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1.1 problem Problem 1.1(a)
1.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4

Internal problem ID [12394]
Internal file name [OUTPUT/11046_Wednesday_October_04_2023_01_27_34_AM_22931473/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.1(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_2", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x− 1) y′′ − y′x+ y = 0

Given that one solution of the ode is

y1 = ex

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = − x

x− 1
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Therefore

y2(x) = ex
(∫

e−
(∫

− x
x−1dx

)
e−2xdx

)

y2(x) = ex
∫ ex+ln(x−1)

e2x , dx

y2(x) = ex
(∫

(x− 1) e−xdx

)
y2(x) = −exx e−x

Hence the solution is
y = c1y1(x) + c2y2(x)

= exc1 − c2exx e−x

Summary
The solution(s) found are the following

(1)y = exc1 − c2exx e−x

Verification of solutions

y = exc1 − c2exx e−x

Verified OK.

1.1.1 Maple step by step solution

Let’s solve
(x− 1) y′′ − y′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x−1 +
xy′

x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′

x−1 +
y

x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions
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[
P2(x) = − x

x−1 , P3(x) = 1
x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators
(x− 1) y′′ − y′x+ y = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions
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a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, a1+k = ak

1+k
, b1+k = bk

k+3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve([(x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,exp(x)],singsol=all)� �

y(x) = c2ex + c1x

3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 17� �
DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x − c2x
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1.2 problem Problem 1.1(b)
1.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9

Internal problem ID [12395]
Internal file name [OUTPUT/11047_Wednesday_October_04_2023_01_27_35_AM_81430884/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.1(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_bessel_ode", "second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[_Lienard]

xy′′ + 2y′ + yx = 0

Given that one solution of the ode is

y1 =
sin (x)

x

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 2
x
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Therefore

y2(x) =
sin (x)

(∫ e−
(∫ 2

xdx
)
x2

sin(x)2 dx

)
x

y2(x) =
sin (x)

x

∫ 1
x2

sin(x)2
x2

, dx

y2(x) =
sin (x)

(∫
csc (x)2 dx

)
x

y2(x) = −sin (x) cot (x)
x

Hence the solution is
y = c1y1(x) + c2y2(x)

= sin (x) c1
x

− c2 sin (x) cot (x)
x

Summary
The solution(s) found are the following

(1)y = sin (x) c1
x

− c2 sin (x) cot (x)
x

Verification of solutions

y = sin (x) c1
x

− c2 sin (x) cot (x)
x

Verified OK.

1.2.1 Maple step by step solution

Let’s solve
y′′x+ 2y′ + yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ + 2y′
x
+ y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 2y′ + yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion
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x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(1+k)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve([x*diff(y(x),x$2)+2*diff(y(x),x)+x*y(x)=0,sin(x)/x],singsol=all)� �

y(x) = c1 sin (x) + c2 cos (x)
x

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 37� �
DSolve[x*y''[x]+2*y'[x]+x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2c1e−ix − ic2e
ix

2x
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1.3 problem Problem 1.3(a)
1.3.1 Solving as second order linear constant coeff ode . . . . . . . . 13
1.3.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 19
1.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 25

Internal problem ID [12396]
Internal file name [OUTPUT/11048_Wednesday_October_04_2023_01_27_35_AM_74078627/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.3(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + y = x
3
2 ex

1.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 1, f(x) = x
3
2 ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

y = c1ex + c2x ex (1)

Therefore the homogeneous solution yh is

yh = exc1 + c2x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = x ex

14



In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ ex x ex
d
dx
(ex) d

dx
(x ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x x ex

ex x ex + ex

∣∣∣∣∣∣
Therefore

W = (ex) (x ex + ex)− (x ex) (ex)

Which simplifies to
W = e2x

Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫

x
5
2 e2x
e2x dx

Which simplifies to

u1 = −
∫

x
5
2dx

Hence

u1 = −2x 7
2

7
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And Eq. (3) becomes

u2 =
∫ e2xx 3

2

e2x dx

Which simplifies to

u2 =
∫

x
3
2dx

Hence

u2 =
2x 5

2

5

Therefore the particular solution, from equation (1) is

yp(x) =
4x 7

2 ex
35

Therefore the general solution is

y = yh + yp

= (exc1 + c2x ex) +
(
4x 7

2 ex
35

)

Which simplifies to

y = ex(c2x+ c1) +
4x 7

2 ex
35

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) +
4x 7

2 ex
35
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Figure 1: Slope field plot

Verification of solutions

y = ex(c2x+ c1) +
4x 7

2 ex
35

Verified OK.

1.3.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2 dx

= e−x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = e−xx
3
2 ex(

e−xy
) ′′ = e−xx

3
2 ex

Integrating once gives (
e−xy

)′ = 2x 5
2

5 + c1

Integrating again gives (
e−xy

)
= c1x+ 4x 7

2

35 + c2

Hence the solution is

y =
c1x+ 4x

7
2

35 + c2
e−x

Or

y = 4x 7
2 ex
35 + c1x ex + c2ex

Summary
The solution(s) found are the following

(1)y = 4x 7
2 ex
35 + c1x ex + c2ex
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Figure 2: Slope field plot

Verification of solutions

y = 4x 7
2 ex
35 + c1x ex + c2ex

Verified OK.

1.3.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 3: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = exc1 + c2x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = x ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ ex x ex
d
dx
(ex) d

dx
(x ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x x ex

ex x ex + ex

∣∣∣∣∣∣
Therefore

W = (ex) (x ex + ex)− (x ex) (ex)

Which simplifies to
W = e2x

Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫

x
5
2 e2x
e2x dx

Which simplifies to

u1 = −
∫

x
5
2dx

Hence

u1 = −2x 7
2

7

And Eq. (3) becomes

u2 =
∫ e2xx 3

2

e2x dx
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Which simplifies to

u2 =
∫

x
3
2dx

Hence

u2 =
2x 5

2

5

Therefore the particular solution, from equation (1) is

yp(x) =
4x 7

2 ex
35

Therefore the general solution is

y = yh + yp

= (exc1 + c2x ex) +
(
4x 7

2 ex
35

)

Which simplifies to

y = ex(c2x+ c1) +
4x 7

2 ex
35

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) +
4x 7

2 ex
35
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Figure 3: Slope field plot

Verification of solutions

y = ex(c2x+ c1) +
4x 7

2 ex
35

Verified OK.

1.3.4 Maple step by step solution

Let’s solve
y′′ − 2y′ + y = x

3
2 ex

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
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r = 1
• 1st solution of the homogeneous ODE

y1(x) = ex

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = exc1 + c2x ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x

3
2 ex
]

◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex x ex

ex x ex + ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)

yp(x) = ex
(
−
(∫

x
5
2dx
)
+
(∫

x
3
2dx
)
x
)

◦ Compute integrals

yp(x) = 4x
7
2 ex
35

• Substitute particular solution into general solution to ODE

y = c2x ex + exc1 + 4x
7
2 ex
35
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=x^(3/2)*exp(x),y(x), singsol=all)� �

y(x) = ex
(
c2 + c1x+ 4x 7

2

35

)

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 29� �
DSolve[y''[x]-2*y'[x]+y[x]==x^(3/2)*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
35e

x
(
4x7/2 + 35c2x+ 35c1

)
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1.4 problem Problem 1.3(b)
1.4.1 Solving as second order linear constant coeff ode . . . . . . . . 28
1.4.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 33
1.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 39

Internal problem ID [12397]
Internal file name [OUTPUT/11049_Wednesday_October_04_2023_01_27_37_AM_60955606/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.3(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y = 2 sec (2x)

1.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 4, f(x) = 2 sec (2x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 4. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (2x) + c2 sin (2x))

Or
y = c1 cos (2x) + c2 sin (2x)

29



Therefore the homogeneous solution yh is

yh = c1 cos (2x) + c2 sin (2x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x)

y2 = sin (2x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (2x) sin (2x)
d
dx
(cos (2x)) d

dx
(sin (2x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)

∣∣∣∣∣∣
Therefore

W = (cos (2x)) (2 cos (2x))− (sin (2x)) (−2 sin (2x))
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Which simplifies to
W = 2 cos (2x)2 + 2 sin (2x)2

Which simplifies to
W = 2

Therefore Eq. (2) becomes

u1 = −
∫ 2 sin (2x) sec (2x)

2 dx

Which simplifies to

u1 = −
∫

tan (2x) dx

Hence

u1 = −
ln
(
1 + tan (2x)2

)
4

And Eq. (3) becomes

u2 =
∫ 2 cos (2x) sec (2x)

2 dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Which simplifies to

u1 = −
ln
(
sec (2x)2

)
4

u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = −
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x
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Therefore the general solution is

y = yh + yp

= (c1 cos (2x) + c2 sin (2x)) +
(
−
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x
)

Summary
The solution(s) found are the following

(1)y = c1 cos (2x) + c2 sin (2x)−
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x

Figure 4: Slope field plot

Verification of solutions

y = c1 cos (2x) + c2 sin (2x)−
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x

Verified OK.
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1.4.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 5: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= cos (2x)

Which simplifies to
y1 = cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (2x)
∫ 1

cos (2x)2
dx

= cos (2x)
(
tan (2x)

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (2x)) + c2

(
cos (2x)

(
tan (2x)

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0

35



The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (2x) +
c2 sin (2x)

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x)

y2 =
sin (2x)

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (2x) sin(2x)

2

d
dx
(cos (2x)) d

dx

(
sin(2x)

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (2x) sin(2x)
2

−2 sin (2x) cos (2x)

∣∣∣∣∣∣
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Therefore

W = (cos (2x)) (cos (2x))−
(
sin (2x)

2

)
(−2 sin (2x))

Which simplifies to
W = sin (2x)2 + cos (2x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin (2x) sec (2x)

1 dx

Which simplifies to

u1 = −
∫

tan (2x) dx

Hence

u1 = −
ln
(
1 + tan (2x)2

)
4

And Eq. (3) becomes

u2 =
∫ 2 cos (2x) sec (2x)

1 dx

Which simplifies to

u2 =
∫

2dx

Hence
u2 = 2x

Which simplifies to

u1 = −
ln
(
sec (2x)2

)
4

u2 = 2x
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Therefore the particular solution, from equation (1) is

yp(x) = −
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x

Therefore the general solution is

y = yh + yp

=
(
c1 cos (2x) +

c2 sin (2x)
2

)
+
(
−
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x
)

Summary
The solution(s) found are the following

(1)y = c1 cos (2x) +
c2 sin (2x)

2 −
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x

Figure 5: Slope field plot

Verification of solutions

y = c1 cos (2x) +
c2 sin (2x)

2 −
ln
(
sec (2x)2

)
cos (2x)

4 + sin (2x)x

Verified OK.
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1.4.3 Maple step by step solution

Let’s solve
y′′ + 4y = 2 sec (2x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−2 I, 2 I)

• 1st solution of the homogeneous ODE
y1(x) = cos (2x)

• 2nd solution of the homogeneous ODE
y2(x) = sin (2x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (2x) + c2 sin (2x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 2 sec (2x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)
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yp(x) = − cos (2x)
(∫

tan (2x) dx
)
+ sin (2x)

(∫
1dx
)

◦ Compute integrals

yp(x) = −
ln
(
sec(2x)2

)
cos(2x)

4 + sin (2x)x

• Substitute particular solution into general solution to ODE

y = c1 cos (2x) + c2 sin (2x)−
ln
(
sec(2x)2

)
cos(2x)

4 + sin (2x)x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(diff(y(x),x$2)+4*y(x)=2*sec(2*x),y(x), singsol=all)� �

y(x) = − ln (sec (2x)) cos (2x)
2 + cos (2x) c1 + sin (2x) (c2 + x)

3 Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 32� �
DSolve[y''[x]+4*y[x]==2*Sec[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c2) sin(2x) + cos(2x)
(
1
2 log(cos(2x)) + c1

)
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1.5 problem Problem 1.3(c)
1.5.1 Solving as second order change of variable on y method 1 ode . 41
1.5.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 50
1.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 54

Internal problem ID [12398]
Internal file name [OUTPUT/11050_Wednesday_October_04_2023_01_27_41_AM_79298836/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.3(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y′

x
+
(
1− 1

4x2

)
y = x

1.5.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′

x
+
(
1− 1

4x2

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = 1
x

q(x) = 1− 1
4x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 1− 1
4x2 −

( 1
x

)′
2 −

( 1
x

)2
4

= 1− 1
4x2 −

(
− 1

x2

)
2 −

( 1
x2

)
4

= 1− 1
4x2 −

(
− 1
2x2

)
− 1

4x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 1

x
2

= 1√
x

(5)

Hence (3) becomes

y = v(x)√
x

(4)

Applying this change of variable to the original ode results in

v′′(x) + v(x) = x
3
2

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)
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Where A = 1, B = 0, C = 1, f(x) = x
3
2 . Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v′′(x) + v(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))

Or
v(x) = c1 cos (x) + c2 sin (x)

Therefore the homogeneous solution vh is

vh = c1 cos (x) + c2 sin (x)

The particular solution vp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)vp(x) = u1v1 + u2v2

Where u1, u2 to be determined, and v1, v2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

v1 = cos (x)

v2 = sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

v2f(x)
aW (x)

(3)u2 =
∫

v1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of v′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣v1 v2

v′1 v′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x) sin (x)
d
dx
(cos (x)) d

dx
(sin (x))

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ cos (x) sin (x)
− sin (x) cos (x)

∣∣∣∣∣∣
Therefore

W = (cos (x)) (cos (x))− (sin (x)) (− sin (x))

Which simplifies to
W = cos (x)2 + sin (x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x 3

2

1 dx

Which simplifies to

u1 = −
∫

sin (x)x 3
2dx

Hence

u1 = cos (x)x 3
2 − 3 sin (x)

√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

And Eq. (3) becomes

u2 =
∫ cos (x)x 3

2

1 dx

Which simplifies to

u2 =
∫

cos (x)x 3
2dx

Hence

u2 = sin (x)x 3
2 + 3 cos (x)

√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4
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Therefore the particular solution, from equation (1) is

vp(x) =

cos (x)x 3
2 − 3 sin (x)

√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

 cos (x)

+

sin (x)x 3
2 + 3 cos (x)

√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4

 sin (x)

Which simplifies to

vp(x) = −
3 sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos (x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 + x

3
2

Therefore the general solution is

v = vh + vp

= (c1 cos (x) + c2 sin (x))

+

−
3 sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos (x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 +x

3
2


Now that v(x) is known, then

y = v(x) z(x)

=

c1 cos (x) + c2 sin (x)−
3 sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos (x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 + x

3
2

 (z(x))

(7)

