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Internal problem ID [4355]
Internal file name [OUTPUT/3848_Sunday_June_05_2022_11_28_25_AM_59433606/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ 1) y + (1− y)xy′ = 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x+ 1) y
(y − 1)x

Where f(x) = x+1
x

and g(y) = y
y−1 . Integrating both sides gives

1
y

y−1
dy = x+ 1

x
dx

∫ 1
y

y−1
dy =

∫
x+ 1
x

dx

y − ln (y) = x+ ln (x) + c1
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Which results in

y = −LambertW
(
−e−c1−x

x

)
Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = −LambertW
(
−e−c1−x

x

)
gives

y = −LambertW
(
−e−x

c1x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−x

c1x

)

Figure 1: Slope field plot
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Verification of solutions

y = −LambertW
(
−e−x

c1x

)
Verified OK.

1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x+ 1) y
(y − 1)x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
x+1

dx

Which results in

S = x+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ 1) y
(y − 1)x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1 + 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x+ ln (x) = y − ln (y) + c1

Which simplifies to

x+ ln (x) = y − ln (y) + c1

Which gives

y = −LambertW
(
−e−x+c1

x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+1)y
(y−1)x

dS
dR

= R−1
R

R = y

S = x+ ln (x)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−x+c1

x

)
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Figure 2: Slope field plot

Verification of solutions

y = −LambertW
(
−e−x+c1

x

)
Verified OK.

1.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y − 1
y

)
dy =

(
x+ 1
x

)
dx(

−x+ 1
x

)
dx+

(
y − 1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x

N(x, y) = y − 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
y − 1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y−1
y
. Therefore equation (4) becomes

(5)y − 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y − 1
y

)
dy

f(y) = y − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x) + y − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x) + y − ln (y)

The solution becomes

y = −LambertW
(
−e−c1−x

x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−c1−x

x

)

Figure 3: Slope field plot
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Verification of solutions

y = −LambertW
(
−e−c1−x

x

)
Verified OK.

1.1.4 Maple step by step solution

Let’s solve
(x+ 1) y + (1− y)xy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1−y)

y
= −x+1

x

• Integrate both sides with respect to x∫ y′(1−y)
y

dx =
∫
−x+1

x
dx+ c1

• Evaluate integral
−y + ln (y) = −x− ln (x) + c1

• Solve for y

y = −LambertW
(
− e−x+c1

x

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve((1+x)*y(x)+(1-y(x))*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −LambertW
(
−e−x

c1x

)
3 Solution by Mathematica
Time used: 3.139 (sec). Leaf size: 28� �
DSolve[(1+x)*y[x]+(1-y[x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W

(
−e−x−c1

x

)
y(x) → 0

14



1.2 problem 1.2
1.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 17
1.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 25

Internal problem ID [4356]
Internal file name [OUTPUT/3849_Sunday_June_05_2022_11_28_32_AM_88189904/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y2 + xy2 +
(
x2 − yx2) y′ = 0

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2(x+ 1)
x2 (y − 1)

Where f(x) = x+1
x2 and g(y) = y2

y−1 . Integrating both sides gives

1
y2

y−1

dy = x+ 1
x2 dx

∫ 1
y2

y−1

dy =
∫

x+ 1
x2 dx
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ln (y) + 1
y
= ln (x)− 1

x
+ c1

Which results in

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Which simplifies to

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Summary
The solution(s) found are the following

(1)y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Figure 4: Slope field plot

Verification of solutions

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Verified OK.
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1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2(x+ 1)
x2 (y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2

x+1
dx

Which results in

S = ln (x)− 1
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2(x+ 1)
x2 (y − 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x+ 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)x− 1
x

= ln (y) + 1
y
+ c1

Which simplifies to

ln (x)x− 1
x

= ln (y) + 1
y
+ c1

Which gives

y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2(x+1)
x2(y−1)

dS
dR

= R−1
R2

R = y

S = ln (x)x− 1
x

Summary
The solution(s) found are the following

(1)y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x
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Figure 5: Slope field plot

Verification of solutions

y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y − 1
y2

)
dy =

(
x+ 1
x2

)
dx(

−x+ 1
x2

)
dx+

(
y − 1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x2

N(x, y) = y − 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y − 1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x2 dx

(3)φ = − ln (x) + 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y−1
y2

. Therefore equation (4) becomes

(5)y − 1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y − 1
y2

)
dy

f(y) = ln (y) + 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + 1
x
+ ln (y) + 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + 1
x
+ ln (y) + 1

y

The solution becomes

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Summary
The solution(s) found are the following

(1)y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x
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Figure 6: Slope field plot

Verification of solutions

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Verified OK.

1.2.4 Maple step by step solution

Let’s solve
y2 + xy2 + (x2 − yx2) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y−1)

y2
= x+1

x2

• Integrate both sides with respect to x∫ y′(y−1)
y2

dx =
∫

x+1
x2 dx+ c1
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• Evaluate integral
ln (y) + 1

y
= ln (x)− 1

x
+ c1

• Solve for y

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve((y(x)^2+x*y(x)^2)+(x^2-y(x)*x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x e
LambertW

− e
−c1x+1

x
x

x+c1x−1

x

3 Solution by Mathematica
Time used: 5.328 (sec). Leaf size: 30� �
DSolve[(y[x]^2+x*y[x]^2)+(x^2-y[x]*x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

W
(
− e

1
x−c1

x

)
y(x) → 0
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1.3 problem 1.3
1.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 29
1.3.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 33
1.3.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 41

Internal problem ID [4357]
Internal file name [OUTPUT/3850_Sunday_June_05_2022_11_28_38_AM_52286439/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy
(
x2 + 1

)
y′ − y2 = 1

1.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1
xy (x2 + 1)

Where f(x) = 1
x(x2+1) and g(y) = y2+1

y
. Integrating both sides gives

1
y2+1
y

dy = 1
x (x2 + 1) dx∫ 1

y2+1
y

dy =
∫ 1

x (x2 + 1) dx
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ln (y2 + 1)
2 = − ln (x2 + 1)

2 + ln (x) + c1

Raising both side to exponential gives√
y2 + 1 = e−

ln
(
x2+1

)
2 +ln(x)+c1

Which simplifies to √
y2 + 1 = c2e−

ln
(
x2+1

)
2 +ln(x)

Which simplifies to √
1 + y2 = c2x ec1√

x2 + 1

The solution is √
1 + y2 = c2x ec1√

x2 + 1

Summary
The solution(s) found are the following

(1)
√

1 + y2 = c2x ec1√
x2 + 1

Figure 7: Slope field plot
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Verification of solutions √
1 + y2 = c2x ec1√

x2 + 1

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1
xy (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x
(
x2 + 1

)
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x (x2 + 1)dx

Which results in

S = − ln (x2 + 1)
2 + ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1
xy (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x (x2 + 1)

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1

Which simplifies to

− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1
xy(x2+1)

dS
dR

= R
R2+1

R = y

S = − ln (x2 + 1)
2 + ln (x)

Summary
The solution(s) found are the following

(1)− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1
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Figure 8: Slope field plot

Verification of solutions

− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1

Verified OK.

1.3.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y2 + 1
xy (x2 + 1)

This is a Bernoulli ODE.

y′ = 1
x (x2 + 1)y +

1
x (x2 + 1)

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

x (x2 + 1)

f1(x) =
1

x (x2 + 1)
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

x (x2 + 1) +
1

x (x2 + 1) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

x (x2 + 1) +
1

x (x2 + 1)

w′ = 2w
x (x2 + 1) +

2
x (x2 + 1) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − 2
x (x2 + 1)

q(x) = 2
x (x2 + 1)

Hence the ode is

w′(x)− 2w(x)
x (x2 + 1) = 2

x (x2 + 1)

The integrating factor µ is

µ = e
∫
− 2

x
(
x2+1

)dx

= eln
(
x2+1

)
−2 ln(x)

Which simplifies to

µ = x2 + 1
x2

The ode becomes

d
dx(µw) = (µ)

(
2

x (x2 + 1)

)
d
dx

(
(x2 + 1)w

x2

)
=
(
x2 + 1
x2

)(
2

x (x2 + 1)

)
d
(
(x2 + 1)w

x2

)
=
(

2
x3

)
dx

Integrating gives

(x2 + 1)w
x2 =

∫ 2
x3 dx

(x2 + 1)w
x2 = − 1

x2 + c1

Dividing both sides by the integrating factor µ = x2+1
x2 results in

w(x) = − 1
x2 + 1 + c1x

2

x2 + 1
which simplifies to

w(x) = c1x
2 − 1

x2 + 1
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
2 − 1

x2 + 1

Solving for y gives

y(x) =
√

(x2 + 1) (c1x2 − 1)
x2 + 1

y(x) = −
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Summary
The solution(s) found are the following

(1)y =
√
(x2 + 1) (c1x2 − 1)

x2 + 1

(2)y = −
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Figure 9: Slope field plot
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Verification of solutions

y =
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Verified OK.

y = −
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Verified OK.

1.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

y2 + 1

)
dy =

(
1

x (x2 + 1)

)
dx(

− 1
x (x2 + 1)

)
dx+

(
y

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (x2 + 1)

N(x, y) = y

y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (x2 + 1)

)
= 0

And

∂N

∂x
= ∂

∂x

(
y

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (x2 + 1) dx

(3)φ = ln (x2 + 1)
2 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
y2+1 . Therefore equation (4) becomes

(5)y

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

y2 + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

y2 + 1

)
dy

f(y) = ln (y2 + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x2 + 1)
2 − ln (x) + ln (y2 + 1)

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + 1)

2 − ln (x) + ln (y2 + 1)
2

Summary
The solution(s) found are the following

(1)ln (x2 + 1)
2 − ln (x) + ln (1 + y2)

2 = c1

Figure 10: Slope field plot

Verification of solutions

ln (x2 + 1)
2 − ln (x) + ln (1 + y2)

2 = c1

Verified OK.
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1.3.5 Maple step by step solution

Let’s solve
xy(x2 + 1) y′ − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y
1+y2

= 1
x(x2+1)

• Integrate both sides with respect to x∫
y′y
1+y2

dx =
∫ 1

x(x2+1)dx+ c1

• Evaluate integral
ln
(
1+y2

)
2 = − ln

(
x2+1

)
2 + ln (x) + c1

• Solve for yy =

√
(x2+1)

(
(ec1 )2x2−x2−1

)
x2+1 , y = −

√
(x2+1)

(
(ec1 )2x2−x2−1

)
x2+1


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
dsolve(x*y(x)*(1+x^2)*diff(y(x),x)-(1+y(x)^2)=0,y(x), singsol=all)� �

y(x) =
√
(x2 + 1) (c1x2 − 1)

x2 + 1

y(x) = −
√
(x2 + 1) (c1x2 − 1)

x2 + 1
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3 Solution by Mathematica
Time used: 1.211 (sec). Leaf size: 131� �
DSolve[x*y[x]*(1+x^2)*y'[x]-(1+y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−1 + (−1 + e2c1)x2

√
x2 + 1

y(x) →
√

−1 + (−1 + e2c1)x2
√
x2 + 1

y(x) → −i
y(x) → i

y(x) → −
√
−x2 − 1√
x2 + 1

y(x) →
√
−x2 − 1√
x2 + 1
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1.4 problem 1.4
1.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 43
1.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 45
1.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 49
1.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 53

Internal problem ID [4358]
Internal file name [OUTPUT/3851_Sunday_June_05_2022_11_28_45_AM_11589406/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y2 −
(
y +

√
1 + y2

) (
x2 + 1

) 3
2 y′ = −1

1.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

Where f(x) = 1
(x2+1)

3
2
and g(y) = y2+1

y+
√

y2+1
. Integrating both sides gives

1
y2+1

y+
√

y2+1

dy = 1
(x2 + 1)

3
2
dx
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∫ 1
y2+1

y+
√

y2+1

dy =
∫ 1

(x2 + 1)
3
2
dx

arcsinh (y) + ln (y2 + 1)
2 = x√

x2 + 1
+ c1

Which results in

y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1


Summary
The solution(s) found are the following

(1)y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1



Figure 11: Slope field plot
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Verification of solutions

y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1


Warning, solution could not be verified

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
(
x2 + 1

) 3
2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

(x2 + 1)
3
2
dx

Which results in

S = x√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
(x2 + 1)

3
2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y +

√
y2 + 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R +

√
R2 + 1

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arcsinh (R) + ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x√
x2 + 1

= arcsinh (y) + ln (1 + y2)
2 + c1

Which simplifies to

x√
x2 + 1

= arcsinh (y) + ln (1 + y2)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1(
y+
√

y2+1
)
(x2+1)

3
2

dS
dR

= R+
√
R2+1

R2+1

R = y

S = x√
x2 + 1

Summary
The solution(s) found are the following

(1)x√
x2 + 1

= arcsinh (y) + ln (1 + y2)
2 + c1
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Figure 12: Slope field plot

Verification of solutions

x√
x2 + 1

= arcsinh (y) + ln (1 + y2)
2 + c1

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y +

√
y2 + 1

y2 + 1

)
dy =

(
1

(x2 + 1)
3
2

)
dx(

− 1
(x2 + 1)

3
2

)
dx+

(
y +

√
y2 + 1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(x2 + 1)

3
2

N(x, y) = y +
√
y2 + 1

y2 + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(x2 + 1)

3
2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y +

√
y2 + 1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(x2 + 1)

3
2
dx

(3)φ = − x√
x2 + 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y+
√

y2+1
y2+1 . Therefore equation (4) becomes

(5)y +
√
y2 + 1

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y +
√
y2 + 1

y2 + 1

51



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y +

√
y2 + 1

y2 + 1

)
dy

f(y) = arcsinh (y) + ln (y2 + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2

Summary
The solution(s) found are the following

(1)− x√
x2 + 1

+ arcsinh (y) + ln (1 + y2)
2 = c1
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Figure 13: Slope field plot

Verification of solutions

− x√
x2 + 1

+ arcsinh (y) + ln (1 + y2)
2 = c1

Verified OK.

1.4.4 Maple step by step solution

Let’s solve

y2 −
(
y +

√
1 + y2

)
(x2 + 1)

3
2 y′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
y+
√

1+y2
)

−1−y2
= − 1

(x2+1)
3
2

• Integrate both sides with respect to x∫ y′
(
y+
√

1+y2
)

−1−y2
dx =

∫
− 1

(x2+1)
3
2
dx+ c1
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• Evaluate integral

−arcsinh(y)− ln
(
1+y2

)
2 = − x√

x2+1 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 28� �
dsolve((1+y(x)^2)-(y(x)+sqrt(1+y(x)^2))*(1+x^2)^(3/2)*diff(y(x),x)=0,y(x), singsol=all)� �

x√
x2 + 1

− arcsinh (y(x))−
ln
(
1 + y(x)2

)
2 + c1 = 0

3 Solution by Mathematica
Time used: 15.063 (sec). Leaf size: 115� �
DSolve[(1+y[x]^2)-(y[x]+Sqrt[1+y[x]^2])*(1+x^2)^(3/2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
(
1 + e

x√
x2+1

+c1
)

√
1 + 2e

x√
x2+1

+c1

y(x) →
i
(
1 + e

x√
x2+1

+c1
)

√
1 + 2e

x√
x2+1

+c1

y(x) → −i
y(x) → i
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1.5 problem 1.5
1.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 55
1.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 57
1.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 61
1.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 65

Internal problem ID [4359]
Internal file name [OUTPUT/3852_Sunday_June_05_2022_11_28_55_AM_73803550/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

sin (x) cos (y)− cos (x) sin (y) y′ = 0

1.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= sin (x) cot (y)
cos (x)

Where f(x) = sin(x)
cos(x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = sin (x)

cos (x) dx∫ 1
cot (y) dy =

∫ sin (x)
cos (x) dx

− ln (cos (y)) = − ln (cos (x)) + c1
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Raising both side to exponential gives

1
cos (y) = e− ln(cos(x))+c1

Which simplifies to

sec (y) = c2
cos (x)

Summary
The solution(s) found are the following

(1)y = arcsec
(

c2ec1
cos (x)

)

Figure 14: Slope field plot

Verification of solutions

y = arcsec
(

c2ec1
cos (x)

)
Verified OK.
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1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x) cos (y)
cos (x) sin (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = cos (x)
sin (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

cos(x)
sin(x)

dx

Which results in

S = − ln (cos (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x) cos (y)
cos (x) sin (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (cos (x)) = − ln (cos (y)) + c1

Which simplifies to

− ln (cos (x)) = − ln (cos (y)) + c1

Which gives

y = arccos (cos (x) ec1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin(x) cos(y)
cos(x) sin(y)

dS
dR

= tan (R)

R = y

S = − ln (cos (x))

Summary
The solution(s) found are the following

(1)y = arccos (cos (x) ec1)
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Figure 15: Slope field plot

Verification of solutions

y = arccos (cos (x) ec1)

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
sin (y)
cos (y)

)
dy =

(
sin (x)
cos (x)

)
dx(

− sin (x)
cos (x)

)
dx+

(
sin (y)
cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)
cos (x)

N(x, y) = sin (y)
cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− sin (x)
cos (x)

)
= 0
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And

∂N

∂x
= ∂

∂x

(
sin (y)
cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x)
cos (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin(y)
cos(y) . Therefore equation (4) becomes

(5)sin (y)
cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sin (y)
cos (y)

= tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(tan (y)) dy

f(y) = − ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x))− ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x))− ln (cos (y))

Summary
The solution(s) found are the following

(1)ln (cos (x))− ln (cos (y)) = c1

Figure 16: Slope field plot
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Verification of solutions

ln (cos (x))− ln (cos (y)) = c1

Verified OK.

1.5.4 Maple step by step solution

Let’s solve
sin (x) cos (y)− cos (x) sin (y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ sin(y)
cos(y) = sin(x)

cos(x)

• Integrate both sides with respect to x∫ y′ sin(y)
cos(y) dx =

∫ sin(x)
cos(x)dx+ c1

• Evaluate integral
− ln (cos (y)) = − ln (cos (x)) + c1

• Solve for y

y = arccos
(

cos(x)
ec1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 11� �
dsolve(sin(x)*cos(y(x))-cos(x)*sin(y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = arccos
(
cos (x)
c1

)
3 Solution by Mathematica
Time used: 5.43 (sec). Leaf size: 47� �
DSolve[Sin[x]*Cos[y[x]]-Cos[x]*Sin[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
1
2c1 cos(x)

)
y(x) → arccos

(
1
2c1 cos(x)

)
y(x) → −π

2
y(x) → π

2
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1.6 problem 1.6
1.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 67
1.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 69
1.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 73
1.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 77

Internal problem ID [4360]
Internal file name [OUTPUT/3853_Sunday_June_05_2022_11_29_03_AM_79424893/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

sec (x)2 tan (y) + sec (y)2 tan (x) y′ = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −sec (x)2 sin (2y)
2 tan (x)

Where f(x) = − sec(x)2
tan(x) and g(y) = sin(2y)

2 . Integrating both sides gives

1
sin(2y)

2

dy = −sec (x)2

tan (x) dx

∫ 1
sin(2y)

2

dy =
∫

−sec (x)2

tan (x) dx

ln (csc (2y)− cot (2y)) = − ln (tan (x)) + c1
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Raising both side to exponential gives

csc (2y)− cot (2y) = e− ln(tan(x))+c1

Which simplifies to

csc (2y)− cot (2y) = c2
tan (x)

Summary
The solution(s) found are the following

(1)y =
arctan

(
2c2 tan(x)ec1

e2c1c22+tan(x)2 ,−
e2c1c22−tan(x)2

e2c1c22+tan(x)2

)
2

Figure 17: Slope field plot

Verification of solutions

y =
arctan

(
2c2 tan(x)ec1

e2c1c22+tan(x)2 ,−
e2c1c22−tan(x)2

e2c1c22+tan(x)2

)
2

Verified OK.
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1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −sec (x)2 tan (y)
sec (y)2 tan (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − tan (x)
sec (x)2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− tan(x)
sec(x)2

dx

Which results in

S = − ln (tan (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −sec (x)2 tan (y)
sec (y)2 tan (x)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − cot (x)− tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (y) csc (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R) csc (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (tan (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (tan (x)) = ln (tan (y)) + c1

Which simplifies to

− ln (tan (x)) = ln (tan (y)) + c1

Which gives

y = arctan
(

e−c1

tan (x)

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sec(x)2 tan(y)
sec(y)2 tan(x)

dS
dR

= sec (R) csc (R)

R = y

S = − ln (tan (x))

Summary
The solution(s) found are the following

(1)y = arctan
(

e−c1

tan (x)

)

72



Figure 18: Slope field plot

Verification of solutions

y = arctan
(

e−c1

tan (x)

)
Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−sec (y)2

tan (y)

)
dy =

(
sec (x)2

tan (x)

)
dx(

−sec (x)2

tan (x)

)
dx+

(
−sec (y)2

tan (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −sec (x)2

tan (x)

N(x, y) = −sec (y)2

tan (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−sec (x)2

tan (x)

)
= 0
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And

∂N

∂x
= ∂

∂x

(
−sec (y)2

tan (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−sec (x)2

tan (x) dx

(3)φ = − ln (tan (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − sec(y)2
tan(y) . Therefore equation (4) becomes

(5)−sec (y)2

tan (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −sec (y)2

tan (y)

= − sec (y) csc (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− sec (y) csc (y)) dy

f(y) = − ln (tan (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (tan (x))− ln (tan (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (tan (x))− ln (tan (y))

Summary
The solution(s) found are the following

(1)− ln (tan (x))− ln (tan (y)) = c1

Figure 19: Slope field plot
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Verification of solutions

− ln (tan (x))− ln (tan (y)) = c1

Verified OK.

1.6.4 Maple step by step solution

Let’s solve
sec (x)2 tan (y) + sec (y)2 tan (x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
sec (x)2 tan (y) + sec (y)2 tan (x) y′

)
dx =

∫
0dx+ c1

• Evaluate integral
tan (y) tan (x) = c1

• Solve for y

y = arctan
(

c1
tan(x)

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 47� �
dsolve(sec(x)^2*tan(y(x))+sec(y(x))^2*tan(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
arctan

(
2 tan(x)c1

c21 tan(x)
2+1 ,

c21 tan(x)
2−1

c21 tan(x)
2+1

)
2
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3 Solution by Mathematica
Time used: 0.457 (sec). Leaf size: 68� �
DSolve[Sec[x]^2*Tan[y[x]]+Sec[y[x]]^2*Tan[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2 arccos(− tanh(arctanh(cos(2x)) + 2c1))

y(x) → 1
2 arccos(− tanh(arctanh(cos(2x)) + 2c1))

y(x) → 0
y(x) → −π

2
y(x) → π

2
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1.7 problem 3.1
1.7.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 79
1.7.2 Solving as first order ode lie symmetry calculated ode . . . . . . 81
1.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 86

Internal problem ID [4361]
Internal file name [OUTPUT/3854_Sunday_June_05_2022_11_29_12_AM_27037630/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 3.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(−x+ y) y′ + y = 0

1.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(−x+ u(x)x) (u′(x)x+ u(x)) + u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2

x (u− 1)
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Where f(x) = − 1
x
and g(u) = u2

u−1 . Integrating both sides gives

1
u2

u−1
du = −1

x
dx

∫ 1
u2

u−1
du =

∫
−1
x
dx

ln (u) + 1
u
= − ln (x) + c2

The solution is

ln (u(x)) + 1
u (x) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(y
x

)
+ x

y
+ ln (x)− c2 = 0

ln
(y
x

)
+ x

y
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(y
x

)
+ x

y
+ ln (x)− c2 = 0
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Figure 20: Slope field plot

Verification of solutions

ln
(y
x

)
+ x

y
+ ln (x)− c2 = 0

Verified OK.

1.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

−x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
−x+ y

− y2a3

(−x+ y)2
+ y(xa2 + ya3 + a1)

(−x+ y)2

−
(
− 1
−x+ y

+ y

(−x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2xyb2 − y2a2 − y2b2 + y2b3 + xb1 − ya1

(x− y)2
= 0

Setting the numerator to zero gives

(6E)−2xyb2 + y2a2 + y2b2 − y2b3 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
2 − 2b2v1v2 + b2v

2
2 − b3v

2
2 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−2b2v1v2 − b1v1 + (a2 + b2 − b3) v22 + a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−b1 = 0
−2b2 = 0

a2 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

−x+ y

)
(x)

= − y2

x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y2

x−y

dy

Which results in

S = ln (y) + x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

−x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y

Sy =
−x+ y

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y ln (y) + x

y
= c1

Which simplifies to
y ln (y) + x

y
= c1

Which gives

y = eLambertW
(
−x e−c1

)
+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
−x+y

dS
dR

= 0

R = x

S = ln (y) y + x

y

Summary
The solution(s) found are the following

(1)y = eLambertW
(
−x e−c1

)
+c1
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Figure 21: Slope field plot

Verification of solutions

y = eLambertW
(
−x e−c1

)
+c1

Verified OK.

1.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x+ y) dy = (−y) dx
(y) dx+(−x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = −x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x
(−x+ y)

= −1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−x+ y
((1)− (−1))

= − 2
x− y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y
((−1)− (1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(y)

= 1
y

And

N = µN

= 1
y2

(−x+ y)

= −x+ y

y2
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

1
y

)
+
(
−x+ y

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
y
dx

(3)φ = x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+y
y2

. Therefore equation (4) becomes

(5)−x+ y

y2
= − x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (y) + x

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (y) + x

y

The solution becomes
y = eLambertW

(
−x e−c1

)
+c1

Summary
The solution(s) found are the following

(1)y = eLambertW
(
−x e−c1

)
+c1
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Figure 22: Slope field plot

Verification of solutions

y = eLambertW
(
−x e−c1

)
+c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve((y(x)-x)*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = − x

LambertW (−x e−c1)

3 Solution by Mathematica
Time used: 3.943 (sec). Leaf size: 25� �
DSolve[(y[x]-x)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W (−e−c1x)
y(x) → 0
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1.8 problem 3.2
1.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 93

Internal problem ID [4362]
Internal file name [OUTPUT/3855_Sunday_June_05_2022_11_29_20_AM_68775741/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 3.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

(2√xy − x) y′ + y = 0

1.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

2√xy − x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
2√xy − x

− y2a3(
2√xy − x

)2 −
y
(

y√
xy

− 1
)
(xa2 + ya3 + a1)(

2√xy − x
)2

−

(
− 1
2√xy − x

+ yx(
2√xy − x

)2√
xy

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4(xy)
3
2 b2 − 3x2yb2 + x y2a2 − x y2b3 − y3a3 + xyb1 −

√
xy xb1 +

√
xy ya1 − y2a1(

2√xy − x
)2√

xy
= 0

Setting the numerator to zero gives

(6E)4(xy)
3
2 b2−3x2yb2+x y2a2−x y2b3−y3a3+xyb1−

√
xy xb1+

√
xy ya1−y2a1 = 0

Since the PDE has radicals, simplifying gives

−3x2yb2 + 4xy√xy b2 + x y2a2 − x y2b3 − y3a3 −
√
xy xb1 + xyb1 +

√
xy ya1 − y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y,√xy}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2,
√
xy = v3}

The above PDE (6E) now becomes

(7E)v1v
2
2a2− v32a3− 3v21v2b2+4v1v2v3b2− v1v

2
2b3− v22a1+ v3v2a1+ v1v2b1− v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)−3v21v2b2+(−b3+a2) v1v22+4v1v2v3b2+v1v2b1−v3v1b1−v32a3−v22a1+v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−a3 = 0
−b1 = 0
−3b2 = 0
4b2 = 0

−b3 + a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

2√xy − x

)
(x)

=
2y√xy

2√xy − x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y√xy

2√xy−x

dy

Which results in

S = ln (y) + x
√
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

2√xy − x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2
√
x
√
y

Sy = −
−2√y +

√
x

2y 3
2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

√
x
√
y −√

xy
√
x
√
y
(
−2√xy + x

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)√y +
√
x

√
y

= c1

Which simplifies to

ln (y)√y +
√
x

√
y

= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
2√xy−x

dS
dR

= 0

R = x

S =
ln (y)√y +

√
x

√
y

Summary
The solution(s) found are the following

(1)
ln (y)√y +

√
x

√
y

= c1
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Figure 23: Slope field plot

Verification of solutions

ln (y)√y +
√
x

√
y

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve((2*sqrt(x*y(x))-x)*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

ln (y(x)) + x√
xy (x)

− c1 = 0

3 Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 33� �
DSolve[(2*Sqrt[x*y[x]]-x)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

 2√
y(x)
x

+ 2 log
(
y(x)
x

)
= −2 log(x) + c1, y(x)


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1.9 problem 3.3
1.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 101

Internal problem ID [4363]
Internal file name [OUTPUT/3856_Sunday_June_05_2022_11_29_30_AM_82276429/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 3.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ − y −
√
x2 + y2 = 0

1.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y +
√
x2 + y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y +

√
x2 + y2

)
(b3 − a2)

x
−
(
y +

√
x2 + y2

)2
a3

x2

−
(

1√
x2 + y2

− y +
√
x2 + y2

x2

)
(xa2 + ya3 + a1)

−

(
1 + y√

x2+y2

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−(x2 + y2)
3
2 a3 + x3a2 − x3b3 + 2x2ya3 + x2yb2 + y3a3 +

√
x2 + y2 xb1 −

√
x2 + y2 ya1 + xyb1 − y2a1√

x2 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−
(
x2 + y2

) 3
2 a3 − x3a2 + x3b3 − 2x2ya3 − x2yb2 − y3a3

−
√

x2 + y2 xb1 +
√

x2 + y2 ya1 − xyb1 + y2a1 = 0

Simplifying the above gives

(6E)−
(
x2 + y2

) 3
2 a3 +

(
x2 + y2

)
xb3 −

(
x2 + y2

)
ya3 − x3a2 − x2ya3 − x2yb2

− x y2b3 +
(
x2 + y2

)
a1 −

√
x2 + y2 xb1 +

√
x2 + y2 ya1 − x2a1 − xyb1 = 0

Since the PDE has radicals, simplifying gives

−x3a2 + x3b3 − x2
√

x2 + y2 a3 − 2x2ya3 − x2yb2 −
√
x2 + y2 y2a3

− y3a3 −
√
x2 + y2 xb1 − xyb1 +

√
x2 + y2 ya1 + y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2

}

102



The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−v31a2 − 2v21v2a3 − v21v3a3 − v32a3 − v3v
2
2a3 − v21v2b2

+ v31b3 + v22a1 + v3v2a1 − v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(b3 − a2) v31 + (−2a3 − b2) v21v2 − v21v3a3 − v1v2b1
− v3v1b1 − v32a3 − v3v

2
2a3 + v22a1 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−a3 = 0
−b1 = 0

−2a3 − b2 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y +

√
x2 + y2

x

)
(x)

= −
√

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
x2 + y2

dy

Which results in

S = − ln
(
y +

√
x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y +
√
x2 + y2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x√
x2 + y2

(
y +

√
x2 + y2

)
Sy = − 1√

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2
(√

x2 + y2 y + x2 + y2
)

x
√
x2 + y2

(
y +

√
x2 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
y +

√
x2 + y2

)
= −2 ln (x) + c1

Which simplifies to

− ln
(
y +

√
x2 + y2

)
= −2 ln (x) + c1

Which gives

y = −e−c1(e2c1 − x2)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+
√

x2+y2

x
dS
dR

= − 2
R

R = x

S = − ln
(
y +

√
x2 + y2

)

Summary
The solution(s) found are the following

(1)y = −e−c1(e2c1 − x2)
2
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Figure 24: Slope field plot

Verification of solutions

y = −e−c1(e2c1 − x2)
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(x*diff(y(x),x)-y(x)-sqrt(x^2+y(x)^2)=0,y(x), singsol=all)� �

−c1x
2 +

√
x2 + y (x)2 + y(x)
x2 = 0

3 Solution by Mathematica
Time used: 0.327 (sec). Leaf size: 27� �
DSolve[x*y'[x]-y[x]-Sqrt[x^2+y[x]^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
(
−1 + e2c1x2)
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1.10 problem 3.4
1.10.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 109
1.10.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 111
1.10.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 113
1.10.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 118

Internal problem ID [4364]
Internal file name [OUTPUT/3857_Sunday_June_05_2022_11_29_40_AM_80945842/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 3.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

−y cos
(y
x

)
+ x cos

(y
x

)
y′ = −x

1.10.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = y

x
− 1

cos
(
y
x

) (A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u
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Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −1
b = 1

f

(
bx

y

)
= cos

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = − 1
x cos (u (x))

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −sec (u)
x

Where f(x) = − 1
x
and g(u) = sec (u). Integrating both sides gives

1
sec (u) du = −1

x
dx∫ 1

sec (u) du =
∫

−1
x
dx

sin (u) = − ln (x) + c1

The solution is
sin (u(x)) + ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

sin
(y
x

)
+ ln (x)− c1 = 0
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Summary
The solution(s) found are the following

(1)sin
(y
x

)
+ ln (x)− c1 = 0

Figure 25: Slope field plot

Verification of solutions

sin
(y
x

)
+ ln (x)− c1 = 0

Verified OK.

1.10.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)x cos (u(x)) + x cos (u(x)) (u′(x)x+ u(x)) = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −sec (u)
x
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Where f(x) = − 1
x
and g(u) = sec (u). Integrating both sides gives

1
sec (u) du = −1

x
dx∫ 1

sec (u) du =
∫

−1
x
dx

sin (u) = − ln (x) + c2

The solution is
sin (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

sin
(y
x

)
+ ln (x)− c2 = 0

sin
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)sin
(y
x

)
+ ln (x)− c2 = 0

Figure 26: Slope field plot
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Verification of solutions

sin
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

1.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
−x+ y cos

(
y
x

)
x cos

(
y
x

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−x+ y cos

(
y
x

)
x cos

(
y
x

)
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

cos
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1esin(R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1esin

( y
x

)

Which simplifies to

−1
x
= c1esin

( y
x

)

Which gives

y = arcsin
(
ln
(
− 1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x+y cos
( y
x

)
x cos

( y
x

) dS
dR

= cos (R)S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arcsin
(
ln
(
− 1
c1x

))
x
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Figure 27: Slope field plot

Verification of solutions

y = arcsin
(
ln
(
− 1
c1x

))
x

Verified OK.

