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1.1 problem Problem 1.1(a)
1.1.1 Maple step by step solution . . . ... ... ... ........ (]

Internal problem ID [12394]
Internal file name [OUTPUT/11046_Wednesday_October_04_2023_01_27_34_AM_22931473/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.1(a).

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "reduction__of_order", "second__or-
der__change_ of variable_on_y_ method_ 2", "second_ order__ode_non_ _con-
stant_ coeff transformation on_B"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

(z-1)y" —yz+y=0

Given that one solution of the ode is

Yy =¢€"

Given one basis solution y;(x), then the second basis solution is given by

e—(fpdm)
y2(z) = 11 / ———dz
Y1

Where p(z) is the coefficient of y’ when the ode is written in the normal form
y' +p(@)y +q(z)y = f(z)

Looking at the ode to solve shows that

p(z) = —



Therefore

1o (z) = & ( / (z - 1)e—wdx>
1(z) = —eFz e

Hence the solution is
y = c1y1(x) + coya(z)

=e%c; — cpezre™”

Summary

The solution(s) found are the following

y=e"ci —coe’re” (1)

Verification of solutions

y=-¢e"c; —ce’xe™”
Verified OK.

1.1.1 Maple step by step solution

Let’s solve

(z-1)y" —yz+y=0

° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
V==t 2
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

V- 24 =0
O Check to see if o = 1 is a regular singular point

o Define functions



[Pae) = 55, Po(@) = 741
(x — 1) - Py(z)is analyticat z = 1

((z = 1) - Py(z))
(z —1)%- Ps(z) is analytic at z = 1
(z—1)° Py(2))

x = lis a regular singular point

=-1

=1

=0

z=1

Check to see if o = 1 is a regular singular point
To=1

Multiply by denominators

(z—1)y" —yz+y=0

Change variables using = u + 1 so that the regular singular point is at u =0
u(Eyw) + (—u—1) () +y(w) =0

Assume series solution for y(u)
y(u) = 3 apu™*
k=0

Rewrite ODE with series expansions

Convert u™ - (£y(u)) to series expansion for m = 0..1
u™ . (%y(u)) — kZ: ak(k + ,,-) uk+r—1+m

=0
Shift index using k— >k +1—m

o
u™ - (Ey(w) = X appem(k+1—m4r)uttr
k=—1+m
Convert u - (%y(@) to series expansion

(e o]

u- (L) = ¥ axlk+r) (k+r—1)u+
k=0

Shift index using k— >k + 1

u- (%y(U)) = > appi(k+147)(k+7r)ubtr
k=-—1

Rewrite ODE with series expansions



e o]

aor(—2+r)u " + (Z (ap1(k+1+7)(k+7r—1)—ar(k+r—1))urT
k=0

apcannot be 0 by assumption, giving the indicial equation

r(=24r)=0
Values of r that satisfy the indicial equation
r € {0,2}

Each term in the series must be 0, giving the recursion relation
(k+r—1)(aks1(k+1+7)—ax) =0

Recursion relation that defines series solution to ODE
Gkl = EiEy

Recursion relation forr =0

k1 = 1

Solution forr =0

B 1)

y(u) = kz_:oakuk,akﬂ = ka—ﬁl

Revert the change of variablesu =z — 1

A - ) )
yz,;)ak(m_ 1)", a1 = k—fl}

Recursion relation for r = 2

ax+1 = ka—_(fg,

Solution for r = 2

[ = k+2 a

V) = 55 o = T]

Revert the change of variablesu =z — 1

[ x k42
y= 5 e~ 1" o = —]

Combine solutions and rename parameters

Y= <Z ar(z — 1)k) + (Z be(z — 1)k+2) y Ql+k = ﬁ,__kk»ka = ka’fg,
L k=0

k=0

)=o



Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

Ldsolve([(x-l)*diff(y(x),x$2)—x*diff(y(x),x)+y(x)=0,exp(x)],singsol=a11) J

y(x) = ce” + 1

v/ Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 17

LDSolve[(x-l)*y"[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) = c1e” — cox



1.2 problem Problem 1.1(b)
1.2.1 Maple step by step solution . . . . ... ... ... ... ... )

Internal problem ID [12395]
Internal file name [OUTPUT/11047_Wednesday_October_04_2023_01_27_35_AM_81430884/index.tex]|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.1(b).

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "reduction__of_order", "second__or-
der__bessel _ode", "second__order__change_of variable_on_y_ method_1"

Maple gives the following as the ode type

[_Lienard]

2y +2y +yz =0

Given that one solution of the ode is

sin (z
Y1 = ( )

T

Given one basis solution y; (x), then the second basis solution is given by

e—(fpdm)
¥2(z) =y (/ — dx)
Y1

Where p(z) is the coefficient of ¢’ when the ode is written in the normal form
y' +p()y +q(z)y = f(z)

Looking at the ode to solve shows that

p(z) = ;



Therefore
. e (f %dw) z2
Sin (l‘) <f Wdl’

T
1

Yy2(z) =

__sin(x)

— 2 _ 4
y2 (x) T / Sin(g)z Y T

T

_sin(z) ([ csc(z)” dx)

yo(z) = T

_sin () cot (z)

Y2 () = T

Hence the solution is
y = ayi(z) + coya()
_sin(z)a  cpsin(z) cot (2)
- T T

Summary
The solution(s) found are the following
_sin(z)a  czsin(z) cot (2)

y = (1)

T T

Verification of solutions

_sin(z)er  c¢psin(z) cot (z)

T T

Verified OK.

1.2.1 Maple step by step solution

Let’s solve

yvV'e+2y +yr=0

° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
y' =% _y
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear



Y +% +y=0
Check to see if xg = 0 is a regular singular point

Define functions
[PQ(.’L') = %,Pg(m) = 1]

z - Py(x) is analytic at z = 0

(z - Po(z))

=0

z? - P3(z) is analytic at z = 0

=0

z=0

(«* - Py(x))

x = Qis a regular singular point
Check to see if o = 0 is a regular singular point
zo=0
Multiply by denominators
YV'z+2y +yx=0
Assume series solution for y
Y= i T
k=0
Rewrite ODE with series expansions

Convert z - y to series expansion
o0
zoy="3 aprh T
k=0
Shift index using k— >k — 1
o0
Toy=> ap_ ot
k=1

Convert 3 to series expansion

y/ — kz: ak(k + ’I“) k=1
=0

Shift index using k— >k + 1

o0
v = app1(k+r+1)zF
k=1

Convert x - y” to series expansion

10



e}

-y = ap(k+7)(k+7r—1)zFr1
k=0
Shift index using k— >k + 1

-y = > app1(k+r+1)(k+r)zktr
k=1

Rewrite ODE with series expansions

o0

ar(l+7r)z " +a;(1+7)(2+7)2" + (Z (ap1(k+r+1)(k+2+7)+ap_1)x*T

k=1
apcannot be 0 by assumption, giving the indicial equation
r(l+r)=0

Values of r that satisfy the indicial equation

re {-1,0}

Each term must be 0

ai(l+7r)(2+7r)=0

Each term in the series must be 0, giving the recursion relation
apr1(k+r+1)(k+2+7r)+ar1=0

Shift index using k— >k + 1
apr2(k+2+7)(k+3+7r)+ar=0

Recursion relation that defines series solution to ODE

W2 = = (rzro) (hT3+7)

Recursion relation for r = —1

Ut2 = ~ (D) (57)

Solution for r = —1

{y = éakxk_l,aHg =~y 0 = 0]

Recursion relation forr =0
— ag
k+2 = ~ (k12)(k+3)

Solution forr =0

o0
[y = kZ_Oakx’“, ap42 = —(,64_2‘;%, 201 = 0}

Combine solutions and rename parameters

11

) =0



o0 _ oo a b
[y N (éa’““"k 1) i (kzzob’“xk) k2 = —aRtEr 0 = 0 Okie = — Gyt 201 = 0

Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve([x*diff(y(x),x$2)+2*diff(y(x),x)+x*y(x)=0,sin(x)/x],singsol=a11) J

_ cysin () + ¢y cos (z)
T

y(z)

v/ Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 37

LDSolve[x*y"[X]+2*y'[x]+x*y[x]== ,y[x],x,IncludeSingularSolutions -> True] J

2c1e7® — jeqel®
2z

y(z) =

12



1.3 problem Problem 1.3(a)

1.3.1 Solving as second order linear constant coeffode . ... .. .. [13]
1.3.2  Solving as linear second order ode solved by an integrating factor

ode . . .. 17
1.3.3 Solving using Kovacic algorithm . . . . . . . ... ... ..... 19
1.3.4 Maple step by step solution . . . . ... ... ... .. ... .. 251

Internal problem ID [12396]
Internal file name [OUTPUT/11048_Wednesday_October_04_2023_01_27_35_AM_74078627/index.tex|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.3(a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order__ode_ solved_ by _an__integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

yll_2yl+y:x%e$

1.3.1 Solving as second order linear constant coeff ode
This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=-2,C =1, f(z) = z2e”. Let the solution be
Y=Yt Y

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// _ 2y/ + y — 0

13



This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A = 1, B = —2,C = 1. Let the solution be y = **. Substituting
this into the ODE gives
MeM —20eM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M -2 +1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1

= — —_— 2 _
A12 54 + 2A\/B 4AC
Substituting A =1, B = —2,C =1 into the above gives
2 1 ;
Mg = + (=2)" = (4) (1) (1)
2) (@) @) (1) \/
=1
Hence this is the case of a double root A\; 2 = —1. Therefore the solution is

y = c1e” + cox €” (1)
Therefore the homogeneous solution yy, is

yn = €%cy + coz €”

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Up(Z) = w1y + uaye (1)

Where uj,us to be determined, and y,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

Yy =¢€"

Yo =1xe”

14



In the Variation of parameters u;, us are found using

_ y2f ()

= /aW(x) )
[ nf(z)

Y2 = / aW (z) (3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
v Y
e’ e’
W= d d
w(€") (ze?)
Which gives
e’ e’
W =

e® xe+e”

Therefore
W = (") (xe” +€") — (ze”) (e7)
Which simplifies to

Which simplifies to

Therefore Eq. (2) becomes

5
U = — dx
eQm
5
U] = —/a:2dx

2z

Which simplifies to

Hence

NI~

Uy = —

15



And Eq. (3) becomes

Which simplifies to

Hence

Therefore the particular solution, from equation (1) is

7
4r2e®

Yp() = 35

Therefore the general solution is

Y=Ynt+Y
(e%c; + =) 4 476"
= (e"c1 +cx e
1+ Co 35

(o + )+4a:%e””
=e"(cx + ¢
() 2 1 35

Which simplifies to

Summary

The solution(s) found are the following

(o + )+4x%em
=e"(cor + ¢
Y 2 1 35

16
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Figure 1: Slope field plot

Verification of solutions

4x%e””
35

y=-¢e"(cex+c1)+

Verified OK.

1.3.2 Solving as linear second order ode solved by an integrating factor

ode

The ode satisfies this form

y”-l—p(.’l)) yl+

(p(z)* +p'(z))y
2

—2. Therefore, there is an integrating factor given by

Where p(z)

17



Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

Integrating once gives

Integrating again gives

Hence the solution is

dxie®
35

y= + c1ze® + cpe”

Summary
The solution(s) found are the following

dx7e®
35

y= + cize” 4 cpe” (1)

18
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Figure 2: Slope field plot

)

yix

Verification of solutions

4x%e””
35

+ iz e® + cye”

y:

Verified OK.

1.3.3 Solving using Kovacic algorithm

Writing the ode as

0

v -2 +y
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

B
ﬂda)

= yef

2(z)

19



Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 3: Necessary conditions for each Kovacic case

20



The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_Ede

Which simplifies to

The second solution - to the original ode is found using reduction of order

ef_%dz
y2 = yl/ 2 d.’E
Y

1

Substituting gives

21



Therefore the solution is

Yy = c1y1 + Y2
= c1(€”) + c2(e”())

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' =2 +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

yn = €%cy + cor €”

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp() = wiyr + uaye (1)

Where uj,us to be determined, and yi,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

€T

hn =¢€

Yo =1xe”

In the Variation of parameters u;, us are found using
y2f(z)
= _ 2
u / aW (z) @)
)

[ nf(z
42 = / aW (z) 3)

22



Where W (z) is the Wronskian and a is the coefficient in front of y” in the given ODE
The Wronskian is given by W =

L . Hence
Y Y
e T e”®
W= d d
%) (ze”)
Which gives
e” T e”®
W =
e® xe+ef
Therefore

Which simplifies to

Which simplifies to

Therefore Eq. (2) becomes

Which simplifies to

U] = — / r3d
Hence
213
Uy = — 7
And Eq. (3) becomes

23



Which simplifies to

3
Uy = / r2dx
Hence

Nt

2z
5

Ug =
Therefore the particular solution, from equation (1) is

Azie®

Therefore the general solution is

Y=Y+Yp
(e"c1 + coxe”) + doter
= (e%c1 + cox
1+ Co 35

ez + 1) + Azze®
=e

Yy Co C1 35
Summary

Which simplifies to

The solution(s) found are the following

=e"(coax + 1) + doter
y= 2 1 35

24
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Figure 3: Slope field plot

Verification of solutions

4x%e””
35

y=¢e"(cox+c1) +

Verified OK.

Maple step by step solution

1.34

Let’s solve

T

3

=XTz2€e

v =2y +y

Highest derivative means the order of the ODE is 2

yl/

Characteristic polynomial of homogeneous ODE

r?—2r+1=0

Factor the characteristic polynomial

(r—1)*=0

Root of the characteristic polynomial

25



r=1

1st solution of the homogeneous ODE

yi1(z) =¢€°

Repeated root, multiply y;(z) by x to ensure linear independence
yo(z) =z €”

General solution of the ODE

y = c1y1(@) + c2y2() + yp()

Substitute in solutions of the homogeneous ODE

y = €%c1 + oz €° + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
5@ = (@) ([ waHityde) + @ ( wtaiityds) S (@) = aie’
Wronskian of solutions of the homogeneous equation

T

e re”®

W (y1(z),y2(z)) =

e® xe+ef

Compute Wronskian

W(y1(z), y2(z)) = e*”

Substitute functions into equation for y,(z)

Yp(z) = €° (— (f xgdx> + (f w%dx> x)
Compute integrals
7
yp( ) 4ﬁ;f
Substitute particular solution into general solution to ODE

7
4x2e

Y =coze® +e"cy +
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

-

Ldsolve(diff(y(x),x$2)—2*diff(y(x),x)+y(x)=x‘(3/2)*exp(x),y(x), singsol=all) }

- Az3
y(z) =€ o+ azr+ 35

v/ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 29

LDSolve[y"[x]-2*y'[x]+y[x]==x‘(3/2)*Exp[x],y[x],x,IncludeSingularSolutions -?JTrue]

1
y(z) = gez (42"/% + 35¢, + 35¢1)
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1.4 problem Problem 1.3(b)

1.4.1 Solving as second order linear constant coeffode . ... .. .. 28]
1.4.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 33|
1.4.3 Maple step by step solution . . . . . ... .. ... ... ... 391

Internal problem ID [12397]
Internal file name [OUTPUT/11049_Wednesday_October_04_2023_01_27_37_AM_60955606/index . tex|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.3(b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" + 4y = 2sec (2z)

1.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(z) + By'(z) + Cy(z) = f(x)

Where A =1,B =0,C =4, f(z) = 2sec (2z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// + 4y — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0
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Where in the above A = 1, B = 0,C = 4. Let the solution be y = **. Substituting this
into the ODE gives
M 4 4eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
NM+4=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C = 4 into the above gives
M = s 07— (4 (1) (8
YT O T @0
= 42

Hence

AL =42

)\2 = -2
Which simplifies to

AL =21

A= —2

Since roots are complex conjugate of each others, then let the roots be
)\1,2 =ax Z,B
Where a = 0 and 8 = 2. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (2z) + ¢y sin (27))

y = ¢1 cos (2x) + ¢y sin (2z)
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Therefore the homogeneous solution yy, is

yn = ¢ cos (2z) + ¢ sin (2x)

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Up(Z) = w1y + uayo (1)

Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x)
Yo = sin (2z)

In the Variation of parameters u;, us are found using
y2f(z)
= — 2
“ / aW () @)

. yl.f(x)
uz_/aW(x) 3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = v . Hence

Y Yo

_ | oos (2z) sin (2z)
4 (cos (2z)) L(sin(2z))
Which gives
cos(2z)  sin(2x)
—2sin (2z) 2cos (2z)

Therefore
W = (cos (2z)) (2 cos (2z)) — (sin (2z)) (—2sin (2z))
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Which simplifies to
W = 2cos (2z)? + 2sin (2z)?

Which simplifies to

Therefore Eq. (2) becomes

Uy = — X

25sin (2x) sec (2z)
|

Which simplifies to

Uy = — /tan (2z) dx

Hence
In (14 tan (2x)2)
4

Uy = —

And Eq. (3) becomes

2 2 2
u2=/ cos ( xgsec( x) i

Which simplifies to

Uy = /1dx

Hence
U =T
Which simplifies to
In (sec (2z)?)
U =————>==
4
U =T

Therefore the particular solution, from equation (1) is

() = _In (sec (2951)l ) cos (2z) | sin (22) 2
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(1)

) cos (22) + sin (2z) x)
+sin (2z) x

4

In (sec (2z)?
In (sec (2z)*) cos (2z)

(¢1 cos (2z) + cosin (22)) + <-.

y = ¢y co8 (2z) + cpsin (2z) —

Yn + Yp

Y
The solution(s) found are the following

Therefore the general solution is

Summary
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In (sec (2z)?) cos (2z)
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y = c1cos (2z) + cpsin (2z) —

Verification of solutions

Verified OK.



1.4.2 Solving using Kovacic algorithm

Writing the ode as

y' +4y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=1
B=0
C=4

Applying the Liouville transformation on the dependent variable gives
2(x) = yel 2%

Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
r = __4
1
Comparing the above to (5) shows that
s=—4
t=1

Therefore eq. (4) becomes

2"(r) = —4z(x)

1)
2)

3)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 5: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

. 4 . . vaci .
Since r 4 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz
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Since B = 0 then the above reduces to

Y1=2
= cos (2x)
Which simplifies to
y1 = cos (2x)

The second solution ys to the original ode is found using reduction of order

ef_%dx
y2 = yl/ 2 dw

10

Since B = 0 then the above becomes

Yo =11 / yi% dz
= cos (2z) / ng)z dx
= cos (2z) <w>

Therefore the solution is

Y =11 + CaYo

= c1(cos (22)) + ¢ (COS (22) (W))

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

yl/_+_4y=0
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The homogeneous solution is found using the Kovacic algorithm which results in

co sin (2z)

yn = c1 cos (2z) + 5

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = wiyr + uaye (1)

Where uj,us to be determined, and yi,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2z)
sin (2x
Yo = ; )

In the Variation of parameters u, us are found using

_ y2f ()

v = / aW (z) @)
[ nf(z)

Y2 = / aW (z) 3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
v Y
in(27)
cos (2z) ==

4 (cos(2z)) 2 ( —Sin(;m) )
Which gives
cos (2x) w

—2sin (2z) cos (2x)
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Therefore

W = (cos (22)) (cos (2z)) — <Sin f”) (=2sin (22))

Which simplifies to
W = sin (2z)* + cos (2z)

Which simplifies to

Therefore Eq. (2) becomes

v = — / sin (2x)1sec (2x) i

Which simplifies to

up = — /tan (2z) dx

Hence
In (1 + tan (2z)2)
4

Uy = —

And Eq. (3) becomes

y = / 2 cos (23? sec (2z) i

Which simplifies to

Hence
Ug = 2
Which simplifies to
In (sec (2x)2)
Uy=—-——-" =
4
Uy = 22
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(1)

) cos (22) + sin (2x) x)
(22) + sin (2z) =

(22) + sin (2z) =
4

In (sec (2z)
In (sec (2z)?) cos (22

)+<_

In (sec (2z)?) cos (2@
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e e e e e a—————a ~
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¢y sin (2z)

¢o sin (2z)
2

Yp(z) = —
y = ¢ cos (2z) +

Yn + Yp
<cl cos (2x) +

Therefore the particular solution, from equation (1) is
Yy

The solution(s) found are the following

Therefore the general solution is
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In (sec (2z)?) cos (22
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Verification of solutions

Verified OK.



1.4.3 Maple step by step solution

Let’s solve

y" + 4y = 2sec (2z)

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r24+4=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
r=(—-2L2I)

. 1st solution of the homogeneous ODE

y1(z) = cos (2z)
° 2nd solution of the homogeneous ODE
yo(z) = sin (2z)
° General solution of the ODE
y = an(z) + cap2() + yp()
. Substitute in solutions of the homogeneous ODE
y = c1 cos (2z) + ¢y sin (2z) + yp(x)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(z) is the forcing function
5@ = 0@ ([ wdtrde) + 0@ (J whidistyde) /(o) = 2scc (20)
o Wronskian of solutions of the homogeneous equation
W) () = | CED )
—2sin (2z) 2cos (2z)

o Compute Wronskian

W(y1(2) , y2(2)) = 2

o Substitute functions into equation for y,(x)
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yp(z) = — cos (2z) ([ tan (2z) dz) + sin (2z) ([ 1dz)
o Compute integrals

In (sec(2z)? ) cos(2z
Yp(z) = — (st )4) ( )+sin(2x)x

° Substitute particular solution into general solution to ODE

In (sec(2x)? ) cos(2z
y = ¢ cos (2x) + co sin (2z) — (oot l> ( )+Sin(2x)x

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

-

Ldsolve(diff(y(x),x$2)+4*y(x)=2*sec(2*x),y(x), singsol=all)

-/

y(z) = _In(sec (2:1:2) ) cos (22) + cos (2z) ¢ + sin (2z) (c2 + x)

v/ Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 32

LDSolve[y"[x]+4*y[x]==2*Sec[2*x],y[x],x,IncludeSingularSolutions -> True]

y(x) = (z + o) sin(2z) + cos(2z) (% log(cos(2z)) + cl)
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1.5 problem Problem 1.3(c)

1.5.1 Solving as second order change of variable on y method 1 ode . [4I]
1.5.2 Solving as second order bessel odeode . . . . ... ... .. .. H0]
1.5.3 Solving using Kovacic algorithm . . . . . . . ... ... ... .. byl

Internal problem ID [12398]
Internal file name [OUTPUT/11050_Wednesday_October_04_2023_01_27_41_AM_79298836/index.tex|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.3(c).

