t),t)=2*x(t)+y(t)], singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{2 t}\left(\sin (\sqrt{3} t) c_{1}+\cos (\sqrt{3} t) c_{2}\right) \\
& y(t)=\frac{\mathrm{e}^{2 t}\left(\sin (\sqrt{3} t) \sqrt{3} c_{2}-\cos (\sqrt{3} t) \sqrt{3} c_{1}+\sin (\sqrt{3} t) c_{1}+\cos (\sqrt{3} t) c_{2}\right)}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 96
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t]-2 * y[t], y^{\prime}[t]==2 * x[t]+y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ I

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{3} e^{2 t}\left(3 c_{1} \cos (\sqrt{3} t)+\sqrt{3}\left(c_{1}-2 c_{2}\right) \sin (\sqrt{3} t)\right) \\
& y(t) \rightarrow \frac{1}{3} e^{2 t}\left(3 c_{2} \cos (\sqrt{3} t)+\sqrt{3}\left(2 c_{1}-c_{2}\right) \sin (\sqrt{3} t)\right)
\end{aligned}
$$

13.3 problem problem 5

13.3.1 Solution using Matrix exponential method 3374
13.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3377
13.3.3 Maple step by step solution . 3383

Internal problem ID [274]
Internal file name [DUTPUT/274_Sunday_June_05_2022_01_37_59_AM_8563329/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 417
Problem number: problem 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime} & =2 x+4 y(t)+3 \mathrm{e}^{t} \\
y^{\prime}(t) & =5 x-y(t)-t^{2}
\end{aligned}
$$

13.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
3 \mathrm{e}^{t} \\
-t^{2}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(-3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}(3 \sqrt{89}+89)}{178} & -\frac{4\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{\left.-\frac{(-1+\sqrt{89}) t}{2}\right) \sqrt{89}}\right)}{89} \\
5\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{\left.-\frac{(-1+\sqrt{89}) t}{2}\right) \sqrt{89}}\right. & -\frac{(3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{(-3 \sqrt{89}+89) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{178}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{c}
\frac{(-3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}(3 \sqrt{89}+89)}{178} \\
5\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{\left.-\frac{(-1+\sqrt{89}) t}{2}\right) \sqrt{89}}\right. \\
-\frac{59}{5(2)}
\end{array}\right. \\
& -\frac{4\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}\right) \sqrt{89}}{89} \\
& \left.\frac{(3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{(-3 \sqrt{89}+89) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{178}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(-3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}(3 \sqrt{89}+89)}{178}\right) c_{1}-\frac{4\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{\left.-\frac{(-1+\sqrt{89}) t}{2}\right) \sqrt{89} c_{2}}\right.}{}\left[\begin{array}{l}
5\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}\right) \sqrt{89} c_{1} \\
-\frac{89}{}+\left(\frac{(3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{(-3 \sqrt{89}+89) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{178}\right) c_{2}
\end{array}\right]
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(-3 c_{1}-8 c_{2}\right) \sqrt{89}+89 c_{1}\right) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{3\left(\left(c_{1}+\frac{8 c_{2}}{3}\right) \sqrt{89}+\frac{89 c_{1}}{3}\right) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{178} \\
\frac{\left(\left(-10 c_{1}+3 c_{2}\right) \sqrt{89}+89 c_{2}\right) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{5\left(\left(c_{1}-\frac{3 c_{2}}{10}\right) \sqrt{89}+\frac{89 c_{2}}{10}\right) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{89}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But
$e^{-A t}=\left(e^{A t}\right)^{-1}$

$$
=\left[\frac{\mathrm{e}^{-t\left(3 \sqrt{89} \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}-3 \sqrt{89} \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+89 \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+89 \mathrm{e}^{\left.\frac{(1+\sqrt{89}) t}{2}\right)}\right.} 1778}{\frac{5 \sqrt{89} \mathrm{e}^{-t}\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{\left.-\frac{(-1+\sqrt{89}) t}{2}\right)}\right.}{89}}\right.
$$

$$
\begin{array}{r}
\frac{4 \sqrt{89} \mathrm{e}^{-t}\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{-\frac{(-1+\sqrt{8}}{2}}\right.}{89} \\
\mathrm{e}^{-t}\left((-3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+3 \mathrm{e}^{\frac{(1+\sqrt{89}}{2}}\right. \\
178
\end{array}
$$

Hence

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{23}{1331}+\frac{\left(\left(-3 c_{1}-8 c_{2}\right) \sqrt{89}+89 c_{1}\right) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{\left(\left(3 c_{1}+8 c_{2}\right) \sqrt{89}+89 c_{1}\right) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{178}+\frac{2 t^{2}}{11}-\frac{2 t}{121}-\frac{3 \mathrm{e}^{t}}{11} \\
-\frac{17}{1331}+\frac{\left(\left(-10 c_{1}+3 c_{2}\right) \sqrt{89}+89 c_{2}\right) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{\left(\left(10 c_{1}-3 c_{2}\right) \sqrt{89}+89 c_{2}\right) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{178}-\frac{t^{2}}{11}+\frac{12 t}{121}-\frac{15 \mathrm{e}^{t}}{22}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cc}
\frac{(-3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}(3 \sqrt{89}+89)}{178} & -\frac{4\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{\left.-\frac{(-1+\sqrt{89}) t}{2}\right) \sqrt{89}}\right.}{89} \\
-5\left(-\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+\mathrm{e}^{\left.-\frac{(-1+\sqrt{89}) t}{2}\right) \sqrt{89}}\right. & \frac{(3 \sqrt{89}+89) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{178}+\frac{(-3 \sqrt{89}+89) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{178}
\end{array}\right] \int
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
\frac{2 t^{2}}{11}-\frac{3 \mathrm{e}^{t}}{11}-\frac{2 t}{121}+\frac{23}{1331} \\
-\frac{t^{2}}{11}-\frac{15 \mathrm{e}^{t}}{22}+\frac{12 t}{121}-\frac{17}{1331}
\end{array}\right]
\end{aligned}
$$

13.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
3 \mathrm{e}^{t} \\
-t^{2}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 4 \\
5 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda-22=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{\sqrt{89}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{\sqrt{89}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{2}+\frac{\sqrt{89}}{2}$	1	real eigenvalue
$\frac{1}{2}-\frac{\sqrt{89}}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{2}-\frac{\sqrt{89}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right]-\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
\frac{3}{2}+\frac{\sqrt{89}}{2} & 4 \\
5 & -\frac{3}{2}+\frac{\sqrt{89}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{\sqrt{89}}{2} & 4 & 0 \\
5 & -\frac{3}{2}+\frac{\sqrt{89}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{5 R_{1}}{\frac{3}{2}+\frac{\sqrt{89}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{\sqrt{89}}{2} & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}+\frac{\sqrt{89}}{2} & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{8 t}{3+\sqrt{89}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{8 t}{3+\sqrt{89}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8 t}{3+\sqrt{89}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{8 t}{3+\sqrt{89}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{8}{3+\sqrt{89}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{8 t}{3+\sqrt{89}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8}{3+\sqrt{89}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{8 t}{3+\sqrt{89}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8}{3+\sqrt{89}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{2}+\frac{\sqrt{89}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right]-\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\begin{array}{cc}
\frac{3}{2}-\frac{\sqrt{89}}{2} & 4 \\
5 & -\frac{3}{2}-\frac{\sqrt{89}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{3}{2}-\frac{\sqrt{89}}{2} & 4 & 0 \\
5 & -\frac{3}{2}-\frac{\sqrt{89}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{5 R_{1}}{\frac{3}{2}-\frac{\sqrt{89}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2}-\frac{\sqrt{89}}{2} & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}-\frac{\sqrt{89}}{2} & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{8 t}{-3+\sqrt{89}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{8 t}{-3+\sqrt{89}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8 t}{-3+\sqrt{89}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{8 t}{-3+\sqrt{89}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{8}{-3+\sqrt{89}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{8 t}{-3+\sqrt{89}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{-3+\sqrt{89}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{8 t}{-3+\sqrt{89}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{-3+\sqrt{89}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric $k=$ defective? | eigenvectors |
| :---: |
| $\frac{1}{2}+\frac{\sqrt{89}}{2}$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{1}{2}+\frac{\sqrt{89}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
1
\end{array}\right] e^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $\frac{1}{2}-\frac{\sqrt{89}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
1
\end{array}\right] e^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{ll}
\frac{\left.4 \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right.}\right) t}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} & \frac{4 \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{rr}
\frac{5 \sqrt{89} \mathrm{e}^{-\frac{(1+\sqrt{89}) t}{2}}}{89} & \frac{\sqrt{89}(-3+\sqrt{89}) \mathrm{e}^{-\frac{(1+\sqrt{89}) t}{2}}}{178} \\
-\frac{5 \sqrt{89} \mathrm{e}^{\frac{(-1+\sqrt{89}) t}{2}}}{89} & \frac{\sqrt{89}(3+\sqrt{89}) \mathrm{e}^{\frac{(-1+\sqrt{89}) t}{2}}}{178}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} & \frac{4 \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{5 \sqrt{89} \mathrm{e}^{-\frac{(1+\sqrt{89}) t}{2}}}{89} & \frac{\sqrt{89}(-3+\sqrt{89}) \mathrm{e}^{-\frac{(1+\sqrt{89}) t}{2}}}{178} \\
-\frac{5 \sqrt{89} \mathrm{e}^{\frac{(-1+\sqrt{89}) t}{2}}}{89} & \frac{\sqrt{89}(3+\sqrt{89}) \mathrm{e}^{\frac{(-1+\sqrt{89}) t}{2}}}{178}
\end{array}\right]\left[\begin{array}{c}
3 \mathrm{e}^{t} \\
-t^{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} & \frac{4 \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{3\left(\sqrt{89}-\frac{89}{3}\right) t^{2} \mathrm{e}^{-\frac{(1+\sqrt{89}) t}{2}}}{178}+\frac{15 \sqrt{89} \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{89} \\
-\frac{3 t^{2}\left(\sqrt{89}+\frac{89}{3}\right) \mathrm{e}^{\frac{(-1+\sqrt{89}) t}{2}}}{178}-\frac{15 \sqrt{89} \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{89}
\end{array}\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
\frac{2 t^{2}}{11}-\frac{3 \mathrm{e}^{t}}{11}-\frac{2 t}{121}+\frac{23}{1331} \\
-\frac{t^{2}}{11}-\frac{15 \mathrm{e}^{t}}{22}+\frac{12 t}{121}-\frac{17}{1331}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{4 c_{1} \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
c_{1} \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{\left.4 c_{2} \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right.}\right) t}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
c_{2} \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{2 t^{2}}{11}-\frac{3 \mathrm{e}^{t}}{11}-\frac{2 t}{121}+\frac{23}{1331} \\
-\frac{t^{2}}{11}-\frac{15 \mathrm{e}^{t}}{22}+\frac{12 t}{121}-\frac{17}{1331}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{2}(-3+\sqrt{89}) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}}{10}+\frac{c_{1}(3+\sqrt{89}) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}}{10}+\frac{2 t^{2}}{11}-\frac{2 t}{121}-\frac{3 \mathrm{e}^{t}}{11}+\frac{23}{1331} \\
c_{1} \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}-\frac{t^{2}}{11}-\frac{15 \mathrm{e}^{t}}{22}+\frac{12 t}{121}-\frac{17}{1331}
\end{array}\right]
$$