1.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x cos

(y
x

))
dy =

(
−x+ y cos

(y
x

))
dx(

x− y cos
(y
x

))
dx+

(
x cos

(y
x

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x− y cos
(y
x

)
N(x, y) = x cos

(y
x

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x− y cos

(y
x

))
= − cos

(y
x

)
+

y sin
(
y
x

)
x
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And
∂N

∂x
= ∂

∂x

(
x cos

(y
x

))
= cos

(y
x

)
+

y sin
(
y
x

)
x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
=

sec
(
y
x

)
x

((
− cos

(y
x

)
+

y sin
(
y
x

)
x

)
−

(
cos
(y
x

)
+

y sin
(
y
x

)
x

))
= −2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x− y cos

(y
x

))
=

x− y cos
(
y
x

)
x2

And

N = µN

= 1
x2

(
x cos

(y
x

))
=

cos
(
y
x

)
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x− y cos
(
y
x

)
x2

)
+
(
cos
(
y
x

)
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
x− y cos

(
y
x

)
x2 dx

(3)φ = sin
(y
x

)
− ln

(
1
x

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

cos
(
y
x

)
x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= cos
( y
x

)
x

. Therefore equation (4) becomes

(5)
cos
(
y
x

)
x

=
cos
(
y
x

)
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin
(y
x

)
− ln

(
1
x

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin
(y
x

)
− ln

(
1
x

)
Summary
The solution(s) found are the following

(1)sin
(y
x

)
− ln

(
1
x

)
= c1

Figure 28: Slope field plot

Verification of solutions

sin
(y
x

)
− ln

(
1
x

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve((x-y(x)*cos(y(x)/x))+x*cos(y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − arcsin (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.359 (sec). Leaf size: 15� �
DSolve[(x-y[x]*Cos[y[x]/x])+x*Cos[y[x]/x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin(− log(x) + c1)

123



1.11 problem 3.5
1.11.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 124
1.11.2 Solving as first order ode lie symmetry calculated ode . . . . . . 126

Internal problem ID [4365]
Internal file name [OUTPUT/3858_Sunday_June_05_2022_11_29_49_AM_24603019/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 3.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

8y + (5y + 7x) y′ = −10x

1.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

8u(x)x+ (5u(x)x+ 7x) (u′(x)x+ u(x)) = −10x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −5(u2 + 3u+ 2)
x (5u+ 7)

Where f(x) = − 5
x
and g(u) = u2+3u+2

5u+7 . Integrating both sides gives

1
u2+3u+2
5u+7

du = −5
x
dx
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∫ 1
u2+3u+2
5u+7

du =
∫

−5
x
dx

2 ln (u+ 1) + 3 ln (u+ 2) = −5 ln (x) + c2

Raising both side to exponential gives

e2 ln(u+1)+3 ln(u+2) = e−5 ln(x)+c2

Which simplifies to

(u+ 1)2 (u+ 2)3 = c3
x5

Therefore the solution y is

y = xu

= RootOf
(
_Z5 + 8x_Z4 + 25x2_Z3 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)
Summary
The solution(s) found are the following

(1)y = RootOf
(
_Z5 + 8x_Z4 + 25x2_Z3 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)

Figure 29: Slope field plot
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Verification of solutions

y = RootOf
(
_Z5 + 8x_Z4 + 25x2_Z3 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)
Verified OK.

1.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2(4y + 5x)
5y + 7x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2(4y + 5x) (b3 − a2)

5y + 7x − 4(4y + 5x)2 a3
(5y + 7x)2

−
(
− 10
5y + 7x + 56y + 70x

(5y + 7x)2
)
(xa2 + ya3 + a1)

−
(
− 8
5y + 7x + 40y + 50x

(5y + 7x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

70x2a2 − 100x2a3 + 55x2b2 − 70x2b3 + 100xya2 − 160xya3 + 70xyb2 − 100xyb3 + 40y2a2 − 70y2a3 + 25y2b2 − 40y2b3 + 6xb1 − 6ya1
(5y + 7x)2

= 0
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Setting the numerator to zero gives

(6E)70x2a2 − 100x2a3 + 55x2b2 − 70x2b3 + 100xya2 − 160xya3 + 70xyb2
− 100xyb3 + 40y2a2 − 70y2a3 + 25y2b2 − 40y2b3 + 6xb1 − 6ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)70a2v21 + 100a2v1v2 + 40a2v22 − 100a3v21 − 160a3v1v2 − 70a3v22 + 55b2v21
+ 70b2v1v2 + 25b2v22 − 70b3v21 − 100b3v1v2 − 40b3v22 − 6a1v2 + 6b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(70a2 − 100a3 + 55b2 − 70b3) v21 + (100a2 − 160a3 + 70b2 − 100b3) v1v2
+ 6b1v1 + (40a2 − 70a3 + 25b2 − 40b3) v22 − 6a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6b1 = 0

40a2 − 70a3 + 25b2 − 40b3 = 0
70a2 − 100a3 + 55b2 − 70b3 = 0

100a2 − 160a3 + 70b2 − 100b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 3a3 + b3

a3 = a3

b1 = 0
b2 = −2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2(4y + 5x)

5y + 7x

)
(x)

= 10x2 + 15xy + 5y2
5y + 7x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

10x2+15xy+5y2
5y+7x

dy
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Which results in

S = 2 ln (x+ y)
5 + 3 ln (2x+ y)

5
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(4y + 5x)
5y + 7x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
2x+ 8y

5
(x+ y) (2x+ y)

Sy =
5y + 7x

5 (x+ y) (2x+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1
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Which simplifies to

2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2(4y+5x)
5y+7x

dS
dR

= 0

R = x

S = 2 ln (x+ y)
5 + 3 ln (2x+ y)

5

Summary
The solution(s) found are the following

(1)2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1
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Figure 30: Slope field plot

Verification of solutions

2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 38� �
dsolve((8*y(x)+10*x)+(5*y(x)+7*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x
(
RootOf

(
_Z25c1x

5 − 2_Z20c1x
5 + _Z15c1x

5 − 1
)5 − 2

)
3 Solution by Mathematica
Time used: 2.163 (sec). Leaf size: 276� �
DSolve[(8*y[x]+10*x)+(5*y[x]+7*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 1

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 2

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 3

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 4

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 5

]
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1.12 problem 4.1
1.12.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 133
1.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 137

Internal problem ID [4366]
Internal file name [OUTPUT/3859_Sunday_June_05_2022_11_30_00_AM_7213669/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 4.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

−y + (2y − 1) y′ = −2x− 1

1.12.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −2X − 2x0 + Y (X) + y0 − 1

2Y (X) + 2y0 − 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
4

y0 =
1
2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −2X + Y (X)

2Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −2X + Y

2Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2X+Y and N = 2Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −1

u
+ 1

2
du
dX =

− 1
u(X) +

1
2 − u(X)
X

Or
d

dX
u(X)−

− 1
u(X) +

1
2 − u(X)
X

= 0

Or
2
(

d

dX
u(X)

)
u(X)X + 2u(X)2 − u(X) + 2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2u2 − u+ 2
2uX
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Where f(X) = − 1
2X and g(u) = 2u2−u+2

u
. Integrating both sides gives

1
2u2−u+2

u

du = − 1
2X dX

∫ 1
2u2−u+2

u

du =
∫

− 1
2X dX

ln (2u2 − u+ 2)
4 +

√
15 arctan

(
(4u−1)

√
15

15

)
30 = − ln (X)

2 + c2

The solution is

ln
(
2u(X)2 − u(X) + 2

)
4 +

√
15 arctan

(
(4u(X)−1)

√
15

15

)
30 + ln (X)

2 − c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

2Y (X)2
X2 − Y (X)

X
+ 2
)

4 +

√
15 arctan

(( 4Y (X)
X

−1
)√

15
15

)
30 + ln (X)

2 − c2 = 0

Using the solution for Y (X)

ln
(

2Y (X)2
X2 − Y (X)

X
+ 2
)

4 −

√
15 arctan

(
(−4Y (X)+X)

√
15

15X

)
30 + ln (X)

2 − c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
2

X = x− 1
4

Then the solution in y becomes

ln
(

2
(
y− 1

2
)2(

x+ 1
4
)2 − y− 1

2
x+ 1

4
+ 2
)

4 −

√
15 arctan

( (
−4y+ 9

4+x
)√

15
15x+ 15

4

)
30 +

ln
(
x+ 1

4

)
2 − c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(

2
(
y− 1

2
)2(

x+ 1
4
)2 − y− 1

2
x+ 1

4
+ 2
)

4 −

√
15 arctan

( (
−4y+ 9

4+x
)√

15
15x+ 15

4

)
30 +

ln
(
x+ 1

4

)
2 − c2 = 0

Figure 31: Slope field plot

Verification of solutions

ln
(

2
(
y− 1

2
)2(

x+ 1
4
)2 − y− 1

2
x+ 1

4
+ 2
)

4 −

√
15 arctan

( (
−4y+ 9

4+x
)√

15
15x+ 15

4

)
30 +

ln
(
x+ 1

4

)
2 − c2 = 0

Verified OK.
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1.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x+ y − 1
2y − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(−2x+ y − 1) (b3 − a2)

2y − 1 − (−2x+ y − 1)2 a3
(2y − 1)2

+ 2xa2 + 2ya3 + 2a1
2y − 1

−
(

1
2y − 1 − 2(−2x+ y − 1)

(2y − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x2a3 + 4x2b2 − 8xya2 − 4xya3 + 8xyb3 + 2y2a2 − 3y2a3 − 4y2b2 − 2y2b3 + 4xa2 + 4xa3 + 4xb1 + xb2 − 2xb3 − 4ya1 − 3ya2 + 4yb2 + 4yb3 + 2a1 + a2 + a3 + b1 − b2 − b3

(2y − 1)2
= 0

Setting the numerator to zero gives

(6E)−4x2a3 − 4x2b2 + 8xya2 + 4xya3 − 8xyb3 − 2y2a2 + 3y2a3
+ 4y2b2 + 2y2b3 − 4xa2 − 4xa3 − 4xb1 − xb2 + 2xb3 + 4ya1
+ 3ya2 − 4yb2 − 4yb3 − 2a1 − a2 − a3 − b1 + b2 + b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)8a2v1v2 − 2a2v22 − 4a3v21 + 4a3v1v2 + 3a3v22 − 4b2v21 + 4b2v22
− 8b3v1v2 + 2b3v22 + 4a1v2 − 4a2v1 + 3a2v2 − 4a3v1 − 4b1v1 − b2v1
− 4b2v2 + 2b3v1 − 4b3v2 − 2a1 − a2 − a3 − b1 + b2 + b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−4a3 − 4b2) v21 + (8a2 + 4a3 − 8b3) v1v2
+ (−4a2 − 4a3 − 4b1 − b2 + 2b3) v1 + (−2a2 + 3a3 + 4b2 + 2b3) v22
+ (4a1 + 3a2 − 4b2 − 4b3) v2 − 2a1 − a2 − a3 − b1 + b2 + b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a3 − 4b2 = 0
8a2 + 4a3 − 8b3 = 0

4a1 + 3a2 − 4b2 − 4b3 = 0
−2a2 + 3a3 + 4b2 + 2b3 = 0

−4a2 − 4a3 − 4b1 − b2 + 2b3 = 0
−2a1 − a2 − a3 − b1 + b2 + b3 = 0
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Solving the above equations for the unknowns gives

a1 =
3b3
2 + 5b1

2
a2 = 2b3 + 2b1
a3 = −2b3 − 4b1
b1 = b1

b2 = 2b3 + 4b1
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3
2 + 2x− 2y

η = 2x+ y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2x+ y −
(
−2x+ y − 1

2y − 1

)(
3
2 + 2x− 2y

)
= 8x2 − 4xy + 8y2 + 6x− 9y + 3

4y − 2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

8x2−4xy+8y2+6x−9y+3
4y−2

dy

Which results in

S = ln (8x2 − 4xy + 8y2 + 6x− 9y + 3)
4 +

4
(
x
2 +

1
8

)√
15 arctan

(
(16y−4x−9)

√
15

60x+15

)
15 (4x+ 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ y − 1
2y − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4x− 2y + 2
8x2 + (−4y + 6)x+ 8y2 − 9y + 3

Sy =
4y − 2

8y2 + (−4x− 9) y + 8x2 + 6x+ 3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (8x2 + (−4y + 6)x+ 8y2 − 9y + 3)
4 −

√
15 arctan

(
(−16y+4x+9)

√
15

60x+15

)
30 = c1

Which simplifies to

ln (8x2 + (−4y + 6)x+ 8y2 − 9y + 3)
4 −

√
15 arctan

(
(−16y+4x+9)

√
15

60x+15

)
30 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+y−1
2y−1

dS
dR

= 0

R = x

S = ln (8x2 + (−4y + 6)x+ 8y2 − 9y + 3)
4 −

√
15 arctan

(
(−16y+4x+9)

√
15

60x+15

)
30

Summary
The solution(s) found are the following

(1)ln (8x2 + (−4y + 6)x+ 8y2 − 9y + 3)
4 −

√
15 arctan

(
(−16y+4x+9)

√
15

60x+15

)
30 = c1

141



Figure 32: Slope field plot

Verification of solutions

ln (8x2 + (−4y + 6)x+ 8y2 − 9y + 3)
4 −

√
15 arctan

(
(−16y+4x+9)

√
15

60x+15

)
30 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 67� �
dsolve((2*x-y(x)+1)+(2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=
√
15 tan

(
RootOf

(√
15 ln

(
(1 + 4x)2 sec (_Z)2

)
− 3

√
15 ln (2) +

√
15 ln (3) +

√
15 ln (5) + 2

√
15 c1 − 2_Z

))
(−1− 4x)

16
+ x

4 + 9
16

3 Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 85� �
DSolve[(2*x-y[x]+1)+(2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
2
√
15 arctan

(
−2y(x) + 8x+ 3√

15(2y(x)− 1)

)
=15

(
log
(
2(8x2 + 8y(x)2 − (4x+ 9)y(x) + 6x+ 3)

(4x+ 1)2

)
+ 2 log(4x+ 1) + 8c1

)
, y(x)

]
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1.13 problem 4.2
1.13.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 144
1.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 148

Internal problem ID [4367]
Internal file name [OUTPUT/3860_Sunday_June_05_2022_11_31_32_AM_81731100/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 4.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

3y + (7y − 3x+ 3) y′ = 7x− 7

1.13.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 3Y (X) + 3y0 − 7X − 7x0 + 7

7Y (X) + 7y0 − 3X − 3x0 + 3

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 3Y (X)− 7X

7Y (X)− 3X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −3Y − 7X
7Y − 3X (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 3Y − 7X and N = −7Y + 3X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u+ 7

7u− 3
du
dX =

−3u(X)+7
7u(X)−3 − u(X)

X

Or
d

dX
u(X)−

−3u(X)+7
7u(X)−3 − u(X)

X
= 0

Or
7
(

d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + 7u(X)2 − 7 = 0

Or
−7 +X(7u(X)− 3)

(
d

dX
u(X)

)
+ 7u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 7(u2 − 1)
X (7u− 3)
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Where f(X) = − 7
X

and g(u) = u2−1
7u−3 . Integrating both sides gives

1
u2−1
7u−3

du = − 7
X

dX

∫ 1
u2−1
7u−3

du =
∫

− 7
X

dX

2 ln (u− 1) + 5 ln (u+ 1) = −7 ln (X) + c2

Raising both side to exponential gives

e2 ln(u−1)+5 ln(u+1) = e−7 ln(X)+c2

Which simplifies to

(u− 1)2 (u+ 1)5 = c3
X7

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
Using the solution for Y (X)

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x+ 1

Then the solution in y becomes

y = RootOf
(
_Z7 + (−3 + 3x)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4 +

(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2 +

(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 − c3 + 7x− 1

)
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Summary
The solution(s) found are the following

y = RootOf
(
_Z7 + (−3 + 3x)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)

(1)

Figure 33: Slope field plot

Verification of solutions

y = RootOf
(
_Z7 + (−3 + 3x)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)

Verified OK.
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1.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3y − 7x+ 7
7y − 3x+ 3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3y − 7x+ 7) (b3 − a2)

7y − 3x+ 3 − (3y − 7x+ 7)2 a3
(7y − 3x+ 3)2

−
(

7
7y − 3x+ 3 − 3(3y − 7x+ 7)

(7y − 3x+ 3)2
)
(xa2 + ya3 + a1)

−
(
− 3
7y − 3x+ 3 + 21y − 49x+ 49

(7y − 3x+ 3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3 + 21y2a2 − 49y2a3 + 49y2b2 − 21y2b3 − 42xa2 + 98xa3 + 40xb1 − 58xb2 + 42xb3 − 40ya1 + 58ya2 − 42ya3 + 42yb2 − 98yb3 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3
(−7y + 3x− 3)2

= 0

Setting the numerator to zero gives

(6E)21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3
+21y2a2−49y2a3+49y2b2−21y2b3−42xa2+98xa3+40xb1−58xb2+42xb3
−40ya1+58ya2−42ya3+42yb2−98yb3+21a2−49a3−40b1+9b2−21b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
21a2v21 − 98a2v1v2 + 21a2v22 − 49a3v21 + 42a3v1v2 − 49a3v22 + 49b2v21
− 42b2v1v2 + 49b2v22 − 21b3v21 + 98b3v1v2 − 21b3v22 − 40a1v2
− 42a2v1 + 58a2v2 + 98a3v1 − 42a3v2 + 40b1v1 − 58b2v1 + 42b2v2
+ 42b3v1 − 98b3v2 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(21a2 − 49a3 + 49b2 − 21b3) v21 + (−98a2 + 42a3 − 42b2 + 98b3) v1v2
+ (−42a2 + 98a3 + 40b1 − 58b2 + 42b3) v1 + (21a2 − 49a3 + 49b2 − 21b3) v22
+(−40a1+58a2−42a3+42b2−98b3) v2+21a2−49a3−40b1+9b2−21b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−98a2 + 42a3 − 42b2 + 98b3 = 0
21a2 − 49a3 + 49b2 − 21b3 = 0

−40a1 + 58a2 − 42a3 + 42b2 − 98b3 = 0
−42a2 + 98a3 + 40b1 − 58b2 + 42b3 = 0

21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Solving the above equations for the unknowns gives

a1 = −b3

a2 = b3

a3 = b2

b1 = −b2

b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = x− 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x− 1−
(
−3y − 7x+ 7
7y − 3x+ 3

)
(y)

= 3x2 − 3y2 − 6x+ 3
−7y + 3x− 3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2−3y2−6x+3
−7y+3x−3

dy

Which results in

S = 5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y − 7x+ 7
7y − 3x+ 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 5
3x− 3 + 3y + 2

3x− 3− 3y

Sy =
5

3x− 3 + 3y − 2
3x− 3− 3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1

Which simplifies to

5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y−7x+7
7y−3x+3

dS
dR

= 0

R = x

S = 5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3

Summary
The solution(s) found are the following

(1)5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1
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Figure 34: Slope field plot

Verification of solutions

5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 1814� �
dsolve((3*y(x)-7*x+7)+(7*y(x)-3*x+3)*diff(y(x),x)=0,y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 60.698 (sec). Leaf size: 7785� �
DSolve[(3*y[x]-7*x+7)+(7*y[x]-3*x+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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1.14 problem 6.1
1.14.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 155
1.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 157
1.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 161
1.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 166

Internal problem ID [4368]
Internal file name [OUTPUT/3861_Sunday_June_05_2022_11_31_42_AM_28711573/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 6.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + xy

x2 + 1 = 1
2x (x2 + 1)

1.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 + 1
q(x) = 1

2x (x2 + 1)

Hence the ode is

y′ + xy

x2 + 1 = 1
2x (x2 + 1)
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The integrating factor µ is

µ = e
∫

x
x2+1dx

=
√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
1

2x (x2 + 1)

)
d
dx

(√
x2 + 1 y

)
=
(√

x2 + 1
)( 1

2x (x2 + 1)

)
d
(√

x2 + 1 y
)
=
(

1
2x

√
x2 + 1

)
dx

Integrating gives

√
x2 + 1 y =

∫ 1
2x

√
x2 + 1

dx

√
x2 + 1 y = −

arctanh
(

1√
x2+1

)
2 + c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 results in

y = −
arctanh

(
1√

x2+1

)
2
√
x2 + 1

+ c1√
x2 + 1

which simplifies to

y =
− arctanh

(
1√

x2+1

)
+ 2c1

2
√
x2 + 1

Summary
The solution(s) found are the following

(1)y =
− arctanh

(
1√

x2+1

)
+ 2c1

2
√
x2 + 1
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Figure 35: Slope field plot

Verification of solutions

y =
− arctanh

(
1√

x2+1

)
+ 2c1

2
√
x2 + 1

Verified OK.

1.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − 2y x2 − 1
2x (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1

dy

Which results in

S =
√
x2 + 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2y x2 − 1
2x (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x2 + 1

Sy =
√
x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x
√
x2 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R
√
R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
arctanh

(
1√

R2+1

)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y = −

arctanh
(

1√
x2+1

)
2 + c1

Which simplifies to

√
x2 + 1 y = −

arctanh
(

1√
x2+1

)
2 + c1

Which gives

y = −
arctanh

(
1√

x2+1

)
− 2c1

2
√
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2y x2−1
2x(x2+1)

dS
dR

= 1
2R

√
R2+1

R = x

S =
√
x2 + 1 y
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Summary
The solution(s) found are the following

(1)y = −
arctanh

(
1√

x2+1

)
− 2c1

2
√
x2 + 1

Figure 36: Slope field plot

Verification of solutions

y = −
arctanh

(
1√

x2+1

)
− 2c1

2
√
x2 + 1

Verified OK.

1.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
− xy

x2 + 1 + 1
2x (x2 + 1)

)
dx(

xy

x2 + 1 − 1
2x (x2 + 1)

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy

x2 + 1 − 1
2x (x2 + 1)

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
xy

x2 + 1 − 1
2x (x2 + 1)

)
= x

x2 + 1

And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

x

x2 + 1

)
− (0)

)
= x

x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫

x
x2+1 dx

The result of integrating gives

µ = e
ln
(
x2+1

)
2

=
√
x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

=
√
x2 + 1

(
xy

x2 + 1 − 1
2x (x2 + 1)

)
= 2y x2 − 1

2
√
x2 + 1x
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And

N = µN

=
√
x2 + 1(1)

=
√
x2 + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2y x2 − 1
2
√
x2 + 1x

)
+
(√

x2 + 1
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2y x2 − 1
2
√
x2 + 1x

dx

(3)φ =
arctanh

(
1√

x2+1

)
2 +

√
x2 + 1 y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1. Therefore equation (4) becomes

(5)
√
x2 + 1 =

√
x2 + 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
arctanh

(
1√

x2+1

)
2 +

√
x2 + 1 y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
arctanh

(
1√

x2+1

)
2 +

√
x2 + 1 y

The solution becomes

y = −
arctanh

(
1√

x2+1

)
− 2c1

2
√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −
arctanh

(
1√

x2+1

)
− 2c1

2
√
x2 + 1
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Figure 37: Slope field plot

Verification of solutions

y = −
arctanh

(
1√

x2+1

)
− 2c1

2
√
x2 + 1

Verified OK.

1.14.4 Maple step by step solution

Let’s solve
y′ + xy

x2+1 = 1
2x(x2+1)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2+1 +
1

2x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2+1 = 1
2x(x2+1)
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + xy

x2+1

)
= µ(x)

2x(x2+1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
2x(x2+1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
2x(x2+1)dx+ c1

• Solve for y

y =
∫ µ(x)

2x
(
x2+1

)dx+c1

µ(x)

• Substitute µ(x) =
√
x2 + 1

y =
∫ 1

2x
√

x2+1
dx+c1

√
x2+1

• Evaluate the integrals on the rhs

y = −
arctanh

(
1√

x2+1

)
2 +c1√
x2+1

• Simplify

y =
−arctanh

(
1√

x2+1

)
+2c1

2
√
x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)+x/(1+x^2)*y(x)=1/(2*x*(1+x^2)),y(x), singsol=all)� �

y(x) =
− arctanh

(
1√

x2+1

)
+ 2c1

2
√
x2 + 1

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 33� �
DSolve[y'[x]+x/(1+x^2)*y[x]==1/(2*x*(1+x^2)),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
arctanh

(√
x2 + 1

)
− 2c1

2
√
x2 + 1
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1.15 problem 6.2
1.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 169
1.15.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 171
1.15.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 172
1.15.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 175
1.15.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 179

Internal problem ID [4369]
Internal file name [OUTPUT/3862_Sunday_June_05_2022_11_31_50_AM_33158875/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 6.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
−x2 + 1

)
y′ +

(
2x2 − 1

)
y = a x3

1.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x2 − 1
x3 − x

q(x) = − a x2

x2 − 1

Hence the ode is

y′ − (2x2 − 1) y
x3 − x

= − a x2

x2 − 1
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The integrating factor µ is

µ = e
∫
− 2x2−1

x3−x
dx

= e−
ln(x+1)

2 − ln(x−1)
2 −ln(x)

Which simplifies to

µ = 1√
x+ 1

√
x− 1x

The ode becomes

d
dx(µy) = (µ)

(
− a x2

x2 − 1

)
d
dx

(
y√

x+ 1
√
x− 1x

)
=
(

1√
x+ 1

√
x− 1x

)(
− a x2

x2 − 1

)
d
(

y√
x+ 1

√
x− 1x

)
=
(
− ax

(x2 − 1)
√
x+ 1

√
x− 1

)
dx

Integrating gives

y√
x+ 1

√
x− 1x

=
∫

− ax

(x2 − 1)
√
x+ 1

√
x− 1

dx

y√
x+ 1

√
x− 1x

=
√
x− 1

√
x+ 1 a

x2 − 1 + c1

Dividing both sides by the integrating factor µ = 1√
x+1

√
x−1x results in

y = (x+ 1) (x− 1)xa
x2 − 1 + c1

√
x+ 1

√
x− 1x

which simplifies to

y = x
(
a+ c1

√
x+ 1

√
x− 1

)
Summary
The solution(s) found are the following

(1)y = x
(
a+ c1

√
x+ 1

√
x− 1

)
Verification of solutions

y = x
(
a+ c1

√
x+ 1

√
x− 1

)
Verified OK.
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1.15.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
−x2 + 1

)
(u′(x)x+ u(x)) +

(
2x2 − 1

)
u(x)x = a x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= x(u− a)
x2 − 1

Where f(x) = x
x2−1 and g(u) = u− a. Integrating both sides gives

1
u− a

du = x

x2 − 1 dx∫ 1
u− a

du =
∫

x

x2 − 1 dx

ln (u− a) = ln (x− 1)
2 + ln (x+ 1)

2 + c2

Raising both side to exponential gives

u− a = e
ln(x−1)

2 + ln(x+1)
2 +c2

Which simplifies to

u− a = c3e
ln(x−1)

2 + ln(x+1)
2

Which simplifies to
u(x) = c3

√
x− 1

√
x+ 1 ec2 + a

Therefore the solution y is

y = xu

= x
(
c3
√
x− 1

√
x+ 1 ec2 + a

)
Summary
The solution(s) found are the following

(1)y = x
(
c3
√
x− 1

√
x+ 1 ec2 + a

)
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Verification of solutions

y = x
(
c3
√
x− 1

√
x+ 1 ec2 + a

)
Verified OK.

1.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −a x3 + 2y x2 − y

x (x2 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

172



Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x+1)

2 + ln(x−1)
2 +ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x+1)

2 + ln(x−1)
2 +ln(x)

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −a x3 + 2y x2 − y

x (x2 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
2
(
x2 − 1

2

)
y

(x− 1)
3
2 (x+ 1)

3
2 x2

Sy =
1√

x+ 1
√
x− 1x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − ax

(x+ 1)
3
2 (x− 1)

3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − aR

(R + 1)
3
2 (R− 1)

3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a√
R + 1

√
R− 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x+ 1

√
x− 1x

= a√
x+ 1

√
x− 1

+ c1

Which simplifies to
y√

x+ 1
√
x− 1x

= a√
x+ 1

√
x− 1

+ c1

Which gives

y = ax+ c1
√
x+ 1

√
x− 1x

Summary
The solution(s) found are the following

(1)y = ax+ c1
√
x+ 1

√
x− 1x

Verification of solutions

y = ax+ c1
√
x+ 1

√
x− 1x

Verified OK.

1.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−x2 + 1

))
dy =

(
−
(
2x2 − 1

)
y + a x3) dx((

2x2 − 1
)
y − a x3) dx+(x(−x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
2x2 − 1

)
y − a x3

N(x, y) = x
(
−x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

((
2x2 − 1

)
y − a x3)

= 2x2 − 1
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And
∂N

∂x
= ∂

∂x

(
x
(
−x2 + 1

))
= −3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x3 − x

((
2x2 − 1

)
−
(
−3x2 + 1

))
= −5x2 + 2

x3 − x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −5x2+2

x3−x
dx

The result of integrating gives

µ = e−
3 ln(x+1)

2 − 3 ln(x−1)
2 −2 ln(x)

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

((
2x2 − 1

)
y − a x3)

= − a x3 − 2y x2 + y

(x+ 1)
3
2 (x− 1)

3
2 x2

And

N = µN

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

(
x
(
−x2 + 1

))
= − 1√

x+ 1
√
x− 1x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− a x3 − 2y x2 + y

(x+ 1)
3
2 (x− 1)

3
2 x2

)
+
(
− 1√

x+ 1
√
x− 1x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− a x3 − 2y x2 + y

(x+ 1)
3
2 (x− 1)

3
2 x2

dx

(3)φ = ax− y√
x+ 1

√
x− 1x

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1√

x+ 1
√
x− 1x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
x+1

√
x−1x . Therefore equation (4) becomes

(5)− 1√
x+ 1

√
x− 1x

= − 1√
x+ 1

√
x− 1x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ax− y√
x+ 1

√
x− 1x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ax− y√

x+ 1
√
x− 1x

The solution becomes
y = −c1

√
x+ 1

√
x− 1x+ ax

Summary
The solution(s) found are the following

(1)y = −c1
√
x+ 1

√
x− 1x+ ax

Verification of solutions

y = −c1
√
x+ 1

√
x− 1x+ ax

Verified OK.

1.15.5 Maple step by step solution

Let’s solve
x(−x2 + 1) y′ + (2x2 − 1) y = a x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ =
(
2x2−1

)
y

x(x2−1) − a x2

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ −
(
2x2−1

)
y

x(x2−1) = − a x2

x2−1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ −

(
2x2−1

)
y

x(x2−1)

)
= −µ(x)a x2

x2−1
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ −

(
2x2−1

)
y

x(x2−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)
(
2x2−1

)
x(x2−1)

• Solve to find the integrating factor
µ(x) = 1√

x+1
√
x−1x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)a x2

x2−1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
−µ(x)a x2

x2−1 dx+ c1

• Solve for y

y =
∫
−µ(x)a x2

x2−1 dx+c1

µ(x)

• Substitute µ(x) = 1√
x+1

√
x−1x

y =
√
x+ 1

√
x− 1x

(∫
− ax

(x2−1)
√
x+1

√
x−1dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x+ 1

√
x− 1x

(√
x−1

√
x+1 a

x2−1 + c1
)

• Simplify

y =
√
x−1x

(√
x−1

√
x+1 a+c1

(
x2−1

))√
x+1

x2−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(x*(1-x^2)*diff(y(x),x)+(2*x^2-1)*y(x)=a*x^3,y(x), singsol=all)� �

y(x) = x
(√

x− 1
√
1 + x c1 + a

)
3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 23� �
DSolve[x*(1-x^2)*y'[x]+(2*x^2-1)*y[x]==a*x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
(
a+ c1

√
1− x2

)
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1.16 problem 6.3
1.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 182
1.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 184
1.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 189
1.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 195

Internal problem ID [4370]
Internal file name [OUTPUT/3863_Sunday_June_05_2022_11_31_58_AM_23803442/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 6.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

(−x2 + 1)
3
2
= x+

√
−x2 + 1

(−x2 + 1)2

1.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
(−x2 + 1)

3
2

q(x) = −x2 −
√
−x2 + 1x− 1

(−x2 + 1)
5
2

Hence the ode is

y′ + y

(−x2 + 1)
3
2
= −x2 −

√
−x2 + 1 x− 1

(−x2 + 1)
5
2
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The integrating factor µ is

µ = e
∫ 1(

−x2+1
) 3
2
dx

= e
x√

−x2+1

The ode becomes

d
dx(µy) = (µ)

(
−x2 −

√
−x2 + 1x− 1

(−x2 + 1)
5
2

)
d
dx

(
e

x√
−x2+1y

)
=
(
e

x√
−x2+1

)(
−x2 −

√
−x2 + 1x− 1

(−x2 + 1)
5
2

)

d
(
e

x√
−x2+1y

)
=
(
−
(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

)
dx

Integrating gives

e
x√

−x2+1y =
∫

−
(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx

e
x√

−x2+1y =
∫

−
(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

Dividing both sides by the integrating factor µ = e
x√

−x2+1 results in

y = e−
x√

−x2+1

(∫
−
(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx

)
+ c1e

− x√
−x2+1

which simplifies to

y = e−
x√

−x2+1

(∫
−
(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

)

Summary
The solution(s) found are the following

(1)y = e−
x√

−x2+1

(∫
−
(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

)
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Figure 38: Slope field plot

Verification of solutions

y = e−
x√

−x2+1

(∫
−
(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

)

Verified OK.

