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Internal problem ID [4355]
Internal file name [OUTPUT/3848_Sunday_June_05_2022_11_28_25_AM_59433606/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 1.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

(z+1)y+(1-y)zy' =0

1.1.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)9(y)
_ @+ Dy
-1z

Where f(z) = Z! and g(y) = -2 Integrating both sides gives

1 1
dy=x+

Y
y—1 z

1 1
=1 T

y—In(y)=z+In(x)+¢

dz




Which results in

—Cc1—T
y = — LambertW (_e - >

Since ¢, is constant, then exponential powers of this constant are constants also, and
these can be simplified to just ¢; in the above solution. Which simplifies to

y = — LambertW (_e_w_ )

gives

y = — LambertW (_e_ >

C1x

Summary
The solution(s) found are the following

y = — LambertW (_e ) (1)
1T
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Figure 1: Slope field plot



Verification of solutions

y = — LambertW (_e >
1T

Verified OK.

1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_(z+ 1y
YT ly-De
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode y = f(m) Y+ g(x) y" 0 e f(n—l)f(x)d:cyn
Reduced Riccati v = fi(x)y + folx) y? 0 e— [ fidz
The above table shows that
T
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

as

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the




canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S=/—dm
3
:/idx
z+1

S=z+In(x)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_(z+1)y
oY) = (1)

Evaluating all the partial derivatives gives

R, =0
R, =1
1
Sp=1+=
Xz
S,=0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates

dS y-—1

dR- 3 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS R-1

dR R



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=R—-In(R) +c

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

z+In(z)=y—In(y) +c

Which simplifies to

z+ln(z)=y—In(y) +a

Which gives

—x+cy
y = — LambertW (_e )

T

(4)

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. ) ) i ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R,S)
transformation ’
dy _ (z+1)y dS _ R-1
dz = (y—1)z dR R
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Summary

The solution(s) found are the following

—x+cy
y = — LambertW (— )

T

(1)
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Figure 2: Slope field plot

Verification of solutions

—z+cy
y = — LambertW (_e - >

Verified OK.

1.1.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy

M(w,y)+N(w,y)£

=0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 8¢ 6¢ i
ay
0z ' dydr (B)



Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<

X

<—x+1) dm+(;1> dy =0 (2A)

Comparing (1A) and (2A) shows that

z+1
M(.’I?,y):— T
y—1
N(z,y) = —
(z,y) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 0 ( at1
0y Oy x
=0

10



And

ON _ 0 (y-1
or Oz \ wy

=0
Since %M = 5 N ' then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
T _-M 1
o (1)
99
— =N 2
o )

Integrating (1) w.r.t. z gives

oo .
%dx—/de

8¢ /_z—l—ldx

3x T

¢=—z—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
=0 ! 4
=0+ 1) @
But equation (2) says that —gz = —y;l. Therefore equation (4) becomes

g§—1=o+f'<y> (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

from=](5)

fly)=y—In(y) +a

11



Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=—-z—In(z)+y—In(y) +c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

¢ =-z—In(z)+y—In()

The solution becomes

y = — LambertW (_e_ _ >

T

Summary
The solution(s) found are the following

y = — LambertW (_e . > (1)
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Figure 3: Slope field plot
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Verification of solutions

y = — LambertW (_e . >

Verified OK.

1.1.4 Maple step by step solution

Let’s solve
(z+)y+(1-y)zy' =0
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
v(1-y) _ _ a1
Yy x
° Integrate both sides with respect to x

[ dy = [—=Hdr 4 ¢
° Evaluate integral
—y+hn(y)=—z—In(z)+¢
° Solve for y

Y= —LambertW(— e_:Lcl )

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

13



v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve((1+x) *y (x)+(1-y(x)) *x*diff (y(x) ,x)=0,y(x), singsol=all) J

y(z) = — LambertW (—i)

1T

v Solution by Mathematica
Time used: 3.139 (sec). Leaf size: 28

LDSolve [(1+x) *y [x]+(1-y [x]) *x*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True}]

y(z) = W (—e_Hl>

T

y(z) =0

14



1.2 problem 1.2

1.2.1
1.2.2
1.2.3
1.2.4

Solving as separableode . . . . . . ... ... oL, 151
Solving as first order ode lie symmetry lookup ode . . . . . .. 17
Solving asexactode . . . .. ... .. ... .. ......... 211
Maple step by step solution . . . ... ... ... ... ..... 251

Internal problem ID [4356]
Internal file name [OUTPUT/3849_Sunday_June_05_2022_11_28_32_AM_88189904/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separable]

v +azy’ + (2 —yz?)y' =0

1.2.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)9(y)
_ Yz +1)
z?(y—1)

Where f(z) = 28 and g(y) = nyzl Integrating both sides gives

_x-l—l

dy p

dx

1
/ dy=/x—z dx
x

1
y2
y—1
1
y2
y—1



1 1
] -] _ =
n(y)+y n(z)—_+a

Which results in

In(z)z+LambertW (—e

y:e x

In(z)z+ciz—1
- T > z+ciz—1

Which simplifies to

1

LambertW <— ee ‘;_cl > 1
y=zxe ele =

Summary
The solution(s) found are the following

LambertW | —eZe 1 1
y=zxe < ‘ >ecle_z (1)
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Figure 4: Slope field plot

Verification of solutions

1

LambertW <— LE ‘;_Cl > 1
y=zxe e‘le =

Verified OK.

16



1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, Yz +1)
YT e w-)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ny + w(ny - €z) - w2€y —wg€ — Wyt = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode vy = f(@)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode y = f(z) 0 1
quadrature ode vy =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bx + cy)% 1 —g
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy
First order special | y' = g(z) M@+ + f(z) e_fbf;?# fz)e” '[;?;;)d%h(z)
form ID 1

polynomial type ode

/ — sztbhiyta
Yy az2z+bay+ca

a1bar—aobix—bica+bacy

a1bey—agbiy—aico—azcy

ai1ba—azb;

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(x)dacyn

Reduced Riccati

Y = fi(z)y + fa(x) y?

e~ J frdz

17




The above table shows that

$2

E@w)=$+1
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

Sz/%dx
_ [

/x2 dx

x+1

S is found from

Which results in

S=In(z)— -

X

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_Yl+1)
UJ(.’L’, y) - .’IJ2 (y _ 1)

18



Evaluating all the partial derivatives gives

R, =0
R,=1
Szzzv—l;l
T
Sy, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as y-1
w7 - 2A
TR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS R-1
dR  R2
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
1
S(R)=In(R) + = +c 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
1 -1 1
b(@)z-1 =In(y)+-+a
T )
Which simplifies to
1 -1 1
T )

Which gives

In(z)z+LambertW (—e

y:e x

In(z)z—cijz—1
_#>

r—crz—1

19



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

.. ) ) i ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ y*(z+1) dS _ R-1
dz — z2(y-1) dR R2?
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Summary
The solution(s) found are the following

_In(z)z—crz—1
In(z)z+LambertW <—e T ) z—cjz—1

y=e

x

20
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Verification of solutions

y:

Verified OK.
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Figure 5: Slope field plot

In(z)z+LambertW <—e

In(z)z—ciz—1
_#>

r—ciz—1

e x

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,y)

dy

22—

dz

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

Hence

d
E;ﬂ%y)zo
0p  Opdy _
oxr  Oydx

21
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

rz+1
<_ z? )d$+( y?

Comparing (1A) and (2A) shows that

<
I
[
N———
oL
<
I
[e)
—~
[\
P
~—~

z+1
M(.’I?,y)_— 72
y—1
N(z,y) = >

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oM _ 0 ( s+
0y Oy x?

=0

22



And

ON _ 0 (y-1
oxr Oz \ 2
=0
oM _

Since Sy = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

oo .
%dx—/de

%dxz/—m+1dx

oz x2

b=—l()+ +f) ©

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1" (y) (4)

But equation (2) says that g—ﬁ = yy;gl Therefore equation (4) becomes

y&1=0+f@) (5)

Solving equation (5) for f'(y) gives

23



Integrating the above w.r.t y gives

[rwa= [ (=)
1

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

1 1
¢:—ln(x)+;+ln(y)+§+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

1 1
clz—ln(z)+a—c+ln(y)+§

The solution becomes

ln(w)z+LambertW<—e z+ciz—1

y:e x

In(z)z+ciz—1
7#)

Summary
The solution(s) found are the following

In(z)z+LambertW (—e

y=e z (1)

In(x)z+ciz—1
- T ) z+ciz—1
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Figure 6: Slope field plot

Verification of solutions

In(z)z+LambertW (—e

y:e x

_ In(z)z+ciz—1
T ) z+cyz—1

Verified OK.

1.2.4 Maple step by step solution

Let’s solve
v +ay’ + (a® —ya?)y =0
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

y(=1) _ z+1
y2 z2

° Integrate both sides with respect to x

i —yl(z;l)dm = [ZHdz + ¢
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° Evaluate integral
In(y)+, =) -;+a

° Solve for y

In(z)z+ciz—1
ln(z)z+LamberiW<—e_ T )

y:e x

z+ciz—1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

Ldsolve((y(x)‘2+x*y(x)‘2)+(x‘2—y(x)*x‘2)*diff(y(x) ,x)=0,y(x), singsol=all) J

—ciz+1
LambertW(—e z:c >a:+c1:1:—1

y(z)=ze :

v/ Solution by Mathematica
Time used: 5.328 (sec). Leaf size: 30

LDSolve[(y[x]‘2+x*y[x]‘2)+(x‘2—y[x]*x‘2)*y'[x]== ,y[x],x,IncludeSingularSolutiﬁns -> Truel
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1.3 problem 1.3

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

Solving as separableode . . . . . . ... ... oL, 271
Solving as first order ode lie symmetry lookup ode . . . . . .. 29]
Solving as bernoulliode . . . ... ... ... ..........
Solving asexactode . . . .. ... .. .. ... ......... 37
Maple step by step solution . . . . . .. ... ... ... ... 47

Internal problem ID [4357]
Internal file name [OUTPUT/3850_Sunday_June_05_2022_11_28_38_AM_52286439/index. tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2
Problem number: 1.3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type

[_separable]

ry(z®+1)y -y’ =1

1.3.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
Y+l
T ay (a2 +1)

Where f(z) = m and g(y) = % Integrating both sides gives

L=
y_ac(ac2+1)

1 1
/ﬂdy_/x(x2+1)dx

27
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In(y?+1 In(z?2+1
n D) READ n@) e

Raising both side to exponential gives

\/ﬁze_

2
M+ln(w)+cl

Which simplifies to

n 132
\% y2 + 1= Cge_1 ( 2+1) +In(z)

Which simplifies to

Ty = 228
Va2 +1
The solution is
1492 = cax e”

j

2+

Summary
The solution(s) found are the following

Cox €%
1+9y2= 1
y T (1)
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Figure 7: Slope field plot
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Verification of solutions

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, Y+l
V= zy (22 + 1)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2€y —wz —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

&(z,y) = x(w2 +1)

n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
S = / %dm
- e
Which results in
S = _WT—i_l) +In(x)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS Sy +w(z,y)S,

dR ~ R, +w(z,y)R, @

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(1) Y +1
w(z,y) = —F—F
Ty @@+ 1)
Evaluating all the partial derivatives gives
R,=0
R, =1
1
Sp = —F—=
z(z2+1)
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds Y

TN (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS R
dR  R2+1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

+c

+

(4)

gives
R2+1
SUﬂ==—i—§——2+cl
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
2 2
_In(z®+1) +In(z) = In (1 + y?)
2 2
Which simplifies to
2 2
_ln(z2—|— 1) FIn(z) = In (12—|-y )

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canoni
(R,

cal coordinates

5)

y?+1

dy _
zy(z?+1)

de

s\ P

——s—e—a—saa | P N,
——s—s—s—saa A b
——s—s—s—s—aa
——s—s—b——a
S

———b—b—s—n~a Ny

B
P G
B
1 B
—s—s—s—b—b—p—aa bbb
bbb a PN
——s—s—s—s—aa
—»—»_—a—»,a,v_{ /

bbb P T

T b

—~ b —>—>

——>——b > ¥ 7 ~——s—b—b—b—b—b

————b > T 7 ~ bbb

BN ~ bbb

——>—>—a—>_> v 7 ~a—a——b—b—b—b

e N N wle s e e e

——e——b—w_v 7 7 N s —b

N N N

——> > T _T /’ N Te—e——b—

R e P a2 0 SO OO NEN
A A A NN NN NN N

—aTa

——>—>—> > v 7 f N A —b—b—b

—_
=}

—~

&

as _
dR —

A TA TR A e A A Sa
e Ta T T A TSa ™A A Sa
— e e e e e e e Na 4
A TA e A e A A Sa s
B S S NS R Sa sl
— e ~a e ~a ]
—a e TA A A A A N A s
B e
e e

R
R2+1

o 7 v v v v o _v_o> o
|- 7 7 v v _v_ v _ v v >
- 7 % v v _v_ v v
o 7 v v v v o _v_o> o
- 7 7 v v v o>
- 7 % v v _v_ v v v
e B e B el
A e a g
et e g

P g g g

“—\'&\“\‘\‘—'\2\‘\‘\0’
I e e NN
A TA T A A A A Sa e
\»\s\a\s\\s\\\a_\zg
e TE A TA A S A Sa T
A Te e A T A A Sa Ty
—e e A Te A Ta A A Sa s
TETA TR TR TA TR A A Sagsd
e e e e T A A Sa T

— e A i ~a 5 ~a “a Na —a

|- 7 7 ¥ v v
et e e d
o T v v v e o >
- 7 7 v v v v v v
o v v v v v oo o>
o 7 T v v v o o >
ettt s g
o v v v v v oo o>
| > 7 v _v_ v _v o o v o

Summary
The solution(s) found are the following

In(z% +1)
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Figure 8: Slope field plot

Verification of solutions

In(z?2+1 In (1 + ¢?
_%m(m)zwm

Verified OK.

1.3.3 Solving as bernoulli ode

In canonical form, the ODE is

y = F(z,y)
_ Y+l
Cmy (22 +1)
This is a Bernoulli ODE.

, 1 1
_x(x2+1)y+x(x2+1)§ (1)

Yy
The standard Bernoulli ODE has the form

Y = fo(x)y + fr(z)y" (2)
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The first step is to divide the above equation by y™ which gives

Y _ fy@y "+ fia) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

1
fo(z) = 2@ +1)
1
fi(z) = @11
n=-1

Dividing both sides of ODE (1) by y" = , gives

) y? 1
= 4
vy x(w2+1)+w(w2+1) 4)
Let
w = 1-n
=y’ (5)

Taking derivative of equation (5) w.r.t x gives

w' = 2yy’ (6)

Substituting equations (5) and (6) into equation (4) gives

w'(z)  w(x) 1
2 T z@+1) @10
o 2w 2 (7)

B z(x2+1) + z(x2+1)
The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(e)w(z) = q(z)
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Where here

(@) :
x ————
P z(z2+1)
2
ale) = z(z?2+1)
Hence the ode is
2w(z) 2
/ —
wi(z) r(x2+1)  z(z241)
The integrating factor u is
- 2 dx
pee o)

Which simplifies to

The ode becomes

Integrating gives

x2 x3
(®+Dw 1
R —ata

Dividing both sides by the integrating factor u = % results in

1 +clx2
2+1 z22+4+1

w(x) =

which simplifies to

cr?—1
wie) =i
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Replacing w in the above by y? using equation (5) gives the final solution.

.z’ —1
a2+

Solving for y gives

/@ D@ -]
z2+1
B V(@2 +1) (az? - 1)

2 +1

Summary
The solution(s) found are the following

V(22 +1) (2? — 1)

Y o (1)
\/(1172 + 1) (011172 - 1) (2)
241
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Figure 9: Slope field plot
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Verification of solutions

V(@2 +1) (az? - 1)

z2+1
Verified OK.
B _\/(m2 +1) (22 — 1)
z2+1
Verified OK.