13.3.3 Maple step by step solution

Let's solve
$\left[x^{\prime}=2 x+4 y(t)+3 \mathrm{e}^{t}, y^{\prime}(t)=5 x-y(t)-t^{2}\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & 4 \\ 5 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}3 \mathrm{e}^{t} \\ -t^{2}\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & 4 \\ 5 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}3 \mathrm{e}^{t} \\ -t^{2}\end{array}\right]$
- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
3 \mathrm{e}^{t} \\
-t^{2}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{1}{2}-\frac{\sqrt{89}}{2},\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{\sqrt{89}}{2},\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\frac{1}{2}-\frac{\sqrt{89}}{2},\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[\frac{1}{2}+\frac{\sqrt{89}}{2},\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{4}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $\vec{x}_{p}($ $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{ll}\frac{4 \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} & \frac{4 \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\ \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\left.4 \mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right.}\right) t}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} & \frac{4 \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}-\frac{\sqrt{89}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}+\frac{\sqrt{89}}{2}\right) t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
\frac{4}{-\frac{3}{2}-\frac{\sqrt{89}}{2}} & \frac{4}{-\frac{3}{2}+\frac{\sqrt{89}}{2}} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution
$\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)$
- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{1024\left((7565-2104 \sqrt{89}) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+(7565+2104 \sqrt{89}) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+10769 t^{2}-979 t-\frac{32307 \mathrm{e}^{t}}{2}+\frac{2047}{2}\right)}{89(1+\sqrt{89})^{3}(-1+\sqrt{89})^{3}} \\
\frac{128\left(-6052+(164561-1253 \sqrt{89}) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+(164561+1253 \sqrt{89}) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}-43076 t^{2}+46992 t-323070 \mathrm{e}^{t}\right)}{89(1+\sqrt{89})^{3}(-1+\sqrt{89})^{3}}
\end{array}\right.
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{1024\left((7565-2104 \sqrt{89}) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+(7565+2104 \sqrt{89}) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}+10769 t^{2}-979 t-\frac{32302}{2}\right.}{89(1+\sqrt{89})^{3}(-1+\sqrt{89})^{3}} \\
\frac{128\left(-6052+(164561-1253 \sqrt{89}) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+(164561+1253 \sqrt{89}) \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}}-43076 t^{2}+469:\right.}{89(1+\sqrt{89})^{3}(-1+\sqrt{89})^{3}}
\end{array}\right.
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{256\left(20470+\left(151300+\left(-42080-118459 c_{1}\right) \sqrt{89}+355377 c_{1}\right)\right.}{} \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+\left(151300+\left(42080+118459 c_{2}\right) \sqrt{89}+\right. \\
445(1+\sqrt{89})^{3}(-1+\sqrt{89})^{3} \\
\frac{128\left(-6052+\left(164561+473836 c_{1}-1253 \sqrt{89}\right) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+\left(164561+473836 c_{2}+1253 \sqrt{89}\right)\right.}{} \mathrm{e}^{\frac{(1}{2}}
\end{array}\right.
$$

- Solution to the system of ODEs

$$
\left\{x=\frac{256\left(20470+\left(151300+\left(-42080-118459 c_{1}\right) \sqrt{89}+355377 c_{1}\right) \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}}+\left(151300+\left(42080+118459 c_{2}\right) \sqrt{89}+355377 c_{2}\right) \mathrm{e}\right.}{445(1+\sqrt{89})^{3}(-1+\sqrt{89})^{3}}\right.
$$

Solution by Maple
Time used: 0.094 (sec). Leaf size: 112
dsolve([diff $\left.(x(t), t)=2 * x(t)+4 * y(t)+3 * \exp (t), \operatorname{diff}(y(t), t)=5 * x(t)-y(t)-t^{\wedge} 2\right]$, singsol $\left.=a l l\right)$

$$
\begin{aligned}
x(t)= & \frac{\mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}} c_{2} \sqrt{89}}{10}-\frac{\mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}} c_{1} \sqrt{89}}{10}+\frac{3 \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}} c_{2}}{10} \\
& +\frac{3 \mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}} c_{1}}{10}+\frac{2 t^{2}}{11}-\frac{3 \mathrm{e}^{t}}{11}-\frac{2 t}{121}+\frac{23}{1331} \\
y(t)= & \mathrm{e}^{\frac{(1+\sqrt{89}) t}{2}} c_{2}+\mathrm{e}^{-\frac{(-1+\sqrt{89}) t}{2}} c_{1}-\frac{t^{2}}{11}-\frac{15 \mathrm{e}^{t}}{22}+\frac{12 t}{121}-\frac{17}{1331}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.711 (sec). Leaf size: 212
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+4 * y[t]+3 * \operatorname{Exp}[t], y^{\prime}[t]==5 * x[t]-y[t]-t{ }^{2} 2\right\},\{x[t], y[t]\}, t\right.$, IncludeSingulars

$$
\begin{aligned}
x(t) \rightarrow & \frac{242 t^{2}-22 t+23}{1331}-\frac{3 e^{t}}{11}+\frac{1}{178}\left((89-3 \sqrt{89}) c_{1}-8 \sqrt{89} c_{2}\right) e^{-\frac{1}{2}(\sqrt{89}-1) t} \\
& +\frac{1}{178}\left((89+3 \sqrt{89}) c_{1}+8 \sqrt{89} c_{2}\right) e^{\frac{1}{2}(1+\sqrt{89}) t} \\
y(t) \rightarrow & \frac{-121 t^{2}+132 t-17}{1331}-\frac{15 e^{t}}{22}+\left(\frac{5 c_{1}}{\sqrt{89}}+\frac{1}{178}(89-3 \sqrt{89}) c_{2}\right) e^{\frac{1}{2}(1+\sqrt{89}) t} \\
& +\left(\frac{1}{178}(89+3 \sqrt{89}) c_{2}-\frac{5 c_{1}}{\sqrt{89}}\right) e^{-\frac{1}{2}(\sqrt{89}-1) t}
\end{aligned}
$$

13.4 problem problem 7

13.4.1 Solution using Matrix exponential method 3388
13.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3389
13.4.3 Maple step by step solution

Internal problem ID [275]
Internal file name [OUTPUT/275_Sunday_June_05_2022_01_38_01_AM_55622945/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 417
Problem number: problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime} & =y(t)+z(t) \\
y^{\prime}(t) & =z(t)+x \\
z^{\prime}(t) & =x+y(t)
\end{aligned}
$$

13.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y(t) \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{1}+\left(\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{2}+\left(\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(2 c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}\left(c_{1}+c_{2}+c_{3}\right)}{3} \\
\frac{\left(-c_{1}+2 c_{2}-c_{3}\right) \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}\left(c_{1}+c_{2}+c_{3}\right)}{3} \\
\frac{\left(-c_{1}-c_{2}+2 c_{3}\right) \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}\left(c_{1}+c_{2}+c_{3}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

13.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y(t) \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 1 & 1 \\
1 & -\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
1 & 1 & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & \frac{3}{2} & -\frac{3}{2} & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -\frac{3}{2} & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	2	2	No	$\left[\begin{array}{cc}-1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
2	1	1	No	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

The two possible cases for repeated eigenvalue of multiplicity 2

Figure 698: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{-t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x \\
y(t) \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
0 \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{1}-c_{2}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}
\end{array}\right]
$$

13.4.3 Maple step by step solution

Let's solve
$\left[x^{\prime}=y(t)+z(t), y^{\prime}(t)=z(t)+x, z^{\prime}(t)=x+y(t)\right]$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x \\
y(t) \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
\vec{x}_{1}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, an
$\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- \quad Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system
$(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-(-1) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\vec{x}_{2}(t)=\mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{3}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\left((-t-1) c_{2}-c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t} \\
c_{3} \mathrm{e}^{2 t} \\
\left(t c_{2}+c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}
\end{array}\right]
$$