1.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y x4 + (−x2 + 1)
3
2 x+ x4 + 2y x2 − 2x2 − y + 1

(−x2 + 1)
3
2 (x2 − 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

184



Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
(x−1)(x+1)x(

−x2+1
) 3
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
(x−1)(x+1)x(

−x2+1
) 3
2

dy

Which results in

S = e
− (x−1)(x+1)x(

−x2+1
) 3
2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y x4 + (−x2 + 1)
3
2 x+ x4 + 2y x2 − 2x2 − y + 1

(−x2 + 1)
3
2 (x2 − 1)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e
−x3+x(

−x2+1
) 3
2
y

(−x2 + 1)
3
2

Sy = e
x√

−x2+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

(
x2 −

√
−x2 + 1x− 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

(2A)

186



We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

(
R2 −

√
−R2 + 1R− 1

)
e

R√
−R2+1

(−R2 + 1)
5
2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ (

−R2 +
√
−R2 + 1R + 1

)
e

R√
−R2+1

(−R2 + 1)
5
2

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e
x√

−x2+1y =
∫ (

−x2 +
√
−x2 + 1x+ 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

Which simplifies to

e
x√

−x2+1y =
∫ (

−x2 +
√
−x2 + 1x+ 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

Which gives

y =
(∫ (

−x2 +
√
−x2 + 1x+ 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

)
e−

x√
−x2+1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
−y x4+

(
−x2+1

) 3
2 x+x4+2y x2−2x2−y+1

(−x2+1)
3
2 (x2−1)2

dS
dR

= −
(
R2−

√
−R2+1R−1

)
e

R√
−R2+1

(−R2+1)
5
2

R = x

S = e
x√

−x2+1y

Summary
The solution(s) found are the following

(1)y =
(∫ (

−x2 +
√
−x2 + 1x+ 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

)
e−

x√
−x2+1
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Figure 39: Slope field plot

Verification of solutions

y =
(∫ (

−x2 +
√
−x2 + 1x+ 1

)
e

x√
−x2+1

(−x2 + 1)
5
2

dx+ c1

)
e−

x√
−x2+1

Verified OK.

1.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
− y

(−x2 + 1)
3
2
+ x+

√
−x2 + 1

(−x2 + 1)2

)
dx(

y

(−x2 + 1)
3
2
− x+

√
−x2 + 1

(−x2 + 1)2

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

(−x2 + 1)
3
2
− x+

√
−x2 + 1

(−x2 + 1)2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y

(−x2 + 1)
3
2
− x+

√
−x2 + 1

(−x2 + 1)2

)
= 1

(−x2 + 1)
3
2
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

1
(−x2 + 1)

3
2

)
− (0)

)
= 1

(−x2 + 1)
3
2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e

∫ 1(
−x2+1

) 3
2
dx

The result of integrating gives

µ = e
− (x−1)(x+1)x(

−x2+1
) 3
2

= e
x√

−x2+1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e
x√

−x2+1

(
y

(−x2 + 1)
3
2
− x+

√
−x2 + 1

(−x2 + 1)2

)

= −
(√

−x2 + 1x+ (y − 1)x2 − y + 1
)
e

x√
−x2+1

(−x2 + 1)
5
2

And

N = µN

= e
x√

−x2+1 (1)

= e
x√

−x2+1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
(√

−x2 + 1x+ (y − 1)x2 − y + 1
)
e

x√
−x2+1

(−x2 + 1)
5
2

)
+
(
e

x√
−x2+1

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−
(√

−x2 + 1x+ (y − 1)x2 − y + 1
)
e

x√
−x2+1

(−x2 + 1)
5
2

dx

(3)φ =
∫ x

−
(√

−_a2 + 1_a+ (y − 1)_a2 − y + 1
)
e

_a√
−_a2+1

(−_a2 + 1)
5
2

d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

∫ x (_a2 − 1) e
_a√

−_a2+1

(−_a2 + 1)
5
2

d_a

+ f ′(y)

=
∫ x e

_a√
−_a2+1

(−_a2 + 1)
3
2
d_a+ f ′(y)

But equation (2) says that ∂φ
∂y

= e
x√

−x2+1 . Therefore equation (4) becomes

(5)e
x√

−x2+1 =
∫ x e

_a√
−_a2+1

(−_a2 + 1)
3
2
d_a+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −

∫ x e
_a√

−_a2+1

(−_a2 + 1)
3
2
d_a

+ e
x√

−x2+1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ −

∫ x e
_a√

−_a2+1

(−_a2 + 1)
3
2
d_a

+ e
x√

−x2+1

 dy

f(y) =

−

∫ x e
_a√

−_a2+1

(−_a2 + 1)
3
2
d_a

+ e
x√

−x2+1

 y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

−
(√

−_a2 + 1_a+ (y − 1)_a2 − y + 1
)
e

_a√
−_a2+1

(−_a2 + 1)
5
2

d_a

+

−

∫ x e
_a√

−_a2+1

(−_a2 + 1)
3
2
d_a

+ e
x√

−x2+1

 y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

−
(√

−_a2 + 1_a+ (y − 1)_a2 − y + 1
)
e

_a√
−_a2+1

(−_a2 + 1)
5
2

d_a

+

−

∫ x e
_a√

−_a2+1

(−_a2 + 1)
3
2
d_a

+ e
x√

−x2+1

 y
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Summary
The solution(s) found are the following

(1)

∫ x

−
(√

−_a2 + 1_a+ (y − 1)_a2 − y + 1
)
e

_a√
−_a2+1

(−_a2 + 1)
5
2

d_a

+

−

∫ x e
_a√

−_a2+1

(−_a2 + 1)
3
2
d_a

+ e
x√

−x2+1

 y = c1

Figure 40: Slope field plot

Verification of solutions

∫ x

−
(√

−_a2 + 1_a+ (y − 1)_a2 − y + 1
)
e

_a√
−_a2+1

(−_a2 + 1)
5
2

d_a

+

−

∫ x e
_a√

−_a2+1

(−_a2 + 1)
3
2
d_a

+ e
x√

−x2+1

 y = c1

Verified OK.
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1.16.4 Maple step by step solution

Let’s solve

y′ + y

(−x2+1)
3
2
= x+

√
−x2+1

(−x2+1)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = − y

(−x2+1)
3
2
+ x+

√
−x2+1

(x2−1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y

(−x2+1)
3
2
= x+

√
−x2+1

(x2−1)2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

(−x2+1)
3
2

)
=

µ(x)
(
x+

√
−x2+1

)
(x2−1)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

(−x2+1)
3
2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

(−x2+1)
3
2

• Solve to find the integrating factor

µ(x) = e
x√

−(x−1)(x+1)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
x+

√
−x2+1

)
(x2−1)2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
x+

√
−x2+1

)
(x2−1)2 dx+ c1

• Solve for y

y =
∫ µ(x)

(
x+
√

−x2+1
)

(
x2−1

)2 dx+c1

µ(x)

• Substitute µ(x) = e
x√

−(x−1)(x+1)
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y =
∫ e

x√
−(x−1)(x+1)

(
x+
√

−x2+1
)

(
x2−1

)2 dx+c1

e
x√

−(x−1)(x+1)

• Simplify

y =
(∫ e

x√
−x2+1

(
x+

√
−x2+1

)
(x2−1)2 dx+ c1

)
e−

x√
−x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 56� �
dsolve(diff(y(x),x)+y(x)/(1-x^2)^(3/2)=(x+sqrt(1-x^2))/(1-x^2)^2,y(x), singsol=all)� �

y(x) =
(∫ e

x√
−x2+1

(
x+

√
−x2 + 1

)
(x− 1)2 (1 + x)2

dx+ c1

)
e−

x√
−x2+1

3 Solution by Mathematica
Time used: 0.169 (sec). Leaf size: 38� �
DSolve[y'[x]+y[x]/(1-x^2)^(3/2)==(x+Sqrt[1-x^2])/(1-x^2)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x√
1− x2

+ c1e
− x√

1−x2
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1.17 problem 6.4
1.17.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 197
1.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 199
1.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 203
1.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 208

Internal problem ID [4371]
Internal file name [OUTPUT/3864_Sunday_June_05_2022_11_32_09_AM_66022866/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 6.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cos (x) = sin (2x)
2

1.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cos (x)

q(x) = sin (2x)
2

Hence the ode is

y′ + y cos (x) = sin (2x)
2
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The integrating factor µ is

µ = e
∫
cos(x)dx

= esin(x)

The ode becomes

d
dx(µy) = (µ)

(
sin (2x)

2

)
d
dx
(
esin(x)y

)
=
(
esin(x)

)(sin (2x)
2

)
d
(
esin(x)y

)
=
(
sin (2x) esin(x)

2

)
dx

Integrating gives

esin(x)y =
∫ sin (2x) esin(x)

2 dx

esin(x)y = sin (x) esin(x) − esin(x) + c1

Dividing both sides by the integrating factor µ = esin(x) results in

y = e− sin(x)(sin (x) esin(x) − esin(x)
)
+ c1e− sin(x)

which simplifies to

y = sin (x)− 1 + c1e− sin(x)

Summary
The solution(s) found are the following

(1)y = sin (x)− 1 + c1e− sin(x)
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Figure 41: Slope field plot

Verification of solutions

y = sin (x)− 1 + c1e− sin(x)

Verified OK.

1.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y cos (x) + sin (2x)
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− sin(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− sin(x)dy

Which results in

S = esin(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y cos (x) + sin (2x)
2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) esin(x)y
Sy = esin(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x) esin(x)

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R) esin(R)

2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 + esin(R)(−1 + sin (R)) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

esin(x)y = esin(x)(−1 + sin (x)) + c1

Which simplifies to

esin(x)y = esin(x)(−1 + sin (x)) + c1

Which gives

y = e− sin(x)(sin (x) esin(x) − esin(x) + c1
)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y cos (x) + sin(2x)
2

dS
dR

= sin(2R)esin(R)

2

R = x

S = esin(x)y

Summary
The solution(s) found are the following

(1)y = e− sin(x)(sin (x) esin(x) − esin(x) + c1
)
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Figure 42: Slope field plot

Verification of solutions

y = e− sin(x)(sin (x) esin(x) − esin(x) + c1
)

Verified OK.

1.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−y cos (x) + sin (2x)

2

)
dx(

y cos (x)− sin (2x)
2

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cos (x)− sin (2x)
2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y cos (x)− sin (2x)

2

)
= cos (x)

204



And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cos (x))− (0))
= cos (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
cos(x) dx

The result of integrating gives

µ = esin(x)

= esin(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= esin(x)
(
y cos (x)− sin (2x)

2

)
= cos (x) (− sin (x) + y) esin(x)

And

N = µN

= esin(x)(1)
= esin(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

cos (x) (− sin (x) + y) esin(x)
)
+
(
esin(x)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) (− sin (x) + y) esin(x) dx

(3)φ = (y − sin (x) + 1) esin(x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= esin(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= esin(x). Therefore equation (4) becomes

(5)esin(x) = esin(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − sin (x) + 1) esin(x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − sin (x) + 1) esin(x)
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The solution becomes

y = e− sin(x)(sin (x) esin(x) − esin(x) + c1
)

Summary
The solution(s) found are the following

(1)y = e− sin(x)(sin (x) esin(x) − esin(x) + c1
)

Figure 43: Slope field plot

Verification of solutions

y = e− sin(x)(sin (x) esin(x) − esin(x) + c1
)

Verified OK.
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1.17.4 Maple step by step solution

Let’s solve
y′ + y cos (x) = sin(2x)

2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y cos (x) + sin(2x)

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y cos (x) = sin(2x)

2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y cos (x)) = µ(x) sin(2x)

2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y cos (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cos (x)

• Solve to find the integrating factor
µ(x) = esin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) sin(2x)
2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) sin(2x)
2 dx+ c1

• Solve for y

y =
∫ µ(x) sin(2x)

2 dx+c1
µ(x)

• Substitute µ(x) = esin(x)

y =
∫ sin(2x)esin(x)

2 dx+c1
esin(x)

• Evaluate the integrals on the rhs

y = sin(x)esin(x)−esin(x)+c1
esin(x)

• Simplify
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y = sin (x)− 1 + c1e− sin(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+y(x)*cos(x)=1/2*sin(2*x),y(x), singsol=all)� �

y(x) = sin (x)− 1 + e− sin(x)c1

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]*Cos[x]==1/2*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1e
− sin(x) − 1
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1.18 problem 6.5
1.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 210
1.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 212
1.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 216
1.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 220

Internal problem ID [4372]
Internal file name [OUTPUT/3865_Sunday_June_05_2022_11_32_17_AM_76211693/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 6.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ + y = arctan (x)

1.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x2 + 1

q(x) = arctan (x)
x2 + 1

Hence the ode is

y′ + y

x2 + 1 = arctan (x)
x2 + 1
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The integrating factor µ is

µ = e
∫ 1

x2+1dx

= earctan(x)

The ode becomes

d
dx(µy) = (µ)

(
arctan (x)
x2 + 1

)
d
dx
(
earctan(x)y

)
=
(
earctan(x)

)(arctan (x)
x2 + 1

)
d
(
earctan(x)y

)
=
(
arctan (x) earctan(x)

x2 + 1

)
dx

Integrating gives

earctan(x)y =
∫ arctan (x) earctan(x)

x2 + 1 dx

earctan(x)y = arctan (x) earctan(x) − earctan(x) + c1

Dividing both sides by the integrating factor µ = earctan(x) results in

y = e− arctan(x)(arctan (x) earctan(x) − earctan(x)
)
+ c1e− arctan(x)

which simplifies to

y = arctan (x)− 1 + c1e− arctan(x)

Summary
The solution(s) found are the following

(1)y = arctan (x)− 1 + c1e− arctan(x)
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Figure 44: Slope field plot

Verification of solutions

y = arctan (x)− 1 + c1e− arctan(x)

Verified OK.

1.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + arctan (x)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− arctan(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− arctan(x)dy

Which results in

S = earctan(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + arctan (x)
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = earctan(x)y
x2 + 1

Sy = earctan(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= arctan (x) earctan(x)

x2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= arctan (R) earctan(R)

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) earctan(R) − earctan(R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

earctan(x)y = arctan (x) earctan(x) − earctan(x) + c1

Which simplifies to

(y − arctan (x) + 1) earctan(x) − c1 = 0

Which gives

y =
(
arctan (x) earctan(x) − earctan(x) + c1

)
e− arctan(x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y+arctan(x)
x2+1

dS
dR

= arctan(R)earctan(R)

R2+1

R = x

S = earctan(x)y

Summary
The solution(s) found are the following

(1)y =
(
arctan (x) earctan(x) − earctan(x) + c1

)
e− arctan(x)
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Figure 45: Slope field plot

Verification of solutions

y =
(
arctan (x) earctan(x) − earctan(x) + c1

)
e− arctan(x)

Verified OK.

1.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy = (−y + arctan (x)) dx

(y − arctan (x)) dx+
(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − arctan (x)
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − arctan (x))

= 1

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((1)− (2x))

= 1− 2x
x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1−2x

x2+1 dx

The result of integrating gives

µ = e− ln
(
x2+1

)
+arctan(x)

= earctan(x)
x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= earctan(x)
x2 + 1 (y − arctan (x))

= (y − arctan (x)) earctan(x)
x2 + 1

And

N = µN

= earctan(x)
x2 + 1

(
x2 + 1

)
= earctan(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(y − arctan (x)) earctan(x)
x2 + 1

)
+
(
earctan(x)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ (y − arctan (x)) earctan(x)
x2 + 1 dx

(3)φ = (y − arctan (x) + 1) earctan(x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= earctan(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= earctan(x). Therefore equation (4) becomes

(5)earctan(x) = earctan(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − arctan (x) + 1) earctan(x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − arctan (x) + 1) earctan(x)
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Summary
The solution(s) found are the following

(1)(y − arctan (x) + 1) earctan(x) = c1

Figure 46: Slope field plot

Verification of solutions

(y − arctan (x) + 1) earctan(x) = c1

Verified OK.

1.18.4 Maple step by step solution

Let’s solve
(x2 + 1) y′ + y = arctan (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x2+1 +
arctan(x)
x2+1
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x2+1 = arctan(x)
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x2+1

)
= µ(x) arctan(x)

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x2+1

• Solve to find the integrating factor
µ(x) = earctan(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) arctan(x)
x2+1 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) arctan(x)
x2+1 dx+ c1

• Solve for y

y =
∫ µ(x) arctan(x)

x2+1 dx+c1

µ(x)

• Substitute µ(x) = earctan(x)

y =
∫ arctan(x)earctan(x)

x2+1 dx+c1

earctan(x)

• Evaluate the integrals on the rhs

y = arctan(x)earctan(x)−earctan(x)+c1
earctan(x)

• Simplify
y = arctan (x)− 1 + c1e− arctan(x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((1+x^2)*diff(y(x),x)+y(x)=arctan(x),y(x), singsol=all)� �

y(x) = arctan (x)− 1 + e− arctan(x)c1

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 18� �
DSolve[(1+x^2)*y'[x]+y[x]==ArcTan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctan(x) + c1e
− arctan(x) − 1
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1.19 problem 10.1
1.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 223
1.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 224
1.19.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 227
1.19.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 230
1.19.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 233
1.19.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 235

Internal problem ID [4373]
Internal file name [OUTPUT/3866_Sunday_June_05_2022_11_32_25_AM_87361032/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 10.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−x2 + 1

)
z′ − xz − axz2 = 0

1.19.1 Solving as separable ode

In canonical form the ODE is

z′ = F (x, z)
= f(x)g(z)

= −xz(az + 1)
x2 − 1

Where f(x) = − x
x2−1 and g(z) = z(az + 1). Integrating both sides gives

1
z (az + 1) dz = − x

x2 − 1 dx
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∫ 1
z (az + 1) dz =

∫
− x

x2 − 1 dx

− ln (az + 1) + ln (z) = − ln (x− 1)
2 − ln (x+ 1)

2 + c1

Raising both side to exponential gives

e− ln(az+1)+ln(z) = e−
ln(x−1)

2 − ln(x+1)
2 +c1

Which simplifies to
z

az + 1 = c2e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

z = − c2
√
x+ 1

√
x− 1

(
−1 + c2a√

x+1
√
x−1

)
Summary
The solution(s) found are the following

(1)z = − c2
√
x+ 1

√
x− 1

(
−1 + c2a√

x+1
√
x−1

)
Verification of solutions

z = − c2
√
x+ 1

√
x− 1

(
−1 + c2a√

x+1
√
x−1

)
Verified OK.

1.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

z′ = −xz(az + 1)
x2 − 1

z′ = ω(x, z)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηz − ξx)− ω2ξz − ωxξ − ωzη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 36: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, z) = −x2 − 1
x

η(x, z) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, z) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dz

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂z

)
S(x, z) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = z

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x2−1
x

dx

Which results in

S = − ln (x− 1)
2 − ln (x+ 1)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, z)Sz

Rx + ω(x, z)Rz
(2)

Where in the above Rx, Rz, Sx, Sz are all partial derivatives and ω(x, z) is the right
hand side of the original ode given by

ω(x, z) = −xz(az + 1)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 0
Rz = 1

Sx = − x

x2 − 1
Sz = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

z (az + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, z
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (Ra+ 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (Ra+ 1) + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, z coordinates. This
results in

− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (az + 1) + ln (z) + c1

Which simplifies to

− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (az + 1) + ln (z) + c1

Summary
The solution(s) found are the following

(1)− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (az + 1) + ln (z) + c1

Verification of solutions

− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (az + 1) + ln (z) + c1

Verified OK.

1.19.3 Solving as bernoulli ode

In canonical form, the ODE is

z′ = F (x, z)

= −xz(az + 1)
x2 − 1

This is a Bernoulli ODE.
z′ = − x

x2 − 1z −
ax

x2 − 1z
2 (1)

The standard Bernoulli ODE has the form

z′ = f0(x)z + f1(x)zn (2)

The first step is to divide the above equation by zn which gives

z′

zn
= f0(x)z1−n + f1(x) (3)
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The next step is use the substitution r = z1−n in equation (3) which generates a new
ODE in r(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution z(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − x

x2 − 1
f1(x) = − ax

x2 − 1
n = 2

Dividing both sides of ODE (1) by zn = z2 gives

z′
1
z2

= − x

(x2 − 1) z − ax

x2 − 1 (4)

Let

r = z1−n

= 1
z

(5)

Taking derivative of equation (5) w.r.t x gives

r′ = − 1
z2
z′ (6)

Substituting equations (5) and (6) into equation (4) gives

−r′(x) = − xr(x)
x2 − 1 − ax

x2 − 1
r′ = xr

x2 − 1 + ax

x2 − 1 (7)

The above now is a linear ODE in r(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r′(x) + p(x)r(x) = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = ax

x2 − 1
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Hence the ode is

r′(x)− xr(x)
x2 − 1 = ax

x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

µ = 1√
x+ 1

√
x− 1

The ode becomes

d
dx(µr) = (µ)

(
ax

x2 − 1

)
d
dx

(
r√

x+ 1
√
x− 1

)
=
(

1√
x+ 1

√
x− 1

)(
ax

x2 − 1

)
d
(

r√
x+ 1

√
x− 1

)
=
(

ax

(x2 − 1)
√
x+ 1

√
x− 1

)
dx

Integrating gives

r√
x+ 1

√
x− 1

=
∫

ax

(x2 − 1)
√
x+ 1

√
x− 1

dx

r√
x+ 1

√
x− 1

= −
√
x− 1

√
x+ 1 a

x2 − 1 + c1

Dividing both sides by the integrating factor µ = 1√
x+1

√
x−1 results in

r(x) = −(x+ 1) (x− 1) a
x2 − 1 + c1

√
x+ 1

√
x− 1

which simplifies to

r(x) = −a+ c1
√
x+ 1

√
x− 1

Replacing r in the above by 1
z
using equation (5) gives the final solution.

1
z
= −a+ c1

√
x+ 1

√
x− 1
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Or

z = 1
−a+ c1

√
x+ 1

√
x− 1

Summary
The solution(s) found are the following

(1)z = 1
−a+ c1

√
x+ 1

√
x− 1

Verification of solutions

z = 1
−a+ c1

√
x+ 1

√
x− 1

Verified OK.

1.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, z) dx+N(x, z) dz = 0 (1A)

Therefore (
− 1
z (az + 1)

)
dz =

(
x

x2 − 1

)
dx(

− x

x2 − 1

)
dx+

(
− 1
z (az + 1)

)
dz = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, z) = − x

x2 − 1
N(x, z) = − 1

z (az + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂z
= ∂N

∂x

Using result found above gives

∂M

∂z
= ∂

∂z

(
− x

x2 − 1

)
= 0

And

∂N

∂x
= ∂

∂x

(
− 1
z (az + 1)

)
= 0

Since ∂M
∂z

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, z)

∂φ

∂x
= M (1)

∂φ

∂z
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 − 1 dx

(3)φ = − ln (x− 1)
2 − ln (x+ 1)

2 + f(z)

Where f(z) is used for the constant of integration since φ is a function of both x and
z. Taking derivative of equation (3) w.r.t z gives

(4)∂φ

∂z
= 0 + f ′(z)

But equation (2) says that ∂φ
∂z

= − 1
z(az+1) . Therefore equation (4) becomes

(5)− 1
z (az + 1) = 0 + f ′(z)

Solving equation (5) for f ′(z) gives

f ′(z) = − 1
z (az + 1)

Integrating the above w.r.t z gives∫
f ′(z) dz =

∫ (
− 1
z (az + 1)

)
dz

f(z) = ln (az + 1)− ln (z) + c1

Where c1 is constant of integration. Substituting result found above for f(z) into
equation (3) gives φ

φ = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (az + 1)− ln (z) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (az + 1)− ln (z)
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Summary
The solution(s) found are the following

(1)− ln (x− 1)
2 − ln (x+ 1)

2 + ln (az + 1)− ln (z) = c1

Verification of solutions

− ln (x− 1)
2 − ln (x+ 1)

2 + ln (az + 1)− ln (z) = c1

Verified OK.

1.19.5 Solving as riccati ode

In canonical form the ODE is

z′ = F (x, z)

= −xz(az + 1)
x2 − 1

This is a Riccati ODE. Comparing the ODE to solve

z′ = − x z2a

x2 − 1 − xz

x2 − 1
With Riccati ODE standard form

z′ = f0(x) + f1(x)z + f2(x)z2

Shows that f0(x) = 0, f1(x) = − x
x2−1 and f2(x) = − ax

x2−1 . Let

z = −u′

f2u

= −u′

− axu
x2−1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − a

x2 − 1 + 2a x2

(x2 − 1)2

f1f2 =
a x2

(x2 − 1)2

f 2
2 f0 = 0
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Substituting the above terms back in equation (2) gives

−axu′′(x)
x2 − 1 −

(
− a

x2 − 1 + 3a x2

(x2 − 1)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2√

x2 − 1

The above shows that
u′(x) = − c2x

(x2 − 1)
3
2

Using the above in (1) gives the solution

z = − c2
√
x2 − 1 a

(
c1 + c2√

x2−1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

z = − 1
a
(
c3
√
x2 − 1 + 1

)
Summary
The solution(s) found are the following

(1)z = − 1
a
(
c3
√
x2 − 1 + 1

)
Verification of solutions

z = − 1
a
(
c3
√
x2 − 1 + 1

)
Verified OK.
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1.19.6 Maple step by step solution

Let’s solve
(−x2 + 1) z′ − xz − axz2 = 0

• Highest derivative means the order of the ODE is 1
z′

• Separate variables
z′

z(az+1) = − x
(x−1)(x+1)

• Integrate both sides with respect to x∫
z′

z(az+1)dx =
∫
− x

(x−1)(x+1)dx+ c1

• Evaluate integral
− ln (az + 1) + ln (z) = − ln((x−1)(x+1))

2 + c1

• Solve for z{
z = − e2c1a−

√
e2c1x2−e2c1

e2c1a2−x2+1 , z = − e2c1a+
√

e2c1x2−e2c1
e2c1a2−x2+1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve((1-x^2)*diff(z(x),x)-x*z(x)=a*x*z(x)^2,z(x), singsol=all)� �

z(x) = 1√
x− 1

√
1 + x c1 − a
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3 Solution by Mathematica
Time used: 3.943 (sec). Leaf size: 47� �
DSolve[(1-x^2)*z'[x]-x*z[x]==a*x*z[x]^2,z[x],x,IncludeSingularSolutions -> True]� �

z(x) → − ec1

−
√
1− x2 + aec1

z(x) → 0

z(x) → −1
a
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1.20 problem 10.2
1.20.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 237
1.20.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 240
1.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 243

Internal problem ID [4374]
Internal file name [OUTPUT/3867_Sunday_June_05_2022_11_32_35_AM_44700999/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 10.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

3z2z′ − az3 = x+ 1

1.20.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

z′ = a z3 + x+ 1
3z2

z′ = ω(x, z)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηz − ξx)− ω2ξz − ωxξ − ωzη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, z) = 0

η(x, z) = eax
z2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, z) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dz

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂z

)
S(x, z) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eax
z2

dy

Which results in

S = z3e−ax

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, z)Sz

Rx + ω(x, z)Rz
(2)

Where in the above Rx, Rz, Sx, Sz are all partial derivatives and ω(x, z) is the right
hand side of the original ode given by

ω(x, z) = a z3 + x+ 1
3z2

Evaluating all the partial derivatives gives

Rx = 1
Rz = 0

Sx = −z3a e−ax

3
Sz = z2e−ax

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−ax(x+ 1)

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, z
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−aR(R + 1)

3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(aR + a+ 1) e−aR

3a2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, z coordinates. This
results in

z3e−ax

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Which simplifies to

z3e−ax

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Summary
The solution(s) found are the following

(1)z3e−ax

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Verification of solutions

z3e−ax

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Verified OK.

1.20.2 Solving as bernoulli ode

In canonical form, the ODE is

z′ = F (x, z)

= a z3 + x+ 1
3z2

This is a Bernoulli ODE.
z′ = a

3z +
x

3 + 1
3
1
z2

(1)

The standard Bernoulli ODE has the form

z′ = f0(x)z + f1(x)zn (2)
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The first step is to divide the above equation by zn which gives

z′

zn
= f0(x)z1−n + f1(x) (3)

The next step is use the substitution r = z1−n in equation (3) which generates a new
ODE in r(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution z(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
a

3
f1(x) =

x

3 + 1
3

n = −2

Dividing both sides of ODE (1) by zn = 1
z2

gives

z′z2 = a z3

3 + x

3 + 1
3 (4)

Let

r = z1−n

= z3 (5)

Taking derivative of equation (5) w.r.t x gives

r′ = 3z2z′ (6)

Substituting equations (5) and (6) into equation (4) gives

r′(x)
3 = ar(x)

3 + x

3 + 1
3

r′ = ar + x+ 1 (7)

The above now is a linear ODE in r(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r′(x) + p(x)r(x) = q(x)

Where here

p(x) = −a

q(x) = x+ 1
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Hence the ode is

r′(x)− ar(x) = x+ 1

The integrating factor µ is

µ = e
∫
−adx

= e−ax

The ode becomes
d
dx(µr) = (µ) (x+ 1)

d
dx
(
e−axr

)
=
(
e−ax

)
(x+ 1)

d
(
e−axr

)
=
(
e−ax(x+ 1)

)
dx

Integrating gives

e−axr =
∫

e−ax(x+ 1) dx

e−axr = −(ax+ a+ 1) e−ax

a2
+ c1

Dividing both sides by the integrating factor µ = e−ax results in

r(x) = −eax(ax+ a+ 1) e−ax

a2
+ c1eax

which simplifies to

r(x) = c1eaxa2 − 1 + (−1− x) a
a2

Replacing r in the above by z3 using equation (5) gives the final solution.

z3 = c1eaxa2 − 1 + (−1− x) a
a2

Solving for z gives

z(x) = ((c1eaxa2 − 1 + (−1− x) a) a)
1
3

a

z(x) =
((c1eaxa2 − 1 + (−1− x) a) a)

1
3
(
i
√
3− 1

)
2a

z(x) = −
((c1eaxa2 − 1 + (−1− x) a) a)

1
3
(
1 + i

√
3
)

2a

242



Summary
The solution(s) found are the following

(1)z = ((c1eaxa2 − 1 + (−1− x) a) a)
1
3

a

(2)z =
((c1eaxa2 − 1 + (−1− x) a) a)

1
3
(
i
√
3− 1

)
2a

(3)z = −
((c1eaxa2 − 1 + (−1− x) a) a)

1
3
(
1 + i

√
3
)

2a
Verification of solutions

z = ((c1eaxa2 − 1 + (−1− x) a) a)
1
3

a

Verified OK.

z =
((c1eaxa2 − 1 + (−1− x) a) a)

1
3
(
i
√
3− 1

)
2a

Verified OK.

z = −
((c1eaxa2 − 1 + (−1− x) a) a)

1
3
(
1 + i

√
3
)

2a

Verified OK.

1.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, z) dx+N(x, z) dz = 0 (1A)

Therefore (
3z2
)
dz =

(
a z3 + x+ 1

)
dx(

−a z3 − x− 1
)
dx+

(
3z2
)
dz = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, z) = −a z3 − x− 1
N(x, z) = 3z2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂z
= ∂N

∂x

Using result found above gives
∂M

∂z
= ∂

∂z

(
−a z3 − x− 1

)
= −3a z2

And
∂N

∂x
= ∂

∂x

(
3z2
)

= 0

244



Since ∂M
∂z

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂z
− ∂N

∂x

)
= 1

3z2
((
−3a z2

)
− (0)

)
= −a

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−adx

The result of integrating gives

µ = e−ax

= e−ax

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−ax
(
−a z3 − x− 1

)
= −e−ax

(
a z3 + x+ 1

)
And

N = µN

= e−ax
(
3z2
)

= 3z2e−ax

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dz
dx = 0(

−e−ax
(
a z3 + x+ 1

))
+
(
3z2e−ax

) dz
dx = 0

The following equations are now set up to solve for the function φ(x, z)
∂φ

∂x
= M (1)

∂φ

∂z
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−ax

(
a z3 + x+ 1

)
dx

(3)φ = (z3a2 + ax+ a+ 1) e−ax

a2
+ f(z)

Where f(z) is used for the constant of integration since φ is a function of both x and
z. Taking derivative of equation (3) w.r.t z gives

(4)∂φ

∂z
= 3z2e−ax + f ′(z)

But equation (2) says that ∂φ
∂z

= 3z2e−ax. Therefore equation (4) becomes

(5)3z2e−ax = 3z2e−ax + f ′(z)

Solving equation (5) for f ′(z) gives

f ′(z) = 0

Therefore
f(z) = c1

Where c1 is constant of integration. Substituting this result for f(z) into equation (3)
gives φ

φ = (z3a2 + ax+ a+ 1) e−ax

a2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(z3a2 + ax+ a+ 1) e−ax

a2

Summary
The solution(s) found are the following

(1)(z3a2 + ax+ a+ 1) e−ax

a2
= c1
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Verification of solutions

(z3a2 + ax+ a+ 1) e−ax

a2
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 106� �
dsolve(3*z(x)^2*diff(z(x),x)-a*z(x)^3=x+1,z(x), singsol=all)� �

z(x) = ((eaxc1a2 − 1 + (−1− x) a) a)
1
3

a

z(x) = −
((eaxc1a2 − 1 + (−1− x) a) a)

1
3
(
1 + i

√
3
)

2a

z(x) =
((eaxc1a2 − 1 + (−1− x) a) a)

1
3
(
i
√
3− 1

)
2a

3 Solution by Mathematica
Time used: 14.566 (sec). Leaf size: 111� �
DSolve[3*z[x]^2*z'[x]-a*z[x]^3==x+1,z[x],x,IncludeSingularSolutions -> True]� �

z(x) →
3
√
a2c1eax − a(x+ 1)− 1

a2/3

z(x) → −
3
√
−1 3
√

a2c1eax − a(x+ 1)− 1
a2/3

z(x) → (−1)2/3 3
√
a2c1eax − a(x+ 1)− 1

a2/3
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1.21 problem 10.3
1.21.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 248
1.21.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 251

Internal problem ID [4375]
Internal file name [OUTPUT/3868_Sunday_June_05_2022_11_32_51_AM_63725271/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 10.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

z′ + 2xz − 2a x3z3 = 0

1.21.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

z′ = 2a x3z3 − 2xz
z′ = ω(x, z)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηz − ξx)− ω2ξz − ωxξ − ωzη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, z) = 0
η(x, z) = z3e2x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, z) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dz

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂z

)
S(x, z) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

z3e2x2 dy

Which results in

S = −e−2x2

2z2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, z)Sz

Rx + ω(x, z)Rz
(2)

Where in the above Rx, Rz, Sx, Sz are all partial derivatives and ω(x, z) is the right
hand side of the original ode given by

ω(x, z) = 2a x3z3 − 2xz

Evaluating all the partial derivatives gives

Rx = 1
Rz = 0

Sx = 2x e−2x2

z2

Sz =
e−2x2

z3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x3e−2x2

a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, z
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R3e−2R2

a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(2R2 + 1) e−2R2
a

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, z coordinates. This
results in

−e−2x2

2z2 = −(2x2 + 1) e−2x2
a

4 + c1

Which simplifies to

−e−2x2

2z2 = −(2x2 + 1) e−2x2
a

4 + c1

Summary
The solution(s) found are the following

(1)−e−2x2

2z2 = −(2x2 + 1) e−2x2
a

4 + c1

Verification of solutions

−e−2x2

2z2 = −(2x2 + 1) e−2x2
a

4 + c1

Verified OK.