1.3.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
z
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 04d
o9 oeady _
Or Oydx 0 (B)

Comparing (A,B) shows that

op
e = M
dp
=N

8%¢ 8%¢

But since Bwdy = Byoz

then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
¢ _ ¢ g gatisfied. If this condition is not satisfied then this method will not work

ozx0y ~ OyOzx
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
Y _ 1
(519 G
1 Y _
(~sgary) ot (ot ) =0 (24)
Comparing (1A) and (2A) shows that
M(z,y) =~
DY =Ty (z2+1)
_ Y
N(mﬁ y) - y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oM _ ﬁ(_;)
Oy Oy\ z(z2+1)

=0
And
ON _ 0 ( y
oxr Or\y2+1
=0
Since %—]‘; = %%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o
— =M 1
e (1)
09
L =N 2
o 2)
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Integrating (1) w.r.t. z gives

@dx:/de
or

¢ 1
%dxz/_x(x2+1)dm
6="00D @)+ 5) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
ay =0+ /() (4)

But equation (2) says that g—z = ;#r7- Therefore equation (4) becomes

=0+ 10) ®)
Solving equation (5) for f'(y) gives
oy Y

Integrating the above w.r.t y gives

/f’(y)dy=/(y2?il) dy

fly) = WJM

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

_In(a?+1)
2

2

¢ 2

39



But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

2 2
o = In(z*+1) (o) + In(y*+1)
2 2
Summary
The solution(s) found are the following
2 2
M—ln(w)—i—M:cl (1)
2 2
===\ e
——~~\\\ |/ 77—
N R R
e
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Figure 10: Slope field plot
Verification of solutions
2 2
ln(xz—l- 1) Cn(o) + ln(12—|—y ) —e

Verified OK.
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1.3.5 Maple step by step solution

Let’s solve
zy(z® + 1)y —y*> =1
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

_ 1
1+y?2 = z(z2+1)

° Integrate both sides with respect to z
! _ 1
lizzdl' = f mdﬁ? +c
. Evaluate integral
ln(1+y2) _ ln(:c2—|—1) 1
3 =——= +In(z)+c
° Solve for y
\/(m2+1) ((ecl )2m2—x2—1) \/(:z:2+1) <(ecl )2:c2—m2—1)
y = 241 ’y = - 241

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 54

Ldsolve(x*y(x)*(1+x“2)*diff(y(x),x)—(1+y(x)“2)=0,y(x), singsol=all)

V(2 +1) (az? - 1)

y(z) = 241
RV GRS Cr )
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v/ Solution by Mathematica
Time used: 1.211 (sec). Leaf size: 131

kDSolve [x*xy [x]* (1+x~2) *y ' [x]-(1+y[x] ~2)==0,y[x],x,IncludeSingularSolutions -> jl‘rue]

z) = —
() 241
V14 (—1+e2) 2
%
¥(@) z?2+1
y(z) = —i
y(z) =i
21
z) —
u(z) z?2+1
2 —_1
y(w) >
z2+1
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1.4 problem 1.4

1.4.1 Solving as separableode . . . . . .. ... ... ... ..., [43]
1.4.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 45]
1.43 Solvingasexactode . ... ... ... ... ... ..., 49
1.4.4 Maple step by step solution . . . . ... ... ... ... ... H3l

Internal problem ID [4358]
Internal file name [OUTPUT/3851_Sunday_June_05_2022_11_28_45_AM_11589406/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 1.4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separablel

y? — <y+\/1+y2) (m2+1)%y’:—1

1.4.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
v +1

(y+vVy2+1) (22 +1)

_ 1 . y2+1 . . .
Where f(z) = Y and g(y) = g Integrating both sides gives

3
2

1 1
Y dy=——"_dz

2+1 3
e (@ +1)?




1 1
241 dy = / 7 dz
: (22 +1)2

y+Vyr+1
In (y* + 1) T
i _
arcsinh (y) + 5 T +a

Which results in

RootOf <— sinh ( 21 z27w2_Z+2\2/ﬁ Ll 7_2) 2+8—Z—1>
y =RootOf [ _Z2 —e Pete +1

Summary
The solution(s) found are the following

2
RootOf <— sinh  2e12% =2’ _Z+2Valtlatrer— 7 +e—Z_1>
y = RootOf (22 —e ( e ) +1] (@)
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Figure 11: Slope field plot
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Verification of solutions

2_ 2 /21 2
. RootOf(—sinh(zclx - —Zgiczf;”“”‘—z) +e—Z—1>
y = RootOf | _Z° —e +1

Warning, solution could not be verified

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

;L Y +1
(y+ VI F1) (22 +1)*
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gz) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

3
2

£(z,y) = (2 +1)

n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dz _dy _

ds
§ n

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
1
S = / —dzx
3
1
= / dx
(224 1)2
Which results in
g T
241

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Satw(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y’+1
w(x7y) = 3
(y+ V2 +1) (a2 +1)7
Evaluating all the partial derivatives gives
R,=0
R, =1
g _ 1
T @+r
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

aS _y+vyr+1

dR y?+1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS R+ VR +1

dR  R2+1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
In(R?2+1

S(R) = arcsinh (R) + %
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

+ (4)

z In (1+ y?)
\/ﬁ = arcsmh (y) + T + C1
Which simplifies to
T , In (1 + y?)
z2—_'_1 = arcsinh (y) + T +c

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
2
Z_y — y 41 s dS _ R+VR2+1
z <y+\/y2+1> (z2+1)2 dR ~  R2+1
O al R Y I bbb > v A A A A A 7 7 7 T =
——>—>—bs> o 7 IS A T oo o> > bbb > TIHA A A AT 7 T T
_,_,_,_,_,_J:[ﬁ// AA b %%%%%mﬂ// PAPAAAA T T
— > _T ;"/ A oo bbb 49494949494»»»;'/‘ PAAAAR T T
NN U, . S N s bbb v A AA AT T 7
bbb b > T I T T > bbb R — y ——>—>—>—b——b—s—> T IA A AI A 7 7 7
—>—b>—b—b—>—B>—> > T I T T > > bbb ——b—b—b—b——b—> T I A A AT T T v 7 o
B o 1 T T Sty e—eip o ([ AT A
B e = —>—>—>b>>—s > v A AAA AT 7 T T 5
ettt A B B A e .'L'2+1 bbb F I A A A A A T T 7
- o v A f f—%«f ‘f /‘ pfP Ao 444»4—»4»{11/////////\7/
D A ‘f f j‘ f ‘ff/‘////v/v ——>—b—b——b——b——b s v IAAA AT T T T
R L AR R IR R RN e Attt
R R IR R e L Al e
AR IR R AN BESEEEEEEE e
Frrrrtrttte oo o 8 1 e e
AR RN IS A
Summary
The solution(s) found are the following
2
x ) In(1+y
——— = arcsinh (y) + In(l+y7) +c (1)
va2+1 2
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Figure 12: Slope field plot
Verification of solutions
2
\/xfi_*_l = arcsinh (y) + M +c
Verified OK.
1.4.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(@,y) 72 =0 (8)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)
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Comparing (A,B) shows that

o
M
ox
9 _ n
Oy
But since ;;gy = ;; g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66—;% = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

vt vyt D g (L e
()= ()

y?+1 22 +1)
1 Vi +1
= de+ yrvy +1 dy =0 (2A)
(22 +1)2 y*+1
Comparing (1A) and (2A) shows that
1

y+vyP+1
N(w,y)=W

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

M(.’E,y) = -

oM _ oN
oy Oz

Using result found above gives

oM _of_ 1
Oy  Oy\ (a2+1)

=0

M4
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And
ON 0 (y+\/y2+1>
© Oz

Oz y?2+1
=0

Since %M = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

09

— =M 1

p (1)

09

— =N 2

o 2)

Integrating (1) w.r.t. z gives

/—dx—/Mdm

dx = /—;3 dx
6x (x2+1)5

=~ x2+ +f() (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3y =0+ f'(y) (4)

6¢ _ y+HVyP4l

2+1

y+vVy?+1
y*+1

But equation (2) says that . Therefore equation (4) becomes

=0+ f'(y) (5)

Solving equation (5) for f'(y) gives

y+ vy +1

fly) = 241
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Integrating the above w.r.t y gives

[rom=] (=)

f(y) = arcsinh (y) + WT+1) +a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

T : In(y? +1)
= ———— 4+ arcsinh 4+ —+4c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

T , In(y2+1)
¢ = —————= +arcsinh (y) + ———=
ST ET W+
Summary
The solution(s) found are the following
T _ In (1 + y?)
—————= + arcsinh + ——F——=c 1
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Figure 13: Slope field plot
Verification of solutions
2
- + arcsinh (y) + n(l+y) _ ¢

.’L'2+1 2

Verified OK.

1.4.4 Maple step by step solution

Let’s solve

3
Y= (y+v1i+y?) (@ +1)2y =-1
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
v (vHV1H?) 1
ST |
° Integrate both sides with respect to x
v (vHVie?) 1
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° Evaluate integral

. In 2 T
—arcsinh(y) — (1;”’ ) —mata

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v Solution by Maple
Time used: 0.063 (sec). Leaf size: 28

Ldsolve((1+y(x)‘2)—(y(x)+sqrt(1+y(x)‘2))*(1+x‘2)“(3/2)*diff(y(x),x)=0,y(x), singsol=all)

\/.’BQL*H — arcsinh (y(z)) — M +c=0

v/ Solution by Mathematica
Time used: 15.063 (sec). Leaf size: 115

-

tDSolve[(1+y[x]‘2)-(y[x]+Sqrt[1+y[x]‘2])*(1+x‘2)“(3/2)*y'[x]==0,y[x],x,Includé%ingularSolutio

i(1+ e ™)

y(z) =

\/ 1+ 2evazsi T
i(l n eﬁm)

y(z) — -
V14 2evimte

y(z) — —i

y(x) — i
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1.5 problem 1.5

1.5.1 Solving as separableode . . . . . . ... ... ... ... ... 5ol
1.5.2 Solving as first order ode lie symmetry lookup ode . .. .. .. BTl
1.5.3 Solvingasexactode . . ... ... ... ... .......... 611
1.5.4 Maple step by step solution . . . . ... ... ... .. ..... 65]

Internal problem ID [4359]
Internal file name [OUTPUT/3852_Sunday_June_05_2022_11_28_55_AM_73803550/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 1.5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

sin (z) cos (y) — cos (z)sin (y)y' =0

1.5.1 Solving as separable ode

In canonical form the ODE is

y =F(z,9)
= f(z)g(y)
sin (z) cot (y)
cos ()

Where f(z) = sin@) and 9(y) = cot (y). Integrating both sides gives

cos(z)

1 _ sin ()
cot (y) ay = cos ()

—In(cos(y)) = —In(cos (x)) + &1

%)



Raising both side to exponential gives

~
D
i
=
B
%
Q
L
|
|
<]
~
=
i w0
Q
(5]

Which simplifies to

C2
cos (z)

sec (y) =

Summary

1)

)

coet
cos ()

Yy = arcsec (

The solution(s) found are the following
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Figure 14: Slope field plot

Verification of solutions

Cco€e?
cos ()

Yy = arcsec (

Verified OK.
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1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, _ sin (x) cos (y)
cos () sin (y)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - wzfy - wx§ — Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode v = f(@)y(z) + g9(x) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode v =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy
First order special | y' = g(z) M@+ + f(x) W f)e” fgb:;;)dz_h(m)
form ID 1

polynomial type ode

/ — amztbhiyta
Yy azz+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aice—azcy

ai1ba—azb;

ai1ba—azb;

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz
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The above table shows that

_cos(z)
£(z,9) = sin (z)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=, = 1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since 7 = 0 then in this special case

R=y

Sz/édm
_ [ L

- / cos(z) dx

sin(z)

S is found from

Which results in
S = —In(cos(x))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sz +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

sin (z) cos (y)

w(@,y) = cos (z) sin (y)
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Evaluating all the partial derivatives gives

R, =0
R, =1
Sz = tan (z)
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

© —tan(y) 24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
R tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —1In(cos (R)) + &1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—1In(cos(z)) = —In(cos (y)) + a1
Which simplifies to

—In (cos (z)) = —In(cos (y)) + &1
Which gives

y = arccos (cos (z) e™)

99



NRNNRRRNNNR Y
AR YA AN
trrtrttrtrrt
FAPIASSIAS

PERCURRNNRR Y
ST T TR TR U TR

Pettttrttt
FFPIAPLIS

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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(1)

y = arccos (cos (z) )
60

The solution(s) found are the following

Summary
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Figure 15: Slope field plot
y = arccos (cos (z) )

Verification of solutions

Entering Exact first order ODE solver. (Form one type)

1.5.3 Solving as exact ode
To solve an ode of the form

Verified OK.

d
M(w,y)+N(ﬂs,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

0

gb(.’L', y) =

a
dz
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Comparing (A,B) shows that

But since 224 _ 0%

Buy = Byds then for the above to be valid, we require that

oM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = 8‘9; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

()
(~e) o=+ () =0 o

Comparing (1A) and (2A) shows that

e 2203
Ny = ((Zi

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz

Using result found above gives

R le =)
=0
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And

ON _ 0 (sin(y)
Or Oz \ cos(y)
=0
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

@dx=/de
ox

%dx_/_sin(z) dz

or cos ()

¢ = In (cos (z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99
=0 ! 4
=0+ 1 (@)
But equation (2) says that g—ﬁ = (S:E;EZ)) Therefore equation (4) becomes
sin (y) :
=0 5
=041 )

Solving equation (5) for f'(y) gives

7y) = 22

cos (y)
— tan (y)
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Integrating the above w.r.t y results in

l/ﬂw®=/ﬂw@»®

f(y) = —In(cos (y)) + a1

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = In(cos (z)) — In(cos (y)) + c1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢1 = In(cos (z)) — In (cos (y))

Summary
The solution(s) found are the following

In (cos (z)) — In (cos (y)) = 1 (1)
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Figure 16: Slope field plot
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Verification of solutions

Verified OK.

In (cos (z)) — In (cos (y)) = 1

1.5.4 Maple step by step solution

Maple trace

Let’s solve
sin (z) cos (y) — cos (z)sin (y) y' =0
Highest derivative means the order of the ODE is 1

/

Y

Separate variables
y'sin(y) __ sin(z)
cos(y) cos(z)

Integrate both sides with respect to x
f y' sin(y) dr = f sin(z) dz + ¢

cos(y) cos(z)

Evaluate integral

—1In(cos (y)) = —In (cos (z)) + &1
Solve for y

y = arccos (%(f))

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli
trying separable

<- separable successful”
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 11

Ldsolve(sin(x)*cos(y(x))—cos(x)*sin(y(x))*diff(y(x),x)=0,y(x), singsol=all) J

)

y(x) = arccos (
(4]

v Solution by Mathematica
Time used: 5.43 (sec). Leaf size: 47

LDSolve [Sin[x]*Cos [y [x]]1-Cos[x]*Sin[y[x]1]*y' [x]==0,y[x],x, IncludeSingularSolutjions -> Truel

y(x) — — arccos (%cl cos(w))

y(x) — arccos (%cl cos(x))

y(z) — —g

y(z) — g
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1.6 problem 1.6

1.6.1 Solving as separableode . . . . . ... ... ... ... ..... 671
1.6.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 69]
1.6.3 Solvingasexactode . .. ... .. ................ 73]
1.6.4 Maple step by step solution . . . . ... ... ... ....... irdr(

Internal problem ID [4360)]
Internal file name [OUTPUT/3853_Sunday_June_05_2022_11_29_03_AM_79424893/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 1.6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separablel

sec (z)” tan (y) + sec (y)* tan (z) y' = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)
= f(2)g(y)
_ sec (z)”sin (2y)
B 2tan ()
Where f(z) = —% and g(y) = % Integrating both sides gives
1 _ sec (z)? i
%jy) ~ tan(2)

1 B sec ()
/ %2214) ay _/ tan () de

In (csc (2y) — cot (2y)) = —In (tan (z)) + ¢
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Raising both side to exponential gives

csc (2y) — cot (2y) = e~ ntan(@)+er

Which simplifies to

Co
2y) — cot (2y) =
csc (2y) — cot (2y) = — @
Summary
The solution(s) found are the following
2cg tan(z)ecl e2°1¢c2—tan(z)?
- arctan <e2cl20§+tan(ac)2 )T e2e c§+tan(x)2 ) 1
y= 5 (1)
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Figure 17: Slope field plot

Verification of solutions

2co tan(z)ecl e2°1 cg—‘can(alr:)2
arctan <62°1 c3+tan(z)?’  e21ci+tan(z)?
Y= B

Verified OK.
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1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

) sec () tan (y)

sec (y)* tan (z)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —wg€ — Wyt = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7

Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f(@)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode vy =9g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A
homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . - z)dz—h(z x)e™ Jbf(z)dz—h(z)
f‘lrst IDoider special | ¥ = g(x) M@ 1 f(z) % f(=) (@)
orm

polynomial type ode

/ — aiztbhiyta
Yy azx+boy+c

a1baz—aobix—bica+bacy

a1bey—agbiy—aico—azcy

a1bs—asby

a1bs—asby

Bernoulli ode

y = f(x)y+g(z)y"

¢ /(=Df (@)dzyn

Reduced Riccati

Y = fi(z)y + foz) y?

e J frdz
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The above table shows that

o) = — tan (z)
é-( 7?/) sec (:17)2

n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since 7 = 0 then in this special case

R=y
S is found from

1

S = / —dx
§

1

= __tan(z) dx
sec(x)?