- Solution to the system of ODEs
$\left\{x=\left((-t-1) c_{2}-c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}, y(t)=c_{3} \mathrm{e}^{2 t}, z(t)=\left(t c_{2}+c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}\right\}$
\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 64
dsolve ([diff $(x(t), t)=y(t)+z(t), \operatorname{diff}(y(t), t)=z(t)+x(t), \operatorname{diff}(z(t), t)=x(t)+y(t)]$, singsol $=a l l)$

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t} \\
& y(t)=c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}+\mathrm{e}^{-t} c_{1} \\
& z(t)=-2 c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}-\mathrm{e}^{-t} c_{1}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 124
DSolve $\left[\left\{x^{\prime}[t]==y[t]+z[t], y^{\prime}[t]==z[t]+x[t], z^{\prime}[t]==x[t]+y[t]\right\},\{x[t], y[t], z[t]\}, t\right.$, IncludeSingul

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(e^{3 t}+2\right)+\left(c_{2}+c_{3}\right)\left(e^{3 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}+2\right)+c_{3}\left(e^{3 t}-1\right)\right) \\
z(t) & \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}-1\right)+c_{3}\left(e^{3 t}+2\right)\right)
\end{aligned}
$$

13.5 problem problem 11

13.5.1 Solution using Matrix exponential method 3400
13.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3401
13.5.3 Maple step by step solution . 3413

Internal problem ID [276]
Internal file name [OUTPUT/276_Sunday_June_05_2022_01_38_03_AM_94704504/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 417
Problem number: problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =2 x_{3}(t) \\
x_{3}^{\prime}(t) & =3 x_{4}(t) \\
x_{4}^{\prime}(t) & =4 x_{1}(t)
\end{aligned}
$$

13.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\text { Expression too large to display }
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\text { Expression too large to display }\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\text { Expression too large to display }
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

13.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-\lambda & 1 & 0 & 0 \\
0 & -\lambda & 2 & 0 \\
0 & 0 & -\lambda & 3 \\
4 & 0 & 0 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-24=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\sqrt{2} 6^{\frac{1}{4}} \\
& \lambda_{2}=-\sqrt{2} 6^{\frac{1}{4}} \\
& \lambda_{3}=i \sqrt{2} 6^{\frac{1}{4}} \\
& \lambda_{4}=-i \sqrt{2} 6^{\frac{1}{4}}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\sqrt{2} 6^{\frac{1}{4}}$	1	real eigenvalue
$i \sqrt{2} 6^{\frac{1}{4}}$	1	complex eigenvalue
$-i \sqrt{2} 6^{\frac{1}{4}}$	1	complex eigenvalue
$\sqrt{2} 6^{\frac{1}{4}}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\sqrt{2} 6^{\frac{1}{4}}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]-\left(\sqrt{2} 6^{\frac{1}{4}}\right)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-\sqrt{2} 6^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & -\sqrt{2} 6^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -\sqrt{2} 6^{\frac{1}{4}} & 3 & 0 \\
4 & 0 & 0 & -\sqrt{2} 6^{\frac{1}{4}} & 0
\end{array}\right]} \\
& R_{4}=R_{4}+\frac{\sqrt{2} 6^{\frac{3}{4}} R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & \frac{22^{\frac{1}{4} 3^{\frac{3}{4}}}}{3} & 0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{\sqrt{2} \sqrt{3} R_{2}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & \frac{2 \sqrt{6}}{3} & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{\sqrt{6} 2^{\frac{1}{4}} 3^{\frac{3}{4}} R_{3}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
-2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 \\
0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 \\
0 & 0 & -2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3^{\frac{1}{4} 2^{\frac{3}{4}} t}}{4}, v_{2}=\frac{t \sqrt{6}}{2}, v_{3}=\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3^{\frac{1}{4}} 2^{\frac{3}{4} t}}{4} \\
\frac{t \sqrt{6}}{2} \\
\frac{2^{\frac{1}{4}} 3^{\frac{3}{4} t} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3^{\frac{1}{4}} 2^{\frac{3}{4} t}}{4} \\
\frac{t \sqrt{6}}{2} \\
\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3^{\frac{1}{4}} 2^{\frac{3}{4}} t}{4} \\
\frac{t \sqrt{6}}{2} \\
\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2^{\frac{3}{4}} 3^{\frac{1}{4}}}{4} \\
\frac{\sqrt{6}}{2} \\
\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3^{\frac{1}{4}} 2^{\frac{3}{4}} t}{4} \\
\frac{t \sqrt{6}}{2} \\
\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2^{\frac{3}{4}} 3^{\frac{1}{4}}}{4} \\
\frac{\sqrt{6}}{2} \\
\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3^{\frac{1}{4} 2^{\frac{3}{4} t}}}{4} \\
\frac{t \sqrt{6}}{2} \\
\frac{2^{\frac{1}{4}} 3^{\frac{3}{4} t}}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
2^{\frac{3}{4}} 3^{\frac{1}{4}} \\
2 \sqrt{6} \\
22^{\frac{1}{4}} 3^{\frac{3}{4}} \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-i \sqrt{2} 6^{\frac{1}{4}}$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left.\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]-\left(-i \sqrt{2} 6^{\frac{1}{4}}\right)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cccc}
i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 \\
0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 \\
0 & 0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 \\
4 & 0 & 0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
i \sqrt{2} 6^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & i \sqrt{2} 6^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{2} 6^{\frac{1}{4}} & 3 & 0 \\
4 & 0 & 0 & i \sqrt{2} 6^{\frac{1}{4}} & 0
\end{array}\right]} \\
R_{4}=R_{4}+\frac{i \sqrt{2} 6^{\frac{3}{4}} R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
i 2^{\frac{3}{4}}{ }^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 2^{\frac{12}{4} 3^{\frac{3}{4}}}{ }^{\frac{3}{4}} & 0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{\sqrt{2} \sqrt{3} R_{2}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & -\frac{2 \sqrt{6}}{3} & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{i \sqrt{6} 2^{\frac{1}{4} 3^{\frac{3}{4}} R_{3}}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 \\
0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 \\
0 & 0 & i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{i 2^{\frac{3}{4}} 3^{\frac{1}{4}} t}{4}, v_{2}=-\frac{t \sqrt{6}}{2}, v_{3}=\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4} t}}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} 2^{\frac{3}{4}} 3^{\frac{1}{4}} t \\
-\frac{t \sqrt{6}}{2} \\
\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i 2^{\frac{3}{4}} 3^{\frac{1}{4}} t}{4} \\
-\frac{t \sqrt{6}}{2} \\
\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{1}{4} 2^{\frac{3}{4}} 3^{\frac{1}{4}} t \\
-\frac{t \sqrt{6}}{2} \\
\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{i 2^{\frac{3}{4}} 3^{\frac{1}{4}}}{4} \\
-\frac{\sqrt{6}}{2} \\
\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} 2^{\frac{3}{4}} 3^{\frac{1}{4}} t \\
-\frac{t \sqrt{6}}{2} \\
\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i 2^{\frac{3}{4}} 3^{\frac{1}{4}}}{4} \\
-\frac{\sqrt{6}}{2} \\
\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} 2^{\frac{3}{4}} 3^{\frac{1}{4}} t \\
-\frac{t \sqrt{6}}{2} \\
\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i 2^{\frac{3}{4}} 3^{\frac{1}{4}} \\
-2 \sqrt{6} \\
2 i 2^{\frac{1}{4}} 3^{\frac{3}{4}} \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=i \sqrt{2} 6^{\frac{1}{4}}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]-\left(i \sqrt{2} 6^{\frac{1}{4}}\right)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cccc}
-i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 \\
0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 \\
0 & 0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 \\
4 & 0 & 0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-i \sqrt{2} 6^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & -i \sqrt{2} 6^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{2} 6^{\frac{1}{4}} & 3 & 0 \\
4 & 0 & 0 & -i \sqrt{2} 6^{\frac{1}{4}} & 0
\end{array}\right]} \\
& R_{4}=R_{4}-\frac{i \sqrt{2} 6^{\frac{3}{4}} R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & -\frac{2 i 2^{\frac{1}{4} 3^{\frac{3}{4}}}}{3} & 0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{\sqrt{2} \sqrt{3} R_{2}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-i 2^{\frac{3}{4} 3^{\frac{1}{4}}} & 1 & 0 & 0 & 0 \\
0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & -\frac{2 \sqrt{6}}{3} & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{i \sqrt{6} 2^{\frac{1}{4}} 3^{\frac{3}{4}} R_{3}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
-i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 \\
0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 \\
0 & 0 & -i 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{i 2^{\frac{3}{4}} 3^{\frac{1}{4} t} t}{4}, v_{2}=-\frac{t \sqrt{6}}{2}, v_{3}=-\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4} t}}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} 2^{\frac{3}{4}} 3^{\frac{1}{4}} t \\
-\frac{t \sqrt{6}}{2} \\
-\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i 2^{\frac{3}{4}} \frac{1}{4}_{4}}{4} \\
-\frac{t \sqrt{6}}{2} \\
-\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} 2^{\frac{3}{4}} 3^{\frac{1}{4}} t \\
-\frac{t \sqrt{6}}{2} \\
-\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{i 2^{\frac{3}{4}} 3^{\frac{1}{4}}}{4} \\
-\frac{\sqrt{6}}{2} \\
-\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} 2^{\frac{3}{4}} 3^{\frac{1}{4}} t \\
-\frac{t \sqrt{6}}{2} \\
-\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i 2^{\frac{3}{4}} 3^{\frac{1}{4}}}{4} \\
-\frac{\sqrt{6}}{2} \\
-\frac{i 2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{1}{4} 2^{\frac{3}{4} 3^{\frac{1}{4}} t} \\
-\frac{t \sqrt{6}}{2} \\
-\frac{\mathrm{I}}{2} 2^{\frac{1}{4}} 3^{\frac{3}{4}} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i 2^{\frac{3}{4}} 3^{\frac{1}{4}} \\
-2 \sqrt{6} \\
-2 i 2^{\frac{1}{4}} 3^{\frac{3}{4}} \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=-\sqrt{2} 6^{\frac{1}{4}}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left.\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]-\left(-\sqrt{2} 6^{\frac{1}{4}}\right)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
\sqrt{2} 6^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & \sqrt{2} 6^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & \sqrt{2} 6^{\frac{1}{4}} & 3 & 0 \\
4 & 0 & 0 & \sqrt{2} 6^{\frac{1}{4}} & 0
\end{array}\right]} \\
R_{4}=R_{4}-\frac{\sqrt{2} 6^{\frac{3}{4}} R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & -\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}}}{3} & 0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{\sqrt{2} \sqrt{3} R_{2}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & \frac{2 \sqrt{6}_{6}^{3}}{3} & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{\sqrt{6} 2^{\frac{1}{4}} 3^{\frac{3}{4}} R_{3}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 & 0 \\
0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 & 0 \\
0 & 0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
2^{\frac{3}{4}} 3^{\frac{1}{4}} & 1 & 0 & 0 \\
0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 2 & 0 \\
0 & 0 & 2^{\frac{3}{4}} 3^{\frac{1}{4}} & 3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{3^{\frac{1}{4}} 2^{\frac{3}{4}} t}{4}, v_{2}=\frac{t \sqrt{6}}{2}, v_{3}=-\frac{2^{\frac{1}{4}}{ }^{\frac{3}{4} t}}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{3^{\frac{1}{4}} 2^{\frac{3}{4}} t}{4} \\
\frac{t \sqrt{6}}{2} \\
-\frac{2^{\frac{1}{4}} 3^{\frac{3}{4} t}}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{\frac{1}{}_{\frac{1}{2} \frac{3}{4}_{4}}^{4}}{4} \\
\frac{t \sqrt{6}}{2} \\
-\frac{2^{\frac{1}{4} 3^{\frac{3}{4}} t}}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{3^{\frac{1}{4} 2^{\frac{3}{4} t}}}{4} \\
\frac{t \sqrt{6}}{2} \\
-\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2^{\frac{3}{4}} 3^{\frac{1}{4}}}{4} \\
\frac{\sqrt{6}}{2} \\
-\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{3^{\frac{1}{4}} 2^{\frac{3}{4}} t}{4} \\
\frac{t \sqrt{6}}{2} \\
-\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2^{\frac{3}{4} 3^{\frac{1}{4}}}}{4} \\
\frac{\sqrt{6}}{2} \\
-\frac{2^{\frac{1}{4}} 3^{\frac{3}{4}}}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{3^{\frac{1}{2} \frac{3}{4}^{\frac{3}{4}} t}}{4} \\
\frac{t \sqrt{6}}{2} \\
-\frac{2^{\frac{1}{4}} 3^{\frac{3}{4} t}}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-2^{\frac{3}{4} 3^{\frac{1}{4}}} \\
2 \sqrt{6} \\
-22^{\frac{1}{4}} 3^{\frac{3}{4}} \\
4
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$\sqrt{2} 6^{\frac{1}{4}}$	1	1	No	$\left[\begin{array}{c}\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\ \frac{\sqrt{6}}{2} \\ \frac{\sqrt{2} 6^{\frac{3}{4}}}{4} \\ 1\end{array}\right]$
$-\sqrt{2} 6^{\frac{1}{4}}$	1	1	No	$\left[\begin{array}{c}-\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\ \frac{\sqrt{6}}{2} \\ -\frac{\sqrt{2} 6^{\frac{3}{4}}}{4} \\ 1\end{array}\right]$
$i \sqrt{2} 6^{\frac{1}{4}}$	1	1	No	$\left[\begin{array}{c}\frac{i \sqrt{2} 6^{\frac{1}{4}}}{4} \\ -\frac{\sqrt{6}}{2} \\ -\frac{i \sqrt{2} 6^{\frac{3}{4}}}{4} \\ 1\end{array}\right]$
$-i \sqrt{2} 6^{\frac{1}{4}}$	1	1	No	$\left[\begin{array}{c}-\frac{i \sqrt{2} 6^{\frac{1}{4}}}{4} \\ -\frac{\sqrt{6}}{2} \\ \frac{i \sqrt{2} 6^{\frac{3}{4}}}{4} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\sqrt{2} 6^{\frac{1}{4}}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\sqrt{2} 6^{\frac{1}{4}} t} \\
& =\left[\begin{array}{c}
\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\
\frac{\sqrt{6}}{2} \\
\frac{\sqrt{2} 6^{\frac{3}{4}}}{4} \\
1
\end{array}\right] e^{\sqrt{2} 6^{\frac{1}{4}} t}
\end{aligned}
$$