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "second__order__bessel__ode",
"second_ order__change_ of variable_on_y_method_ 1"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

v, Y 1
L 1—— Jy=
y+x+( 49:2)y v

1.5.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be
Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).

yp, is the solution to
/
n, Y 1
+Z 1—— )y=0
YTy + ( 43:2> y

In normal form the given ode is written as

y' +p@)y +q(x)y=0 (2)
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Where

K| =

p(z) =
1

-1-
q(z) 122

Calculating the Liouville ode invariant ) given by

Y 7
O=a-4%7
I RNC NC
412 2 4
U S o) B )
412 2 4

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(z) 2(z) 3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(z) is given by

e_f %
1
NG (5)
Hence (3) becomes
y=—= (4)

Applying this change of variable to the original ode results in

Njw

V'(z) +v(z) =1

Which is now solved for v(z) This is second order non-homogeneous ODE. In standard
form the ODE is
AV (z) + BY'(z) + Cu(z) = f(z)
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Where A=1,B=0,C =1, f(z) = z2. Let the solution be
v(z) = vp + v,

Where vy, is the solution to the homogeneous ODE Av”(z)+ Bv'(z) 4+ Cv(z) = 0, and v,
is a particular solution to the non-homogeneous ODE Av"(z) + Bv'(z) + Cv(z) = f(x).
vy, is the solution to

V'(z)+v(z) =0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Av"(z) + BvY'(z) + Cv(z) =0

Where in the above A =1, B =0,C = 1. Let the solution be v(z) = e**. Substituting
this into the ODE gives
e 4+ e’ =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

A1z B, 1 p—1ic

T 24 T 24
Substituting A =1, B =0,C =1 into the above gives
M= o /B (@) (1) (D)
EEOTORROTN
= =43
Hence
A1 =+i
Ay = —1i
Which simplifies to
/\1 =1
)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = a:i:zﬂ
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Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as

v(z) = €**(c; cos(Bzx) + cosin(f))

Which becomes
v(x) = €%(cy cos (z) + ¢y sin (x))

v(z) = ¢ cos (z) + ¢z sin ()

Therefore the homogeneous solution vy, is

vp, = ¢ cos (z) + ¢y sin (z)
The particular solution v, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of

parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Up() = wrv1 + ugvs (1)

Where uj,us to be determined, and vy, v, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

vy = cos ()
ve = sin ()
In the Variation of parameters u;, us are found using
v f(z)
= — 2
“ / aW (z) @)
_ [uf (z)
v = / oW (z) ®)

Where W (x) is the Wronskian and a is the coefficient in front of v” in the given ODE.

vy v
The Wronskian is given by W = /1 f . Hence
U1 Vs
cos () sin (z)
4 (cos (z)) L(sin(z))
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Which gives

Therefore

cos(z) sin(x)

—sin (z) cos (z)

W = (cos (z)) (cos (z)) — (sin (z)) (— sin (z))

Which simplifies to

Which simplifies to

Therefore Eq. (2) becomes

Which simplifies to

Hence
3
2

uy = cos (z) z

And Eq. (3) becomes

Which simplifies to

Hence

3

ug = sin (z) z2 +

W = cos (z)* + sin (z)°

U = —/sin (x)x%dx

Ve
3sin(z) V7 , 3v2 /7 FresnelS (Y2£%)
2 4

U2Z/Md$

Up = /cos (x)x%dac

V2z
3cos (z) VT 3v/2 /7 FresnelC ( fff)

2 4
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Therefore the particular solution, from equation (1) is

3
2

V2/z
3sin (z) /z N 3v/2 /7 FresnelS ( ﬁf)

vp(z) = [ cos(z)x 5 1

cos ()

V2z
3cos (z) VT 3v/2 /7 FresnelC < ;{)

. 3
+ | sin(z)z2 + 5 1

sin ()

Which simplifies to

3sin (x) v/2 /7 FresnelC <‘[\2ff> 3cos (x) v/2 /7 FresnelS (ﬁﬁ>

vp(z) = — 1 + 1 +zx
Therefore the general solution is
V=0 + Y
= (1 cos (z) + ¢z 8in (z))
3sin (r) v/2 /7 FresnelC <f\2ff> 3cos (r) v/2 /7 FresnelS (\[\2}7{5) .
+| - + +as

4 4

Now that v(z) is known, then

y = v(z) z(z)

3sin () v/2 /7 FresnelC ({2}7{6 3cos (x) v/2 /7 FresnelS (‘(?f)
_.|_

4 4
(7)

= | ¢y cos(z) + cosin (z) —

4+ a

But from (5)

Hence (7) becomes

3sin(z)Vv2 /7 FresnelC ( f?ﬁf) " 3 cos(z)v/2 /7 FresnelS ( f?ﬁf) i

4 4

N7

[N

_cicos(x) + cpsin (z) —
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Therefore the homogeneous solution yy, is

3sin(z)v/2 /7 FresnelC(¥Y2¥Z) 3 V3 /7 FresnelS( Y2YE
¢y cos (.’E) + ¢y 8in (.’L’) _ sin(z)v2 /7 4esne < N ) n cos(z)V2+/m 4esne (

Yn = \/5

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = wiyr + uaye (1)

Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

N =

B

Yo = \/5

In the Variation of parameters u;, us are found using
y2f(z)
= _ 2
u / aW (z) @)
[ nf(x)
42 = / aW (z) )

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
Y Y
ccis/(it) s1?;f)
W= d (cos(m)) d <s1n(w)>
dz \ =z dz \ +/z
Which gives
ccis/(it) 31\11/(3:)
W= __sin(z) _ cos(x) cos(x) _ sin(x)

Vv zx% vz zx%



Therefore

o () () _sne)) _ (sne)) (_snfe) el

)

Which simplifies to

W= cos (ilﬂ)2 + sin (ac)2

x

Which simplifies to

Therefore Eq. (2) becomes

U = _/—sm (ﬁ) \/Edm
Which simplifies to

up = — /sin (x) ridp

Hence

3
2

V2
_ 3sin(z) vz N 3v/2 /7 FresnelS ( 2y

2x2

u; = cos (z) x 5 )

And Eq. (3) becomes

1
T

ugz/de

Which simplifies to

ug = /cos (z)z2dx

Hence

ug = sin (z) x 5 ;
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Therefore the particular solution, from equation (1) is

; 34/2 /7 FresnelS V2 /z
(cos (z) z2 — 35”1(2””)\/5 + VT ( ))

——2 ) cos (z)

Yp(z) = NG

3v/2 /7 FresnelC V2
(sin (x) z7 + Bl@ve v (% )> sin (x)

NZA

+

Which simplifies to

3(sin (z) V2 /7 FresnelC ({%f) — cos (x) v/2 /7 FresnelS (‘[\2}7{5) - 4%’)
4z

Yp() = —

Therefore the general solution is

Y=Yn+Yp

i V2vz V2.
¢ oS (:L') Yo sin ((L’) _ 3sm(m)\/§ﬁ11resne10( NG ) " 3cos(w)ﬁ\/7?l*;resnelS( NG ) n x%

Jz

3<Sin (z) V2 /7 FresnelC (ffff> — cos (z) v/2 /7 FresnelS <‘[\2f‘f) - @)
4z

+_

Summary
The solution(s) found are the following

Nz
4 4

\/E
_ 3(Sin (x) \/5\/7? FresnelC ({%{5) — cos () \/5\/77 FresnelS (ﬁf) - ﬁ)

2y
4z

3sin(2)v/2 /7 FresnelC(¥2¥2 ) 3cos(x)v2 v/ Fresnel§ (Y222
_ClcOS(.’I?)—l-CgSin(a;)— sin(x)v/2 /7w Fresne ( >+ cos(z)V2 /7 ese(
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Verification of solutions

3si V2 Fr 1c( Y2z 3 V2 Fr 1s( V2=
_c1cos () + cgsin (z) — T 4esne () 4 Je@VEVT 4esne (

y =
\/5
3(Si11 (z) v/2 /7 FresnelC ({?f) — cos (x) v/2 /7 FresnelS <f\2ff) — 422
_ e

w|8
Njwo
N—

Verified OK.

1.5.2 Solving as second order bessel ode ode

Writing the ode as

1
y”x2+y'a:+( Z—Z)yzx?’ (1)
Let the solution be
Y=Y+ Y

Where vy, is the solution to the homogeneous ODE and y, is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

y'e? +y'z+ (-n?+2%)y =0 (2)
The generalized form of Bessel ode is given by Bowman (1958) as the following
y'2? + (1 - 20) z) + (B°9%2” —n®y* + %)y =0 (3)
With the standard solution
y = x%(cy BesselJ (n, Bz7) + c2 BesselY (n, fz7)) 4)

Comparing (3) to (1) and solving for a, 8, n,y gives

a=0
=1
1
n=-3
vy=1

Substituting all the above into (4) gives the solution as

Y = c1 cos (z) /2 + cov/2 sin ()
VT VT
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Therefore the homogeneous solution yy, is

Y = ¢1 cos (x) V2 " coV/2 sin (z)
VivE VAV

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = wiys + u2ye (1)
Where uj,us to be determined, and y;,y, are the two basis solutions (the two lin-

early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

hn = \/5

Yo = \/E

In the Variation of parameters u;, us are found using

_ y2f(z)

v = /aW(m) )
[ wnf(z)

Y2 = / aW (z) 3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = v . Hence
v %
cc:s/(jc) sif/(f)
W= d (cos(m)) d <sin(z))
dz \ =z dz \ +z
Which gives
ccis/(it) si\n/(iz:)
W= __sin(z) _ cos(x) cos(x) _ sin(x)

Vv zx% vz zx%



Therefore

W (co\s/(;c)

Which simplifies to
Which simplifies to

Therefore Eq. (2) becomes

Which simplifies to

Hence

(SO

up = cos (z) x

And Eq. (3) becomes

Which simplifies to

Hence

Uy = Sin (w) T2

) <co\s/(;) _ sin (z)

2z3 ) - (Siil/g)

) (%)

2x2

__ cos ($)2 + sin (117)2

W =
x
1
W=-2
T
ulz—/wdz
x

uy = —/Sin (z) 25 dx

V2\/z
_ 3sin(z) V7 N 3v/2 /7 FresnelS < ﬁf>
2 4

Uy = /cos (-’E)x%dx

V2z
3cos (z) VT 3v/2 /7 FresnelC ( ﬁf>
2 4
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Therefore the particular solution, from equation (1) is

s 34/2 /7 FresnelS V2/z
(cos (z) z2 — 3sm(2w)ﬁ + v 1 (o >) cos ()

Yp(z) = Nz

3v/2 /7 FresnelC( Y2
<sin (l’) 1,'% + 3cos(292)\/5 _ VT es4e ( = >> sin (x)

VT

_|_

Which simplifies to

3(Sin (x) v/2 /T FresnelC (\[\fo) — cos (x) v/2 /7 FresnelS <*f\2f;r/5) — @)
Yp(z) = — ive

Therefore the general solution is
Y=YntYp

_ <01 cos (z) V2 N cyV/2 sin (x))

N NN
3<sin () V2 /T FresnelC <f\2ff) — cos () v/2 /7 FresnelS (‘[\2}7{5) — %)
N

+_

Summary
The solution(s) found are the following

_ cicos (z) V2 n cov/2 sin (z)
TOVEVE T VRVE 3
3(sin (z) v/2 /7 FresnelC (ffﬁ‘/i> — cos (z) v/2 /7 FresnelS (ffff) - 4“”77)
_ e

1)
Verification of solutions
_cicos(z) V2 n c2V/2 sin (z)
TovAVE T VAVE
3<sin (z) v/2 /7 FresnelC (ffﬁ‘/i> — cos (z) v/2 /7 FresnelS ({%{5) - %)
_ i

Verified OK.
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1.5.3 Solving using Kovacic algorithm

Writing the ode as

n, Y 1
1— 1
v x + ( 4x2> y=0 (1)
Ay"+ By +Cy=0 (2)
Comparing (1) and (2) shows that

(3)

Q & »
I

1

42

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22

Then (2) becomes

2" (z) = rz(z)

(4)
Where r is given by

N | ®

(5)
AB' —2BA'+ B? — 4AC

4A2?
Substituting the values of A, B, C from (3) in the above and simplifying gives

r=-—

: ()

Comparing the above to (5) shows that

s=-1
t=1
Therefore eq. (4) becomes

(7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 7: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —1 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode 2" = rz as one solution is

z1(z) = cos ()

%)



Using the above, the solution for the original ode can now be found. The first solution

to the original ode in y is found from

_1B
Y1 = zlef 24 dz

Which simplifies to
cos ()

Yy = \/5

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 d.’l:
Y1

Substituting gives

ef_%dz
Y2 :yl/—QdﬂU
(y1)

Therefore the solution is

Y =y + 2y
— (D) 4 (B o))

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).

yn, is the solution to
n, Y 1
Z4(1-—=—)y=0
Yy + - + ( 4362) Y

The homogeneous solution is found using the Kovacic algorithm which results in

_cos(z)c 4 sin (z) ¢z

Y/ Nz

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = ury1 + U2y (1)

Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

N = \/5

Yo = \/E

In the Variation of parameters u;, us are found using

[ yfl=)

v = / aW (z) )
[ nf(z)

Y2 = / aW (z) 3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = v . Hence
N Y
cos(z) sin(z)
VT Ve

W =

d (cos(m) ) d (sin(z) )
dz \ =z dz \ =z



Which gives

cos(z) sin(z)

vz vz
W= __sin(z) _ cos(x) cos(z) _ sin(x)
® 2z VT 27

Therefore

v (50) (522 -(5) (- 59)

Which simplifies to

W = o8 () + sin (z)°

X

Which simplifies to

Therefore Eq. (2) becomes

Which simplifies to

U = —/sin (x)x%dx

Hence

V2z
3sin (z) /T N 3v/2 /7 FresnelS ( ﬁf)
2 4

3
2

uy = cos () z

And Eq. (3) becomes
Uy = / PNEIVE (? vz dz

Which simplifies to

ug = /cos (x)x%dac
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Hence

V2z
3cos (z) vV 3v/2 /7 FresnelC ( fﬁf)

= sin (z) 2% +
Uo =SIn(x)x 9 1

Therefore the particular solution, from equation (1) is

: 3v/2 /7 FresnelS V2 /a
<cos (z) z2 — 35”1(2””)‘/5 + vr (A >) cos ()

4
N7
3v/2 /7 FresnelC V2 yz
(sin (JI) 17% + 3cos(2x)\/5 _ VT ( NG )) sin (IE)

NG

Yp(x) =

+

Which simplifies to

3(Sin (z) V2 /7 FresnelC (‘ffff> — cos (x) v/2 /7 FresnelS <‘/§f) _ da?

() = - e =

Therefore the general solution is

Y=Ynt+Up
_ (cos\(/a;_c) a sm\(/xi)cQ)

3<sin (z) V/2 /7 FresnelC (*{7?) — cos (z) V/2 /7 FresnelS <‘/§‘f> _ st
+ —

2y
4./x

Which simplifies to

_cicos (x) \;L_ ¢y sin ()
3<sin (z) v/2 /T FresnelC ((?f) — cos (z) v/2 /7 FresnelS <f\2ff> - 4”T>
_ e

[N
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Summary
The solution(s) found are the following

_c1cos () + ¢y sin (z)

' NG

[N

3<sin (z) v/2 /T FresnelC ((?f) — cos (z) v/2 /7 FresnelS <ffff> - 4%)
- 4/
1)
Verification of solutions
_c1cos(x) + cysin (z)
= 7z
3
3(Sin (z) V2 /7 FresnelC (ffff> — cos (z) /2 /7 FresnelS <f\2ff> - 4%")
a 4/
Verified OK.
Maple trace Kovacic algorithm successful
“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]

trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful”
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 62

Ldsolve(diff (y(x) ,x$2) +1/x*diff (y(x) ,x)+(1-1/ (4%x"2)) *y (x)=x,y(x), singsol=a11})

y(z)

3 cos(x)+/m FresnelS V2 /a V2 3sin(xz)+/m FresnelC V2V V2
_sin(x)02+c1cos(m)_|_ @ . <ﬁ> _ 3sin@)vm . ( ) g

a VT

v Solution by Mathematica
Time used: 0.443 (sec). Leaf size: 111

LDSolve [y'' [x]+1/x*y' [x]+(1-1/(4*x"2) ) *y [x]==x,y[x],x, IncludeSingularSolutionsJ -> Truel

; e2iz g3/ 3z . : iz)3/ 5 iz
e~ <——2 3;1;2’ ) + \/ﬁ(ch — icoe?®) + (@)L (5 i) Q\F/%’ )>
2\/zV x?

y(z) -
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1.6 problem Problem 1.3(d)

1.6.1 Solving as second order linear constant coeffode . ... .. .. 62]
1.6.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 671
1.6.3 Maple step by step solution . . . . . . ... ... ... . ..., 73]

Internal problem ID [12399]
Internal file name [OUTPUT/11051_Wednesday_October_04_2023_01_27_53_AM_92705771/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.3(d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y' +y=f(z)

With initial conditions

[y(0) = 0,%'(0) = 0]

1.6.1 Solving as second order linear constant coeff ode
This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=0,C =1, f(x) = f(z). Let the solution be
Y=Yt UYp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// + y — O
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A =1, B = 0,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
MeM + e’ =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ 2 _
12 o4 T o4 B2 —4AC
Substituting A =1, B =0,C =1 into the above gives
Mo = o /B (@) (1) (D)
EOTORNCT0
===/

Hence

A1 =+i

Ao = —1i
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 =ax ’Lﬁ
Where oo = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = €%*(cy cos(Bz) + cosin(Bz))
Which becomes

y = €°(cy cos (x) + ¢y sin (x))
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y = ¢y cos (z) + ¢ sin ()

Therefore the homogeneous solution yy, is
yn = c1 cos () + ¢ sin (x)

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Up(Z) = w11 + uayo (1)

Where uj,us to be determined, and y,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos ()

Yo = sin ()

In the Variation of parameters u;, us are found using

_ y2f(z)
= /aW(x) @)

. ylf(x)
uz_/a,W(x) 3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
W Y
cos () sin (z)

d% (cos (x)) % (sin (z))

Which gives
we | (z) sin(z)
—sin (z) cos (z)
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Therefore
W = (cos (z)) (cos (z)) — (sin (z)) (— sin (x))

Which simplifies to

W = cos (z)* + sin (z)°

Which simplifies to

Therefore Eq. (2) becomes

u1=—/wdz

Which simplifies to

up = — /Sin (z) f(z) dx

w = — ( /0 “sin () £(a) da)

"y — / cos (xl) f(z) s

Hence
And Eq. (3) becomes

Which simplifies to

g = /cos (z) f(x)dz

Hence

Ug = /Ow cos (a) f(a) da

Therefore the particular solution, from equation (1) is

u(z) = — ( /0 “sin (a) f() da> cos (z) + ( /0 " cos (a) £(a) da) sin (z)
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Therefore the general solution is

Y=Yn+Yp

= (c1 008 (z) + a5in (@) ]
#(=( [ s st@)da) cos )+ ([ cos (@) f(@)da ) sn (o))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ¢y cos(x) + cosin (z) — (/Ow sin (@) f(@) doz) cos (z) + (/Ow cos (a) f(a) da> sin (z)
1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =0 and x =0
in the above gives

0= C1 (1A)

Taking derivative of the solution gives

y' = —sin () ¢; + ¢z cos (z) + (/ sin (o) f(a) doz> sin (z) + (/ cos (a) f(a) da) cos ()
0 0
substituting 4’ = 0 and z = 0 in the above gives
0= Co (2A)
Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

01:0

6220

Substituting these values back in above solution results in

y=— ( /0 “sin () f(a) da> cos (z) + ( /0 " cos (a) f(a) da) sin (z)

Summary
The solution(s) found are the following

y=— ( /0 “sin () f(a) da> cos (z) + ( /0 " cos (@) f(a) da) sn(@) (1)
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Verification of solutions

y=— ( /0 “sin (a) f() da) cos (z) + ( /0 " cos (o) f(a) da> sin (z)

Verified OK.

1.6.2 Solving using Kovacic algorithm
Writing the ode as

y'+y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

Applying the Liouville transformation on the dependent variable gives

B dz

A(a) = ye! &
Then (2) becomes
2" (z) = rz(z)

Where r is given by

S
r=-

¢
2AB' — 2BA’ 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

-1
r=—

1
Comparing the above to (5) shows that

s=-—1
t=1

67

(2)

3)

(5)



Therefore eq. (4) becomes

7'(z) = —2(z) (7)
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(@)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a8""} {"'7_67_47_27(),2’3?475,6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,211, 3}1.{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 8: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

. 1 . . vac .
Since r 1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(z) = cos ()
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_§jdx

Since B = 0 then the above reduces to

=2

= cos ()

Which simplifies to

y1 = cos ()

The second solution s to the original ode is found using reduction of order

ef_%dx
Y2 = yl/ 2 dx

Ui

Since B = 0 then the above becomes

1
y2=y1/—2d$
U

= cos () / wdx

= cos (z) (tan (x))
Therefore the solution is

Y =ciy1 + C2Y2
= cy(cos (z)) + c2(cos (z) (tan (z)))
This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+tYp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' +y=0
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The homogeneous solution is found using the Kovacic algorithm which results in
yn = ¢1 o8 (z) + cosin (z)

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Up(Z) = w1y + uayo (1)

Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos ()

Yo = sin ()
In the Variation of parameters u;, us are found using
y2f(z)
= — 2
“ / aW (z) @)

. yl.f(x)
uz_/aW(x) 3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = v . Hence
N Y
cos () sin ()

d%(cos (x)) %(sin (z))

Which gives

_ | cos (x) sin(z)

—sin(z) cos(z)

Therefore

W = (cos (z)) (cos (z)) — (sin (z)) (— sin (z))
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Which simplifies to

W = cos (z)* + sin (z)?

Which simplifies to

Therefore Eq. (2) becomes

ulz—/wdx

Which simplifies to

up = — /sin (z) f(x)dz

wy = — < /O “sin () f() da)

y = / cos (:cl) f(z) d

Hence

And Eq. (3) becomes

Which simplifies to

up = /cos (z) f(x)dz

Hence

Uy = /Ox cos (a) f(a) da

Therefore the particular solution, from equation (1) is

y(z) = — ( /0 “sin () f(a) da> cos (z) + ( /0 " cos (a) f(a) da) sin (z)

71



Therefore the general solution is

Y=Yn+Yp

= (c1 008 (z) + a5in (@) ]
#(=( [ s st@)da) cos )+ ([ cos (@) f(@)da ) sn (o))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ¢y cos(x) + cosin (z) — (/Ow sin (@) f(@) doz) cos (z) + (/Ow cos (a) f(a) da> sin (z)
1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =0 and x =0
in the above gives

0= C1 (1A)

Taking derivative of the solution gives

y' = —sin () ¢; + ¢z cos (z) + (/ sin (o) f(a) doz> sin (z) + (/ cos (a) f(a) da) cos ()
0 0
substituting 4’ = 0 and z = 0 in the above gives
0= Co (2A)
Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

01:0

6220

Substituting these values back in above solution results in

y=— ( /0 “sin () f(a) da> cos (z) + ( /0 " cos (a) f(a) da) sin (z)

Summary
The solution(s) found are the following

y=— ( /0 “sin () f(a) da> cos (z) + ( /0 " cos (@) f(a) da) sn(@) (1)
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Verification of solutions

y=— ( /0 “sin (a) f() da) cos (z) + ( /0 " cos (o) f(a) da> sin (z)

Verified OK.