Which results in
S = —In (tan (z))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

sec (z)? tan (y)

w@y) =  sec (y)* tan ()
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Evaluating all the partial derivatives gives

R, =0
R,=1
Sy = —cot (z) — tan ()
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

Jp = Sec(y) esc(y) (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

4R = S¢¢ (R) csc (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =In(tan (R)) + 1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In (tan (z)) = In (tan (y)) + &1
Which simplifies to
—In (tan (z)) = In (tan (y)) + &1

Which gives

e @
= t
y = arctan (tan (a:))
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ) .

L . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _sec(x)2 tan(y) ds _
dz — 7 sec(y)? tan(z) 9 = sec (R) csc (R)

AT TS
N AN N T A NN T S N A
NAZZNNN A AANNN AN/ PANVEZENNR AP NNN A
AP BT
VA NN AN NN N
PR, CINN P AN AR NIV AR
NN T AN AN N AT AN PANVEAPANNTE A NN AT
NS AN A NSNS S N\ A FANNVEZLANNA P AENNNVE AN
NAZZNNNA A INNN A AN/ R= FANVEZPNNAI 2NNV AN
N AR BV NN AN =Y PANNVEZPANMEZPANNN AL
NN AN 7 S NawN ST fx&xftﬁx\bfffb\xféfx
ISV | S otan(e)) ) RN TR A
NS NSNS AN NN S f&\&f/f&k%fff&\&fff&
NAZAZNNNA A INNN A AN/ FANNMEZAPNNY P ANV AN
N AT AN\ T AN S S N NS FANVEZANNME 2NNV AN
ANNNS T NSNS S NN S SN FANNVEZPANNANEALNNNE ALY
FANNNAZZNNM 7 NNN AN PANVEZ P NN 2NNV
NN NSNS A NN S AN FANVEZENNA 2NNV A
NS ANNN S NSNS AN NS FANVEZPANNMEAEANNVE AT

Summary
The solution(s) found are the following

e
y = arctan (t—) (1)

an (x)
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Figure 18: Slope field plot

Verification of solutions

e
y = arctan (tan (x))
Verified OK.

1.6.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
o9 oeay _
Or Oydx 0 (B)
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Comparing (A,B) shows that

But since 22 = 24 then for the above to be valid, we require that

dzdy — Oydx
oM _ 0N
Oy ox
If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

66—;% = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

_ sec (y)° [ sec (z)* .
( tan(y)> v= (tan(x)) d
_sec (z)? o _sec (y)° _
( tan (z)) d +( tan (y)> dy =0 (24)

Comparing (1A) and (2A) shows that

Therefore

M(.’E,y) = _%
_ sec (y)2
N(.’E, ) - _tan(y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

OM _ 9 ( sec (z)?
oy Oy\ tan(z)

=0
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And

ON 0 sec (y)?
8z Oz \ tan(y)
—0

o OM _ N
Since % = o

for the function ¢(z,y)

then the ODE is exact The following equations are now set up to solve

96
g—x—M (1)
¢ _

Integrating (1) w.r.t. z gives

@da::/de
or

oo . sec ()
%dw B /_tan(x) dz

¢ = —In (tan (z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99
0+ 4
=0+ 1) @
But equation (2) says that g—‘;’ = —%. Therefore equation (4) becomes
_sec (y)2 =0+ f/(y) (5)
tan (y)

Solving equation (5) for f'(y) gives

2

-2

= —sec (y) csc (y)
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Integrating the above w.r.t y results in

/H@@=/P%mmwwmy

f(y) = —In(tan(y)) + a1

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢ = —In(tan (z)) — In (tan (y)) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢1 = —In (tan (z))  In (san (3))

Summary
The solution(s) found are the following

—In (tan (z)) — In (tan (y)) = ¢ (1)

H /o= NN\ / —~ =~/ \ =~ \{
1777 T \NNNNN /7777 NN\
17771 \NNNNNT 7777 VNNN\)
H 17777 \NNNNNT 7777 NVNNN\
J 7 7NN\ /7 N\
NN\ /7= /\\ NN\ ———~]
HINNNNN T 777 PANNNNN /777 ]
V\NNNN /777 1ANNNNN /7771
A\NNNN/ /777 \ANN\NN\\/ /777
NN\ / 7=/ \ =\ /7]
_ﬂX) O_//'/*/'/\\\\x\\//'/’/’/\\\x\x\
17771 \NNNNN\ 7771 VNNNN
17771 NNNNNT 777 T VNNNY
W17 INNNNN T 777 T ANNNN
J o NN\ / 7=~ N\ =\
NN\ /7= \\ /77" )
—21\NNNN\/ /777 1 \N\\N\\//777]
A\NNNNT 7771 \ANNNN\\N\N1 /7771
A\NNNN/ 7777 \NNNN\\N\ /777
—H N\ 7=/ \=\/ ——= )

-3 -2 -1 0 1 2 3

Figure 19: Slope field plot
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Verification of solutions

—In (tan (z)) — In(tan (y)) = a
Verified OK.

1.6.4 Maple step by step solution

Let’s solve
sec () tan (y) + sec (y)* tan (z)y' = 0
° Highest derivative means the order of the ODE is 1

/

Y
° Integrate both sides with respect to x

[ (sec (z)? tan (y) + sec (y)* tan () y)dz = [0dz + ¢
° Evaluate integral

tan (y) tan (z) = ¢;

° Solve for y

y = arctan ( tafll(z)>

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 47

Ldsolve(sec(x)“2*tan(y(x))+sec(y(x))“2*tan(x)*diff(y(x),x)=0,y(x), singsol=all}

2 tan(z)?—1
arctan( 2ten(z)er < ten(w) )
c2 tan(z)’+1’ c? tan(z)?+1
xTr) = L
y(z) 5
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v/ Solution by Mathematica
Time used: 0.457 (sec). Leaf size: 68

LDSolve [Sec[x] “2*Tan[y[x]]+Sec[y[x]]~2*Tan[x]*y' [x]==0,y[x],x, IncludeSingularSﬁ;alutions -> Tru

y(z) — —% arccos(— tanh(arctanh(cos(2x)) + 2¢;))
y(z) — 1amccos( tanh(arctanh(cos(2z)) + 2¢1))
y(x) — O

y(@) = —g

y(@) —> 5
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1.7 problem 3.1

1.7.1 Solving as homogeneousTypeD2ode . .. ... ... .. .. .. [79]
1.7.2  Solving as first order ode lie symmetry calculated ode . . . . . . 811
1.7.3 Solvingasexactode . . ... ... .. .. ... ......... 80!

Internal problem ID [4361]
Internal file name [OUTPUT/3854_Sunday_June_05_2022_11_29_12_AM_27037630/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 3.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class A~]]

(—z+y)y' +y=0

1.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(—z 4+ u(z)z) (v (z)z+u(z)) +u(z)z =0
In canonical form the ODE is

v = F(z,u)
= f(2)g(u)

’Ll/2

z(u—1)
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Where f(z) = —1 and g(u) = u“—_21 Integrating both sides gives

u12 du:—ldx
1 x
/uidu=/—ldx
P x
1
ln(u)+a=—ln(x)+02

The solution is

1
In (u(z)) + w (@) +In(x) —c2=0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

ln<g>+£—|—ln(m)—02=0

Z Y
y\ | T _
ln(x)+y+ln(w) c2=0

Summary
The solution(s) found are the following

ln(%)—i-g—i-ln(z)—cz:O (1)
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Figure 20: Slope field plot

Verification of solutions

ln<g> +§+ln(z)—0220

Verified OK.

1.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y=— Y
—-r+y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
N + W(ﬂy - fz) - w2€y - wx€ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — ybs —az)  ya N y(zas + yaz + a1)
—z+y  (-z+y)’ (—z+y)° (5E)

1 y
- + by +ybs +b;) =0
( Sy (—x—i—y)?)(x o +ybs + b1)

Putting the above in normal form gives

_2aybs — yPas — y?by + y7bs + 2y —yar _
(z—y)*

Setting the numerator to zero gives
—2xyb2 + y2a2 + y262 — y2b3 — iIIbl +ya; = 0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z=v,y=0}
The above PDE (6E) now becomes
agv2 — 2byv1vy + byv2 — b3va + a vy — byvy = 0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1,v2}
Equation (7E) now becomes

—2b2’l)1’l)2 — bl’Ul + (ag + bg - b3) ’Ug + a1v9 = 0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
—b=0

—2by =0
as+by—b3=0

Solving the above equations for the unknowns gives

a; =0
az = b3
az = as
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)¢
e (_—wy+ y) @

y2

T—y
£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

F=, = (1)
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
S=/—dy
n
_ 1

i
S=1In + =
(y) y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

@ — Sz + w(@,y)Sy (2)
dR R, + w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Y
w(z,y) = —
(z,9) "
Evaluating all the partial derivatives gives
R, =1
R,=0
1
Sy =—
Yy
S —
Yy y2
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
= -0 2A
iR (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yln(y) +z
)
Which simplifies to
yln(y) + =
Y

Which gives

y= eLambertW (—z e ‘1 ) +c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

- . . ; ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R, S)

transformation

dy _ _ _y s _
dx —z+y dR

Sa AN N NN NN N N
Sa e S N N N NN NN
e S N N N N N\ %
eSS S N N N N NN
~a e Sa e Na N\
—— e N NN 2

— e e e e A N Ny

— e e e e A Ny

IS

S(R]

S
N v K K

NS e s s s
NN e
Y NN e
VA N e
S
VOV N N N

A
A S

A 5 ) G e e e wrry g hWy)y+—x = - 3 T

—wwrr w7 A A [N a e e TTN\NdJI T 7
mwmAApS R e

NN N e e e e e y
NN N S e e e e e e
NN N e N e e
AR VR VN N
A VR VO N
NN N N N e N N
NN N NN N N N e

N
N
N
Y
~

——a~a N\ ¢
— —»~aay
a—a— —s~aa
ama—a—  —aa
e
P e
P
¥ e
s e
L ALE LY

Summary
The solution(s) found are the following

Y= eLambertW(—x e_cl)—i-cl (1)
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Figure 21: Slope field plot

Verification of solutions

Y= eLambertW(—m e ‘1 )+cl

Verified OK.

1.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) B =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
0¢ , 0ddy _

dor ' dydz 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—z+y)dy=(—y)dz
(y)dz+(—z+y)dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y

N(:L',y) =—T+Yy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_ o
dy oy’
And
ox Oz y
=-1
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Since %i; # 9 'then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
am L[ o)
N\ oy Oz
1
= (=)
2
T—y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (ON OM
353

oz Oy
1
= 5((—1) — (1))
__2
oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be y. Then

b= e/ Bdy
—ef i
The result of integrating gives
= e~2w)
_ L
=

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M = uM

And
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N%=0
dz

1 —z+y\dy
(y)+( y> )dw_o

The following equations are now set up to solve for the function ¢(z,y)

9¢
oz
9¢
Oy

I
<

(1)

I
=1
~~
=

Integrating (1) w.r.t. z gives
% dx = / M dx
ox

B¢ 1

¢=§+f@> (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

@_w

o L) (@
But equation (2) says that g—i = _zjy Therefore equation (4) becomes
—x+y T
" = T + f'(v) (5)

Solving equation (5) for f'(y) gives

1oy — L
f(y)—y
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Integrating the above w.r.t y gives

[row=[(5)e

fly)=ln(y) +a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=1n<y>+§+c1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

T
ci=In (y) + =
]
The solution becomes
y= eLambertW(—a: e_°1)+cl

Summary
The solution(s) found are the following

y = eLa,mbertW(—x e_°1)+c1 (1)
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Figure 22: Slope field plot

Verification of solutions

y = eLa.mbertW(—m e °l)+cy

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve((y(x)—x)*diff(y(x),x)+y(x)=0,y(x), singsol=all)

x
 LambertW (—ze—<)

y(z) =

v/ Solution by Mathematica
Time used: 3.943 (sec). Leaf size: 25

LDSolve [(y[x]1-x)*y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

y(z) — "W (—e—oiz)

y(x) =0
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1.8 problem 3.2

1.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 93]

Internal problem ID [4362]
Internal file name [OUTPUT/3855_Sunday_June_05_2022_11_29_20_AM_68775741/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 3.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

2vzy —z)y +y=0

1.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y——— Y
2Ty — T
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y - wxf — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + a, (1E)
n = xbs +ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

b2_y(b3—a2)_ y2as _Z/(\/Lm—y— )(xa2+ya3+a1)

2= (2/ag ) (25 - 2)° E)
(o1 Yz " b

< 2\/@_x+(2\/x_y—x)2\/x_y>( by +ybs+b1) =0

Putting the above in normal form gives

3
4(zy)? by — 3x%yby + T y?as — T y?bs — yPaz + zyb; — VTY Tby + \/TY ya, — y’ay

5 =0
(2yE— =)’ vy

Setting the numerator to zero gives

4(my)% by — 3x2yby + T y?az — T Y’bs — yaz + zybs — \/TY T +/TY ya, —y’a; =0 (6E)

Since the PDE has radicals, simplifying gives

—3z%yby + 4zy./xYy by + zylay — zy’bs — ylas — Vzy by + zybs + /Ty ya; — y2a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y, vy}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z = v,y = vo, /Ty = v3}
The above PDE (6E) now becomes
V1V3ay — V503 — 3v2Vaby 4 4U1VaV3by — V123 — Vaa1 + V3Vaay + V1Vby — vsv1hy =0 (TE)

Collecting the above on the terms v; introduced, and these are

{Ul) V2, U3}
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Equation (7E) now becomes
—30v2vybg + (—b3 + @) V12 4 4v1v9U3bg +V1U2by — V3V1by — Va3 —via; +vsva; =0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

by =0

—a; =0
—az3 =0
—-b=0
—3b, =0
4by =0
—bs+ay;=0

Solving the above equations for the unknowns gives

a1 =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é

- (om=)®
_ vy

2\/zy —x
E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
—=—==dS 1
£ (1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

5= [ Lay
n

1
= / N dy
2./Ty—x

S is found from

Which results in

T

S=In(y)+ —
W
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(x, y) =

2,/xy —x

Evaluating all the partial derivatives gives

R, =1
R,=0

1
Sz

P VR
Yy 2y%
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS  Vz\y— /7Y
= (24)
dR  \/z.\/y (-2\/zy + )

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y)vVy+vz _
VY

C1

Which simplifies to

In(y) G+ V3 _
VY

C1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ Yy a8 _
de —  2\/my—=z dR —
N N
NN Y NN N NN
A9% NN NN N NN NN 4
%O O% %N NN N N N
A N e N T VY
S INCNENENENENENNEN S|
21N N N N NN NN 24
NNNNNN NN LY R =
NN > AR A =
N\ P S Y
oy iy ) 2 4 In (y) \/@ + \/E =7 =7 p T
BESSSSEE x = R
DESSSEit VY -
B e S
o v 7 7 A S
B e P PN
B e O O W 4
D et el O A
R O O D N

Summary
The solution(s) found are the following

ln(y)\/?+\/5_c
N =c (1)
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N ]
]
] ]
7]