Since eigenvalue $-\sqrt{2} 6^{\frac{1}{4}}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\sqrt{2} 6^{\frac{1}{4}} t} \\
& =\left[\begin{array}{c}
-\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\
\frac{\sqrt{6}}{2} \\
-\frac{\sqrt{2} 6^{\frac{3}{4}}}{4} \\
1
\end{array}\right] e^{-\sqrt{2} 6^{\frac{1}{4}} t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

Which becomes

13.5.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{2}(t), x_{2}^{\prime}(t)=2 x_{3}(t), x_{3}^{\prime}(t)=3 x_{4}(t), x_{4}^{\prime}(t)=4 x_{1}(t)\right]
$$

- Define vector

$$
\underline{x^{\prime}}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right] \cdot \underline{ } \rightarrow(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\underline{x}^{\prime}(t)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$x \rightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
- Consider eigenpair

$$
\left[\sqrt{2} 6^{\frac{1}{4}},\left[\begin{array}{c}
\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\
\frac{\frac{\sqrt{6}}{2}}{2} \\
\frac{\sqrt{2} 6^{\frac{3}{4}}}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}^{\rightarrow}=\mathrm{e}^{\sqrt{2} 6^{\frac{1}{4}} t} \cdot\left[\begin{array}{c}
\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\
\frac{\sqrt{6}}{2} \\
\frac{\sqrt{2} 6^{\frac{3}{4}}}{4} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I} \sqrt{2} 6^{\frac{1}{4}},\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \sqrt{2} 6^{\frac{1}{4}} \\
-\frac{\sqrt{6}}{2} \\
\frac{\mathrm{I}}{4} \sqrt{2} 6^{\frac{3}{4}} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} \sqrt{2} 6^{\frac{1}{4}} t} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \sqrt{2} 6^{\frac{1}{4}} \\
-\frac{\sqrt{6}}{2} \\
\frac{\mathrm{I}}{4} \sqrt{2} 6^{\frac{3}{4}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\left(\cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)-I \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)\right) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \sqrt{2} 6^{\frac{1}{4}} \\
-\frac{\sqrt{6}}{2} \\
\frac{\mathrm{I}}{4} \sqrt{2} 6^{\frac{3}{4}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4}\left(\cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)-\mathrm{I} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)\right) \sqrt{2} 6^{\frac{1}{4}} \\
-\frac{\left(\cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)-\mathrm{I} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)\right) \sqrt{6}}{2} \\
\frac{\mathrm{I}}{4}\left(\cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)-\mathrm{I} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)\right) \sqrt{2} 6^{\frac{3}{4}} \\
\cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)-\mathrm{I} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left.\left.\left[\begin{array}{c}
x{\underset{2}{2}}^{\rightarrow}(t)=\left[\begin{array}{c}
-\frac{\sqrt{2} 6^{\frac{1}{4}} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)}{4} \\
-\frac{\sqrt{6} \cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)}{2} \\
\frac{\sqrt{2} 6^{\frac{3}{4}} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)}{4} \\
\cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)
\end{array}\right], x \xrightarrow[3]{ }
\end{array}\right] t\right)=\left[\begin{array}{c}
-\frac{\sqrt{2} 6^{\frac{1}{4}} \cos \left(\sqrt{2} 6^{\frac{1}{4} t} t\right)}{4} \\
\frac{\sqrt{6} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)}{2} \\
\frac{\sqrt{2} 6^{\frac{3}{4}} \cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)}{4} \\
-\sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)
\end{array}\right]\right]
$$

- Consider eigenpair

$$
\left[-\sqrt{2} 6^{\frac{1}{4}},\left[\begin{array}{c}
-\frac{\sqrt{2} \frac{6}{4}^{\frac{1}{4}}}{4} \\
\frac{\sqrt{6}}{2} \\
-\frac{\sqrt{2} 6^{\frac{3}{4}}}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{4}=\mathrm{e}^{-\sqrt{2} 6^{\frac{1}{4}} t} \cdot\left[\begin{array}{c}
-\frac{\sqrt{2} 6 \frac{1}{4}}{4} \\
\frac{\sqrt{6}}{2} \\
-\frac{\sqrt{2} 6 \frac{3}{4}}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \longrightarrow_{2}(t)+c_{3} x \longrightarrow_{3}(t)+c_{4} x \xrightarrow{\rightarrow}_{4}
$$