1.21.2 Solving as bernoulli ode

In canonical form, the ODE is

z′ = F (x, z)
= 2a x3z3 − 2xz

This is a Bernoulli ODE.
z′ = −2xz + 2a x3z3 (1)

The standard Bernoulli ODE has the form

z′ = f0(x)z + f1(x)zn (2)

The first step is to divide the above equation by zn which gives
z′

zn
= f0(x)z1−n + f1(x) (3)
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The next step is use the substitution r = z1−n in equation (3) which generates a new
ODE in r(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution z(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −2x
f1(x) = 2a x3

n = 3

Dividing both sides of ODE (1) by zn = z3 gives

z′
1
z3

= −2x
z2

+ 2a x3 (4)

Let

r = z1−n

= 1
z2

(5)

Taking derivative of equation (5) w.r.t x gives

r′ = − 2
z3
z′ (6)

Substituting equations (5) and (6) into equation (4) gives

−r′(x)
2 = −2r(x)x+ 2a x3

r′ = −4a x3 + 4xr (7)

The above now is a linear ODE in r(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r′(x) + p(x)r(x) = q(x)

Where here

p(x) = −4x
q(x) = −4a x3

Hence the ode is

r′(x)− 4r(x)x = −4a x3
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The integrating factor µ is

µ = e
∫
−4xdx

= e−2x2

The ode becomes
d
dx(µr) = (µ)

(
−4a x3)

d
dx

(
e−2x2

r
)
=
(
e−2x2

) (
−4a x3)

d
(
e−2x2

r
)
=
(
−4x3e−2x2

a
)
dx

Integrating gives

e−2x2
r =

∫
−4x3e−2x2

a dx

e−2x2
r = (2x2 + 1) e−2x2

a

2 + c1

Dividing both sides by the integrating factor µ = e−2x2 results in

r(x) = e2x2(2x2 + 1) e−2x2
a

2 + c1e2x
2

which simplifies to

r(x) = a x2 + a

2 + c1e2x
2

Replacing r in the above by 1
z2

using equation (5) gives the final solution.
1
z2

= a x2 + a

2 + c1e2x
2

Solving for z gives

z(x) = 2√
4a x2 + 4c1e2x2 + 2a

z(x) = − 2√
4a x2 + 4c1e2x2 + 2a

Summary
The solution(s) found are the following

(1)z = 2√
4a x2 + 4c1e2x2 + 2a

(2)z = − 2√
4a x2 + 4c1e2x2 + 2a
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Verification of solutions

z = 2√
4a x2 + 4c1e2x2 + 2a

Verified OK.

z = − 2√
4a x2 + 4c1e2x2 + 2a

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 53� �
dsolve(diff(z(x),x)+2*x*z(x)=2*a*x^3*z(x)^3,z(x), singsol=all)� �

z(x) = − 2√
4a x2 + 4 e2x2c1 + 2a

z(x) = 2√
4a x2 + 4 e2x2c1 + 2a

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 29� �
DSolve[z'[x]+2*x*z[x]==2*a*x^3*z[x],z[x],x,IncludeSingularSolutions -> True]� �

z(x) → c1e
ax4
2 −x2

z(x) → 0
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1.22 problem 10.4
1.22.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 255
1.22.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 258

Internal problem ID [4376]
Internal file name [OUTPUT/3869_Sunday_June_05_2022_11_33_02_AM_57925054/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 10.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

z′ + z cos (x)− zn sin (2x) = 0

1.22.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

z′ = −z cos (x) + zn sin (2x)
z′ = ω(x, z)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηz − ξx)− ω2ξz − ωxξ − ωzη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, z) = 0
η(x, z) = zne(n−1) sin(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, z) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dz

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂z

)
S(x, z) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

zne(n−1) sin(x)dy

Which results in

S = −z z−ne−(n−1) sin(x)

n− 1
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, z)Sz

Rx + ω(x, z)Rz
(2)

Where in the above Rx, Rz, Sx, Sz are all partial derivatives and ω(x, z) is the right
hand side of the original ode given by

ω(x, z) = −z cos (x) + zn sin (2x)

Evaluating all the partial derivatives gives

Rx = 1
Rz = 0
Sx = z−n+1 cos (x) e−(n−1) sin(x)

Sz = z−ne−(n−1) sin(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 e−(n−1) sin(x) cos (x) sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, z
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2 e−(n−1) sin(R) cos (R) sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1(n− 1)2 − 2 e−(n−1) sin(R)(1 + (n− 1) sin (R))
(n− 1)2

(4)

To complete the solution, we just need to transform (4) back to x, z coordinates. This
results in

−z−n+1e−(n−1) sin(x)

n− 1 = c1(n− 1)2 − 2 e−(n−1) sin(x)(1 + (n− 1) sin (x))
(n− 1)2

Which simplifies to

((−n+ 1) z−n+1 + 2 + (2n− 2) sin (x)) e−(n−1) sin(x) − c1(n− 1)2

(n− 1)2
= 0

Which gives

z = e−
sin(x)n+ln

(
2 sin(x)e−(n−1) sin(x)n−c1n

2−2 sin(x)e−(n−1) sin(x)+2c1n+2 e−(n−1) sin(x)−c1
n−1

)
−sin(x)

n−1

Summary
The solution(s) found are the following

(1)z = e−
sin(x)n+ln

(
2 sin(x)e−(n−1) sin(x)n−c1n

2−2 sin(x)e−(n−1) sin(x)+2c1n+2 e−(n−1) sin(x)−c1
n−1

)
−sin(x)

n−1

Verification of solutions

z = e−
sin(x)n+ln

(
2 sin(x)e−(n−1) sin(x)n−c1n

2−2 sin(x)e−(n−1) sin(x)+2c1n+2 e−(n−1) sin(x)−c1
n−1

)
−sin(x)

n−1

Verified OK.

1.22.2 Solving as bernoulli ode

In canonical form, the ODE is

z′ = F (x, z)
= −z cos (x) + zn sin (2x)

This is a Bernoulli ODE.

z′ = − cos (x) z + 2 sin (x) cos (x) zn (1)
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The standard Bernoulli ODE has the form

z′ = f0(x)z + f1(x)zn (2)

The first step is to divide the above equation by zn which gives

z′

zn
= f0(x)z1−n + f1(x) (3)

The next step is use the substitution r = z1−n in equation (3) which generates a new
ODE in r(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution z(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − cos (x)
f1(x) = 2 sin (x) cos (x)

n = n

Dividing both sides of ODE (1) by zn = zn gives

z′z−n = − cos (x) z−n+1 + 2 sin (x) cos (x) (4)

Let

r = z1−n

= z−n+1 (5)

Taking derivative of equation (5) w.r.t x gives

r′ = (−n+ 1) z−nz′ (6)

Substituting equations (5) and (6) into equation (4) gives

r′(x)
−n+ 1 = − cos (x) r(x) + 2 sin (x) cos (x)

r′ = −(−n+ 1) cos (x) r + 2(−n+ 1) sin (x) cos (x) (7)

The above now is a linear ODE in r(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r′(x) + p(x)r(x) = q(x)
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Where here

p(x) = −(n− 1) cos (x)
q(x) = −(n− 1) sin (2x)

Hence the ode is

r′(x)− (n− 1) cos (x) r(x) = −(n− 1) sin (2x)

The integrating factor µ is

µ = e
∫
−(n−1) cos(x)dx

= e(−n+1) sin(x)

Which simplifies to
µ = e−(n−1) sin(x)

The ode becomes
d
dx(µr) = (µ) (−(n− 1) sin (2x))

d
dx
(
e−(n−1) sin(x)r

)
=
(
e−(n−1) sin(x)) (−(n− 1) sin (2x))

d
(
e−(n−1) sin(x)r

)
=
(
−(n− 1) sin (2x) e−(n−1) sin(x)) dx

Integrating gives

e−(n−1) sin(x)r =
∫

−(n− 1) sin (2x) e−(n−1) sin(x) dx

e−(n−1) sin(x)r = 2 e(−n+1) sin(x)(−n+ 1) sin (x)− 2 e(−n+1) sin(x)

−n+ 1 + c1

Dividing both sides by the integrating factor µ = e−(n−1) sin(x) results in

r(x) =
2 e(n−1) sin(x)(e(−n+1) sin(x)(−n+ 1) sin (x)− e(−n+1) sin(x))

−n+ 1 + c1e(n−1) sin(x)

which simplifies to

r(x) = (n− 1) c1e(n−1) sin(x) + 2 + (2n− 2) sin (x)
n− 1

Replacing r in the above by z−n+1 using equation (5) gives the final solution.

z−n+1 = (n− 1) c1e(n−1) sin(x) + 2 + (2n− 2) sin (x)
n− 1
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Summary
The solution(s) found are the following

(1)z−n+1 = (n− 1) c1e(n−1) sin(x) + 2 + (2n− 2) sin (x)
n− 1

Verification of solutions

z−n+1 = (n− 1) c1e(n−1) sin(x) + 2 + (2n− 2) sin (x)
n− 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
dsolve(diff(z(x),x)+z(x)*cos(x)=z(x)^n*sin(2*x),z(x), singsol=all)� �

z(x) =
(
esin(x)(n−1)c1n− esin(x)(n−1)c1 + 2 sin (x)n− 2 sin (x) + 2

n− 1

)− 1
n−1

3 Solution by Mathematica
Time used: 6.964 (sec). Leaf size: 36� �
DSolve[z'[x]+z[x]*Cos[x]==z[x]^n*Sin[2*x],z[x],x,IncludeSingularSolutions -> True]� �

z(x) →
(
c1e

(n−1) sin(x) + 2
n− 1 + 2 sin(x)

)
1

1−n
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1.23 problem 10.5
1.23.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 262
1.23.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 266
1.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 270
1.23.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 275

Internal problem ID [4377]
Internal file name [OUTPUT/3870_Sunday_June_05_2022_11_33_11_AM_64842096/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 10.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

xy′ + y − ln (x) y2 = 0

1.23.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(ln (x) y − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 45: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2x
dy

Which results in

S = − 1
yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(ln (x) y − 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y x2

Sy =
1
y2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ln (x)

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= ln (R)

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
R

− 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
yx

= − ln (x)
x

− 1
x
+ c1

Which simplifies to

−yc1x+ ln (x) y + y − 1
xy

= 0

Which gives

y = 1
−c1x+ ln (x) + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(ln(x)y−1)
x

dS
dR

= ln(R)
R2

R = x

S = − 1
yx
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Summary
The solution(s) found are the following

(1)y = 1
−c1x+ ln (x) + 1

Figure 47: Slope field plot

Verification of solutions

y = 1
−c1x+ ln (x) + 1

Verified OK.

1.23.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(ln (x) y − 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + ln (x)

x
y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) =
ln (x)
x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
yx

+ ln (x)
x

(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

+ ln (x)
x

w′ = w

x
− ln (x)

x
(7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = − ln (x)
x

Hence the ode is

w′(x)− w(x)
x

= − ln (x)
x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
− ln (x)

x

)
d
dx

(w
x

)
=
(
1
x

)(
− ln (x)

x

)
d
(w
x

)
=
(
− ln (x)

x2

)
dx

Integrating gives

w

x
=
∫

− ln (x)
x2 dx

w

x
= ln (x)

x
+ 1

x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = x

(
ln (x)
x

+ 1
x

)
+ c1x

which simplifies to

w(x) = c1x+ ln (x) + 1
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Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= c1x+ ln (x) + 1

Or

y = 1
c1x+ ln (x) + 1

Summary
The solution(s) found are the following

(1)y = 1
c1x+ ln (x) + 1

Figure 48: Slope field plot

Verification of solutions

y = 1
c1x+ ln (x) + 1

Verified OK.
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1.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−y + ln (x) y2

)
dx(

− ln (x) y2 + y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − ln (x) y2 + y

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− ln (x) y2 + y

)
= −2 ln (x) y + 1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−2 ln (x) y + 1)− (1))

= −2 ln (x) y
x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (ln (x) y − 1)((1)− (−2 ln (x) y + 1))

= − 2 ln (x)
ln (x) y − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (−2 ln (x) y + 1)
x (− ln (x) y2 + y)− y (x)

= − 2
yx

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
x2y2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x2y2

(
− ln (x) y2 + y

)
= − ln (x) y + 1

y x2

And

N = µN

= 1
x2y2

(x)

= 1
y2x
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

− ln (x) y + 1
y x2

)
+
(

1
y2x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− ln (x) y + 1

y x2 dx

(3)φ = ln (x) y + y − 1
xy

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1 + ln (x)

xy
− ln (x) y + y − 1

x y2
+ f ′(y)

= 1
y2x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2x

. Therefore equation (4) becomes

(5)1
y2x

= 1
y2x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x) y + y − 1
xy

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x) y + y − 1

xy

The solution becomes

y = 1
−c1x+ ln (x) + 1

Summary
The solution(s) found are the following

(1)y = 1
−c1x+ ln (x) + 1

Figure 49: Slope field plot
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Verification of solutions

y = 1
−c1x+ ln (x) + 1

Verified OK.

1.23.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(ln (x) y − 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = ln (x) y2
x

− y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = ln(x)

x
. Let

y = −u′

f2u

= −u′

ln(x)u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − ln (x)

x2 + 1
x2

f1f2 = − ln (x)
x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

ln (x)u′′(x)
x

−
(
−2 ln (x)

x2 + 1
x2

)
u′(x) = 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = −c2 ln (x) + c1x− c2
x

The above shows that

u′(x) = c2 ln (x)
x2

Using the above in (1) gives the solution

y = − c2
−c2 ln (x) + c1x− c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 1
−c3x+ ln (x) + 1

Summary
The solution(s) found are the following

(1)y = 1
−c3x+ ln (x) + 1
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Figure 50: Slope field plot

Verification of solutions

y = 1
−c3x+ ln (x) + 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x*diff(y(x),x)+y(x)=y(x)^2*ln(x),y(x), singsol=all)� �

y(x) = 1
1 + c1x+ ln (x)

3 Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 20� �
DSolve[x*y'[x]+y[x]==y[x]^2*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
log(x) + c1x+ 1

y(x) → 0

278



2 Chapter 3
2.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
2.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
2.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
2.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
2.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
2.8 problem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
2.9 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

279



2.1 problem 1
2.1.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 280
2.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 283

Internal problem ID [4378]
Internal file name [OUTPUT/3871_Sunday_June_05_2022_11_33_19_AM_2745998/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

3xy2 +
(
y3 + 3yx2) y′ = −x3

2.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

3y x2 + y3
)
dy =

(
−x3 − 3y2x

)
dx(

x3 + 3y2x
)
dx+

(
3y x2 + y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x3 + 3y2x
N(x, y) = 3y x2 + y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x3 + 3y2x

)
= 6xy

And
∂N

∂x
= ∂

∂x

(
3y x2 + y3

)
= 6xy

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3 + 3y2x dx

(3)φ = (x2 + 3y2)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3
(
x2 + 3y2

)
y + f ′(y)

But equation (2) says that ∂φ
∂y

= 3y x2 + y3. Therefore equation (4) becomes

(5)3y x2 + y3 = 3
(
x2 + 3y2

)
y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −8y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−8y3

)
dy

f(y) = −2y4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x2 + 3y2)2

4 − 2y4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2 + 3y2)2

4 − 2y4
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Summary
The solution(s) found are the following

(1)(x2 + 3y2)2

4 − 2y4 = c1

Figure 51: Slope field plot

Verification of solutions

(x2 + 3y2)2

4 − 2y4 = c1

Verified OK.

2.1.2 Maple step by step solution

Let’s solve
3xy2 + (y3 + 3yx2) y′ = −x3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
6xy = 6xy

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x3 + 3y2x) dx+ f1(y)

• Evaluate integral

F (x, y) =
(
x2+3y2

)2
4 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
3y x2 + y3 = 3(x2 + 3y2) y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −3(x2 + 3y2) y + 3y x2 + y3

• Solve for f1(y)
f1(y) = −2y4

• Substitute f1(y) into equation for F (x, y)

F (x, y) =
(
x2+3y2

)2
4 − 2y4

• Substitute F (x, y) into the solution of the ODE(
x2+3y2

)2
4 − 2y4 = c1

• Solve for y{
y =

√
−3x2 − 2

√
2x4 + c1, y =

√
−3x2 + 2

√
2x4 + c1, y = −

√
−3x2 − 2

√
2x4 + c1, y = −

√
−3x2 + 2

√
2x4 + c1

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 119� �
dsolve((x^3+3*x*y(x)^2)+(y(x)^3+3*x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

√
−3c1x2 −

√
8c21x4 + 1

√
c1

y(x) =

√
−3c1x2 +

√
8c21x4 + 1

√
c1

y(x) = −

√
−3c1x2 −

√
8c21x4 + 1

√
c1

y(x) = −

√
−3c1x2 +

√
8c21x4 + 1

√
c1
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3 Solution by Mathematica
Time used: 8.383 (sec). Leaf size: 245� �
DSolve[(x^3+3*x*y[x]^2)+(y[x]^3+3*x^2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−3x2 −

√
8x4 + e4c1

y(x) →
√

−3x2 −
√
8x4 + e4c1

y(x) → −
√
−3x2 +

√
8x4 + e4c1

y(x) →
√

−3x2 +
√
8x4 + e4c1

y(x) → −
√
−2

√
2
√
x4 − 3x2

y(x) →
√

−2
√
2
√
x4 − 3x2

y(x) → −
√
2
√
2
√
x4 − 3x2

y(x) →
√

2
√
2
√
x4 − 3x2
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2.2 problem 2
2.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 287
2.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 291

Internal problem ID [4379]
Internal file name [OUTPUT/3872_Sunday_June_05_2022_11_33_25_AM_40343060/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _Bernoulli]

y2

x2 − 2yy′
x

= −1

2.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−2y

x

)
dy =

(
−1− y2

x2

)
dx(

1 + y2

x2

)
dx+

(
−2y

x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1 + y2

x2

N(x, y) = −2y
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
1 + y2

x2

)
= 2y

x2

And

∂N

∂x
= ∂

∂x

(
−2y

x

)
= 2y

x2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
1 + y2

x2 dx

(3)φ = x− y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2y
x
. Therefore equation (4) becomes

(5)−2y
x

= −2y
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x− y2

x
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− y2

x

Summary
The solution(s) found are the following

(1)x− y2

x
= c1

Figure 52: Slope field plot

Verification of solutions

x− y2

x
= c1

Verified OK.
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2.2.2 Maple step by step solution

Let’s solve
y2

x2 − 2yy′
x

= −1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2y
x2 = 2y

x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

1 + y2

x2

)
dx+ f1(y)

• Evaluate integral

F (x, y) = x− y2

x
+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−2y

x
= −2y

x
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = x− y2

x

• Substitute F (x, y) into the solution of the ODE

x− y2

x
= c1

• Solve for y{
y =

√
−c1x+ x2, y = −

√
−c1x+ x2

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((1+y(x)^2/x^2)-2*y(x)/x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
(x+ c1)x

y(x) = −
√
(x+ c1)x

3 Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 38� �
DSolve[(1+y[x]^2/x^2)-2*y[x]/x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x+ c1

y(x) →
√
x
√
x+ c1
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2.3 problem 3
2.3.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 293

Internal problem ID [4380]
Internal file name [OUTPUT/3873_Sunday_June_05_2022_11_33_30_AM_61368743/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

3x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

2.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2

− 3x2

y4

)
dy =

(
−3x
y3

)
dx(

3x
y3

)
dx+

(
1
y2

− 3x2

y4

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x
y3

N(x, y) = 1
y2

− 3x2

y4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3x
y3

)
= −9x

y4

And

∂N

∂x
= ∂

∂x

(
1
y2

− 3x2

y4

)
= −6x

y4
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

1
y2

− 3x2

y4

((
−9x
y4

)
−
(
−6x
y4

))
= 3x

3x2 − y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= y3

3x

((
−6x
y4

)
−
(
−9x
y4

))
= 1

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 1

y
dy

The result of integrating gives

µ = eln(y)

= y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y

(
3x
y3

)
= 3x

y2
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And

N = µN

= y

(
1
y2

− 3x2

y4

)
= −3x2 + y2

y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

3x
y2

)
+
(
−3x2 + y2

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3x
y2

dx

(3)φ = 3x2

2y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3x2

y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −3x2+y2

y3
. Therefore equation (4) becomes

(5)−3x2 + y2

y3
= −3x2

y3
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 3x2

2y2 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
3x2

2y2 + ln (y)

The solution becomes

y = e
LambertW

(
−3x2e−2c1

)
2 +c1

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
−3x2e−2c1

)
2 +c1
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Figure 53: Slope field plot

Verification of solutions

y = e
LambertW

(
−3x2e−2c1

)
2 +c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 22� �
dsolve((3*x/y(x)^3)+(1/y(x)^2-3*x^2/y(x)^4)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
3
√

− 1
LambertW (−3c1x2) x

3 Solution by Mathematica
Time used: 6.543 (sec). Leaf size: 66� �
DSolve[(3*x/y[x]^3)+(1/y[x]^2-3*x^2/y[x]^4)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − i
√
3x√

W (−3e−2c1x2)

y(x) → i
√
3x√

W (−3e−2c1x2)
y(x) → 0
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2.4 problem 4
2.4.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 300
2.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 304

Internal problem ID [4381]
Internal file name [OUTPUT/3874_Sunday_June_05_2022_11_33_39_AM_69767660/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _exact , _rational]

y′y + xy′

x2 + y2
− y

x2 + y2
= −x

2.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y + x

x2 + y2

)
dy =

(
−x+ y

x2 + y2

)
dx(

x− y

x2 + y2

)
dx+

(
y + x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x− y

x2 + y2

N(x, y) = y + x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x− y

x2 + y2

)
= −x2 + y2

(x2 + y2)2

And
∂N

∂x
= ∂

∂x

(
y + x

x2 + y2

)
= −x2 + y2

(x2 + y2)2

301



Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x− y

x2 + y2
dx

(3)φ = x2

2 − arctan
(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
(

x2

y2
+ 1
) + f ′(y)

= x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y + x
x2+y2

. Therefore equation (4) becomes

(5)y + x

x2 + y2
= x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2

2 − arctan
(
x

y

)
+ y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2

2 − arctan
(
x

y

)
+ y2

2

Summary
The solution(s) found are the following

(1)x2

2 − arctan
(
x

y

)
+ y2

2 = c1

Figure 54: Slope field plot

Verification of solutions

x2

2 − arctan
(
x

y

)
+ y2

2 = c1

Verified OK.
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2.4.2 Maple step by step solution

Let’s solve
y′y + xy′

x2+y2
− y

x2+y2
= −x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives

− 1
x2+y2

+ 2y2
(x2+y2)2 = 1

x2+y2
− 2x2

(x2+y2)2

◦ Simplify
−x2+y2

(x2+y2)2 = −x2+y2

(x2+y2)2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

x− y
x2+y2

)
dx+ f1(y)

• Evaluate integral

F (x, y) = x2

2 − arctan
(

x
y

)
+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y + x

x2+y2
= x

y2
(

x2
y2 +1

) + d
dy
f1(y)

• Isolate for d
dy
f1(y)
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d
dy
f1(y) = y + x

x2+y2
− x

y2
(

x2
y2 +1

)
• Solve for f1(y)

f1(y) = y2

2

• Substitute f1(y) into equation for F (x, y)

F (x, y) = x2

2 − arctan
(

x
y

)
+ y2

2

• Substitute F (x, y) into the solution of the ODE
x2

2 − arctan
(

x
y

)
+ y2

2 = c1

• Solve for y
y = − x

tan
(
RootOf

(
−x2 tan

(
_Z

)2
+2c1 tan

(
_Z

)2
−2 tan

(
_Z

)2_Z−x2
))

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -x/y(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- 1st order, canonical coordinates successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 26� �
dsolve(x+y(x)*diff(y(x),x)+x/(x^2+y(x)^2)*diff(y(x),x)- y(x)/(x^2+y(x)^2)=0,y(x), singsol=all)� �

y(x) = cot
(
RootOf

(
2c1 sin (_Z)2 − 2_Z sin (_Z)2 + x2))x

3 Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 31� �
DSolve[x+y[x]*y'[x]+x/(x^2+y[x]^2)*y'[x]- y[x]/(x^2+y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
− arctan

(
x

y(x)

)
+ x2

2 + y(x)2
2 = c1, y(x)

]
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2.5 problem 5
2.5.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 307
2.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 311

Internal problem ID [4382]
Internal file name [OUTPUT/3875_Sunday_June_05_2022_11_33_46_AM_38092062/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _dAlembert]

e
x
y + e

x
y

(
1− x

y

)
y′ = −1

2.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
e

x
y

(
1− x

y

))
dy =

(
−1− e

x
y

)
dx(

e
x
y + 1

)
dx+

(
e

x
y

(
1− x

y

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = e
x
y + 1

N(x, y) = e
x
y

(
1− x

y

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
e

x
y + 1

)
= −x e

x
y

y2

And

∂N

∂x
= ∂

∂x

(
e

x
y

(
1− x

y

))
= −x e

x
y

y2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
e

x
y + 1dx

(3)φ = y e
x
y + x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e

x
y − x e

x
y

y
+ f ′(y)

= −e
x
y (x− y)

y
+ f ′(y)

But equation (2) says that ∂φ
∂y

= e
x
y

(
1− x

y

)
. Therefore equation (4) becomes

(5)e
x
y

(
1− x

y

)
= −e

x
y (x− y)

y
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y e
x
y + x+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y e
x
y + x

The solution becomes
y = − x

LambertW
(
− x

−x+c1

)
Summary
The solution(s) found are the following

(1)y = − x

LambertW
(
− x

−x+c1

)

Figure 55: Slope field plot

Verification of solutions

y = − x

LambertW
(
− x

−x+c1

)
Verified OK.
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2.5.2 Maple step by step solution

Let’s solve

e
x
y + e

x
y

(
1− x

y

)
y′ = −1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives

−x e
x
y

y2
=

e
x
y
(
1−x

y

)
y

− e
x
y

y

◦ Simplify

−x e
x
y

y2
= −x e

x
y

y2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

e
x
y + 1

)
dx+ f1(y)

• Evaluate integral
F (x, y) = y e

x
y + x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative

e
x
y

(
1− x

y

)
= e

x
y − x e

x
y

y
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)
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d
dy
f1(y) = e

x
y

(
1− x

y

)
− e

x
y + x e

x
y

y

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = y e

x
y + x

• Substitute F (x, y) into the solution of the ODE
y e

x
y + x = c1

• Solve for y
y = − x

LambertW
(
− x

−x+c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve((1+exp(x/y(x)))+exp(x/y(x))*(1-x/y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − x

LambertW
(

xc1
c1x−1

)
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3 Solution by Mathematica
Time used: 1.182 (sec). Leaf size: 34� �
DSolve[(1+Exp[x/y[x]])+Exp[x/y[x]]*(1-x/y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W
(

x
x−ec1

)
y(x) → − x

W (1)
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2.6 problem 6
2.6.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 314
2.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 317

Internal problem ID [4383]
Internal file name [OUTPUT/3876_Sunday_June_05_2022_11_33_52_AM_65941304/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _exact , _rational , _Bernoulli]

ex
(
x2 + y2 + 2x

)
+ 2y exy′ = 0

2.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(2y ex) dy =
(
−ex

(
x2 + y2 + 2x

))
dx(

ex
(
x2 + y2 + 2x

))
dx+(2y ex) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ex
(
x2 + y2 + 2x

)
N(x, y) = 2y ex

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
ex
(
x2 + y2 + 2x

))
= 2y ex

And
∂N

∂x
= ∂

∂x
(2y ex)

= 2y ex

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex
(
x2 + y2 + 2x

)
dx

(3)φ =
(
x2 + y2

)
ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y ex + f ′(y)

But equation (2) says that ∂φ
∂y

= 2y ex. Therefore equation (4) becomes

(5)2y ex = 2y ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
x2 + y2

)
ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x2 + y2

)
ex

Summary
The solution(s) found are the following

(1)
(
x2 + y2

)
ex = c1
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Figure 56: Slope field plot

Verification of solutions (
x2 + y2

)
ex = c1

Verified OK.