3 -2 —1 0 1 2 3

Figure 23: Slope field plot

Verification of solutions

In(y) G+ V7 _
VY

&1

Verified OK.
Maple trace

"Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:

trying homogeneous G
1st order, trying the canonical coordinates of the invariance group

<- 1st order, canonical coordinates successful

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

Ldsolve ((2*sqrt (x*xy (x))-x)*diff (y(x) ,x)+y(x)=0,y(x), singsol=all) J

—C = 0
ry (z)

v/ Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 33

LDSolve [(2#Sqrt [x*y [x]]-x) *y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> Trj.\e]

Solve [ j(_x) + 2log (@) = —2log(z) + 1, y(x)]

T

100



1.9 problem 3.3
1.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 107

Internal problem ID [4363]
Internal file name [OUTPUT/3856_Sunday_June_05_2022_11_29_30_AM_82276429/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 3.3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

zy —y— 22 +y?=0

1.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

Y+t +y?
T
Y = w(z,y)

y =

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny -&) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + ay (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

by 4 Y+ V) (bs—a2) (y+vVIZ+9°) as

2 - 2

xr X

[ n2 2
- ! _YEVEEY (zas + yas + a1)
/1-2 _+_y2 $2
Yy
(14 k) (b + ybs + by)

— =0
x

(5E)

Putting the above in normal form gives

3
(2% + y?)? a3 + 2%as — 23b3 + 22%yas + 22ybs + Yas + V22 + y2 xby — V2?2 + Y2 yar + zyb — Y’

=0

Setting the numerator to zero gives

3
— (x2 + y2) 2 a3 — 23ay + x3b3 — 22%yas — 2’ybs — yas (6E)
— Va2 +y2ab + /22 + y?yar — zyb + 9y =0

Simplifying the above gives

3
—(2®+9%)% a3+ (2° +9°) zbs — (2° + ¥°) yas — 2°az — 2’yas — 2’yby (6E)
2 2 2 2 2 2 2 2 —
—zy’bs + (22 + y°) a1 — V22 + y?ab + V2% + y?yar — 2as — zybs =0

Since the PDE has radicals, simplifying gives

—z3ay + 235 — 2%\/22 + y? a3 — 20%yas — 2’yby — /22 + y2 ylas

—ylas — /a2 + y2 wby — zyby + /22 + y?yar1 + yar = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{w,y,\/w2+y2}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x:vl,y=vz,vw2+y2=v3}

The above PDE (6E) now becomes

—’U?ag - 2’0%’02013 — ’U%’U3G;3 — ’Ugag - ’U3’U§CL3 — ’U%’Ugbz (7E)
3 2
+ vibs 4+ v3a; + v3vaa; — v1V2by — v3U1by =0

Collecting the above on the terms v; introduced, and these are
{vla V2, ’03}

Equation (7E) now becomes

3 2 2
(b3 — CLQ) (%1 + (—2(13 — b2) VU2 — VU343 — ’U1’l)2b1 (8E)
3 2 2
— v3v1b; — v5a3 — vsvyas + vyaq + v3vaa; =0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 =0

—a3 =0
-b1=0
—2a3 — by =0
bs —ay =0

Solving the above equations for the unknowns gives

a1 =0
as = b3
a3 =0
by =0
b =0
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-wy)¢

_(y+VEP Y
x
= —\/ 712 + y2

§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

()

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n

The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
= [ ————=d
/—\/:v2+y2 Y

S is found from

Which results in

S=—ln<y+ \/W)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y+ vVl +y?

w(z,y) = -
Evaluating all the partial derivatives gives
R, =1
R, =0
g _ x
VTR V)
1
Sy =—

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds  2(Va?+yly+a®+yP) (24)
dR  zva?+ o (y+ Va2 +7)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
as 2
dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —2In(R) + &1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—1n<y+\/x2+y>=—21n z)+ ¢

Which simplifies to

—ln<y+\/z2+y)——2ln x)+ ¢
Which gives

e—cl (6201 _ 1'2)
2

y=-
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ y+veity® as _ _ 2
de — T dR R
R R mrm A A A2 VN NN N e
RO VRV Vs U A A A A A A A mm A m A2 7 P VN N N e
NYNNNN NVttt Rt mmm A A2 AN N N e e
NYNNNNNV Lt mrm A A2 P VN N N e
\\\\\\ﬁﬁ&l??fffffff/ B PYY) AT B S S SV EN
\\\\\\Xxxif?ffff/f// PSSy f;&\\\\\\\\\
NNNNNNNNVNYE A AL el A A & AN R R
NNNNNNYNNNY TP AAA AR S bt A NN
ARARRRRRRR R IR R=zx w2 2P VN NN N e
NNNNNNNNNNAAAASA A A2 P NN N M e
SN SSNSNSW A A S F A A 5 — /v/_/';'l/'/’/_'/j/‘/; H E\\Q\\\&,\\
NN NN NN NN a—f ¥ T T T T 7 AT A — — A/ P P NN NP S Saata
\\\\\\\\\s»»»///x;//// S In (y +Vz+y > PP POV N IR \\R\\\a\\
D o R ) P O ////////L%&\\\\\\\\\
NN NN NN v T T T T ¥ T A /v/v/v/v////f ; \\\\\\\\\
N bt __7 = 7 _7 mmm A A2 AL VN N e
NIRRT mmrm A2 N N R e
N A —s—a s> v v v v ¥ ¥ mmm A A2 AN N N N e
NN A SA A —A bbb > T_T_T_T_T_T_T B OO B A R e
NN B —b BB b P T T _T_T_T mmm AR AAL SN VN N N N
Summary

The solution(s) found are the following

e—cl (e261 _ x2)
2

y=-
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Figure 24: Slope field plot

Verification of solutions

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

Ldsolve (x*xdiff (y(x),x)-y(x)-sqrt(x~2+y(x)~2)=0,y(x), singsol=all) J

—c1z? + /22 +y () + y(z)

xr2

v/ Solution by Mathematica
Time used: 0.327 (sec). Leaf size: 27

kDSolve [x*y' [x]-y[x]-Sqrt [x~2+y[x]~2]==0,y[x],x,IncludeSingularSolutions -> Trﬁ.\e]

y(x) — %e_‘” (—1 + e2°1:L'2)
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1.10 problem 3.4

1.10.1 Solving as homogeneousTypeD ode . . . . . . ... ... .. .. 109
1.10.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 111
1.10.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 113}
1.10.4 Solvingasexactode . . ... ... ... ... ... ..... 118}

Internal problem ID [4364]
Internal file name [OUTPUT/3857_Sunday_June_05_2022_11_29_40_AM_80945842/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 3.4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_ order_ ode_ lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

—y cos (E) +  cos (E) y =—zx
x T

1.10.1 Solving as homogeneousTypeD ode
Writing the ode as

)Y 1
== — A
Y=2 cos (g) )
The given ode has the form
Y Y\
v =249 f (b)) (1)

Where b is scalar and g(z) is function of x and n, m are integers. The solution is given
in Kamke page 20. Using the substitution y(z) = u(z) z then
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Hence the given ode becomes

Mot u=utgla) f(bu)

dx
o = g(a) f(bu) ()

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

Substituting the above in (2) results in the u(z) ode as

1

V@) = s (w (@)

Which is now solved as separable In canonical form the ODE is

v = F(z,u)
= f(z)g(u)

_ sec (u)

X

Where f(z) = —1 and g(u) = sec (u). Integrating both sides gives

1 du = 1 dz
sec (u) x

/ secl(u) du = / _% dz

sin(u) = —In(z) + ¢

The solution is
sin (u(z)) +In(z) —c; =0

Therefore the solution is found using y = ux. Hence

sin (g) +In(z)—c; =0
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Summary
The solution(s) found are the following

(Y
sin <x>+ln(x) =0 (1)
ANV I=NNV LT VNN
NYVVEZNN VLT VNN
NYNVY VSNV L7 T VNN
HANNNN VL ZNN LT VNN
AR RRAERAREEEERAR NN
AR RRTAREREAR S NN
TARARARRARRAEDYE AR RSN NN
NANNNNN NN L7 NN
A e R N B N S N N RN
IR R R R NN N
69 G ENENSENEN NN VNN
AN Y AR R R R R R RN
NONNNNSSNN 7 VYN NN
L OO O N A B B N R S N N N N NN
SONSSNSNNN TN VYNV VNN
SONSSNN T ENST VYNV
“2NSNNN LT ENNZ VNV VN
SNNNNV T 71 PPN~ VvV VD
NNNN LT EVNNZ VYV
=HNNNLV T VNN =T PV
-3 -2 —1 0 1 2 3
X

Figure 25: Slope field plot

Verification of solutions

sin <%> +In(z)—c; =0

Verified OK.

1.10.2 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
—u(z) z cos (u(z)) + z cos (u(z)) (v'(z) x + u(z)) = —=
In canonical form the ODE is
v = F(z,u)
= f(z)g(u)

__sec (u)
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Where f(z) = —1 and g(u) = sec (u). Integrating both sides gives

! du = 1 dx
sec (u) x

/@du=/—édx

sin (u) = —In(z) + ¢

The solution is
sin (u(z)) +In(x) —ce =0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

sin (g) +In(z) —ce=0
sin (g) +In(z) —ce=0

Summary
The solution(s) found are the following

sin (%) +In(z)—c=0

ANV I=NNV LT NN
NYVYVEZNNE VT T VNNN
NNV VSNV L7 T VNN

ANNNN VL ZNN LT NSNS
AR RRAERAEEREERR RS
AR RRRTAREEEAR R SRS

TRRRARRARA RN EAAR R RN
NANNNNN NN L7 NN
A e R R R A N N N N NN

R R R R R N S S NN

A4 I IO NN NN RN NN
A SN YARRERR R R R R
NONNNNSNN 7 VYNV N NN

R BN N N i B B N N NN N VAN
NSONSSNNN TNV VNV VNN
SONSNNN P ENST VYNV

=2INNNNN L NN VY VN
SNNNNV T 71 P EN~T LV VLN
SNNN LT REVNNZ LV VLN

=HANNNLV T VNN =T PV
-3 -2 -1 0 1 2 3
X

Figure 26: Slope field plot
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Verification of solutions

sin (%) +In(z)—ca=0

Verified OK.

1.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

J —z +ycos (%)

z cos ()
Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — W€y —we —wyn =0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

&(x,y) = 2

n(z,y) = oy

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dy _n

dx_g
Ty
T2

This is easily solved to give
Yy=ocz

Where now the coordinate R is taken as the constant of integration. Hence

And S is found from

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating
s _ S +w(z,y)S, @)
dR R;+w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—z + ycos (¥)

w(z,y) =

x Cos (%)
Evaluating all the partial derivatives gives
R, = -
1
R, = -
5o 1
Sy, =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds cos (¥)
T \a) 2A
dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
JR = o (R)S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ¢;e0® (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

1 .
T clesm(%)
X

Which simplifies to

1 .
_— = Clesm(%)
T

o (n(-22))
y=arcsin(Iln({——) |z
1T

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

—x+ycoq
mcos(

dy
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ﬂa —~ R N A WX XXX A [P A e n
O 9} N v w R X XA e
.m R7 9] PR AN NN NN g S g s
o m v SR X R A A
= NNKNERAANN A
s | R AN S
e D et A L B AN NA N O N E
.m dT v v 7 A AR R R R e
D etttV i L UL AN N NE A SE SE A
A AP HEERRARARNY
@) I N T VR U £ B A A A
g
38z
=8
= o E =8 |
or— —
S B 5 (R
X O @
SE-I- =
—
+
VN S Tl bttt
APPPPAP AN AAA A Ao
AP ARAAAA T e
Rt o Vg
S S Y N Y Y Ly AP s N P
=8 R N N N N N AV N P

Dl i B i

o> —beqr—> 7 |
——> T 7 7 A v 7
\\\\hvs\\\
AN S
[ g
N~ v v T T T A
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v v v T ATAAF
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LA A A e
A7 PP S s
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SRPPP PP AT
AP PP A
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FAPIIIILIIS

Summary

The solution(s) found are the following

1)

)):

1
1T

y = arcsin (ln (—
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Figure 27: Slope field plot

»(n(-32))
y=arcsin(ln({——) |z
1T

1.10.4 Solving as exact ode

Verification of solutions

Verified OK.

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9) + N(z,9) % =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
o9 oeay _
Or Oydx 0 (B)
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

(s (%))t = (e s (%)

(&~ yoos () ) do+ (wcos (£) ) ay =0 28)

T

Therefore

Comparing (1A) and (2A) shows that

M(z,y) =z — ycos <%>

N(z,y) = x cos (%)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM _ oN
0y Oz
Using result found above gives
oM 0 Y
oy = ayevees(3))

i K
T T
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And
a =gz (3))
= cos (Q) + M
x x

Since %i; # 9 “then the ODE is not exact. Since the ODE is not exact, we will try to

Bz )
find an integrating factor to make it exact. Let

1 /O0M ON
- 3(%-%)

Oy Oz
=5 (5) ([ Zos (4) 4 Y5 E) ) _ (oo (¥) 4 ¥ ()
((rem () + 250 )~ (wn () 4 2200

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

= el Ade
_J-td
The result of integrating gives
= =2
_ 1
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

- Lemvem 2)

_ T —ycos (%)

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dz

() (£

The following equations are now set up to solve for the function ¢(z,y)

8¢
¢ -

Integrating (1) w.r.t. z gives

@dxz /Mdz
or

_ y
@dx:/x ycos (¥) d

or 2

o=sin(Y) =i () + /W ©

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p _cos(Y)
8_y_T+f(y) (4)

cos(¥)

But equation (2) says that g—‘z = . Therefore equation (4) becomes

T T

Solving equation (5) for f'(y) gives

Therefore
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ = sin (%) —1In (é) +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

1
¢; = sin (g) —In <;)
Summary

The solution(s) found are the following

. (Y 1
sin <x> In (x) ¢ (1)
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HNNNNN NV N NSNS
NNNNNN NN L7 NN
A e R N B N S N N RN
IR R R R S N N
69 G ENENSENEN NN VNN
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Figure 28: Slope field plot

Verification of solutions

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

-

Ldsolve((x—y(x)*cos(y(x)/x))+x*cos(y(x)/x)*diff(y(x),X)=0,y(X), singsol=all) }

y(z) = —arcsin (In (z) + ¢1) =

v Solution by Mathematica
Time used: 0.359 (sec). Leaf size: 15

LDSolve[(x—y[X]*Cos[y[x]/x])+x*Cos[y[x]/x]*y'[x]==0,y[x],x,IncludeSingularSol?Tions -> True]

y(z) — zarcsin(— log(z) + ¢1)
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1.11 problem 3.5
1.11.1 Solving as homogeneousTypeD2ode . .. ... ... .. .. .. 124
1.11.2 Solving as first order ode lie symmetry calculated ode . . . . . . 126

Internal problem ID [4365]
Internal file name [OUTPUT/3858_Sunday_June_05_2022_11_29_49_AM_24603019/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 3.5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A], _rational, [_Abel, “2nd type,
class A°]]

8y + (by + Tz)y = —10z

1.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) « on the above ode results in new ode in u(z)
8u(z) z + (bu(z) z + 7z) (uv'(z)  + u(z)) = —10z

In canonical form the ODE is

v = F(z,u)

= f(z)g(u)

_ 5w +3u+2)

B z (5u+7)

Where f(z) = —2 and g(u) = “Z%f;’z Integrating both sides gives
1 )
iy W= dT
Su+T7
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5

1
u2+3u+2

/

/_

N
Q
l_l
—~
& 8§
8 o +
10 = SIS
_ o
I i I
o ™
—~
N Il ™
+ 3 +
T3 : =
3 o = D
= = =
™ +
+ i 1
% 3
— = ~
+ N,
E
=
(a]

RootOf (_Z5 +8x 7'+ 252% 7B+ 38z3 72+ 28x* 7+ 8x° — 03)

U

Raising both side to exponential gives
)

Which simplifies to
Therefore the solution y is

Summary
The solution(s) found are the following

(1)

Z+ 81'5 — 63)

2 +8x 7'+ 25x% 78+ 38z 72+ 28zt

RootOf (_
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Figure 29: Slope field plot
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Verification of solutions

y = RootOf (_Z5 +8z 7'+ 2522 72 +38x% 72+ 28z* Z+8z° — 03)
Verified OK.