- Substitute solutions into the general solution

$$
x_{\underline{-}}^{\rightarrow-}=c_{1} \mathrm{e}^{\sqrt{2} 6^{\frac{1}{4}} t} \cdot\left[\begin{array}{c}
\frac{\sqrt{2} \frac{1}{4}_{4}^{4}}{4} \\
\frac{\sqrt{6}}{2} \\
\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\
1
\end{array}\right]+c_{4} \mathrm{e}^{-\sqrt{2} 6^{\frac{1}{4}} t} \cdot\left[\begin{array}{c}
-\frac{\sqrt{2} \frac{1}{4}_{4}^{4}}{4} \\
\frac{\sqrt{6}}{2} \\
-\frac{\sqrt{2} 6^{\frac{1}{4}}}{4} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \sqrt{2} 6^{\frac{1}{4}} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)}{4}-\frac{c_{3} \sqrt{2} 6^{\frac{1}{4}} \cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)}{4} \\
-\frac{c_{2} \sqrt{6} \cos \left(\sqrt{2} 6^{\frac{1}{4} t} t\right)}{2}+\frac{c_{3} \sqrt{6} \sin \left(\sqrt{2} 6^{\frac{1}{4} t} t\right)}{2} \\
\frac{c_{2} \sqrt{2} 6^{\frac{3}{4}} \sin \left(\sqrt{2} 6^{\frac{1}{4} t} t\right)}{4}+\frac{c_{3} \sqrt{2} 6^{\frac{3}{4}} \cos \left(\sqrt{2} 6^{\frac{1}{4} t} t\right)}{4} \\
c_{2} \cos \left(\sqrt{2} 6^{\frac{1}{4}} t\right)-c_{3} \sin \left(\sqrt{2} 6^{\frac{1}{4}} t\right)
\end{array}\right.
$$