2.6.2 Maple step by step solution

Let’s solve
ex(x2 + y2 + 2x) + 2y exy′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
2y ex = 2y ex

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
ex(x2 + y2 + 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = (x2 + y2) ex + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2y ex = 2y ex + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = (x2 + y2) ex

• Substitute F (x, y) into the solution of the ODE
(x2 + y2) ex = c1

• Solve for y{
y =

√
−ex(exx2−c1)

ex , y = −
√

−ex(exx2−c1)
ex

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(exp(x)*(x^2+y(x)^2+2*x)+2*y(x)*exp(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

e−xc1 − x2

y(x) = −
√
e−xc1 − x2

3 Solution by Mathematica
Time used: 5.67 (sec). Leaf size: 47� �
DSolve[Exp[x]*(x^2+y[x]^2+2*x)+2*y[x]*Exp[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + c1e−x

y(x) →
√

−x2 + c1e−x
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2.7 problem 7
2.7.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 320
2.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 323

Internal problem ID [4384]
Internal file name [OUTPUT/3877_Sunday_June_05_2022_11_33_58_AM_24987842/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

n cos (nx+my)−m sin (mx+ ny) + (m cos (nx+my)− n sin (mx+ ny)) y′ = 0

2.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(m cos (my + nx)− n sin (mx+ ny)) dy = (−n cos (my + nx) +m sin (mx+ ny)) dx
(−m sin (mx+ ny) + n cos (my + nx)) dx+(m cos (my + nx)− n sin (mx+ ny)) dy = 0

(2A)

Comparing (1A) and (2A) shows that

M(x, y) = −m sin (mx+ ny) + n cos (my + nx)
N(x, y) = m cos (my + nx)− n sin (mx+ ny)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−m sin (mx+ ny) + n cos (my + nx))

= mn(− sin (my + nx)− cos (mx+ ny))

And
∂N

∂x
= ∂

∂x
(m cos (my + nx)− n sin (mx+ ny))

= mn(− sin (my + nx)− cos (mx+ ny))

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−m sin (mx+ ny) + n cos (my + nx) dx

(3)φ = cos (mx+ ny) + sin (my + nx) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= m cos (my + nx)− n sin (mx+ ny) + f ′(y)

But equation (2) says that ∂φ
∂y

= m cos (my + nx)−n sin (mx+ ny). Therefore equation
(4) becomes

(5)m cos (my + nx)− n sin (mx+ ny) = m cos (my + nx)− n sin (mx+ ny) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (mx+ ny) + sin (my + nx) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (mx+ ny) + sin (my + nx)

Summary
The solution(s) found are the following

(1)cos (mx+ ny) + sin (nx+my) = c1

Verification of solutions

cos (mx+ ny) + sin (nx+my) = c1

Verified OK.
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2.7.2 Maple step by step solution

Let’s solve
n cos (nx+my)−m sin (mx+ ny) + (m cos (nx+my)− n sin (mx+ ny)) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−mn sin (my + nx)− nm cos (mx+ ny) = −mn sin (my + nx)− nm cos (mx+ ny)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−m sin (mx+ ny) + n cos (my + nx)) dx+ f1(y)

• Evaluate integral
F (x, y) = cos (mx+ ny) + sin (my + nx) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
m cos (my + nx)− n sin (mx+ ny) = −n sin (mx+ ny) +m cos (my + nx) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = cos (mx+ ny) + sin (my + nx)
• Substitute F (x, y) into the solution of the ODE

cos (mx+ ny) + sin (my + nx) = c1

• Solve for y

y =
−mx+RootOf

(
−m2x+n2x−arcsin

(
− cos

(
_Z

)
+c1

)
n+_Zm

)
n

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 43� �
dsolve((n*cos(n*x+m*y(x))-m*sin(m*x+n*y(x)))+(m*cos(n*x+m*y(x))-n*sin(m*x+n*y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −nx+RootOf (2m2x− 2n2x− 2 arcsin (sin (_Z) + c1)m−mπ + 2_Zn)
m

3 Solution by Mathematica
Time used: 0.741 (sec). Leaf size: 50� �
DSolve[(n*Cos[n*x+m*y[x]]-m*Sin[m*x+n*y[x]])+(m*Cos[n*x+m*y[x]]-n*Sin[m*x+n*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[sin(mx) sin(ny(x))− cos(mx) cos(ny(x))
− sin(nx) cos(my(x))− cos(nx) sin(my(x)) = c1, y(x)]
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2.8 problem 8.1
2.8.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 325
2.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 329

Internal problem ID [4385]
Internal file name [OUTPUT/3878_Sunday_June_05_2022_11_34_13_AM_49205020/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 8.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _exact]

x√
1 + x2 + y2

+ yy′√
1 + x2 + y2

+ y

x2 + y2
− xy′

x2 + y2
= 0

2.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y√

x2 + y2 + 1
− x

x2 + y2

)
dy =

(
− x√

x2 + y2 + 1
− y

x2 + y2

)
dx(

x√
x2 + y2 + 1

+ y

x2 + y2

)
dx+

(
y√

x2 + y2 + 1
− x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x√
x2 + y2 + 1

+ y

x2 + y2

N(x, y) = y√
x2 + y2 + 1

− x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x√

x2 + y2 + 1
+ y

x2 + y2

)
= − xy

(x2 + y2 + 1)
3
2
+ 1

x2 + y2
− 2y2

(x2 + y2)2

And
∂N

∂x
= ∂

∂x

(
y√

x2 + y2 + 1
− x

x2 + y2

)
= − xy

(x2 + y2 + 1)
3
2
− 1

x2 + y2
+ 2x2

(x2 + y2)2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x√

x2 + y2 + 1
+ y

x2 + y2
dx

(3)φ =
√
x2 + y2 + 1 + arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y√

x2 + y2 + 1
− x

y2
(

x2

y2
+ 1
) + f ′(y)

= y√
x2 + y2 + 1

− x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y√
x2+y2+1

− x
x2+y2

. Therefore equation (4) becomes

(5)y√
x2 + y2 + 1

− x

x2 + y2
= y√

x2 + y2 + 1
− x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
√

x2 + y2 + 1 + arctan
(
x

y

)
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
√

x2 + y2 + 1 + arctan
(
x

y

)

Summary
The solution(s) found are the following

(1)
√

1 + x2 + y2 + arctan
(
x

y

)
= c1

Figure 57: Slope field plot

Verification of solutions √
1 + x2 + y2 + arctan

(
x

y

)
= c1

Verified OK.
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2.8.2 Maple step by step solution

Let’s solve
x√

1+x2+y2
+ yy′√

1+x2+y2
+ y

x2+y2
− xy′

x2+y2
= 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives

− xy

(x2+y2+1)
3
2
+ 1

x2+y2
− 2y2

(x2+y2)2 = − xy

(x2+y2+1)
3
2
− 1

x2+y2
+ 2x2

(x2+y2)2

◦ Simplify

− xy

(x2+y2+1)
3
2
+ 1

x2+y2
− 2y2

(x2+y2)2 = − xy

(x2+y2+1)
3
2
− 1

x2+y2
+ 2x2

(x2+y2)2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

x√
x2+y2+1

+ y
x2+y2

)
dx+ f1(y)

• Evaluate integral

F (x, y) =
√
x2 + y2 + 1 + arctan

(
x
y

)
+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y√

x2+y2+1
− x

x2+y2
= y√

x2+y2+1
− x

y2
(

x2
y2 +1

) + d
dy
f1(y)

• Isolate for d
dy
f1(y)

329



d
dy
f1(y) = − x

x2+y2
+ x

y2
(

x2
y2 +1

)
• Solve for f1(y)

f1(y) = 0
• Substitute f1(y) into equation for F (x, y)

F (x, y) =
√
x2 + y2 + 1 + arctan

(
x
y

)
• Substitute F (x, y) into the solution of the ODE

√
x2 + y2 + 1 + arctan

(
x
y

)
= c1

• Solve for y
y = x

tan

RootOf

−_Z−

√√√√√x2 tan
(
_Z

)2
+x2+tan

(
_Z

)2
tan
(
_Z

)2 +c1




Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 25� �
dsolve( x/sqrt(1+x^2+y(x)^2) + y(x)/sqrt(1+x^2+y(x)^2)*diff(y(x),x)+ y(x)/(x^2+y(x)^2) - x/(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

arctan
(

x

y (x)

)
+
√

1 + x2 + y (x)2 − c1 = 0
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3 Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 27� �
DSolve[ x/Sqrt[1+x^2+y[x]^2] + y[x]/Sqrt[1+x^2+y[x]^2]*y'[x]+y[x]/(x^2+y[x]^2) - x/(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(
x

y(x)

)
+
√

x2 + y(x)2 + 1 = c1, y(x)
]
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2.9 problem 10
2.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 332

Internal problem ID [4386]
Internal file name [OUTPUT/3879_Sunday_June_05_2022_11_34_20_AM_19298257/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

xny′

by2 − c x2a − ayxa−1

by2 − c x2a = −xa−1

2.9.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
=
(
−b y2 + c x2a + ya

)
xa−1x−n

This is a Riccati ODE. Comparing the ODE to solve

y′ = −xax−nb y2

x
+ x3ax−nc

x
+ xax−nya

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x−nx2axa−1c, f1(x) = a xa−1x−n and f2(x) = −b xa−1x−n. Let

y = −u′

f2u

= −u′

−b xa−1x−nu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −b xa−1(a− 1)x−n

x
+ b xa−1x−nn

x
f1f2 = −a x2a−2x−2nb

f 2
2 f0 = b2x3a−3x−3nx2ac

Substituting the above terms back in equation (2) gives

−b xa−1x−nu′′(x)−
(
−b xa−1(a− 1)x−n

x
+ b xa−1x−nn

x
− a x2a−2x−2nb

)
u′(x) + b2x3a−3x−3nx2acu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x)

= DESol
({

_Y′′(x) + _Y′(x) (1− a+ n− xa−na)
x

− bc_Y(x)x4a−2n−2
}
, {_Y(x)}

)

The above shows that

u′(x) = ∂

∂x
DESol

({
_Y′′(x) + _Y′(x) (1− a+ n− xa−na)

x

− bc_Y(x)x4a−2n−2
}
, {_Y(x)}

)

Using the above in (1) gives the solution

y

=

(
∂
∂x

DESol
({

_Y′′(x) + _Y′
(x)
(
1−a+n−xa−na

)
x

− bc_Y(x)x4a−2n−2
}
, {_Y(x)}

))
x−a+1xn

bDESol
({

_Y′′ (x) + _Y′
(x)(1−a+n−xa−na)

x
− bc_Y (x)x4a−2n−2

}
, {_Y (x)}

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y

=
x−a+n+1

(
∂
∂x

DESol
({

_Y′′(x) + _Y′
(x)
(
1−a+n−xa−na

)
x

− bc_Y(x)x4a−2n−2
}
, {_Y(x)}

))
bDESol

({
−bc_Y(x)x4a−2n−a xa−n+1_Y′

(x)−x
(
−_Y′′

(x)x+_Y′
(x)(a−1−n)

)
x2

}
, {_Y (x)}

)

Summary
The solution(s) found are the following

(1)y

=
x−a+n+1

(
∂
∂x

DESol
({

_Y′′(x) + _Y′
(x)
(
1−a+n−xa−na

)
x

− bc_Y(x)x4a−2n−2
}
, {_Y(x)}

))
bDESol

({
−bc_Y(x)x4a−2n−a xa−n+1_Y′

(x)−x
(
−_Y′′

(x)x+_Y′
(x)(a−1−n)

)
x2

}
, {_Y (x)}

)
Verification of solutions
y

=
x−a+n+1

(
∂
∂x

DESol
({

_Y′′(x) + _Y′
(x)
(
1−a+n−xa−na

)
x

− bc_Y(x)x4a−2n−2
}
, {_Y(x)}

))
bDESol

({
−bc_Y(x)x4a−2n−a xa−n+1_Y′

(x)−x
(
−_Y′′

(x)x+_Y′
(x)(a−1−n)

)
x2

}
, {_Y (x)}

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(a-1-n)*a*x+a-n-1)*(diff(y(x), x))/x+x^(a-1-n)*b*x^(3*a-1-n)*c*y(x)

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables

trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type

-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(-x^(a-1-n)*b*y(x)^2+y(x)+x^(a-1-n)*a*y(x)*x+x^2*x^(3*a-1-n)*c)/x, y(x), explicit

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2`� �
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7 Solution by Maple� �
dsolve( x^n/(b*y(x)^2-c*x^(2*a))*diff(y(x),x) - a*y(x)*x^(a-1)/(b*y(x)^2-c*x^(2*a)) + x^(a-1)=0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x^n/(b*y[x]^2-c*x^(2*a))*y'[x] - a*y[x]*x^(a-1)/(b*y[x]^2-c*x^(2*a)) + x^(a-1)==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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3.1 problem 2
3.1.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 338

Internal problem ID [4387]
Internal file name [OUTPUT/3880_Sunday_June_05_2022_11_34_56_AM_27826988/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

2xy +
(
y2 − 2x2) y′ = 0

3.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−2x2 + y2
)
dy = (−2xy) dx

(2xy) dx+
(
−2x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy
N(x, y) = −2x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2xy)

= 2x

And
∂N

∂x
= ∂

∂x

(
−2x2 + y2

)
= −4x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2x2 + y2
((2x)− (−4x))

= − 6x
2x2 − y2
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2yx((−4x)− (2x))

= −3
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy

The result of integrating gives

µ = e−3 ln(y)

= 1
y3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3

(2xy)

= 2x
y2

And

N = µN

= 1
y3
(
−2x2 + y2

)
= −2x2 + y2

y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

2x
y2

)
+
(
−2x2 + y2

y3

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x
y2

dx

(3)φ = x2

y2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2x2

y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2x2+y2

y3
. Therefore equation (4) becomes

(5)−2x2 + y2

y3
= −2x2

y3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2

y2
+ ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2

y2
+ ln (y)

The solution becomes

y = e
LambertW

(
−2x2e−2c1

)
2 +c1

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
−2x2e−2c1

)
2 +c1

Figure 58: Slope field plot
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Verification of solutions

y = e
LambertW

(
−2x2e−2c1

)
2 +c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve(2*x*y(x)+(y(x)^2-2*x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
2
√

− 1
LambertW (−2c1x2) x

3 Solution by Mathematica
Time used: 7.214 (sec). Leaf size: 66� �
DSolve[2*x*y[x]+(y[x]^2-2*x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − i
√
2x√

W (−2e−2c1x2)

y(x) → i
√
2x√

W (−2e−2c1x2)
y(x) → 0

343



3.2 problem 4
3.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 344

Internal problem ID [4388]
Internal file name [OUTPUT/3881_Sunday_June_05_2022_11_35_02_AM_61121252/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

2
y
− 2y′

x
= −1

x
− y′

y

3.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−x+ 2y) dy = (2x+ y) dx
(−2x− y) dx+(−x+ 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x− y

N(x, y) = −x+ 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2x− y)

= −1

And
∂N

∂x
= ∂

∂x
(−x+ 2y)

= −1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x− y dx

(3)φ = −x(x+ y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+ 2y. Therefore equation (4) becomes

(5)−x+ 2y = −x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x+ y) + y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x+ y) + y2

346



Summary
The solution(s) found are the following

(1)−x(x+ y) + y2 = c1

Figure 59: Slope field plot

Verification of solutions

−x(x+ y) + y2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 51� �
dsolve(1/x+1/y(x)*diff(y(x),x)+2*(1/y(x)-1/x*diff(y(x),x))=0,y(x), singsol=all)� �

y(x) = c1x−
√

5x2c21 + 4
2c1

y(x) = c1x+
√

5x2c21 + 4
2c1

3 Solution by Mathematica
Time used: 0.46 (sec). Leaf size: 102� �
DSolve[1/x+1/y[x]*y'[x]+2*(1/y[x]-1/x*y'[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x−

√
5x2 − 4ec1

)
y(x) → 1

2

(
x+

√
5x2 − 4ec1

)
y(x) → 1

2

(
x−

√
5
√
x2
)

y(x) → 1
2

(√
5
√
x2 + x

)
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3.3 problem 5.1
3.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 349

Internal problem ID [4389]
Internal file name [OUTPUT/3882_Sunday_June_05_2022_11_35_08_AM_62087181/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 5.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ − y −
√
x2 + y2 = 0

3.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y +
√
x2 + y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y +

√
x2 + y2

)
(b3 − a2)

x
−
(
y +

√
x2 + y2

)2
a3

x2

−
(

1√
x2 + y2

− y +
√
x2 + y2

x2

)
(xa2 + ya3 + a1)

−

(
1 + y√

x2+y2

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−(x2 + y2)
3
2 a3 + x3a2 − x3b3 + 2x2ya3 + x2yb2 + y3a3 +

√
x2 + y2 xb1 −

√
x2 + y2 ya1 + xyb1 − y2a1√

x2 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−
(
x2 + y2

) 3
2 a3 − x3a2 + x3b3 − 2x2ya3 − x2yb2 − y3a3

−
√

x2 + y2 xb1 +
√

x2 + y2 ya1 − xyb1 + y2a1 = 0

Simplifying the above gives

(6E)−
(
x2 + y2

) 3
2 a3 +

(
x2 + y2

)
xb3 −

(
x2 + y2

)
ya3 − x3a2 − x2ya3 − x2yb2

− x y2b3 +
(
x2 + y2

)
a1 −

√
x2 + y2 xb1 +

√
x2 + y2 ya1 − x2a1 − xyb1 = 0

Since the PDE has radicals, simplifying gives

−x3a2 + x3b3 − x2
√

x2 + y2 a3 − 2x2ya3 − x2yb2 −
√
x2 + y2 y2a3

− y3a3 −
√
x2 + y2 xb1 − xyb1 +

√
x2 + y2 ya1 + y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−v31a2 − 2v21v2a3 − v21v3a3 − v32a3 − v3v
2
2a3 − v21v2b2

+ v31b3 + v22a1 + v3v2a1 − v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(b3 − a2) v31 + (−2a3 − b2) v21v2 − v21v3a3 − v1v2b1
− v3v1b1 − v32a3 − v3v

2
2a3 + v22a1 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−a3 = 0
−b1 = 0

−2a3 − b2 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y +

√
x2 + y2

x

)
(x)

= −
√

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
x2 + y2

dy

Which results in

S = − ln
(
y +

√
x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y +
√
x2 + y2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x√
x2 + y2

(
y +

√
x2 + y2

)
Sy = − 1√

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2
(√

x2 + y2 y + x2 + y2
)

x
√
x2 + y2

(
y +

√
x2 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
y +

√
x2 + y2

)
= −2 ln (x) + c1

Which simplifies to

− ln
(
y +

√
x2 + y2

)
= −2 ln (x) + c1

Which gives

y = −e−c1(e2c1 − x2)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+
√

x2+y2

x
dS
dR

= − 2
R

R = x

S = − ln
(
y +

√
x2 + y2

)

Summary
The solution(s) found are the following

(1)y = −e−c1(e2c1 − x2)
2
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Figure 60: Slope field plot

Verification of solutions

y = −e−c1(e2c1 − x2)
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2+y(x)^2),y(x), singsol=all)� �

−c1x
2 +

√
x2 + y (x)2 + y(x)
x2 = 0

3 Solution by Mathematica
Time used: 0.336 (sec). Leaf size: 27� �
DSolve[x*y'[x]-y[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
(
−1 + e2c1x2)
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3.4 problem 5.2
3.4.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 357
3.4.2 Solving as first order ode lie symmetry calculated ode . . . . . . 359

Internal problem ID [4390]
Internal file name [OUTPUT/3883_Sunday_June_05_2022_11_35_18_AM_24872058/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 5.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

8y + (5y + 7x) y′ = −10x

3.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

8u(x)x+ (5u(x)x+ 7x) (u′(x)x+ u(x)) = −10x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −5(u2 + 3u+ 2)
x (5u+ 7)

Where f(x) = − 5
x
and g(u) = u2+3u+2

5u+7 . Integrating both sides gives

1
u2+3u+2
5u+7

du = −5
x
dx
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∫ 1
u2+3u+2
5u+7

du =
∫

−5
x
dx

2 ln (u+ 1) + 3 ln (u+ 2) = −5 ln (x) + c2

Raising both side to exponential gives

e2 ln(u+1)+3 ln(u+2) = e−5 ln(x)+c2

Which simplifies to

(u+ 1)2 (u+ 2)3 = c3
x5

Therefore the solution y is

y = xu

= RootOf
(
_Z5 + 8x_Z4 + 25x2_Z3 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)
Summary
The solution(s) found are the following

(1)y = RootOf
(
_Z5 + 8x_Z4 + 25x2_Z3 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)

Figure 61: Slope field plot
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Verification of solutions

y = RootOf
(
_Z5 + 8x_Z4 + 25x2_Z3 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)
Verified OK.

3.4.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2(4y + 5x)
5y + 7x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2(4y + 5x) (b3 − a2)

5y + 7x − 4(4y + 5x)2 a3
(5y + 7x)2

−
(
− 10
5y + 7x + 56y + 70x

(5y + 7x)2
)
(xa2 + ya3 + a1)

−
(
− 8
5y + 7x + 40y + 50x

(5y + 7x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

70x2a2 − 100x2a3 + 55x2b2 − 70x2b3 + 100xya2 − 160xya3 + 70xyb2 − 100xyb3 + 40y2a2 − 70y2a3 + 25y2b2 − 40y2b3 + 6xb1 − 6ya1
(5y + 7x)2

= 0
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Setting the numerator to zero gives

(6E)70x2a2 − 100x2a3 + 55x2b2 − 70x2b3 + 100xya2 − 160xya3 + 70xyb2
− 100xyb3 + 40y2a2 − 70y2a3 + 25y2b2 − 40y2b3 + 6xb1 − 6ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)70a2v21 + 100a2v1v2 + 40a2v22 − 100a3v21 − 160a3v1v2 − 70a3v22 + 55b2v21
+ 70b2v1v2 + 25b2v22 − 70b3v21 − 100b3v1v2 − 40b3v22 − 6a1v2 + 6b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(70a2 − 100a3 + 55b2 − 70b3) v21 + (100a2 − 160a3 + 70b2 − 100b3) v1v2
+ 6b1v1 + (40a2 − 70a3 + 25b2 − 40b3) v22 − 6a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6b1 = 0

40a2 − 70a3 + 25b2 − 40b3 = 0
70a2 − 100a3 + 55b2 − 70b3 = 0

100a2 − 160a3 + 70b2 − 100b3 = 0

360



Solving the above equations for the unknowns gives

a1 = 0
a2 = 3a3 + b3

a3 = a3

b1 = 0
b2 = −2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2(4y + 5x)

5y + 7x

)
(x)

= 10x2 + 15xy + 5y2
5y + 7x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

10x2+15xy+5y2
5y+7x

dy
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Which results in

S = 2 ln (x+ y)
5 + 3 ln (2x+ y)

5
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(4y + 5x)
5y + 7x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
2x+ 8y

5
(x+ y) (2x+ y)

Sy =
5y + 7x

5 (x+ y) (2x+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1
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Which simplifies to

2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2(4y+5x)
5y+7x

dS
dR

= 0

R = x

S = 2 ln (x+ y)
5 + 3 ln (2x+ y)

5

Summary
The solution(s) found are the following

(1)2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1
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Figure 62: Slope field plot

Verification of solutions

2 ln (x+ y)
5 + 3 ln (2x+ y)

5 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 38� �
dsolve((8*y(x)+10*x)+(5*y(x)+7*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x
(
RootOf

(
_Z25c1x

5 − 2_Z20c1x
5 + _Z15c1x

5 − 1
)5 − 2

)
3 Solution by Mathematica
Time used: 2.162 (sec). Leaf size: 276� �
DSolve[(8*y[x]+10*x)+(5*y[x]+7*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 1

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 2

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 3

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 4

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 5

]
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3.5 problem 5.3
3.5.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 366
3.5.2 Solving as first order ode lie symmetry calculated ode . . . . . . 368

Internal problem ID [4391]
Internal file name [OUTPUT/3884_Sunday_June_05_2022_11_35_28_AM_14982222/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 5.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

2xy − y2 +
(
y2 + 2xy − x2) y′ = −x2

3.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x2u(x)− u(x)2 x2 +
(
u(x)2 x2 + 2x2u(x)− x2) (u′(x)x+ u(x)) = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(u+ 1) (u2 + 1)
x (u2 + 2u− 1)

Where f(x) = − 1
x
and g(u) = (u+1)

(
u2+1

)
u2+2u−1 . Integrating both sides gives

1
(u+1)(u2+1)
u2+2u−1

du = −1
x
dx
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∫ 1
(u+1)(u2+1)
u2+2u−1

du =
∫

−1
x
dx

− ln (u+ 1) + ln
(
u2 + 1

)
= − ln (x) + c2

Raising both side to exponential gives

e− ln(u+1)+ln
(
u2+1

)
= e− ln(x)+c2

Which simplifies to

u2 + 1
u+ 1 = c3

x

The solution is
u(x)2 + 1
u (x) + 1 = c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 + 1
y
x
+ 1 = c3

x

x2 + y2

x (x+ y) = c3
x

Which simplifies to

x2 + y2

x+ y
= c3

Summary
The solution(s) found are the following

(1)x2 + y2

x+ y
= c3
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Figure 63: Slope field plot

Verification of solutions

x2 + y2

x+ y
= c3

Verified OK.

3.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2 − 2xy + y2

−x2 + 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

368



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−x2 − 2xy + y2) (b3 − a2)

−x2 + 2xy + y2
− (−x2 − 2xy + y2)2 a3

(−x2 + 2xy + y2)2

−
(

−2x− 2y
−x2 + 2xy + y2

− (−x2 − 2xy + y2) (−2x+ 2y)
(−x2 + 2xy + y2)2

)
(xa2 + ya3 + a1)

−
(

−2x+ 2y
−x2 + 2xy + y2

− (−x2 − 2xy + y2) (2y + 2x)
(−x2 + 2xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a2 + x4a3 + 3x4b2 − x4b3 − 4x3ya2 + 4x3ya3 + 4x3yb2 + 4x3yb3 − 6x2y2a2 − 2x2y2a3 + 2x2y2b2 + 6x2y2b3 − 4x y3a2 − 4x y3a3 − 4x y3b2 + 4x y3b3 + y4a2 − 3y4a3 − y4b2 − y4b3 + 4x3b1 − 4x2ya1 + 4x y2b1 − 4y3a1
(x2 − 2xy − y2)2

= 0

Setting the numerator to zero gives

(6E)−x4a2−x4a3−3x4b2+x4b3+4x3ya2−4x3ya3−4x3yb2−4x3yb3+6x2y2a2
+ 2x2y2a3 − 2x2y2b2 − 6x2y2b3 + 4x y3a2 + 4x y3a3 + 4x y3b2 − 4x y3b3
− y4a2 + 3y4a3 + y4b2 + y4b3 − 4x3b1 + 4x2ya1 − 4x y2b1 + 4y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
4
1 + 4a2v31v2 + 6a2v21v22 + 4a2v1v32 − a2v

4
2 − a3v

4
1 − 4a3v31v2 + 2a3v21v22

+ 4a3v1v32 + 3a3v42 − 3b2v41 − 4b2v31v2 − 2b2v21v22 + 4b2v1v32 + b2v
4
2 + b3v

4
1

−4b3v31v2−6b3v21v22−4b3v1v32+b3v
4
2+4a1v21v2+4a1v32−4b1v31−4b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − 3b2 + b3) v41 + (4a2 − 4a3 − 4b2 − 4b3) v31v2 − 4b1v31
+ (6a2 + 2a3 − 2b2 − 6b3) v21v22 + 4a1v21v2 + (4a2 + 4a3 + 4b2 − 4b3) v1v32
− 4b1v1v22 + (−a2 + 3a3 + b2 + b3) v42 + 4a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 = 0
−4b1 = 0

−a2 − a3 − 3b2 + b3 = 0
−a2 + 3a3 + b2 + b3 = 0

4a2 − 4a3 − 4b2 − 4b3 = 0
4a2 + 4a3 + 4b2 − 4b3 = 0
6a2 + 2a3 − 2b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x2 − 2xy + y2

−x2 + 2xy + y2

)
(x)

= −x3 − y x2 − y2x− y3

x2 − 2xy − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3−y x2−y2x−y3

x2−2xy−y2

dy

Which results in

S = − ln (x+ y) + ln
(
x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 − 2xy + y2

−x2 + 2xy + y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x+ y

+ 2x
x2 + y2

Sy = − 1
x+ y

+ 2y
x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ y) + ln
(
x2 + y2

)
= c1

Which simplifies to

− ln (x+ y) + ln
(
x2 + y2

)
= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2−2xy+y2

−x2+2xy+y2
dS
dR

= 0

R = x

S = − ln (x+ y) + ln
(
x2 + y2

)

Summary
The solution(s) found are the following

(1)− ln (x+ y) + ln
(
x2 + y2

)
= c1
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Figure 64: Slope field plot

Verification of solutions

− ln (x+ y) + ln
(
x2 + y2

)
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 55� �
dsolve((x^2+2*x*y(x)-y(x)^2)+(y(x)^2+2*x*y(x)-x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1−
√

−4x2c21 + 4c1x+ 1
2c1

y(x) = 1 +
√

−4x2c21 + 4c1x+ 1
2c1

3 Solution by Mathematica
Time used: 1.304 (sec). Leaf size: 75� �
DSolve[(x^2+2*x*y[x]-y[x]^2)+(y[x]^2+2*x*y[x]-x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
ec1 −

√
−4x2 + 4ec1x+ e2c1

)
y(x) → 1

2

(√
−4x2 + 4ec1x+ e2c1 + ec1

)
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3.6 problem 5.4
3.6.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 376
3.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 378

Internal problem ID [4392]
Internal file name [OUTPUT/3885_Sunday_June_05_2022_11_35_41_AM_43678614/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 5.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y2 +
(
xy + x2) y′ = 0

3.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)2 x2 +
(
x2u(x) + x2) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u2 + u

x (u+ 1)

Where f(x) = − 1
x
and g(u) = 2u2+u

u+1 . Integrating both sides gives

1
2u2+u
u+1

du = −1
x
dx
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∫ 1
2u2+u
u+1

du =
∫

−1
x
dx

ln (u)− ln (2u+ 1)
2 = − ln (x) + c2

Raising both side to exponential gives

eln(u)−
ln(2u+1)

2 = e− ln(x)+c2

Which simplifies to
u√

2u+ 1
= c3

x

The solution is
u(x)√

2u (x) + 1
= c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
√

2y
x
+ 1

= c3
x

y√
2y+x
x

x
= c3

x

Which simplifies to
y√
2y+x
x

= c3

Summary
The solution(s) found are the following

(1)y√
2y+x
x

= c3
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Figure 65: Slope field plot

Verification of solutions
y√
2y+x
x

= c3

Verified OK.

3.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

x (x+ y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
x (x+ y) − y4a3

x2 (x+ y)2
−
(

y2

x2 (x+ y) +
y2

x (x+ y)2
)
(xa2 + ya3 + a1)

−
(
− 2y
x (x+ y) +

y2

x (x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 + 4x3yb2 − x2y2a2 + 2x2y2b2 + x2y2b3 − 2x y3a3 − 2y4a3 + 2x2yb1 − 2x y2a1 + x y2b1 − y3a1

x2 (x+ y)2
= 0

Setting the numerator to zero gives

(6E)x4b2 + 4x3yb2 − x2y2a2 + 2x2y2b2 + x2y2b3 − 2x y3a3
− 2y4a3 + 2x2yb1 − 2x y2a1 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1v

2
2 − 2a3v1v32 − 2a3v42 + b2v

4
1 + 4b2v31v2 + 2b2v21v22

+ b3v
2
1v

2
2 − 2a1v1v22 − a1v

3
2 + 2b1v21v2 + b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)b2v
4
1 + 4b2v31v2 + (−a2 + 2b2 + b3) v21v22 + 2b1v21v2

− 2a3v1v32 + (−2a1 + b1) v1v22 − 2a3v42 − a1v
3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−a1 = 0
−2a3 = 0
2b1 = 0
4b2 = 0

−2a1 + b1 = 0
−a2 + 2b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

x (x+ y)

)
(x)

= xy + 2y2
x+ y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy+2y2
x+y

dy

Which results in

S = ln (y)− ln (2y + x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

x (x+ y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
4y + 2x

Sy =
x+ y

y (2y + x)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)− ln (2y + x)
2 = − ln (x)

2 + c1

Which simplifies to

ln (y)− ln (2y + x)
2 = − ln (x)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

x(x+y)
dS
dR

= − 1
2R

R = x

S = ln (y)− ln (2y + x)
2
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Summary
The solution(s) found are the following

(1)ln (y)− ln (2y + x)
2 = − ln (x)

2 + c1

Figure 66: Slope field plot

Verification of solutions

ln (y)− ln (2y + x)
2 = − ln (x)

2 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
dsolve(y(x)^2+(x*y(x)+x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1 +
√
c1x2 + 1
c1x

y(x) = 1−
√
c1x2 + 1
c1x

3 Solution by Mathematica
Time used: 2.31 (sec). Leaf size: 80� �
DSolve[y[x]^2+(x*y[x]+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2c1 −
√
e2c1 (x2 + e2c1)
x

y(x) →
√

e2c1 (x2 + e2c1) + e2c1

x
y(x) → 0
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3.7 problem 5.4
3.7.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 385

Internal problem ID [4393]
Internal file name [OUTPUT/3886_Sunday_June_05_2022_11_35_49_AM_26170709/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 5.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

(
x cos

(y
x

)
+ y sin

(y
x

))
y +

(
x cos

(y
x

)
− y sin

(y
x

))
xy′ = 0

3.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore ((
x cos

(y
x

)
− y sin

(y
x

))
x
)
dy =

(
−y
(
x cos

(y
x

)
+ y sin

(y
x

)))
dx(

y
(
x cos

(y
x

)
+ y sin

(y
x

)))
dx+

((
x cos

(y
x

)
− y sin

(y
x

))
x
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
x cos

(y
x

)
+ y sin

(y
x

))
N(x, y) =

(
x cos

(y
x

)
− y sin

(y
x

))
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y
(
x cos

(y
x

)
+ y sin

(y
x

)))
=

(x2 + y2) cos
(
y
x

)
+ sin

(
y
x

)
xy

x

And

∂N

∂x
= ∂

∂x

((
x cos

(y
x

)
− y sin

(y
x

))
x
)

=
cos
(
y
x

)
(2x2 + y2)
x

386



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1(

x cos
(
y
x

)
− y sin

(
y
x

))
x

((
x cos

(y
x

)
+ y sin

(y
x

)
+

y2 cos
(
y
x

)
x

)
−

((
cos
(y
x

)
+

y sin
(
y
x

)
x

+
y2 cos

(
y
x

)
x2

)
x+ x cos

(y
x

)
− y sin

(y
x

)))
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
y
(
x cos

(y
x

)
+ y sin

(y
x

)))
=

y
(
x cos

(
y
x

)
+ y sin

(
y
x

))
x

And

N = µN

= 1
x

((
x cos

(y
x

)
− y sin

(y
x

))
x
)

= x cos
(y
x

)
− y sin

(y
x

)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y
(
x cos

(
y
x

)
+ y sin

(
y
x

))
x

)
+
(
x cos

(y
x

)
− y sin

(y
x

)) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
y
(
x cos

(
y
x

)
+ y sin

(
y
x

))
x

dx

(3)φ = y cos
(y
x

)
x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x cos

(y
x

)
− y sin

(y
x

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x cos
(
y
x

)
− y sin

(
y
x

)
. Therefore equation (4) becomes

(5)x cos
(y
x

)
− y sin

(y
x

)
= x cos

(y
x

)
− y sin

(y
x

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y cos
(y
x

)
x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y cos
(y
x

)
x
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Summary
The solution(s) found are the following

(1)cos
(y
x

)
yx = c1

Figure 67: Slope field plot

Verification of solutions

cos
(y
x

)
yx = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 18� �
dsolve((x*cos(y(x)/x)+y(x)*sin(y(x)/x))*y(x)+(x*cos(y(x)/x)-y(x)*sin(y(x)/x))*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = xRootOf
(
_Z cos (_Z)x2 − c1

)
3 Solution by Mathematica
Time used: 0.347 (sec). Leaf size: 31� �
DSolve[(x*Cos[y[x]/x]+y[x]*Sin[y[x]/x])*y[x]+(x*Cos[y[x]/x]-y[x]*Sin[y[x]/x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
− log

(
y(x)
x

)
− log

(
cos
(
y(x)
x

))
= 2 log(x) + c1, y(x)

]

390



3.8 problem 7.1
3.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 391
3.8.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 396

Internal problem ID [4394]
Internal file name [OUTPUT/3887_Sunday_June_05_2022_11_35_57_AM_27411867/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 7.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

(
y2x2 + xy

)
y +

(
y2x2 − 1

)
xy′ = 0

3.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
xy − 1 − y4a3

(xy − 1)2
− y3(xa2 + ya3 + a1)

(xy − 1)2

−
(
− 2y
xy − 1 + y2x

(xy − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2y2b2 − 2y4a3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − y2b3 − 2yb1 + b2

(xy − 1)2
= 0

Setting the numerator to zero gives

(6E)2x2y2b2 − 2y4a3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − y2b3 − 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v42 + 2b2v21v22 − a1v
3
2 + b1v1v

2
2 − a2v

2
2 − 4b2v1v2 − b3v

2
2 − 2b1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21v22 + b1v1v
2
2 − 4b2v1v2 − 2a3v42 − a1v

3
2 + (−a2 − b3) v22 − 2b1v2 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2a3 = 0
−2b1 = 0
−4b2 = 0
2b2 = 0

−a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy − 1

)
(−x)

= − y

xy − 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y
xy−1

dy

Which results in

S = −xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y

Sy = −x+ 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−xy + ln (y) = c1

Which simplifies to

−xy + ln (y) = c1

Which gives

y = e−LambertW(−x ec1 )+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy−1
dS
dR

= 0

R = x

S = −xy + ln (y)
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Summary
The solution(s) found are the following

(1)y = e−LambertW(−x ec1 )+c1

Figure 68: Slope field plot

Verification of solutions

y = e−LambertW(−x ec1 )+c1

Verified OK.