1.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,_ 2(4y+5a)
- by+4Tx
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Mo +w(ny — &) — W2€y —wz —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zas +yaz + a; (1E)

n = xbs +ybs + by (2E)

Where the unknown coeflicients are

{al, as, as, by, by, b3}

Substituting equations (1E,2E) and w into (A) gives

2(4y +57) (bs —a2)  4(4y + 5z)% a
5y + Tz (5y + 7z)?
B (_ 10 56y + 70z
Sy +Tx  (5y+ Tx)’
( 8 40y + 50z
— — + 3
S5y+T7r  (5y+ Tx)

by —

(5E)

) (a2 + yas + a1)

> (.’L‘bz +yb3 + bl) =0

Putting the above in normal form gives

70z2ay — 100z2as + 55x2by — 70x2bs + 100xyay — 160zyas + 70zybs — 100zybs + 40y2as — 70y%as + 251
(5y + 7z)?

=0
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Setting the numerator to zero gives

70z2ay — 1002%a3 + 55x2by — 702%bs + 100zyay — 160zyas + T0xyb, (6E)
— 100zybs + 40y%ays — 70yas + 25y2by — 40y>bs + 62b; — 6ya; = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

7Oa21)f + 100asv1v9 + 40a2v§ — 100a3vf — 160asvv9 — 70a3v§ + 55b2v% (7E)
+ 7Ob2’01’02 + 25()2’0% — 7063’0% — 100b31)1?)2 — 40b3’U§ — 60/1’02 + 6b11)1 =0

Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(70as — 100as + 55by — 70b3) v2 + (100as — 160as + 70by — 100b3) viv,  (8E)
+ 6b1’l}1 + (40@2 — 7Oa3 + 25b2 — 40b3) ’U% - 6a1v2 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—6a; =0

6b; =0

40ay — 70a3 + 25by — 40b3 = 0
70ay — 100a3 + 55by — 70b3 = 0
100ae — 160as + 70by — 100bs = 0
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Solving the above equations for the unknowns gives

a; =0

as = 3as + b3
az = as
by=0

by = —2a3
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

=y—<—%%iéﬁ>®)

oy + Tx
_ 102? + 15zy + 5y°
N 5y + Tz
£E=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n
The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

ds (1)

S is found from

= / 1022+ 152y +5y2 dy
S5y+Tz
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Which results in
2In(z+y)  3In(2z+y)
T 5 T s

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S

@ _ Spt+w(z,y)S,
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(2)

2(4y + 5z)
w(z,y) = T syt 7z
Evaluating all the partial derivatives gives

R,=1
R,=0
2$+Sgy

(z+y) 2z +y)
oy + Tz

YT 5(z+y) (2T +y)

r =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

R
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2ln(z+y) 3In(2z+y)
) + )

:Cl
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dz

Original ode in z,y coordinates
dy

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Which simplifies to

A A A A
AAARFIAAA A
TSI A
\\\\&&\\\\
et
A AR
NS AAAAA
NAAAAAAAAA
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B A A A A
A AA A A 2
A AT A AT
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|77 A
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(1)

:cl

3ln (2z + y)
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The solution(s) found are the following

Summary
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Figure 30: Slope field plot

Verification of solutions

:Cl

3In (22 +y)
)

2In(z+y)
)

Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.172 (sec). Leaf size: 38

dsolve ((8xy(x)+10%x)+(5*y (x)+7*x) *diff (y(x),x)=0,y(x), singsol=all)

N J

y(z) = x(RootOf (_Z2501x5 —2 72’ +_7%cia’ — 1)5 — 2)

v/ Solution by Mathematica
Time used: 2.163 (sec). Leaf size: 276

DSolve [ (8*y [x]+10%x)+(5*y [x]+7*x)*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

N\ J

y(z) — Root [#1° + 841%z + 254 1°3% + 38#1%2> + 284 12" + 82° — e &, 1]
y(z) — Root [#1° + 841%z + 254 1%z + 38#1%2> + 284 12" + 82° — e &, 2]
y(x) — Root [#15 + 8#1%z + 2541322 + 384122 + 284-1z* + 82° — 1 &, 3]
y(z) — Root [#1° + 84 1%z + 254 1%z + 38#1%2> + 284 12" + 82° — e &, 4]
y(x) — Root [#15 + 8#1%z + 2541322 + 384122 + 284-1z* + 82° — &, 5]
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1.12 problem 4.1
1.12.1 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 133l
1.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 137

Internal problem ID [4366]
Internal file name [OUTPUT/3859_Sunday_June_05_2022_11_30_00_AM_7213669/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 4.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class C°], _rational, [_Abel, ~2nd type’,
class A~1]]

—y+Q2y—-1)y =-2z-1

1.12.1 Solving as homogeneousTypeMapleC ode
Let Y =y +yo and X = x + z then the above is transformed to new ode in Y (X)

d 22X — 2w+ Y(X) +yo — 1

axy (X)= 2Y (X) + 2y — 1

Solving for possible values of zy and yo which makes the above ode a homogeneous ode
results in

1
To = ——

1

’yo=§

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d —2X + Y(X)

ax Y =—y (X)
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In canonical form, the ODE is

Y' = F(X,Y)
—2X+Y
= - 1
VG 1)
An ode of the form Y’ = %g}};)) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

f(tnXa tny) = tnf(X> Y)

In this case, it can be seen that both M = —2X+Y and N = 2Y are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution v = )—3;, or

Y = uX. Hence

dY du
ax ~ax
Applying the transformation Y = uX to the above ODE in (1) gives
du 1 1
x te=u e
du g 3~ uX)
dX X
Or ) . (x)
d w0 T2~
(X)) 2 =0
dX X
Or

2 (diXu(X)> w(X) X + 2u(X)? —uw(X) +2=0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u' = F(X,u)

= f(X)g(w)
2u? —u+2
B 2uX
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Where f(X) = —5% and g(u) = 2°=u+2_ Integrating both sides gives

1 1
2wi—urs W= —ox 4X

u

1 1

4u—1)v/15
ln(2u2—u+2)+\/ﬁamtan<( = ) In (X)

4 30 =TTy Tt

The solution is

In (2u(X)? —u(X)+2) V15 arctan (S4X0VE)

4 + 30

In (X
+ n( )—Cz=0

Now u in the above solution is replaced back by Y using u = % which results in the
solution

4Y (X) —1)\/B
2Y(X)?  Y(X <X—
m( o7 g{)+2>+\/15arctan( = ) +1n(X) L
1 30 2 @
Using the solution for Y'(X)
2 —
In (207 - Y0 42)  V/IB arctan (CREZAVE) 0
— —_— c =
4 30 ?
And replacing back terms in the above solution using
Y =y+yo
X =z+x
Or
1
Y = =
1
X=xz—=
Ty
Then the solution in y becomes
0 2(1/—%)2 _ ﬁ +2 \/— (—4y+2+2)Vv15
wry)” et wwmﬂ—ﬁmrﬁ+m@+ﬂ ¢ =0
— —ey =

4 30 2
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Summary

The solution(s) found are the following

y_l
ﬁ +2)
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Verification of solutions
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Figure 31: Slope field plot

(—4y+5+x)V15

152+ > 4 In (z+

4
Verified OK.
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1.12.2 Solving as first order ode lie symmetry calculated ode
Writing the ode as

’_ —2z+y-—1
2y — 1

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €x) - w2€y - wx§ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zas +yaz + a; (1E)
1 = xby + ybs + by (2E)
Where the unknown coefficients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

b+ (—2z+y—1)(bs —ag) 3 (—2z+y— 1)2 az  2xas + 2yas + 2a,
2 29y — 1 2y — 1) 2y —1 ()

1 2(—2z+y—1)>
— - by +ybs +b1) = 0
(21/—1 (2y - 1)° (abaubact b

Putting the above in normal form gives

4x2a3 + 4x%by — 8xyay — 4xyas + 8zybs + 2y*ay — 3yPas — 4y?by — 2y?bs + 4xay + 4zas + 4xb; + xby -

(2y — 1)?
—0

Setting the numerator to zero gives

—42a3 — 42°by + 8xyay + 4xyas — 8xybs — 2y2ay + 3yas (6E)
+ 4y%by + 2y%bs — 4zay — 4zas — 4xb; — by + 22bs + 4yay
+ 3yas — 4yby — 4ybs — 2a1 —az — a3 — by +by + b3 =0
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Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =}

The above PDE (6E) now becomes

8@2’01’02 - 2(12’0% - 4(13’1)% + 4CL3U1’U2 + 3a31)§ — 4b2'U% + 4b2’U; (7E)
— 8b3’l)1’l)2 + 2b3’U% + 4&1’02 — 4&2’01 + 3(12’()2 — 4&3’!)1 — 4b1’01 — b2’01
— 4bovy + 2b3v; — 4b3ve — 2a1 —ag —az — by +by +b3 =0

Collecting the above on the terms v; introduced, and these are
{v1, v}

Equation (7E) now becomes

(—4a3 — 4b2) ’U% + (8&2 + 4(13 — 8b3) V1V (8E)
+ (—4a2 - 4(13 — 4b1 - bz + 2b3) U1+ (—2a2 + 3(13 + 4b2 + 2b3) ’U;
+(4a1+3a2—4b2—4b3)v2—2a1—a2—a3—b1+b2+b3=0

Setting each coefficients in (8E) to zero gives the following equations to solve

—4a3 —4by =0

8as + 4a3 — 83 =0

4a; + 3ay — 4by — 4b3 =0

—2ay + 3as + 4by + 2b3 = 0

—4ay — 4a3 — 4b; — by +2b35 =0
—2a1 —as —az3— by +by+b3=0
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Solving the above equations for the unknowns gives

3bs  5by
a; = 7 + 7
as = 2bs + 2by
a3 = —2bz — 4b;
by =0b;
by = 2bs + 4b;
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

3
E=—-+2zr—2y
2
n=2z+y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é

—2r+y—1 3
=2r+vy— (2:{/——3/1) (§+2x—2y>

_ 8x® —day +8y* + 62 — 9y + 3
N 4y —2

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _

e =y — 9 (1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
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S is found from

L d
- 82 —4xy+8y2+6x—9y+3 Yy
4y—2

Which results in

S =

z 1 (16y—4x—9)/15
In (822 — 4zy + 8y® + 6z — 9y + 3) N 4(5 + §) V15 arctan < irasT: )
4 15 (4 + 1)
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

wl(z,y) = —2z+y-—1
Evaluating all the partial derivatives gives
R, =1
R,=0
dor — 2y 42
Sy =
82+ (—4dy+6)x +8y> —9y + 3
4y — 2

S =
Y 8y2+ (—4r —9)y +8z%2 + 67+ 3
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =C

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

In (822 + (—4y + 6) = + 8y% — 9y + 3) - V15 arctan(

(—16y+42+9)v15

)

60z+15
4 30
Which simplifies to
(—16y+4z+9)v15
In(82% + (—4y+6)z +8y° -9y +3) V15 arctan ( 602415 )

4

30

1

C1

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
@ _ —2x+y-—1 ﬁ _ 0
dr —  2y-1 dR —
P AR AAAA A oo e~y
PAPAAAARA Ay oo~~~
PLPASSS ARSI N 4
PAPPAPAA A AT~ )\
rrPASS A A==~~~ N NN\ SCRY
P I L NN N Y
[ P SOV NNV NN 24
RN DO R=1z
IR AR R !
e = ~ (F16y
—3 A 2 =7 =% i T AT 2RY
\\\\\\\\-»/////’fx)‘f%ff In (82% + (—4y +6) R ( 6
NN NN NN | g AP =
NN NNzl g A A AR PR p 4 27 30
NN NN a—a—sm | T T A A A p A p S
AN & e PO U A
B s Py VNV I,

Summary
The solution(s) found are the following

In (822 + (—4y + 6) = + 8y% — 9y + 3) /15 arctan (

(—16y+47+9)v/15
60z+15

)

4
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Figure 32: Slope field plot

Verification of solutions

(—16y+42+9)/15
In (822 + (—4y + 6) z + 8y — 9y + 3) 'V15a“ﬁan<-——%ﬂiﬁf——> .
— =C

4 30

Verified OK.
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

v/ Solution by Maple
Time used: 0.094 (sec). Leaf size: 67

Ldsolve((2*x—y(x)+1)+(2*y(x)—1)*diff (y(x),x)=0,y(x), singsol=all) J
y(z)
V15 tan (RootOf (v/15 In ((1 + 4z)?sec (_2)%) — 3v/15 In(2) + v/15 In (3) + v/15 In (5) + 2v/15¢; —
- 16
T 9
+ 1 + E

v/ Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 85

-

LDSolve[(2*x—y[x]+1)+(2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> T;}e]

—2y(z) +8x+3\ 2(8z% + 8y(z)? — (4z + 9)y(z) + 6z + 3)
Solve {2\/ﬁarctan ( VI529(@) - 1) ) =15 (log ( (4z + 1)? )

+2log(de + 1) + 801) ,y(x)]
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1.13 problem 4.2
1.13.1 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 144
1.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 148

Internal problem ID [4367]
Internal file name [OUTPUT/3860_Sunday_June_05_2022_11_31_32_AM_81731100/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 4.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C'], _rational, [_Abel, “2nd type,
class A°]]

3y+ (Ty—3z+3)y =Tz -7

1.13.1 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z then the above is transformed to new ode in Y (X)

_3Y(X) +3yo —TX —Tzo + 7
7Y (X) 4+ Tyo —3X — 3z9+ 3

d
=Y (X) =

Solving for possible values of xy and yo which makes the above ode a homogeneous ode

results in
Ty =
Y% =0
Using these values now it is possible to easily solve for Y (X). The above ode now
becomes
d 3Y(X)-7X
—YX)=——r7 45—
aX (X) 7Y (X) —3X
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In canonical form, the ODE is

Y' = F(X,Y)
3Y —7X
T 7Y —3X (1)

An ode of the form Y’ = % is called homogeneous if the functions M (X,Y’) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = 3Y — 7X and N = —7Y + 3X are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u = %,

or Y =uX. Hence

dY du
ax T ax >t
Applying the transformation Y = uX to the above ODE in (1) gives
du =3u+7
x>t s
dx X
Or —3u(X)+7
iu(X) B ao0-3 — X)) 0
dX X B
Or p p
2 —
7(qu(X)> Xu(X) 3(qu(X))X+7u(X) 7=0
Or p

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

v = F(X,u)
= f(X)g(u)
T(u? —1)
X (a3
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Where f(X) = —Z and g(u) = £=1. Integrating both sides gives

1 7
Tu—3
2In(u—1)+5ln(u+1)=-7TIn(X) + ¢
Raising both side to exponential gives
ten(u—1)+5 In(u+1) _ e—71n(X)+02
Which simplifies to
C3
(=17 w+ 1) = o

Now u in the above solution is replaced back by Y using u = % which results in the
solution

Y(X) =RootOf (X" +3X° Z+X° 7 -5X* 72 —5X° 7'+ X* Z+3X_2'+_7 —c3)
Using the solution for Y (X)
Y(X) =RootOf (X" +3X° Z+X° 7 —-5X* 72 —5X° 7'+ X* Z’+3X_2'+_7 —c3)

And replacing back terms in the above solution using

Y=y+uw
X=z+x
Or
Y=y
X=xz+1

Then the solution in y becomes

y = RootOf (_Z7 +(=3+32)_2° + (2 — 2z +1) D+ (—52° + 152 — 15z + 5) A (—5ac4 + 202
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Summary
The solution(s) found are the following

y = RootOf (_Z7 +(=3+32)_ 72+ (27 —2z+1) D+ (—52° + 152° — 15z +5) 7
+ (—bz* + 202 — 302® + 20z — 5) _Z° + (z° — 52" + 10z® — 102® 4+ 5z — 1) _2°

+ (3z° — 18z + 45z* — 60z + 452° — 18z + 3) _Z+ z” — 7z° + 21z° — 35z*

+ 352 — 21z® —c3 + Tz — 1)

(1)
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Figure 33: Slope field plot