But from (5)

z(x) = 1√
x

Hence (7) becomes

y =
c1 cos (x) + c2 sin (x)−

3 sin(x)
√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos(x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 + x

3
2

√
x
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Therefore the homogeneous solution yh is

yh =
c1 cos (x) + c2 sin (x)−

3 sin(x)
√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos(x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 + x

3
2

√
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
cos (x)√

x

y2 =
sin (x)√

x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos(x)√

x
sin(x)√

x

d
dx

(
cos(x)√

x

)
d
dx

(
sin(x)√

x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
cos(x)√

x
sin(x)√

x

− sin(x)√
x

− cos(x)
2x

3
2

cos(x)√
x

− sin(x)
2x

3
2

∣∣∣∣∣∣∣
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Therefore

W =
(
cos (x)√

x

)(
cos (x)√

x
− sin (x)

2x 3
2

)
−
(
sin (x)√

x

)(
−sin (x)√

x
− cos (x)

2x 3
2

)

Which simplifies to

W = cos (x)2 + sin (x)2

x

Which simplifies to

W = 1
x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)

√
x

1
x

dx

Which simplifies to

u1 = −
∫

sin (x)x 3
2dx

Hence

u1 = cos (x)x 3
2 − 3 sin (x)

√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

And Eq. (3) becomes

u2 =
∫ cos (x)

√
x

1
x

dx

Which simplifies to

u2 =
∫

cos (x)x 3
2dx

Hence

u2 = sin (x)x 3
2 + 3 cos (x)

√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4
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Therefore the particular solution, from equation (1) is

yp(x) =

(
cos (x)x 3

2 − 3 sin(x)
√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

)
cos (x)

√
x

+

(
sin (x)x 3

2 + 3 cos(x)
√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4

)
sin (x)

√
x

Which simplifies to

yp(x) =−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

Therefore the general solution is

y = yh + yp

=

c1 cos (x) + c2 sin (x)−
3 sin(x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos(x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 + x

3
2

√
x


+

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x


Summary
The solution(s) found are the following

y =
c1 cos (x) + c2 sin (x)−

3 sin(x)
√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos(x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 + x

3
2

√
x

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

(1)
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Verification of solutions

y =
c1 cos (x) + c2 sin (x)−

3 sin(x)
√
2
√
π FresnelC

(√
2
√
x√

π

)
4 +

3 cos(x)
√
2
√
π FresnelS

(√
2
√
x√

π

)
4 + x

3
2

√
x

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

Verified OK.

1.5.2 Solving as second order bessel ode ode

Writing the ode as

y′′x2 + y′x+
(
x2 − 1

4

)
y = x3 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

y′′x2 + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

y′′x2 + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = 1

n = −1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = c1 cos (x)
√
2√

π
√
x

+ c2
√
2 sin (x)√
π
√
x

50



Therefore the homogeneous solution yh is

yh = c1 cos (x)
√
2√

π
√
x

+ c2
√
2 sin (x)√
π
√
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
cos (x)√

x

y2 =
sin (x)√

x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos(x)√

x
sin(x)√

x

d
dx

(
cos(x)√

x

)
d
dx

(
sin(x)√

x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
cos(x)√

x
sin(x)√

x

− sin(x)√
x

− cos(x)
2x

3
2

cos(x)√
x

− sin(x)
2x

3
2

∣∣∣∣∣∣∣
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Therefore

W =
(
cos (x)√

x

)(
cos (x)√

x
− sin (x)

2x 3
2

)
−
(
sin (x)√

x

)(
−sin (x)√

x
− cos (x)

2x 3
2

)

Which simplifies to

W = cos (x)2 + sin (x)2

x

Which simplifies to

W = 1
x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x 5

2

x
dx

Which simplifies to

u1 = −
∫

sin (x)x 3
2dx

Hence

u1 = cos (x)x 3
2 − 3 sin (x)

√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

And Eq. (3) becomes

u2 =
∫ cos (x)x 5

2

x
dx

Which simplifies to

u2 =
∫

cos (x)x 3
2dx

Hence

u2 = sin (x)x 3
2 + 3 cos (x)

√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4
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Therefore the particular solution, from equation (1) is

yp(x) =

(
cos (x)x 3

2 − 3 sin(x)
√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

)
cos (x)

√
x

+

(
sin (x)x 3

2 + 3 cos(x)
√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4

)
sin (x)

√
x

Which simplifies to

yp(x) =−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

Therefore the general solution is

y = yh + yp

=
(
c1 cos (x)

√
2√

π
√
x

+ c2
√
2 sin (x)√
π
√
x

)

+

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x


Summary
The solution(s) found are the following

y = c1 cos (x)
√
2√

π
√
x

+ c2
√
2 sin (x)√
π
√
x

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

(1)
Verification of solutions

y = c1 cos (x)
√
2√

π
√
x

+ c2
√
2 sin (x)√
π
√
x

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

Verified OK.
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1.5.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′

x
+
(
1− 1

4x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 1
x

(3)

C = 1− 1
4x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 7: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

1
x
1 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

1
x
1 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′

x
+
(
1− 1

4x2

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = cos (x) c1√
x

+ sin (x) c2√
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
cos (x)√

x

y2 =
sin (x)√

x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣∣
cos(x)√

x
sin(x)√

x

d
dx

(
cos(x)√

x

)
d
dx

(
sin(x)√

x

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣∣
cos(x)√

x
sin(x)√

x

− sin(x)√
x

− cos(x)
2x

3
2

cos(x)√
x

− sin(x)
2x

3
2

∣∣∣∣∣∣∣
Therefore

W =
(
cos (x)√

x

)(
cos (x)√

x
− sin (x)

2x 3
2

)
−
(
sin (x)√

x

)(
−sin (x)√

x
− cos (x)

2x 3
2

)

Which simplifies to

W = cos (x)2 + sin (x)2

x

Which simplifies to

W = 1
x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)

√
x

1
x

dx

Which simplifies to

u1 = −
∫

sin (x)x 3
2dx

Hence

u1 = cos (x)x 3
2 − 3 sin (x)

√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

And Eq. (3) becomes

u2 =
∫ cos (x)

√
x

1
x

dx

Which simplifies to

u2 =
∫

cos (x)x 3
2dx
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Hence

u2 = sin (x)x 3
2 + 3 cos (x)

√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4

Therefore the particular solution, from equation (1) is

yp(x) =

(
cos (x)x 3

2 − 3 sin(x)
√
x

2 +
3
√
2
√
π FresnelS

(√
2
√
x√

π

)
4

)
cos (x)

√
x

+

(
sin (x)x 3

2 + 3 cos(x)
√
x

2 −
3
√
2
√
π FresnelC

(√
2
√
x√

π

)
4

)
sin (x)

√
x

Which simplifies to

yp(x) =−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

Therefore the general solution is

y = yh + yp

=
(
cos (x) c1√

x
+ sin (x) c2√

x

)

+

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x


Which simplifies to

y = c1 cos (x) + c2 sin (x)√
x

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x
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Summary
The solution(s) found are the following

y = c1 cos (x) + c2 sin (x)√
x

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

(1)
Verification of solutions

y = c1 cos (x) + c2 sin (x)√
x

−
3
(
sin (x)

√
2
√
π FresnelC

(√
2
√
x√

π

)
− cos (x)

√
2
√
π FresnelS

(√
2
√
x√

π

)
− 4x

3
2

3

)
4
√
x

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 62� �
dsolve(diff(y(x),x$2)+1/x*diff(y(x),x)+(1-1/(4*x^2))*y(x)=x,y(x), singsol=all)� �
y(x)

=
sin (x) c2 + c1 cos (x) +

3 cos(x)
√
π FresnelS

(√
2
√
x√

π

)√
2

4 −
3 sin(x)

√
π FresnelC

(√
2
√
x√

π

)√
2

4 + x
3
2

√
x

3 Solution by Mathematica
Time used: 0.443 (sec). Leaf size: 111� �
DSolve[y''[x]+1/x*y'[x]+(1-1/(4*x^2))*y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
e−ix

(
− e2ixx3/2Γ

( 5
2 ,ix

)
√
−ix

+
√
x2(2c1 − ic2e

2ix) + (ix)3/2Γ
( 5
2 ,−ix

)
√
x

)
2
√
x
√
x2
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1.6 problem Problem 1.3(d)
1.6.1 Solving as second order linear constant coeff ode . . . . . . . . 62
1.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 67
1.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 73

Internal problem ID [12399]
Internal file name [OUTPUT/11051_Wednesday_October_04_2023_01_27_53_AM_92705771/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.3(d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y = f(x)

With initial conditions

[y(0) = 0, y′(0) = 0]

1.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = f(x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

63



Or
y = c1 cos (x) + c2 sin (x)

Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x)

y2 = sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x) sin (x)
d
dx
(cos (x)) d

dx
(sin (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x) sin (x)
− sin (x) cos (x)

∣∣∣∣∣∣
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Therefore
W = (cos (x)) (cos (x))− (sin (x)) (− sin (x))

Which simplifies to
W = cos (x)2 + sin (x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin (x) f(x)

1 dx

Which simplifies to

u1 = −
∫

sin (x) f(x) dx

Hence

u1 = −
(∫ x

0
sin (α) f(α) dα

)

And Eq. (3) becomes

u2 =
∫ cos (x) f(x)

1 dx

Which simplifies to

u2 =
∫

cos (x) f(x) dx

Hence

u2 =
∫ x

0
cos (α) f(α) dα

Therefore the particular solution, from equation (1) is

yp(x) = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)
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Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x))

+
(
−
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (x) + c2 sin (x)−
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = c1 (1A)

Taking derivative of the solution gives

y′ = − sin (x) c1 + c2 cos (x) +
(∫ x

0
sin (α) f(α) dα

)
sin (x) +

(∫ x

0
cos (α) f(α) dα

)
cos (x)

substituting y′ = 0 and x = 0 in the above gives

0 = c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0
c2 = 0

Substituting these values back in above solution results in

y = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

Summary
The solution(s) found are the following

(1)y = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)
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Verification of solutions

y = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

Verified OK.

1.6.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 8: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (x)

Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x)

y2 = sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x) sin (x)
d
dx
(cos (x)) d

dx
(sin (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x) sin (x)
− sin (x) cos (x)

∣∣∣∣∣∣
Therefore

W = (cos (x)) (cos (x))− (sin (x)) (− sin (x))
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Which simplifies to
W = cos (x)2 + sin (x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin (x) f(x)

1 dx

Which simplifies to

u1 = −
∫

sin (x) f(x) dx

Hence

u1 = −
(∫ x

0
sin (α) f(α) dα

)

And Eq. (3) becomes

u2 =
∫ cos (x) f(x)

1 dx

Which simplifies to

u2 =
∫

cos (x) f(x) dx

Hence

u2 =
∫ x

0
cos (α) f(α) dα

Therefore the particular solution, from equation (1) is

yp(x) = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)
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Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x))

+
(
−
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (x) + c2 sin (x)−
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = c1 (1A)

Taking derivative of the solution gives

y′ = − sin (x) c1 + c2 cos (x) +
(∫ x

0
sin (α) f(α) dα

)
sin (x) +

(∫ x

0
cos (α) f(α) dα

)
cos (x)

substituting y′ = 0 and x = 0 in the above gives

0 = c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0
c2 = 0

Substituting these values back in above solution results in

y = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

Summary
The solution(s) found are the following

(1)y = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)
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Verification of solutions

y = −
(∫ x

0
sin (α) f(α) dα

)
cos (x) +

(∫ x

0
cos (α) f(α) dα

)
sin (x)

Verified OK.

1.6.3 Maple step by step solution

Let’s solve[
y′′ + y = f(x) , y(0) = 0, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the homogeneous ODE
y1(x) = cos (x)

• 2nd solution of the homogeneous ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (x) + c2 sin (x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = f(x)

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (x)
(∫

sin (x) f(x) dx
)
+ sin (x)

(∫
cos (x) f(x) dx

)
◦ Compute integrals

yp(x) = − cos (x)
(∫

sin (x) f(x) dx
)
+ sin (x)

(∫
cos (x) f(x) dx

)
• Substitute particular solution into general solution to ODE

y = c1 cos (x) + c2 sin (x)− cos (x)
(∫

sin (x) f(x) dx
)
+ sin (x)

(∫
cos (x) f(x) dx

)
Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 34� �
dsolve([diff(y(x),x$2)+y(x)=f(x),y(0) = 0, D(y)(0) = 0],y(x), singsol=all)� �
y(x) =

(∫ x

0
cos (_z1) f(_z1) d_z1

)
sin (x)−

(∫ x

0
sin (_z1) f(_z1) d_z1

)
cos (x)
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3 Solution by Mathematica
Time used: 0.105 (sec). Leaf size: 77� �
DSolve[{y''[x]+y[x]==f[x],{y[0]==0,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − sin(x)
∫ 0

1
cos(K[2])f(K[2])dK[2] + sin(x)

∫ x

1
cos(K[2])f(K[2])dK[2]

+ cos(x)
(∫ x

1
−f(K[1]) sin(K[1])dK[1]−

∫ 0

1
−f(K[1]) sin(K[1])dK[1]

)
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1.7 problem Problem 1.6(a)
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1.7.2 Solving as second order ode lagrange adjoint equation method ode 83
1.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 86

Internal problem ID [12400]
Internal file name [OUTPUT/11052_Wednesday_October_04_2023_01_27_54_AM_9924872/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.6(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′x2 + x

(
x− 1

2

)
y′ + y

2 = 0

1.7.1 Solving using Kovacic algorithm

Writing the ode as

y′′x2 +
(
x2 − 1

2x
)
y′ + y

2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 − 1
2x (3)

C = 1
2
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x− 3
16x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 4x− 3
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x− 3

16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 10: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

16x2 − 1
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
4x − 1

4x2 − 1
8x3 − 1

8x4 − 1
8x5 − 9

64x6 − 21
128x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
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coefficient in t. Doing long division gives

r = s

t

= 4x2 − 4x− 3
16x2

= Q+ R

16x2

=
(
1
4

)
+
(
−4x− 3
16x2

)
= 1

4 + −4x− 3
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 16 gives −1

4 . Now b can be
found.

b =
(
−1
4

)
− (0)

= −1
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
4

1
2

− 0
)

= −1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

4
1
2

− 0
)

= 1
4

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 4x2 − 4x− 3
16x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

4
1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
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determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
4x + (−)

(
1
2

)
= 1

4x − 1
2

= 1
4x − 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x − 1

2

)
(0) +

((
− 1
4x2

)
+
(

1
4x − 1

2

)2

−
(
4x2 − 4x− 3

16x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x−
1
2
)
dx

= x
1
4 e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2− 1

2x

x2 dx

= z1e
−x

2+
ln(x)

4

= z1
(
x

1
4 e−x

2

)
Which simplifies to

y1 =
√
x e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2− 1

2x

x2 dx

(y1)2
dx

= y1

∫
e−x+ ln(x)

2

(y1)2
dx

= y1
(√

π erfi
(√

x
))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−x
)
+ c2

(√
x e−x

(√
π erfi

(√
x
)))
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Summary
The solution(s) found are the following

(1)y = c1
√
x e−x + c2

√
x e−x

√
π erfi

(√
x
)

Verification of solutions

y = c1
√
x e−x + c2

√
x e−x

√
π erfi

(√
x
)

Verified OK.