3.8.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore ((
y2x2 − 1

)
x
)
dy =

(
−
(
y2x2 + xy

)
y
)
dx((

y2x2 + xy
)
y
)
dx+

((
y2x2 − 1

)
x
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
y2x2 + xy

)
y

N(x, y) =
(
y2x2 − 1

)
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

((
y2x2 + xy

)
y
)

= 3y2x2 + 2xy
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And
∂N

∂x
= ∂

∂x

((
y2x2 − 1

)
x
)

= 3y2x2 − 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y2x3 − x

(((
2y x2 + x

)
y + y2x2 + xy

)
−
(
3y2x2 − 1

))
= 2xy + 1

y2x3 − x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

x y2 (xy + 1)
((
3y2x2 − 1

)
−
((
2y x2 + x

)
y + y2x2 + xy

))
= −2xy − 1

x y2 (xy + 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (3y2x2 − 1)− ((2y x2 + x) y + y2x2 + xy)
x ((y2x2 + xy) y)− y ((y2x2 − 1)x)

= −2xy − 1
xy (xy + 1)

Replacing all powers of terms xy by t gives

R = −2t− 1
t (t+ 1)
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Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (−2t−1

t(t+1)

)
dt

The result of integrating gives

µ = e− ln(t(t+1))

= 1
t (t+ 1)

Now t is replaced back with xy giving

µ = 1
xy (xy + 1)

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
xy (xy + 1)

((
y2x2 + xy

)
y
)

= y

And

N = µN

= 1
xy (xy + 1)

((
y2x2 − 1

)
x
)

= xy − 1
y

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0

(y) +
(
xy − 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y dx

(3)φ = xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= xy−1
y

. Therefore equation (4) becomes

(5)xy − 1
y

= x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy − ln (y)

400



The solution becomes
y = e−LambertW

(
−x e−c1

)
−c1

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
−x e−c1

)
−c1

Figure 69: Slope field plot

Verification of solutions

y = e−LambertW
(
−x e−c1

)
−c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 25� �
dsolve((x^2*y(x)^2+x*y(x))*y(x)+(x^2*y(x)^2-1)*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −1
x

y(x) = −LambertW (−x e−c1)
x

3 Solution by Mathematica
Time used: 2.043 (sec). Leaf size: 43� �
DSolve[(x^2*y[x]^2+x*y[x])*y[x]+(x^2*y[x]^2-1)*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
x

y(x) → −W (−e−c1x)
x

y(x) → 0

y(x) → −1
x
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3.9 problem 7.1
3.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 403
3.9.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 409

Internal problem ID [4395]
Internal file name [OUTPUT/3888_Sunday_June_05_2022_11_36_05_AM_89436757/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4
Problem number: 7.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x3y3 + y2x2 + xy + 1

)
y +

(
x3y3 − y2x2 − xy + 1

)
xy′ = 0

3.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (y2x2 + 1) y
x (y2x2 − 2xy + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(y2x2 + 1) y(b3 − a2)
x (y2x2 − 2xy + 1) − (y2x2 + 1)2 y2a3

x2 (y2x2 − 2xy + 1)2

−
(
− 2y3
y2x2 − 2xy + 1 + (y2x2 + 1) y

x2 (y2x2 − 2xy + 1)

+ (y2x2 + 1) y(2y2x− 2y)
x (y2x2 − 2xy + 1)2

)
(xa2 + ya3 + a1)−

(
− 2y2x
y2x2 − 2xy + 1

− y2x2 + 1
x (y2x2 − 2xy + 1) +

(y2x2 + 1) y(2y x2 − 2x)
x (y2x2 − 2xy + 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 8x5y3b2 − 2x4y4a2 − 2x4y4b3 − 4x4y3b1 + 8x4y2b2 − 4x2y4a3 + 2x3y2b1 − 2x2y3a1 − 4x3yb2 + 2x2y2a2 + 2x2y2b3 + 4x y3a3 + 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1

(y2x2 − 2xy + 1)2 x2

= 0

Setting the numerator to zero gives

(6E)2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 8x5y3b2 − 2x4y4a2 − 2x4y4b3
− 4x4y3b1 + 8x4y2b2 − 4x2y4a3 + 2x3y2b1 − 2x2y3a1 − 4x3yb2 + 2x2y2a2
+ 2x2y2b3 + 4x y3a3 + 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v41v62 + 2b2v61v42 − a1v
4
1v

5
2 + b1v

5
1v

4
2 − 2a2v41v42 − 8b2v51v32 − 2b3v41v42

− 4b1v41v32 − 4a3v21v42 + 8b2v41v22 − 2a1v21v32 + 2b1v31v22 + 2a2v21v22 + 4a3v1v32
− 4b2v31v2 + 2b3v21v22 + 4a1v1v22 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v61v42 + b1v
5
1v

4
2 − 8b2v51v32 − 2a3v41v62 − a1v

4
1v

5
2 + (−2a2 − 2b3) v41v42

− 4b1v41v32 + 8b2v41v22 + 2b1v31v22 − 4b2v31v2 − 4a3v21v42 − 2a1v21v32
+ (2a2 + 2b3) v21v22 + 2b2v21 + 4a3v1v32 + 4a1v1v22 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a1 = 0
−a1 = 0
4a1 = 0

−4a3 = 0
−2a3 = 0
4a3 = 0

−4b1 = 0
2b1 = 0

−8b2 = 0
−4b2 = 0
2b2 = 0
8b2 = 0

−2a2 − 2b3 = 0
2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− (y2x2 + 1) y
x (y2x2 − 2xy + 1)

)
(−x)

= − 2y2x
y2x2 − 2xy + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2y2x
y2x2−2xy+1

dy

Which results in

S = −xy

2 + ln (y) + 1
2yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (y2x2 + 1) y
x (y2x2 − 2xy + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2x2 − 1
2y x2

Sy = −(xy − 1)2

2y2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2x2 + 2 ln (y)xy + 1
2xy = c1

Which simplifies to

−y2x2 + 2 ln (y)xy + 1
2xy = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
y2x2+1

)
y

x(y2x2−2xy+1)
dS
dR

= 0

R = x

S = −y2x2 + 2 ln (y)xy + 1
2xy

Summary
The solution(s) found are the following

(1)−y2x2 + 2 ln (y)xy + 1
2xy = c1
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Figure 70: Slope field plot

Verification of solutions

−y2x2 + 2 ln (y)xy + 1
2xy = c1

Verified OK.

3.9.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore ((
y3x3 − y2x2 − xy + 1

)
x
)
dy =

(
−y
(
y3x3 + y2x2 + xy + 1

))
dx(

y
(
y3x3 + y2x2 + xy + 1

))
dx+

((
y3x3 − y2x2 − xy + 1

)
x
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
y3x3 + y2x2 + xy + 1

)
N(x, y) =

(
y3x3 − y2x2 − xy + 1

)
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
y3x3 + y2x2 + xy + 1

))
= 4y3x3 + 3y2x2 + 2xy + 1

And
∂N

∂x
= ∂

∂x

((
y3x3 − y2x2 − xy + 1

)
x
)

= 4y3x3 − 3y2x2 − 2xy + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(xy + 1) (xy − 1)2 x
((
y3x3 + y2x2 + xy + 1 + y

(
3y2x3 + 2y x2 + x

))
−
((
3x2y3 − 2y2x− y

)
x+ y3x3 − y2x2 − xy + 1

))
= 6y2x+ 4y

(xy + 1) (xy − 1)2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (xy + 1) (y2x2 + 1)
(((

3x2y3 − 2y2x− y
)
x+ y3x3 − y2x2 − xy + 1

)
−
(
y3x3 + y2x2 + xy + 1 + y

(
3y2x3 + 2y x2 + x

)))
= −6y x2 − 4x

(xy + 1) (y2x2 + 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= ((3x2y3 − 2y2x− y)x+ y3x3 − y2x2 − xy + 1)− (y3x3 + y2x2 + xy + 1 + y(3y2x3 + 2y x2 + x))
x (y (y3x3 + y2x2 + xy + 1))− y ((y3x3 − y2x2 − xy + 1)x)

= −3xy − 2
xy (xy + 1)

Replacing all powers of terms xy by t gives

R = −3t− 2
t (t+ 1)

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (−3t−2

t(t+1)

)
dt
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The result of integrating gives

µ = e− ln(t+1)−2 ln(t)

= 1
(t+ 1) t2

Now t is replaced back with xy giving

µ = 1
(xy + 1)x2y2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy + 1)x2y2

(
y
(
y3x3 + y2x2 + xy + 1

))
= y2x2 + 1

y x2

And

N = µN

= 1
(xy + 1)x2y2

((
y3x3 − y2x2 − xy + 1

)
x
)

= (xy − 1)2

y2x

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y2x2 + 1
y x2

)
+
(
(xy − 1)2

y2x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2x2 + 1
y x2 dx

(3)φ = y2x2 − 1
xy

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x− y2x2 − 1

x y2
+ f ′(y)

= y2x2 + 1
y2x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= (xy−1)2
y2x

. Therefore equation (4) becomes

(5)(xy − 1)2

y2x
= y2x2 + 1

y2x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−2
y

)
dy

f(y) = −2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y2x2 − 1
xy

− 2 ln (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y2x2 − 1

xy
− 2 ln (y)

Summary
The solution(s) found are the following

(1)y2x2 − 1
xy

− 2 ln (y) = c1

Figure 71: Slope field plot

Verification of solutions

y2x2 − 1
xy

− 2 ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 42� �
dsolve((x^3*y(x)^3+x^2*y(x)^2+x*y(x)+1)*y(x)+(x^3*y(x)^3-x^2*y(x)^2-x*y(x)+1)*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −1
x

y(x) = eRootOf
(
−e2_Z−2 ln(x)e_Z+2c1e_Z+2_Z e_Z+1

)
x

3 Solution by Mathematica
Time used: 0.219 (sec). Leaf size: 35� �
DSolve[(x^3*y[x]^3+x^2*y[x]^2+x*y[x]+1)*y[x]+(x^3*y[x]^3-x^2*y[x]^2-x*y[x]+1)*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
x

Solve
[
xy(x)− 1

xy(x) − 2 log(y(x)) = c1, y(x)
]
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4.1 problem 1.1
4.1.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 417

Internal problem ID [4396]
Internal file name [OUTPUT/3889_Sunday_June_05_2022_11_36_14_AM_82116322/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5
Problem number: 1.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

y2 + 2y′y = −x2 − 2x

4.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(2y) dy =
(
−x2 − y2 − 2x

)
dx(

x2 + y2 + 2x
)
dx+(2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2 + 2x
N(x, y) = 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 + y2 + 2x

)
= 2y

And
∂N

∂x
= ∂

∂x
(2y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2y ((2y)− (0))

= 1
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
x2 + y2 + 2x

)
= ex

(
x2 + y2 + 2x

)
And

N = µN

= ex(2y)
= 2y ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

ex
(
x2 + y2 + 2x

))
+ (2y ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex
(
x2 + y2 + 2x

)
dx

(3)φ =
(
x2 + y2

)
ex + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y ex + f ′(y)

But equation (2) says that ∂φ
∂y

= 2y ex. Therefore equation (4) becomes

(5)2y ex = 2y ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
x2 + y2

)
ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x2 + y2

)
ex

Summary
The solution(s) found are the following

(1)
(
x2 + y2

)
ex = c1
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Figure 72: Slope field plot

Verification of solutions (
x2 + y2

)
ex = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve((x^2+y(x)^2+2*x)+2*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

e−xc1 − x2

y(x) = −
√
e−xc1 − x2

3 Solution by Mathematica
Time used: 5.675 (sec). Leaf size: 47� �
DSolve[(x^2+y[x]^2+2*x)+2*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + c1e−x

y(x) →
√

−x2 + c1e−x
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4.2 problem 1.2
4.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 423

Internal problem ID [4397]
Internal file name [OUTPUT/3890_Sunday_June_05_2022_11_36_19_AM_16649650/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5
Problem number: 1.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y2 − 2xyy′ = −x2

4.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−2xy) dy =
(
−x2 − y2

)
dx(

x2 + y2
)
dx+(−2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2

N(x, y) = −2xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 + y2

)
= 2y

And
∂N

∂x
= ∂

∂x
(−2xy)

= −2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

2yx((2y)− (−2y))

= −2
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x2 + y2

)
= x2 + y2

x2

And

N = µN

= 1
x2 (−2xy)

= −2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 + y2

x2

)
+
(
−2y

x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + y2

x2 dx

(3)φ = x− y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2y
x
. Therefore equation (4) becomes

(5)−2y
x

= −2y
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x− y2

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− y2

x

Summary
The solution(s) found are the following

(1)x− y2

x
= c1
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Figure 73: Slope field plot

Verification of solutions

x− y2

x
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve((x^2+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
(x+ c1)x

y(x) = −
√
(x+ c1)x

3 Solution by Mathematica
Time used: 0.209 (sec). Leaf size: 38� �
DSolve[(x^2+y[x]^2)-2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x+ c1

y(x) →
√
x
√
x+ c1
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4.3 problem 2
4.3.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 429

Internal problem ID [4398]
Internal file name [OUTPUT/3891_Sunday_June_05_2022_11_36_25_AM_59487004/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

2xy +
(
y2 − 3x2) y′ = 0

4.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−3x2 + y2
)
dy = (−2xy) dx

(2xy) dx+
(
−3x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy
N(x, y) = −3x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2xy)

= 2x

And
∂N

∂x
= ∂

∂x

(
−3x2 + y2

)
= −6x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−3x2 + y2
((2x)− (−6x))

= − 8x
3x2 − y2
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2yx((−6x)− (2x))

= −4
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 4

y
dy

The result of integrating gives

µ = e−4 ln(y)

= 1
y4

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y4

(2xy)

= 2x
y3

And

N = µN

= 1
y4
(
−3x2 + y2

)
= −3x2 + y2

y4

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

2x
y3

)
+
(
−3x2 + y2

y4

)
dy
dx = 0

431



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x
y3

dx

(3)φ = x2

y3
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3x2

y4
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −3x2+y2

y4
. Therefore equation (4) becomes

(5)−3x2 + y2

y4
= −3x2

y4
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2

y3
− 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2

y3
− 1

y

Summary
The solution(s) found are the following

(1)x2

y3
− 1

y
= c1

Figure 74: Slope field plot

Verification of solutions

x2

y3
− 1

y
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 317� �
dsolve((2*x*y(x))+(y(x)^2-3*x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

1 +

(
12

√
3x
√

27x2c21−4 c1−108x2c21+8
) 1

3

2 + 2(
12

√
3x
√

27x2c21−4 c1−108x2c21+8
) 1

3

3c1
y(x) =

−

(
1 + i

√
3
) (

12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 2

3 − 4i
√
3− 4

(
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 1

3 + 4

12
(
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 1

3
c1

y(x)

=

(
i
√
3− 1

) (
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 2

3 − 4i
√
3 + 4

(
12
√
3x
√
27x2c21 − 4 c1 − 108x2c21 + 8

) 1
3 − 4

12
(
12
√
3x
√
27x2c21 − 4 c1 − 108x2c21 + 8

) 1
3
c1
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3 Solution by Mathematica
Time used: 60.189 (sec). Leaf size: 458� �
DSolve[(2*x*y[x])+(y[x]^2-3*x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3

 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

3
√
2

+
3
√
2e2c1

3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1


y(x) →

i
(√

3 + i
) 3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

−
i
(√

3− i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3

y(x) → −
i
(√

3− i
) 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

+
i
(√

3 + i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3
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4.4 problem 3
4.4.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 436

Internal problem ID [4399]
Internal file name [OUTPUT/3892_Sunday_June_05_2022_11_36_33_AM_76381200/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y + (−x+ 2y) y′ = 0

4.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−x+ 2y) dy = (−y) dx
(y) dx+(−x+ 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = −x+ 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x
(−x+ 2y)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−x+ 2y ((1)− (−1))

= − 2
x− 2y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y
((−1)− (1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(y)

= 1
y

And

N = µN

= 1
y2

(−x+ 2y)

= −x+ 2y
y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

1
y

)
+
(
−x+ 2y

y2

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
y
dx

(3)φ = x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+2y
y2

. Therefore equation (4) becomes

(5)−x+ 2y
y2

= − x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (2
y

)
dy

f(y) = 2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x

y
+ 2 ln (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x

y
+ 2 ln (y)

The solution becomes

y = e
LambertW

(
−x e−

c1
2

2

)
+ c1

2

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
−x e−

c1
2

2

)
+ c1

2

Figure 75: Slope field plot

Verification of solutions

y = e
LambertW

(
−x e−

c1
2

2

)
+ c1

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(y(x)+(2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − x

2 LambertW
(
−x e−

c1
2

2

)
3 Solution by Mathematica
Time used: 4.711 (sec). Leaf size: 31� �
DSolve[y[x]+(2*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

2W
(
−1

2e
− c1

2 x
)

y(x) → 0
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5.1 problem 1
5.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 443

Internal problem ID [4400]
Internal file name [OUTPUT/3893_Sunday_June_05_2022_11_36_39_AM_95241541/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ − ya+ y2 = x−2a

5.1.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −−ya+ y2 − x−2a

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = ya

x
− y2

x
+ x−2a

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x−2a

x
, f1(x) = a

x
and f2(x) = − 1

x
. Let

y = −u′

f2u

= −u′

−u
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 = − a

x2

f 2
2 f0 =

x−2a

x3

Substituting the above terms back in equation (2) gives

−u′′(x)
x

−
(

1
x2 − a

x2

)
u′(x) + x−2au(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = xa

(
c1 sinh

(
x−a

a

)
+ c2 cosh

(
x−a

a

))

The above shows that

u′(x) =
(ac2xa − c1) cosh

(
x−a

a

)
+ sinh

(
x−a

a

)
(ac1xa − c2)

x

Using the above in (1) gives the solution

y =

(
(ac2xa − c1) cosh

(
x−a

a

)
+ sinh

(
x−a

a

)
(ac1xa − c2)

)
x−a

c1 sinh
(
x−a

a

)
+ c2 cosh

(
x−a

a

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
(xaa− c3) cosh

(
x−a

a

)
+ sinh

(
x−a

a

)
(ac3xa − 1)

)
x−a

c3 sinh
(
x−a

a

)
+ cosh

(
x−a

a

)
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Summary
The solution(s) found are the following

(1)y =

(
(xaa− c3) cosh

(
x−a

a

)
+ sinh

(
x−a

a

)
(ac3xa − 1)

)
x−a

c3 sinh
(
x−a

a

)
+ cosh

(
x−a

a

)
Verification of solutions

y =

(
(xaa− c3) cosh

(
x−a

a

)
+ sinh

(
x−a

a

)
(ac3xa − 1)

)
x−a

c3 sinh
(
x−a

a

)
+ cosh

(
x−a

a

)
Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a-1)*(diff(y(x), x))/x+x^(-2*a-1)*y(x)/x, y(x)` *** Sublevel 2 *

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful

<- Riccati to 2nd Order successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 74� �
dsolve(x*diff(y(x),x)-a*y(x)+y(x)^2=x^(-2*a),y(x), singsol=all)� �

y(x) =
(−x−ac1 + a) sinh

(
x−a

a

)
+ (c1a− x−a) cosh

(
x−a

a

)
cosh

(
x−a

a

)
c1 + sinh

(
x−a

a

)
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3 Solution by Mathematica
Time used: 0.393 (sec). Leaf size: 112� �
DSolve[x*y'[x]-a*y[x]+y[x]^2==x^(-2*a),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x−a
(
(axa + ic1) cosh

(
x−a

a

)
− i(ac1xa − i) sinh

(
x−a

a

))
cosh

(
x−a

a

)
− ic1 sinh

(
x−a

a

)
y(x) → a− x−a coth

(
x−a

a

)
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5.2 problem 2
5.2.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 448

Internal problem ID [4401]
Internal file name [OUTPUT/3894_Sunday_June_05_2022_11_36_47_AM_40904880/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ − ya+ y2 = x− 2a
3

5.2.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −−ya+ y2 − x− 2a
3

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = ya

x
− y2

x
+ x− 2a

3

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x− 2a
3

x
, f1(x) = a

x
and f2(x) = − 1

x
. Let

y = −u′

f2u

= −u′

−u
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 = − a

x2

f 2
2 f0 =

x− 2a
3

x3

Substituting the above terms back in equation (2) gives

−u′′(x)
x

−
(

1
x2 − a

x2

)
u′(x) + x− 2a

3 u(x)
x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
c2
(
3
√

x− 2a
3 + a

)
e− 3x−

a
3

a + e 3x−
a
3

a c1
(
−3
√
x− 2a

3 + a
))

xa

The above shows that

u′(x)

=

(
c2
((

2a+ 3x−a
3
)√

x− 2a
3 + a

(
a+ x−a

3
))

e− 3x−
a
3

a + e 3x−
a
3

a c1
((

−2a+ 3x−a
3
)√

x− 2a
3 + a

(
a− x−a

3
)))

xa

x

Using the above in (1) gives the solution

y

=
c2
((

2a+ 3x−a
3
)√

x− 2a
3 + a

(
a+ x−a

3
))

e− 3x−
a
3

a + e 3x−
a
3

a c1
((

−2a+ 3x−a
3
)√

x− 2a
3 + a

(
a− x−a

3
))

c2
(
3
√

x− 2a
3 + a

)
e− 3x−

a
3

a + e 3x−
a
3

a c1
(
−3
√

x− 2a
3 + a

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y=
c3
((

−2a+ 3x−a
3
)√

x− 2a
3 + a

(
a− x−a

3
))

e 6x−
a
3

a +
(
2a+ 3x−a

3
)√

x− 2a
3 + a

(
a+ x−a

3
)

c3
(
−3
√
x− 2a

3 + a
)
e 6x−

a
3

a + 3
√
x− 2a

3 + a
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Summary
The solution(s) found are the following
y

=
c3
((

−2a+ 3x−a
3
)√

x− 2a
3 + a

(
a− x−a

3
))

e 6x−
a
3

a +
(
2a+ 3x−a

3
)√

x− 2a
3 + a

(
a+ x−a

3
)

c3
(
−3
√

x− 2a
3 + a

)
e 6x−

a
3

a + 3
√
x− 2a

3 + a

(1)
Verification of solutions

y=
c3
((

−2a+ 3x−a
3
)√

x− 2a
3 + a

(
a− x−a

3
))

e 6x−
a
3

a +
(
2a+ 3x−a

3
)√

x− 2a
3 + a

(
a+ x−a

3
)

c3
(
−3
√
x− 2a

3 + a
)
e 6x−

a
3

a + 3
√
x− 2a

3 + a

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a-1)*(diff(y(x), x))/x+x^(-1-(2/3)*a)*y(x)/x, y(x)` *** Sublevel

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful

<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 119� �
dsolve(x*diff(y(x),x)-a*y(x)+y(x)^2=x^(-2*a/3),y(x), singsol=all)� �
y(x)

=

((
−2a+ 3x−a

3
)√

x− 2a
3 + a

(
a− x−a

3
))

e 6x−
a
3

a +
((

2a+ 3x−a
3
)√

x− 2a
3 + a

(
a+ x−a

3
))

c1(
−3
√

x− 2a
3 + a

)
e 6x−

a
3

a + c1
(
3
√

x− 2a
3 + a

)
3 Solution by Mathematica
Time used: 0.427 (sec). Leaf size: 270� �
DSolve[x*y'[x]-a*y[x]+y[x]^2==x^(-2*a/3),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x−a/3

((
a2x2a/3 − 3iac1xa/3 + 3

)
cosh

(
3x−a/3

a

)
+ i
(
a2c1x

2a/3 + 3iaxa/3 + 3c1
)
sinh

(
3x−a/3

a

))
(axa/3 − 3ic1) cosh

(
3x−a/3

a

)
+ i (ac1xa/3 + 3i) sinh

(
3x−a/3

a

)
y(x) →

(
a2x2a/3 + 3

)
sinh

(
3x−a/3

a

)
− 3axa/3 cosh

(
3x−a/3

a

)
ax2a/3 sinh

(
3x−a/3

a

)
− 3xa/3 cosh

(
3x−a/3

a

)
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5.3 problem 3
5.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 453

Internal problem ID [4402]
Internal file name [OUTPUT/3895_Sunday_June_05_2022_11_36_56_AM_11134300/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , [_Riccati , _special ]]

u′ + u2 = c

x
4
3

5.3.1 Solving as riccati ode

In canonical form the ODE is

u′ = F (x, u)

= −u2x
4
3 − c

x
4
3

This is a Riccati ODE. Comparing the ODE to solve

u′ = −u2 + c

x
4
3

With Riccati ODE standard form

u′ = f0(x) + f1(x)u+ f2(x)u2

Shows that f0(x) = c

x
4
3
, f1(x) = 0 and f2(x) = −1. Let

u = −u′

f2u

= −u′

−u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

c

x
4
3

Substituting the above terms back in equation (2) gives

−u′′(x) + cu(x)
x

4
3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2e3x
1
3
√
c
(
3x 1

3
√
c− 1

)
+ 3c1e−3x

1
3
√
c

(
x

1
3
√
c+ 1

3

)

The above shows that

u′(x) =
3c
(
c2e3x

1
3
√
c − c1e−3x

1
3
√
c
)

x
1
3

Using the above in (1) gives the solution

u =
3c
(
c2e3x

1
3
√
c − c1e−3x

1
3
√
c
)

x
1
3

(
c2e3x

1
3
√
c
(
3x 1

3
√
c− 1

)
+ 3c1e−3x

1
3
√
c
(
x

1
3
√
c+ 1

3

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

u = −
3c
(
−e6x

1
3
√
c + c3

)
x

1
3

(
3x 1

3
√
c e6x

1
3
√
c + 3

√
c x

1
3 c3 − e6x

1
3
√
c + c3

)

454



Summary
The solution(s) found are the following

(1)u = −
3c
(
−e6x

1
3
√
c + c3

)
x

1
3

(
3x 1

3
√
c e6x

1
3
√
c + 3

√
c x

1
3 c3 − e6x

1
3
√
c + c3

)
Verification of solutions

u = −
3c
(
−e6x

1
3
√
c + c3

)
x

1
3

(
3x 1

3
√
c e6x

1
3
√
c + 3

√
c x

1
3 c3 − e6x

1
3
√
c + c3

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(u(x),x)+u(x)^2=c*x^(-4/3),u(x), singsol=all)� �

u(x) = − 3c
x

1
3

(
3x 1

3 tan
(
3
√
−c
(
x

1
3 − c1

))√
−c+ 1

)
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3 Solution by Mathematica
Time used: 0.286 (sec). Leaf size: 183� �
DSolve[u'[x]+u[x]^2==c*x^(-4/3),u[x],x,IncludeSingularSolutions -> True]� �

u(x) →
3c
(
3i sinh

(
3
√
c 3
√
x
)
+ 8c1 cosh

(
3
√
c 3
√
x
))

3
√
x
((
9i
√
c 3
√
x− 8c1

)
cosh

(
3
√
c 3
√
x
)
+ 3

(
8
√
cc1

3
√
x− i

)
sinh

(
3
√
c 3
√
x
))

u(x) → −
3c cosh

(
3
√
c 3
√
x
)

3
√
x
(
cosh

(
3
√
c 3
√
x
)
− 3

√
c 3
√
x sinh

(
3
√
c 3
√
x
))
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5.4 problem 4
5.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 457

Internal problem ID [4403]
Internal file name [OUTPUT/3896_Sunday_June_05_2022_11_37_04_AM_85092418/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , [_Riccati , _special ]]

u′ + bu2 = c

x4

5.4.1 Solving as riccati ode

In canonical form the ODE is

u′ = F (x, u)

= −b u2x4 − c

x4

This is a Riccati ODE. Comparing the ODE to solve

u′ = −b u2 + c

x4

With Riccati ODE standard form

u′ = f0(x) + f1(x)u+ f2(x)u2

Shows that f0(x) = c
x4 , f1(x) = 0 and f2(x) = −b. Let

u = −u′

f2u

= −u′

−bu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

b2c

x4

Substituting the above terms back in equation (2) gives

−bu′′(x) + b2cu(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x

(
c1 sinh

(√
bc

x

)
+ c2 cosh

(√
bc

x

))

The above shows that

u′(x) =
−c2

√
bc sinh

(√
bc
x

)
− c1

√
bc cosh

(√
bc
x

)
+ c1x sinh

(√
bc
x

)
+ c2x cosh

(√
bc
x

)
x

Using the above in (1) gives the solution

u =
−c2

√
bc sinh

(√
bc
x

)
− c1

√
bc cosh

(√
bc
x

)
+ c1x sinh

(√
bc
x

)
+ c2x cosh

(√
bc
x

)
x2b
(
c1 sinh

(√
bc
x

)
+ c2 cosh

(√
bc
x

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

u =

(
−c3

√
bc+ x

)
cosh

(√
bc
x

)
+ sinh

(√
bc
x

)(
c3x−

√
bc
)

x2b
(
c3 sinh

(√
bc
x

)
+ cosh

(√
bc
x

))
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Summary
The solution(s) found are the following

(1)u =

(
−c3

√
bc+ x

)
cosh

(√
bc
x

)
+ sinh

(√
bc
x

)(
c3x−

√
bc
)

x2b
(
c3 sinh

(√
bc
x

)
+ cosh

(√
bc
x

))
Verification of solutions

u =

(
−c3

√
bc+ x

)
cosh

(√
bc
x

)
+ sinh

(√
bc
x

)(
c3x−

√
bc
)

x2b
(
c3 sinh

(√
bc
x

)
+ cosh

(√
bc
x

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(u(x),x)+b*u(x)^2=c*x^(-4),u(x), singsol=all)� �

u(x) =
−
√
−bc tan

(√
−bc (c1x−1)

x

)
+ x

b x2
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3 Solution by Mathematica
Time used: 0.308 (sec). Leaf size: 98� �
DSolve[u'[x]+b*u[x]^2==x^(-4),u[x],x,IncludeSingularSolutions -> True]� �

u(x) →
−2bc1e

2
√
b

x +
√
b
(
1 + 2c1xe

2
√
b

x

)
+ x

x2
(
b+ 2b3/2c1e

2
√
b

x

)
u(x) → x−

√
b

bx2
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5.5 problem 5
5.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 461

Internal problem ID [4404]
Internal file name [OUTPUT/3897_Sunday_June_05_2022_11_37_14_AM_82274080/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , [_Riccati , _special ]]

u′ − u2 = 2
x

8
3

5.5.1 Solving as riccati ode

In canonical form the ODE is

u′ = F (x, u)

= u2x
8
3 + 2
x

8
3

This is a Riccati ODE. Comparing the ODE to solve

u′ = u2 + 2
x

8
3

With Riccati ODE standard form

u′ = f0(x) + f1(x)u+ f2(x)u2

Shows that f0(x) = 2
x
8
3
, f1(x) = 0 and f2(x) = 1. Let

u = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

2
x

8
3

Substituting the above terms back in equation (2) gives

u′′(x) + 2u(x)
x

8
3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =

6

c1
(
−x

1
3
√
2

6 + i
)√

x
1
3
√
2− 6i e

3i
√
2

x
1
3 + c2e

− 3i
√
2

x
1
3
√

x
2
3+18

√
x
1
3
√
2+6i

6

x
2
3

√
x

1
3
√
2− 6i

The above shows that

u′(x)

=
36
(
ix

2
3
√
2 + 18i

√
2 + 5x

3 + 12x 1
3 + x

5
3

18

)
c2e

− 3i
√
2

x
1
3 + 12

(
ix

2
3
√
2− 3i

√
2− x

6 + 4x 1
3

)√
x

1
3
√
2− 6i e

3i
√
2

x
1
3 c1

√
x

2
3 + 18

√
x

1
3
√
2 + 6i√

x
2
3 + 18

(
x

1
3
√
2− 6i

) 3
2
√

x
1
3
√
2 + 6i x 2

3

Using the above in (1) gives the solution

u =

−
2
(
3
(
ix

2
3
√
2 + 18i

√
2 + 5x

3 + 12x 1
3 + x

5
3

18

)
c2e

− 3i
√
2

x
1
3 +

(
ix

2
3
√
2− 3i

√
2− x

6 + 4x 1
3

)√
x

1
3
√
2− 6i e

3i
√
2

x
1
3 c1

√
x

2
3 + 18

√
x

1
3
√
2 + 6i

)
√

x
2
3 + 18

(
x

1
3
√
2− 6i

)√
x

1
3
√
2 + 6i x 4

3

c1
(
−x

1
3
√
2

6 + i
)√

x
1
3
√
2− 6i e

3i
√
2

x
1
3 + c2e

− 3i
√
2

x
1
3
√

x
2
3+18

√
x
1
3
√
2+6i

6


Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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u

=

(
3ix 2

3
√
2 + 54i

√
2 + 5x+ 36x 1

3 + x
5
3
6

)
e
− 3i

√
2

x
1
3 +

(
ix

2
3
√
2− 3i

√
2− x

6 + 4x 1
3

)√
x

1
3
√
2− 6i e

3i
√

2

x
1
3 c3

√
x

2
3 + 18

√
x

1
3
√
2 + 6i

3
√

x
2
3 + 18x 4

3

√
x

1
3
√
2 + 6i

(
−x

1
3
√
2

6 + i
)c3

(
−x

1
3
√
2

6 + i
)√

x
1
3
√
2− 6i e

3i
√
2

x
1
3 + e

− 3i
√
2

x
1
3
√

x
2
3+18

√
x
1
3
√
2+6i

6


Summary
The solution(s) found are the following

(1)u

=

(
3ix 2

3
√
2 + 54i

√
2 + 5x+ 36x 1

3 + x
5
3
6

)
e
− 3i

√
2

x
1
3 +

(
ix

2
3
√
2− 3i

√
2− x

6 + 4x 1
3

)√
x

1
3
√
2− 6i e

3i
√

2

x
1
3 c3

√
x

2
3 + 18

√
x

1
3
√
2 + 6i

3
√

x
2
3 + 18x 4

3

√
x

1
3
√
2 + 6i

(
−x

1
3
√
2

6 + i
)c3

(
−x

1
3
√
2

6 + i
)√

x
1
3
√
2− 6i e

3i
√
2

x
1
3 + e

− 3i
√
2

x
1
3
√

x
2
3+18

√
x
1
3
√
2+6i

6



Figure 76: Slope field plot
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Verification of solutions
u

=

(
3ix 2

3
√
2 + 54i

√
2 + 5x+ 36x 1

3 + x
5
3
6

)
e
− 3i

√
2

x
1
3 +

(
ix

2
3
√
2− 3i

√
2− x

6 + 4x 1
3

)√
x

1
3
√
2− 6i e

3i
√

2

x
1
3 c3

√
x

2
3 + 18

√
x

1
3
√
2 + 6i

3
√

x
2
3 + 18x 4

3

√
x

1
3
√
2 + 6i

(
−x

1
3
√
2

6 + i
)c3

(
−x

1
3
√
2

6 + i
)√

x
1
3
√
2− 6i e

3i
√
2

x
1
3 + e

− 3i
√
2

x
1
3
√

x
2
3+18

√
x
1
3
√
2+6i

6


Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 78� �
dsolve(diff(u(x),x)-u(x)^2=2*x^(-8/3),u(x), singsol=all)� �

u(x) = −
3
(
tan

(
3
√
2
(( 1

x

) 1
3 − c1

))√
2x
( 1
x

) 2
3 + x

( 1
x

) 1
3

3 − 2
)

( 1
x

) 1
3 x2

(
3
( 1
x

) 1
3
√
2 tan

(
3
√
2
(( 1

x

) 1
3 − c1

))
+ 1
)
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3 Solution by Mathematica
Time used: 0.266 (sec). Leaf size: 215� �
DSolve[u'[x]-u[x]^2==x^(-8/3),u[x],x,IncludeSingularSolutions -> True]� �
u(x) →

−

(
−9 3

√
1
x
+ c1

(
8− 24

( 1
x

)2/3)) cos
(
3 3

√
1
x

)
+ 3
(
−3
( 1
x

)2/3 + 8c1 3

√
1
x
+ 1
)
sin
(
3 3

√
1
x

)

x

((
−9 3

√
1
x
+ 8c1

)
cos
(
3 3

√
1
x

)
+ 3

(
1 + 8c1 3

√
1
x

)
sin
(
3 3

√
1
x

))

u(x) →

(
3
( 1
x

)2/3 − 1
)
cos
(
3 3

√
1
x

)
− 3 3

√
1
x
sin
(
3 3

√
1
x

)

x

(
3 3

√
1
x
sin
(
3 3

√
1
x

)
+ cos

(
3 3

√
1
x

))
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5.6 problem 12
5.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 466
5.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 467
5.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 469

Internal problem ID [4405]
Internal file name [OUTPUT/3898_Sunday_June_05_2022_11_37_22_AM_10384012/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

√
f x4 + c x3 + c x2 + bx+ a y′√
a+ by + cy2 + cy3 + fy4

= −1

5.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −
√
f y4 + c y3 + c y2 + by + a√
f x4 + c x3 + c x2 + bx+ a

Where f(x) = − 1√
f x4+c x3+c x2+bx+a

and g(y) =
√
f y4 + c y3 + c y2 + by + a. Integrat-

ing both sides gives

1√
f y4 + c y3 + c y2 + by + a

dy = − 1√
f x4 + c x3 + c x2 + bx+ a

dx∫ 1√
f y4 + c y3 + c y2 + by + a

dy =
∫

− 1√
f x4 + c x3 + c x2 + bx+ a

dx
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∫ y 1√
_a4f + _a3c+ _a2c+ _ab+ a

d_a =
∫

− 1√
f x4 + c x3 + c x2 + bx+ a

dx+ c1

Which results in∫ y 1√
_a4f + _a3c+ _a2c+ _ab+ a

d_a =
∫

− 1√
f x4 + c x3 + c x2 + bx+ a

dx+ c1

The solution is ∫ y 1√
_a4f + _a3c+ _a2c+ _ab+ a

d_a

−
(∫

− 1√
f x4 + c x3 + c x2 + bx+ a

dx

)
− c1 = 0

Summary
The solution(s) found are the following

(1)

∫ y 1√
_a4f + _a3c+ _a2c+ _ab+ a

d_a

−
(∫

− 1√
f x4 + c x3 + c x2 + bx+ a

dx

)
− c1 = 0

Verification of solutions∫ y 1√
_a4f + _a3c+ _a2c+ _ab+ a

d_a

−
(∫

− 1√
f x4 + c x3 + c x2 + bx+ a

dx

)
− c1 = 0

Verified OK.