Verification of solutions

y = RootOf (_Z"+ (-3+3z)_2°+ (¢ =2z +1) _2° + (—52° + 152° — 152+ 5) _7*
+ (=bz* + 202° — 302® + 20z — 5) _Z° + (z° — 5a* + 10z® — 102 4+ 5z — 1) _Z°

+ (32° — 182° + 453" — 602> + 452° — 18z + 3) _Z+ z” — 72% + 212° — 352*

+352° —212° — c3 + Tz — 1)

Verified OK.
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1.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as
p_ By—Tz+7
Ty —3z+3
y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — W€y —w€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zas +yaz + a; (1E)
1 = wby +ybs + by (2E)

Where the unknown coefficients are

{al, as, as, by, b2a b3}

Substituting equations (1E,2E) and w into (A) gives

By—Tz+7)(bs—a2) (By—Tz+ 7)% as

bo —

2 Ty —3z +3 (Ty — 3z + 3)?

_( 7 _3(3y—7x+7)>(m tyastar) (5E)
Ty—3z+3 (Ty_3z13)7) 2 YBTA

_( 3 21y — 49z + 49

- + xby +ybz +b1) =0
Ty—3z+3 (7y—35{;+3)2)( 27 b 1)

Putting the above in normal form gives

21z2ay — 49x2%a3 + 4922by — 212%b3 — 98zyay + 42zyas — 42zyby + 98xybs + 21y2as — 49y%as + 49y°b, -

=0
Setting the numerator to zero gives

2122ay — 492%a3 + 492%by — 212%b3 — 98zyay + 42xyas — 42xyby + 98zybs (6E)
+ 21y2a2 — 49y2a3 + 49y2b2 — 21y2 b3 —42xas +98xasz +40xb; — 58xby +42xbs
- 40ya1 + 58ya2 — 42ya3 + 42yb2 — 98yb3 + 21a2 — 49&3 — 40b1 + 9b2 - 21b3 =0
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Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

21@1}% — 98asv1v + 21a2v§ — 49a3v% + 42a3v,v9 — 49a31)§ + 49b2vf
- 42b2’l}1’l)2 + 49b2’U% - 21b3’U% + 98b3’l}1’l}2 - 21()3’0% - 40&1’02 (7E)
- 42(12’01 + 58&2’02 + 98(13’01 - 42&3’[)2 + 40b1’01 - 58()2’01 + 42b2’02
+ 42b3’l)1 — 98b3’l}2 + 210,2 — 490,3 — 40b1 + 9b2 — 21b3 =0

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

(21az — 49a3 + 49by — 21b3) v + (—98as + 42a3 — 42by + 98b3) v1vy (SE
—|- (—42(1,2 —|- 98(13 —|— 40b1 —_ 58b2 —|— 42b3) 1 —|— (21@2 —_ 49(1,3 —|— 49b2 —_ 21b3) ’U%
+ (—40&1 + 58&2 — 42(13 -|-42b2 — 98b3) vy + 210,2 — 490,3 — 40b1 + 9b2 — 21b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—98ay + 42a3 — 42by + 98b3 = 0

2las — 49a3 + 49b, — 21b3 =0

—40a; + 58as — 42a3 + 42by — 98b3 = 0
—42ay + 98as + 40b; — 58by + 42b3 =0
2lay; — 49a3 — 40b; + 9by — 21b3 =0

Solving the above equations for the unknowns gives

a; = —bs
ag = bs
a3z = by
by = —by
by = by
bs = b
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=y
n=z-—1

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wz,y)§
3y — Tz +7
—r—1— (=TT
v ( 7y—3x+3>(y)
_ 3x* —3y* -6z +3
- —Ty+3z-3

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S = / —dy
n
1
= / 322—3y2—62+3 dy

—Ty+3z—3

S is found from

Which results in
S5ln(z—1+y) 2ln(—z+y+1)
3 + 3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
3y - Tx+7

w(z,y) = Ty —3z+3

Evaluating all the partial derivatives gives

R, =1
R,=0
2
Sy = > +
3r—3+3y 3z—-3-3y
2
Sy >

T 3z-3+3y 3z-3-3y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _
dR
We now need to express the RHS as function of R only. This is done by solving for z,y

0 (2A)

in terms of R, S from the result obtained earlier and simplifying. This gives
as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

0

gives
S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

S5ln(z—1+y) 2In(—z+y+1)
3 * 3 - A

Which simplifies to

S5ln(z—1+y) 2In(—z+y+1)
3 + 3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ 3y—Tz+7 das 0
i Ty—3z+3 dR
A e R e 4
NN R N
R . N D e T 4
\\\\\\\\\\\\\‘*»///;
NN N .
\\\\\\.ﬂ.’&\\\\\w)/,’; 1 S(R]
NN NN N NN N RN a2 A A 23
NN NN N N NN NN AL
R Y R I IR AR SR AN R==z
ST R AR AR
— -~ — =3 =7 7 T
VAV LV VT A ssoOg Y NN 525111(3” 1+y)+2_] .
R R e AR AR 3
AL L P2 A e N NN\ -
[ A A e SN N T 0 Y
HE I I N ) 2 NN NN,
f PP LA~~~ N N N NN
PP AAA A~ NN N N ¥
PP AA T el ~a~a N M M NN
P AAAF e~~~ a N e NN N\

Summary
The solution(s) found are the following

S5ln(z—1+4+y) 2ln(—z+y+1)
3 3

=Cl

152



A N N RO
NN NN NN -~
NANNNNNNNN~w—— -~
NNNNNNNN—— s 7
NANANNNNN—— 7 7 ]
NNNNNN——~ 7 /]

\ /1
\ (N
\ Lo\
\ VoA
\ N\
| N\
/ N\
/ N\
J 7=~ N\
==~ e\ N\
7NN NN\
Yt NN NN N N Y

P S CUCNONE NG N N N N
P Gt NN N N NN Y Y

NN~~~/

\
N\
N
N\
N\
N\
\\
VA
Vi
L
{1
I/
17
77
7
7
7

o 1 2 3
X

~1

Figure 34: Slope field plot

Verification of solutions

5ln(z —1+y)

2In(—z+y+1)

3
Verified OK.

:Cl

3
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

N\ J

v/ Solution by Maple
Time used: 0.297 (sec). Leaf size: 1814

Ldsolve((3*y(x)—7*x+7)+(7*y(x)—3*x+3)*diff (y(x),x)=0,y(x), singsol=all) J

Expression too large to display

v Solution by Mathematica
Time used: 60.698 (sec). Leaf size: 7785

LDSolve[(B*y[x]—7*x+7)+(7*y[x]—3*x+3)*y'[x]== ,y[x],x,IncludeSingularSolutiongJ—> True]

Too large to display
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1.14 problem 6.1

1.14.1 Solving aslinearode . . . . . . . . .. .. ... ... ... .. 155]
1.14.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 157
1.14.3 Solvingasexactode . . ... ... ... ... ... ..., 161l
1.14.4 Maple step by step solution . . . . . ... .. ... ... ... 166

Internal problem ID [4368]
Internal file name [OUTPUT/3861_Sunday_June_05_2022_11_31_42_AM_28711573/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 6.1.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

xy 1
2+1  2r(r2+1)

Y+

1.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
z
p(z) = 22+ 1
O
xr) =
1 2z (22 +1)
Hence the ode is
x 1
y/ + Yy

155



The integrating factor u is
o= ef 2ade
=vVr2+1
The ode becomes

%(M@/) = (1) <m>

%( P?+1y) = (Va2 +1) (m)

d( x2+1y> = (236\/%4-1) dz

Integrating gives

1
Va2 +1 =/—dx
y 2zv/12 + 1

arctanh (—L)
2?2+ 1y=— Gz +c

2

Dividing both sides by the integrating factor u = v/x2 + 1 results in

1
arctanh (W ) ¢

= - +
Y 2vVz?2 41 vz +1

which simplifies to

- arctanh (ﬁ) +2¢4
Y 2vr?2 +1

Summary
The solution(s) found are the following

— arctanh ( L > + 2¢;

V= 2922 + 1
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Figure 35: Slope field plot

Verification of solutions

- arctanh (ﬁ) +2¢;
Y 21?2 +1

Verified OK.

1.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

;o 2yat-1
V= 2z (22 4+ 1)
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - wzé.y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
1

n(w,y) = \/wQ:H

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

(A1)

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n

1
:/ 1 dy

T2+1

S is found from

Which results in

S=vz?+1ly

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2yx? —1
YY) = @ 1)
Evaluating all the partial derivatives gives
R, =1
R’y =0
Sy = 22
R/
Sy =vaz2+1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds 1
B 2A
dR  2zv/22+1 (28)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 1
dR 2RVRZ+1



The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = —

arctanh (

2

Vi)
R2+1 te

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

Vai4+ly=—

Which simplifies to

vVai+ly=—
Which gives

arctanh <

arctanh( 1 )

241

2
arctanh ( \/;7“)
2

y=-

2vVz2 +1

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R7

5)

¥ o e

A7
:ji///ﬁé/\/\\\\\\\\\

/V/'/'/’/V/"/'/’/’\Z(
P P Pt N
v s\

B e N

/N N NN e e Se e
i S
S —a—a—a—s—s—a—>

S or————s—s—b—s—s

—s—»_—'zl—e--—s\»_'\?\\h
— s~ aa N\
— e aaNa N\
i I N N
~ SN N N N\

P

A

R==x
S=vz2+1y

as _

1

dR ~ 2RVRZH1

—— s a \
— s a \
———e—>—s—>—s~aa 4]
—————s—s—a—aa \
————b—p ~\
— s —s—a—aa \
— s a \

——>—s———s—a—>a

P e e S
P e
/‘ P G S
frrr——
P e
Ve e
e
P e
Ve

e

""—‘VZI"‘“"—LZ‘\‘\‘ %
————s——a——aa \
———s—s———a—a \
4-»-»-»—;—»»\5\._5‘4
— s~ a
———s—s———a—a \
————p—s—s—s—aa \
— > —s—a— > N ]

e

oo\,

Sy
f o

A

b

P e O
P e
S>>
Ve O
P e
S o s os

N
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Summary
The solution(s) found are the following

241
= 1
Y N (1)

arctanh <;> —2¢;

W
1
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Figure 36: Slope field plot

Verification of solutions

arctanh ( \/35127+1> —2¢;

2vVx2 +1

y=—-
Verified OK.

1.14.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 96d
Y
— —_—— T B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
99
M
Oox
99
TN
9y
But since aajgy = 8‘9—;% then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

_ [ zy 1
dy—( x2+1+2x(a:2+1))dm

Ty 1 _
(x2+1 2$(x2+1)>dx+dy—0 (2A)

Comparing (1A) and (2A) shows that
Ty 1
M(z,y) = _
() 24+1 2z(z2+1)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

oM_0( sy 1
oy  Oy\z2+1 2z(z2+1)
x
2241

And

Since %—A; # %—];7, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Loy
Jy oz

(%) 0)

x
241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

L= f Adz
— ef 12+1
The result of integrating gives
1n(w2+1)
n= e 2
z2+1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
Ty 1
—VZ 11 _
s <a:2—|—1 2x(x2+1))
2yzr? —1
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And
N =uN
=vz2+1(1)
_ V1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

. _dy
M+N-2 =
+ e 0
2yx? —1 ) dy
)+ (Va2 +1) 2 =0
(2\/x2+1x ( v > dx
The following equations are now set up to solve for the function ¢(z,y)
0p —
9 M (1)
0y —
2 —-N 2
- )
Integrating (1) w.r.t. = gives
% dx = /de
ox
¢ / 2yx® — 1
—dr= [ ——d
/ ar " W+ 1z g
arctanh ([ ———
¢ = 2< ) +Vat+1y+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o = VAL W) @

But equation (2) says that g—?‘f = v/z2 + 1. Therefore equation (4) becomes

Va2 +1=vVa2+1+ f'(y) (5)
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Solving equation (5) for f'(y) gives
f'y) =0

Therefore

fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

arctanh(% )
¢ = 5 VR Fly+a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

arctanh <—#>
cL = 9 i+ + \/IL‘2—+—1y
The solution becomes
arctanh < \/95127+1> —2¢;

Summary
The solution(s) found are the following

arctanh < Vﬁ) —2¢

2vVx2 +1

y=-
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Figure 37: Slope field plot

Verification of solutions

arctanh (ﬁ) —2¢

2vVx2 +1

y=—-
Verified OK.

1.14.4 Maple step by step solution

Let’s solve

1
y + w2+1 T 2z(z241)

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
_ 1
yl z2+1 + 2z(z2+1)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

_ 1
y + z2+1  2z(x2+1)
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° The ODE is linear; multiply by an integrating factor u(x)
@) (v + %) = mtin

o Assume the lhs of the ODE is the total derivative L (u(z) y)
wz) (¥ + 741) = #(@)y + p(@)y’

e  Isolate y/(x)
W (o) =5

° Solve to find the integrating factor
p(z) = Va2 +1

° Integrate both sides with respect tozx
J (& (u(z)y)) do = [ 2x(m2+1) dz + ¢

° Evaluate the integral on the lhs

2)y = [ mhimds+a

° Solve for y

_ J 2z(!;(2m4)-1) da+er
VY="uwo

o Substitute u(z) = Va2 +1

_ fmdz+cl
y= 20—
° Evaluate the integrals on the rhs
3 arctanh(ﬁ) N
_ 2 €1
y= V24l
° Simplify
—arctanh( \/zlzﬁ>+2cl
y= 211

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

Ldsolve(diff (y(x),x)+x/ (1+x~2) %y (x) =1/ (2%x* (1+x~2)) ,y(x), singsol=all) J

— arctanh (ﬁ) + 2¢;

2vVx2 +1

y(z) =

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 33

‘ DSolvely' [x]+x/(1+x72) *y [x]==1/(2*x*(1+x~2)),y[x] ,x,IncludeSingularSolutions +> True]

(2) > arctanh(vz? + 1) — 2¢;
x —
y 2vVz2+1
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1.15 problem 6.2

1.15.1 Solving aslinearode . . . . . .. . .. ... ... ... ... . 169
1.15.2 Solving as homogeneousTypeD2ode . .. ... ... ...... Ival
1.15.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 172
1.15.4 Solvingasexactode . . ... ... ... ... . ......... 1751
1.15.5 Maple step by step solution . . . . . .. ... ... ... ... 179

Internal problem ID [4369]
Internal file name [OUTPUT/3862_Sunday_June_05_2022_11_31_50_AM_33158875/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 6.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exact WithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

r(-*+1)y + (22° - 1)y =as®

1.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
222 — 1
p(l‘) - -
2
azx
q(x) - _J?Q -1
Hence the ode is
, @2 -1)y  ax?
»—z  r2-1
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The integrating factor u is

2z°—1
M = ef_ =3 —z da
L 1) _ In(z—
_ e_%_n(wTD_ln(x)

Which simplifies to
1

p= vVr+ly/xz—1x

The ode becomes

Low = (-5

d(mij/fl) (‘(#—1)&@) 4

Integrating gives

y ax
= [ - dx
Ve+1lyz—1z / (22— Vz+1v/z -1
Y _Vr—1vz+1la
Vi+ilvz—1z z? —1

Dividing both sides by the integrating factor u = m results in

C1

Y= (x+1)(x—1)xa+cﬂ/mmx

2 -1

which simplifies to

y=x(a+clmm>

Summary
The solution(s) found are the following

y=x<a+cn/w—+1\/H)

Verification of solutions

y=x<a+cn/w—+1\/H)

Verified OK.
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1.15.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) x on the above ode results in new ode in u(x)

(-2 +1) (W'(z) z + u(z)) + (22> — 1) u(z) z = a2’

In canonical form the ODE is

v = F(z,u)
= f(z)g(u)

z(u — a)
o221

Where f(z) = —*5 and g(u) = u — a. Integrating both sides gives

RaiSing both Side tO eXpOIleIltial gives
In(z—1 In(z+1
n(m2 ) n(z4+1) 2

Which simplifies to
u—a= c;;eerw
Which simplifies to
u(z) =csvVz — 1Vz +1e? +a
Therefore the solution y is
Yy =zu

= x<03\/x —1vz+1e% +a>

Summary
The solution(s) found are the following

y:x<C3\/x— 1vzx+ 1e® +a>
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Verification of solutions

y= x<03\/x— 1vzx+ 1e® +a>
Verified OK.