1.7.2 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode

y′′x2 +
(
x2 − 1

2x
)
y′ + y

2 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = 2x− 1
2x

q(x) = 1
2x2

r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
(2x− 1) ξ(x)

2x

)′

+
(
ξ(x)
2x2

)
= 0

ξ′′(x)− (2x− 1) ξ′(x)
2x +

(
−1
x
+ 2x− 1

2x2 + 1
2x2

)
ξ(x) = 0

Which is solved for ξ(x). This is second order ode with missing dependent variable ξ(x).
Let

p(x) = ξ′(x)

Then

p′(x) = ξ′′(x)
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Hence the ode becomes

2p′(x)x+ (−2x+ 1) p(x) = 0

Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= p(2x− 1)
2x

Where f(x) = 2x−1
2x and g(p) = p. Integrating both sides gives

1
p
dp = 2x− 1

2x dx∫ 1
p
dp =

∫ 2x− 1
2x dx

ln (p) = x− ln (x)
2 + c1

p = ex−
ln(x)

2 +c1

= c1ex−
ln(x)

2

Which simplifies to

p(x) = c1ex√
x

Since p = ξ′(x) then the new first order ode to solve is

ξ′(x) = c1ex√
x

Integrating both sides gives

ξ(x) =
∫

c1ex√
x

dx

= c1
√
π erfi

(√
x
)
+ c2

The original ode (2) now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

y′ + y

(
2x− 1
2x − c3ex√

x
(
c3
√
π erfi

(√
x
)
+ c2

)) = 0
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Which is now a first order ode. This is now solved for y. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −
y
(
2 erfi

(√
x
)
x

3
2
√
π c3 − erfi

(√
x
)√

x
√
π c3 + 2x 3

2 c2 − 2x exc3 −
√
x c2
)

2x 3
2
(
c3
√
π erfi

(√
x
)
+ c2

)
Where f(x) = −2 erfi

(√
x
)
x
3
2
√
π c3−erfi

(√
x
)√

x
√
π c3+2x

3
2 c2−2x exc3−

√
x c2

2x
3
2
(
c3
√
π erfi

(√
x
)
+c2

) and g(y) = y. Integrat-
ing both sides gives

1
y
dy = −

2 erfi
(√

x
)
x

3
2
√
π c3 − erfi

(√
x
)√

x
√
π c3 + 2x 3

2 c2 − 2x exc3 −
√
x c2

2x 3
2
(
c3
√
π erfi

(√
x
)
+ c2

) dx

∫ 1
y
dy =

∫
−
2 erfi

(√
x
)
x

3
2
√
π c3 − erfi

(√
x
)√

x
√
π c3 + 2x 3

2 c2 − 2x exc3 −
√
x c2

2x 3
2
(
c3
√
π erfi

(√
x
)
+ c2

) dx

ln (y) =
∫

−
2 erfi

(√
x
)
x

3
2
√
π c3 − erfi

(√
x
)√

x
√
π c3 + 2x 3

2 c2 − 2x exc3 −
√
x c2

2x 3
2
(
c3
√
π erfi

(√
x
)
+ c2

) dx+ c3

y = e
∫
− 2 erfi

(√
x
)
x
3
2 √

π c3−erfi
(√

x
)√

x
√
π c3+2x

3
2 c2−2x exc3−

√
x c2

2x
3
2
(
c3

√
π erfi

(√
x
)
+c2

) dx+c3

= c3e
∫
− 2 erfi

(√
x
)
x
3
2 √

π c3−erfi
(√

x
)√

x
√
π c3+2x

3
2 c2−2x exc3−

√
x c2

2x
3
2
(
c3

√
π erfi

(√
x
)
+c2

) dx

Hence, the solution found using Lagrange adjoint equation method is

y = c3e
∫
− 2 erfi

(√
x
)
x
3
2 √

π c3−erfi
(√

x
)√

x
√
π c3+2x

3
2 c2−2x exc3−

√
x c2

2x
3
2
(
c3

√
π erfi

(√
x
)
+c2

) dx

Summary
The solution(s) found are the following

(1)y = c3e
∫
− 2 erfi

(√
x
)
x
3
2 √

π c3−erfi
(√

x
)√

x
√
π c3+2x

3
2 c2−2x exc3−

√
x c2

2x
3
2
(
c3

√
π erfi

(√
x
)
+c2

) dx

Verification of solutions

y = c3e
∫
− 2 erfi

(√
x
)
x
3
2 √

π c3−erfi
(√

x
)√

x
√
π c3+2x

3
2 c2−2x exc3−

√
x c2

2x
3
2
(
c3

√
π erfi

(√
x
)
+c2

) dx

Verified OK.
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1.7.3 Maple step by step solution

Let’s solve
y′′x2 +

(
x2 − 1

2x
)
y′ + y

2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
2x2 − (2x−1)y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2x−1)y′
2x + y

2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x−1
2x , P3(x) = 1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x2 + x(2x− 1) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r)xr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1) + 2ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2(k + r − 1)

((
k + r − 1

2

)
ak + ak−1

)
= 0

• Shift index using k− >k + 1
2(k + r)

((
k + 1

2 + r
)
ak+1 + ak

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

2k+1+2r

• Recursion relation for r = 1
ak+1 = − 2ak

2k+3

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − 2ak

2k+3

]
• Recursion relation for r = 1

2

ak+1 = − 2ak
2k+2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 2ak
2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a1+k = − 2ak

2k+3 , b1+k = − 2bk
2k+2

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 39� �
dsolve(x^2*diff(y(x),x$2)+x*(x-1/2)*diff(y(x),x)+1/2*y(x)=0,y(x), singsol=all)� �

y(x) =
e−x
(
erf
(√

−x
)√

π c1x+ 2c2
√
x
√
−x
)

2
√
−x
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3 Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 37� �
DSolve[x^2*y''[x]+x*(x-1/2)*y'[x]+1/2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x

(
c2
√
x+ c1

√
−xΓ

(
1
2 ,−x

))

89



1.8 problem Problem 1.6(b)
1.8.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 90
1.8.2 Solving as second order ode lagrange adjoint equation method ode 97
1.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 99

Internal problem ID [12401]
Internal file name [OUTPUT/11053_Wednesday_October_04_2023_01_27_55_AM_80091292/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.6(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′x2 + x(x+ 1) y′ − y = 0

1.8.1 Solving using Kovacic algorithm

Writing the ode as

y′′x2 +
(
x2 + x

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 2x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 2x+ 3

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 12: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4x2 + 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2x + 1

2x2 − 1
2x3 + 1

4x4 + 1
4x5 − 3

4x6 + 3
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= x2 + 2x+ 3
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
3 + 2x
4x2

)
= 1

4 + 3 + 2x
4x2
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Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x2 + 2x+ 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−)

(
1
2

)
= − 1

2x − 1
2

= −x+ 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

2

)
(0) +

((
1
2x2

)
+
(
− 1
2x − 1

2

)2

−
(
x2 + 2x+ 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
2
)
dx

= e−x
2

√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
x2 dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)
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Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

x2 dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1(ex(x− 1))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x
(ex(x− 1))

)

Summary
The solution(s) found are the following

(1)y = c1e−x

x
+ c2(x− 1)

x

Verification of solutions

y = c1e−x

x
+ c2(x− 1)

x

Verified OK.
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1.8.2 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode

y′′x2 +
(
x2 + x

)
y′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = x+ 1
x

q(x) = − 1
x2

r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
(x+ 1) ξ(x)

x

)′

+
(
−ξ(x)

x2

)
= 0

ξ′′(x)− (x+ 1) ξ′(x)
x

+
(
−1
x
+ x+ 1

x2 − 1
x2

)
ξ(x) = 0

Which is solved for ξ(x). This is second order ode with missing dependent variable ξ(x).
Let

p(x) = ξ′(x)

Then

p′(x) = ξ′′(x)

Hence the ode becomes

p′(x)x+ (−x− 1) p(x) = 0

Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= p(x+ 1)
x
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Where f(x) = x+1
x

and g(p) = p. Integrating both sides gives

1
p
dp = x+ 1

x
dx∫ 1

p
dp =

∫
x+ 1
x

dx

ln (p) = x+ ln (x) + c1

p = ex+ln(x)+c1

= c1ex+ln(x)

Which simplifies to
p(x) = c1x ex

Since p = ξ′(x) then the new first order ode to solve is

ξ′(x) = c1x ex

Integrating both sides gives

ξ(x) =
∫

c1x ex dx

= (x− 1) exc1 + c2

The original ode (2) now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

y′ + y

(
x+ 1
x

− c3ex(x− 1) + c3ex
c3ex (x− 1) + c2

)
= 0

Which is now a first order ode. This is now solved for y. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(c3ex − c2x− c2)
x (x exc3 − c3ex + c2)
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Where f(x) = c3ex−c2x−c2
x(x exc3−c3ex+c2) and g(y) = y. Integrating both sides gives

1
y
dy = c3ex − c2x− c2

x (x exc3 − c3ex + c2)
dx∫ 1

y
dy =

∫
c3ex − c2x− c2

x (x exc3 − c3ex + c2)
dx

ln (y) = −x− ln (x) + ln (x exc3 − c3ex + c2) + c3

y = e−x−ln(x)+ln(x exc3−c3ex+c2)+c3

= c3e−x−ln(x)+ln(x exc3−c3ex+c2)

Which simplifies to

y = c3

(
c3 −

c3
x
+ e−xc2

x

)

Hence, the solution found using Lagrange adjoint equation method is

y = c3e−xc2
x

+ c3
(
c3 −

c3
x

)
Summary
The solution(s) found are the following

(1)y = c3e−xc2
x

+ c3
(
c3 −

c3
x

)
Verification of solutions

y = c3e−xc2
x

+ c3
(
c3 −

c3
x

)
Verified OK.

1.8.3 Maple step by step solution

Let’s solve
y′′x2 + (x2 + x) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
x2 − (x+1)y′

x
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
x

− y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x
, P3(x) = − 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2 + x(x+ 1) y′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1) + ak−1(k + r − 1))xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
ak+1 = − ak

k+1

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = − ak

k+1

]
• Recursion relation for r = 1

ak+1 = − ak
k+3

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

k+3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
1+k

)
, a1+k = − ak

1+k
, b1+k = − bk

k+3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x$2)+x*(1+x)*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = c2e−x + c1(−1 + x)
x

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 26� �
DSolve[x^2*y''[x]+x*(1+x)*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x(c1ex(x− 1) + c2)
x
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1.9 problem Problem 1.7
1.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 111

Internal problem ID [12402]
Internal file name [OUTPUT/11054_Wednesday_October_04_2023_01_27_56_AM_44044858/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[_Jacobi]

x(1− x) y′′ + (−5x+ 1) y′ − 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ + (−5x+ 1) y′ − 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5x− 1
x (x− 1)

q(x) = 4
x (x− 1)
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Table 14: Table p(x), q(x) singularites.

p(x) = 5x−1
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 4
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x(x− 1) + (−5x+ 1) y′ − 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ (−5x+ 1)
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−5xn+ran(n+r)

)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−5xn+ran(n+ r)

)
=

∞∑
n=1

(
−5an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−4anxn+r

)
=

∞∑
n=1

(
−4an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =1

(
−5an−1(n+ r− 1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−4an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0
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Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 5an−1(n+ r − 1) + an(n+ r)− 4an−1 = 0
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Solving for an from recursive equation (4) gives

an = an−1(n2 + 2nr + r2 + 2n+ 2r + 1)
n2 + 2nr + r2

(4)

Which for the root r = 0 becomes

an = an−1(n+ 1)2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
(r + 2)2

(r + 1)2

Which for the root r = 0 becomes
a1 = 4

And the table now becomes

n an,r an

a0 1 1

a1
(r+2)2

(r+1)2 4

For n = 2, using the above recursive equation gives

a2 =
(r + 3)2

(r + 1)2

Which for the root r = 0 becomes
a2 = 9

And the table now becomes
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n an,r an

a0 1 1

a1
(r+2)2

(r+1)2 4

a2
(r+3)2

(r+1)2 9

For n = 3, using the above recursive equation gives

a3 =
(r + 4)2

(r + 1)2

Which for the root r = 0 becomes
a3 = 16

And the table now becomes

n an,r an

a0 1 1

a1
(r+2)2

(r+1)2 4

a2
(r+3)2

(r+1)2 9

a3
(r+4)2

(r+1)2 16

For n = 4, using the above recursive equation gives

a4 =
(r + 5)2

(r + 1)2

Which for the root r = 0 becomes
a4 = 25

And the table now becomes
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n an,r an

a0 1 1

a1
(r+2)2

(r+1)2 4

a2
(r+3)2

(r+1)2 9

a3
(r+4)2

(r+1)2 16

a4
(r+5)2

(r+1)2 25

For n = 5, using the above recursive equation gives

a5 =
(r + 6)2

(r + 1)2

Which for the root r = 0 becomes
a5 = 36

And the table now becomes

n an,r an

a0 1 1

a1
(r+2)2

(r+1)2 4

a2
(r+3)2

(r+1)2 9

a3
(r+4)2

(r+1)2 16

a4
(r+5)2

(r+1)2 25

a5
(r+6)2

(r+1)2 36

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A

b1
(r+2)2

(r+1)2 4 −2r−4
(r+1)3 −4

b2
(r+3)2

(r+1)2 9 −4r−12
(r+1)3 −12

b3
(r+4)2

(r+1)2 16 −6r−24
(r+1)3 −24

b4
(r+5)2

(r+1)2 25 −8r−40
(r+1)3 −40

b5
(r+6)2

(r+1)2 36 −10r−60
(r+1)3 −60

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6)) ln (x)

− 60x5 − 40x4 − 24x3 − 12x2 − 4x+O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
(
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6))

+ c2
((
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1+O

(
x6)) ln (x)− 60x5 − 40x4 − 24x3

− 12x2 − 4x+O
(
x6))

Hence the final solution is

y = yh

= c1
(
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6))

+ c2
((
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6)) ln (x)− 60x5 − 40x4 − 24x3

− 12x2 − 4x+O
(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1

(
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6))

+ c2
((
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6)) ln (x)− 60x5 − 40x4

− 24x3 − 12x2 − 4x+O
(
x6))

Verification of solutions

y = c1
(
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6))

+ c2
((
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1 +O

(
x6)) ln (x)− 60x5 − 40x4 − 24x3

− 12x2 − 4x+O
(
x6))

Verified OK.