- Substitute in vector of dependent variables
- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{2^{\frac{3}{4}} 3^{\frac{1}{4}}\left(-c_{1} \mathrm{e}^{2^{\frac{3}{4}} 3^{\frac{1}{4}} t}+c_{4} \mathrm{e}^{-2^{\frac{3}{4}} 3^{\frac{1}{4} t}}+c_{3} \cos \left(2^{\frac{3}{4}} 3^{\frac{1}{4}} t\right)+c_{2} \sin \left(2^{\frac{3}{4}} 3^{\frac{1}{4}} t\right)\right)}{4}, x_{2}(t)=\frac{\sqrt{6}\left(c_{1} \mathrm{e}^{2^{\frac{3}{4}} 3^{\frac{1}{4}} t}+c_{4} \mathrm{e}^{-2^{\frac{3}{4}} 3^{\frac{1}{4}} t}+c_{3} \sin (\right.}{2}\right.
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 170

```
dsolve([diff (x__1(t),t)=x__2(t), diff(x__ 2(t),t)=2*x__ 3(t), diff (x__ 3(t),t)=3*x__ 4(t), diff(x__
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{-24^{\frac{1}{4} t} t}+c_{2} \mathrm{e}^{24^{\frac{1}{4}} t}-c_{3} \sin \left(24^{\frac{1}{4}} t\right)+c_{4} \cos \left(24^{\frac{1}{4} t} t\right) \\
& x_{2}(t)=-24^{\frac{1}{4}}\left(c_{1} \mathrm{e}^{-24^{\frac{1}{4} t} t}-c_{2} \mathrm{e}^{24^{\frac{1}{4} t} t}+\cos \left(24^{\frac{1}{4} t}\right) c_{3}+\sin \left(24^{\frac{1}{4} t}\right) c_{4}\right) \\
& x_{3}(t)=\sqrt{6}\left(c_{1} \mathrm{e}^{-24^{\frac{1}{4} t}}+c_{2} \mathrm{e}^{24^{\frac{1}{4}} t}-c_{4} \cos \left(24^{\frac{1}{4} t}\right)+c_{3} \sin \left(24^{\frac{1}{4}} t\right)\right) \\
& \left.x_{4}(t)=-\frac{24^{\frac{3}{4}}\left(c_{1} \mathrm{e}^{-2 \frac{1}{4} t}-c_{2} \mathrm{e}^{2 \frac{1}{4} t}\right.}{}-\cos \left(24^{\frac{1}{4} t}\right) c_{3}-\sin \left(24^{\frac{1}{4}} t\right) c_{4}\right) \\
& 6
\end{aligned}
$$

Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 400
DSolve $\left[\left\{x 1^{\prime}[t]==x 2[t], x 2{ }^{\prime}[t]==2 * x 3[t], x 3^{\prime}[t]==3 * x 4[t], x 44^{\prime}[t]==4 * x 1[t]\right\},\{x 1[t], x 2[t], x 3[t], x 4\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) \rightarrow & \frac{1}{4} c_{1} \operatorname{RootSum}\left[\# 1^{4}-24 \&, e^{\# 1 t} \&\right]+\frac{1}{4} c_{2} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1} \&\right] \\
& +\frac{3}{2} c_{4} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{3}} \&\right]+\frac{1}{2} c_{3} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{2}} \&\right] \\
\mathrm{x} 2(t) \rightarrow & \frac{1}{4} c_{2} \operatorname{RootSum}\left[\# 1^{4}-24 \&, e^{\# 1 t} \&\right]+\frac{1}{2} c_{3} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1} \&\right] \\
& +6 c_{1} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{3}} \&\right]+\frac{3}{2} c_{4} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{2}} \&\right] \\
\mathrm{x} 3(t) \rightarrow & \frac{1}{4} c_{3} \operatorname{RootSum}\left[\# 1^{4}-24 \&, e^{\# 1 t} \&\right]+\frac{3}{4} c_{4} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{e^{1 t}}}{\# 1} \&\right] \\
& +3 c_{2} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{3}} \&\right]+3 c_{1} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{2}} \&\right] \\
\mathrm{x} 4(t) \rightarrow & \frac{1}{4} c_{4} \operatorname{RootSum}\left[\# 1^{4}-24 \&, e^{\# 1 t} \&\right]+c_{1} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{\left., \frac{e^{\# 1 t}}{\# 1} \&\right]}{}+\right. \\
& 2 c_{3} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{3}} \&\right]+c_{2} \operatorname{RootSum}\left[\# 1^{4}-24 \&, \frac{e^{\# 1 t}}{\# 1^{2}} \&\right]
\end{aligned}
$$

13.6 problem problem 12

13.6.1 Solution using Matrix exponential method 3418
13.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3421
13.6.3 Maple step by step solution . 3435

Internal problem ID [277]
Internal file name [OUTPUT/277_Sunday_June_05_2022_01_38_06_AM_13138377/index.tex]
Book: Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 417
Problem number: problem 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t)+x_{3}(t)+1 \\
x_{2}^{\prime}(t) & =x_{3}(t)+x_{4}(t)+t \\
x_{3}^{\prime}(t) & =x_{1}(t)+x_{4}(t)+t^{2} \\
x_{4}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+t^{3}
\end{aligned}
$$

13.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]+\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} \\
-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} \\
-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{\mathrm{e}^{2 t}}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} \\
\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} \\
-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} \\
-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} \\
\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}\right) c_{1}+\left(\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2}\right) c_{2}+\left(-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4}\right) c_{3}+\left(-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\right. \\
\left(-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}\right) c_{1}+\left(\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2}\right) c_{3}+\left(-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}\right. \\
\left(-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4}\right) c_{1}+\left(-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}\right) c_{2}+\left(\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}\right) c_{3}+\left(\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t}}{4}\right. \\
\left(\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4}\right) c_{2}+\left(-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}\right) c_{3}+\left(\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}\right.
\end{array}\right. \\
& =\left[\begin{array}{l}
\frac{\left(\left(2 c_{1}-2 c_{3}\right) \cos (t)+2 \sin (t)\left(c_{2}-c_{4}\right)\right) \mathrm{e}^{-t}}{4}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e}^{2 t}}{4}+\frac{c_{1}}{4}-\frac{c_{2}}{4}+\frac{c_{3}}{4}-\frac{c_{4}}{4} \\
\frac{\left(\left(2 c_{2}-2 c_{4}\right) \cos (t)-2 \sin (t)\left(c_{1}-c_{3}\right)\right) \mathrm{e}^{-t}}{4}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e}^{2 t}}{4}-\frac{c_{1}}{4}+\frac{c_{2}}{4}-\frac{c_{3}}{4}+\frac{c_{4}}{4} \\
\frac{\left(\left(-2 c_{1}+2 c_{3}\right) \cos (t)-2 \sin (t)\left(c_{2}-c_{4}\right)\right) \mathrm{e}^{-t}}{4}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e} t_{2 t}^{4}}{4}+\frac{c_{1}}{4}-\frac{c_{2}}{4}+\frac{c_{3}}{4}-\frac{c_{4}}{4} \\
\frac{\left(\left(-2 c_{2}+2 c_{4}\right) \cos (t)+2 \sin (t)\left(c_{1}-c_{3}\right)\right) \mathrm{e}^{-t}}{4}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e}^{2 t}}{4}-\frac{c_{1}}{4}+\frac{c_{2}}{4}-\frac{c_{3}}{4}+\frac{c_{4}}{4}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cccc}
\frac{\left(2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4} & -\frac{\left(2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} & \frac{\left(-2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4} & -\frac{\left(-2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} \\
-\frac{\left(-2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} & \frac{\left(2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4} & -\frac{\left(2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} & \frac{\left(-2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4} \\
\frac{\left(-2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4} & -\frac{\left(-2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} & \frac{\left(2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4} & -\frac{\left(2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} \\
-\frac{\left(2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} & \frac{\left(-2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4} & -\frac{\left(-2 \mathrm{e}^{3 t} \sin (t)+\mathrm{e}^{2 t}-1\right) \mathrm{e}^{-2 t}}{4} & \frac{\left(2 \mathrm{e}^{3 t} \cos (t)+\mathrm{e}^{2 t}+1\right) \mathrm{e}^{-2 t}}{4}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} \\
-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} \\
-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} \\
\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right][\\
& =\left[\begin{array}{c}
-\frac{1}{16} t^{4}-\frac{7}{24} t^{3}+\frac{1}{16} t^{2}-\frac{11}{16} t-\frac{3}{32} \\
\frac{1}{16} t^{4}-\frac{11}{24} t^{3}+\frac{1}{16} t^{2}-\frac{3}{16} t-\frac{35}{32} \\
-\frac{1}{16} t^{4}+\frac{5}{24} t^{3}-\frac{15}{16} t^{2}+\frac{5}{16} t-\frac{19}{32} \\
\frac{1}{16} t^{4}+\frac{1}{24} t^{3}-\frac{7}{16} t^{2}-\frac{19}{16} t+\frac{13}{32}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
-\frac{3}{32}+\frac{\left(\left(c_{1}-c_{3}\right) \cos (t)+\sin (t)\left(c_{2}-c_{4}\right)\right) \mathrm{e}^{-t}}{2}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e}^{2 t}}{4}+\frac{c_{1}}{4}-\frac{c_{2}}{4}+\frac{c_{3}}{4}-\frac{c_{4}}{4}-\frac{t^{4}}{16}-\frac{7 t^{3}}{24}+\frac{t^{2}}{16}-\frac{11 t}{16} \\
-\frac{35}{32}+\frac{\left(\left(c_{2}-c_{4}\right) \cos (t)-\sin (t)\left(c_{1}-c_{3}\right) \mathrm{e}^{-t}\right.}{2}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e}^{2 t}}{4}-\frac{c_{1}}{4}+\frac{c_{2}}{4}-\frac{c_{3}}{4}+\frac{c_{4}}{4}+\frac{t^{4}}{16}-\frac{11 t^{3}}{24}+\frac{t^{2}}{16}-\frac{3 t}{16} \\
-\frac{19}{32}+\frac{\left(\left(-c_{1}+c_{3}\right) \cos (t)-\sin (t)\left(c_{2}-c_{4}\right)\right) \mathrm{e}^{-t}}{2}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e}^{2 t}}{4}+\frac{c_{1}}{4}-\frac{c_{2}}{4}+\frac{c_{3}}{4}-\frac{c_{4}}{4}-\frac{t^{4}}{16}+\frac{5 t^{3}}{24}-\frac{15 t^{2}}{16}+\frac{5 t}{16} \\
\frac{13}{32}+\frac{\left(\left(-c_{2}+c_{4}\right) \cos (t)+\sin (t)\left(c_{1}-c_{3}\right)\right) \mathrm{e}^{-t}}{2}+\frac{\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \mathrm{e}^{2 t}}{4}-\frac{c_{1}}{4}+\frac{c_{2}}{4}-\frac{c_{3}}{4}+\frac{c_{4}}{4}+\frac{t^{4}}{16}+\frac{t^{3}}{24}-\frac{7 t^{2}}{16}-\frac{19 t}{16}