1.6.3 Maple step by step solution

o

(e]

Let’s solve

v +y=f(z),y(0) =0,y =0}
{o=0}

Highest derivative means the order of the ODE is 2

7

Y

Characteristic polynomial of homogeneous ODE
r+1=0

Use quadratic formula to solve for r

_ (V-9
- 2

Roots of the characteristic polynomial
r=(=LI)

1st solution of the homogeneous ODE

y1(z) = cos (x)

2nd solution of the homogeneous ODE
Ya(x) = sin (z)

General solution of the ODE

y = a1 () + cay2(2) + yp(2)

Substitute in solutions of the homogeneous ODE
y = ¢1 08 () + co8in (z) + y,(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
— __va(x)f(z) _ _n@)f(=) _
[yp(””) = (f Wy (@)2() dx) +92(2) (f Wy (@)2()

Wronskian of solutions of the homogeneous equation
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cos(z) sin(x)
%4 1\X),Y20T)) =
(11(2) , y2(2)) _sin(@) cos(a)

o Compute Wronskian

W(y(z),v2(z)) = 1

o Substitute functions into equation for y,(x)

Yp(z) = — cos (z) ([ sin (z) f(z) dz) + sin (z) ([ cos (z) f(z) dz)

o Compute integrals
Yp(z) = — cos (z) ([ sin (z) f(z) dz) + sin (z) ([ cos (z) f(z) dz)

° Substitute particular solution into general solution to ODE
y = c1c08 (z) + cosin (z) — cos (z) ([ sin (z) f(z) dz) + sin (z) ([ cos (z) f(z) dz)

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful~

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 34

Ldsolve([diff(y(x),x$2)+y(x)=f(x),y(O) = 0, D(y (0) = 0],y(x), singsol=all) J

y(z) = < /0 " cos (_21) f(_21) d_zl) sin (z) — ( /0 “sin (1) F(_21) d_z]) cos (z)
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v/ Solution by Mathematica
Time used: 0.105 (sec). Leaf size: 77

e

kDSolve [{y'' [x]+y[x]==f [x],{y[0]==0,y' [0]==0}},y[x],x, IncludeSingularSolutionsJ -> True]

y(z) = —sin(z) /1 cos(K[2)) £ (K[2])dK[2] + sin(z) /1 " cos(K[2)) F(K[2])dK[2]

+ cos(z) ( /1 " F(K1]) sin(K[1))dK1] — /1 — (K1) sin(K[l])dK[l])
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1.7 problem Problem 1.6(a)
1.7.1 Solving using Kovacic algorithm . . . . . . ... ... ... ...
1.7.2  Solving as second order ode lagrange adjoint equation method ode
1.7.3 Maple step by step solution . . . . . ... ... ... .. .. .. 801

Internal problem ID [12400]
Internal file name [OUTPUT/11052_Wednesday_October_04_2023_01_27_54_AM_9924872/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.6(a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

1.7.1 Solving using Kovacic algorithm

Writing the ode as

1
yll$2+ x?__x y/_+_g=0 (1)
2 2
AyY'+ By +Cy=0 (2)

Comparing (1) and (2) shows that

Il
8

Q & =
Il
al\.’)
|
N —

N+~
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Applying the Liouville transformation on the dependent variable gives

Then (2) becomes
2"(x) = rz(z) (4)
Where r is given by

(5)

S

r=-—

t

2AB' —2BA' + B? — 4AC
4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives

T_4x2—43:—3
- 162

(6)

Comparing the above to (5) shows that

s=4x* — 4z —3

t = 1622

Therefore eq. (4) becomes

20 = () ¢

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {Oa17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 10: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=2-2
=0
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at oo is 0 then the necessary conditions for case one are

met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L=[1,2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

For the pole at z = 0 let b be the coefficient of m% in the partial fractions decomposition

of r given above. Therefore b = —13—6. Hence
[\/F]c =0
1
a:=§+\/1+4b=§1
1 1
C=-—V14+4b=-=
% =3 o=
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Since the order of r at 0o is O,(00) = 0 then

_—Or(oo)_O_
U—T—§—0

[v/T]oo is the sum of terms involving z° for 0 < i < v in the Laurent series for /7 at oco.
Therefore

v

[Vr]eo = Z a;z’
= Z a;x" (8)

=0

Let a be the coefficient of ¥ = z° in the above sum. The Laurent series of /7 at oo is

r~ - - — - - - _ 7 __°° . 9)

From Eq. (9) the sum up to v = 0 gives

[Vr]eo = Z a;z’

0

N =g

(10)

Now we need to find b, where b be the coefficient of z°~! = z71 = ~ in 7 minus the

coefficient of same term but in ([\/ﬂoo)2 where [/T] was found above in Eq (10).
Hence

(7o)’ = 4

This shows that the coefficient of % in the above is 0. Now we need to find the coefficient
of 9—15 in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from
r = £ and doing long division in the form
R
r=Q+ —
t
Where @ is the quotient and R is the remainder. Then the coefficient of i in r will be
the coefficient in R of the term in x of degree of ¢ minus one, divided by the leading
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coefficient in ¢. Doing long division gives

s
r=-
t
B 472 — 42 — 3
N 16x2
=Q+ 16:1c2
1 —4xr — 3
4 16:c2
_ 1 —4x —
4 16:U2

Since the degree of t is 2, then we see that the coefficient of the term z in the remainder
R is —4. Dividing this by leading coefficient in ¢ which is 16 gives —;11. Now b can be
found.

Hence

The following table summarizes the findings so far for poles and for the order of r at
oo where 7 is

. 4z — 4z — 3
1622
pole ¢ location | pole order | [/7]. | af | a
0 2 R
Order of r at 0o | [v7]eo | @f | ag
o e

Now that the all [/7]. and its associated o have been determined for all the poles in
the set I' and [\/T] and its associated a have also been found, the next step is to
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determine possible non negative integer d from these using
d= agg°°> — Z ai(c)
cel

Where s(c) is either + or — and s(oc0) is the sign of a£. This is done by trial over all
set of families s = (s(¢))ceruso until such d is found to work in finding candidate w.
Trying o, =  then

Since d an integer and d > 0 then it can be used to find w using

s(c)

w= Z <s(c)[\/ﬂc + ;c_ c) + 5(00)[VT]oo
The above gives
o= (WA + 22 ) + OVl

_1 1
C4r 2
1 1
C4r 2

Now that w is determined, the next step is find a corresponding minimal polynomial
p(z) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

P +2wp + (W 4w —71)p=0 (1A)
Let
p(z) =1 (2A)
Substituting the above in eq. (1A) gives
1 1 1 1 1\® [4a®—4z-3
©+2(5-3) O+ ((‘E) +(a3) - (T)) =0

0=0
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The equation is satisfied since both sides are zero. Therefore the first solution to the

ode 2" =rzis

The first solution to the original ode in y is found from

_1B
Y1 = zlef zade

Which simplifies to

Yy =+Vze ™

The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ b} dz

Ui

Substituting gives

Therefore the solution is

Y =11 + CoYo

= a(VEe™) + (Voo (VA efi (Va)))
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Summary
The solution(s) found are the following

y=cvze ™ +evre "V erfi (V) (1)

Verification of solutions

y=cavre 4+ cvze "V/r erfi (V)

Verified OK.

1.7.2 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode

1
'z’ + (2% — 2z y'—}—'y=0 (1)
2 2
Becomes
y' +p@)y +q(x)y =r(z) (2)
Where
2¢ —1
1
q(z) = 22
r(z) =0

The Lagrange adjoint ode is given by

¢ - (Ep) +€3=0
¢ ((m —2i>s<x>) N <%> 0
g(z) - 2= DEE) | <—1 T Lz) £(z) =0

2r T 212 2r

Which is solved for £(z). This is second order ode with missing dependent variable &(z).
Let

Then
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Hence the ode becomes
2p'(z) x + (=22 + 1) p(z) = 0

Which is now solve for p(z) as first order ode. In canonical form the ODE is

p' = F(z,p)
= f(z)g(p)
p(2z — 1)
N 2z
Where f(z) = (p) = p. Integrating both sides gives
1 2x — 1
—dp = ad dx
P 2x
1 2 — 1
/ —dp = ad dx
p 2z
1
In(p)=z— %x) +c
p=e =5 e
$_1n(:1:)
= Cle 2

Which simplifies to

Since p = &'(x) then the new first order ode to solve is

§(z) =

c1€”

Nz

Integrating both sides gives

C1e

\/_
= e/ erfi (Vz) + ¢

The original ode (2) now reduces to first order ode

£() Y — y€' (@) + £(z) pla) y = /5

§(z) =

oo(p - ) = )éc()z)dx

qu(%—1_ e ):o
2x VT (csy/m erfi () + ¢2)
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Which is now a first order ode. This is now solved for y. In canonical form the ODE is
y =F(z,y)
= f(2)g(y)
y<2 erfi (v/T) 27 /T 3 — erfi (VT) /T /T3 + 2z2¢5 — 2z €%C3 — \/502)
222 (cs/T erfi (V) + ¢2)

Where f(z) = -2 erﬁ(ﬁ)x%ﬁc3_erﬁ(ﬁ)ﬁﬁ03+2$%02—2wem03—\/5c2
21‘% (63\/7? erﬁ(ﬁ)+02)

and g(y) = y. Integrat-
ing both sides gives

1, 2 erfi (v/z) z2/Tc3 — erfi (V) VETCs+ 2z30) — 2z 6%C3 — /T Co p
y=— r

1
Yy 2% (csy/ erfi (vz) + c2)
1

3 3
/ dy — / 2 erfi (vz) z2/T 3 — erfi (VZ) VT /T c3 + 2220 — 2z €%c3 — /T 03 "
- 3
(] 2z2 (c3/7 erfi () + ¢2)
3
/ 2 erfi (vz WCg—erﬁ(\/E)\/5\/?03+2x502—2xe“’63—\/562d N
i C3
3
2z2 (c3/7 erfi (Vz) + ¢2)
3 x
f 2 erfi(y/z) z? /T eg— egﬁ(ﬁ)ﬁﬁcg+2z2cz—229 c3—+/T cg da-tcs
y= 202 (e3 /7 erfi(vz)+cg)
3
f 2 erﬁ(\/a?):vfﬁ03—erﬁ(ﬁ)ﬁﬁ03+2m§cg—2z e®eg—+/z o da
3
= c3e 202 (e3 /7 erfi(vz)+cg)
Hence, the solution found using Lagrange adjoint equation method is
f 2 erﬁ(ﬁ)z% ﬁ03—egﬁ(\/5)\/5\/7?03+2z%02—2z efcg—+/T cg dr
Yy = c3e 222 (c3 /7 erfi(v/z)+cg)
Summary
The solution(s) found are the following
f 2 erﬁ(ﬂ)z% ﬁC3—egﬁ(ﬁ)ﬁﬁC3+2z%c2—2z efcg—+/T cg de
y = c3e 2z 2 (cg+/m erfi(+/z)+cg) (1)

Verification of solutions

3 3
f—2 erfi(v/z)z 2 ﬁcs—egﬂ(ﬁ)ﬁﬁC3+2z262—2ze263—\/562 de
y = cze 2z 2 (cg+/m erfi(v/z)+cg)

Verified OK.
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1.7.3 Maple step by step solution

Let’s solve
Yz’ + (2 —3z)y + L =0
° Highest derivative means the order of the ODE is 2
yl/
° Isolate 2nd derivative
= g - S
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

(2z—1)y’ —
Y+ Tt e =
OJ Check to see if xg = 0 is a regular singular point

o Define functions
[Pa(z) = 251, Ps(@) = 5,5

o x-Py(x)is analyticatx =0

(z - Pa(z))

1
2

=0

o z?. P3(z)is analytic at z =0

(«* - Py(z))

N =

=0
o z = (is a regular singular point

Check to see if o = 0 is a regular singular point

zo=0
° Multiply by denominators
2y +z(2x — 1)y +y=0
° Assume series solution for y
Y= i T
k=0
0 Rewrite ODE with series expansions

o Convert ™ - 3’ to series expansion for m = 1..2

(e o]
™y = ap(k +r)gktr-im
k=0

o Shift index using k— >k+1—m
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"y = > app1m(k+1—m+r)xktT
k=—1+m

Convert z2 - y” to series expansion
22y =Y ap(k+7)(k+7r—1)zF
k=0
Rewrite ODE with series expansions
ao(—1+2r)(—1+71)z" + (Z (ar(2k+2r —1)(k+7—1)+2a5_1(k+7—1)) x’“*’“) =0
k=1
apcannot be 0 by assumption, giving the indicial equation
(-1+2r)(-147r)=0
Values of r that satisfy the indicial equation
re{l,1}
Each term in the series must be 0, giving the recursion relation
2k +r—1)((k+7r—3) ap+ax_1) =0
Shift index using k— >k + 1
2(k+7) ((k+%+r) ak+1+ak) =0

Recursion relation that defines series solution to ODE

— 20
Ok+1 = ~3priqor

Recursion relation forr =1

_ 2ag,
Ok+1 = —3513

Solution forr =1

o0
_ k+1 _ 2a
Y= Z axZ * y Ak+1 = _Qk_'l_c3:|
k=0
Recursion relation for r = %
_ 204
Ok+1 = ~ 3512
Solution for r = 1
_ - " )
£ a
yzzakx 27ak+1:_2kk2
k=0 +

Combine solutions and rename parameters

_ o oo
i 14k k41 _ 2a — 2b
Y= ( Cl,k$+ )+(§:bkx +2)7a1+k—_2k_|lj3ab1+k__2k+k2
L k=0 k=0
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functioms:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
<- Whittaker successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning wi
<- Kovacics algorithm successful"

v Solution by Maple
Time used: 0.032 (sec). Leaf size: 39

e

Ldsolve(x‘2*diff(y(x),x$2)+x*(x—1/2)*diff(y(x),x)+1/2*y(x)=0,y(x), singsol=all}

y(z) = e~ (erf (vV—x) /T c12 + 2c20/T /—1)
2V/—z
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v/ Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 37

-

N
kDSolve [x~2xy' ' [x]+x*(x-1/2) *y' [x]+1/2*y[x]==0,y[x],x, IncludeSingularSolutionsJ -> Truel

o)+ e (e + eyt (5,-) )
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1.8 problem Problem 1.6(b)

1.8.1 Solving using Kovacic algorithm . . . . . . ... ... ... ...
1.8.2 Solving as second order ode lagrange adjoint equation method ode
1.8.3 Maple step by step solution . . . . . ... ... ... .. .. ..

Internal problem ID [12401]
Internal file name [OUTPUT/11053_Wednesday_October_04_2023_01_27_55_AM_80091292/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.6(b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y'z’ + @z +1)y —y=0

1.8.1 Solving using Kovacic algorithm

Writing the ode as

y//x2+(x2+m)yl_y:0 (1)
Ay"+ By +Cy =0 (2)

Comparing (1) and (2) shows that

A=z1?
B=2*+x (3)
C=-1

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22 %
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Then (2) becomes
2" (z) = rz(z)

Where 7 is given by

s
r=3
_ 2AB' —2BA’ + B* — 4AC
- 4A?
Substituting the values of A, B, C from (3) in the above and simplifying gives
r— 22 +2z+3
42
Comparing the above to (5) shows that
s=1z°+2x+3

t =4z

Therefore eq. (4) becomes

Iz = (M) +(2)

422

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 12: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=2-2
=0
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of ¢t = 4x2. There is a pole at z = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at oo is 0 then the necessary conditions for case one are

met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L=1[1,2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

For the pole at x = 0 let b be the coefficient of # in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

1
a;"=§+\/1+4b=g

1 1

Since the order of r at 0o is O,(00) = 0 then

—O,(o0) 0
= — = - = O
v 2 2
[v/T]oo is the sum of terms involving z' for 0 < 4 < v in the Laurent series for /7 at oo.

Therefore

v

[Vr]eo = Z a;z’

=0
0

= Z a;z’ (8)

=0
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Let a be the coefficient of z¥ = z° in the above sum. The Laurent series of /7 at oo is

1 1 1 1 1 1 3 3
VIR St e T o i T o s T T (©)
Comparing Eq. (9) with Eq. (8) shows that

1
a=_

From Eq. (9) the sum up to v = 0 gives

[Vr]eo = Z a;z’

=z (10)

Now we need to find b, where b be the coefficient of zv~! = z7! = < in 7 minus the
coefficient of same term but in ([\/ﬂm)2 where [/T]. was found above in Eq (10).

Hence 1

This shows that the coefficient of % in the above is 0. Now we need to find the coefficient
of % in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from
r = % and doing long division in the form

R

r=Q+ —

t
Where @ is the quotient and R is the remainder. Then the coefficient of % in r will be
the coefficient in R of the term in x of degree of ¢ minus one, divided by the leading
coefficient in ¢. Doing long division gives
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Since the degree of t is 2, then we see that the coeflicient of the term z in the remainder
R is 2. Dividing this by leading coefficient in ¢ which is 4 gives % Now b can be found.

- (-0

Hence

The following table summarizes the findings so far for poles and for the order of r at

oo where r is
r_x2+2x+3

422

pole ¢ location | pole order | [\/7]. | of | o

0 2 0

N
|
N =

Q
gl

Order of r at oo | |

0

o | aL

-5

1 _
2

N =

Now that the all [1/7]. and its associated o have been determined for all the poles in
the set I and [\/7] and its associated aX have also been found, the next step is to
determine possible non negative integer d from these using

d= a2 — Z a2
cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying ag, = —3 then

d=ay — (o)

C1

()

=0
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Since d an integer and d > 0 then it can be used to find w using

as(c)
w= Z <s(c)[\/7_"]c + == ) + 5(00)[V7]oo

r—cC
cel’

The above gives

ey

)+ OV

o= (W +

0
1

1
2 2
z+1
2
Now that w is determined, the next step is find a corresponding minimal polynomial

p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation
p'+2wp + (W 4w —7)p=0 (1A)

Let

p(z) =1 (24)
Substituting the above in eq. (1A) gives

(0)+2<—% — %) (0) + ((%) + (_% _ %)2_ (z2 +4j;c+3)> _

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2" =rzis

2z (x) = pel wd

The first solution to the original ode in y is found from

_1B
Y1 = zlef zade
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Which simplifies to

=

The second solution s to the original ode is found using reduction of order

ef _% dz
y2 = yl/ 2 d.'E
Y1

Substituting gives

of ~ Tk do
Y2 =" / -3 dz
(y1)

Therefore the solution is

Y =1y + Coyo

_e, (e;) + o (%(er(gg _ 1)))
Summary

The solution(s) found are the following

Verification of solutions

Verified OK.
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1.8.2 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode

y'&'+ (2 +z)y —y=0 (1)
Becomes
y' +p()y +q(z)y =r(z) (2)
Where
1
p(z) = x;r
q(z) = —%
r(z) =0

The Lagrange adjoint ode is given by
€ —(€p) +€4=0

¢ _ (M)’Jr (_if)> —0
_ e+ &) | (—f+x+1 l)xﬁ(w)—o

T

(@)

T 2 x2

Which is solved for £(z). This is second order ode with missing dependent variable &(z).
Let

Then

Hence the ode becomes
p(z)z+ (-2 —-1)p(z) =0
Which is now solve for p(z) as first order ode. In canonical form the ODE is

P = F(z,p)
= f(z)9(p)

_ p(z+1)
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Where f(z) = Zt! and g(p) = p. Integrating both sides gives

d x+1d

1
/ dp = /x+ dx

In(p) =2z +1In(z) +c
p= :L'—Hn(:c)—l—cl

= C€

z+In(x)

Which simplifies to
p(z) =z e”
Since p = &'(x) then the new first order ode to solve is
&(z) =cze®
Integrating both sides gives
&(z) = /clme“" dz
=(x—1)€e°c; + ¢

The original ode (2) now reduces to first order ode
£2)y' ~ @) +E@ @)y = [ 6@)r(@)do
Yy + y(p(x) - g/(m)) _ [ rlz)do

¢ (z) £ (x)
, r+1 c3e®(z—1)+c3e”)
y+y( z c;;e””(x—l)—i—cz)_

Which is now a first order ode. This is now solved for y. In canonical form the ODE is

Y = F(z,y)
= f(z)g(y)

y(c3e® — cax — ¢3)
~ z(ze®c3 — c3e” + )
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Where f(z) %f—”) and g(y) = y. Integrating both sides gives

~ z(ze®cg—cze®+cy

1 c3e” — cox — Co
—dy = dx
Yy z (x e®cg — c3e® + o)

/ldy=/ c3€” — Ccox — ¢y Iz
Yy z (x e®cg — c3e® + o)
In(y) = —z—In(z) + In(zec; — c3e” + ¢2) + c3
y= e—z—ln(av)—i—ln(x e®c3—c3e®+ca)+cs

— C3e—x—ln(a:)+ln(z e¥c3—c3e®+c2)

Which simplifies to

T

s e %c
y=03(c3——3+ 2)
T T

Hence, the solution found using Lagrange adjoint equation method is

cze %cy C3
y= ! <C3 -
T T

Summary
The solution(s) found are the following

cse ey C3
y= +c3 (03 - —)
T T

Verification of solutions

y= ke C2+C3<C3—C—3>
T T
Verified OK.