1.9.1 Maple step by step solution

Let’s solve
−y′′x(x− 1) + (−5x+ 1) y′ − 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
x(x−1) −

(5x−1)y′
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (5x−1)y′
x(x−1) + 4y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5x−1
x(x−1) , P3(x) = 4

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
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Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(x− 1) + (5x− 1) y′ + 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r
2x−1+r +

(
∞∑
k=0

(
−ak+1(k + 1 + r)2 + ak(k + r + 2)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1)2 + ak(k + 2)2 = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)2

(k+1)2

• Recursion relation for r = 0
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ak+1 = ak(k+2)2

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(k+2)2

(k+1)2

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*(1-x)*diff(y(x),x$2)+(1-5*x)*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c1 + c2 ln (x))
(
1 + 4x+ 9x2 + 16x3 + 25x4 + 36x5 +O

(
x6))

+
(
(−4)x− 12x2 − 24x3 − 40x4 − 60x5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 87� �
AsymptoticDSolveValue[x*(1-x)*y''[x]+(1-5*x)*y'[x]-4*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
36x5 + 25x4 + 16x3 + 9x2 + 4x+ 1

)
+c2

(
−60x5−40x4−24x3−12x2+

(
36x5+25x4+16x3+9x2+4x+1

)
log(x)−4x

)
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1.10 problem Problem 1.8(a)
1.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 122

Internal problem ID [12403]
Internal file name [OUTPUT/11055_Wednesday_October_04_2023_01_27_57_AM_31548167/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.8(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method", "sec-
ond_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 1

)2
y′′ + (x+ 1) y′ − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (18)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (19)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − y′x+ y′ − y

x4 − 2x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
4
(
x− 1

2

)2 ((x+ 1) y′ − y)
(x+ 1)3 (x− 1)4

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −(10x3 − 15x2 + 10x− 4) (2x− 1) (y′x+ y′ − y)
(x− 1)6 (x+ 1)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (120x6 − 360x5 + 540x4 − 532x3 + 321x2 − 102x+ 14) (y′x+ y′ − y)
(x+ 1)5 (x− 1)8

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −(840x8 − 3360x7 + 7140x6 − 10360x5 + 10135x4 − 6484x3 + 2696x2 − 680x+ 74) (y′x+ y′ − y)
(x− 1)10 (x+ 1)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)− y′(0)
F1 = y′(0)− y(0)
F2 = 4y(0)− 4y′(0)
F3 = −14y(0) + 14y′(0)
F4 = 74y(0)− 74y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

6x
4 − 7

60x
5 + 37

360x
6
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

6x
4 + 7

60x
5 − 37

360x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

y′′
(
x4 − 2x2 + 1

)
+ (x+ 1) y′ − y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) anxn−2

)(
x4 − 2x2 + 1

)
+ (x+ 1)

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

nxn+2an(n− 1)
)

+
∞∑

n =2

(−2xnann(n− 1)) +
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=1

nanx
n−1

)
+

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

nxn+2an(n− 1) =
∞∑
n=4

(n− 2) an−2(n− 3)xn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=4

(n− 2) an−2(n− 3)xn

)
+

∞∑
n =2

(−2xnann(n− 1))

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nanx
n

)

+
(

∞∑
n=0

(n+ 1) an+1x
n

)
+

∞∑
n =0

(−anx
n) = 0

n = 0 gives
2a2 + a1 − a0 = 0

a2 =
a0
2 − a1

2

n = 1 gives
6a3 + 2a2 = 0

Which after substituting earlier equations, simplifies to

6a3 + a0 − a1 = 0

Or
a3 = −a0

6 + a1
6
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n = 2 gives
−3a2 + 12a4 + 3a3 = 0

Which after substituting earlier equations, simplifies to

−2a0 + 2a1 + 12a4 = 0

Or
a4 =

a0
6 − a1

6

n = 3 gives
−10a3 + 20a5 + 4a4 = 0

Which after substituting earlier equations, simplifies to

7a0
3 − 7a1

3 + 20a5 = 0

Or

a5 = −7a0
60 + 7a1

60

For 4 ≤ n, the recurrence equation is

(4)(n−2) an−2(n−3)−2nan(n−1)+(n+2) an+2(n+1)+nan+(n+1) an+1−an = 0

Solving for an+2, gives

(5)

an+2 =
2n2an − n2an−2 − 3nan + 5nan−2 − nan+1 + an − 6an−2 − an+1

(n+ 2) (n+ 1)

= (2n2 − 3n+ 1) an
(n+ 2) (n+ 1) + (−n2 + 5n− 6) an−2

(n+ 2) (n+ 1) + (−n− 1) an+1

(n+ 2) (n+ 1)

For n = 4 the recurrence equation gives

2a2 − 21a4 + 30a6 + 5a5 = 0

Which after substituting the earlier terms found becomes

a6 =
37a0
360 − 37a1

360
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For n = 5 the recurrence equation gives

6a3 − 36a5 + 42a7 + 6a6 = 0

Which after substituting the earlier terms found becomes

a7 = −229a0
2520 + 229a1

2520

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0+a1x+
(a0
2 − a1

2

)
x2+

(
−a0

6 + a1
6

)
x3+

(a0
6 − a1

6

)
x4+

(
−7a0

60 + 7a1
60

)
x5+ . . .

Collecting terms, the solution becomes

(3)y =
(
1+ 1

2x
2− 1

6x
3+ 1

6x
4− 7

60x
5
)
a0+

(
x− 1

2x
2+ 1

6x
3− 1

6x
4+ 7

60x
5
)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

6x
4 − 7

60x
5
)
c1 +

(
x− 1

2x
2 + 1

6x
3 − 1

6x
4 + 7

60x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + 1

2x
2 − 1

6x
3 + 1

6x
4 − 7

60x
5 + 37

360x
6
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

6x
4 + 7

60x
5 − 37

360x
6
)
y′(0) +O

(
x6)

(2)y =
(
1+ 1

2x
2 − 1

6x
3 + 1

6x
4 − 7

60x
5
)
c1 +

(
x− 1

2x
2 + 1

6x
3 − 1

6x
4 + 7

60x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

6x
4 − 7

60x
5 + 37

360x
6
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

6x
4 + 7

60x
5 − 37

360x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

6x
4 − 7

60x
5
)
c1 +

(
x− 1

2x
2 + 1

6x
3 − 1

6x
4 + 7

60x
5
)
c2 +O

(
x6)

Verified OK.

1.10.1 Maple step by step solution

Let’s solve
y′′(x4 − 2x2 + 1) + (x+ 1) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

x4−2x2+1 −
y′

x3−x2−x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x3−x2−x+1 −
y

x4−2x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
x3−x2−x+1 , P3(x) = − 1

x4−2x2+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1
4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= −1
4

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1
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• Multiply by denominators
y′′(x3 − x2 − x+ 1) (x4 − 2x2 + 1) + y′(x4 − 2x2 + 1) + (−x3 + x2 + x− 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u7 − 8u6 + 24u5 − 32u4 + 16u3)
(

d2

du2y(u)
)
+ (u4 − 4u3 + 4u2)

(
d
du
y(u)

)
+ (−u3 + 4u2 − 4u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 1..3

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 2..4

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 3..7

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0(1 + 4r) (−1 + r)u1+r + (4a1(5 + 4r) r − 4a0(1 + 8r) (−1 + r))u2+r + (4a2(9 + 4r) (1 + r)− 4a1(9 + 8r) r + a0(1 + 24r) (−1 + r))u3+r + (4a3(13 + 4r) (2 + r)− 4a2(17 + 8r) (1 + r) + a1(25 + 24r) r − 8a0r(−1 + r))u4+r +
(

∞∑
k=5

(4ak−1(4k − 3 + 4r) (k − 2 + r)− 4ak−2(8k − 15 + 8r) (k − 3 + r) + ak−3(24k − 71 + 24r) (k − 4 + r)− 8ak−4(k − 4 + r) (k − 5 + r) + ak−5(k − 5 + r) (k − 6 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4(1 + 4r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{
1,−1

4

}
• The coefficients of each power of u must be 0

[4a1(5 + 4r) r − 4a0(1 + 8r) (−1 + r) = 0, 4a2(9 + 4r) (1 + r)− 4a1(9 + 8r) r + a0(1 + 24r) (−1 + r) = 0, 4a3(13 + 4r) (2 + r)− 4a2(17 + 8r) (1 + r) + a1(25 + 24r) r − 8a0r(−1 + r) = 0]
• Solve for the dependent coefficient(s){

a1 = a0
(
8r2−7r−1

)
r(5+4r) , a2 = a0

(
160r3+36r2−165r−31

)
4(16r3+72r2+101r+45) , a3 = a0

(
320r4+736r3−144r2−761r−151

)
2(64r4+560r3+1772r2+2401r+1170)

}
• Each term in the series must be 0, giving the recursion relation

(ak−5 − 8ak−4 + 24ak−3 − 32ak−2 + 16ak−1) k2 + (2(ak−5 − 8ak−4 + 24ak−3 − 32ak−2 + 16ak−1) r − 11ak−5 + 72ak−4 − 167ak−3 + 156ak−2 − 44ak−1) k + (ak−5 − 8ak−4 + 24ak−3 − 32ak−2 + 16ak−1) r2 + (−11ak−5 + 72ak−4 − 167ak−3 + 156ak−2 − 44ak−1) r + 30ak−5 − 160ak−4 + 284ak−3 − 180ak−2 + 24ak−1 = 0
• Shift index using k− >k + 5

(ak − 8ak+1 + 24ak+2 − 32ak+3 + 16ak+4) (k + 5)2 + (2(ak − 8ak+1 + 24ak+2 − 32ak+3 + 16ak+4) r − 11ak + 72ak+1 − 167ak+2 + 156ak+3 − 44ak+4) (k + 5) + (ak − 8ak+1 + 24ak+2 − 32ak+3 + 16ak+4) r2 + (−11ak + 72ak+1 − 167ak+2 + 156ak+3 − 44ak+4) r + 30ak − 160ak+1 + 284ak+2 − 180ak+3 + 24ak+4 = 0
• Recursion relation that defines series solution to ODE

ak+4 = −k2ak−8k2ak+1+24k2ak+2−32k2ak+3+2krak−16krak+1+48krak+2−64krak+3+r2ak−8r2ak+1+24r2ak+2−32r2ak+3−kak−8kak+1+73kak+2−164kak+3−rak−8rak+1+73rak+2−164rak+3+49ak+2−200ak+3
4(4k2+8kr+4r2+29k+29r+51)

• Recursion relation for r = 1

ak+4 = −k2ak−8k2ak+1+24k2ak+2−32k2ak+3+kak−24kak+1+121kak+2−228kak+3−16ak+1+146ak+2−396ak+3
4(4k2+37k+84)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+4 = −k2ak−8k2ak+1+24k2ak+2−32k2ak+3+kak−24kak+1+121kak+2−228kak+3−16ak+1+146ak+2−396ak+3

4(4k2+37k+84) , a1 = 0, a2 = 0, a3 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k+1 , ak+4 = −k2ak−8k2ak+1+24k2ak+2−32k2ak+3+kak−24kak+1+121kak+2−228kak+3−16ak+1+146ak+2−396ak+3
4(4k2+37k+84) , a1 = 0, a2 = 0, a3 = 0

]
• Recursion relation for r = −1

4

ak+4 = −k2ak−8k2ak+1+24k2ak+2−32k2ak+3− 3
2kak−4kak+1+61kak+2−148kak+3+ 5

16ak+
3
2ak+1+ 129

4 ak+2−161ak+3
4(4k2+27k+44)

• Solution for r = −1
4[

y(u) =
∞∑
k=0

aku
k− 1

4 , ak+4 = −k2ak−8k2ak+1+24k2ak+2−32k2ak+3− 3
2kak−4kak+1+61kak+2−148kak+3+ 5

16ak+
3
2ak+1+ 129

4 ak+2−161ak+3
4(4k2+27k+44) , a1 = −5a0

4 , a2 = 5a0
48 , a3 =

5a0
336

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−
1
4 , ak+4 = −k2ak−8k2ak+1+24k2ak+2−32k2ak+3− 3

2kak−4kak+1+61kak+2−148kak+3+ 5
16ak+

3
2ak+1+ 129

4 ak+2−161ak+3
4(4k2+27k+44) , a1 = −5a0

4 , a2 = 5a0
48 , a3 =

5a0
336

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)1+k

)
+
(

∞∑
k=0

bk(x+ 1)k−
1
4

)
, ak+4 = −k2ak−8k2a1+k+24k2ak+2−32k2ak+3+kak−24ka1+k+121kak+2−228kak+3−16a1+k+146ak+2−396ak+3

4(4k2+37k+84) , a1 = 0, a2 = 0, a3 = 0, bk+4 = −k2bk−8k2b1+k+24k2bk+2−32k2bk+3− 3
2kbk−4kb1+k+61kbk+2−148kbk+3+ 5

16 bk+
3
2 b1+k+ 129

4 bk+2−161bk+3
4(4k2+27k+44) , b1 = −5b0

4 , b2 = 5b0
48 , b3 =

5b0
336

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve((x^2-1)^2*diff(y(x),x$2)+(x+1)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 − 1

6x
3 + 1

6x
4 − 7

60x
5
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

6x
4 + 7

60x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 70� �
AsymptoticDSolveValue[(x^2-1)^2*y''[x]+(x+1)*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−7x5

60 + x4

6 − x3

6 + x2

2 + 1
)
+ c2

(
7x5

60 − x4

6 + x3

6 − x2

2 + x

)
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1.11 problem Problem 1.8(b)
1.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 136

Internal problem ID [12404]
Internal file name [OUTPUT/11056_Wednesday_October_04_2023_01_27_57_AM_74543273/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.8(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + 4y′ − yx = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 4y′ − yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4
x

q(x) = −1
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Table 17: Table p(x), q(x) singularites.

p(x) = 4
x

singularity type
x = 0 “regular”

q(x) = −1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 4y′ − yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+4

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
x = 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

4(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=2

(
−an−2x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r−1)
)
+
(

∞∑
n=0

4(n+ r) anxn+r−1

)
+

∞∑
n =2

(
−an−2x

n+r−1)= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 4(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 4ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 4r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(3 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(3 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −3