5.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
√
f y4 + c y3 + c y2 + by + a√
f x4 + c x3 + c x2 + bx+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 54: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −
√

f x4 + c x3 + c x2 + bx+ a

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−
√
f x4 + c x3 + c x2 + bx+ a

dx

Which results in

S = Expression too large to display

5.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

− 1√
f y4 + c y3 + c y2 + by + a

)
dy =

(
1√

f x4 + c x3 + c x2 + bx+ a

)
dx(

− 1√
f x4 + c x3 + c x2 + bx+ a

)
dx+

(
− 1√

f y4 + c y3 + c y2 + by + a

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
f x4 + c x3 + c x2 + bx+ a

N(x, y) = − 1√
f y4 + c y3 + c y2 + by + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

f x4 + c x3 + c x2 + bx+ a

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 1√

f y4 + c y3 + c y2 + by + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

f x4 + c x3 + c x2 + bx+ a
dx

(3)φ =
∫ x

− 1√
_a4f + _a3c+ _a2c+ _ab+ a

d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
f y4+c y3+c y2+by+a

. Therefore equation (4) becomes

(5)− 1√
f y4 + c y3 + c y2 + by + a

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1√
f y4 + c y3 + c y2 + by + a

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1√

f y4 + c y3 + c y2 + by + a

)
dy

f(y) = Expression too large to display + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = Expression too large to display + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = Expression too large to display
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Summary
The solution(s) found are the following

(1)Expression too large to display
Verification of solutions

Expression too large to display

Warning, solution could not be verified

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 56� �
dsolve((sqrt(a+b*x+c*x^2+c*x^3+f*x^4))/(sqrt(a+b*y(x)+c*y(x)^2+c*y(x)^3+f*y(x)^4))*diff(y(x),x)=-1,y(x), singsol=all)� �∫ 1√

f x4 + x3c+ x2c+ xb+ a
dx+

∫ y(x) 1√
_a4f + _a3c+ _a2c+ _ab+ a

d_a+ c1

= 0

3 Solution by Mathematica
Time used: 21.472 (sec). Leaf size: 2239� �
DSolve[Sqrt[a+b*x+c*x^2+c*x^3+f*x^4]/Sqrt[a+b*y[x]+c*y[x]^2+c*y[x]^3+f*y[x]^4]*y'[x]==-1,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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6.1 problem 1
6.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 475

Internal problem ID [4406]
Internal file name [OUTPUT/3899_Sunday_June_05_2022_11_37_32_AM_31421343/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 1.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 5y′ = −6

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 3 (1)
y′ = 2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

3 dx

= 3x+ c1

Summary
The solution(s) found are the following

(1)y = 3x+ c1

Verification of solutions

y = 3x+ c1

Verified OK.
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Solving equation (2)

Integrating both sides gives

y =
∫

2 dx

= 2x+ c2

Summary
The solution(s) found are the following

(1)y = 2x+ c2

Verification of solutions

y = 2x+ c2

Verified OK.

6.1.1 Maple step by step solution

Let’s solve
y′2 − 5y′ = −6

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − 5y′

)
dx =

∫
(−6) dx+ c1

• Cannot compute integral∫ (
y′2 − 5y′

)
dx = −6x+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((diff(y(x),x))^2-5*diff(y(x),x)+6=0,y(x), singsol=all)� �

y(x) = 3x+ c1
y(x) = 2x+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 21� �
DSolve[(y'[x])^2-5*y'[x]+6==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x+ c1
y(x) → 3x+ c1
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6.2 problem 2
6.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 478

Internal problem ID [4407]
Internal file name [OUTPUT/3900_Sunday_June_05_2022_11_37_40_AM_32836822/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 2.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 = a2

x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = a

x
(1)

y′ = −a

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

a

x
dx

= a ln (x) + c1

Summary
The solution(s) found are the following

(1)y = a ln (x) + c1
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Verification of solutions

y = a ln (x) + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−a

x
dx

= −a ln (x) + c2

Summary
The solution(s) found are the following

(1)y = −a ln (x) + c2

Verification of solutions

y = −a ln (x) + c2

Verified OK.

6.2.1 Maple step by step solution

Let’s solve
y′2 = a2

x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2dx =

∫
a2

x2dx+ c1

• Cannot compute integral∫
y′2dx = −a2

x
+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve((diff(y(x),x))^2-a^2/x^2=0,y(x), singsol=all)� �

y(x) = a ln (x) + c1
y(x) = −a ln (x) + c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24� �
DSolve[(y'[x])^2-a^2/x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a log(x) + c1
y(x) → a log(x) + c1
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6.3 problem 3
6.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 481

Internal problem ID [4408]
Internal file name [OUTPUT/3901_Sunday_June_05_2022_11_37_49_AM_18271090/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 3.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 = 1− x

x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
−x (x− 1)

x
(1)

y′ = −
√

−x (x− 1)
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

−x (x− 1)
x

dx

=
√
−x2 + x+ arcsin (2x− 1)

2 + c1

Summary
The solution(s) found are the following

(1)y =
√
−x2 + x+ arcsin (2x− 1)

2 + c1
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Verification of solutions

y =
√
−x2 + x+ arcsin (2x− 1)

2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
√

−x (x− 1)
x

dx

= −
√
−x2 + x− arcsin (2x− 1)

2 + c2

Summary
The solution(s) found are the following

(1)y = −
√
−x2 + x− arcsin (2x− 1)

2 + c2

Verification of solutions

y = −
√
−x2 + x− arcsin (2x− 1)

2 + c2

Verified OK.

6.3.1 Maple step by step solution

Let’s solve
y′2 = 1−x

x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2dx =

∫ 1−x
x
dx+ c1

• Cannot compute integral∫
y′2dx = −x+ ln (x) + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
dsolve((diff(y(x),x))^2=(1-x)/x,y(x), singsol=all)� �

y(x) =
√

−x (x− 1) + arcsin (2x− 1)
2 + c1

y(x) = −
√

−x (x− 1)− arcsin (2x− 1)
2 + c1

3 Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 81� �
DSolve[(y'[x])^2==(1-x)/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 arctan
(√

1− x√
x+ 1

)
+
√

−((x− 1)x) + c1

y(x) → 2 arctan
(√

1− x√
x+ 1

)
−
√
−((x− 1)x) + c1
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6.4 problem 4
6.4.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 483

Internal problem ID [4409]
Internal file name [OUTPUT/3902_Sunday_June_05_2022_11_37_57_AM_52028092/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 4.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2 = −2xy′

y
+ 1

6.4.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 = −2xp
y

+ 1

Solving for y from the above results in

y = − 2xp
p2 − 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = − 2p
p2 − 1

g = 0

Hence (2) becomes

p+ 2p
p2 − 1 = x

(
− 2
p2 − 1 + 4p2

(p2 − 1)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 2p
p2 − 1 = 0

Solving for p from the above gives

p = 0
p = i

p = −i

Substituting these in (1A) gives

y = 0
y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 2p(x)

p(x)2−1

x

(
− 2

p(x)2−1 +
4p(x)2(

p(x)2−1
)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 2

p2−1 +
4p2

(p2−1)2

)
p+ 2p

p2−1
(4)

This ODE is now solved for x(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 2
p3 − p

q(p) = 0

Hence the ode is

d

dp
x(p)− 2x(p)

p3 − p
= 0

The integrating factor µ is

µ = e
∫
− 2

p3−p
dp

= e− ln(p+1)−ln(p−1)+2 ln(p)

Which simplifies to

µ = p2

p2 − 1

The ode becomes

d
dpµx = 0

d
dp

(
p2x

p2 − 1

)
= 0

Integrating gives

p2x

p2 − 1 = c3

Dividing both sides by the integrating factor µ = p2

p2−1 results in

x(p) = c3(p2 − 1)
p2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x+
√
x2 + y2

y

p = −x+
√
x2 + y2

y

Substituting the above in the solution for x found above gives

x = − 2c3x
−x+

√
x2 + y2

x = 2c3x
x+

√
x2 + y2

Summary
The solution(s) found are the following

(1)y = 0
(2)y = −ix
(3)y = ix

(4)x = − 2c3x
−x+

√
x2 + y2

(5)x = 2c3x
x+

√
x2 + y2
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Verification of solutions

y = 0

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.

x = − 2c3x
−x+

√
x2 + y2

Verified OK.

x = 2c3x
x+

√
x2 + y2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying homogeneous B
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = y(x)/x, y(x)` *** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 45� �
dsolve((diff(y(x),x))^2+2*x/y(x)*diff(y(x),x)-1=0,y(x), singsol=all)� �

y(x) = −ix
y(x) = ix

y(x) = −2
√
c1x+ 1
c1

y(x) = 2
√
c1x+ 1
c1
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3 Solution by Mathematica
Time used: 0.466 (sec). Leaf size: 126� �
DSolve[(y'[x])^2+2*x/y[x]*y'[x]-1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e
c1
2
√
−2x+ ec1

y(x) → e
c1
2
√
−2x+ ec1

y(x) → −e
c1
2
√
2x+ ec1

y(x) → e
c1
2
√
2x+ ec1

y(x) → 0
y(x) → −ix
y(x) → ix

489



6.5 problem 5
6.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 491

Internal problem ID [4410]
Internal file name [OUTPUT/3903_Sunday_June_05_2022_11_38_11_AM_57655295/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 5.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y − ay′ − by′
2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a+
√
a2 + 4by
2b (1)

y′ = −a+
√
a2 + 4by
2b (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 2b
−a+

√
a2 + 4by

dy =
∫

dx

ln (y) a
2 +

a ln
(
−a+

√
a2 + 4by

)
2 −

a ln
(
a+

√
a2 + 4by

)
2 +

√
a2 + 4by = x+ c1

Summary
The solution(s) found are the following

(1)ln (y) a
2 +

a ln
(
−a+

√
a2 + 4by

)
2 −

a ln
(
a+

√
a2 + 4by

)
2 +

√
a2 + 4by = x+ c1
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Verification of solutions

ln (y) a
2 +

a ln
(
−a+

√
a2 + 4by

)
2 −

a ln
(
a+

√
a2 + 4by

)
2 +

√
a2 + 4by = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 2b
a+

√
a2 + 4by

dy =
∫

dx

ln (y) a
2 −

a ln
(
−a+

√
a2 + 4by

)
2 +

a ln
(
a+

√
a2 + 4by

)
2 −

√
a2 + 4by = x+ c2

Summary
The solution(s) found are the following

(1)ln (y) a
2 −

a ln
(
−a+

√
a2 + 4by

)
2 +

a ln
(
a+

√
a2 + 4by

)
2 −

√
a2 + 4by = x+ c2

Verification of solutions

ln (y) a
2 −

a ln
(
−a+

√
a2 + 4by

)
2 +

a ln
(
a+

√
a2 + 4by

)
2 −

√
a2 + 4by = x+ c2

Verified OK.

6.5.1 Maple step by step solution

Let’s solve
y − ay′ − by′2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−a+
√

a2+4by
= 1

2b

• Integrate both sides with respect to x∫
y′

−a+
√

a2+4by
dx =

∫ 1
2bdx+ c1

• Evaluate integral

a ln(y)
4b +

2
√

a2+4by+a ln
(
−a+

√
a2+4by

)
−a ln

(
a+
√

a2+4by
)

4b = x
2b + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 207� �
dsolve(y(x)=a*diff(y(x),x)+b*(diff(y(x),x))^2,y(x), singsol=all)� �

y(x) = e
−aLambertW

 2 e
−c1−a+x

a

a
√

1
b

−a+x−c1

a

a

√
1
b
+ e

−aLambertW

 2 e
−c1−a+x

a

a
√

1
b

−a+x−c1

a



y(x) =
a2
(
LambertW

(
−2

√
b e

−c1−a+x
a

a

)
+ 2
)
LambertW

(
−2

√
b e

−c1−a+x
a

a

)
4b

y(x) =
a2
(
LambertW

(
2
√
b e

−c1−a+x
a

a

)
+ 2
)
LambertW

(
2
√
b e

−c1−a+x
a

a

)
4b

3 Solution by Mathematica
Time used: 0.803 (sec). Leaf size: 123� �
DSolve[y[x]==a*y'[x]+b*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[√

4#1b+ a2 + a log
(
b
(
a−

√
4#1b+ a2

))
2b &

] [ x
2b + c1

]
y(x) → InverseFunction

[√
4#1b+ a2 − a log

(√
4#1b+ a2 + a

)
2b &

] [
− x

2b + c1
]

y(x) → 0
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6.6 problem 6
6.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 494

Internal problem ID [4411]
Internal file name [OUTPUT/3904_Sunday_June_05_2022_11_38_21_AM_13572593/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

−ay′ − by′
2 = −x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a+
√
a2 + 4bx
2b (1)

y′ = −a+
√
a2 + 4bx
2b (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

−a+
√
a2 + 4bx
2b dx

=

(
a2+4bx

) 3
2

6b − ax

2b + c1

Summary
The solution(s) found are the following

(1)y =

(
a2+4bx

) 3
2

6b − ax

2b + c1
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Verification of solutions

y =

(
a2+4bx

) 3
2

6b − ax

2b + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−a+
√
a2 + 4bx
2b dx

= −
ax+

(
a2+4bx

) 3
2

6b
2b + c2

Summary
The solution(s) found are the following

(1)y = −
ax+

(
a2+4bx

) 3
2

6b
2b + c2

Verification of solutions

y = −
ax+

(
a2+4bx

) 3
2

6b
2b + c2

Verified OK.

6.6.1 Maple step by step solution

Let’s solve
−ay′ − by′2 = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
−ay′ − by′2

)
dx =

∫
−xdx+ c1

• Cannot compute integral∫ (
−ay′ − by′2

)
dx = −x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 80� �
dsolve(x=a*diff(y(x),x)+b*(diff(y(x),x))^2,y(x), singsol=all)� �

y(x) = (a2 + 4xb)
3
2 + 12c1b2 − 6axb
12b2

y(x) = 12c1b2 − a2
√
a2 + 4xb− 6axb− 4bx

√
a2 + 4xb

12b2

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 74� �
DSolve[x==a*y'[x]+b*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (a2 + 4bx)3/2 − 6abx+ 12b2c1
12b2

y(x) → −

(
a2+4bx

)3/2
6b + ax

2b + c1
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6.7 problem 7
Internal problem ID [4412]
Internal file name [OUTPUT/3905_Sunday_June_05_2022_11_38_30_AM_10840435/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 7.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y −
√
1 + y′2 − ay′ = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = ya+
√
y2 + a2 − 1
a2 − 1 (1)

y′ = ya−
√
y2 + a2 − 1
a2 − 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
a2 − 1

ya+
√
a2 + y2 − 1

dy =
∫

dx∫ y a2 − 1
_aa+

√
_a2 + a2 − 1

d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y a2 − 1

_aa+
√
_a2 + a2 − 1

d_a = x+ c1
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Verification of solutions∫ y a2 − 1
_aa+

√
_a2 + a2 − 1

d_a = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
a2 − 1

ya−
√
a2 + y2 − 1

dy =
∫

dx∫ y a2 − 1
_aa−

√
_a2 + a2 − 1

d_a = x+ c2

Summary
The solution(s) found are the following

(1)
∫ y a2 − 1

_aa−
√
_a2 + a2 − 1

d_a = x+ c2

Verification of solutions∫ y a2 − 1
_aa−

√
_a2 + a2 − 1

d_a = x+ c2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 112� �
dsolve(y(x)=a*diff(y(x),x)+sqrt(1+(diff(y(x),x))^2),y(x), singsol=all)� �

−

(∫ y(x) 1
a_a+

√
_a2 + a2 − 1

d_a
)
a2 +

∫ y(x) 1
a_a+

√
_a2 + a2 − 1

d_a− c1

+ x = 0(∫ y(x) 1
−a_a+

√
_a2 + a2 − 1

d_a
)
a2

−

(∫ y(x) 1
−a_a+

√
_a2 + a2 − 1

d_a
)

− c1 + x = 0

3 Solution by Mathematica
Time used: 0.597 (sec). Leaf size: 210� �
DSolve[y[x]==a*y'[x]+Sqrt[1+(y'[x])^2],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

a
(
log
(√

#12 + a2 − 1−#1− a+ 1
)
+ log

(√
#12 + a2 − 1−#1 + a− 1

))
− (a+ 1) log

(
(a− 1)

(√
#12 + a2 − 1−#1

))
a2 − 1 &

[ x

a2 − 1

+ c1

]
y(x)

→ InverseFunction

a
(
log
(√

#12 + a2 − 1−#1− a− 1
)
+ log

(√
#12 + a2 − 1−#1 + a+ 1

))
− (a− 1) log

(
(a+ 1)

(√
#12 + a2 − 1−#1

))
a2 − 1 &

[ x

a2 − 1

+ c1

]
y(x) → 1
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6.8 problem 8
6.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 500

Internal problem ID [4413]
Internal file name [OUTPUT/3906_Sunday_June_05_2022_11_38_52_AM_79502661/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 8.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

−
√

1 + y′2 − ay′ = −x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = ax+
√
a2 + x2 − 1
a2 − 1 (1)

y′ = −−ax+
√
a2 + x2 − 1

a2 − 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

ax+
√
a2 + x2 − 1
a2 − 1 dx

=
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 + a x2

2
a2 − 1 + c1

Summary
The solution(s) found are the following

(1)y =
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 + a x2

2
a2 − 1 + c1
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Verification of solutions

y =
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 + a x2

2
a2 − 1 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−−ax+
√
a2 + x2 − 1

a2 − 1 dx

= −
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 − a x2

2
a2 − 1 + c2

Summary
The solution(s) found are the following

(1)y = −
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 − a x2

2
a2 − 1 + c2

Verification of solutions

y = −
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 − a x2

2
a2 − 1 + c2

Verified OK.

6.8.1 Maple step by step solution

Let’s solve

−
√

1 + y′2 − ay′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
−
√

1 + y′2 − ay′
)
dx =

∫
−xdx+ c1

• Cannot compute integral∫ (
−
√

1 + y′2 − ay′
)
dx = −x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 113� �
dsolve(x=a*diff(y(x),x)+sqrt(1+(diff(y(x),x))^2),y(x), singsol=all)� �

y(x) =
a x2 + x

√
a2 + x2 − 1 +

(
ln
(
x+

√
a2 + x2 − 1

)
+ 2c1

)
(1 + a) (a− 1)

2a2 − 2

y(x) =
a x2 − x

√
a2 + x2 − 1− (1 + a) (a− 1)

(
ln
(
x+

√
a2 + x2 − 1

)
− 2c1

)
2a2 − 2

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 113� �
DSolve[x==a*y'[x]+Sqrt[1+(y'[x])^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x
(
ax−

√
a2 + x2 − 1

)
a2 − 1 + log

(√
a2 + x2 − 1− x

))
+ c1

y(x) → 1
2

(
x
(√

a2 + x2 − 1 + ax
)

a2 − 1 − log
(√

a2 + x2 − 1− x
))

+ c1
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6.9 problem 9
6.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 503

Internal problem ID [4414]
Internal file name [OUTPUT/3907_Sunday_June_05_2022_11_39_21_AM_33254320/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 9.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ −
√
1 + y′2

x
= 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1√
x2 − 1

(1)

y′ = − 1√
x2 − 1

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1√

x2 − 1
dx

= ln
(
x+

√
x2 − 1

)
+ c1

Summary
The solution(s) found are the following

(1)y = ln
(
x+

√
x2 − 1

)
+ c1
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Verification of solutions

y = ln
(
x+

√
x2 − 1

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− 1√
x2 − 1

dx

= − ln
(
x+

√
x2 − 1

)
+ c2

Summary
The solution(s) found are the following

(1)y = − ln
(
x+

√
x2 − 1

)
+ c2

Verification of solutions

y = − ln
(
x+

√
x2 − 1

)
+ c2

Verified OK.

6.9.1 Maple step by step solution

Let’s solve

y′ −
√

1+y′2

x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′ −

√
1+y′2

x

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′ −

√
1+y′2

x

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)-1/x*sqrt(1+(diff(y(x),x))^2)=0,y(x), singsol=all)� �

y(x) = ln
(
x+

√
x2 − 1

)
+ c1

y(x) = − ln
(
x+

√
x2 − 1

)
+ c1

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 89� �
DSolve[y'[x]-1/x*Sqrt[1+(y'[x])^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
log
(
1− x√

x2 − 1

)
− log

(
x√

x2 − 1
+ 1
)
+ 2c1

)
y(x) → 1

2

(
− log

(
1− x√

x2 − 1

)
+ log

(
x√

x2 − 1
+ 1
)
+ 2c1

)
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6.10 problem 10
6.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 510

Internal problem ID [4415]
Internal file name [OUTPUT/3908_Sunday_June_05_2022_11_39_52_AM_42926693/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 10.
ODE order: 1.
ODE degree: 6.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

x2
(
1 + y′

2
)3

= a2

Solving the given ode for y′ results in 6 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =

√
x
(
(a2x)

1
3 − x

)
x

(1)

y′ = −

√
x
(
(a2x)

1
3 − x

)
x

(2)

y′ =

√
2
√

x
(
i
√
3 (a2x)

1
3 − (a2x)

1
3 − 2x

)
2x (3)

y′ = −

√
2
√

x
(
i
√
3 (a2x)

1
3 − (a2x)

1
3 − 2x

)
2x (4)

y′ =

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
2x (5)

y′ = −

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
2x (6)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

x
(
(a2x)

1
3 − x

)
x

dx

=

√
−

(a2x)
4
3
(
(a2x)

2
3−a2

)
a4

(
(a2x)

2
3 − a2

)
(a2x)

2
3

+ c1

Summary
The solution(s) found are the following

(1)y =

√
−

(a2x)
4
3
(
(a2x)

2
3−a2

)
a4

(
(a2x)

2
3 − a2

)
(a2x)

2
3

+ c1
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Verification of solutions

y =

√
−

(a2x)
4
3
(
(a2x)

2
3−a2

)
a4

(
(a2x)

2
3 − a2

)
(a2x)

2
3

+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−

√
x
(
(a2x)

1
3 − x

)
x

dx

= −

√
−

(a2x)
4
3
(
(a2x)

2
3−a2

)
a4

(
(a2x)

2
3 − a2

)
(a2x)

2
3

+ c2

Summary
The solution(s) found are the following

(1)y = −

√
−

(a2x)
4
3
(
(a2x)

2
3−a2

)
a4

(
(a2x)

2
3 − a2

)
(a2x)

2
3

+ c2

Verification of solutions

y = −

√
−

(a2x)
4
3
(
(a2x)

2
3−a2

)
a4

(
(a2x)

2
3 − a2

)
(a2x)

2
3

+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫ √

2
√

x
(
i
√
3 (a2x)

1
3 − (a2x)

1
3 − 2x

)
2x dx

= −

√
2

√
(a2x)

4
3
(
i
√
3 a2−2(a2x)

2
3−a2

)
a4

(
i
√
3 a2 − 2(a2x)

2
3 − a2

)
4 (a2x)

2
3

+ c3
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Summary
The solution(s) found are the following

(1)y = −

√
2

√
(a2x)

4
3
(
i
√
3 a2−2(a2x)

2
3−a2

)
a4

(
i
√
3 a2 − 2(a2x)

2
3 − a2

)
4 (a2x)

2
3

+ c3

Verification of solutions

y = −

√
2

√
(a2x)

4
3
(
i
√
3 a2−2(a2x)

2
3−a2

)
a4

(
i
√
3 a2 − 2(a2x)

2
3 − a2

)
4 (a2x)

2
3

+ c3

Verified OK.
Solving equation (4)

Integrating both sides gives

y =
∫

−

√
2
√

x
(
i
√
3 (a2x)

1
3 − (a2x)

1
3 − 2x

)
2x dx

=

√
2

√
(a2x)

4
3
(
i
√
3 a2−2(a2x)

2
3−a2

)
a4

(
i
√
3 a2 − 2(a2x)

2
3 − a2

)
4 (a2x)

2
3

+ c4

Summary
The solution(s) found are the following

(1)y =

√
2

√
(a2x)

4
3
(
i
√
3 a2−2(a2x)

2
3−a2

)
a4

(
i
√
3 a2 − 2(a2x)

2
3 − a2

)
4 (a2x)

2
3

+ c4

Verification of solutions

y =

√
2

√
(a2x)

4
3
(
i
√
3 a2−2(a2x)

2
3−a2

)
a4

(
i
√
3 a2 − 2(a2x)

2
3 − a2

)
4 (a2x)

2
3

+ c4

Verified OK.
Solving equation (5)
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Integrating both sides gives

y =
∫ √

−2x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
2x dx

=

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√ (a2x)
4
3
(
i
√
3 a2+2(a2x)

2
3+a2

)
a4

(
i
√
3 a2 + 2(a2x)

2
3 + a2

)
4
√

x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
(a2x)

2
3

+ c5

Summary
The solution(s) found are the following

(1)y

=

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√ (a2x)
4
3
(
i
√
3 a2+2(a2x)

2
3+a2

)
a4

(
i
√
3 a2 + 2(a2x)

2
3 + a2

)
4
√

x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
(a2x)

2
3

+ c5

Verification of solutions
y

=

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√ (a2x)
4
3
(
i
√
3 a2+2(a2x)

2
3+a2

)
a4

(
i
√
3 a2 + 2(a2x)

2
3 + a2

)
4
√

x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
(a2x)

2
3

+ c5

Verified OK.
Solving equation (6)

Integrating both sides gives

y =
∫

−

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
2x dx

= −

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√ (a2x)
4
3
(
i
√
3 a2+2(a2x)

2
3+a2

)
a4

(
i
√
3 a2 + 2(a2x)

2
3 + a2

)
4
√

x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
(a2x)

2
3

+ c6
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Summary
The solution(s) found are the following

(1)y =

−

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√ (a2x)
4
3
(
i
√
3 a2+2(a2x)

2
3+a2

)
a4

(
i
√
3 a2 + 2(a2x)

2
3 + a2

)
4
√

x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
(a2x)

2
3

+ c6

Verification of solutions
y =

−

√
−2x

(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√ (a2x)
4
3
(
i
√
3 a2+2(a2x)

2
3+a2

)
a4

(
i
√
3 a2 + 2(a2x)

2
3 + a2

)
4
√

x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)
(a2x)

2
3

+ c6

Verified OK.

6.10.1 Maple step by step solution

Let’s solve

x2(1 + y′2
)3 = a2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
x2(1 + y′2

)3
dx =

∫
a2dx+ c1

• Cannot compute integral∫
x2(1 + y′2

)3
dx = a2x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 605� �
dsolve(x^2*(1+(diff(y(x),x))^2)^3-a^2=0,y(x), singsol=all)� �

y(x) =
−

√
x(a2x)

1
3
(
a2−(a2x)

2
3
)

a2
a2 + c1(a2x)

2
3 +

√
x(a2x)

1
3
(
a2−(a2x)

2
3
)

a2
(a2x)

2
3

(a2x)
2
3

y(x) =

(
a2 − (a2x)

2
3
)√

x(a2x)
1
3
(
a2−(a2x)

2
3
)

a2
+ c1(a2x)

2
3

(a2x)
2
3

y(x) =

−

√
2
√

−x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√(
2i(a2x)

2
3+ia2−

√
3 a2

)
x(a2x)

1
3

a2

(
2(a2x)

2
3 + a2 + i

√
3 a2
)

4
√(

i (a2x)
1
3 + 2ix−

√
3 (a2x)

1
3

)
x (a2x)

2
3

+ c1
y(x)

=

√
2
√

−x
(
i
√
3 (a2x)

1
3 + (a2x)

1
3 + 2x

)√(
2i(a2x)

2
3+ia2−

√
3 a2

)
x(a2x)

1
3

a2

(
2(a2x)

2
3 + a2 + i

√
3 a2
)

4
√(

i (a2x)
1
3 + 2ix−

√
3 (a2x)

1
3

)
x (a2x)

2
3

+ c1

y(x) =

(
−2(a2x)

2
3
√
2 +

(
i
√
6−

√
2
)
a2
)√((

i
√
3−1

)
a2−2(a2x)

2
3
)
x(a2x)

1
3

a2
+ 4c1(a2x)

2
3

4 (a2x)
2
3

y(x) = −

(
−2(a2x)

2
3
√
2 +

(
i
√
6−

√
2
)
a2
)√((

i
√
3−1

)
a2−2(a2x)

2
3
)
x(a2x)

1
3

a2
− 4c1(a2x)

2
3

4 (a2x)
2
3
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3 Solution by Mathematica
Time used: 18.927 (sec). Leaf size: 375� �
DSolve[x^2*(1+(y'[x])^2)^3-a^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
√
x

√
a2/3

x2/3 − 1
(
x2/3 − a2/3

)
+ c1

y(x) → 3
√
x

√
a2/3

x2/3 − 1
(
a2/3 − x2/3)+ c1

y(x) → c1 −
1
2

3
√
x

√
−1 +

i
(√

3 + i
)
a2/3

2x2/3

(
2x2/3 +

(
1− i

√
3
)
a2/3

)
y(x) → 1

2
3
√
x

√
−1 +

i
(√

3 + i
)
a2/3

2x2/3

(
2x2/3 +

(
1− i

√
3
)
a2/3

)
+ c1

y(x) → c1 −
1
2

3
√
x

√
−1−

i
(√

3− i
)
a2/3

2x2/3

(
2x2/3 +

(
1 + i

√
3
)
a2/3

)
y(x) → 1

2
3
√
x

√
−1−

i
(√

3− i
)
a2/3

2x2/3

(
2x2/3 +

(
1 + i

√
3
)
a2/3

)
+ c1
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6.11 problem 11
6.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 515

Internal problem ID [4416]
Internal file name [OUTPUT/3909_Sunday_June_05_2022_11_40_07_AM_14979362/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 11.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 = −1 + (a+ x)2

2ax+ x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = a√
2ax+ x2

(1)

y′ = − a√
2ax+ x2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

a√
2ax+ x2

dx

= a ln
(
a+ x+

√
2ax+ x2

)
+ c1

Summary
The solution(s) found are the following

(1)y = a ln
(
a+ x+

√
2ax+ x2

)
+ c1
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Verification of solutions

y = a ln
(
a+ x+

√
2ax+ x2

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− a√
2ax+ x2

dx

= −a ln
(
a+ x+

√
2ax+ x2

)
+ c2

Summary
The solution(s) found are the following

(1)y = −a ln
(
a+ x+

√
2ax+ x2

)
+ c2

Verification of solutions

y = −a ln
(
a+ x+

√
2ax+ x2

)
+ c2

Verified OK.