1.8.3 Maple step by step solution

Let’s solve

yV'r2+ (22 +z)y —y=0

° Highest derivative means the order of the ODE is 2
yll

° Isolate 2nd derivative
y" = m% _ (93+z1)y
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Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
e g

Check to see if o = 0 is a regular singular point

Define functions

[Py(z) = 2, Py(z) = — %]

z - Py(x) is analytic at z = 0

@ Pe)| =1
z? - P3(z) is analytic at z = 0
(2 P3(z))| =-1

=0

x = Ois a regular singular point
Check to see if xg = 0 is a regular singular point
To = 0
Multiply by denominators
y'? +a(z+ 1)y —y=0
Assume series solution for y
o k
y= > az""
k=0
Rewrite ODE with series expansions

Convert ™ - 3’ to series expansion for m = 1..2
o

™ -y = ap(k +r) ghtr-tm
k=0

Shift index using k— >k+1—m
-y = > app1m(k+1—m+r)xktT
k=—14+m

Convert z2 - y” to series expansion
o0

22y = ap(k+71)(k+7—1)xkT
k=0

Rewrite ODE with series expansions

ao(l+7)(=1+r1)z" + (i_oj (ar(k+7+1) (k+7—1)+ap1(k+7— 1))mk+r) =0

100



apcannot be 0 by assumption, giving the indicial equation
1+7)(-14+7r)=0

Values of r that satisfy the indicial equation

re{-1,1}

Each term in the series must be 0, giving the recursion relation
(k+r—1(ar(k+r+1)+ax_1)=0

Shift index using k— >k + 1

(k+7)(aps1(E+24+7)+ar) =0

Recursion relation that defines series solution to ODE

agk

ket+l = ~gro4r
Recursion relation for r = —1
. aj
O+l = 31
Solution forr = —1
o E—1
— a
Y= aT a1 = —32y
k=0

Recursion relation forr =1
— ag

k1 = T3

Solution forr =1

[ 00
— k+1 _ a
Y= Z axZ * y Ak+1 = _k_:f3:|
k=0

Combine solutions and rename parameters

o0 o0
_ k—1 1+k _ a _ b
y=|( mx + | 2 ez ) gk = =1, bk = —
= = 1+k k+3
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

Ldsolve(x‘2*diff(y(x),x$2)+x*(1+x)*diff(y(x),x)-y(x)=0,y(x), singsol=all) J

e +ci(—1+4 1)
x

y(z) =

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 26

-

N
LDSolve[x‘Z*y"[x]+x*(1+x)*y'[x]—y[x]==0,y[x],x,IncludeSingularSolutions -> T?#e]

e (ce®(zr — 1)+ c)
T

y(z) =
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1.9 problem Problem 1.7
1.9.1 Maple step by step solution . . . . ... ... ... ....... 111l

Internal problem ID [12402]
Internal file name [OUTPUT/11054_Wednesday_October_04_2023_01_27_56_AM_44044858/index.tex]|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.7.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type

[_Jacobil

z(l—2z)y" + (-5z+1)y —4y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

(-2 +2z)y" +(-5z+ 1)y —4y =0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
S5 —1
p(z) x (a:4— 1)
q(z) = — @1
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Table 14: Table p(z), ¢(z) singularites.

p(x) = ==L a(@) = i
singularity type singularity type
=0 “regular” =0 “regular”
r=1 “regular” rx=1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1, o0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
—y'z(z — 1)+ (-bz+1)y —4y =0

Let the solution be represented as Frobenius power series of the form

00
y = 2 anxn+r
n=0

Then
Y= (n+r)ae™!
n=0
y' = Z (n+r)(n+r—1)a,z""?

I
o

T

Substituting the above back into the ode gives

— (Z m+r)(n+r—1) anx”+r_2> z(x —1)

n=0

+ (=5 +1) ( (n+r) anm"'”_l) —4 (Z anx"“"") =0
n=0 n=0
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Which simplifies to

Z an(n+r)(n+r—1)) <an+r1 n—|—r)(n+r—1)> (24)

=0 n=0

+Y (=52"Tan(n+7)) + (Z (n+r) anx””_l) +>  (—4a,2™") =0

n =0 n=0 n =0

3

The next step is to make all powers of  be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

I
]2

Z an(n+71)(n+r—1))

(_an—l(n +r—1)(n+r-2) xn+r—1)

3
Il
o
S
Il
_

[
[M]8

Z (=52""a,(n+1))

o0

E (—4a,z™") =

(—5an_1(n +r—1) x"*"‘l)

3
Il
<)
3
I|
—

]38

(_4an_1xn+r—1)

3
Il
-

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n +r — 1.

Z (—an—1(n +r—1)(n+r—2) xn—i—r—l)
<an+r 1 n(n+r)(n+r—1) ) Z —5a,_1(n+71—1) n+r—1)
* (Z (n+7) anxn“‘l) +> (~4apaz™ ) = 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" a,(n+r)(n+r—1)+(n+r)az" =0
When n = 0 the above becomes

" agr(=1+71) +ragz " =0
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Or
(z7r(=14+7)+rz ") g =0

Since ag # 0 then the above simplifies to

z 2 =0

Since the above is true for all x then the indicial equation becomes
r?=0

Solving for r gives the roots of the indicial equation as
r1=0
ro =0

Since ag # 0 then the indicial equation becomes

z 2 =0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y(z) = Z an ™" (1A)

Now the second solution g, is found using

yo(z) = y1(z) In (z) + (Z bnz"+T> (1B)
n=1
Then the general solution will be

y = ay(z) + oy ()

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), ag is never zero, and is
arbitrary and is typically taken as ap = 1, and {ci, co} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y;(z). Eq (2B) derived above is now used to find all a,, coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ap = 1. For 1 < n the recursive equation is

—ap1(n+r—1)(n+r—2)+a,(n+7r)(n+r—1) (3)
—ban_1(n+r—1)+a,(n+r)—4a,-1 =0
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Solving for a,, from recursive equation (4) gives

. = an—1(n®+2nr +r*+2n+2r + 1)

4
n? 4+ 2nr +r? )
Which for the root r = 0 becomes
an_1(n +1)°
a’n = ng (5)

At this point, it is a good idea to keep track of a, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n | Gny | an

ap 1 1

For n =1, using the above recursive equation gives

(r+ 2)2
a; = 2
(r+1)
Which for the root r = 0 becomes
a; = 4
And the table now becomes
n | anr | Gn
Qo 1 1

(r+2)°
ay W 4

For n = 2, using the above recursive equation gives

(r+3)°
(r+1)>

a9 =

Which for the root r = 0 becomes

And the table now becomes
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O

Qo 1 1
(r+2)®

ay Wz 4
(7'—i—3)2

% | e |9

For n = 3, using the above recursive equation gives

(r+4)°
aAq =
T r+1)?
Which for the root r = 0 becomes
az = 16
And the table now becomes
N
Qo 1 1
(r+2)2
aq w 4.
(r+3)
as W 9
(7'—i—4)2
a3 | e | 16

For n = 4, using the above recursive equation gives

(r +5)

as =
YT r+1)?

Which for the root r = 0 becomes
ay = 25

And the table now becomes
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n | Gnr | Gn
Qo 1 1

(r+2)®
ay Wz 4

(7'—i—3)2
(7'—i—1)2 9

(r+4)2
as W 16

as

(r+5)2
Qg W 25

For n = 5, using the above recursive equation gives

o — (r+ 6)2
T (r+1)?
Which for the root r = 0 becomes
as = 36
And the table now becomes
n | Gpy an
ag 1 1
(r+2)
ay Wz 4
(7'—i—3)2
a9 m 9
(r+4)2
as W 16
('r—i—{"))2
s | e | 20
(7"—}—6)2
CL5 (7‘+1)2 36

Using the above table, then the first solution y; (z) becomes

yl(x) =ap+a1x + (lz.’L'z + CL3.’E3 + a4x4 + Cl5£175 + (16.’IJ6. ..

= 362° + 252" + 162° + 92° + 4z + 1 + O(°)

Now the second solution is found. The second solution is given by

yz(ﬂ:) =4 (ac) In (g;) + (Z bnac’””")
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Where b, is found using

dr
And the above is then evaluated at » = 0. The above table for a,, is used for this
purpose. Computing the derivatives gives the following table

n | bpy an | by = %am b, (r =0)

by | 1 1 | N/A since b, starts from 1 | N/A
(r+2)? —2r—4 _

by (r+1)% 4 (r+1)3 4
(r+3)2 —4r—12 _
(r+4)° —6r—24 .

b (r+1)2 16 (r+1)® 24
(r+5)* —8r—40 _

by (r+1)? 25 (r+1)® 40
(r+6) —10r—60 _

bs 17 36 o 60

The above table gives all values of b, needed. Hence the second solution is

Y2(z) = y1(z) In () + by + b1 + box® + b32® + byz* + bsx® + bez®. ..

= (362° + 25z + 162° + 92° + 4z + 1+ O(z°)) In (z)
— 60z° — 40z* — 242® — 122” — 4z + O(2°)

Therefore the homogeneous solution is

Yn(z) = c1y1(z) + coya()

= ¢1(362° + 252" 4 162° 4+ 92° + 4z + 1+ O(2°))
+ ¢2((362° + 252" + 162° + 92% + 4z + 1+ O(2°) ) In (z) — 60z° — 40z* — 242°
— 1222 — 4z + O(mﬁ))

Hence the final solution is

Y=1Yn
= ¢1(362° + 252" 4 162° 4 927 + 4z + 1+ O(z°))
+ c2((362° + 253* + 162° + 92 + 4z + 1 + O(2°%) ) In (z) — 60z° — 40z* — 242°
—122° — 4z + O(z%))
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Summary
The solution(s) found are the following

y = c1(362° + 252" + 162° 4+ 92° + 4z + 1 + O(z%))
+ c2((362° + 252* + 162° + 922 + 4z + 1+ O(2%)) In (z) — 602° — 40z* (1)
— 242 — 122% — 4z + O(zﬁ))

Verification of solutions

y = ¢1(362° + 25z + 162° + 92° + 4z + 1 + O(2°))
+ ¢2((362° + 252* + 162° + 92> + 4z + 1+ O(2°) ) In (z) — 602> — 40z* — 244°
— 122 — 42+ O(2%))

Verified OK.

1.9.1 Maple step by step solution

Let’s solve
—y'z(x—1)+(-5z+ 1)y —4y =0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
n_ 4y  (5z—1)y
¥y = z(z—1) z(z—1)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

(5z—1)y/ vy _
y” + xa(cm—l?; + x(xgl) =0

! Check to see if xy is a regular singular point

o Define functions

[Pa(z) = 22255, Py() = 125

o x-Py(x)is analyticatx =0

(z - Py(x))

z=0

o z?. P3(z)is analytic at z =0
(z* - Py(z))

o z = (is a regular singular point

z=0
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Check to see if xg is a regular singular point
To = 0
Multiply by denominators
Y'z(x—1)+ Bz —1)y' +4y=0
Assume series solution for y
o0
y = Z akxk”
k=0
Rewrite ODE with series expansions

Convert ™ - 3’ to series expansion for m = 0..1
o0

™y = ap(k +r) ghtr-tm
k=0

Shift index using k— >k +1—m
™y = > app1-m(k+1—m+r)xktT
k=—1+m

Convert ™ - 3" to series expansion for m = 1..2
o0

™. y// — Z ak(k + 7‘) (k +r— 1) ghtr—2+m
k=0

Shift index using k— >k +2—m
o0
oy = > apromk+2-—m+r)(k+1—m+7r)attT
k=—2+m
Rewrite ODE with series expansions
o
—aoriz™1" + <Z (—arri(k+14+7)% +ap(k +1+2)%) x’””) =0
k=0
apcannot be 0 by assumption, giving the indicial equation
—r2=0
Values of r that satisfy the indicial equation
r=20
Each term in the series must be 0, giving the recursion relation
—app1(k+ 1) +ar(k+2)° =0
Recursion relation that defines series solution to ODE

— an(k+2)?
Ak+1 = ~(h41)2

Recursion relation forr =0
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ag (k+2)2

Wkt = (o112
° Solution forr =0
_ = k _ ap(k+2)?
y - kzzoa’kx )ak-l-]. - (k+1)2

Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful-

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 59

p
‘0rder:=6;

‘dsolve(x*(l-x)*diff(y(x),x$2)+(1-5*x)*diff(y(x),x)—4*y(x)=0,y(x),type='series

N

y(z) = (e1 + 2 In (2)) (1 + 4z + 97 + 162° + 252 + 362° + O (2°))
+ ((—4) z — 122% — 242® — 40z* — 602° + O (2°)) c

v/ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 87

-

LAsymptoticDSolveValue[x*(l-x)*y"[x]+(1—5*x)*y'[x]—4*y[x]==0,y[x],{x,0,5}]

J

y(z) = c1(362° + 25z* + 162° + 92% + 4z + 1)

+¢2(—602° —402* —247° —122% + (362° + 252" + 162° +92° + 4z +1) log(z) — 4x)
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1.10 problem Problem 1.8(a)
1.10.1 Maple step by step solution . . . . . ... .. ... .. ..... 122

Internal problem ID [12403]
Internal file name [OUTPUT/11055_Wednesday_October_04_2023_01_27_57_AM_31548167/index.tex]|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.8(a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method", "sec-
ond_ order ode_ non_ constant_coeff transformation on_B"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

(z2—1)2y”+(x+1)y’—y=0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.
Let
y' = f(z,y,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to

0 by change of variables) and assuming f(z,y,y’) is analytic at 2o which must be the
case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using
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Taylor series gives
(&) = y(wo) + (2 — o)/ (wo) + =

B a2 23
= Yo + TYq + ?flmo,yo,y(’) + af |z0,yo,y6 + ...

xn+2 dnf
—_— l PR
_y0+$yo+zo(n+2)!dxn

Zo,yo,yé
But

df 8fdw+8fdy+6fdy
dz  Ozdzx Oydr 0y dx

_of [ of , Of ,
~or " ayY TayY
ﬂ+gy/+ﬁ
oy’
“_L(4)
_ 90 9 (df
= oz (ae) * o) Y+ o (2
Bf d (&f
da:3_%( )
2(

2
& f o &f\ ,, 8 (d&f
?) (8ydw2> Y+ oy oy’ <dx2> f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

o YTty -y
0 4t —222+1
dF,
F=-2
! dx
OFy, OF, , OFy
= F
ox + Oy vt oy’ 0
2
B 4z -1 (z+1)y —v)
(z+1)° (@ —1)*
dFy
Fr=—
7 dx
OF, O0F, , OF
= F
ox Oy vt oy’ !
__(102® — 152" + 10z — 4) (22 — 1) (Y= + ' — )
(-1°@+1)"
dF,
F3=—=
57 dx
_OF, OF, , O0F, 7
Oz Oy Y oy’ 2
B (1202% — 360z° + 540z* — 532z + 321z% — 102z + 14) (Yz + v — y)
(+1)°(z—1)°
dF;
Fy=—
YT dx

OF; O0F3; , OF;
=+ ¢+
oz Oy oy’
(840x® — 3360z" + 71402° — 10360x° + 10135z* — 64842 + 269622 — 680x + 74) (v + v — y)
(@— 1)+ 1)°

F3

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = ¢/(0) gives

Fo =y(0) — y'(0)

Fy =14'(0) — y(0)

Fy = 4y(0) — 4y'(0)

Fy = —14y(0) + 144/(0)
Fy = T4y(0) — 744/ (0)
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Substituting all the above in (7) and simplifying gives the solution as

1, 1, 1, 7 . 37
— 1 T2 T3 P 0
y (+2x 6" T6% "60° T 360" )y()
1, 1, 1, 7 . 374\, ;
+ (x 5% + 5T~ 6x +60 360x)y(0)+0(x)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

y'(z' =22+ 1)+ (z+ 1)y —y=0

Let the solution be represented as power series of the form

o
y= g anz"
n=0

Then

n=1

y = Z na,z" !

o0
Y’ = Z n(n — 1) a,z" 2
n=2

Substituting the above back into the ode gives

(Z n(n _ 1) anx“_2) (;1;4 — 222 + 1) + (.’17 + 1) (Z nanxn—1> _ (Z (ln.’L‘n) -0

n=2

Which simplifies to

<an n—l) f: 2xannn—1))+<§:nn—1 anz" 2) @)

n=

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
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power and the corresponding index gives

Z nz"2a,(n—1) =Y (n—2)a,_o(n—3)z"

(e e]
n =2 n=4
o

Z nn—1a,7"2=» (n+2)a,2(n+1)2"
n= n=0

Z na,r" " = Z (n+1)ap12™

n =1 n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(Z (n—2)an_2(n—3) x") + Z (—2z"a,n(n — 1))

n=4
[e.9) . ) . (3)
+ Z (n+2)app2(n+1)z" | + Znanx
n=0 n=1
+ <Z (n + 1) an+1x"> + Z (—ana;") =0
n=0 n =0
n = 0 gives
2&2 +ai —ag= 0
ao a;
279 7
n =1 gives
6(1,3 + 2&2 =0

Which after substituting earlier equations, simplifies to

6a3+a0—a1=0
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n = 2 gives
—3a2 + 12&4 + 3a3 =0

Which after substituting earlier equations, simplifies to

—2ap + 2a1 + 12a4 =0

n = 3 gives
—10a3 + 20@5 + 4(14 =0

Which after substituting earlier equations, simplifies to

Ta Ta
?O - ?1 + 20a5 = 0
Or
. 7a0 7(11
%="%0 T 60

For 4 < n, the recurrence equation is

(n—2)ap—2(n—3)—2na,(n—1)+ (n+2) apy2(n+1)+na,+(n+1) ant1—a, =0

Solving for a,2, gives

2n2a, — n2ap_3 — 3Na, + SNAp_3 — NApy1 + Gy — 6Gn_3 — Gngy
n+2)(n+1)
(5) _(@n*-3n+1)a, , (—n*+5m—6)an—2 | (—n—1)ap
n+2)(n+1) (n+2)(n+1) n+2)(n+1)

Apy2 =

For n = 4 the recurrence equation gives

2a2 - 21&4 + 30&6 + 5(15 =0

Which after substituting the earlier terms found becomes

37&0 37&1
Qg — —

T 360 360
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For n = 5 the recurrence equation gives

6&3 - 36@5 + 42a7 + 6&6 =0

Which after substituting the earlier terms found becomes

~ 229a0 4 229a,
2520 2520

ar =

And so on. Therefore the solution is

o0
y:E anz"
n=0
_ 3 2
=a3x” +ar” +a1x+ap+ ...

Substituting the values for a,, found above, the solution becomes

a a a a a a Ta Ta
ymmroes (-5 (<50 5) 2+ (F-5) e+ (o )

Collecting terms, the solution becomes

1 1 1 1 1 1
Y= (1 + 59:2 — 6:63 + Em‘l — %:ﬁ) ap+ <m — §m2 + 69:3 — 6m4 + %x‘r’) a1+0(z°%) (3)

At z = 0 the solution above becomes

1 1 1 1 1 1
Y= (1 + 59:2 — 6303 + 61“4 — %f) ¢+ (x - §x2 + 6:103 — 6354 + %aﬁ) co+ O(xﬁ)

Summary
The solution(s) found are the following

1 1 1 7 37
Y SRR B . SR’ SR g ORI L I
Y ( +2x i —|—6x 0 +360x y(0)
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Verification of solutions

1 1 1 7 37
— 1 -2 .3 4 05 v .6 0
Yy (+2x R +6x 0% +360x)y()
1 2 1 3 1 4 7 5 37 6 / 6
+ (x 5% T 6T — g% + 5T ~ 3657 y'(0) + O(z°)

Verified OK.

1 1 1 1 1 1
Y= (1 + 59:2 — 63:3 + 61’4 — %355) ¢+ (x - 5202 + éx?’ — 6354 + %ﬁ) c2 + O(2f)
Verified OK.

1.10.1 Maple step by step solution

Let’s solve
y'(@' -2+ 1)+ (z+ 1)y —y=0

° Highest derivative means the order of the ODE is 2
y//

° Isolate 2nd derivative

!

"o__ y _
y = z4—-2x2+1 x3—x2—x+1

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

!