Since a0 6= 0 then the indicial equation becomes

r x−1+r(3 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x3

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−3

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 4an(n+ r)− an−2 = 0

Solving for an from recursive equation (4) gives

an = an−2

n2 + 2nr + r2 + 3n+ 3r (4)

Which for the root r = 0 becomes

an = an−2

n (n+ 3) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1

r2 + 7r + 10

Which for the root r = 0 becomes
a2 =

1
10

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+7r+10

1
10

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+7r+10

1
10

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r + 5) (r + 2) (r + 7) (r + 4)
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Which for the root r = 0 becomes

a4 =
1
280

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+7r+10

1
10

a3 0 0
a4

1
(r+5)(r+2)(r+7)(r+4)

1
280

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+7r+10

1
10

a3 0 0
a4

1
(r+5)(r+2)(r+7)(r+4)

1
280

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x2

10 + x4

280 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→−3

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−3

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 4(n+ r) bn − bn−2 = 0

Which for for the root r = −3 becomes

(4A)bn(n− 3) (n− 4) + 4(n− 3) bn − bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = bn−2

n2 + 2nr + r2 + 3n+ 3r (5)

Which for the root r = −3 becomes

bn = bn−2

n2 − 3n (6)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
1

r2 + 7r + 10
Which for the root r = −3 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+7r+10 −1

2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+7r+10 −1

2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(r2 + 7r + 10) (r2 + 11r + 28)
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Which for the root r = −3 becomes

b4 = −1
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+7r+10 −1

2

b3 0 0
b4

1
(r+5)(r+2)(r+7)(r+4) −1

8

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+7r+10 −1

2

b3 0 0
b4

1
(r+5)(r+2)(r+7)(r+4) −1

8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

2 − x4

8 +O(x6)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x2

10 + x4

280 +O
(
x6))+

c2
(
1− x2

2 − x4

8 +O(x6)
)

x3
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Hence the final solution is

y = yh

= c1

(
1 + x2

10 + x4

280 +O
(
x6))+

c2
(
1− x2

2 − x4

8 +O(x6)
)

x3

Summary
The solution(s) found are the following

(1)y = c1

(
1 + x2

10 + x4

280 +O
(
x6))+

c2
(
1− x2

2 − x4

8 +O(x6)
)

x3

Verification of solutions

y = c1

(
1 + x2

10 + x4

280 +O
(
x6))+

c2
(
1− x2

2 − x4

8 +O(x6)
)

x3

Verified OK.

1.11.1 Maple step by step solution

Let’s solve
y′′x+ 4y′ − yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −4y′

x
+ y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4y′

x
− y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4
x
, P3(x) = −1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 4y′ − yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 4 + r)− ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−3, 0}
• Each term must be 0

a1(1 + r) (4 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 4 + r)− ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 5 + r)− ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = ak
(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = ak

(k−1)(k+2)

• Solution for r = −3[
y =

∞∑
k=0

akx
k−3, ak+2 = ak

(k−1)(k+2) ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = ak

(k+2)(k+5)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = ak

(k+2)(k+5) , 4a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
−3+k

)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = ak

(k−1)(k+2) ,−2a1 = 0, bk+2 = bk
(k+2)(k+5) , 4b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*diff(y(x),x$2)+4*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1 + 1

10x
2 + 1

280x
4 +O

(
x6))+

c2
(
12− 6x2 − 3

2x
4 +O(x6)

)
x3

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 42� �
AsymptoticDSolveValue[x*y''[x]+4*y'[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x3 − x

8 − 1
2x

)
+ c2

(
x4

280 + x2

10 + 1
)
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1.12 problem Problem 1.9
1.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 151

Internal problem ID [12405]
Internal file name [OUTPUT/11057_Wednesday_October_04_2023_01_27_58_AM_74288418/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2xy′′ + (x+ 1) y′ − yk = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2xy′′ + (x+ 1) y′ − yk = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 1
2x

q(x) = − k

2x
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Table 19: Table p(x), q(x) singularites.

p(x) = x+1
2x

singularity type
x = 0 “regular”

q(x) = − k
2x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2xy′′ + (x+ 1) y′ − yk = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (x+ 1)
(

∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
k = 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−kanx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−kanx

n+r
)
=

∞∑
n=1

(
−kan−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−kan−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
2x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−1 + 2r) = 0
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Since the above is true for all x then the indicial equation becomes

2r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−1 + 2r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + an(n+ r)− kan−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(k − n− r + 1)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 1
2 becomes

an = an−1(2k − 2n+ 1)
4n2 + 2n (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
k − r

2r2 + 3r + 1
Which for the root r = 1

2 becomes

a1 =
k

3 − 1
6

And the table now becomes

n an,r an

a0 1 1
a1

k−r
2r2+3r+1

k
3 −

1
6

For n = 2, using the above recursive equation gives

a2 =
(k − 1− r) (k − r)

4r4 + 20r3 + 35r2 + 25r + 6
Which for the root r = 1

2 becomes

a2 =
1
30k

2 − 1
15k + 1

40
And the table now becomes

n an,r an

a0 1 1
a1

k−r
2r2+3r+1

k
3 −

1
6

a2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
1
30k

2 − 1
15k + 1

40

For n = 3, using the above recursive equation gives

a3 =
(k − 2− r) (k − 1− r) (k − r)

8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90
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Which for the root r = 1
2 becomes

a3 =
(2k − 5) (−3 + 2k) (2k − 1)

5040
And the table now becomes

n an,r an

a0 1 1
a1

k−r
2r2+3r+1

k
3 −

1
6

a2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
1
30k

2 − 1
15k + 1

40

a3
(k−2−r)(k−1−r)(k−r)

8r6+84r5+350r4+735r3+812r2+441r+90
(2k−5)(−3+2k)(2k−1)

5040

For n = 4, using the above recursive equation gives

a4 =
(k − 3− r) (k − 2− r) (k − 1− r) (k − r)

(8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90) (r + 4) (2r + 7)

Which for the root r = 1
2 becomes

a4 =
(2k − 7) (2k − 5) (−3 + 2k) (2k − 1)

362880
And the table now becomes

n an,r an

a0 1 1
a1

k−r
2r2+3r+1

k
3 −

1
6

a2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
1
30k

2 − 1
15k + 1

40

a3
(k−2−r)(k−1−r)(k−r)

8r6+84r5+350r4+735r3+812r2+441r+90
(2k−5)(−3+2k)(2k−1)

5040

a4
(k−3−r)(k−2−r)(k−1−r)(k−r)

(8r6+84r5+350r4+735r3+812r2+441r+90)(r+4)(2r+7)
(2k−7)(2k−5)(−3+2k)(2k−1)

362880

For n = 5, using the above recursive equation gives

a5 =
(k − 4− r) (k − 3− r) (k − 2− r) (k − 1− r) (k − r)

(8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90) (r + 4) (2r + 7) (2r + 9) (r + 5)

Which for the root r = 1
2 becomes

a5 =
(2k − 9) (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)

39916800
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And the table now becomes

n an,r an

a0 1 1
a1

k−r
2r2+3r+1

k
3 −

1
6

a2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
1
30k

2 − 1
15k + 1

40

a3
(k−2−r)(k−1−r)(k−r)

8r6+84r5+350r4+735r3+812r2+441r+90
(2k−5)(−3+2k)(2k−1)

5040

a4
(k−3−r)(k−2−r)(k−1−r)(k−r)

(8r6+84r5+350r4+735r3+812r2+441r+90)(r+4)(2r+7)
(2k−7)(2k−5)(−3+2k)(2k−1)

362880

a5
(k−4−r)(k−3−r)(k−2−r)(k−1−r)(k−r)

(8r6+84r5+350r4+735r3+812r2+441r+90)(r+4)(2r+7)(2r+9)(r+5)
(2k−9)(2k−7)(2k−5)(−3+2k)(2k−1)

39916800

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 +

(
k

3 − 1
6

)
x+

(
1
30k

2 − 1
15k + 1

40

)
x2 + (2k − 5) (−3 + 2k) (2k − 1)x3

5040 + (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x4

362880 + (2k − 9) (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x5

39916800 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1) + (n+ r) bn − kbn−1 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1(k − n− r + 1)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 0 becomes

bn = bn−1(k − n+ 1)
2n2 − n

(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
k − r

2r2 + 3r + 1

Which for the root r = 0 becomes
b1 = k

And the table now becomes

n bn,r bn

b0 1 1
b1

k−r
2r2+3r+1 k

For n = 2, using the above recursive equation gives

b2 =
(k − 1− r) (k − r)

4r4 + 20r3 + 35r2 + 25r + 6

Which for the root r = 0 becomes

b2 =
(k − 1) k

6

And the table now becomes

n bn,r bn

b0 1 1
b1

k−r
2r2+3r+1 k

b2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
(k−1)k

6

For n = 3, using the above recursive equation gives

b3 =
(k − 2− r) (k − 1− r) (k − r)

8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90

Which for the root r = 0 becomes

b3 =
(k − 2) (k − 1) k

90

And the table now becomes
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n bn,r bn

b0 1 1
b1

k−r
2r2+3r+1 k

b2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
(k−1)k

6

b3
(k−2−r)(k−1−r)(k−r)

8r6+84r5+350r4+735r3+812r2+441r+90
(k−2)(k−1)k

90

For n = 4, using the above recursive equation gives

b4 =
(k − 3− r) (k − 2− r) (k − 1− r) (k − r)

(8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90) (r + 4) (2r + 7)

Which for the root r = 0 becomes

b4 =
(−3 + k) (k − 2) (k − 1) k

2520

And the table now becomes

n bn,r bn

b0 1 1
b1

k−r
2r2+3r+1 k

b2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
(k−1)k

6

b3
(k−2−r)(k−1−r)(k−r)

8r6+84r5+350r4+735r3+812r2+441r+90
(k−2)(k−1)k

90

b4
(k−3−r)(k−2−r)(k−1−r)(k−r)

(8r6+84r5+350r4+735r3+812r2+441r+90)(r+4)(2r+7)
(−3+k)(k−2)(k−1)k

2520

For n = 5, using the above recursive equation gives

b5 =
(k − 4− r) (k − 3− r) (k − 2− r) (k − 1− r) (k − r)

(8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90) (r + 4) (2r + 7) (2r + 9) (r + 5)

Which for the root r = 0 becomes

b5 =
(k − 4) (−3 + k) (k − 2) (k − 1) k

113400

And the table now becomes
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n bn,r bn

b0 1 1
b1

k−r
2r2+3r+1 k

b2
(k−1−r)(k−r)

4r4+20r3+35r2+25r+6
(k−1)k

6

b3
(k−2−r)(k−1−r)(k−r)

8r6+84r5+350r4+735r3+812r2+441r+90
(k−2)(k−1)k

90

b4
(k−3−r)(k−2−r)(k−1−r)(k−r)

(8r6+84r5+350r4+735r3+812r2+441r+90)(r+4)(2r+7)
(−3+k)(k−2)(k−1)k

2520

b5
(k−4−r)(k−3−r)(k−2−r)(k−1−r)(k−r)

(8r6+84r5+350r4+735r3+812r2+441r+90)(r+4)(2r+7)(2r+9)(r+5)
(k−4)(−3+k)(k−2)(k−1)k

113400

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + kx+ (k − 1) k x2

6 + (k − 2) (k − 1) k x3

90 + (−3 + k) (k − 2) (k − 1) k x4

2520 + (k − 4) (−3 + k) (k − 2) (k − 1) k x5

113400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1+
(
k

3 −
1
6

)
x+
(

1
30k

2− 1
15k+

1
40

)
x2+ (2k − 5) (−3 + 2k) (2k − 1)x3

5040

+ (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x4

362880
+ (2k − 9) (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x5

39916800 +O
(
x6))

+c2

(
1+kx+ (k − 1) k x2

6 + (k − 2) (k − 1) k x3

90 + (−3 + k) (k − 2) (k − 1) k x4

2520

+ (k − 4) (−3 + k) (k − 2) (k − 1) k x5

113400 +O
(
x6))

Hence the final solution is

y = yh
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= c1
√
x

(
1 +

(
k

3 − 1
6

)
x+

(
1
30k

2 − 1
15k + 1

40

)
x2 + (2k − 5) (−3 + 2k) (2k − 1)x3

5040

+ (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x4

362880
+ (2k − 9) (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x5

39916800 +O
(
x6))

+ c2

(
1 + kx+ (k − 1) k x2

6 + (k − 2) (k − 1) k x3

90 + (−3 + k) (k − 2) (k − 1) k x4

2520

+ (k − 4) (−3 + k) (k − 2) (k − 1) k x5

113400 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1
√
x

(
1+
(
k

3−
1
6

)
x+
(

1
30k

2− 1
15k+

1
40

)
x2+ (2k − 5) (−3 + 2k) (2k − 1)x3

5040

+ (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x4

362880
+ (2k − 9) (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x5

39916800 +O
(
x6))

+c2

(
1+kx+ (k − 1) k x2

6 + (k − 2) (k − 1) k x3

90 + (−3 + k) (k − 2) (k − 1) k x4

2520

+ (k − 4) (−3 + k) (k − 2) (k − 1) k x5

113400 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1 +

(
k

3 − 1
6

)
x+

(
1
30k

2 − 1
15k + 1

40

)
x2 + (2k − 5) (−3 + 2k) (2k − 1)x3

5040

+ (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x4

362880
+ (2k − 9) (2k − 7) (2k − 5) (−3 + 2k) (2k − 1)x5

39916800 +O
(
x6))

+ c2

(
1 + kx+ (k − 1) k x2

6 + (k − 2) (k − 1) k x3

90 + (−3 + k) (k − 2) (k − 1) k x4

2520

+ (k − 4) (−3 + k) (k − 2) (k − 1) k x5

113400 +O
(
x6))

Verified OK.