\end{array}\right]
\end{aligned}
$$

13.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]+\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]-\lambda\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-\lambda & 1 & 1 & 0 \\
0 & -\lambda & 1 & 1 \\
1 & 0 & -\lambda & 1 \\
1 & 1 & 0 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-2 \lambda^{2}-4 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=-1+i \\
& \lambda_{4}=-1-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
$-1-i$	1	complex eigenvalue
2	1	real eigenvalue
$-1+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]-(0)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{llll|l}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 3 gives

$$
\begin{gathered}
{\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right]} \\
R_{4}=R_{4}-R_{1} \Longrightarrow\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0
\end{array}\right]} \\
R_{4}=R_{4}-R_{2} \Longrightarrow\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & 0
\end{array}\right] \\
R_{4}=R_{4}+R_{3} \Longrightarrow
\end{gathered}\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]-(2)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-2 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 \\
1 & 0 & -2 & 1 & 0 \\
1 & 1 & 0 & -2 & 0
\end{array}\right]} \\
& R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 \\
0 & \frac{1}{2} & -\frac{3}{2} & 1 & 0 \\
1 & 1 & 0 & -2 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 \\
0 & \frac{1}{2} & -\frac{3}{2} & 1 & 0 \\
0 & \frac{3}{2} & \frac{1}{2} & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{2}}{4} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 \\
0 & 0 & -\frac{5}{4} & \frac{5}{4} & 0 \\
0 & \frac{3}{2} & \frac{1}{2} & -2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{4}=R_{4}+\frac{3 R_{2}}{4} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 \\
0 & 0 & -\frac{5}{4} & \frac{5}{4} & 0 \\
0 & 0 & \frac{5}{4} & -\frac{5}{4} & 0
\end{array}\right] \\
R_{4}=R_{4}+R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 \\
0 & 0 & -\frac{5}{4} & \frac{5}{4} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
0 & -2 & 1 & 1 \\
0 & 0 & -\frac{5}{4} & \frac{5}{4} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t, v_{3}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-1-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left.\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]-(-1-i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cccc}
1+i & 1 & 1 & 0 \\
0 & 1+i & 1 & 1 \\
1 & 0 & 1+i & 1 \\
1 & 1 & 0 & 1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
1+i & 1 & 1 & 0 & 0 \\
0 & 1+i & 1 & 1 & 0 \\
1 & 0 & 1+i & 1 & 0 \\
1 & 1 & 0 & 1+i & 0
\end{array}\right]} \\
R_{3}=R_{3}+\left(-\frac{1}{2}+\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
1+i & 1 & 1 & 0 & 0 \\
0 & 1+i & 1 & 1 & 0 \\
0 & -\frac{1}{2}+\frac{i}{2} & \frac{1}{2}+\frac{3 i}{2} & 1 & 0 \\
1 & 1 & 0 & 1+i & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{array}{cc}
R_{4}=R_{4}+\left(-\frac{1}{2}+\frac{i}{2}\right) R_{1} & \Longrightarrow\left[\begin{array}{cccc|c}
1+i & 1 & 1 & 0 & 0 \\
0 & 1+i & 1 & 1 & 0 \\
0 & -\frac{1}{2}+\frac{i}{2} & \frac{1}{2}+\frac{3 i}{2} & 1 & 0 \\
0 & \frac{1}{2}+\frac{i}{2} & -\frac{1}{2}+\frac{i}{2} & 1+i & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{i R_{2}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
1+i & 1 & 1 & 0 & 0 \\
0 & 1+i & 1 & 1 & 0 \\
0 & 0 & \frac{1}{2}+i & 1-\frac{i}{2} & 0 \\
0 & \frac{1}{2}+\frac{i}{2} & -\frac{1}{2}+\frac{i}{2} & 1+i & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
1+i & 1 & 1 & 0 & 0 \\
0 & 1+i & 1 & 1 & 0 \\
0 & 0 & \frac{1}{2}+i & 1-\frac{i}{2} & 0 \\
0 & 0 & -1+\frac{i}{2} & \frac{1}{2}+i & 0
\end{array}\right] \\
R_{4}=-i R_{3}+R_{4} & \Longrightarrow\left[\begin{array}{cccc|c}
1+i & 1 & 1 & 0 & 0 \\
0 & 1+i & 1 & 1 & 0 \\
0 & 0 & \frac{1}{2}+i & 1-\frac{i}{2} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
1+i & 1 & 1 & 0 \\
0 & 1+i & 1 & 1 \\
0 & 0 & \frac{1}{2}+i & 1-\frac{i}{2} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{2}=-t, v_{3}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
-t \\
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
-t \\
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
-t \\
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
-1 \\
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
-t \\
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
-1 \\
i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=-1+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{cc}
\left.\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]-(-1+i)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccc|c}
1-i & 1 & 1 & 0 & 0 \\
0 & 1-i & 1 & 1 & 0 \\
1 & 0 & 1-i & 1 & 0 \\
1 & 1 & 0 & 1-i & 0
\end{array}\right]} \\
R_{3}=R_{3}+\left(-\frac{1}{2}-\frac{i}{2}\right) R_{1}
\end{array} \Longrightarrow_{R_{4}+\left(-\frac{1}{2}-\frac{i}{2}\right) R_{1}} \Longrightarrow \begin{array}{ccccc|c}
1-i & 1 & 1 & 0 & 0 \\
0 & 1-i & 1 & 1 & 0 \\
0 & -\frac{1}{2}-\frac{i}{2} & \frac{1}{2}-\frac{3 i}{2} & 1 & 0 \\
1 & 1 & 0 & 1-i & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
1-i & 1 & 1 & 0 \\
0 & 1-i & 1 & 1 \\
0 & 0 & \frac{1}{2}-i & 1+\frac{i}{2} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{2}=-t, v_{3}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
-t \\
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
-t \\
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
-t \\
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
i \\
-1 \\
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
-t \\
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i \\
-1 \\
-i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
0	1	1	No	$\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
$-1+i$	1	1	No	$\left[\begin{array}{c}i \\ -1 \\ -i \\ 1\end{array}\right]$
$-1-i$	1	1	No	$\left[\begin{array}{c}-i \\ -1 \\ i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
i \mathrm{e}^{(-1+i) t} \\
-\mathrm{e}^{(-1+i) t} \\
-i \mathrm{e}^{(-1+i) t} \\
\mathrm{e}^{(-1+i) t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
-i \mathrm{e}^{(-1-i) t} \\
-\mathrm{e}^{(-1-i) t} \\
i \mathrm{e}^{(-1-i) t} \\
\mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \ldots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cccc}
-1 & \mathrm{e}^{2 t} & i \mathrm{e}^{(-1+i) t} & -i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & -\mathrm{e}^{(-1+i) t} & -\mathrm{e}^{(-1-i) t} \\
-1 & \mathrm{e}^{2 t} & -i \mathrm{e}^{(-1+i) t} & i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & \mathrm{e}^{(-1+i) t} & \mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cccc}
-\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\
\frac{\mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4} \\
-\frac{i \mathrm{e}^{(1-i) t}}{4} & -\frac{\mathrm{e}^{(1-i) t}}{4} & \frac{i \mathrm{e}^{(1-i) t}}{4} & \frac{\mathrm{e}^{(1-i) t}}{4} \\
\frac{i \mathrm{e}^{(1+i) t}}{4} & -\frac{\mathrm{e}^{(1+i) t}}{4} & -\frac{i \mathrm{e}^{(1+i) t}}{4} & \frac{\mathrm{e}^{(1+i) t}}{4}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cccc}
-1 & \mathrm{e}^{2 t} & i \mathrm{e}^{(-1+i) t} & -i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & -\mathrm{e}^{(-1+i) t} & -\mathrm{e}^{(-1-i) t} \\
-1 & \mathrm{e}^{2 t} & -i \mathrm{e}^{(-1+i) t} & i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & \mathrm{e}^{(-1+i) t} & \mathrm{e}^{(-1-i) t}
\end{array}\right] \int\left[\begin{array}{cccc}
-\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\
\frac{\mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4} \\
-\frac{i \mathrm{e}^{(1-i) t}}{4} & -\frac{\mathrm{e}^{(1-i) t}}{4} & \frac{i \mathrm{e}^{(1-i) t}}{4} & \frac{\mathrm{e}^{(1-i) t}}{4} \\
\frac{i \mathrm{e}^{(1+i) t}}{4} & -\frac{\mathrm{e}^{(1+i) t}}{4} & -\frac{i \mathrm{e}^{(1+i) t}}{4} & \frac{\mathrm{e}^{(1+i) t}}{4}
\end{array}\right]\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3}
\end{array}\right] d t \\
& =\left[\begin{array}{cccc}
-1 & \mathrm{e}^{2 t} & i \mathrm{e}^{(-1+i) t} & -i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & -\mathrm{e}^{(-1+i) t} & -\mathrm{e}^{(-1-i) t} \\
-1 & \mathrm{e}^{2 t} & -i \mathrm{e}^{(-1+i) t} & i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & \mathrm{e}^{(-1+i) t} & \mathrm{e}^{(-1-i) t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{(-1+t)\left(t^{2}+1\right)}{4} \\
\frac{\mathrm{e}^{-2 t}(t+1)\left(t^{2}+1\right)}{4} \\
\frac{(-1+t)(t+i)(t+1) \mathrm{e}^{(1-i) t}}{4} \\
-\frac{(-1+t)(t+1)(i-t) \mathrm{e}^{(1+i) t}}{4}
\end{array}\right] d t \\
& =\left[\begin{array}{cccc}
-1 & \mathrm{e}^{2 t} & i \mathrm{e}^{(-1+i) t} & -i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & -\mathrm{e}^{(-1+i) t} & -\mathrm{e}^{(-1-i) t} \\
-1 & \mathrm{e}^{2 t} & -i \mathrm{e}^{(-1+i) t} & i \mathrm{e}^{(-1-i) t} \\
1 & \mathrm{e}^{2 t} & \mathrm{e}^{(-1+i) t} & \mathrm{e}^{(-1-i) t}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{16} t^{4}-\frac{1}{12} t^{3}+\frac{1}{8} t^{2}-\frac{1}{4} t \\
-\frac{\mathrm{e}^{-2 t}\left(4 t^{3}+10 t^{2}+14 t+11\right)}{32} \\
\frac{\mathrm{e}^{(1-i) t}\left((1+i) t^{3}+(-1-2 i) t^{2}+(-2+2 i) t+3-i\right)}{8} \\
-\frac{\left((-1+i) t^{3}+(1-2 i) t^{2}+(2+2 i) t-3-i\right) \mathrm{e}^{(1+i) t}}{8}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{1}{16} t^{4}-\frac{7}{24} t^{3}+\frac{1}{16} t^{2}-\frac{11}{16} t-\frac{3}{32} \\
\frac{1}{16} t^{4}-\frac{11}{24} t^{3}+\frac{1}{16} t^{2}-\frac{3}{16} t-\frac{35}{32} \\
-\frac{1}{16} t^{4}+\frac{5}{24} t^{3}-\frac{15}{16} t^{2}+\frac{5}{16} t-\frac{19}{32} \\