" Yy _ Yy —
v+ z3—z2—z+1 z4—-2z2+1 0

O Check to see if xg is a regular singular point
o Define functions
[Pe(2) = m=gr=rr) Po(®@) = — 5|
o (z+41)- Py(z)is analytic at x = —1

1
4

((z+1) - P())

r=—

o (z+1)%- Py(z)is analytic at z = —1

((z +1)*- P3(z))

1
4

r=—1
o x = —lis a regular singular point
Check to see if z is a regular singular point

w():—l
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Multiply by denominators

V(@2 -2t —z+1)(z* - 222+ )+ (z* — 222+ )+ (—2* + 22 +2 - 1)y =0

Change variables using z = u — 1 so that the regular singular point is at u = 0

(u” — 8ub + 24ud — 32u* + 16u?) (%y(u)) + (ut — 4u® 4+ 4u?) (Ly(u)) + (—u® + 4u® — 4u) y(
Assume series solution for y(u)

o0
y(u) = > axut*’
k=0

Rewrite ODE with series expansions

Convert u™ - y(u) to series expansion for m = 1..3
(e e]

u™ - y(u) = Y apubtrtm
k=0

Shift index using k— >k —m
u™y(u) = 3 Gpomutt
k=m

Convert u™ - (Ly(u)) to series expansion for m = 2.4

(o)

um - (%y(u)) - kzoak(k_|_7.) yktr—1+m
Shift index using k— >k+1—m

u™ (%y(u)) = Z a’k—l-l—m(k +1—m+ 'r') uktr
k=-1+m

Convert u™ - <j—;y(u)> to series expansion for m = 3..7

us (dd_:?y(u)) = > ap(k+7)(k+r—1)urtr—2tm
k=0

Shift index using k— >k +2 —m

u™ - (dd_quy(u)) = Y aromk+2—-m+r)(k+1—m+r)urtr
k=—2+m

Rewrite ODE with series expansions
dag(1+4r) (-1 +7r)u!* + (da;(5+ 4r) r — 4ag(1 + 87) (=1 + 7)) > + (4ax(9+4r) (1 +7) -

apcannot be 0 by assumption, giving the indicial equation
414+4r)(-14+7r)=0

Values of r that satisfy the indicial equation
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re{l,-1

The coefficients of each power of u must be 0

[4a1(54+4r)r —4ag(1+8r) (=1 +7) =0,4a2(9+ 4r) (1 +7) — 4a1(9 + 87) r + ao(1 + 24r) (-1
Solve for the dependent coefficient(s)

a0 (8r2—7r—1) __ ao(160r+36r2—165r—31) _ ao(320r*+736r3—144r2—761r—151)
A1 = —iGran 092 = Tg@ersrr2rz1101r445) 0 ¥3 = 2(64r94+560r3+1772r2+2401r+1170)

Each term in the series must be 0, giving the recursion relation

(ap_5 — 8ap_4 + 24ay_3 — 32ap_o + 16as_1) k? + (2(ax_s5 — 8ax_4 + 24a,_3 — 32ax_o + 16ax_1)1
Shift index using k— >k + 5

(ar, — 8agt1 + 24agro — 32ak43 + 16ak4q) (K + 5)2 + (2(ax, — 8ag+1 + 24ak12 — 32ax13 + 16ak14

Recursion relation that defines series solution to ODE

_ k2ay —8k2ak+1 +24k2ak+2 —32k2ak+3+2krak —16krag+1+48krag 2 —64krak+3+r2ak —8r2ak+1 +241‘2ak+2 —327‘21%4
Ok+4 = A(4k2+8kr+4r2+20Kk+ 297

Recursion relation forr =1

__ Klap—8k?apy1+24kap 2 —32k%apy3+kar—24kag1+121kay 3 —228ka 43— 16a)1+146as, 23960k 3
Ok+4 = 4(4k>+37k+84)

Solution forr =1

) 2 2 2 2
_ k+1 _ _k ap—8k“ag+1+24k“ap2—32k“ag 3+kap—24kay1+121kay2—228kay3—16ay 1414
y(u) = I;Oaku ) Qlta = 4(4k2437k+84)

Revert the change of variablesu =z + 1

o0
_ k+1 _ K?0;—8Kk%aj11+24k%ay 1 2—32k%ay 3 +kay—24kag 1 +121kay 2 —228kag+3—16ak11
y= kz_:o ap(z + 1), aprq = A(4k2+ 37k 1 84)
Recursion relation for r = —1
a _ _kzak—8k2ak+1+24k2ak+2—32k2ak+3—%kak—4kak+1+61kak+2—148kak+3+%ak—i-%ak_,_l—l—%ak_,_z—lﬁlak_,_g
k+4 = 4(4k2427k+44)
Solution for r = —3
[ oo 2 2 2 2 3 5 3
_ k—1 _ _k‘ ar—8k“ap41+24k“ag2—32k ak+3—5kak—4kak+1+61kak+2—148kak+3+ﬁak+§ak%
y(u) = kZOaku 4, Qp+a = 4(4k2+27k+44)

Revert the change of variablesu = z + 1

i 00 3 5 |

k-1 k2a—8k%ag41+24k%ak2—32k%ay 13— 2 kay—4kay1+61kag2—148kag 13+ 1 ak+

_ i - _ 2 16 .
Y= k§ , ag(z + 1) y Qka A(4k2+27k+44)

Combine solutions and rename parameters

i 00 00
_ 1+k k-1 _ k?ar—8k?a14p+24k?as2—32k2ak 4 3+kay —24ka
o= (Gt ) o (Gte ) o=
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functioms:
-> Bessel
-> elliptic
-> Legendre
—-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
<- Kummer successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning wi
<- Kovacics algorithm successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 54

e B

Order:=6;
‘dsolve((x‘2-1)‘2*diff(y(x),x$2)+(x+1)*diff(y(x),x)—y(x)=0,y(x),type='series',#=0);
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v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 70

-

tAsymptoticDSolveValue[(x"2-1)"2*y' "[x]+(x+D)*y' [x]-y[x]==0,y[x],{x,0,5}]

—

(x) = c _7_x5+:c_4_m_3+x_2+1 +c 7—x5—x—4+x—3—w—2+x
y 760 "6 6 2 2\60 "6 "6 2
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1.11 problem Problem 1.8(b)
1.11.1 Maple step by step solution . . . . ... ... ... ... .... 136

Internal problem ID [12404]
Internal file name [OUTPUT/11056_Wednesday_October_04_2023_01_27_57_AM_74543273/index.tex]|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.8(b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

zy’' +4y —yr=0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
zy’" +4y —yr =0

The following is summary of singularities for the above ode. Writing the ode as
y' +p(@)y +q(z)y =0

Where

SN

p(z) =
g(z) = —1
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Table 17: Table p(x), g(z) singularites.

q(z) = -1
singularity | type

singularity type

=0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
zy' +4y —yr=0

Let the solution be represented as Frobenius power series of the form

00
y = § an xn+r
n=0

Then

(n+7)a,z"*

M 10

(n+r)(n+r—1)a,z"t 2

<
|

3
Il
o

Substituting the above back into the ode gives

(Z (n+r)(n+r—1) anx"+’"_2> T+4 (Z (n+r) anx"”_l) - (Z anx"”) =0

Which simplifies to

(Z " a,(n+1)(n+r— 1)) - (Z 4(n+r) anz"+T_1> + Z (—z""*a,) =0

n=0
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The next step is to make all powers of x be n + r — 1 in each summation term. Going

n+r—1

over each summation term above with power of x in it which is not already x and

adjusting the power and the corresponding index gives

0o oo
Z (_x1+n+ran) — Z (_an_2xn+r—1)
n =0 n=2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

<Z 2" g, (n+r) (n+r— 1)) + (Z 4(n+r) anmn+r—1> + Z (—an_Qx"+r-1) =0

n=0 n =2
(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" la,(n+r)(n+r—1)+4n+71)az" =0
When n = 0 the above becomes
T agr(—=147) + 4ragz™t" =0

Or
(27 r(=1+7)+4rz7)ay =0

Since ag # 0 then the above simplifies to
re T3 4+1r)=0
Since the above is true for all x then the indicial equation becomes
r(3+7)=0
Solving for r gives the roots of the indicial equation as

7‘1=0

To = -3
Since ag # 0 then the indicial equation becomes

rzTB+7r)=0

129



Solving for r gives the roots of the indicial equation as Since r; — ro = 3 is an integer,
then we can construct two linearly independent solutions

yi(z) = =™ (Z a,@")

1:(2) = Cy(2) In (2) + 27 (Z "”””">

Or

y1(z) = Z a,z"

n=0
i bpz™

12(2) = Cya (@) In (2) + "=

Or
yi(x) = Z anx"
n=0

12(2) = Cya(a) In («) + <Z b>

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. Substituting n = 1 in Eq.
(2B) gives

a; = 0

For 2 < n the recursive equation is
an(n+r)(n+r—1)+4a,(n+7) —an_2=0 (3)

Solving for a,, from recursive equation (4) gives

. = an—2 (4)
" 24 2nr+7124+3n+3r

Which for the root r = 0 becomes

ety ®
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At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n | Gnyr | Gn

)

Qo 1
ai 0 0

For n = 2, using the above recursive equation gives

1
2= 2 10
Which for the root r = 0 becomes 1
a9 = E
And the table now becomes
n Qn Qn
(4%}
aq 0 0
1 1
@2 | 257510 | 10

For n = 3, using the above recursive equation gives

az = 0
And the table now becomes

n | any an
ao 1 1
a; 0 0

1 1
az r24+7r4+10 10
as 0 0

For n = 4, using the above recursive equation gives

1

B I +2) (r+7) (r+4)
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Which for the root r = 0 becomes

1
ay = —
*7 280
And the table now becomes
n | Gy an
ap 1
aiy 0 0
1 1
a2 | 727510 10
as 0 0
a L L
4 | 5 (r+2)(r+7)(r+4) | 280
For n = 5, using the above recursive equation gives
as = 0
And the table now becomes
no| Gy an
ap 1 1
a; 0 0
1 1
a2 | 257510 10
as 0 0
1 1
A4 | GHB)r42)(r7)(r+4) | 280
as 0 0

Using the above table, then the solution y; () is
y1(z) = ag + a17 + ag2® + azz® + ayx? + asz® + ag2’. ..
=1+ il + ul +0(z°)
N 10~ 280

Now the second solution ys(z) is found. Let

7‘1—’]"2=N
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Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding lim,._,,, as(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

anN = as
=0
Therefore
lim 0= lim O
r—ro r——3
=0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

yg(x) — Z bnwn+r
n=0

o0
= E bz 3
n=0

Eq (3) derived above is used to find all b, coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. by is arbitrary and taken as by = 1.
Substituting n = 1 in Eq(3) gives

by =0
For 2 < n the recursive equation is
byn+r)(n+r—1)+4(n+7r)b, — b2 =0 (4)
Which for for the root r = —3 becomes
bo(n—3)(n—4)+4(n—3)b, — b2 =0 (4A)

Solving for b,, from the recursive equation (4) gives

_ bn—2
n?+2nr+1r2+3n+3r

Which for the root r = —3 becomes

n

()

bn—2

b, =
n? —3n
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At this point, it is a good idea to keep track of b, in a table both before substituting
r = —3 and after as more terms are found using the above recursive equation.

n bn,r bn

by | 1 1
by |0 0

For n = 2, using the above recursive equation gives

b — 1
2T 2477 + 10
Which for the root r = —3 becomes
1
bg == —5
And the table now becomes
n bn,r bn
bo | 1 1
by | 0 0
b | o | 3

For n = 3, using the above recursive equation gives

bs =0
And the table now becomes
n bn,r bn
bo | 1 1
b; | 0 0
b2 T2+71r+10 _%
b3 | 0 0

For n = 4, using the above recursive equation gives

1
~ (r247r 4+ 10) (r2 + 11r + 28)

bs
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Which for the root r = —3 becomes

1
b4 = —g
And the table now becomes
n bn,r bn
bo | 1 1
b; |1 0 0
by | i —3
bs | O 0
b L -1
4| G15)(+2)(r+7)(r+4) 8
For n = 5, using the above recursive equation gives
bs =0
And the table now becomes
n bn,r bn
bo | 1 1
bi 10 0
1 1
by | o ~3
bs | O 0
b L -1
4| rB5)(rr2)(r+7)(r+4) 8
bs | O 0

Using the above table, then the solution y,(z) is

yo(z) =1 (bo + by + box?® + bgx® + byx* + bsz® + bea®. .. )
1-2 -2 40z

Yn(w) = c1y1() + coya(T)

:Cl<1

.’1,'2

10

3

Therefore the homogeneous solution is

1174

+—+—+O(:c6)) +CZ<1_

280
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Hence the final solution is

10~ 280

Summary
The solution(s) found are the following

22 4 ] cz<1—
y—01(1+1—0+%+0(.’13 ))+

Verification of solutions

1+ =+-—=+0

2 g ; C2 <1 —Z gy O(x6)>
y:q( 10 " 280 @))+

Verified OK.

1.11.1 Maple step by step solution

Let’s solve

yVe+4y —yzx =0

. Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
y'=—% 1y
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

Yy + 47’/ —y=0
OJ Check to see if xg = 0 is a regular singular point
o Define functions
[Py(z) = 2, Ps(z) = —1]

o x-Py(x)is analytic at x =0

(z- Po(z))| =4

z=0

o x?- Py(z)is analytic at z = 0
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(«*- Py(z))| =0

=0

x = Ois a regular singular point
Check to see if xg = 0 is a regular singular point
To = 0
Multiply by denominators
vV'x+4y —yr=0
Assume series solution for y

o0
y = Z akwk-l—r

k=0
Rewrite ODE with series expansions

Convert z - y to series expansion
(e e]
z-y="3 apzktrtt
k=0
Shift index using k— >k — 1
o
xT-y= Z ak_lxk+r
k=1

Convert y' to series expansion

o)

y’ = kZ: ak(k + 1") £I7k+r_1
=0

Shift index using k— >k + 1
v = ap(k+r+1)aktr
k=1

Convert x - " to series expansion

[e )

z-y = kzoak(k +7)(k+r—1)zktr1
Shift index using k— >k + 1

z-y = kilakﬂ(k +r+1)(k+7)zrr
Rewrite ODE with series expansions

o0

k=1

ar(B+7r) s +a(1+7r)(4d+7)2" + (z (ap1(k+r+1)(k+4+7)—ap_1) 2"

apcannot be 0 by assumption, giving the indicial equation
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r(3+r)=0

Values of r that satisfy the indicial equation

re {-3,0}

Each term must be 0

a(1+7r)(44+7r)=0

Each term in the series must be 0, giving the recursion relation
apr1(k+r+1)(k+4+7r)—ar1=0

Shift index using k— >k + 1

a2k +2+7r)(k+5+71)—a,=0

Recursion relation that defines series solution to ODE

Apto = ok ——
k+2 = (k+2+7)(k+5+r)

Recursion relation for r = —3

WUt2 = G1)(er2)

Solution for r = —3

Y= kz_:()a,kil,'k_3, Ap42 = (k—llglm’ —2a, = d|

Recursion relation forr =0

—_ ag
Ak+2 = (k12)(k+5)

Solution forr =0

i )
y= I;Oakxk, Apt2 = m,&zl = 0]

Combine solutions and rename parameters

i 00 00
Yy = <]§Oakx_3+k) + (kz_jo bkl'k> y Qf+2 = (k—l(;m’ —2a1 = 0, bk+2 = (164_2(;%,41)1 =0
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 32

‘0rder:=6;
‘dsolve(x*diff(y(x),x$2)+4*diff(y(x),x)—x*y(x)=0,y(x),type='series',x=0);

(12 — 6% — 3z* + O (29))
x3

1 1
— 1 2 4 6
y(z) cl( + 1757 * 5g° +0(z )) +

v/ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 42

-

LAsymptoticDSolveValue[x*y"[x]+4*y'[x]-x*y[x]== »,y[x],{x,0,5}]

| —

N (R B S B (A
y N\# 8 2z 21280 " 10
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1.12 problem Problem 1.9
1.12.1 Maple step by step solution . . . . ... ... .. ... ..... 1511

Internal problem ID [12405]
Internal file name [OUTPUT/11057 _Wednesday_October_04_2023_01_27_58_AM_74288418/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.9.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

2zy" +(z+ 1)y —yk=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2zy" +(z+ 1)y —yk=0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
r+1
k
q(z) = o

140



Table 19: Table p(x), g(z) singularites.

p(z) = 55 q(z) = —5;
singularity type singularity type
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
2zy" + (z+ 1)y —yk =0

Let the solution be represented as Frobenius power series of the form

o)
y = 2 an xn—i—T
n=0

Then
Y=Y (n+r)aa™
n=0
y' = Z (n+7)(n+r—1)az"t 2

3
I
o

Substituting the above back into the ode gives

2 (Z (n+r)(n+r—1) anx”’”_z) T 0

n=0

+(z+1) (i (n+7) anx”“_l) — <i ana:””) k=0

n=0
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Which simplifies to

n=0

+ (Z (n+r) anm””_l) + Z (—kan$n+T) =0

n=0 n =0

<Z 22" g, (n+ 1) (n+r—1) > (Z " a,(n+r ) (24)

The next step is to make all powers of £ be n + r — 1 in each summation term. Going
over each summation term above with power of  in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

[e o] (e o]
Zm"""" (n+r) Zanlnjtr—l)mn‘” !
n =0 n=1

o0 o

Z kanxn-i—r Z —ka, 1 n—i—r—l)

=0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

<Z 22" ta,(n+71)(n+1r— 1)) + (Z an—1(n+7—1) x"”_l) (2B)

+ (Z (n+r) anx"+’"_1> + Z (—kan_lx"”_l) =0
n =1

n=0
The indicial equation is obtained from n = 0. From Eq (2B) this gives
22" g, (n+r)(n+r—1)+ (n+7)az" =0
When n = 0 the above becomes
22 " agr(—1+ 1) + ragz™ " =0

Or
2z r(=14+7)+rz7")ay =0

Since ag # 0 then the above simplifies to

retT(=142r)=0
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Since the above is true for all x then the indicial equation becomes
2r —r =0

Solving for r gives the roots of the indicial equation as

1
7"125
7'2:0

Since ag # 0 then the indicial equation becomes
re " (=1+2r)=0

Solving for r gives the roots of the indicial equation as Since r; — ry = % is not an
integer, then we can construct two linearly independent solutions

yi(z) =2 (Z anx")

n=0

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ag is arbitrary and taken as ag = 1. For 1 < n the recursive equation is

2a,(n+7)(n+r—1)+a,1(n+r—1)+a,(n+r)—ka,1 =0 (3)

Solving for a,, from recursive equation (4) gives

. = an-1(k—n—r+1)
" 24 dnr+2r2—n—r

(4)

Which for the root r = 7 becomes

_ap_1(2k—2n+1)
N 4n? 4+ 2n

Qp,

(5)
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At this point, it is a good idea to keep track of a,, in a table both before substituting

r= % and after as more terms are found using the above recursive equation.

n | Gny | Gy

ap 1 1

For n =1, using the above recursive equation gives

o — k—r
YT o2 4 3r 41
Which for the root r = % becomes
k1
a=—-— -
'73 6
And the table now becomes
no| Gn, an
ap 1 1
k— E_ 1
ax 21'2+371“+1 37 6

For n = 2, using the above recursive equation gives
o — (k—1-—r)(k—r)
27 44+ 2078 + 3572 + 257 + 6

Which for the root r = % becomes

ag = 3—10k2 — %k + %
And the table now becomes
n | G, a
ag | 1 1
a | s E_l
a2 4r4+(2ko;§4_rg23g;12)5r+6 50k — 15k + 5

For n = 3, using the above recursive equation gives

. (k—2—-7m)(k—1—-7)(k—1)
"~ 8r6 4 8475 + 35074 + 73573 + 81272 + 441r + 90

as
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Which for the root r = 7 becomes

(2k — 5) (=3 + 2k) (2k — 1)

as =

5040
And the table now becomes

no | Gny an
ao 1 1
a _k—r k_ 1

L 2r243r+1 3 6

(k=1—7)(k—r) 172 1 1

2 | 3520/3135r2+257 16 30k 15k +
a (k—2—7)(k—1—7)(k—r) (2k—5)(—3+2k)(2k—1)

3 | B8r6184r5+350r4+735r3+812r2+4417+90 5040

For n = 4, using the above recursive equation gives

(k—=3—-r)(k—2—-1)(k—=1—-7)(k—1)

= (876 + 84r5 + 35014 4 73573 + 812r2 + 441r 4+ 90) (r +4) (2r + 7)

Which for the root r = % becomes

(2k — 7) (2k — 5) (=3 + 2k) (2k — 1)

aq =
362880
And the table now becomes
n | Gnpr Qn
Qo 1 1
ar | —k=r E_1
1| 27233741 3 6
(k—1—7)(k—) 1722 1 1
A2 | 44120/ 435r2+25r+6 k" — 1kt
a (k—2—r)(k—1—r)(k—r) (2k—5)(—3+2k)(2k—1)
3 | 8r6+84r5+350r2+735r3+812r2+441r+90 5040
a (k—3—r)(k—2—7)(k—1—r)(k—r) (2k—T7)(2k—5) (—3+2k)(2k—1)
4 | (8r5+84r51350ri+735r3+812r2+441r+90)(r+4)(2r+7) 362880

For n = 5, using the above recursive equation gives

(k—4-r)(k-3-r)(k—-2—-7r)(k—1—7r)(k—T)

%5 = (876 + 8475 + 3507* + 73573 + 812r2 + 441r + 90) (r +4) (2r +7) (2r +9) (r + 5)

Which for the root r = % becomes

(2k — 9) (2k — 7) (2k — 5) (=3 + 2k) (2k — 1)
39916800
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And the table now becomes

n | Gpr an
ap 1 1
ar | —F=r k_1
1| 27243r11 3 6
(k—1—7)(k—T) 1z22 1 L1
02 | 4a120/5 43512425716 sk — 1kt
a (k—2—r)(k—1—7)(k—r) (2k—5)(—3+2k) (2k—1)
3 | 8r6+84r5+350r+735r3+812r2+4417+90 5040
a (k—3—r)(k—2—7)(k—1—71)(k—r) (2k—7)(2k—5)(—3+2k)(2k—1)
4 | (8r6+84r5+350ri+735r3+812r2+441r+90)(r+4)(2r+7) 362880
a (k—4—r)(k—3—7)(k—2—1)(k—1—r)(k—7) (2k—9)(2k—7)(2k—5)(—3+2k)(2k—1)
5 | (8r6484r5+350ri+735r3+812r2+441r+90)(r+4)(2r+7)(2r+9)(r+5) 39916800

Using the above table, then the solution y; () is

y1(z) = vz (a0 + a1 + axz® + a3z’ + asz* + a5z’ + aez®. .. )

(2k —7) (24

:\/5(1+<E_1)x+(ikg_lk+l>x2+(2k—5)(—3+2k)(2k—1)x3+

3 6 30 15 40 5040

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 1 < n the recursive equation
is

2b,(n+7r)(n+r—1)+b,_1(n+r—1)+n+7r)b, —kb,_1 =0 (3)

Solving for b,, from recursive equation (4) gives

_ bpa(k—n—1r+1)
T2 4dnr+2r2—n—r

n

(4)
Which for the root r = 0 becomes

bn_l(k? —-—n+ ].)

b, =
2n2 —n

(5)

At this point, it is a good idea to keep track of b,, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n | by, | by

by | 1 1
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For n = 1, using the above recursive equation gives

b — k—r
P22 4 3r 41
Which for the root r = 0 becomes
b=k
And the table now becomes
n bn,r bn
by | 1 1
b | st | K

For n = 2, using the above recursive equation gives

_ (k—1-r)(k—r)

~ 4rt+420r3 4 35r2 4 251 + 6
Which for the root r = 0 becomes

by

kE—1)k

)
And the table now becomes

n bn,r bn

by | 1 1

by 27'2’:-_3:4-1 k

b (k=1—r)(k—r) (k=D)k

2 | 4%320r3435r2425r+6 6

For n = 3, using the above recursive equation gives

_ (k—=2-r)(k—1-=71)(k—1)

 8r6 4+ 8475 4 35014 4 73513 4 812r2 4 441r + 90
Which for the root » = 0 becomes

bs

_ (k=2 (k—1)k

bs 90

And the table now becomes
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n bn,r bn
b | 1 1
k—r
by 2r243r+1 k
b (k—1—r)(k—7) (k—1)k
2 | 4r1320r3+35r2+25r+6 6
b (k—2—r1)(k—1—r)(k—7) (k—2)(k—1)k
3 | 8r6+84r5-+350ri+735r3+812r2+441r+90 90

For n = 4, using the above recursive equation gives

_ (k—3—-r)(k—2—-1)(k—1—7)(k—1)
(876 + 8475 + 35074 + 73573 + 812r2 + 441r +90) (r +4) (2r +7)

ba

Which for the root r = 0 becomes
(=34+k)(k—2)(k—1)k

by =
4 2520
And the table now becomes
n | by, b,
by | 1 1
b _k=r k
1| 27233741
b (k—1—7)(k—T1) (k—1)k
2 | 4r%120r3+35r2+25r+6 6
b (k—2—1)(k—1—7)(k—r) (k—2)(k—1)k
3 | 8r6+84r5+350r4+735r3+812r2+4417+90 90
b (k—3—7)(k—2—1)(k—1—7)(k—r) (—3+k)(k—2)(k—1)k
4 | (8r6+84r5+350r2+735r3+812r2+441r+90)(r+4)(2r+7) 2520

For n = 5, using the above recursive equation gives

(k—4—-r)(k—-3—-r)(k—-2-7)(k—1—=7r)(k—T)

b= =
® 7 (8r + 8475 + 3504 + 7357 4 812r2 + 4417 4 90) (r + 4) (2r +7) (2r +9) (r + 5)

Which for the root r = 0 becomes

(k—4)(=3+k) (k—2) (k—1)k

bs = 113400

And the table now becomes
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n bn,r bn
by | 1 1
k—r
by 2r243r+1 k
b (k—1—r)(k—7) (k—1)k
2 | 2ri320r3+35r2+25r+6 6
b (k—2—r)(k—1—7)(k—7) (k—2)(k—1)k
3 | 8r8+84r5+350r1+735r3+812r2+4417+90 90
b (k—3—r)(k—2—7r)(k—1—r)(k—T) (=3+k)(k—2)(k—1)k
4 | (8r6+84r5+350ri+735r3+812r2+441r+90) (r+4)(2r+7) 2520
b (k—4—1)(k—3—7)(k—2—7) (k—1—r)(k—r) (k—4)(—3+k) (k—2) (k—1)k
5 | (8r8+84r5+350rt+735r3+812r2+4417+90)(r+4) (2r+7)(2r+9)(r+5) 113400

Using the above table, then the solution y,(x) is

Ya2(z) = by + b1z + box® + b3z + byz* + bsz® + b’ ..