150



1.12.1 Maple step by step solution

Let’s solve
2y′′x+ (x+ 1) y′ − yk = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x+1)y′
2x + yk

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
2x − yk

2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
2x , P3(x) = − k

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x+ (x+ 1) y′ − yk = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 1 + 2r)− ak(k − k − r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 − ak(k − k − r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k−k−r)

(2k+1+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = ak(k−k)

(2k+1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(k−k)

(2k+1)(k+1)

]
• Recursion relation for r = 1

2

ak+1 =
ak
(
k−k− 1

2
)

(2k+2)
(
k+ 3

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
ak
(
k−k− 1

2
)

(2k+2)
(
k+ 3

2
)
]

• Combine solutions and rename parameters
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[
y =

(
∞∑

m=0
amx

m

)
+
(

∞∑
m=0

bmx
m+ 1

2

)
, am+1 = am(−m+k)

(2m+1)(m+1) , bm+1 =
bm
(
k−m− 1

2
)

(2m+2)
(
m+ 3

2
)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 132� �
Order:=6;
dsolve(2*x*diff(y(x),x$2)+(1+x)*diff(y(x),x)-k*y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x c1

(
1 +

(
k

3 − 1
6

)
x+

(
1
30k

2 − 1
15k + 1

40

)
x2

+ 1
5040(2k − 5) (2k − 3) (−1 + 2k)x3

+ 1
362880(2k − 7) (2k − 5) (2k − 3) (−1 + 2k)x4

+ 1
39916800(2k−9) (2k−7) (2k−5) (2k−3) (−1+2k)x5+O

(
x6))+c2

(
1+kx

+ 1
6(−1+k) kx2+ 1

90(−2+k) (−1+k) kx3+ 1
2520(k− 3) (−2+k) (−1+k) kx4

+ 1
113400(−4 + k) (k − 3) (−2 + k) (−1 + k) kx5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 304� �
AsymptoticDSolveValue[2*x*y''[x]+(1+x)*y'[x]-k*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

√
x

(
4
(3
4 −

k
2

) (5
4 −

k
2

) (7
4 −

k
2

) (9
4 −

k
2

) (
k
2 −

1
4

)
x5

155925

−
2
(3
4 −

k
2

) (5
4 −

k
2

) (7
4 −

k
2

) (
k
2 −

1
4

)
x4

2835 + 4
315

(
3
4 − k

2

)(
5
4 − k

2

)(
k

2 − 1
4

)
x3

− 2
15

(
3
4 − k

2

)(
k

2 − 1
4

)
x2 + 2

3

(
k

2 − 1
4

)
x+ 1

)

+ c2

(
2
(1
2 −

k
2

) (
1− k

2

) (3
2 −

k
2

) (
2− k

2

)
kx5

14175

− 1
315

(
1
2 − k

2

)(
1− k

2

)(
3
2 − k

2

)
kx4 + 2

45

(
1
2 − k

2

)(
1− k

2

)
kx3

− 1
3

(
1
2 − k

2

)
kx2 + kx+ 1

)
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1.13 problem Problem 1.11(a)
Internal problem ID [12406]
Internal file name [OUTPUT/11058_Wednesday_October_04_2023_07_06_03_PM_64152595/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.11(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

Unable to solve or complete the solution.

x3y′′ + x2y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x3y′′ + x2y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1
x3
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Table 21: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1
x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^3*diff(y(x),x$2)+x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 222� �
AsymptoticDSolveValue[x^3*y''[x]+x^2*y'[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1e

− 2i√
x 4
√
x

(
418854310875ix9/2

8796093022208 − 57972915ix7/2

4294967296 + 59535ix5/2

8388608 − 75ix3/2

8192

− 30241281245175x5

281474976710656 + 13043905875x4

549755813888 − 2401245x3

268435456 + 3675x2

524288 − 9x
512 + i

√
x

16

+1
)
+c2e

2i√
x 4
√
x

(
−418854310875ix9/2

8796093022208 +57972915ix7/2

4294967296 − 59535ix5/2

8388608 +75ix3/2

8192 − 30241281245175x5

281474976710656 +13043905875x4

549755813888 − 2401245x3

268435456+
3675x2

524288−
9x
512−

i
√
x

16 +1
)
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1.14 problem Problem 1.11(b)
Internal problem ID [12407]
Internal file name [OUTPUT/11059_Wednesday_October_04_2023_07_06_05_PM_68847962/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.11(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Irregular
singular point"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

Unable to solve or complete the solution.

y′′x2 + y′ − 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′x2 + y′ − 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x2

q(x) = − 2
x2
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Table 22: Table p(x), q(x) singularites.

p(x) = 1
x2

singularity type
x = 0 “irregular”

q(x) = − 2
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 28� �
AsymptoticDSolveValue[x^2*y''[x]+y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2e
1
xx2 + c1

(
2x2 + 2x+ 1

)
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1.15 problem Problem 1.12
1.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 171

Internal problem ID [12408]
Internal file name [OUTPUT/11060_Wednesday_October_04_2023_07_06_06_PM_13727061/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2y′′x2 + x(1− x) y′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2y′′x2 +
(
−x2 + x

)
y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x− 1
2x

q(x) = − 1
2x2
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Table 23: Table p(x), q(x) singularites.

p(x) = −x−1
2x

singularity type
x = 0 “regular”

q(x) = − 1
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2y′′x2 +
(
−x2 + x

)
y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2

+
(
−x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r

)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + xra0r − a0x
r = 0

Or
(2xrr(−1 + r) + xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 − r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 − r − 1 = 0

163



Solving for r gives the roots of the indicial equation as

r1 = 1

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
2r2 − r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n− 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1)− an−1(n+ r − 1) + an(n+ r)− an = 0

Solving for an from recursive equation (4) gives

an = an−1

2n+ 2r + 1 (4)

Which for the root r = 1 becomes

an = an−1

2n+ 3 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

3 + 2r

Which for the root r = 1 becomes
a1 =

1
5

And the table now becomes

n an,r an

a0 1 1
a1

1
3+2r

1
5

For n = 2, using the above recursive equation gives

a2 =
1

4r2 + 16r + 15

Which for the root r = 1 becomes
a2 =

1
35

And the table now becomes

n an,r an

a0 1 1
a1

1
3+2r

1
5

a2
1

4r2+16r+15
1
35

For n = 3, using the above recursive equation gives

a3 =
1

8r3 + 60r2 + 142r + 105

Which for the root r = 1 becomes

a3 =
1
315
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And the table now becomes

n an,r an

a0 1 1
a1

1
3+2r

1
5

a2
1

4r2+16r+15
1
35

a3
1

8r3+60r2+142r+105
1

315

For n = 4, using the above recursive equation gives

a4 =
1

16r4 + 192r3 + 824r2 + 1488r + 945

Which for the root r = 1 becomes

a4 =
1

3465

And the table now becomes

n an,r an

a0 1 1
a1

1
3+2r

1
5

a2
1

4r2+16r+15
1
35

a3
1

8r3+60r2+142r+105
1

315

a4
1

16r4+192r3+824r2+1488r+945
1

3465

For n = 5, using the above recursive equation gives

a5 =
1

32r5 + 560r4 + 3760r3 + 12040r2 + 18258r + 10395

Which for the root r = 1 becomes

a5 =
1

45045

And the table now becomes
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n an,r an

a0 1 1
a1

1
3+2r

1
5

a2
1

4r2+16r+15
1
35

a3
1

8r3+60r2+142r+105
1

315

a4
1

16r4+192r3+824r2+1488r+945
1

3465

a5
1

32r5+560r4+3760r3+12040r2+18258r+10395
1

45045

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x

5 + x2

35 + x3

315 + x4

3465 + x5

45045 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1)− bn−1(n+ r − 1) + bn(n+ r)− bn = 0

Solving for bn from recursive equation (4) gives

bn = bn−1

2n+ 2r + 1 (4)

Which for the root r = −1
2 becomes

bn = bn−1

2n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
1

3 + 2r
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Which for the root r = −1
2 becomes

b1 =
1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

1
3+2r

1
2

For n = 2, using the above recursive equation gives

b2 =
1

4r2 + 16r + 15
Which for the root r = −1

2 becomes

b2 =
1
8

And the table now becomes

n bn,r bn

b0 1 1
b1

1
3+2r

1
2

b2
1

4r2+16r+15
1
8

For n = 3, using the above recursive equation gives

b3 =
1

8r3 + 60r2 + 142r + 105
Which for the root r = −1

2 becomes

b3 =
1
48

And the table now becomes

n bn,r bn

b0 1 1
b1

1
3+2r

1
2

b2
1

4r2+16r+15
1
8

b3
1

8r3+60r2+142r+105
1
48
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For n = 4, using the above recursive equation gives

b4 =
1

16r4 + 192r3 + 824r2 + 1488r + 945

Which for the root r = −1
2 becomes

b4 =
1
384

And the table now becomes

n bn,r bn

b0 1 1
b1

1
3+2r

1
2

b2
1

4r2+16r+15
1
8

b3
1

8r3+60r2+142r+105
1
48

b4
1

16r4+192r3+824r2+1488r+945
1

384

For n = 5, using the above recursive equation gives

b5 =
1

32r5 + 560r4 + 3760r3 + 12040r2 + 18258r + 10395

Which for the root r = −1
2 becomes

b5 =
1

3840

And the table now becomes

n bn,r bn

b0 1 1
b1

1
3+2r

1
2

b2
1

4r2+16r+15
1
8

b3
1

8r3+60r2+142r+105
1
48

b4
1

16r4+192r3+824r2+1488r+945
1

384

b5
1

32r5+560r4+3760r3+12040r2+18258r+10395
1

3840
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Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x

2 +
x2

8 + x3

48 +
x4

384 +
x5

3840 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x

5 + x2

35 + x3

315 + x4

3465 + x5

45045 +O
(
x6))

+
c2
(
1 + x

2 +
x2

8 + x3

48 +
x4

384 +
x5

3840 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1x

(
1 + x

5 + x2

35 + x3

315 + x4

3465 + x5

45045 +O
(
x6))

+
c2
(
1 + x

2 +
x2

8 + x3

48 +
x4

384 +
x5

3840 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)
y = c1x

(
1 + x

5 + x2

35 + x3

315 + x4

3465 + x5

45045 +O
(
x6))

+
c2
(
1 + x

2 +
x2

8 + x3

48 +
x4

384 +
x5

3840 +O(x6)
)

√
x

Verification of solutions

y = c1x

(
1 + x

5 + x2

35 + x3

315 + x4

3465 + x5

45045 +O
(
x6))

+
c2
(
1 + x

2 +
x2

8 + x3

48 +
x4

384 +
x5

3840 +O(x6)
)

√
x

Verified OK.

170



1.15.1 Maple step by step solution

Let’s solve
2y′′x2 + (−x2 + x) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
2x2 + (x−1)y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x−1)y′
2x − y

2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x−1
2x , P3(x) = − 1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x2 − x(x− 1) y′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (k + r − 1)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2(k + r − 1)
((
k + r + 1

2

)
ak − ak−1

2

)
= 0

• Shift index using k− >k + 1
2(k + r)

((
k + 3

2 + r
)
ak+1 − ak

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

2k+3+2r

• Recursion relation for r = 1
ak+1 = ak

2k+5

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = ak

2k+5

]
• Recursion relation for r = −1

2

ak+1 = ak
2k+2

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+1 = ak
2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k− 1

2

)
, a1+k = ak

2k+5 , b1+k = bk
2k+2

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)+x*(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1 + 1

2x+ 1
8x

2 + 1
48x

3 + 1
384x

4 + 1
3840x

5 +O(x6)
)

√
x

+ c2x

(
1 + 1

5x+ 1
35x

2 + 1
315x

3 + 1
3465x

4 + 1
45045x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 86� �
AsymptoticDSolveValue[2*x^2*y''[x]+x*(1-x)*y'[x]-y[x]==0,y[x],{x,0,5}]� �
y(x) → c1x

(
x5

45045 + x4

3465 + x3

315 + x2

35 + x

5 + 1
)
+

c2
(

x5

3840 +
x4

384 +
x3

48 +
x2

8 + x
2 + 1

)
√
x
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1.16 problem Problem 1.13
1.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 187

Internal problem ID [12409]
Internal file name [OUTPUT/11061_Wednesday_October_04_2023_07_06_07_PM_97534733/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL
EQUATIONS. Problems page 28
Problem number: Problem 1.13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′x(x− 1) + 3y′x+ y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x2 − x
)
y′′ + 3y′x+ y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x− 1

q(x) = 1
x (x− 1)

175



Table 25: Table p(x), q(x) singularites.

p(x) = 3
x−1

singularity type
x = 1 “regular”

q(x) = 1
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

y′′x(x− 1) + 3y′x+ y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+r−1an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

3xn+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r−1

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

an−1(n+r−1) (n+r−2)xn+r−1

)
+

∞∑
n =0

(
−xn+r−1an(n+r) (n+r−1)

)
+
(

∞∑
n=1

3an−1(n+ r − 1)xn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

−xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

−x−1+ra0r(−1 + r) = 0

Or
−x−1+ra0r(−1 + r) = 0
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Since a0 6= 0 then the above simplifies to

−x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

−r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

−x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2)− an(n+ r) (n+ r − 1) + 3an−1(n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = (n+ r) an−1

n+ r − 1 (4)

Which for the root r = 1 becomes

an = (n+ 1) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1 + r

r

Which for the root r = 1 becomes
a1 = 2

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2

For n = 2, using the above recursive equation gives

a2 =
2 + r

r

Which for the root r = 1 becomes
a2 = 3
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And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3

For n = 3, using the above recursive equation gives

a3 =
3 + r

r

Which for the root r = 1 becomes
a3 = 4

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3
a3

3+r
r

4

For n = 4, using the above recursive equation gives

a4 =
4 + r

r

Which for the root r = 1 becomes
a4 = 5

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3
a3

3+r
r

4
a4

4+r
r

5
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For n = 5, using the above recursive equation gives

a5 =
5 + r

r

Which for the root r = 1 becomes
a5 = 6

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3
a3

3+r
r

4
a4

4+r
r

5
a5

5+r
r

6

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 1 + r

r

Therefore

lim
r→r2

1 + r

r
= lim

r→0

1 + r

r

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode y′′x(x− 1) + 3y′x+ y = 0 gives

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

+ 3
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0
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Which can be written as

(7)

(
(y′′1(x)x(x− 1) + 3y′1(x)x+ y1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)

+ 3y1(x)
)
C +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x(x− 1) + 3y′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x(x− 1) + 3y1(x)

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x− 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
+ (2x+ 1)

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2(x− 1) + 3

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2x(x− 1)

(
∞∑
n=0

xnan(n+ 1)
)
+ (2x+ 1)

(
∞∑
n=0

anx
n+1
))

C

x

+

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2(x− 1) + 3

(
∞∑
n=0

xn−1bnn

)
x2 +

(
∞∑
n=0

bnx
n

)
x

x
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C xn+1an(n+ 1)
)

+
∞∑

n =0

(−2C xnan(n+ 1))

+
(

∞∑
n=0

2C xn+1an

)
+
(

∞∑
n=0

Canx
n

)
+
(

∞∑
n=0

xnbnn(n− 1)
)

+
∞∑

n =0

(
−nxn−1bn(n− 1)

)
+
(

∞∑
n=0

3xnbnn

)
+
(

∞∑
n=0

bnx
n

)
= 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+1an(n+ 1) =
∞∑
n=2

2Ca−2+n(n− 1)xn−1

∞∑
n =0

(−2C xnan(n+ 1)) =
∞∑
n=1

(
−2Can−1nxn−1)

∞∑
n =0

2C xn+1an =
∞∑
n=2

2Ca−2+nx
n−1

∞∑
n =0

Canx
n =

∞∑
n=1

Can−1x
n−1

∞∑
n =0

xnbnn(n− 1) =
∞∑
n=1

(n− 1) bn−1(−2 + n)xn−1

∞∑
n =0

3xnbnn =
∞∑
n=1

3(n− 1) bn−1x
n−1

∞∑
n =0

bnx
n =

∞∑
n=1

bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n− 1.