1.15.3 Solving as first order ode lie symmetry lookup ode
Writing the ode as

, —ar42ya’—y
B z(x?—1)
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y —we€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =e

1n(z2+1) + 1n(z2—1) +ln(x)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
/ eln(a:2+1)+ln(1:2—1) ~|—11’1(l‘)

S is found from

Which results in

(),

T

S =

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S,
dR R, +w(z,y)R,

(2)
Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—ard+2yz® —y
z(x?—1)

w(z,y) =

Evaluating all the partial derivatives gives

R, =1
R, =0

S =
v vVe+1li/z—1x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds ax
dR~ (g4+1)% (z—1) 2A)

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives
as aR
AR (R+1):(R-1)

N
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)

~VRIIvE-1 “ @

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

Y a
= +C
ve+lvzr—1lx Vx+1yz—1 !
Which simplifies to

Y a
= +C
vr+lyz—1x rx+1v/z—1 !
Which gives
y=ar+cavr+1lver—1zx

Summary
The solution(s) found are the following

y=ar+cavr+lver—1zx (1)

Verification of solutions

y=ar+cavr+lvxr—1x
Verified OK.

1.15.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(2(=2? +1)) dy = (= (26 — 1) y + az®) da
(22 —1)y—az®)dz+(z(—2*+1))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = (22> — 1)y — az®
N(z,y) =z(—2*+1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
o 2 2 1 _ 3
= (2~ )y —as?
=2z -1
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And

ON 0
55 = ag &= +1))
=3z +1

Since %i; # %—1:, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 _omy

T N\dy oz

= (22— 1) - (-3 + 1))
_ —bz? +2

3 —x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

,U,=€fAdx

2
—5x“42
= ef z3—x dz

The result of integrating gives

31n(z+1) 31n(;v—1) 2111(1‘)

/_L = e 2
1
3 3
(x+1)2 (z—1)222
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

1

(@412 (z—1)
ar® -2z’ +y
)

3
2

(22> —1)y —az®)

Njw

xr2

(NI

(x+1)2 (x—1)2 22
And
N =uN
1
= 3 3 z(—2*+1
(w—%—l)?(f—l)?x?( ( )

_\/x+1\/x—1x
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Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
M+NY g
dx
_az®=2ya’+y +( 1 >dy 0
(z+1)7 (z —1)2 22 Vz+1lyz—1z) dz

The following equations are now set up to solve for the function ¢(z,y)

0p —
P M (1)
0p —
3y N (2)
Integrating (1) w.r.t. = gives

0p . [—

3z dx = /Md:v

&;de_/_ azxd —2y9: +3y dz

Oz (m+1) (z — 1) 22

(3)

i +f(y)

¢= vr+1 \/.13—133

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

o6 1 ’
3_y_ \/$+1\/17—1$+f(y)

Therefore equation (4) becomes

(4)

: )
But equation (2) says that a—f = —m-

1 B 1 , -
“itiviis . varivicia W (5)

Solving equation (5) for f’'(y) gives

Therefore
fly)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
ar —y

¢= vVe+ly/xz—1x

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

ar —y

- vVT+1lvx—1zx

4]

The solution becomes

y=—-cavz+lvr—1lz+azx

Summary
The solution(s) found are the following

y=—-cavz+lvr—1lz+ax (1)

Verification of solutions

y=—-cavz+lvr—1lz+azx

Verified OK.

1.15.5 Maple step by step solution

Let’s solve
(-2 + 1)y + (22— 1) y=axd
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

! (2x2—1)y _ a2
y= z(z2-1) z2—1

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ (2332—1)?! _ ax?

y - z(z2-1) —  z2-1

° The ODE is linear; multiply by an integrating factor u(x)

(2932—1) . (z)ax?
/’l’(x) (y, - a:(a:2—1)y> - _N:I:Q)——l
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o Assume the lhs of the ODE is the total derivative - (u(z)y)
wa) (v = o) = (@) y + piz)y

e  Isolate y/(x)

x) (222 -1
/.l,,({L') = _u(m)(iz_l) )

. Solve to find the integrating factor

_ 1
p(zr) = VatlJa—lz

° Integrate both sides with respect to x
[ (o)) do = [ 52 do + ¢,

. Evaluate the integral on the lhs
pE)y=[-— “(x)‘”” dz + ¢

° Solve for y

2
Y= (@)

o Substitute u(z) =

Vz+lvz-1z ﬁ P
— \/m\/m:c<f — Vet + cl>
° Evaluate the integrals on the rhs
= Ve F1va—To(Vh0AHe 4 o))
° Simplify
_ mx(m@iﬂlw—l))m

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve (x*(1-x"2) *diff (y(x) ,x)+(2%x"2-1) *y (x)=a*x"3,y(x), singsol=all) J

y(x) =$<\/m\/1+—xcl -I—a>

v/ Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 23

LDSolve [x*(1-x"2) *y' [x]+(2*x~2-1) *y [x] ==a*x~3,y[x] ,x,IncludeSingularSolutions J~> Truel

y(x) — x(a + clm)
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1.16

problem 6.3

1.16.1 Solving aslinearode . . . . . .. ... ... ... ... ... . 182
1.16.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 184!
1.16.3 Solvingasexactode . . ... ... ... ... ... ..., 189
1.16.4 Maple step by step solution . . . . . ... .. .. ... ... .. 195

Internal problem ID [4370]
Internal file name [OUTPUT/3863_Sunday_June_05_2022_11_31_58_AM_23803442/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 6.3.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

J + y _z+vV-22+1
(—z2+1):  (—22+1)?

1.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

1
p(x) = (—1172 N 1)%
P —v—z2+1z-1
Q(x)z_ 5
(_x2 + 1)2

Hence the ode is

Yy -2+ 1z -1
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The integrating factor u is

The ode becomes

a Y P
—(y) =) | - 5
dz (=22 + 1)
i (e V—z2+1 y) = (e 4 —m2+1) _x L + 15$ 1
dz (—z2 +1)2
T e e 5 CEE A
(e y) U (=22 +1)7 !

Integrating gives

. 2 _ 2 _ 1) ev=eI
e\/Tﬂy:/—(x vrle—l)ern
(—z2+1)2
= 22 —/—a224+1z—1 eV=aTii
emy:/—( 5) d.’IJ+Cl
(—z2+1)2

Dividing both sides by the integrating factor yu = eV=e?T1 results in

= 2 — /22 1z —1)eV-"7m =
y=-e Va2t /—( S ) dr | +ce vV-22+1
(_x2+1)§

which simplifies to

" (22 — —x2+1x—1)e\/%+1
y=¢e vVeiti — - dz +c;
(_:L.2_|_1)§

Summary
The solution(s) found are the following

e 2 — V=22t 1z —1)eV—""11
y=e Ve /_( 5) dz +c;
(—z2+1)2
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Figure 38: Slope field plot

Verification of solutions

e (22 — —x2+1x—1)e\/%+1
y=e vVeiil — K dz + ¢
(_w2+1)§

Verified OK.

1.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

. —yw4+(—x2+1)%x+x4+2yx2—2x2—y+1
- 3
2

(o2 + 1)} (a2 - 1

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - é..’ll) - w2£y — wy€ — Wyt = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(“)
form ID 1

: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that
§(z,y) =0
=D+

n(z,y) = e (=) (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from

1

S = / —dy
n
1
= | e

e (_w2+1)§
Which results in

_(z=1)(z+1)z

S=—e ()i y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by
—y:c4+(—x2—|—1)%m+m4—|—2yx2—2:62 —y+1

(~a? +1)% (a? = 1)’

w(w,y) =

Evaluating all the partial derivatives gives

R, =1
R,=0
—234s
e(—z2+1)% y
C (—a2+1)?
Sy = e Vst

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ﬁz_(ﬁ— —xz—l—lx—sl)eVﬁﬂ (24)
dR (=22 +1)2
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ (B - V=RPF1R-1)ev i

dR (—R2—|—1)5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)z/( —R+V-R+1R+1)e Vo “dR+ ¢ 4)

(-R2+ 1)}

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

evV-altiy = dz + ¢

/ (- —i-mx—l—l) Ve
(o2 +1)f

Which simplifies to

(-2 + V-2 +1z+1) evV-eTr

= dx + ¢
(—IL'2 + ]_)E

eﬁy = /
Which gives

)= (/( x +mx+1)

(_1.2 + 1)5

—Z‘2+ _ B
dr+c | e V=211
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ; .
ODE in canonical coordinates

Original ode in z,y coordinates coordinates
g ) y (R, S)

transformation

dy _ R

dz ds (R?—V=RZH1R-1)e V-R%+1

3
—y w4+(—z2+1) 2 g4at 42y 22— 202 —y+1 dR —

5
(~a2+1)3 (22-1)? R+

~=
~a 7|
~a 47|
~= 7|

~a_~|
~ %

~= 7

\ | o draan

R = !

x

x S =eV-s2t1y 7

~a_~|
~a
~a_~|
~a 7|
~a 7
~q7
~a_~|
~= 7

—e—aa ,j o a—aeaeeoaeaa
N T N N N S

\
\
\
\
N
N
~a
-~
/1
/
f
!
f
!
f
f
f
i
t

|
—a— e —a s —alSu ~a Na &y
SN R e

——epr—e—e—

Summary
The solution(s) found are the following

dz +c | e V=11 (1)

/ (—z2+\/—x2+1z+1)e¢$+1
y:

(—a? +1)?
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Verification of solutions

——_———————

—~——m—~~~\N\\\\\ | S~

|

Verified OK.

I
w

|
\S)

= —~——————~\{ / ~

= O

(—x2+\/—x2+1x+1)e¢#+1

- (f

(_1.2 + 1)%

1.16.3 Solving as exact ode

Figure 39: Slope field plot

dz + cl) e V-oit1

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,y)

dy
%_0

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

Hence

d
06  0ddy _
oxr  Oydx
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Comparing (A,B) shows that

But since 22 = 2% then for the above to be valid, we require that

dzdy — Oyda

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = aa: 5’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

N

Yy z+vV—22+1
(e +1)

) dz+dy=0 (2A)

Y z+vV-22+1
<(_x2 +0F (—22+ 1)
Comparing (1A) and (2A) shows that
Y z+vV-22+1
(—a2+1)F (-2 +1)
N(z,y) =1

M(x,y) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives

(9M_8< Y _a:+\/—x2—|—1>

oy Y\ (—e24+1)}  (—a2+1)
1
= 3
(—.’1'2 + 1)5
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And

Since %—Aj # %—2’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

oM ON
A= (a—y‘a—x>

(~a? +1)?
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

L= 6fAdac
1 5 dz
= e (—z2+1)§
The result of integrating gives
_(m—l)(w+1)m
u=e (=o2+1)2
=e —;E2+1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

— eV et y oz voritl
(—224+1): (-2 +1)
(V-2?+1lz+(@y—-1)z2 —y+1) e V=T
(22 +1)?

And

= eva2r1 (1)

= e —z2+1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

T+8¥ _g
dx
211 D22 — g+ 1) eVt .
VI oDy ) eyt
(=22 +1)2 dz
The following equations are now set up to solve for the function ¢(z,y)
0 —
e M (1)
00 —
T =N 2
o ®)

Integrating (1) w.r.t. z gives
0 dz = / M dz
Oz

99 .. /_(\/—x2+1x+(y—1)x2—y+1)e—;de

83: (a2 +1)?

_a

V—@+1_a+y—1)_d—y+1)e/—o+
5 d_ 3
o= [ e o+ 1) ()

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

8¢ . T (_a2 _ 1)6\/—::24-1 . ,
o= (/ e d)+f(y) @

T e — a2+1
= D E— d_ /
/ CoxD! a+ f'(y)

But equation (2) says that g—‘;’ = evV=<%+1. Therefore equation (4) becomes

o= [T 4 ek f(y) (5)
(—_a? + 1)
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Solving equation (5) for f'(y) gives

a

T e — a2+1 »
fw=-| [ T gda) e
(—a+1)}

Integrating the above w.r.t y gives

T — a2+1 =
[row= (<[ 257 0] vt

__a2+1)
T e _:Z2+1 x
0 =(-| [ = de) v |y
(__a2+1)§

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

_a

o= [T et e e
(— a+1)3

d_a

a

x —_a?2+1 z
+ | - / e—3d_a +evV-t |y 4
(__a2 + 1)5

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

a

. /-‘” (V—a®+1_a+(y—-1)_da—y+1) oV —a?+
1 = - 5
(—a+1)"

d _a

a

T e — a2+1 2
+ |- /—3d_a +ev-eit |y
(—_a?+1)2
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Summary
The solution(s) found are the following

a

/“_(V:jﬁii_ﬂ+(y—n_ﬂ-—y+UeVLﬁ“

25 d_a
@+ 1) 1)

z e\/—:22+1 z
+ | — / ———d_a| +eV-E |y=q¢
(__a2+1)§
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Figure 40: Slope field plot

Verification of solutions

_a

/x_ (V—a®+1_a+(y—1)_a*—y+1)eV—2+

2
= d _a
(—_a?+1)2

_a

T e —_a241 z
NETE=—Sy -
(—_a?+1)2

Verified OK.
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1.16.4 Maple step by step solution

Let’s solve
/ y _ zH+V—z241
v (—z241)3 — (—2?+1)?

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y =——1Y a+v/—a?+1

(—x2+1)% (@2-1)?
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ y _ z+V—zx%+1
v (—z2+1)3  (@-1)°

° The ODE is linear; multiply by an integrating factor u(x)

u(z) (z—l—\/ —m2+1>
we) (yl " (—xzy+1>5’) T @

o Assume the lhs of the ODE is the total derivative £ (u(z) y)

() (y’ + 2 ) = W(2)y + @)y

(—z2+1)%

e  Isolate y/(x)

K(z)

/ —
w(z) = (—z2+1)3

. Solve to find the integrating factor
y,(x) = e\/m

° Integrate both sides with respect to x

(z) (z+V—22+1
il (d%(:u'(z) y)) dz = f%dw-}—cl

. Evaluate the integral on the lhs
w(z)(z+v—22+1
px)y = [ %z—)dl' + 1
° Solve for y

I (@) (z4+V/=22+1)
ey
v¥= (@)

o Substitute u(z) = eV-E-DE+D)

dx+ci
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T

VGG (24/=a%31)

_ oy
y e\/f(zfﬁ)(mﬁLl)
° Simplify
—52-4-1 +v—z241 _ T
y= (f : (ng_l)2 - >dx+cl> e V=il

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 56

Ldsolve(diff(y(x),x)+y(x)/(1—x“2)“(3/2)=(x+sqrt(1—x”2))/(1—x“2)”2,y(X), singsq}=a11)

J(&) = </em(x+m)

dz + ¢, | e V=i
(z—1)> (1 +z)? 1)

v Solution by Mathematica
Time used: 0.169 (sec). Leaf size: 38

LDSolve[y'[x]+y[x]/(1-x“2)“(3/2)==(x+Sqrt[1-x“2])/(1-x“2)“2,y[x],x,IncludeSing?larSolutions -

196



1.17 problem 6.4

1.17.1 Solving aslinearode . . . . . . . ... .. ... ... ... ... 197
1.17.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 199
1.17.3 Solvingasexactode . . ... ... ... ... ... ..., 203}
1.17.4 Maple step by step solution . . . . . ... .. ... ... ... 208]

Internal problem ID [4371]
Internal file name [OUTPUT/3864_Sunday_June_05_2022_11_32_09_AM_66022866/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 6.4.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

sin (2z)
2

Y +ycos(z) =

1.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
y +p(z)y = q(z)
Where here

p(z) = cos (x)

q(z) = w

Hence the ode is

sin (2z)
2

Y +ycos(z) =
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The integrating factor u is

The ode becomes

Integrating gives

sinla)y, — / sin (2z) e™(@) &

2
esin(av)y — sin (x) esin(:c) _ esin(x) +c

Dividing both sides by the integrating factor p = e*™®@ results in
y = e~ @ (sin (z) osin(@) _ esin(x)) + ce— 0@
which simplifies to
y =sin (z) — 1 + c;e” 2@

Summary
The solution(s) found are the following

y = sin (z) — 1 4 ¢;e~ 5@
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Figure 41: Slope field plot

Verification of solutions

y = sin (z) — 1 4 ¢c;e~ 2@
Verified OK.