(k=1ka*  (k=2)(k=Dka®  (=3+k)(k=2)(k—1)ka'

=1+kz+ i

k—4)(=3+k)

6 90 2520

Yn(r) = cry1 () + coya(z)

=clﬁ<1+(k 1 1

30

1

. (2k — 5) (=3 + 2k) (2k — 1) 2
15

Therefore the homogeneous solution is
L) 2
40> v 5040
+ (2k —7) (2k — 5) (=3 +2k) (2k — 1) z*

)+
362880

(2k — 9) (2k — 7) (2k — 5) (=3 + 2Kk) (2k — 1) 2°
* 39916800

2

3 6

+O(z6))

(k—2)(k—1)kz® (=3+k)(k—2)(k—1)ka*

90 + 2520

(k—4) (=3 +k) (k—2) (k— 1) ka®
113400

(k—1)kz?
6 +

+cC2 (1+I€$+

+

4 O(xﬁ))

Hence the final solution is

Y=1Yn
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:clﬁ<1+<§_1)x+<ik2_ik+i>x2+(2k—5)(—3+2k)(2k—1)x3

36 30" T 15" 40 5040
(2k —7) (2k — 5) (=3 + 2k) (2k — 1) 2

k=0 0k )55y (3 2
2% — 9) (2k — 7) (2k — 5) (=3 + 2k) (2k — 1) 2 .
+ 39916800 +0(s ))
(k—Dka? (k—2)(k—1)kz® (=3+k) (k—2)(k—1)ka

+c (1—|—kx+ 5 + 9 + 9520
(k—4) (=34 k) (k—2) (k- 1) ka® )
+ 113400 +O(z))

Summary

The solution(s) found are the following

kol 1, 1. 1Y\ , (2k—5)(=3+2k)(2k— 1)
y:clx/i (1+<§—6) T+ (%k —1—5k+E)fI3 + 5040
L (2R =T)(2k=5) (=3-+2%) (2% — 1) a*
(% — 9) (2% — 7) (2 — 5) (31 2K) (oh 1) a5
* 39916800 +0( §1)
(k—1Dkz? (k—2)(k—1)kz® (-3+k)(k—2)(k—1)kz*
6 90 + 2520
L (=9 (34R) (=2 (k= 1) ko?

6
113400 +0(z ))

+cz(1+kx+

Verification of solutions

y=61\/3—3<1+<E_l>x+<ik2_ik+i>x2+(2k—5)(—3+2k)(2k—1)x3

376 30" 15" " 40 5040
| (k= T) (26— 5) (=3 +2k) (2 — 1)a*
362880
(2k — 9) (2k — 7) (2k — 5) (=3 + 2k) (2k — 1) z )
+ 39916800 +0(2")
(k—Dka? (-2 (k—1)kz® (=3+k)(k—2)(k—1)ka*
+c2 (1 + kx + 6 + 9% + 9520
(k—4) (=34 k) (k—2) (k- 1) ka® .
+ 113400 +0(2")
Verified OK.
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1.12.1 Maple step by step solution

Let’s solve
2"z +(x+ 1)y —yk=0
° Highest derivative means the order of the ODE is 2

7

Yy
° Isolate 2nd derivative

n_ _(z+1)y" | yk
¥y = 2z + 2z

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y// + (m';alc)y' _ % =0

OJ Check to see if xg = 0 is a regular singular point

o Define functions

[Pa(z) = 5L, Py(z) = — 5]

2x T2z

o x-Py(x)is analyticatx =0

(z - Pa(z))

_1
=0 2

o z?. P3(z)is analytic at z =0

(«*- Py(x))| =0

z=0

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

zo=0
. Multiply by denominators
2z +(xz+ 1)y —yk=0
° Assume series solution for y
Y= i T
k=0
0 Rewrite ODE with series expansions

o Convert ™ - 3/ to series expansion for m = 0..1

[e.e]
™y = ap(k +r)gktr-im
k=0

o Shift index using k— >k+1—m
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"y = > app1m(k+1—m+r)xktT
k=—1+m

Convert x - y” to series expansion

Ty = ki)ak(k +7)(k+r—1)gktr1

Shift index using k— >k + 1

ooy’ = & okt 1) (k)b

Rewrite ODE with series expansions

aor(=1 + 2r) 21+ 4 (Ii (@ppa(k+147) 2k +142r) — ap(k — k — 1)) xk+r) —0

apcannot be 0 by assumption, giving the indicial equation

r(=142r)=0
Values of r that satisfy the indicial equation
re{0,1}

Each term in the series must be 0, giving the recursion relation
2(k+3+7)(k+1+7)apy —ar(k—k—7)=0

Recursion relation that defines series solution to ODE

a _ ay,(k—k—r)
k+1 = @k+1+2r)(k+1+7)

Recursion relation forr =0

— _ak(k=k)
U1 = et D))

Solution forr =0

& k—k
{y = kZ_Oakx’“, ax+1 = (yﬁ(l—wﬁ)rl)]
Recursion relation for r = %

_ ak(k—k—3
O+l = ko) (kt 2

)
Solution for r = %

_ i B P . oo

Combine solutions and rename parameters
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N\

_ (g gm R _ am(=mtk)  bm(k—m—1
|:y - <mz=0 AmT ) + (mz=0 bma; +2) y Am+1 = (2m+—1)(m+1)7bm+1 = —(2m+2)(m+2%)

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm

<- No

Liouvillian solutions exists

-> Trying a solution in terms of special functioms:

<-

Bessel

elliptic

Legendre

Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius

<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
Kummer successful

<- special function solution successful”
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 132

‘0rder:=6; ‘
‘dsolve(2*x*diff(y(x),x$2)+(1+x)*diff(y(x),x)—k*y(x)=0,y(x),type='ser1es ,x—O)#

B ko1 \ 1\
y(x)—\/a_:cl<1+(3 6)w+(30k 15k+40)

5040
———(2k—7)(2k —5) (2k — 3) (-1 + 2k) =*

———(2k — 5) (2k — 3) (—1 + 2k) z*

1 + S350
¥ g (9K —9) (2K 1) (26 —5) (26 —3) (—1+2k)x5+0(x6))+c2(1+kx
|4 k) ka? +910( (k—3) (=24 k) (—1+ k) ka*

_|_

2+k)( 1+k)k£l: +m

1
_|_
(—4+k)(k— 3ﬂ—2+kx—r+mkﬁ+4)@ﬂ)

6

1 13400

v/ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 304

LAsymptoticDSolveValue [2xx*y' ' [x]+(1+x) *y' [x]-k*y[x]==0,y[x],{x,0,5}] J

_2@—§H§—@G—§H§—Bﬁ+_i_§_ﬁ S5_k\(k_1\ 3
2835 3504 2/ \172)\271
_3 §_E E_l 2_|_g E_l +1
15\a 2)\272)% T3\a71)"
e 23-5 Q-5 (EB-%)(2-%) ks’
2 14175

G (Y- e
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1.13 problem Problem 1.11(a)

Internal problem ID [12406]
Internal file name [OUTPUT/11058_Wednesday_October_04_2023_07_06_03_PM_64152595/index. tex|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.11(a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

Unable to solve or complete the solution.

CL'Sy” + m2y' + y= 0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

a:3y" +x2y’ + y = 0
The following is summary of singularities for the above ode. Writing the ode as
¥ +p(@)y +q(@)y=0

Where
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Table 21: Table p(z), ¢(z) singularites.

p(z) = ; q(z) = 35
singularity type singularity type
=0 “regular” z=0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [00]
Irregular singular points : [0]

Since z = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since z = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful
<- special function solution successful”

X Solution by Maple

‘Order:=6;
‘dsolve(x‘3*diff(y(x),x$2)+x‘2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

No solution found
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v/ Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 222

-

kAsymptoticDSolveValue [x"3xy' ' [x]+x~2*y' [x]+y[x]==0,y[x],{x,0,5}]

A J

(2) > ¢ i o 4188543108755x°%/2 B 57972915ix7/2 N 5953552/ B T5ix3/2
4 ! 8796093022208 4294967296 8388608 8192
30241281245175z° | 13043905875¢*  2401245z° 36752 9z  iVT

T 281474976710656 | 549755813888 268435456 « 524288 512 | 16
2, 418854310875ix%/2  57972915ix/2  59535ix%/2 T5ixz/?  302412812451752°
+1 +02€\/5\/5 — —

8796093022208 * 4294967296 8388608 + 8192  281474976710656 +
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1.14 problem Problem 1.11(b)

Internal problem ID [12407]
Internal file name [OUTPUT/11059_Wednesday_October_04_2023_07_06_05_PM_68847962/index.tex|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.11(b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",

"second__order__integrable__as_ is", "second order series method. Irregular
singular point"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

Unable to solve or complete the solution.

",.2

v'z’+y —2y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous

part of the ODE.

y"x2+y'—2y=0

The following is summary of singularities for the above ode. Writing the ode as

Y +p(@)y +q(x)y =0

Where
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Table 22: Table p(z), ¢(z) singularites.

p(z) = 5 q(z) = -2
singularity type singularity type
z=0 “irregular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [00]
Irregular singular points : [0]

Since z = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since z = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

<- linear_1 successful"

X Solution by Maple

‘0rder:=6;
dsolve (x~2*diff (y(x),x$2)+diff (y(x),x)-2*y(x)=0,y(x) ,type='series',x=0);

N

No solution found
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v/ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 28

kAsymptoticDSolveValue [x~2xy' ' [x]+y' [x]-2*y[x]==0,y[x],{x,0,5}]

y(z) = e + ¢y (22° +2z +1)
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1.15 problem Problem 1.12
1.15.1 Maple step by step solution . . . . ... ... ... ....... Ival

Internal problem ID [12408]
Internal file name [OUTPUT/11060_Wednesday_October_04_2023_07_06_06_PM_13727061/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.12.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

2y"r* +z(1—xz)y —y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2y”x2—|- (—:L'2—i—:r) Y —y=0

The following is summary of singularities for the above ode. Writing the ode as

Y +p@)y +q(z)y=0

Where
r—1
1
q(z) o2
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Table 23: Table p(x), g(z) singularites.

pe) =~ (@) = —3=
singularity type singularity type
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode

as
Regular singular points : [0]

Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
%" z% + (__,L,2 -|-£L') y —y=0

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

2 (i n+r)(n+r—1) anx”+r_2> z?

n=0

+ (—2% + ) (Z (n+r) ana:”“"”_l) - (Z anx™t

n=0

162
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Which simplifies to

(Z 22" a,(n+7)(n+7r—1) ) z; " a,(n+r)) (24)
(Z xn—i—r n +r ) Z anwn+r) =0

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

e .o]

Z (=2 ap(n+1)) = Z (—an_1(n+7r — 1) ™)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + r.

(g 22" a,(n+7)(n+7r— 1)) + nZ:l (—@n_1(n+7—1) ") 2B

(Zx”” (n+r >+Z anx”” =0

n

The indicial equation is obtained from n = 0. From Eq (2B) this gives
22" a,(n+r)(n+r—1)+z2""a,(n+7) —a,z"" =0
When n = 0 the above becomes
22" agr(—141) + z"aer — apz” =0

Or
2z"r(—14+r)+2"r—2")ap=0

Since ag # 0 then the above simplifies to
(2r2—r—1)x’"=0
Since the above is true for all x then the indicial equation becomes

2 —r—1=0
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Solving for r gives the roots of the indicial equation as

T1=:1

1
T2:=-§

Since ag # 0 then the indicial equation becomes

(27‘2—7'—1)1":0

Solving for r gives the roots of the indicial equation as Since r; — ry = % is not an

integer, then we can construct two linearly independent solutions

yi(z) = 2" (Zanx>
yo(z) = 2" (Zw)

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ag is arbitrary and taken as ag = 1. For 1 < n the recursive equation is

2a,(n+7r)(n+r—1)—a,_1(n+r—1)+a,(n+r)—a,=0 (3)

Solving for a,, from recursive equation (4) gives

an—1
= 4
@ 2n+2r+1 ()

Which for the root r = 1 becomes

an-1
2n+3

(5)

ap =

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.
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Qo 1 1

For n = 1, using the above recursive equation gives

1

M= 3o

Which for the root r = 1 becomes 1
a, = -

And the table now becomes

n | Gy | an

ap 1

_1
3+2r

[T

a1

For n = 2, using the above recursive equation gives

1
C 4r2 4 16r + 15

a2

Which for the root r = 1 becomes

1
9= 35
And the table now becomes
n | Gpyr an
Qo 1 1
1 1
a1 | 3397 5
G| — 1 |
2 | 4r2316r+15 | 35

For n = 3, using the above recursive equation gives

1
"~ 8r3 + 60r2 4 142r + 105

Which for the root r = 1 becomes

as

1
~ 315

as
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And the table now becomes

n | Gpy ay,
Qo 1 1
1 1
a1 | 3397 5
an | ——L 1
2 | 4r2416r+15 35
a 1 1
3 | 83+60r2+142r+105 | 315

For n = 4, using the above recursive equation gives

1
1674 + 19273 + 82472 + 1488r + 945

Which for the root r = 1 becomes

a4

1
ay = ——
3465
And the table now becomes
n | Quyr an
ap 1 1
1 1
a1 | 379, 5
ao | ——L 1
2 | 2416r+15 35
a 1 1
3 | 8r3360r2+142r+105 315
a 1 1
4 | 16r2+192r3+824r2+1488r+945 | 3465

For n = 5, using the above recursive equation gives

1
3275 4 56074 + 376073 + 1204072 + 18258r + 10395

Which for the root r = 1 becomes

as

1

% = 45045

And the table now becomes
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n | Gy (%
ao 1 1
1 1
a1 | 339, 5
an | ——L 1
2 | &2316r+15 35
a 1 1
3 | 8r3+60r2+142r+105 315
a 1 1
4 | 16rT+192r3+824r2+1488r+945 3465
1 1
05 | 33,51 560r4+3760r3+ 1204072+ 18258710395 | 45045

Using the above table, then the solution y; () is

yl(x)=x(a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6...)
x z2 28 z* x°
=z(1+-+ =+ +

6
5 35 315 3465 + 45045 + O(a: )>

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 1 < n the recursive equation
is

2bp,(n+r)(n+r—1)—b,_1(n+r—1)+by(n+71)—b,=0 (3)

Solving for b,, from recursive equation (4) gives

by
"= oo (4)
2n+2r+1
Which for the root r = —3 becomes
bn—l
b, = 5
o™ (5)
At this point, it is a good idea to keep track of b, in a table both before substituting
r= —% and after as more terms are found using the above recursive equation.

n bnT bn

)

by | 1 1

For n =1, using the above recursive equation gives
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Which for the root r = —3 becomes

And the table now becomes

S
S
S
B!
S
3

by | =2

N= | =

For n = 2, using the above recursive equation gives
1

by —
T 42+ 16r + 15
Which for the root r = —3 becomes
1
b2 == g
And the table now becomes
n | by, b,
bo | 1 1
1 1
bi | 335 3
by | 22— | L
2 | 2r2¥16r+15 | 8

For n = 3, using the above recursive equation gives

1
b =
27 8r3 4 60r2 + 1427 + 105
Which for the root r = —% becomes
1
by = —
8748
And the table now becomes
n bn,r bn
bo | 1 1
b | 3o 3
by | 1 1
2 | &2316r+15 8
b L L
3 | 83360r2+142r+105 | 48
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For n = 4, using the above recursive equation gives

1
b, =
47 167t + 192r3 + 82412 + 14887 + 945
Which for the root r = —% becomes
1
by = —
‘7 384
And the table now becomes
n bn,T bn
by | 1 1
1 1
bi | 335 2
by | 1
4r216r+15 8
b L L
3 | 8r31+60r2+142r+105 48
1 1
bs 16r2+192r3+824r2+1488r+945 | 384

For n = 5, using the above recursive equation gives

1
be =
57 39p5 + 56014 + 376073 + 1204072 + 182587 + 10395
Which for the root r = —% becomes
1
bs = ——
> 3840
And the table now becomes

n bn,r bn

bo | 1 1

1 1

bi | 575 2

by | Lt — 1

2 | &2116r415 8

b 1 L

3 | 8r3+60r2+142r+105 48

1 1
bs 16r2+192r3+ 82472+ 14887 +945 384
1 1

bs 32r5+560ri+3760r3+12040r2+18258r+10395 | 3840
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Using the above table, then the solution y,(x) is

yo(z) =x(b0+b1:v+b2x2+b3x3+b4x4+b5:c5+b6:c6...)
2 3 4 5
_ 1+ 24+2 42 + 2+ 25+ 0(2%
NG

Therefore the homogeneous solution is

Yn(z) = c1y1(z) + coya()

2 x3 .’L'4 $5 6
= 1 dl
Clx( Ty % * 315 3165 * 25015 T O ))

o1+ 5+%5 + %+ & + 525+ 0()

N

_|_

Hence the final solution is

Y=Yn
2

x x3 xt x5
—op(l+ s+ 4o+

6
5 35 315 3465 * 45045 + O(x ))

o(1+5+2 + 5+ & + 525+ 0()
N

_|_

Summary
The solution(s) found are the following
$2 .'E3 .'L'4 :L,5
— 1 =4 O(z°
Y clx( T5 35315 " 3aes  ds0ss T O ))
T T x 5154
CQ<1+§+§+E+@+3840+0(.’L‘ ))

N

_|_

Verification of solutions

=cz|l+= +x_2+w_3+ z + z + O(z°)
y=a 5 " 35 ' 315 ' 3465 @ 45045

xT T xT 1134
Cz(1+§+§+4—8+@+3840+0($)>

VT

+

Verified OK.

170



1.15.1 Maple step by step solution

Let’s solve

2y'x? + (—z*+ )y —y=0

° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative

n_ y o (@=1y
Yy = 22 + 2x

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y - W L =
OJ Check to see if xg = 0 is a regular singular point

o Define functions
[Pa(z) = =52, Ps(z) = — 2]

o x-Py(x)is analyticatx =0

(z - Pa(z))

_1
=0 2

o z?. P3(z)is analytic at z =0

(«* - Py(x))

z=0

N =

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

zo=0
. Multiply by denominators
2y —z(z— 1)y —y=0
° Assume series solution for y
Y= i T
k=0
0 Rewrite ODE with series expansions

o Convert ™ - 3’ to series expansion for m = 1..2

[e.e]
™y = ap(k +r)gktr-im
k=0

o Shift index using k— >k+1—m
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"y = > app1m(k+1—m+r)xktT
k=—1+m

Convert z2 - y” to series expansion
o0

22y =Y ap(k+7)(k+7r—1)zF
k=0

Rewrite ODE with series expansions

ao(1+2r)(=1+7)z" + (i (ar(2k+2r+1)(k+r—1)—ap_1(k+7r— 1))zk+r) —0

apcannot be 0 by assumption, giving the indicial equation
(14+2r)(-14+r)=0

Values of r that satisfy the indicial equation

re{l,—-1

Each term in the series must be 0, giving the recursion relation
2k+r—1)((k+r+3)ar—%2) =0

Shift index using k— >k + 1

2k +7r) (k+2+r)apy—%) =0

Recursion relation that defines series solution to ODE
Ag+1 = m

Recursion relation for r = 1

Ag+1 = #is

Solution forr =1

o)

_ k+1 __a

y= Z arT + y Ak4+1 = 2k-l:_5:|
k=0

Recursion relation for r = —

N[ =

— _Gag
Ok+1 = 2542

Solution for r = —

N

[ oo

_ k-1 _ a
y= Z A" 2,041 = 2k—,;-2:|
k=0

Combine solutions and rename parameters

[ 00 00
— 1+k k—1 __ _ag _ by
Y= (Z apT ) + (Z bkx 2) y A1k = 2k+5) bl-‘rk — 2%k+2
L k=0 k=0
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functioms:
-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solu
<- Kovacics algorithm successful-

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

~N

p
‘Order:=6; ‘
‘dsolve(2*x“2*diff(y(x),x$2)+x*(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=¢);

B a(l+ 3z + 322 + 5o + 4zt 4 5552° + 0 (29))

11 1 1 1
1 - =2 ;| - 4 - .5 0) 6
+62x( T et et et e (z°)
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v/ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 86

kAsymptoticDSolveValue [2xx~2%y' ' [x]+x* (1-x)*y' [x]-y[x]==0,y[x],{x,0,5}]

$5 134 1'3 xz T
5 L C2<M+@+E+§+§+1)
315 35 ' 5

T
T S AT |
y(z) — C11‘<45045 + 3465 + + -+ + N
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1.16 problem Problem 1.13
1.16.1 Maple step by step solution . . . . ... ... ... ....... (187

Internal problem ID [12409]
Internal file name [OUTPUT/11061_Wednesday_October_04_2023_07_06_07_PM_97534733/index.tex]|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28

Problem number: Problem 1.13.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

y'z(r—1)+3yz+y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
(xQ_x)y/I+3y/x+y=0

The following is summary of singularities for the above ode. Writing the ode as
¥ +p@@)y +4q(z)y=0

Where
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Table 25: Table p(x), g(z) singularites.

9(2) = 35p
p(z) =% S
- - singularity type
singularity type
z=0 “regular”
r=1 “regular”
rx=1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [1, 0, 00]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
y'z(z —1)+3yz+y=0

Let the solution be represented as Frobenius power series of the form

00
y = 2 anxn+r
n=0

Then
Y= (n+r)ae™!
n=0
y' = Z (n+r)(n+r—1)a,z""?