(2B)

(
∞∑
n=2

2Ca−2+n(n− 1)xn−1

)
+

∞∑
n =1

(
−2Can−1nxn−1)

+
(

∞∑
n=2

2Ca−2+nx
n−1

)
+
(

∞∑
n=1

Can−1x
n−1

)

+
(

∞∑
n=1

(n− 1) bn−1(−2 + n)xn−1

)
+

∞∑
n =0

(
−nxn−1bn(n− 1)

)
+
(

∞∑
n=1

3(n− 1) bn−1x
n−1

)
+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

−C + 1 = 0

Which is solved for C. Solving for C gives

C = 1

For n = 2, Eq (2B) gives

(4a0 − 3a1)C + 4b1 − 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2− 2b2 = 0

Solving the above for b2 gives
b2 = −1

For n = 3, Eq (2B) gives

(6a1 − 5a2)C + 9b2 − 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−12− 6b3 = 0

Solving the above for b3 gives
b3 = −2

185



For n = 4, Eq (2B) gives

(8a2 − 7a3)C + 16b3 − 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−36− 12b4 = 0
Solving the above for b4 gives

b4 = −3
For n = 5, Eq (2B) gives

(10a3 − 9a4)C + 25b4 − 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−80− 20b5 = 0
Solving the above for b5 gives

b5 = −4
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))) ln (x)

+ 1− x2 − 2x3 − 3x4 − 4x5 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
1
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))) ln (x) + 1− x2 − 2x3

− 3x4 − 4x5 +O
(
x6))

Hence the final solution is
y = yh

= c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6)) ln (x) + 1− x2 − 2x3 − 3x4 − 4x5

+O
(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1x

(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6)) ln (x) + 1− x2 − 2x3 − 3x4

− 4x5 +O
(
x6))

Verification of solutions

y = c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6)) ln (x) + 1− x2 − 2x3 − 3x4 − 4x5

+O
(
x6))

Verified OK.

1.16.1 Maple step by step solution

Let’s solve
y′′x(x− 1) + 3y′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x(x−1) −
3y′
x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x−1 +
y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x−1 , P3(x) = 1

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
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Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(x− 1) + 3y′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + r)x−1+r +
(

∞∑
k=0

(
−ak+1(k + r + 1) (k + r) + ak(k + r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) (−ak+1(k + r) + ak(k + r + 1)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+1)

k+r

• Recursion relation for r = 0
ak+1 = ak(k+1)

k

• Solution for r = 0
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[
y =

∞∑
k=0

akx
k, ak+1 = ak(k+1)

k

]
• Recursion relation for r = 1

ak+1 = ak(k+2)
k+1

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = ak(k+2)

k+1

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
1+k

)
, a1+k = ak(1+k)

k
, b1+k = bk(k+2)

1+k

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 60� �
Order:=6;
dsolve(x*(x-1)*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+
(
x+ 2x2 + 3x3 + 4x4 + 5x5 +O

(
x6)) ln (x) c2

+
(
1 + 3x+ 5x2 + 7x3 + 9x4 + 11x5 +O

(
x6)) c2
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3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 63� �
AsymptoticDSolveValue[x*(x-1)*y''[x]+3*x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
x4 + x3 + x2 +

(
4x3 + 3x2 + 2x+ 1

)
x log(x) + x+ 1

)
+ c2

(
5x5 + 4x4 + 3x3 + 2x2 + x

)
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2 Chapter 3 Bessel functions. Problems page 89
2.1 problem Problem 3.7(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
2.2 problem Problem 3.7(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.3 problem Problem 3.7(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
2.4 problem Problem 3.7(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.5 problem Problem 3.7(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.6 problem Problem 3.7(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.7 problem Problem 3.7(g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
2.8 problem Problem 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
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2.1 problem Problem 3.7(a)
2.1.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 192
2.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 193

Internal problem ID [12410]
Internal file name [OUTPUT/11062_Wednesday_October_04_2023_07_06_08_PM_10656506/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.7(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ − x2y = 0

2.1.1 Solving as second order bessel ode ode

Writing the ode as

y′′x2 − yx4 = 0 (1)

Bessel ode has the form

y′′x2 + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

y′′x2 + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
2

β = i

2
n = 1

4
γ = 2

Substituting all the above into (4) gives the solution as

y = c1
√
x BesselJ

(
1
4 ,

ix2

2

)
+ c2

√
x BesselY

(
1
4 ,

ix2

2

)
Summary
The solution(s) found are the following

(1)y = c1
√
x BesselJ

(
1
4 ,

ix2

2

)
+ c2

√
x BesselY

(
1
4 ,

ix2

2

)
Verification of solutions

y = c1
√
x BesselJ

(
1
4 ,

ix2

2

)
+ c2

√
x BesselY

(
1
4 ,

ix2

2

)
Verified OK.

2.1.2 Maple step by step solution

Let’s solve
y′′ − x2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2
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◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3x+ 2a2 +
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = ak

k2+7k+12 , a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)-x^2*y(x)=0,y(x), singsol=all)� �

y(x) =
(
BesselK

(
1
4 ,

x2

2

)
c2 + BesselI

(
1
4 ,

x2

2

)
c1

)√
x

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 37� �
DSolve[y''[x]-x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 ParabolicCylinderD
(
−1
2 , i

√
2x
)
+ c1 ParabolicCylinderD

(
−1
2 ,

√
2x
)
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2.2 problem Problem 3.7(b)
2.2.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 196
2.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 197

Internal problem ID [12411]
Internal file name [OUTPUT/11063_Wednesday_October_04_2023_07_06_10_PM_71685414/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.7(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y′ + y = 0

2.2.1 Solving as second order bessel ode ode

Writing the ode as

y′′x2 + y′x+ yx = 0 (1)

Bessel ode has the form

y′′x2 + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

y′′x2 + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = 2
n = 0

γ = 1
2

Substituting all the above into (4) gives the solution as

y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

Summary
The solution(s) found are the following

(1)y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

Verification of solutions

y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

Verified OK.

2.2.2 Maple step by step solution

Let’s solve
y′′x+ y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x
− y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
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r = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 + ak = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak
(k+1)2

• Recursion relation for r = 0
ak+1 = − ak

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 31� �
DSolve[x*y''[x]+y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 BesselJ
(
0, 2

√
x
)
+ 2c2 BesselY

(
0, 2

√
x
)
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2.3 problem Problem 3.7(c)
2.3.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 201

Internal problem ID [12412]
Internal file name [OUTPUT/11064_Wednesday_October_04_2023_07_06_10_PM_70418792/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.7(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (x+ 1)2 y = 0

2.3.1 Solving as second order bessel ode ode

Writing the ode as

y′′x2 +
(
x3 + 2x2 + x

)
y = 0 (1)

Bessel ode has the form

y′′x2 + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

y′′x2 + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
2

β = 2
n = −1

γ = 1
2

Substituting all the above into (4) gives the solution as

y = −c1
√
x BesselJ

(
1, 2

√
x
)
− c2

√
x BesselY

(
1, 2

√
x
)

Summary
The solution(s) found are the following

(1)y = −c1
√
x BesselJ

(
1, 2

√
x
)
− c2

√
x BesselY

(
1, 2

√
x
)

Verification of solutions

y = −c1
√
x BesselJ

(
1, 2

√
x
)
− c2

√
x BesselY

(
1, 2

√
x
)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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7 Solution by Maple� �
dsolve(x*diff(y(x),x$2)+(x+1)^2*y(x)=0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x*y''[x]+(x+1)^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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2.4 problem Problem 3.7(d)
2.4.1 Solving as second order linear constant coeff ode . . . . . . . . 205
2.4.2 Solving as second order ode can be made integrable ode . . . . 207
2.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 208
2.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 211

Internal problem ID [12413]
Internal file name [OUTPUT/11065_Wednesday_October_04_2023_07_06_10_PM_50793839/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.7(d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + α2y = 0

2.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
Where in the above A = 1, B = 0, C = α2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + α2eλx = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

α2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = α2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (α2)

= ±
√
−α2

Hence
λ1 = +

√
−α2

λ2 = −
√
−α2

Which simplifies to

λ1 =
√
−α2

λ2 = −
√
−α2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e

(√
−α2

)
x + c2e

(
−
√
−α2

)
x

Or
y = c1e

√
−α2 x + c2e−

√
−α2 x

Summary
The solution(s) found are the following

(1)y = c1e
√
−α2 x + c2e−

√
−α2 x

Verification of solutions

y = c1e
√
−α2 x + c2e−

√
−α2 x

Verified OK.
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2.4.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

y′y′′ + α2y′y = 0

Integrating the above w.r.t x gives∫ (
y′y′′ + α2y′y

)
dx = 0

y′2

2 + α2y2

2 = c2

Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√

−α2y2 + 2c1 (1)
y′ = −

√
−α2y2 + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
−α2y2 + 2c1

dy =
∫

dx

arctan
( √

α2 y√
−α2y2+2c1

)
√
α2

= x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 1√

−α2y2 + 2c1
dy =

∫
dx

−
arctan

( √
α2 y√

−α2y2+2c1

)
√
α2

= c3 + x
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Summary
The solution(s) found are the following

(1)
arctan

( √
α2 y√

−α2y2+2c1

)
√
α2

= x+ c2

(2)−
arctan

( √
α2 y√

−α2y2+2c1

)
√
α2

= c3 + x

Verification of solutions

arctan
( √

α2 y√
−α2y2+2c1

)
√
α2

= x+ c2

Verified OK.

−
arctan

( √
α2 y√

−α2y2+2c1

)
√
α2

= c3 + x

Verified OK.

2.4.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + α2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = α2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −α2

1 (6)

Comparing the above to (5) shows that

s = −α2

t = 1

Therefore eq. (4) becomes

z′′(x) =
(
−α2) z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 29: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −α2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
−α2 x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e
√
−α2 x

Which simplifies to

y1 = e
√
−α2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e
√
−α2 x

∫ 1
e2

√
−α2 x

dx

= e
√
−α2 x

(√
−α2 e−2

√
−α2 x

2α2

)

Therefore the solution is
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y = c1y1 + c2y2

= c1
(
e
√
−α2 x

)
+ c2

(
e
√
−α2 x

(√
−α2 e−2

√
−α2 x

2α2

))

Summary
The solution(s) found are the following

(1)y = c1e
√
−α2 x + c2

√
−α2 e−

√
−α2 x

2α2

Verification of solutions

y = c1e
√
−α2 x + c2

√
−α2 e−

√
−α2 x

2α2

Verified OK.

2.4.4 Maple step by step solution

Let’s solve
y′′ + α2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
α2 + r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

−4α2
)

2

• Roots of the characteristic polynomial
r =

(√
−α2,−

√
−α2

)
• 1st solution of the ODE

y1(x) = e
√
−α2 x

• 2nd solution of the ODE

y2(x) = e−
√
−α2 x

• General solution of the ODE
y = c1y1(x) + c2y2(x)
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• Substitute in solutions

y = c1e
√
−α2 x + c2e−

√
−α2 x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)+alpha^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (αx) + c2 cos (αx)

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 20� �
DSolve[y''[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos(ax) + c2 sin(ax)
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2.5 problem Problem 3.7(e)
2.5.1 Solving as second order linear constant coeff ode . . . . . . . . 213
2.5.2 Solving as second order ode can be made integrable ode . . . . 215
2.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 216
2.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 220

Internal problem ID [12414]
Internal file name [OUTPUT/11066_Wednesday_October_04_2023_07_06_12_PM_60725539/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.7(e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − α2y = 0

2.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
Where in the above A = 1, B = 0, C = −α2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − α2eλx = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

−α2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = −α2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (−α2)

= ±
√
α2

Hence
λ1 = +

√
α2

λ2 = −
√
α2

Which simplifies to

λ1 =
√
α2

λ2 = −
√
α2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e

(√
α2
)
x + c2e

(
−
√
α2
)
x

Or
y = c1e

√
α2 x + c2e−

√
α2 x

Summary
The solution(s) found are the following

(1)y = c1e
√
α2 x + c2e−

√
α2 x

Verification of solutions

y = c1e
√
α2 x + c2e−

√
α2 x

Verified OK.
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2.5.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

y′y′′ − α2y′y = 0

Integrating the above w.r.t x gives∫ (
y′y′′ − α2y′y

)
dx = 0

y′2

2 − α2y2

2 = c2

Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√
α2y2 + 2c1 (1)

y′ = −
√

α2y2 + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
α2y2 + 2c1

dy =
∫

dx

ln
(

α2y√
α2 +

√
α2y2 + 2c1

)
√
α2

= x+ c2

Raising both side to exponential gives

e
ln

(
α2y√
α2

+
√

α2y2+2c1
)

√
α2 = ex+c2

Which simplifies to (
αy csgn (α) +

√
α2y2 + 2c1

) 1√
α2 = c3ex

Simplifying the solution y =
csgn(α)

(
(c3ex)csgn(α)α−2(c3ex)− csgn(α)αc1

)
2α to y = (c3ex)α−2(c3ex)−αc1

2α
Solving equation (2)
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Integrating both sides gives ∫
− 1√

α2y2 + 2c1
dy =

∫
dx

−
ln
(

α2y√
α2 +

√
α2y2 + 2c1

)
√
α2

= x+ c4

Raising both side to exponential gives

e−
ln

(
α2y√
α2

+
√

α2y2+2c1
)

√
α2 = ex+c4

Which simplifies to (
αy csgn (α) +

√
α2y2 + 2c1

)− csgn(α)
α = c5ex

Simplifying the solution y = −
csgn(α)

(
2(c5ex)csgn(α)αc1−(c5ex)− csgn(α)α

)
2α to y = −2(c5ex)αc1−(c5ex)−α

2α
Summary
The solution(s) found are the following

(1)y = (c3ex)α − 2(c3ex)−α c1
2α

(2)y = −2(c5ex)α c1 − (c5ex)−α

2α
Verification of solutions

y = (c3ex)α − 2(c3ex)−α c1
2α

Verified OK.

y = −2(c5ex)α c1 − (c5ex)−α

2α

Verified OK.