\frac{1}{16} t^{4}+\frac{1}{24} t^{3}-\frac{7}{16} t^{2}-\frac{19}{16} t+\frac{13}{32}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \\
c_{1} \\
-c_{1} \\
c_{1}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{2 t}
\end{array}\right]+\left[\begin{array}{c}
i c_{3} \mathrm{e}^{(-1+i) t} \\
-c_{3} \mathrm{e}^{(-1+i) t} \\
-i c_{3} \mathrm{e}^{(-1+i) t} \\
c_{3} \mathrm{e}^{(-1+i) t}
\end{array}\right]+\left[\begin{array}{c}
-i c_{4} \mathrm{e}^{(-1-i) t} \\
-c_{4} \mathrm{e}^{(-1-i) t} \\
i c_{4} \mathrm{e}^{(-1-i) t} \\
c_{4} \mathrm{e}^{(-1-i) t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{16} t^{4}-\frac{7}{24} t^{3}+\frac{1}{16} t^{2}-\frac{11}{16} t \\
\frac{1}{16} t^{4}-\frac{11}{24} t^{3}+\frac{1}{16} t^{2}-\frac{3}{16} t \\
-\frac{1}{16} t^{4}+\frac{5}{24} t^{3}-\frac{15}{16} t^{2}+\frac{5}{16} t \\
\frac{1}{16} t^{4}+\frac{1}{24} t^{3}-\frac{7}{16} t^{2}-\frac{19}{16} t
\end{array}\right.
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+c_{2} \mathrm{e}^{2 t}+i c_{3} \mathrm{e}^{(-1+i) t}-i c_{4} \mathrm{e}^{(-1-i) t}-\frac{t^{4}}{16}-\frac{7 t^{3}}{24}+\frac{t^{2}}{16}-\frac{11 t}{16}-\frac{3}{32} \\
c_{1}+c_{2} \mathrm{e}^{2 t}-c_{3} \mathrm{e}^{(-1+i) t}-c_{4} \mathrm{e}^{(-1-i) t}+\frac{t^{4}}{16}-\frac{11 t^{3}}{24}+\frac{t^{2}}{16}-\frac{3 t}{16}-\frac{35}{32} \\
-c_{1}+c_{2} \mathrm{e}^{2 t}-i c_{3} \mathrm{e}^{(-1+i) t}+i c_{4} \mathrm{e}^{(-1-i) t}-\frac{t^{4}}{16}+\frac{5 t^{3}}{24}-\frac{15 t^{2}}{16}+\frac{5 t}{16}-\frac{19}{32} \\
c_{1}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{(-1+i) t}+c_{4} \mathrm{e}^{(-1-i) t}+\frac{t^{4}}{16}+\frac{t^{3}}{24}-\frac{7 t^{2}}{16}-\frac{19 t}{16}+\frac{13}{32}
\end{array}\right]
$$

13.6.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{2}(t)+x_{3}(t)+1, x_{2}^{\prime}(t)=x_{3}(t)+x_{4}(t)+t, x_{3}^{\prime}(t)=x_{1}(t)+x_{4}(t)+t^{2}, x_{4}^{\prime}(t)=x_{1}(t)+x\right.
$$

- Define vector

$$
\underset{\longrightarrow}{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3}
\end{array}\right]
$$

- \quad System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right] \cdot \underline{\longrightarrow}(t)+\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[-1-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\underline{x}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I}) t} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-t} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\mathrm{I}(\cos (t)-\mathrm{I} \sin (t)) \\
-\cos (t)+\mathrm{I} \sin (t) \\
\mathrm{I}(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(t)=\left[\begin{array}{cccc}
-1 & \mathrm{e}^{2 t} & -\mathrm{e}^{-t} \sin (t) & -\mathrm{e}^{-t} \cos (t) \\
1 & \mathrm{e}^{2 t} & -\mathrm{e}^{-t} \cos (t) & \mathrm{e}^{-t} \sin (t) \\
-1 & \mathrm{e}^{2 t} & \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t) \\
1 & \mathrm{e}^{2 t} & \mathrm{e}^{-t} \cos (t) & -\mathrm{e}^{-t} \sin (t)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cccc}
-1 & \mathrm{e}^{2 t} & -\mathrm{e}^{-t} \sin (t) & -\mathrm{e}^{-t} \cos (t) \\
1 & \mathrm{e}^{2 t} & -\mathrm{e}^{-t} \cos (t) & \mathrm{e}^{-t} \sin (t) \\
-1 & \mathrm{e}^{2 t} & \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t) \\
1 & \mathrm{e}^{2 t} & \mathrm{e}^{-t} \cos (t) & -\mathrm{e}^{-t} \sin (t)
\end{array}\right] \cdot \frac{}{\left[\begin{array}{cccc}
-1 & 1 & 0 & -1 \\
1 & 1 & -1 & 0 \\
-1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cccc}
\frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} \\
-\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} \\
-\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} \\
\frac{\mathrm{e}^{2 t}}{4}-\frac{1}{4}+\frac{\mathrm{e}^{-t} \sin (t)}{2} & -\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{1}{4} & -\frac{\mathrm{e}^{-t} \sin (t)}{2}-\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{1}{4}+\frac{\mathrm{e}^{-t} \cos (t)}{2}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$

$$
x_{\underline{\rightarrow}}{ }^{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)
$$

- Take the derivative of the particular solution

$$
x_{\square}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x{ }_{\square}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{-}^{\rightarrow}(t)=\left[\begin{array}{c}
-\frac{3}{32}+\frac{(3 \sin (t)-\cos (t)) \mathrm{e}^{-t}}{4}-\frac{t^{4}}{16}-\frac{7 t^{3}}{24}+\frac{t^{2}}{16}-\frac{11 t}{16}+\frac{11 \mathrm{e}^{2 t}}{32} \\
-\frac{35}{32}+\frac{(\sin (t)+3 \cos (t)) \mathrm{e}^{-t}}{4}+\frac{t^{4}}{16}-\frac{11 t^{3}}{24}+\frac{t^{2}}{16}-\frac{3 t}{16}+\frac{11 \mathrm{e}^{2 t}}{32} \\
-\frac{19}{32}+\frac{(-3 \sin (t)+\cos (t)) \mathrm{e}^{-t}}{4}-\frac{t^{4}}{16}+\frac{5 t^{3}}{24}-\frac{15 t^{2}}{16}+\frac{5 t}{16}+\frac{11 \mathrm{e}^{2 t}}{32} \\
\frac{13}{32}+\frac{(-\sin (t)-3 \cos (t)) \mathrm{e}^{-t}}{4}+\frac{t^{4}}{16}+\frac{t^{3}}{24}-\frac{7 t^{2}}{16}-\frac{19 t}{16}+\frac{11 \mathrm{e}^{2 t}}{32}
\end{array}\right]
$$

- Plug particular solution back into general solution
- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{32}+\frac{\left(\left(-1-4 c_{4}\right) \cos (t)+\left(3-4 c_{3}\right) \sin (t)\right) \mathrm{e}^{-t}}{4}+\frac{\left(11+32 c_{2}\right) \mathrm{e}^{2 t}}{32}-\frac{t^{4}}{16}-\frac{7 t^{3}}{24}+\frac{t^{2}}{16}-\frac{11 t}{16}-c_{1} \\
-\frac{35}{32}+\frac{\left(\left(3-4 c_{3}\right) \cos (t)+\sin (t)\left(1+4 c_{4}\right)\right) \mathrm{e}^{-t}}{4}+\frac{\left(11+32 c_{2}\right) \mathrm{e}^{2 t}}{32}+\frac{t^{4}}{16}-\frac{11 t^{3}}{24}+\frac{t^{2}}{16}-\frac{3 t}{16}+c_{1} \\
-\frac{19}{32}+\frac{\left(\left(1+4 c_{4}\right) \cos (t)+\sin (t)\left(4 c_{3}-3\right)\right) \mathrm{e}^{-t}}{4}+\frac{\left(11+32 c_{2}\right) \mathrm{e}^{2 t}}{32}-\frac{t^{4}}{16}+\frac{5 t^{3}}{24}-\frac{15 t^{2}}{16}+\frac{5 t}{16}-c_{1} \\
\frac{13}{32}+\frac{\left(\left(4 c_{3}-3\right) \cos (t)+\left(-1-4 c_{4}\right) \sin (t)\right) \mathrm{e}^{-t}}{4}+\frac{\left(11+32 c_{2}\right) \mathrm{e}^{2 t}}{32}+\frac{t^{4}}{16}+\frac{t^{3}}{24}-\frac{7 t^{2}}{16}-\frac{19 t}{16}+c_{1}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{3}{32}+\frac{\left(\left(-1-4 c_{4}\right) \cos (t)+\left(3-4 c_{3}\right) \sin (t)\right) \mathrm{e}^{-t}}{4}+\frac{\left(11+32 c_{2}\right) \mathrm{e}^{2 t}}{32}-\frac{t^{4}}{16}-\frac{7 t^{3}}{24}+\frac{t^{2}}{16}-\frac{11 t}{16}-c_{1}, x_{2}(t)=-\frac{3}{3}\right.
$$

Solution by Maple

Time used: 0.203 (sec). Leaf size: 273

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}\left(x_{-} 1(t), t\right)=x_{-} 2(t)+x_{-} 3(t)+1, \operatorname{diff}\left(x_{-} 2(t), t\right)=x_{-} 3(t)+x_{-} 4(t)+t, \operatorname{diff}\left(x_{-} 3(t), t\right)=\right.\right. \\
& x_{1}(t)=\frac{t^{2}}{16}-\frac{7 t^{3}}{24}-\frac{t^{4}}{16}+\frac{c_{1} \mathrm{e}^{2 t}}{2}-\frac{11 t}{16}+c_{4}+\frac{\mathrm{e}^{-t} \sin (t) c_{2}}{2} \\
& -\frac{\mathrm{e}^{-t} \sin (t) c_{3}}{2}-\frac{\mathrm{e}^{-t} \cos (t) c_{2}}{2}-\frac{\mathrm{e}^{-t} \cos (t) c_{3}}{2} \\
& x_{2}(t)=\frac{t^{4}}{16}+\frac{\mathrm{e}^{-t} \sin (t) c_{2}}{2}+\frac{\mathrm{e}^{-t} \sin (t) c_{3}}{2}+\frac{\mathrm{e}^{-t} \cos (t) c_{2}}{2} \\
& -\frac{\mathrm{e}^{-t} \cos (t) c_{3}}{2}-\frac{11 t^{3}}{24}+\frac{c_{1} \mathrm{e}^{2 t}}{2}+\frac{t^{2}}{16}-c_{4}-\frac{3 t}{16}-\frac{19}{16} \\
& x_{3}(t)=-\frac{t^{4}}{16}-\frac{\mathrm{e}^{-t} \sin (t) c_{2}}{2}+\frac{\mathrm{e}^{-t} \sin (t) c_{3}}{2}+\frac{\mathrm{e}^{-t} \cos (t) c_{2}}{2} \\
& +\frac{\mathrm{e}^{-t} \cos (t) c_{3}}{2}+\frac{5 t^{3}}{24}+\frac{c_{1} \mathrm{e}^{2 t}}{2}-\frac{15 t^{2}}{16}+c_{4}+\frac{5 t}{16}-\frac{1}{2} \\
& x_{4}(t)=\frac{t^{4}}{16}-\frac{\mathrm{e}^{-t} \sin (t) c_{2}}{2}-\frac{\mathrm{e}^{-t} \sin (t) c_{3}}{2}-\frac{\mathrm{e}^{-t} \cos (t) c_{2}}{2} \\
& +\frac{\mathrm{e}^{-t} \cos (t) c_{3}}{2}+\frac{t^{3}}{24}+\frac{c_{1} \mathrm{e}^{2 t}}{2}-\frac{7 t^{2}}{16}-c_{4}-\frac{19 t}{16}+\frac{5}{16}
\end{aligned}
$$

Solution by Mathematica

Time used: 1.491 (sec). Leaf size: 442
DSolve $\left[\left\{x 1^{\prime}[t]==x 2[t]+x 3[t]+1, x 2^{\prime}[t]==x 3[t]+x 4[t]+t, x 3^{\prime}[t]==x 1[t]+x 4[t]+t \wedge 2, x 44^{\prime}[t]==x 1[t]+x 2\right.\right.$

$$
\begin{array}{r}
\begin{array}{r}
\mathrm{x} 1(t) \rightarrow \frac{1}{96} e^{-t}\left(e ^ { t } \left(-6 t^{4}-28 t^{3}+6 t^{2}-66 t\right.\right.
\end{array} \\
\left.+3\left(8 c_{1}\left(e^{2 t}+1\right)+8 c_{2}\left(e^{2 t}-1\right)+8 c_{3} e^{2 t}+8 c_{4} e^{2 t}-3+8 c_{3}-8 c_{4}\right)\right) \\
\left.\quad+48\left(c_{1}-c_{3}\right) \cos (t)+48\left(c_{2}-c_{4}\right) \sin (t)\right)
\end{array} \begin{array}{r}
\mathrm{x} 2(t) \rightarrow \frac{1}{96} e^{-t}\left(e ^ { t } \left(6 t^{4}-44 t^{3}+6 t^{2}-18 t\right.\right. \\
\left.+3\left(8 c_{1}\left(e^{2 t}-1\right)+8 c_{2}\left(e^{2 t}+1\right)+8 c_{3} e^{2 t}+8 c_{4} e^{2 t}-35-8 c_{3}+8 c_{4}\right)\right) \\
\\
\left.+48\left(c_{2}-c_{4}\right) \cos (t)-48\left(c_{1}-c_{3}\right) \sin (t)\right)
\end{array} \begin{array}{r}
\mathrm{x} 3(t) \rightarrow \frac{1}{96} e^{-t}\left(e ^ { t } \left(-6 t^{4}+20 t^{3}-90 t^{2}+30 t\right.\right. \\
\left.+3\left(8 c_{1}\left(e^{2 t}+1\right)+8 c_{2}\left(e^{2 t}-1\right)+8 c_{3} e^{2 t}+8 c_{4} e^{2 t}-19+8 c_{3}-8 c_{4}\right)\right) \\
\left.\quad-48\left(c_{1}-c_{3}\right) \cos (t)-48\left(c_{2}-c_{4}\right) \sin (t)\right)
\end{array} \begin{array}{r}
\mathrm{x} 4(t) \rightarrow \frac{1}{96} e^{-t}\left(e ^ { t } \left(6 t^{4}+4 t^{3}-42 t^{2}-114 t\right.\right. \\
\left.+3\left(8 c_{1}\left(e^{2 t}-1\right)+8 c_{2}\left(e^{2 t}+1\right)+8 c_{3} e^{2 t}+8 c_{4} e^{2 t}+13-8 c_{3}+8 c_{4}\right)\right) \\
\left.-48\left(c_{2}-c_{4}\right) \cos (t)+48\left(c_{1}-c_{3}\right) \sin (t)\right)
\end{array}
$$