3
I
o

Substituting the above back into the ode gives

<Z (n+7)(n+r—1) anxw—?) z(z — 1)

n=0

+3 ( (n+r) anm""""_l) T+ (Z anm"'”) =0
n=0 n=0
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Which simplifies to

(Zx”” n+r(n+r—1>+z " ta,(n+r) (n+r—1)) (24)
(ZBx"“ n—l—r)) <Zanx"+’") =0

The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

o

Z " Ta,(n+r)(n+r—1)= Zan_l(n +r—1)(n+r—2)z" !

n =0 n=1

Z 3" ap(n+ 1) = Z 3a,_1(n+r—1)z""!
n =0

n=1

E :anw E :an— n+r—1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

o0

(Zan_l(n+r—1 (n+r—2)z"*"" 1) Z " a,(n+r) (n+r—1))
<Z3an in+r—1)z""" 1) (Zan 1"t 1) =0
n=1

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" o, (n+r)(n+7r—1)=0
When n = 0 the above becomes

—z M agr(—=147) =0

—z " agr(=14+71) =0
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Since ag # 0 then the above simplifies to
—z T (=147)=0
Since the above is true for all x then the indicial equation becomes
—r(—=1+7)=0
Solving for r gives the roots of the indicial equation as

r =

o = 0
Since ag # 0 then the indicial equation becomes
_x—l—}-?",,.(_]_ + T') =0

Solving for r gives the roots of the indicial equation as Since ; — 75 = 1 is an integer,
then we can construct two linearly independent solutions

y1(z) = =™ (Z anx")

12(2) = Cyr(2) In (2) + 27 (Z b)

Or

@) = (f; x)

ele) = Oz In (z) + (i b>
N -

yl(x) _ Zan$n+1
n=0

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. ag is arbitrary and taken as ay = 1. For 1 < n the recursive
equation is

an-i(n+r—1)(n+r—-2)—a,(n+r)(n+r—-1)+3a,1(n+r—1)+a,_1 =0 (3)

Solving for a, from recursive equation (4) gives

(n+7)an—1
p= D Gnct 4
n+r—1 )
Which for the root r = 1 becomes
1) a,_
= DOt )
n

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n | Gy | Gn

Qo 1 1

For n = 1, using the above recursive equation gives

1+7r
a] =
r

Which for the root r = 1 becomes
a; = 2

And the table now becomes

(0]

[
3
[\

a1

B |

For n = 2, using the above recursive equation gives

247
a9 =

r

Which for the root r = 1 becomes
Qa9 = 3
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And the table now becomes

Qo 1
aiq 14r 2

a9 24r 3

For n = 3, using the above recursive equation gives

3+
oy

as
Which for the root r = 1 becomes
as = 4

And the table now becomes

n | Gy | Gy
Qo 1 1
ai 17# 2
(45} 27# 3
as ?% 4

4+
aqg =
r
Which for the root » = 1 becomes
as = 5
And the table now becomes
n | Gnyr | g
ap 1 1
a; 17# 2
(05) 27# 3
as 31# 4
ay 4% 5




For n = 5, using the above recursive equation gives

Which for the root r = 1 becomes

And the table now becomes

n Qn,r | On
Qo 1 1
ay 17# 2
(45} 21# 3
as 31# 4
ay 4% 5
as 51# 6

Using the above table, then the solution y; () is

y1(z) = z(ao + a1% + a2z® + a3z’ + asz + a5z° + agz®. . )
= z(1+ 2z 4 32° + 42° + 5z* + 62° + O(=°))
Now the second solution y»(z) is found. Let
T —To = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim, ., a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = a;
1+
oy
Therefore
147 147
lim = lim
7o r r—0 r
= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

Y2(z) = Cyi(z) In (z) + (Z bnx"Jr”)
n=0
Therefore

2 (@) = Oy (o) (@) + 1) (Z "*’"”)

= Cyi(z) In(z) + Cy1 (Z 7 HET2h (0 4 r2)>

n=0

2Cy (z)  Cyi(z)
T 2

i (bnmn-i-rz (n _|_7,.2)2 B bnxn+r2(n+ 7-2))

z2 T2

= Cy{(z)In(z)+ 20m(@) _ Cn(z) (Z 22 () (=1 +n+ 7"2))

X fL’
n=0

Substituting these back into the given ode y"z(z — 1) + 3y'z + y = 0 gives

(oya'@c) in (@) 4. 2C0@) _ Cn@)

N Z < nxn—i-rz n + 7'2) bn:z;n—i-rz (n, + 7‘2))) x(x _ 1)

x2

+3 (C'y'l(cc) In (z) + Cy#(x) + <§: bnxn+r2:1(:’n, + 7‘2))) T

n=0

sonmie s (e

=0
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Which can be written as

(0@ 2t -1+ 3t @) 2+ @) o) + (A2 1) oo -y

1.2
o bnxn—f-m (n + ,,,.2)2 bn$n+T2 (TL + 1"2) (7)
+ 3y1(x)) ¢+ (; < 72 - 72 z(z — 1)
o0 TL+T2 o0
+3<Z anL' én—km)) z+ (anxn+r2> =0
n=0 n=0

But since y;(z) is a solution to the ode, then
yi (@) z(z — 1) + 3y (z)  + 3 () = 0
Eq (7) simplifes to

( 2 () _ y1($)> o(z —1) + 3y1(x)> C

x x?
o0 bn n+ro 2 bn n+ro
N Z < x a(:+r2) bz x(2n+r2)>>x(x_1) (8)
n=0
o0 TL+’I"2 oo
+3<Z bz ](:’I’L-l-’f'Q)) T+ (anmn—i-v"z) =0
n=0 n=0

Substituting y; = > a,z"*™ into the above gives
n=0

(Zz(x _1) (i Z g (4 m) +(2z+1) (f; anx’”’”)) c

- ©)

(Z .'I:_2+n+szn(n+T2) (_1 +n +’)"2)) x2(x _ 1) + 3(2 x—1+n+rzbn(n+r2)> x2 + (Z bnxn-i-?"z) €T
n=0 n=0 n=0

_|_
=0

X

Since r; = 1 and r, = 0 then the above becomes

(23:(35 —1) (i z"an(n + 1)) + (22 +1) (i anx"+1>) C

n=0 n=0

: (10)

(i 22 n(n — 1)> 22z — 1) + 3<§: zn_lbnn> z? + (20 bnzn) T L

n=0 n=0

+
T
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Which simplifies to

e}

(i 2C 2" a,(n + 1)) + Z —2C z"a,(n + 1))

+ (i 2C’x”+1an> + (i Capz" ) + (i z"b,n(n — 1)) (24)
+ Z —nz™ 1b (n—1) ) + <Z3z"bnn> + (ibnx") =0

The next step is to make all powers of x be n — 1 in each summation term. Going
over each summation term above with power of x in it which is not already z"~! and
adjusting the power and the corresponding index gives

Z 2C z"a,(n + 1) Z 2Ca_gin(n—1) 2!

n=2
> (—2Cz"an(n+1)) =Y (-2Ca,_1nz"™)
n =0 n=1

i 2C " a,, = i 2Ca_2+nx"_1
n =0 n=2
i Ca,x" = i Cay_12"
n =0 n=1
Z z"b,n(n — 1) Z (n—1)by_1(=2+n)z" "
n=1

i 3z"b,n = i 3(n—1)by_1z™ !
n =0 n=1

i b,x" = i b1zt

n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n — 1.

(Z 2Ca_on(n—1) :c"_1> + Z (—QCan_ln x”_l)
n=2 n =1
n—1 n—1
+ ;ZC’a_an ) + (; Can,_1x ) (2B)
+ Z (n—1)bp1(=2+n) a:"_1> + Z (—nz" b, (n — 1))
n=1 n =0
+( > 3(n-1) bn_lx"_1> + <Z bn_lm”_l) —0
n=1 n=1

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

—-C+1=0

Which is solved for C'. Solving for C' gives
C=1
For n = 2, Eq (2B) gives
(4ag — 3a;) C +4by — 2b, =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
—2—-2b,=0

Solving the above for by gives
by =—1

For n = 3, Eq (2B) gives
(6&1 — 5&2) C + 9b2 - 6b3 =0

Which when replacing the above values found already for b, and the values found earlier

for a,, and for C, gives
—12—-6b3 =0

Solving the above for b3 gives
by = —2
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For n = 4, Eq (2B) gives
(8&2 - 7a3) C + 16b3 — 12b4 =0
Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives
—36 —12b, =0

Solving the above for by gives
by = —3

For n =5, Eq (2B) gives
(10a3 — 9a4) C + 25by, — 20b5 = 0
Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives
—80 — 2065 =0

Solving the above for b5 gives
bs = —4

Now that we found all b, and C, we can calculate the second solution from

yz(CL') = Cyl (117) In (:E) + (Z bnmn+r2>

n=0

Using the above value found for C =1 and all b,,, then the second solution becomes

yo(z) = 1(z(1 + 2z + 32% + 42° + 53* + 62° + O(2%)) ) In ()
+1—2%—22° — 3z* — 42° + O(2)

Therefore the homogeneous solution is

yn(z) = c191(z) + cap2(z)
= c1z(1 + 2z + 3z + 42° + 5z* + 62° + O(2%))
+c2(1(z(1+ 2z + 32° + 42° + 52" + 62° + O(2°)) ) In (z) + 1 — 2* — 22°
— 3z — 42° + O(z%)

Hence the final solution is
Y=1Yn
= c1z(1 + 2z + 3z% + 42° + 52* + 62° + O(2°))
+ ca(z(1+ 2z + 32° + 42° + 52* + 62° + O(2%) ) In (z) + 1 — 2° — 22° — 3z* — 4a®
+0(2%))
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Summary
The solution(s) found are the following

y = c1z(1 + 2z + 3z% + 42° + 5z + 62° + O(2°))
+co (2 (1 + 2z + 32 + 42° 4 52* + 62° + O(2%)) In (z) + 1 — 2? — 22° — 3241)
—4x5+0(z6))

Verification of solutions

y=clm(l+2x+3x2+4r3—|—5x4+6m5+0( )
+ o (2 (14 22 + 32® 4+ 42® + 52" + 62° + O(2%)) In (z) + 1 — 2° — 22° — 3z — 44°

+0(2%))
Verified OK.
1.16.1 Maple step by step solution
Let’s solve
YV'rz(z—1)+3yz+y=0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y”+ W +x(ac 1) =0
! Check to see if xg is a regular singular point

o Define functions

[Pz(x) = % 3(7) = a:(:z: 1 ]

o x-Py(x)is analytic at x =0

(z - Py(x))

z=0

o z?. P3(z)is analytic at z =0
(z* - Py(z))

o z = (is a regular singular point

z=0
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Check to see if xg is a regular singular point
To = 0
Multiply by denominators
Y'e(x —1)+3yz+y =0
Assume series solution for y
o0
y = Z akxk”
k=0
Rewrite ODE with series expansions

Convert x - 3 to series expansion

e o]
z-y = ap(k+r)zrt
k=0

Convert ™ - 3" to series expansion for m = 1..2
o0

™y = ap(k+71) (k+7r—1)ghtr—2m
k=0

Shift index using k— >k +2 —m
"y = > apppmk+2—m+r)(k+1—m+r)zFt
k=—24+m

Rewrite ODE with series expansions
—aogr(—=1+7r)z7 14" + <2 (—app1(b+7+1) (k+7) +ap(k+7+1)%) xk‘”) =0
k=0

apcannot be 0 by assumption, giving the indicial equation

—r(—1+7r)=0
Values of r that satisfy the indicial equation
r € {0,1}

Each term in the series must be 0, giving the recursion relation
(k+r+1)(—ag(k+7r)+a(k+r+1)) =0

Recursion relation that defines series solution to ODE

__ ag(k+r41)
Akl = = g
Recursion relation forr =0
_ agp(k+1)
Qg1 = 2

Solution forr =0
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o0
_ k _ ag(k+1
y_zakxaak-i-l_ (k ):|
k=0
° Recursion relation for r =1
_ ax(k+2)
Ak+1 = ~p37
° Solution for r =1
i 00
— k+1 _ ax(k+2)
Yy= Za‘k:ﬂ y Ak+1 = k+1
L k=0
° Combine solutions and rename parameters

S 00
y= <kz—:0 akzk) + <kz_:0 bszk) y Al+k = w, bijr = —bkfif)

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

<- linear_1 successful"

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 60

e N
‘0rder:=6; ‘
Ldsolve(x*(x—l)*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0)}

y(z) = iz (1 + 2z + 32° + 42° + 52* + 62° + O (2°))
+ (z+22° + 32° + 42" + 52° + O (%)) In (z)
+ (1+ 3z + 52° + 72° + 92" + 112° 4+ O (2°%)) e
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v/ Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 63

-

kAsymptoticDSolveValue [x*k (x-1)*y' ' [x]+3*x*y' [x]+y[x]==0,y[x],{x,0,5}]

—

y(z) > ar(z* +2° +2° + (42° + 32° + 22+ 1) zlog(z) + =+ 1)
+ c2(52° + 4z* + 32° + 22° + 1)
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2 Chapter 3 Bessel functions. Problems page 89

2.1 problem Problem 3.7(a) . . ... ... ... ...
2.2 problem Problem 3.7(b) . . . ... ... .. ...
2.3 problem Problem 3.7(c) . .. ... ... ...
2.4 problem Problem 3.7(d) . . . ... ... ...
2.5 problem Problem 3.7(e) . . . ... ... ...
2.6 problem Problem 3.7(f) . . ... ... ...
2.7 problem Problem 3.7(g) . . . ... ... .. ... ..
2.8 problem Problem 3.12 . . . . ... ... ... ... ... ...
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2.1 problem Problem 3.7(a)

2.1.1 Solving as second order bessel odeode . . . . .. ... .. ... 192
2.1.2 Maple step by step solution . . . . ... ... ... ... ... 193

Internal problem ID [12410)]
Internal file name [OUTPUT/11062_Wednesday_October_04_2023_07_06_08_PM_10656506/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.7(a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

y/l_ny:O

2.1.1 Solving as second order bessel ode ode

Writing the ode as
y'z? — yxt =0 (1)
Bessel ode has the form
Yo’ +yz+ (—n*+ %) y=0 (2)
The generalized form of Bessel ode is given by Bowman (1958) as the following
y'z? + (1 — 2a) zy’ + (ﬂ272w27 —n?y% 4+ a2) y=0 (3)
With the standard solution

y = z%(cy BesselJ (n, Bz7) + c2 BesselY (n, 27)) (4)
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Comparing (3) to (1) and solving for a, 8, n,y gives

1
"2

(3
P=3

1
"y
v=2

Substituting all the above into (4) gives the solution as

1 ix 1 ix?
= c11/ Bessel] (4 2 > + cp1/x BesselY <4 5 )

Summary
The solution(s) found are the following

iz? 1 ix
y = c1v/T Bessel] (4 5 > + c9y/7 BesselY (4 5 )

Verification of solutions

2 1 iz
y = c14/ Bessel] <4 2 > + c3\/x BesselY (4 5 )

Verified OK.

2.1.2 Maple step by step solution

Let’s solve
y// _ x2y =0

° Highest derivative means the order of the ODE is 2
yll

° Assume series solution for y

o0
y= Z akiﬂk
k=0

O Rewrite ODE with series expansions

o Convert z? - y to series expansion

o0
gy =3 apztt?
k=0
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o Shift index using k— >k — 2
22 y= > ap_ox*
k=2
o Convert y” to series expansion
v = apk(k — 1) z%2
k=2
o Shift index using k— >k + 2

' = apio(k+2) (k+1)zF
k=0
Rewrite ODE with series expansions
6a3x + 2&2 + (Z (ak+2(k + 2) (k? + 1) - ak_2) .’Ek) =0
k=2

The coefficients of each power of x must be 0

[2&2 = 0, 6&3 = 0]
Solve for the dependent coefficient(s)
{a2 = 0, as = 0}

Each term in the series must be 0, giving the recursion relation
(k? + 3k + 2) agy2 — ax_2 =0

Shift index using k— >k + 2

((k+2)°+3k+8) apsa —ar =0

Recursion relation that defines the series solution to the ODE

e o]
— k — ak — —
y= kE Of k", Okt = iy 2 = 0,03 =0
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful
<- special function solution successful”

N\

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

‘dsolve(diff (y(x),x$2)-x"2+y(x)=0,y(x), singsol=all)

2 2
y(z) = (BesselK (%l, %) c2 + Bessell (1 L ) cl) VT

42
v Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 37

LDSolve[y"[x]—x‘2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

1 1
y(z) — c; ParabolicCylinderD (—5, Z\/ﬁx) + ¢, ParabolicCylinderD (—5, ﬁx)
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2.2 problem Problem 3.7(b)

2.2.1 Solving as second order bessel odeode . . . . ... .. .. ... 196
2.2.2 Maple step by step solution . . . . .. ... ... ... ..... 197

Internal problem ID [12411]
Internal file name [OUTPUT/11063_Wednesday_October_04_2023_07_06_10_PM_71685414/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.7(b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

zy'+y +y=0

2.2.1 Solving as second order bessel ode ode

Writing the ode as
y'e’ +ys+yz =0 e
Bessel ode has the form
y'z? + vz + (—n2 + x2) y=0 (2)
The generalized form of Bessel ode is given by Bowman (1958) as the following
Yz’ + (1 —2a) zy + (27" —n*¥* +a®)y=0 (3)
With the standard solution

y = z%(cy BesselJ (n, 8z7) + c2 BesselY (n, 27)) 4)
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Comparing (3) to (1) and solving for a, 8, n,y gives

S @™ R
Il

I
iRk O N O

~
Substituting all the above into (4) gives the solution as
y = c; BesselJ (0, 2\/5) + c; BesselY (0, 2\/5)

Summary
The solution(s) found are the following

y = c¢1 BesselJ (0,2v/z) + ¢, BesselY (0, 2v/z) (1)

Verification of solutions

y = ¢, BesselJ (0, 2\/3_3) + ¢, BesselY (0, 2\/5)
Verified OK.

2.2.2 Maple step by step solution

Let’s solve

y'z+y +y=0

. Highest derivative means the order of the ODE is 2
Y

° Isolate 2nd derivative
y=-t-t

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
Yy + % +2=0

OJ Check to see if xg = 0 is a regular singular point

o Define functions
[P2(z) = 1, Py(z) = 1]

o x-Py(x)is analytic at x =0
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(z - Py(z))

=0

z? - P3(x)is analytic at x = 0

(z* - Py(z))

=0
x = Qis a regular singular point
Check to see if xg = 0 is a regular singular point
To = 0
Multiply by denominators
y'z+y +y=0
Assume series solution for y
o k
y= ) az"’
k=0
Rewrite ODE with series expansions

Convert ¥ to series expansion

v =3 alk )k
k=0
Shift index using k— >k + 1
v = app1(k+1+7)zF
k=—1

Convert x - y” to series expansion

z-y = ]iak(k +7)(k+r—1)gkt—!

Shift index using k— >k + 1

z-y = kilakﬂ(k +1+7)(k+7)z*r

Rewrite ODE with series expansions

aoriz~ 1T 4+ (kio:() (ars1(k+1+7)° + ay) xk”) =0
apcannot be 0 by assumption, giving the indicial equation
r2=0

Values of r that satisfy the indicial equation
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~

r=20
° Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 +a,=0

° Recursion relation that defines series solution to ODE
ag+1 = —W
° Recursion relation forr =0
_ ___a
U1 = Gy
° Solution forr =0
_ . k _ ag
Y= axx",apy1 = —
& (k+1)2

Maple trace

"Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

Ldsolve(x*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x), singsol=all)

y(z) = c1 Bessel] (0, 2v/z) + c; BesselY (0, 2v/z)

v/ Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 31

tDSolve[x*y"[x]+y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) — c1 BesselJ (0,2v/z) + 2c; BesselY (0,2v/x)
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2.3 problem Problem 3.7(c)
2.3.1 Solving as second order bessel odeode . . . . .. ... ... .. 2011

Internal problem ID [12412]
Internal file name [OUTPUT/11064_Wednesday_October_04_2023_07_06_10_PM_70418792/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.7(c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

oy’ +(+1)°y=0

2.3.1 Solving as second order bessel ode ode

Writing the ode as
Yz’ + (2 + 222+ 2)y =0 (1)
Bessel ode has the form
Yz’ +yz+ (—n*+2*)y=0 (2)
The generalized form of Bessel ode is given by Bowman (1958) as the following
Yz’ + (1 —20)zy + (B°7°2* —n*y¥* +a®)y =0 (3)
With the standard solution

y = x%(cy BesselJ (n, Bx7) + ¢ BesselY (n, 5z7)) 4)
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Comparing (3) to (1) and solving for a, 8, n,y gives

1
@=3
ﬂ:
n=-—1

1
T3

Substituting all the above into (4) gives the solution as
y = —c1v/7 Bessel] (1, 2\/5) — cp1/z BesselY (1,2\/5)

Summary
The solution(s) found are the following

y = —c1v/z Bessel] (1,2v/z) — c2/z BesselY (1,2y/7) (1)

Verification of solutions

y = —c1v/T Bessel] (1, 2\/5) — ¢p1/ BesselY (1, 2\/5)

Verified OK.
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Maple trace

s N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moeb
trying a solution in terms of MeijerG functionms
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x)
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), O]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---

, ~—> Computing symmetries using: way = 3~ [0, y]

203
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, dx)) * 2F1([s




X Solution by Maple

Ldsolve(x*diff(y(x),x$2)+(x+1)“2*y(x)=0,y(x), singsol=all)

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve[x*y"[x]+(x+1)‘2*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

Not solved
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2.4 problem Problem 3.7(d)

2.4.1 Solving as second order linear constant coeffode . .. ... .. 205]
2.4.2 Solving as second order ode can be made integrable ode . . . . [207
2.4.3 Solving using Kovacic algorithm . . . . . . ... ... ... ... 208]
2.4.4 Maple step by step solution . . . . ... ... 211

Internal problem ID [12413]
Internal file name [OUTPUT/11065_Wednesday_October_04_2023_07_06_10_PM_50793839/index.tex|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.7(d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y//+a2y=0

2.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay'(z) + By'(z) + Cy(z) =0
Where in the above A = 1, B = 0,C = o?. Let the solution be y = e**. Substituting
this into the ODE gives

NeM 4 a?e? =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
A+ X =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general

solution form.Using the quadratic formula
-B 1

= — _ 2 _
o= 5y £ 5,VB —4AC
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Substituting A =1, B = 0,C = o? into the above gives

0 1
@0 @0

Az = V0?2 = (4) (1) (o?)

Hence

)\2 = — —012
Which simplifies to

)\1 =vV—-a?