2.5.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − α2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −α2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = α2

1 (6)

Comparing the above to (5) shows that

s = α2

t = 1

Therefore eq. (4) becomes

z′′(x) =
(
α2) z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 31: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = α2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
α2 x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e
√
α2 x
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Which simplifies to

y1 = e
√
α2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e
√
α2 x

∫ 1
e2

√
α2 x

dx

= e
√
α2 x

(
−csgn (α) e−2 csgn(α)αx

2α

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e
√
α2 x
)
+ c2

(
e
√
α2 x

(
−csgn (α) e−2 csgn(α)αx

2α

))

Simplifying the solution y = c1e
√
α2 x − c2 csgn(α)e− csgn(α)αx

2α to y = c1e
√
α2 x − c2e−xα

2α
Summary
The solution(s) found are the following

(1)y = c1e
√
α2 x − c2e−xα

2α
Verification of solutions

y = c1e
√
α2 x − c2e−xα

2α

Verified OK.
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2.5.4 Maple step by step solution

Let’s solve
y′′ − α2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
−α2 + r2 = 0

• Factor the characteristic polynomial
−(α− r) (α + r) = 0

• Roots of the characteristic polynomial
r = (α,−α)

• 1st solution of the ODE
y1(x) = exα

• 2nd solution of the ODE
y2(x) = e−xα

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1exα + c2e−xα

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)-alpha^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−αx + c2eαx

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 23� �
DSolve[y''[x]-a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
ax + c2e

−ax
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2.6 problem Problem 3.7(f)
2.6.1 Solving as second order linear constant coeff ode . . . . . . . . 222
2.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 224
2.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 227

Internal problem ID [12415]
Internal file name [OUTPUT/11067_Wednesday_October_04_2023_07_06_13_PM_11627360/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.7(f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + βy′ + yγ = 0

2.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = β, C = γ. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + βλ eλx + γ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

βλ+ λ2 + γ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = β, C = γ into the above gives

λ1,2 =
−β

(2) (1) ±
1

(2) (1)
√
β2 − (4) (1) (γ)

= −β

2 ±
√
β2 − 4γ
2

Hence

λ1 = −β

2 +
√
β2 − 4γ
2

λ2 = −β

2 −
√
β2 − 4γ
2

Which simplifies to

λ1 = −β

2 +
√
β2 − 4γ
2

λ2 = −β

2 −
√
β2 − 4γ
2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e

(
−β

2+
√

β2−4γ
2

)
x

+ c2e

(
−β

2−
√

β2−4γ
2

)
x

Or

y = c1e

(
−β

2+
√

β2−4γ
2

)
x

+ c2e

(
−β

2−
√

β2−4γ
2

)
x

Summary
The solution(s) found are the following

(1)y = c1e

(
−β

2+
√

β2−4γ
2

)
x

+ c2e

(
−β

2−
√

β2−4γ
2

)
x

Verification of solutions

y = c1e

(
−β

2+
√

β2−4γ
2

)
x

+ c2e

(
−β

2−
√

β2−4γ
2

)
x

Verified OK.
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2.6.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + βy′ + yγ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = β (3)
C = γ

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = β2 − 4γ
4 (6)

Comparing the above to (5) shows that

s = β2 − 4γ
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
β2

4 − γ

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 33: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = β2

4 − γ is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
x

√
β2−4γ
2

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
β
1 dx

= z1e
−βx

2

= z1
(
e−

βx
2

)
Which simplifies to

y1 = e

(
−β+

√
β2−4γ

)
x

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−β

1 dx

(y1)2
dx

= y1

∫
e−βx

(y1)2
dx

= y1

(
−e−x

√
β2−4γ

√
β2 − 4γ

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e

(
−β+

√
β2−4γ

)
x

2

)
+ c2

(
e

(
−β+

√
β2−4γ

)
x

2

(
−e−x

√
β2−4γ

√
β2 − 4γ

))

Summary
The solution(s) found are the following

(1)y = c1e

(
−β+

√
β2−4γ

)
x

2 − c2e−
(
β+

√
β2−4γ

)
x

2
√
β2 − 4γ
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Verification of solutions

y = c1e

(
−β+

√
β2−4γ

)
x

2 − c2e−
(
β+

√
β2−4γ

)
x

2
√
β2 − 4γ

Verified OK.

2.6.3 Maple step by step solution

Let’s solve
y′′ + βy′ + yγ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
βr + r2 + γ = 0

• Use quadratic formula to solve for r

r =
(−β)±

(√
β2−4γ

)
2

• Roots of the characteristic polynomial

r =
(
−β

2 −
√

β2−4γ
2 ,−β

2 +
√

β2−4γ
2

)
• 1st solution of the ODE

y1(x) = e

(
−β

2−
√

β2−4γ
2

)
x

• 2nd solution of the ODE

y2(x) = e

(
−β

2+
√

β2−4γ
2

)
x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions

y = c1e

(
−β

2−
√

β2−4γ
2

)
x

+ c2e

(
−β

2+
√

β2−4γ
2

)
x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
dsolve(diff(y(x),x$2)+beta*diff(y(x),x)+gamma*y(x)=0,y(x), singsol=all)� �

y(x) = c1e

(
−β+

√
β2−4γ

)
x

2 + c2e−
(
β+

√
β2−4γ

)
x

2

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 47� �
DSolve[y''[x]+\[Beta]*y'[x]+\[Gamma]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
− 1

2x
(√

β2−4γ+β
)(

c2e
x
√

β2−4γ + c1
)
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2.7 problem Problem 3.7(g)
2.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 229

Internal problem ID [12416]
Internal file name [OUTPUT/11068_Wednesday_October_04_2023_07_06_15_PM_52558194/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.7(g).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Gegenbauer]

Unable to solve or complete the solution.

(
−x2 + 1

)
y′′ − 2y′x+ n(n+ 1) y = 0

2.7.1 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − 2y′x+ (n2 + n) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = n(n+1)y

x2−1 − 2xy′
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2xy′

x2−1 −
n(n+1)y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 2x

x2−1 , P3(x) = −n(n+1)
x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
y′′(x2 − 1) + 2y′x− n(n+ 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
+ (−n2 − n) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(r + 1 + n+ k) (r − n+ k)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(1 + n+ k) (−n+ k) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(1+n+k)(−n+k)

2(k+1)2

• Recursion relation for r = 0
ak+1 = ak(1+n+k)(−n+k)

2(k+1)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(1+n+k)(−n+k)

2(k+1)2

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(1+n+k)(−n+k)
2(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 15� �
dsolve((1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+n*(n+1)*y(x)=0,y(x), singsol=all)� �

y(x) = c1 LegendreP (n, x) + c2 LegendreQ (n, x)

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 18� �
DSolve[(1-x^2)*y''[x]-2*x*y'[x]+n*(n+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 LegendreP(n, x) + c2 LegendreQ(n, x)
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2.8 problem Problem 3.12
2.8.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 233

Internal problem ID [12417]
Internal file name [OUTPUT/11069_Wednesday_October_04_2023_07_06_15_PM_2375291/index.tex]

Book: Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham,
S.R.Otto. Cambridge Univ. Press 2003
Section: Chapter 3 Bessel functions. Problems page 89
Problem number: Problem 3.12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′x2 + y′x+
(
−ν2 + x2) y = sin (x)

2.8.1 Solving as second order bessel ode ode

Writing the ode as

y′′x2 + y′x+
(
−ν2 + x2) y = sin (x) (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

y′′x2 + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

y′′x2 + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = 1
n = ν

γ = 1

Substituting all the above into (4) gives the solution as

y = c1 BesselJ (ν, x) + c2 BesselY (ν, x)

Therefore the homogeneous solution yh is

yh = c1 BesselJ (ν, x) + c2 BesselY (ν, x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = BesselJ (ν, x)

y2 = BesselY (ν, x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ BesselJ (ν, x) BesselY (ν, x)
d
dx
(BesselJ (ν, x)) d

dx
(BesselY (ν, x))

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ BesselJ (ν, x) BesselY (ν, x)
−BesselJ (ν + 1, x) + ν BesselJ(ν,x)

x
−BesselY (ν + 1, x) + ν BesselY(ν,x)

x

∣∣∣∣∣∣
Therefore

W = (BesselJ (ν, x))
(
−BesselY (ν + 1, x) + ν BesselY (ν, x)

x

)
− (BesselY (ν, x))

(
−BesselJ (ν + 1, x) + ν BesselJ (ν, x)

x

)

Which simplifies to

W = −BesselJ (ν, x) BesselY (ν + 1, x) + BesselY (ν, x) BesselJ (ν + 1, x)

Which simplifies to

W = 2
πx

Therefore Eq. (2) becomes

u1 = −
∫ BesselY (ν, x) sin (x)

2x
π

dx

Which simplifies to

u1 = −
∫ BesselY (ν, x) sin (x)π

2x dx

Hence

u1 =

−
x
(
hypergeom

([1
2 −

ν
2 ,

5
4 −

ν
2 ,

3
4 −

ν
2

]
,
[3
2 , 1− ν, 32 − ν, 32 −

ν
2

]
,−x2)Γ(ν + 2)2 2νx−ν + π hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2) cot (πν) 2−νxν(ν − 1) ν(ν + 1)

)
2 (ν − 1) ν (ν + 1)Γ (ν + 2)

And Eq. (3) becomes

u2 =
∫ BesselJ (ν, x) sin (x)

2x
π

dx
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Which simplifies to

u2 =
∫ BesselJ (ν, x) sin (x) π

2x dx

Hence

u2 =
2−1−νπ xν+1 hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2)

Γ (ν + 2)

Therefore the particular solution, from equation (1) is

yp(x) =

−
x
(
hypergeom

([1
2 −

ν
2 ,

5
4 −

ν
2 ,

3
4 −

ν
2

]
,
[3
2 , 1− ν, 32 − ν, 32 −

ν
2

]
,−x2)Γ(ν + 2)2 2νx−ν + π hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2) cot (πν) 2−νxν(ν − 1) ν(ν + 1)

)
BesselJ (ν, x)

2 (ν − 1) ν (ν + 1)Γ (ν + 2)

+
2−1−νπ xν+1 hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2)BesselY (ν, x)

Γ (ν + 2)

Which simplifies to

yp(x) =

−
(
BesselJ (ν, x) hypergeom

([1
2 −

ν
2 ,

5
4 −

ν
2 ,

3
4 −

ν
2

]
,
[3
2 , 1− ν, 32 − ν, 32 −

ν
2

]
,−x2)Γ(ν + 2)2 2νx−ν + hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2) π(BesselJ (ν, x) cot (πν)− BesselY (ν, x)) 2−νxν(ν − 1) ν(ν + 1)

)
x

2 (ν − 1) ν (ν + 1)Γ (ν + 2)

Therefore the general solution is

y = yh + yp

= (c1 BesselJ (ν, x) + c2 BesselY (ν, x))

+
(
−
(
BesselJ (ν, x) hypergeom

([1
2 −

ν
2 ,

5
4 −

ν
2 ,

3
4 −

ν
2

]
,
[3
2 , 1− ν, 32 − ν, 32 −

ν
2

]
,−x2)Γ(ν + 2)2 2νx−ν + hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2) π(BesselJ (ν, x) cot (πν)− BesselY (ν, x)) 2−νxν(ν − 1) ν(ν + 1)

)
x

2 (ν − 1) ν (ν + 1)Γ (ν + 2)

)

Summary
The solution(s) found are the following

(1)y = c1 BesselJ (ν, x) + c2 BesselY (ν, x)

−
(
BesselJ (ν, x) hypergeom

([1
2 −

ν
2 ,

5
4 −

ν
2 ,

3
4 −

ν
2

]
,
[3
2 , 1− ν, 32 − ν, 32 −

ν
2

]
,−x2)Γ(ν + 2)2 2νx−ν + hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2) π(BesselJ (ν, x) cot (πν)− BesselY (ν, x)) 2−νxν(ν − 1) ν(ν + 1)

)
x

2 (ν − 1) ν (ν + 1)Γ (ν + 2)
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Verification of solutions

y = c1 BesselJ (ν, x) + c2 BesselY (ν, x)

−
(
BesselJ (ν, x) hypergeom

([1
2 −

ν
2 ,

5
4 −

ν
2 ,

3
4 −

ν
2

]
,
[3
2 , 1− ν, 32 − ν, 32 −

ν
2

]
,−x2)Γ(ν + 2)2 2νx−ν + hypergeom

([
ν
2 +

1
2 ,

3
4 +

ν
2 ,

5
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2) π(BesselJ (ν, x) cot (πν)− BesselY (ν, x)) 2−νxν(ν − 1) ν(ν + 1)

)
x

2 (ν − 1) ν (ν + 1)Γ (ν + 2)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 158� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-nu^2)*y(x)=sin(x),y(x), singsol=all)� �
y(x) =

−
x1−ν2ν−1 BesselJ (ν, x) Γ(ν + 2) hypergeom

([1
2 −

ν
2 ,

5
4 −

ν
2 ,

3
4 −

ν
2

]
,
[3
2 , 1− ν, 32 − ν, 32 −

ν
2

]
,−x2)

ν (ν − 1) (ν + 1)
+ BesselJ (ν, x) c2 + BesselY (ν, x) c1

−
π2−1−νxν+1(BesselJ (ν, x) cot (πν)− BesselY (ν, x)) hypergeom

([
ν
2 +

1
2 ,

5
4 +

ν
2 ,

3
4 +

ν
2

]
,
[3
2 , ν + 1, 32 + ν, 32 +

ν
2

]
,−x2)

Γ (ν + 2)

237



3 Solution by Mathematica
Time used: 1.228 (sec). Leaf size: 205� �
DSolve[x^2*y''[x]+x*y'[x]+(x^2-\[Nu]^2)*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−
π2ν−1 csc(πν)x1−ν BesselJ(ν, x) 3F4

(1
2 −

ν
2 ,

3
4 −

ν
2 ,

5
4 −

ν
2 ;

3
2 , 1− ν, 32 − ν, 32 −

ν
2 ;−x2)

(ν − 1)Gamma(1− ν)

+
π2−ν−1xν+1(BesselY(ν, x)− cot(πν) BesselJ(ν, x)) 3F4

(
ν
2 +

1
2 ,

ν
2 +

3
4 ,

ν
2 +

5
4 ;

3
2 ,

ν
2 +

3
2 , ν + 1, ν + 3

2 ;−x2)
(ν + 1)Gamma(ν + 1)

+ c1 BesselJ(ν, x) + c2 BesselY(ν, x)
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