6.11.1 Maple step by step solution

Let’s solve

y′2 = −1 + (a+x)2
2ax+x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2dx =

∫ (
−1 + (a+x)2

2ax+x2

)
dx+ c1

• Cannot compute integral∫
y′2dx = −a ln(2a+x)

2 + a ln(x)
2 + c1

515



Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 42� �
dsolve(1+(diff(y(x),x))^2=(x+a)^2/(x^2+2*a*x),y(x), singsol=all)� �

y(x) = a ln
(
x+ a+

√
x (2a+ x)

)
+ c1

y(x) = −a ln
(
x+ a+

√
x (2a+ x)

)
+ c1

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 107� �
DSolve[1+(y'[x])^2==(x+a)^2/(x^2+2*a*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2a

√
x
√
2a+ x log

(√
2a+ x−

√
x
)√

x(2a+ x)
+ c1

y(x) →
2a

√
x
√
2a+ x log

(√
2a+ x−

√
x
)√

x(2a+ x)
+ c1
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6.12 problem 12
6.12.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 517

Internal problem ID [4417]
Internal file name [OUTPUT/3910_Sunday_June_05_2022_11_40_15_AM_98915764/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 12.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y − xy′ − y′ + y′
2 = 0

6.12.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − xp− p+ y = 0

Solving for y from the above results in

y = −p2 + xp+ p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p2 + xp+ p

= −p2 + xp+ p
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = −p2 + p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = −c21 + c1x+ c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2 + p, then
the above equation becomes

x+ g′(p) = x− 2p+ 1
= 0
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Solving the above for p results in

p1 =
1
2 + x

2

Substituting the above back in (1) results in

y1 =
(x+ 1)2

4

Summary
The solution(s) found are the following

(1)y = −c21 + c1x+ c1

(2)y = (x+ 1)2

4
Verification of solutions

y = −c21 + c1x+ c1

Verified OK.

y = (x+ 1)2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 22� �
dsolve(y(x)=x*diff(y(x),x)+diff(y(x),x)-(diff(y(x),x))^2,y(x), singsol=all)� �

y(x) = (1 + x)2

4
y(x) = c1(−c1 + x+ 1)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 28� �
DSolve[y[x]==x*y'[x]+y'[x]-(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x+ 1− c1)

y(x) → 1
4(x+ 1)2
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6.13 problem 13
6.13.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 521

Internal problem ID [4418]
Internal file name [OUTPUT/3911_Sunday_June_05_2022_11_40_28_AM_68233945/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 13.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Clairaut]

y − xy′ −
√

b2 − a2y′2 = 0

6.13.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

y − xp−
√
−a2p2 + b2 = 0

Solving for y from the above results in

y = xp+
√

−a2p2 + b2 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+
√

−a2p2 + b2

= xp+
√

−a2p2 + b2
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g =
√

−a2p2 + b2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+
√

−a2c21 + b2

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g =
√
−a2p2 + b2,

then the above equation becomes

x+ g′(p) = x− a2p√
−a2p2 + b2

= 0
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Solving the above for p results in

p1 =
xb√

a2 + x2 a

p2 = − xb√
a2 + x2 a

Substituting the above back in (1) results in

y1 =

√
a2b2

a2+x2

√
a2 + x2 a+ b x2

√
a2 + x2 a

y2 =

√
a2b2

a2+x2

√
a2 + x2 a− b x2

√
a2 + x2 a

Summary
The solution(s) found are the following

(1)y = c1x+
√
−a2c21 + b2

(2)y =

√
a2b2

a2+x2

√
a2 + x2 a+ b x2

√
a2 + x2 a

(3)y =

√
a2b2

a2+x2

√
a2 + x2 a− b x2

√
a2 + x2 a

Verification of solutions

y = c1x+
√

−a2c21 + b2

Verified OK.

y =

√
a2b2

a2+x2

√
a2 + x2 a+ b x2

√
a2 + x2 a

Verified OK.

y =

√
a2b2

a2+x2

√
a2 + x2 a− b x2

√
a2 + x2 a

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 22� �
dsolve(y(x)=x*diff(y(x),x)+sqrt(b^2-a^2*(diff(y(x),x))^2),y(x), singsol=all)� �

y(x) = c1x+
√

−a2c21 + b2

3 Solution by Mathematica
Time used: 0.349 (sec). Leaf size: 38� �
DSolve[y[x]==x*y'[x]+Sqrt[b^2-a^2*(y'[x])^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
b2 − a2c12 + c1x

y(x) →
√
b2
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6.14 problem 14
6.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 525
6.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 527
6.14.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 531
6.14.4 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 535

Internal problem ID [4419]
Internal file name [OUTPUT/3912_Sunday_June_05_2022_11_40_53_AM_721168/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "dAlembert", "homo-
geneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y − xy′ − x
√
1 + y′2 = 0

6.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x− x(u′(x)x+ u(x))− x

√
1 + (u′ (x)x+ u (x))2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 1
2ux
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Where f(x) = − 1
2x and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = − 1
2x dx

∫ 1
u2+1
u

du =
∫

− 1
2x dx

ln (u2 + 1)
2 = − ln (x)

2 + c2

Raising both side to exponential gives
√
u2 + 1 = e−

ln(x)
2 +c2

Which simplifies to
√
u2 + 1 = c3√

x

Which simplifies to √
u (x)2 + 1 = c3ec2√

x

The solution is √
u (x)2 + 1 = c3ec2√

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3ec2√
x√

x2 + y2

x2 = c3ec2√
x

Summary
The solution(s) found are the following

(1)
√

x2 + y2

x2 = c3ec2√
x
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Figure 77: Slope field plot

Verification of solutions √
x2 + y2

x2 = c3ec2√
x

Verified OK.

6.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 − y2

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 − y2

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = −x

2 + c1

Which simplifies to

y2

2x = −x

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2−y2

2xy
dS
dR

= −1
2

R = x

S = y2

2x

Summary
The solution(s) found are the following

(1)y2

2x = −x

2 + c1
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Figure 78: Slope field plot

Verification of solutions

y2

2x = −x

2 + c1

Verified OK.

6.14.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 − y2

2xy
This is a Bernoulli ODE.

y′ = 1
2xy −

x

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) = −x

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x − x

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x − x

2
w′ = w

x
− x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = −x
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Hence the ode is

w′(x)− w(x)
x

= −x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ) (−x)

d
dx

(w
x

)
=
(
1
x

)
(−x)

d
(w
x

)
= −1 dx

Integrating gives

w

x
=
∫

−1 dx
w

x
= −x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x− x2

which simplifies to

w(x) = x(−x+ c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x(−x+ c1)

Solving for y gives

y(x) =
√

x (−x+ c1)
y(x) = −

√
x (−x+ c1)
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Summary
The solution(s) found are the following

(1)y =
√

x (−x+ c1)
(2)y = −

√
x (−x+ c1)

Figure 79: Slope field plot

Verification of solutions

y =
√

x (−x+ c1)

Verified OK.

y = −
√

x (−x+ c1)

Verified OK.
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6.14.4 Solving as dAlembert ode

Let p = y′ the ode becomes

y − xp− x
√
p2 + 1 = 0

Solving for y from the above results in

y =
(√

p2 + 1 + p
)
x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f =
√
p2 + 1 + p

g = 0

Hence (2) becomes

−
√

p2 + 1 = x

(
p√

p2 + 1
+ 1
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−
√
p2 + 1 = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −

√
p (x)2 + 1

x

(
p(x)√
p(x)2+1

+ 1
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

x(p)
(

p√
p2+1

+ 1
)

√
p2 + 1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −−
√
p2 + 1− p

p2 + 1
q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−
√
p2 + 1− p

)
x(p)

p2 + 1 = 0

The integrating factor µ is

µ = e
∫
−−

√
p2+1−p

p2+1 dp

The ode becomes
d
dpµx = 0

d
dp

(
e
∫
−−

√
p2+1−p

p2+1 dp
x

)
= 0

Integrating gives

e
∫
−−

√
p2+1−p

p2+1 dp
x = c2
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Dividing both sides by the integrating factor µ = e
∫
−−

√
p2+1−p

p2+1 dp results in

x(p) = c2e
−
(∫ √p2+1+p

p2+1 dp

)

Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix

Figure 80: Slope field plot

Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 97� �
dsolve(y(x)=x*diff(y(x),x)+x*sqrt(1+(diff(y(x),x))^2),y(x), singsol=all)� �

y(x) =

(√
− c21

x(−2c1+x)

√
−x (−2c1 + x)− x+ c1

)
x√

−x (−2c1 + x)

y(x) =

(√
− c21

x(−2c1+x)

√
−x (−2c1 + x) + x− c1

)
x√

−x (−2c1 + x)

3 Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 37� �
DSolve[y[x]==x*y'[x]+x*Sqrt[1+(y'[x])^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x(x− c1)

y(x) →
√

−x(x− c1)
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6.15 problem 15
6.15.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 539

Internal problem ID [4420]
Internal file name [OUTPUT/3913_Sunday_June_05_2022_11_41_28_AM_42177893/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 15.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y − xy′ − ax
√
1 + y′2 = 0

6.15.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y − xp− ax
√
p2 + 1 = 0

Solving for y from the above results in

y =
(√

p2 + 1 a+ p
)
x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f =
√
p2 + 1 a+ p

g = 0

Hence (2) becomes

−
√

p2 + 1 a = x

(
ap√
p2 + 1

+ 1
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−
√
p2 + 1 a = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −

√
p (x)2 + 1 a

x

(
ap(x)√
p(x)2+1

+ 1
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

x(p)
(

ap√
p2+1

+ 1
)

√
p2 + 1 a

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = −−ap−
√
p2 + 1

(p2 + 1) a
q(p) = 0

Hence the ode is
d

dp
x(p)−

(
−ap−

√
p2 + 1

)
x(p)

(p2 + 1) a = 0

The integrating factor µ is

µ = e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

The ode becomes
d
dpµx = 0

d
dp

e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

x

 = 0

Integrating gives

e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

x = c2

Dividing both sides by the integrating factor µ = e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

results in

x(p) = c2e−
∫ ap+

√
p2+1

p2+1
dp

a

Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix

Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 340� �
dsolve(y(x)=x*diff(y(x),x)+a*x*sqrt(1+(diff(y(x),x))^2),y(x), singsol=all)� �

x

√
−x2a2+y(x)2a2+2

√
−x2a2+x2+y(x)2 ay(x)+x2+y(x)2

(a2−1)2x2 − e
arcsinh


√

−x2a2+x2+y(x)2 a+y(x)(
a2−1

)
x


a c1√

−x2a2+y(x)2a2+2
√

−x2a2+x2+y(x)2 ay(x)+x2+y(x)2

(a2−1)2x2

= 0

x

√
−x2a2+y(x)2a2−2

√
−x2a2+x2+y(x)2 ay(x)+x2+y(x)2

(a2−1)2x2 − e
arcsinh

−
√

−x2a2+x2+y(x)2 a+y(x)(
a2−1

)
x


a c1√

−x2a2+y(x)2a2−2
√

−x2a2+x2+y(x)2 ay(x)+x2+y(x)2

(a2−1)2x2

= 0
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3 Solution by Mathematica
Time used: 0.993 (sec). Leaf size: 223� �
DSolve[y[x]==x*y'[x]+a*x*Sqrt[1+(y'[x])^2],y[x],x,IncludeSingularSolutions -> True]� �

Solve


2i arctan

 y(x)

x

√
a2− y(x)2

x2 −1

− 2ia arctan

 ay(x)

x

√
a2− y(x)2

x2 −1

+ a log
(

y(x)2
x2 + 1

)
2a2 − 2 = a log (x− a2x)

1− a2

+ c1, y(x)



Solve


−2i arctan

 y(x)

x

√
a2− y(x)2

x2 −1

+ 2ia arctan

 ay(x)

x

√
a2− y(x)2

x2 −1

+ a log
(

y(x)2
x2 + 1

)
2a2 − 2 = a log (x− a2x)

1− a2

+ c1, y(x)


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6.16 problem 16
6.16.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 544

Internal problem ID [4421]
Internal file name [OUTPUT/3914_Sunday_June_05_2022_11_41_54_AM_95615808/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 16.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_dAlembert]

−y′y − ay′
2 = −x

6.16.1 Solving as dAlembert ode

Let p = y′ the ode becomes

−a p2 − py = −x

Solving for y from the above results in

y = x

p
− ap (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1
p

g = −ap

Hence (2) becomes

p− 1
p
=
(
− x

p2
− a

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1
p
= 0

Solving for p from the above gives

p = 1
p = −1

Substituting these in (1A) gives

y = a− x

y = −a+ x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 1

p(x)

− x
p(x)2 − a

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−x(p)
p2

− a

p− 1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = 1
p3 − p

q(p) = − ap

p2 − 1

Hence the ode is

d

dp
x(p) + x(p)

p3 − p
= − ap

p2 − 1

The integrating factor µ is

µ = e
∫ 1

p3−p
dp

= e
ln(p+1)

2 + ln(p−1)
2 −ln(p)

Which simplifies to

µ =
√
p+ 1

√
p− 1

p

The ode becomes

d
dp(µx) = (µ)

(
− ap

p2 − 1

)
d
dp

(√
p+ 1

√
p− 1x

p

)
=
(√

p+ 1
√
p− 1

p

)(
− ap

p2 − 1

)
d
(√

p+ 1
√
p− 1x

p

)
=
(
−a

√
p+ 1

√
p− 1

p2 − 1

)
dp

Integrating gives
√
p+ 1

√
p− 1x

p
=
∫

−a
√
p+ 1

√
p− 1

p2 − 1 dp
√
p+ 1

√
p− 1x

p
= −

a
√
p+ 1

√
p− 1 ln

(
p+

√
p2 − 1

)
√
p2 − 1

+ c1

Dividing both sides by the integrating factor µ =
√
p+1

√
p−1

p
results in

x(p) = −
pa ln

(
p+

√
p2 − 1

)
√
p2 − 1

+ c1p√
p+ 1

√
p− 1
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −y +
√
y2 + 4ax
2a

p = −y +
√
y2 + 4ax
2a

Substituting the above in the solution for x found above gives

x=
(
−y+

√
y2 + 4ax

)
−

√
2

− ln (2) + ln

√
2

√
−y

√
y2+4ax−2a2+2ax+y2

a2 a+
√

y2+4ax−y

a


2
√

−y
√

y2+4ax−2a2+2ax+y2

a2

+ c1√
−y+

√
y2+4ax+2a
a

√
−y+

√
y2+4ax−2a
a

a



x =
(
y +

√
y2 + 4ax

)

√
2

− ln (2) + ln

√
2

√
y

√
y2+4ax−2a2+2ax+y2

a2 a−
√

y2+4ax−y

a


2
√

y
√

y2+4ax−2a2+2ax+y2

a2

− c1√
−y−

√
y2+4ax+2a
a

√
−y−

√
y2+4ax−2a
a

a


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Summary
The solution(s) found are the following

(1)y = a− x
(2)y = −a+ x

x =
(
−y

+
√

y2 + 4ax
)
−

√
2

− ln (2) + ln

√
2

√
−y

√
y2+4ax−2a2+2ax+y2

a2 a+
√

y2+4ax−y

a


2
√

−y
√

y2+4ax−2a2+2ax+y2

a2

+ c1√
−y+

√
y2+4ax+2a
a

√
−y+

√
y2+4ax−2a
a

a


(3)

x =
(
y +

√
y2 + 4ax

)

√
2

− ln (2) + ln

√
2

√
y

√
y2+4ax−2a2+2ax+y2

a2 a−
√

y2+4ax−y

a


2
√

y
√

y2+4ax−2a2+2ax+y2

a2

− c1√
−y−

√
y2+4ax+2a
a

√
−y−

√
y2+4ax−2a
a

a


(4)
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Verification of solutions

y = a− x

Verified OK.
y = −a+ x

Verified OK.

x =
(
−y

+
√

y2 + 4ax
)
−

√
2

− ln (2) + ln

√
2

√
−y

√
y2+4ax−2a2+2ax+y2

a2 a+
√

y2+4ax−y

a


2
√

−y
√

y2+4ax−2a2+2ax+y2

a2

+ c1√
−y+

√
y2+4ax+2a
a

√
−y+

√
y2+4ax−2a
a

a


Warning, solution could not be verified

x =
(
y +

√
y2 + 4ax

)

√
2

− ln (2) + ln

√
2

√
y

√
y2+4ax−2a2+2ax+y2

a2 a−
√

y2+4ax−y

a


2
√

y
√

y2+4ax−2a2+2ax+y2

a2

− c1√
−y−

√
y2+4ax+2a
a

√
−y−

√
y2+4ax−2a
a

a


Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 396� �
dsolve(x-y(x)*diff(y(x),x)=a*(diff(y(x),x))^2,y(x), singsol=all)� �

c1

(
y(x)−

√
4ax+ y (x)2

)
√

−y(x)+
√

4ax+y(x)2−2a
a

√
−y(x)+

√
4ax+y(x)2+2a
a

+ x

−

(
y(x)−

√
4ax+ y (x)2

)−3 ln (2) + 2 ln

2

√
y(x)2−y(x)

√
4ax+y(x)2−2a2+2ax

a2 a−
(
y(x)−

√
4ax+y(x)2

)√
2

a

√
2

4

√
y(x)2−y(x)

√
4ax+y(x)2−2a2+2ax

a2

= 0
c1

(
y(x) +

√
4ax+ y (x)2

)
2

√
−y(x)−

√
4ax+y(x)2−2a
a

√
−y(x)−

√
4ax+y(x)2+2a
a

+ x

−

−3 ln(2)
2 + ln

2

√
y(x)

√
4ax+y(x)2−2a2+2ax+y(x)2

a2 a−
(
y(x)+

√
4ax+y(x)2

)√
2

a

(y(x) +√4ax+ y (x)2
)√

2

2

√
y(x)

√
4ax+y(x)2−2a2+2ax+y(x)2

a2

= 0
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3 Solution by Mathematica
Time used: 0.55 (sec). Leaf size: 79� �
DSolve[x-y[x]*y'[x]==a*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve

x = −
2aK[1] arctan

(√
1−K[1]2
K[1]+1

)
√

1−K[1]2

+ c1K[1]√
1−K[1]2

, y(x) = x

K[1] − aK[1]

 , {y(x), K[1]}


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6.17 problem 17
6.17.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 552

Internal problem ID [4422]
Internal file name [OUTPUT/3915_Sunday_June_05_2022_11_44_35_AM_53176799/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 17.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′y − a
√

1 + y′2 = −x

6.17.1 Solving as dAlembert ode

Let p = y′ the ode becomes

py − a
√

p2 + 1 = −x

Solving for y from the above results in

y = −x

p
+ a

√
p2 + 1
p

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1
p

g = a
√
p2 + 1
p

Hence (2) becomes

p+ 1
p
=
(

x

p2
+ a√

p2 + 1
− a

√
p2 + 1
p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
p
= 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

p(x)

x
p(x)2 +

a√
p(x)2+1

− a
√

p(x)2+1
p(x)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
p2

+ a√
p2+1

− a
√

p2+1
p2

p+ 1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 1
p (p2 + 1)

q(p) = − a

p (p2 + 1)
3
2

Hence the ode is

d

dp
x(p)− x(p)

p (p2 + 1) = − a

p (p2 + 1)
3
2

The integrating factor µ is

µ = e
∫
− 1

p
(
p2+1

)dp

= e
ln
(
p2+1

)
2 −ln(p)

Which simplifies to

µ =
√
p2 + 1
p

The ode becomes

d
dp(µx) = (µ)

(
− a

p (p2 + 1)
3
2

)
d
dp

(√
p2 + 1x
p

)
=
(√

p2 + 1
p

)(
− a

p (p2 + 1)
3
2

)

d
(√

p2 + 1x
p

)
=
(
− a

p2 (p2 + 1)

)
dp

Integrating gives
√
p2 + 1x
p

=
∫

− a

p2 (p2 + 1) dp√
p2 + 1x
p

= a arctan (p) + a

p
+ c1

Dividing both sides by the integrating factor µ =
√

p2+1
p

results in

x(p) =
p
(
a arctan (p) + a

p

)
√
p2 + 1

+ c1p√
p2 + 1
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which simplifies to

x(p) = a arctan (p) p+ c1p+ a√
p2 + 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = xy +
√
y2a2 − a4 + a2x2

a2 − y2

p = −−xy +
√
y2a2 − a4 + a2x2

a2 − y2

Substituting the above in the solution for x found above gives

x

=
a
(
xy +

√
−a2 (−y2 + a2 − x2)

)
arctan

(
xy+

√
−a2(−y2+a2−x2)

a2−y2

)
+ a3 − y2a+ yc1x+

√
−a2 (−y2 + a2 − x2) c1√

2
√

−a2(−y2+a2−x2)xy+y4+(−a2+x2)y2+a2x2

(a2−y2)2 (a2 − y2)

x

=
−a
(
xy −

√
−a2 (−y2 + a2 − x2)

)
arctan

(
−xy+

√
−a2(−y2+a2−x2)
a2−y2

)
+ a3 − y2a+ yc1x−

√
−a2 (−y2 + a2 − x2) c1√

−2
√

−a2(−y2+a2−x2)xy+y4+(−a2+x2)y2+a2x2

(a2−y2)2 (a2 − y2)

Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix
(3)x

=
a
(
xy +

√
−a2 (−y2 + a2 − x2)

)
arctan

(
xy+

√
−a2(−y2+a2−x2)

a2−y2

)
+ a3 − y2a+ yc1x+

√
−a2 (−y2 + a2 − x2) c1√

2
√

−a2(−y2+a2−x2)xy+y4+(−a2+x2)y2+a2x2

(a2−y2)2 (a2 − y2)

(4)x

=
−a
(
xy −

√
−a2 (−y2 + a2 − x2)

)
arctan

(
−xy+

√
−a2(−y2+a2−x2)
a2−y2

)
+ a3 − y2a+ yc1x−

√
−a2 (−y2 + a2 − x2) c1√

−2
√

−a2(−y2+a2−x2)xy+y4+(−a2+x2)y2+a2x2

(a2−y2)2 (a2 − y2)

555



Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.
x

=
a
(
xy +

√
−a2 (−y2 + a2 − x2)

)
arctan

(
xy+

√
−a2(−y2+a2−x2)

a2−y2

)
+ a3 − y2a+ yc1x+

√
−a2 (−y2 + a2 − x2) c1√

2
√

−a2(−y2+a2−x2)xy+y4+(−a2+x2)y2+a2x2

(a2−y2)2 (a2 − y2)

Verified OK.
x

=
−a
(
xy −

√
−a2 (−y2 + a2 − x2)

)
arctan

(
−xy+

√
−a2(−y2+a2−x2)
a2−y2

)
+ a3 − y2a+ yc1x−

√
−a2 (−y2 + a2 − x2) c1√

−2
√

−a2(−y2+a2−x2)xy+y4+(−a2+x2)y2+a2x2

(a2−y2)2 (a2 − y2)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 237� �
dsolve(x+y(x)*diff(y(x),x)=a*sqrt(1+(diff(y(x),x))^2),y(x), singsol=all)� �
y(x)
= csc (RootOf ((sin (_Z)_Za+sin (_Z) c1−cos (_Z) a−x) (sin (_Z)_Za+sin (_Z) c1+cos (_Z) a−x))) csgn (sec (RootOf ((sin (_Z)_Za+sin (_Z) c1−cos (_Z) a−x) (sin (_Z)_Za+sin (_Z) c1+cos (_Z) a−x)))) a

−cot (RootOf ((sin (_Z)_Za+sin (_Z) c1−cos (_Z) a−x) (sin (_Z)_Za+sin (_Z) c1+cos (_Z) a−x)))x
y(x)
= csc (RootOf ((sin (_Z)_Za+sin (_Z) c1+cos (_Z) a+x) (sin (_Z)_Za+sin (_Z) c1−cos (_Z) a+x))) a csgn (sec (RootOf ((sin (_Z)_Za+sin (_Z) c1+cos (_Z) a+x) (sin (_Z)_Za+sin (_Z) c1−cos (_Z) a+x))))

−cot (RootOf ((sin (_Z)_Za+sin (_Z) c1+cos (_Z) a+x) (sin (_Z)_Za+sin (_Z) c1−cos (_Z) a+x)))x

3 Solution by Mathematica
Time used: 3.538 (sec). Leaf size: 388� �
DSolve[x+y[x]*y'[x]==a*Sqrt[1+(y'[x])^2],y[x],x,IncludeSingularSolutions -> True]� �

Solve


2a
√

a2y(x)2−a4 arctan

 ax
√

y(x)2−a2

y(x)
(√

a2
(
y(x)2−a2

)
−
√

a2
(
−a2+x2+y(x)2

))
+a2x


√

y(x)2−a2
−
√

a2 (−a2 + x2 + y(x)2)
a2

−
a
√

y(x)2 − a2 arctan
(√

y(x)2−a2

a

)
√

a2 (y(x)2 − a2)
= c1, y(x)



Solve


a
√

y(x)2 − a2 arctan
(√

y(x)2−a2

a

)
√

a2 (y(x)2 − a2)

+

√
a2 (−a2 + x2 + y(x)2)−

2a
√

a2y(x)2−a4 arctan

 ax
√

y(x)2−a2

y(x)
(√

a2
(
−a2+x2+y(x)2

)
−
√

a2
(
y(x)2−a2

))
+a2x


√

y(x)2−a2

a2
= c1, y(x)


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6.18 problem 18
Internal problem ID [4423]
Internal file name [OUTPUT/3916_Sunday_June_05_2022_11_48_17_AM_21845302/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 18.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

y′y − y2 + y2y′
2 = x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
−1

2 +
√

1+4y2+4x
2

y
(1)

y′ =
−1

2 −
√

1+4y2+4x
2

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[1, -1/2/y], [1/2+x, 1/2*(2*y^2+x)/y], [1/2*x^2+1/2*y^2+1/8+3/4*x, 1/8*x*(8*y^2� �

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 77� �
dsolve(y(x)*diff(y(x),x)=x+(y(x)^2-y(x)^2*(diff(y(x),x))^2),y(x), singsol=all)� �

y(x) = −
√
−1− 4x

2

y(x) =
√
−1− 4x

2

y(x) = −
√
4x2 + (−8c1 − 4)x+ 4c21 − 1

2

y(x) =
√

4x2 + (−8c1 − 4)x+ 4c21 − 1
2
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3 Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 69� �
DSolve[y[x]*y'[x]==x+(y[x]^2-y[x]^2*(y'[x])^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2
√
4x2 − 4(1 + 4c1)x− 1 + 16c12

y(x) → 1
2
√

4x2 − 4(1 + 4c1)x− 1 + 16c12
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6.19 problem 19
6.19.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 561

Internal problem ID [4424]
Internal file name [OUTPUT/3917_Sunday_June_05_2022_11_48_39_AM_42490421/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 19.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y − 1√
1 + y′2

− y′√
1 + y′2

= x

6.19.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y − 1√
p2 + 1

− p√
p2 + 1

= x

Solving for y from the above results in

y = x+ p+ 1√
p2 + 1

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1

g = p+ 1√
p2 + 1

Hence (2) becomes

p− 1 =
(

1√
p2 + 1

− (p+ 1) p
(p2 + 1)

3
2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = x+
√
2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1
1√

p(x)2+1
− (p(x)+1)p(x)(

p(x)2+1
) 3

2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

1√
p2+1

− (p+1)p
(p2+1)

3
2

p− 1 (4)

This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫

− 1
(p2 + 1)

3
2
dp

= − p√
p2 + 1

+ c2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
y
(
−x+ y +

√
−y2 + 2xy − x2 + 2

)
x2 − 2xy + y2 − 1 −

x
(
−x+ y +

√
−y2 + 2xy − x2 + 2

)
x2 − 2xy + y2 − 1 − 1

p =
x
(
−y + x+

√
−y2 + 2xy − x2 + 2

)
x2 − 2xy + y2 − 1 −

y
(
−y + x+

√
−y2 + 2xy − x2 + 2

)
x2 − 2xy + y2 − 1 − 1

Substituting the above in the solution for x found above gives

x =
√
2
(
−1 + (x− y)

√
−y2 + 2xy − x2 + 2

)
2 (x− y + 1) (x− y − 1)

√
−x
√

−y2+2xy−x2+2+y
√

−y2+2xy−x2+2+1
(x2−2xy+y2−1)2

+ c2

x = −
√
2
(
1 + (x− y)

√
−y2 + 2xy − x2 + 2

)
2 (x− y + 1) (x− y − 1)

√
x
√

−y2+2xy−x2+2−y
√

−y2+2xy−x2+2+1
(x2−2xy+y2−1)2

+ c2

Summary
The solution(s) found are the following

(1)y = x+
√
2

(2)x =
√
2
(
−1 + (x− y)

√
−y2 + 2xy − x2 + 2

)
2 (x− y + 1) (x− y − 1)

√
−x
√

−y2+2xy−x2+2+y
√

−y2+2xy−x2+2+1
(x2−2xy+y2−1)2

+ c2

(3)x = −
√
2
(
1 + (x− y)

√
−y2 + 2xy − x2 + 2

)
2 (x− y + 1) (x− y − 1)

√
x
√

−y2+2xy−x2+2−y
√

−y2+2xy−x2+2+1
(x2−2xy+y2−1)2

+ c2
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Verification of solutions

y = x+
√
2

Verified OK.

x =
√
2
(
−1 + (x− y)

√
−y2 + 2xy − x2 + 2

)
2 (x− y + 1) (x− y − 1)

√
−x
√

−y2+2xy−x2+2+y
√

−y2+2xy−x2+2+1
(x2−2xy+y2−1)2

+ c2

Warning, solution could not be verified

x = −
√
2
(
1 + (x− y)

√
−y2 + 2xy − x2 + 2

)
2 (x− y + 1) (x− y − 1)

√
x
√

−y2+2xy−x2+2−y
√

−y2+2xy−x2+2+1
(x2−2xy+y2−1)2

+ c2

Warning, solution could not be verified

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 49� �
dsolve(y(x)-1/sqrt(1+(diff(y(x),x))^2)=(x+diff(y(x),x)/sqrt(1+(diff(y(x),x))^2)),y(x), singsol=all)� �

y(x) =
c1
√
− 1

(−c1+x+1)(x−c1−1) + 1√
− 1

(−c1+x+1)(x−c1−1)
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3 Solution by Mathematica
Time used: 42.598 (sec). Leaf size: 15753� �
DSolve[y[x]-1/Sqrt[1+(y'[x])^2]==(x+y'[x]/Sqrt[1+(y'[x])^2]),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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6.20 problem 20
6.20.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 566

Internal problem ID [4425]
Internal file name [OUTPUT/3918_Sunday_June_05_2022_11_48_56_AM_11174133/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 20.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y − 2xy′ − xy′
2 = 0

6.20.1 Solving as dAlembert ode

Let p = y′ the ode becomes

−x p2 − 2xp+ y = 0

Solving for y from the above results in

y =
(
p2 + 2p

)
x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + 2p
g = 0

Hence (2) becomes

−p2 − p = x(2p+ 2) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 − p = 0

Solving for p from the above gives

p = −1
p = 0

Substituting these in (1A) gives

y = −x

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 − p(x)
x (2p (x) + 2) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
2x

q(x) = 0

Hence the ode is

p′(x) + p(x)
2x = 0
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The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x

The ode becomes
d
dxµp = 0

d
dx
(√

x p
)
= 0

Integrating gives
√
x p = c1

Dividing both sides by the integrating factor µ =
√
x results in

p(x) = c1√
x

Substituing the above solution for p in (2A) gives

y =
(
c21
x

+ 2c1√
x

)
x

Summary
The solution(s) found are the following

(1)y = −x
(2)y = 0

(3)y =
(
c21
x
+ 2c1√

x

)
x

Verification of solutions

y = −x

Verified OK.
y = 0

Verified OK.

y =
(
c21
x
+ 2c1√

x

)
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve(y(x)-2*x*diff(y(x),x)=(x*(diff(y(x),x))^2),y(x), singsol=all)� �

y(x) = −x

y(x) = c1 + 2√c1x

y(x) = c1 − 2√c1x

3 Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 63� �
DSolve[y[x]-2*x*y'[x]==(x*(y'[x])^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ec1 − 2e
c1
2
√
x

y(x) → 2e−
c1
2
√
x+ e−c1

y(x) → 0
y(x) → −x
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6.21 problem 21
6.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 572

Internal problem ID [4426]
Internal file name [OUTPUT/3919_Sunday_June_05_2022_11_49_07_AM_64437950/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7
Problem number: 21.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "riccati", "sepa-
rable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y − xy′

y2 + y′
− y − xy′

1 + x2y′
= 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y

x
(1)

y′ = y2 − 1
x2 − 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x
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Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c1

y = eln(x)+c1

= c1x

Summary
The solution(s) found are the following

(1)y = c1x

Verification of solutions
y = c1x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 − 1
x2 − 1

Where f(x) = 1
x2−1 and g(y) = y2 − 1. Integrating both sides gives

1
y2 − 1 dy = 1

x2 − 1 dx∫ 1
y2 − 1 dy =

∫ 1
x2 − 1 dx

− arctanh (y) = − arctanh (x) + c2

Which results in
y = − tanh (− arctanh (x) + c2)

Summary
The solution(s) found are the following

(1)y = − tanh (− arctanh (x) + c2)
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Verification of solutions

y = − tanh (− arctanh (x) + c2)

Verified OK.

6.21.1 Maple step by step solution

Let’s solve
y−xy′

y2+y′
− y−xy′

1+x2y′
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = x ec1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 19� �
dsolve((y(x)-x*diff(y(x),x))/(y(x)^2+diff(y(x),x))=(y(x)-x*diff(y(x),x))/(1+x^2*diff(y(x),x)),y(x), singsol=all)� �

y(x) = c1x
y(x) = − tanh (− arctanh (x) + c1)
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3 Solution by Mathematica
Time used: 60.122 (sec). Leaf size: 45� �
DSolve[(y[x]-x*y'[x])/(y[x]^2+y'[x])==(y[x]-x*y'[x])/(1+x^2*y'[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x+ e2c1(x− 1) + 1
−x+ e2c1(x− 1)− 1

y(x) → c1x
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