)\2 = — —C¥2

Since roots are real and distinct, then the solution is

y = c1eM® + cpe™”
Yy = cle( —a2)x “+ 026(_ —az)x
Or
y=ce¥ YT tce VTH?
Summary

The solution(s) found are the following

Verification of solutions

Verified OK.
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2.4.2 Solving as second order ode can be made integrable ode

Multiplying the ode by v gives

1,1

Yy +a’yy=0

Integrating the above w.r.t = gives

/ (y'y" +*yy)dz =0

y_'2 N a2y?
2 2

:C2

Which is now solved for y. Solving the given ode for 4 results in 2 differential equations

to solve. Each one of these will generate a solution. The equations generated are

Y =/ —a?y?+2¢
Yy =—v/—a?y? 4+ 2¢
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
dy= | dz
/ N TR T /
VaZy )
arctan (—\/m
N

=T+ C

Solving equation (2)

Integrating both sides gives

1
— dy= | dz
/ V—02y? 4 2¢; Y /
VaZy
_arctan <—\/M)
Va2

=c3+x
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Summary
The solution(s) found are the following

2
arctan (%)
Va2
arctan <%)
_ V=oPyP 90,
Va2

=+ C

=c3+x

Verification of solutions

N
arctan [ —22Y __
A /_a2y2+201
Va2

=+ C

Verified OK.

v o2
arctan | —2 Y __
A /_a2y2+201

- =c3+

Va2

Verified OK.

2.4.3 Solving using Kovacic algorithm
Writing the ode as
y'+a’y=0
Ay"+ By +Cy=0
Comparing (1) and (2) shows that

2

QW >
I

1
0
o'

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22 %
Then (2) becomes
2"(z) = rz(z)
Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC
4A2

208
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Substituting the values of A, B, C from (3) in t

2

. O
1
Comparing the above to (5) shows that
s=—a’
t=1

Therefore eq. (4) becomes

he above and simplifying gives

2" (z) = (—a?) 2(z)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e )

B
ﬂd:z:

(6)

(7)

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

Case | Allowed pole order for r

Allowed value for O(c0)

1 {0,1,2,4,6,8,---}

{"'7_67_47_27(),2)3747576,"'}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2} {1, 3},{2},{3},{3,4},{1,2,5}.

no condition

3 {12}

{273,4’57677, o }

Table 29: Necessary conditions

for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)

=0-0
=0
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There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=l

2

Since r = —a“ is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is
— 2
z1(z) =eV ™"

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from
% dx

_1
yl fd Z]_ef 2

Since B = 0 then the above reduces to

=2
—o?z
=e
Which simplifies to
Y = e\/—a2m

The second solution s to the original ode is found using reduction of order

ef_%dx
y2 = yl/ 2 d.T
)

1

Since B = 0 then the above becomes

1
y2=y1/—2d$
Y1

— 1
=e _0‘2”’“'/ dz

eZ\/—azz
/ 2 ,—2vV—a’zx
— o2 —Qa“e
— V%2 -
2x

Therefore the solution is
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Y =1y + C2Yo

/2 —2vV—-a?z
=Cl<e _a2w> +02<e _a%( v >>

202

Summary
The solution(s) found are the following

Jr, GV —ale VT
+
202

Y = cie

Verification of solutions

Ve | cV/—aZe Ve

Yy =ce 202

Verified OK.

2.4.4 Maple step by step solution

Let’s solve
y// + a2y — O
° Highest derivative means the order of the ODE is 2

7

Yy

° Characteristic polynomial of ODE
a?+1r2=0

° Use quadratic formula to solve for r
. (\/2—47)

° Roots of the characteristic polynomial

r = (V=a?, —y=a?)

° 1st solution of the ODE

y(z) =evV=o'"
° 2nd solution of the ODE
ya(z) = eV’

° General solution of the ODE
y = c1y1(z) + coya(z)
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° Substitute in solutions

v —a2 S —A2
Yy=ceV ¥ T fceT VT

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

-

tdsolve(diff(y(x),x$2)+alpha‘2*y(x)=0,y(x), singsol=all)

—

y(z) = ¢; sin (azx) + ¢; cos (ax)

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 20

LDSolve[y"[x]+a‘2*y[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(z) — ¢ cos(ax) + cosin(azx)
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2.5 problem Problem 3.7(e)

2.5.1 Solving as second order linear constant coeffode . .. ... .. 213]
2.5.2 Solving as second order ode can be made integrable ode . . . . 2153
2.5.3 Solving using Kovacic algorithm . . . . . ... ... ... .... 276!
2.5.4 Maple step by step solution . . . . . ... ... ... ... ... 220

Internal problem ID [12414]
Internal file name [OUTPUT/11066_Wednesday_October_04_2023_07_06_12_PM_60725539/index.tex|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.7(e).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

yl/_a2y=0

2.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) =0
Where in the above A =1, B = 0,C = —a?. Let the solution be y = e**. Substituting
this into the ODE gives
)\2e>\m _ a2e)\m =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
—a?+ X =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\172 9 94 \% B 4AC
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Substituting A = 1, B = 0,C = —a? into the above gives

0 1 — —
M=y g VT - DO ()

Hence

= +Va?2
Ay = —Va?
Which simplifies to
A = Va2
Ao = —Va2

Since roots are real and distinct, then the solution is

Y= cle T4 cze>‘
y= Cle(\/c?z)z + c2e<“/‘72>””
Or
y=ce \/7 T + coe” a?x
Summary
The solution(s) found are the following
y = W T + coe” a?zx (1)
Verification of solutions
y= rm + coe” a?zx

Verified OK.
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2.5.2 Solving as second order ode can be made integrable ode

Multiplying the ode by v gives
ylyll _ a2yly — 0
Integrating the above w.r.t = gives

/ (y/y// _ a2y/y) d.’II — 0

y/2 a2y2

2 2

202

Which is now solved for y. Solving the given ode for 4 results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

Y =it 2a (1
Y =—Varit2a @
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
———dy= [ d
/va2y2+2cl Y /x
In (\%ﬁz +valy? + 2cl>

=T+ Cy
Va2
Raising both side to exponential gives
2
ln( ;a%+\/a2y2+2c1)
e Va2 = em+62

Which simplifies to

1
(ozy csgn (@) + v/ a2y? + 261> Va2 _ cse”
csgn(c) ((03em)csgn(a)a_2(cgez)f csgn(a)acl)

2a

(c3e®)*—2(c3e®) " %c1
2a

Simplifying the solution y =
Solving equation (2)

toy =
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Integrating both sides gives

1
——————dy= [ dx
/ Va2y? 4+ 2¢ y /
In <% + Valy? + 2cl>

— =xr+cy
Va2
Raising both side to exponential gives
2
ln(%+y/02y2+201>
e Va2 = g%t

Which simplifies to

_ csgn(a)

(ay csgn (@) + Va?y? + 201) Y =cxe”

ngn(a) (2(65ez)csgn(a)acl_(65ez)— csgn(a)a)

2(c5e®)%c1—(c5e*) ™

Simplifying the solution y = — 5 toy = — S
Summary
The solution(s) found are the following

(c;;e””)o‘ — 2(63693)_0‘ (&1

= 1
y 50 (1)
2(c5e%)% 1 — (c5%)

2¢

Yy=-

Verification of solutions

_ (c3e®)* — 2(c3e”) % 1
2c

Verified OK.

2(c5e®)% 1 — (c5e®) ™
2a

y=—-
Verified OK.

2.5.3 Solving using Kovacic algorithm

Writing the ode as

y' —a’y=0 (1)
Ay"+ By +Cy=0 (2)
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Comparing (1) and (2) shows that

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2" (z) = rz(x)
Where 7 is given by
s
r=-
t
2AB' — 2BA’ + B2 — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

o?
r=—
1

Comparing the above to (5) shows that

Therefore eq. (4) becomes

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e k%

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 31: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since » = o? is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is
2
z(x) =eV*?®

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz

Since B = 0 then the above reduces to

N =2

va?zx
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Which simplifies to

gy = Vot

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
)

1

Since B = 0 then the above becomes

1
y2=y1/—2d$
1A
_ Vaia 1
=¢€ /62\/0?:cdx

Vs csgn (Ot) e—2 csgn(a)ox
2

=€

Therefore the solution is

Yy =cy1 + Y2

— o (%) 4o, <emx (_ csgn (a) e~2 =)o ) )

2a
gimplifying the solution y = ceVe’® — 2 ngn(a)g;csgn(a)az to y = cieVe’® —
ummary
The solution(s) found are the following
c e—xa
Y= eV _ O
2a
Verification of solutions
c e—za
Y= eV _
2a

Verified OK.
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2.5.4 Maple step by step solution

Let’s solve
y// _ azy =0
° Highest derivative means the order of the ODE is 2

i

Yy

° Characteristic polynomial of ODE
—a?4+7r2=0

° Factor the characteristic polynomial

—(a—r)(a+71)=0

° Roots of the characteristic polynomial
r=(a,—a)

° 1st solution of the ODE
yi(z) =™

° 2nd solution of the ODE

o

ya(z) =€~
° General solution of the ODE
y = ca1yi () + cay2(2)
° Substitute in solutions

Y = 16" + coe™ ™

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(y(x),x$2)—alpha‘2*y(x)=0,y(x), singsol=all)

y(z) = c167% + o™

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 23

LDSolve [y'' [x]-a~2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

axr

y(x) = c1€*" + coe”
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2.6 problem Problem 3.7(f)

2.6.1 Solving as second order linear constant coeffode . .. .. ... 2272
2.6.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 224
2.6.3 Maple step by step solution . . . .. .. ... ... ... ..., 227

Internal problem ID [12415]
Internal file name [OUTPUT/11067_Wednesday_October_04_2023_07_06_13_PM_11627360/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.7(f).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

Y+ By +yy=0

2.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) = 0

Where in the above A = 1, B = 3,C = . Let the solution be y = e**. Substituting
this into the ODE gives
)\26’\"’4—,3)\6)‘“4—76)‘””:0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
BA+ N +y=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\172 9 94 \% B 4AC
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Substituting A = 1, B = 3,C = « into the above gives

Hence

Which simplifies to

-8 1
Ao = + 2_ (4
:_éi—M

2 2

B p? — 4y
M=ot

B p? — 4y
’\2__5_ 2

B, VB -4y
M=t

B p? — 4y
A2__§_ 2

Since roots are real and distinct, then the solution is

Summary

Y= cle)‘”’ + cze)‘””

\/B2—4y

§

B, VB2
7t 3

y = Cle<

The solution(s) found are the following

( 2 2

Verification of solutions

Verified OK.

;

2_
+ co€

;

2_
+ ce

223



2.6.2 Solving using Kovacic algorithm

Writing the ode as

y' + By +yy=0 (1)
Ay"+ By +Cy =0 (2)
Comparing (1) and (2) shows that
A=1
B=p 3)
C=vy

Applying the Liouville transformation on the dependent variable gives
2(x) = yel 2%

Then (2) becomes

7' (z) = ra(z) (4)
Where r is given by
r= 5)
_ 2AB'—2BA' 4+ B? — 4AC
- 4A?
Substituting the values of A, B, C from (3) in the above and simplifying gives
_ B4y
Comparing the above to (5) shows that
s= 32— 4y

t=14

Therefore eq. (4) becomes

@)= (5 =) ) 7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 33: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L =1]
Since r = % — 7y is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is
z\/B2 -4y

z(x) =€ 2

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

1B
Y1 = zlef_Ede
1B
:zle_fETdm

Which simplifies to
(—Bﬂ/ﬂ)w

The second solution ys to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz

n

Substituting gives

ef_%dz
Y2 :yl/—2d$
(yl)

Therefore the solution is

Y =cC1y1 + C2yo

( (—ﬁ+\/ﬁ2—47)2) ( (—54—\/52—4’7)93 ( e—xﬂ))
=cqC| € 2 +cal e 2 |
p? — 4y

Summary
The solution(s) found are the following

B+y/82 -4 )=
Yy =ce <_7B+\/§2j)m _ 02€_<2)
p? -4y
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Verification of solutions

B+y/B2-17 )z
y=ce <_7B+\/éﬂ)w _ Cze_<2)
p*—4y

Verified OK.

2.6.3 Maple step by step solution

Let’s solve

y'+ By +yy=0
° Highest derivative means the order of the ODE is 2

!

Yy

° Characteristic polynomial of ODE
Br+r’+y=0

° Use quadratic formula to solve for r

. (-8)x(VB2—1y)

2

° Roots of the characteristic polynomial
r= (_ﬁ__wuw _é+_\/ﬁ2—47>
2 2 7 2 2
° 1st solution of the ODE
<_B_W3247>x
2 2
yi(z) =e

° 2nd solution of the ODE

y2(z) = e<—§+@>w

° General solution of the ODE
y = c1y1(z) + cova(z)

° Substitute in solutions

B \/ﬁ2—47> ( 8,V 62—4'v>
+ coe

2 2

y = Cle<
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 41

Ldsolve(diff(y(x),x$2)+beta*diff(y(x),x)+gamma*y(x)=0,y(x), singsol=all) J

(o /2= )e (s+2=0)2

y(x) = cre 2 + coe” 2

v Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 47

LDSolve[y"[x]+\[Beta]*y'[x]+\[Gamma]*y[x]==0,y[x],x,IncludeSingularSolutions<f> True]

y(x) — e_%z( VER=ar+5) (cge’”v Frty 4 cl>
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2.7 problem Problem 3.7(g)
2.7.1 Maple step by step solution . . . . ... ... ... .. 229

Internal problem ID [12416]
Internal file name [OUTPUT/11068_Wednesday_October_04_2023_07_06_15_PM_52558194/index.tex]|

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.7(g).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_Gegenbauer]

Unable to solve or complete the solution.

(-2 +1)y" —2y'z+n(n+1)y=0

2.7.1 Maple step by step solution

Let’s solve
(-2 + 1) y" —2¢z+ (n®*+n)y=0
° Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative

n _ nn+l)y  2zy
Yy =3 z2—1

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

" 2zy’ n(n+l)y __
Y +m2—1 T T2 =0

OJ Check to see if xq is a regular singular point

o Define functions
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z2—1

|Pa(2) = 5325, Po(2) = "5

(z + 1) - Py(z)is analytic at z = —1
((z+1)- Pyx)) ‘F_l =1

(z +1)* - P3(z) is analytic at z = —1

((z+1)*- Py(z)) =0

r=-1

x = —1is a regular singular point

Check to see if xg is a regular singular point

To=—1

Multiply by denominators

v (2 —1)+2yzr—n(n+1)y=0

Change variables using x = u — 1 so that the regular singular point is at u =0

(u? - 20) (y(w) + (2u —2) (Ey(w) + (—n® = n) y(u) = 0

Assume series solution for y(u)
y(u) = > axut*’
k=0

Rewrite ODE with series expansions

Convert u™ - (Ly(u)) to series expansion for m = 0..1

u™ - (Gy(w) = kZOak(k +7) yktr-itm

Shift index using k— >k +1—m

um™ - (%y(u)) = Z ak+1—m(k +1—m+ ’I") uk+r
k=—1+m

Convert u™ - <j—;2y(u)> to series expansion for m = 1..2

u™ <dd—:2y(U)) = ap(k+7)(k+7r—1)uktr—2tm
k=0

Shift index using k— >k +2—m

u™ - (dd—;y(u)) = Y aromk+2—-m+r)(k+1—m+r)urtr
k=—2+m

Rewrite ODE with series expansions
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e o]

—2aor2u~ 1t + (Z (—2ap41(k+ 1+ V4 ap(r+1+n+k)(r—n+ k)) uFtr

k=0

apcannot be 0 by assumption, giving the indicial equation
—-2r2 =0

Values of r that satisfy the indicial equation

r=20

Each term in the series must be 0, giving the recursion relation
—2a1(k+1)° +ar(1+n+k)(—n+k)=0

Recursion relation that defines series solution to ODE

ar,(14n+k)(—n+k)
2(k+1)*

ak+1 =

Recursion relation forr =0

ar,(14+n+k)(—n+k)
2(k+1)2

ap+1 =

Solution forr =0

i N .
vl = kzzoakuk’“kﬂ = )}

Revert the change of variablesu =z + 1

i o0
y=3 ar(z+1)", a5 = ak(1+2rz:f)1()§"+k)]

231

) =0



Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful”

v/ Solution by Maple
Time used: 0.109 (sec). Leaf size: 15

Ldsolve((1-x“2)*diff(y(x),x$2)-2*x*diff(y(x),x)+n*(n+1)*y(x)=0,y(x), singsol=all)

y(x) = c; LegendreP (n, z) + ¢ LegendreQ (n, x)

v/ Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 18

LDSolve[(l-x“2)*y"[x]—2*x*y'[x]+n*(n+1)*y[x]==0,y[x],x,IncludeSingularSolutiq#s -> True]

y(x) — ¢ LegendreP(n, z) + c; LegendreQ(n, x)
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2.8 problem Problem 3.12
2.8.1 Solving as second order bessel odeode . . . . .. ... ... .. 233

Internal problem ID [12417]
Internal file name [OUTPUT/11069_Wednesday_October_04_2023_07_06_15_PM_2375291/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003

Section: Chapter 3 Bessel functions. Problems page 89

Problem number: Problem 3.12.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode"
Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

7

y'z> +y'z + (—v* +2°) y = sin (z)

2.8.1 Solving as second order bessel ode ode

Writing the ode as
y'z> +y'z+ (—v* +2°) y = sin (z) (1)
Let the solution be

Y=Yn+ Y

Where vy, is the solution to the homogeneous ODE and y, is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

y'r’+yz+ (—n*+3%)y=0 (2)
The generalized form of Bessel ode is given by Bowman (1958) as the following
y'z’ + (1 - 2a) 2y’ + (B°7°2® —n’*y* +a?)y =0 (3)
With the standard solution

y = z%(cy BesselJ (n, B27) + co BesselY (n, 27)) 4)
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Comparing (3) to (1) and solving for a, 8, n,y gives

a=20
=1
n=v
vy=1

Substituting all the above into (4) gives the solution as
y = c1 BesselJ (v, z) + c2 BesselY (v, z)
Therefore the homogeneous solution yy, is

yn, = c1 BesselJ (v, ) + ¢ BesselY (v, x)

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = w1y1 + uays (1)

Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = BesselJ (v, z)
y2 = BesselY (v, )

In the Variation of parameters ui, us are found using
y2f(z)
= — 2
“ / aW (z) @)
_ [ nf(=z)
vz = / aW (z) )

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
Vi Y
BesselJ (v, x) BesselY (v, z)
4 (BesselJ (v,z)) - (BesselY (v,z))
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Which gives

BesselJ (v, z) BesselY (v, z)

— Bessel] (v + 1,z) 4 “2es00)  _ BegeelY (v 4 1, 1) + LEessed¥(va)

x

Therefore

BesselY
W = (Bessel] (v, z)) (— BesselY (v + 1,z) + v BesselY (v, x))

T
v BesselJ (v, x))
T

— (BesselY (v, z)) (— BesselJ (v + 1,2) +

Which simplifies to

W = — BesselJ (v, z) BesselY (v + 1, z) + BesselY (v, z) BesselJ (v + 1, z)

Which simplifies to

Therefore Eq. (2) becomes

2z
™

v = — / BesselY (v, z) sin (x) d

Which simplifies to

BesselY i
= _/ esse (1/2,;3) sin () T

Hence

Uy =

x(hypergeom ([5 — =5 5] , [5, 1—-v,5—v, g — g] ,—zz) v+ 2)2 2Yz™" + 7 hypergeom |

And Eq. (3) becomes

2z
™

g = / BesselJ (v, z) sin (z) i
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Which simplifies to

y = / BesselJ (v, z) sin (z) w s

2z
Hence
o, 2 rma hypergeom ([543, + 5§+ 5], [ v+ Lo+ v g+ 5], —2?)
2T T(v+2)

Therefore the particular solution, from equation (1) is

Yp(z) =
_x(hypergeom (A-y2-23 -2 [21-v,3—v3—%],-2?)T(v+2)°2"2~" + 7 hypergeom |
2v—-1v(v+
+2_1_”7r g hypergeom ([ + 1,3 +%,2+ %]  [3,v+ 1,3 +v,2 + %], —2?) BesselY (v, z)
I'v+2)

Which simplifies to

Yp(z) =
(BesselJ (v, z) hypergeom ([ — 4,2 — ¢ 3 —¢] [[21—p, 3 —p 3 %] —2?)T(v+2)°2"s7" +h

Therefore the general solution is

Y=Y+Yp
= (c1 BesselJ (v, z) + c2 BesselY (v, z))
N (_ (BesselJ (v, z) hypergeom ([% -5, ?—1 -5, % — %] , [%, 1—v, % -, % — g] ,—z‘z) v+ 2)2 2V ™V

Summary
The solution(s) found are the following
y = ¢ BesselJ (v, z) + ¢, BesselY (v, x) (1)
(BesselJ (v, z) hypergeom ([% —¢5_rz3_ 5] , [§ 1—v,3—y, % — g] ,—mz) v+ 2)2 2Yz™" + hy
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Verification of solutions

y = c1 BesselJ (v, z) + ¢, BesselY (v, )
(BesselJ (v, z) hypergeom ([% -2, % -y 3_ 5] , [§ 1—v, % -, % — g] ,—$2) v+ 2)2 2Yz™" + hy

Verified OK.
Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
<- Bessel successful
<- special function solution successful

<- solving first the homogeneous part of the ODE successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 158

e

tdsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)+(x‘2—nu‘2)*y(x)=sin(x),y(x), singsoi%all)

y(z) =

z'772"! BesselJ (v, z) ['(v + 2) hypergeom ([3 — 4,2 = ¥,3 — %] | [3,1— v, 3 — 0,3 — ¥] | —a?)

viv—=1)(v+1)

+ BesselJ (v, x) ca + BesselY (v, z) &1
727121 (BesselJ (v, z) cot (mv) — BesselY (v, z)) hypergeom ([
I'(v+2)

IR
_|_
N[ =
ot
+
[NJAN
>
+
[NJAN
5
—
N
<

_|_

—_
N
4
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v/ Solution by Mathematica
Time used: 1.228 (sec). Leaf size: 205

kDSolve [x~2xy' ' [x]+x*y' [x]+(x"2-\[Nu] "2)*y[x]==Sin[x],y[x],x, IncludeSingularSo}Lutions -> True

y(z) =
72"~ L esc(mv)zt ™ Bessell (v, z) sFy(5 — 4,3 - 5,2 - %31 -3 —v
(v — 1) Gamma(1l — v)
727 1g" ! (BesselY (v, z) — cot(mv) Bessell (v, z)) sFu(% + 1,5+ 3,2+ 2,3, ¥ + 2 v+ 1,v + 3;—a

(v+1)Gamma(v + 1)

wlco
I
LI
I
8
N
N—

+ ¢1 BesselJ(v, z) 4 ¢ BesselY (v, z)
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