1.17.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

sin (2z)

y' = —ycos(z) + —

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(my — &) — Wny —wy§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S = / 1dy
n
1
:/e—sin(x)dy

S = esin(x) y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S t+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

sin (2x)
2

w(z,y) = —ycos(x) +

Evaluating all the partial derivatives gives

R, =1

R,=0

S, = cos (z) M@y
S, = @)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS _ sin (2z) &)
dR 2

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

(24)

dS _ sin(2R) "
dR 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = ¢1 + 2B (1 4 sin (R))

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

@y = 5n@)(_1 4 sin (z)) + ¢

Which simplifies to

@y = 8n@)(_1 4 sin (z)) + ¢;

Which gives

y=e" sin(z) (sin (x) esin(:z:) _

esin(m) + Cl)

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

AN\ e e —a
R e
AN\ e —a s
AN\ e e —a
B N
AN\ e T —s—asl
AN\ e s
B N

Canonical
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’

dy __ sin(2z) as sin(QR)esm(R)

= —ycos(z) + 75 dR ~ 2
NAPPPEANY VNN PPN NN el T TN e s
NALE PP ANYVYYVNNAS PP AN N N P sl A TN\ ~a s
NALPP P ANNAN NSNS PP AN A NG E A 5 AN
NS PP P ANNNNNNSNSA PP AN N N\ e | 7N Ny e o
\//ffff)Q\\“\"\\//fff/\ A\ e e A N

AN DN NS T AN A S L3 FUCH BN N
~—= 7P ANN YN e T PPN R R e B A
——e T A A A NN\ N T A A A TN AN N e el T T TN (e
——ee 7 7 AN\ 7 A N AN r el F N e s
»»\-»///v\\\»/v»»\—»///v\ R =X AN N T e—a—a—al T T T\ e T
/V\,,_\'ﬂ\ﬂ,/v_',f\“\s?/v//a;\z\ \%1»\, . /\_ﬂq\/p»_'q[—;\v»/ /\27\ \A/rq}—bw
AN a7 T T (N a—>—>—> S — eSln(.’L‘)y AN e T T T TN, \R‘/»,v._aﬁ,
AN N N a7 1 25l NN

7 7 TN\ e T
7 7 TN\ e T
= A Ty e
7 7 TN\ e T
7 7 7\ e

AN N LA S NN N N e
ANNNN NS S A AN Y N e
ZNNN NN AL NN N N N
ANNNVYNNNAZ P ANNY NN e
ANNY VN NN NN A
NNV VNN AAHE ANV VNN
INVAVVANNAEHER ANV L VAN
Summary

The solution(s) found are the following

y=e" sin(z) (SiIl (.’E) esin(z) _
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Figure 42: Slope field plot
Verification of solutions
y=e" sin(z) (SlIl (IE) esm z) esin(x) + Cl)
Verified OK.
1.17.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(@,y) 72 = 0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence
09 , 0pdy _
Or Oydx
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

dy = (—y cos (z) + sin é2x)) dz

(y cos () — S0 ;29”)) dz+dy =0 (24)

Comparing (1A) and (2A) shows that

sin (2z)
2

M(z,y) = ycos(z) —
N(‘T7y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

oM o cos (z) — sin (2z)
dy Oy y 2

= cos ()
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And
ON 0
T _1N1
O0x 835( )
=0
Since %A;f # %—J;], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 _omy

- N oy Oox
= 1((cos (z)) — (0))
= cos ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAda:
—e J cos(z) dz

The result of integrating gives

sin(z)

p=e

— esin(ac)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

2
=cos (z) (—sin(z) + y)e

_ sin(@) (y cos (z) — 2 (290))

sin(z)

And

— esin(:l:) (1)

— esin(:c)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

(cos (z) (—sin (z) + y) €@ + (@) = =
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The following equations are now set up to solve for the function ¢(z,y)

0p —
¢__
_3y_N (2)

Integrating (1) w.r.t. = gives
@ dx = / M dx
ox

% dz = /cos (z) (—sin (z) + y) e dz

¢ = (y —sin (z) + 1) e™@ + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =4 1) @

But equation (2) says that g—i = e*n(®), Therefore equation (4) becomes
esin(z) — esin(a:) + fl(y) (5)
Solving equation (5) for f'(y) gives

flly)=0

Therefore
fly)=a
Where c¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (y —sin (z) + 1) &¥2@ 4 ¢,

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

¢ = (y —sin (z) + 1) @
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The solution becomes
y=e" sin(z) (sin (117) esin(a:) _ esin(a:) + Cl)

Summary
The solution(s) found are the following

y=e" sin(z) (SiIl (ZE) esm(a:) _ esm(z) + Cl) (1)
JHI T T 7 NNNNNNNN\NN~—7 /]
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\N\NN\~—~—~77777177"~N\\ N\
—2I\N\N\~N~=~7777777"~N\N\ N\
NNNN~= /77717171717 ~NN\ N\
NNNN~=7777 177NN\ )\
—}\\\\\//////////\\\\\
-3 -2 -1 0 1 2 3

X

Figure 43: Slope field plot

Verification of solutions

y=e" sin(z) (sin (.’E) esin(x) _ esin(a:) + Cl)

Verified OK.
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1.17.4 Maple step by step solution

Let’s solve
__ sin(2z)
y' +ycos(z) = sz <

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

sin(2z)

y = —ycos(z) + 5
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' +ycos(z) = —Sin(;x)

° The ODE is linear; multiply by an integrating factor u(x)

w(x) (¢ +y cos (z)) = Ue)sinCa)

o Assume the Ihs of the ODE is the total derivative - (u(z)y)

/

w(z) (' +ycos (z)) = p'(z) y + p(x) y
o Isolate ()
' (z) = p(z) cos ()
° Solve to find the integrating factor
wz) = e
° Integrate both sides with respect to x
[ (L (u(z)y)) de = [ EDECD gy 4 ¢,

. Evaluate the integral on the lhs
W)y = [ HEPED g 4 ¢,

° Solve for y

. f p(z) szin(2:r) dz—+c1
y= n(@)

o Substitute u(z) = e(®)

sin(z)

f sin(2.7:)2e de4-cq

y = esin(z)
° Evaluate the integrals on the rhs
Sin(x)esin(m) _esin(m)+cl
y = esin(z)

° Simplify
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y = sin (z) — 1 4 ¢ 5@

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(diff(y(x),x)+y(x)*cos(x)=1/2*sin(2*x),y(x), singsol=all) J

y(z) = sin (z) — 1 + e *0@)¢,

v/ Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 18

LDSolve[y'[x]+y[x]*Cos[x]==1/2*Sin[2*X],y[x],x,IncludeSingularSolutions -> Truel

y(z) — sin(z) + ce 0@ — 1
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1.18 problem 6.5

1.18.1 Solving aslinearode . . . . . . . ... ... ... ... ... . 2101
1.18.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 212
1.18.3 Solvingasexactode . . ... ... ... ... ... ..., 2161
1.18.4 Maple step by step solution . . . . . ... ... ... ... ... 220

Internal problem ID [4372]
Internal file name [OUTPUT/3865_Sunday_June_05_2022_11_32_17_AM_76211693/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 6.5.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

(z* + 1)y + y = arctan (z)

1.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) = ﬁ;ﬂ
o(z) = ar;:gaj_l (1x)
Hence the ode is
J+ y _ arctan ()

224+1 2241
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The integrating factor u is

1
u = ef Tﬂdz
arctan(z)

=e

The ode becomes

%(uy) = (w) (—ar;";af (13”) )

i arctan(z) __ (,arctan(z) arctan (.’I?)
dz (e y) = (e ) z?2+1

arctan(z arctan (,’I;) earctan(g;)

Integrating gives

earctan(z) — arctan (',E ) earctan(z) dz
Y z2+1
earctan(m) y = arctan (CIJ) earctan(z) _ earctan(m) +e
Dividing both sides by the integrating factor p = e**2(#) results in
y=e" arctan(z) (arctan (x) earctan(m) _ earctan(m)) +cie” arctan(z)
which simplifies to

y = arctan (z) — 1 + ¢y e~ @cten(@

Summary
The solution(s) found are the following

y = arctan (z) — 1 + ¢y~ 2ctan(®@ (1)
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Figure 44: Slope field plot

Verification of solutions

Yy = arctan (:E) —1+4+ce” arctan(z)

Verified OK.

1.18.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

, _ —Yy+ arctan (z)
B x2+1
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fm) - w2£y — W€ — wyn =10 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =

e arctan(z)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=z

S is found from

1
= / e—arctan(z) dy

S = earctan(w) y

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—y + arctan (z)
z2+1

w(z,y) =

Evaluating all the partial derivatives gives

R, =1

Ry, =0

g earcta,n(:c)y
o241

__ qarctan(z)
Sy=e

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS _ arctan (z) garetan(z)

dR 2 +1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ arctan (R) e™tan(R)
dR R?+1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) — arctan (R) earctan(R) _ earctan(R) +¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

earctan(m) y = arctan (CII) earctan(z) _ earctan(z) +e

Which simplifies to

(y — arctan (z) 4 1) e*2(® _ ¢, =0

Which gives

Y= (arctan (117) earctan(z) _ earctan(z) + Cl) e~ arctan(zx)

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . ]

. . ) ) . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ —y+arctan(z) dS __ arctan(R)erctan(R)
dr 241 dR — R241

N A R R D R SO P B
-~~~ N N Y x x MRV e e ———b—b—b—b—b—n—a—a|F F AT T T _v_v_v_>
e S N R R e NN NN N L S PP P O.O ey
Il N A R R e s Y S et
»\»\.\3\\\( 3 N VY N e b —~—sl v FAA T T v o v >
—e—a s ~a )& NVY N b —~ s AA T A T o _v_v
B S S S S N L — —r—b—b—b—nld o AT T v v >
————ww NN Y | N ———b—b—b—b—b—s—a—t T I A AT T v o v >
— s~ | ——b—b—b—b—b—b—b s F I A I T 7 v v v >
bbb —b—a—a~a Na A>T T > b > > > > R =X b —b—b—b—b——t—n—a| T F T T T T _v_v_ > b

— bbb —b—>—b > _7|

S 4

AAA T b
/ﬂ A AT o>

4—»—»—»-»4»//’_{4 PAAAT
> > > o v 7 AN f f /
e P S NI

S = earctan(z)y

—— bbb —b——b—n—p|
R
—s—e b b s> s
bbb —b——b—n—s|
R
e e T
——s——b—b—s—5—s—agsl

———b—b—b—b—b—b ]

- A AT T
e AR T
-~ AT T
e A AA A T o>
- AAAA T T
—~ AT T
e A AA A T v o>
- AR AT T v
—~ AT T

Summary
The solution(s) found are the following

Y= (arctan (.’L') earctan(x) _ earctan(x) + cl) e arctan(z)
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Figure 45: Slope field plot

Verification of solutions

Y= (arctan (.’L‘) earctan(w) _ earctan(x) + Cl) e arctan(z)
Verified OK.

1.18.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
Yy _
Oox + oydr 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z* + 1) dy = (—y + arctan (z)) dz
(y — arctan (z))dz +(2* + 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that
M (z,y) = y — arctan (z)
N(z,y) =2>+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
%—]\; = %(y — arctan (z))
=1
And
ON 0
o~ Y
=2z
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 _omy

- N oy ox
1
= (1) - (22)
_ 1-—2x
o241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

'U/:efAdm

1-2x
= e z§+l

The result of integrating gives

p=e" In(z2+1)+tarctan(z)

earctan(ac)

T 241
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

earctan(z)

=i (y — arctan (z))

_ (y — arctan (z)) e2reten(@)
B z?2+1

And
N = uN

ea,rctan(z)
= a1 @ty
— earctan(m)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+NY =0
(y — arctan (IL')) earctan(x) arctan(z) dy —
(o=t D) ¢ o @ =
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The following equations are now set up to solve for the function ¢(z,y)

0p —
o0~ M M
0
_ay =N (2)

Integrating (1) w.r.t. z gives

@dx = /de
or

_ arctan(z)
0¢ dp = / (y — arctan (z)) e e
0x z2+1

¢ = (y — arctan () + 1) e%2@) L £(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o9

— parctan(z) !
9y~ © + () (4)

But equation (2) says that g—dy’ = e¥ctan(z) Therefore equation (4) becomes
earctan(x) — earctan(z) + f/(y) (5)

Solving equation (5) for f'(y) gives
flly)=0

Therefore
f (y) =C
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (y — arctan (z) + 1) erctan(@) 4 o

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

C = (y — arctan (x) + 1) eal‘ctan(m)
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Summary

The solution(s) found are the following

(y — arctan (z) 4 1) e°tn(® = ¢
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Verification of solutions

-3 -2 —1 0
X

2 3

—

Figure 46: Slope field plot

(y — arctan (z) + 1) e&tan@) — ¢,

Verified OK.

1.18.4 Maple step by step solution

Let’s solve

(z?2 + 1)y’ + y = arctan (z)
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
V=~ + e
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Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ y __ arctan(z)
y+ z2+1 © z241

The ODE is linear; multiply by an integrating factor u(x)
) (0 + ) = P

Assume the lhs of the ODE is the total derivative - (u(z) y)

wz) (v + 7Z) =@y + p@)y

Isolate y'(x)
p(z) = 42

Solve to find the integrating factor

ﬂ(x) — earctan(z)

Integrate both sides with respect to x

J (En(2)y)) do = [ HEEEE do + o
Evaluate the integral on the lhs

)y = [ MR dr + o

Solve for y

[ u(m)jzrc:?n(w) dz+e;

y= (@)
Substitute u(z) = garctan(z)

arctan(z)

dz+c1

f arctan(z)e

— z<+1
y - earctan(z)

Evaluate the integrals on the rhs

__ arctan(z)edretan(z) _garctan(e) 4 ¢
- earctan(z)

Simplify

y = arctan (z) — 1 4 ¢ e~ 2retan(®)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve((1+x“2)*diff(y(x),x)+y(x)=arctan(x),y(x), singsol=all) J

y(z) = arctan (z) — 1 + e~ @cten(@¢,

v Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 18

tDSolve[(1+x‘2)*y'[x]+y[x]==ArcTan[x],y[x],x,IncludeSingularSolutions -> True]J

y(z) — arctan(z) + ¢ e etan@ _ 1
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1.19 problem 10.1

1.19.1 Solving as separableode . . . . . . . ... ... ... . ..... 223]
1.19.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 224
1.19.3 Solving as bernoulliode . . . .. .. ... ... ... ...... 2271
1.19.4 Solvingasexactode . . ... ... .. ... .. ......... 2301
1.19.5 Solving asriccatiode . . . . . . . .. .. ... 233
1.19.6 Maple step by step solution . . . . . ... ... ... ...... 235

Internal problem ID [4373]
Internal file name [OUTPUT/3866_Sunday_June_05_2022_11_32_25_AM_87361032/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 10.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

(—x2+1) 2 —rz—axz’ =0

1.19.1 Solving as separable ode

In canonical form the ODE is

? = F(z,2?)

= f(2)g(2)
zz(az + 1)
o221

Where f(z) = — %5 and g(2) = z(az + 1). Integrating both sides gives

1
dz = ——~

—_ d
z(az+1) 21"
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1 x
/z(az—l—l)dz_/_xz—ldw

In(z—1 In(z+1
b=y hety

—Iln(az+1)+1In(z) =

Raising both side to exponential gives

In(z—1) _ In(z+1)
e—ln(az+1)+ln(z) — e—%—%—}-cl

Which simplifies to

z _In(z=1) _In(a+1)
= cq€ 2 2
az+1
Which simplifies to
C2

Z =

\/.’L"i‘l\/l'—l <_1+ﬁﬁ>

Summary
The solution(s) found are the following

C2

\/.’IJ"F].\/.’IJT]. (—1+—/1?012a o1

z =

W
)

Verification of solutions

C2

\/.’IJ+1\/.’IJ—1 (—1+—/9?012a ’ﬁ)

Zz =

Verified OK.

1.19.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

- zz(az + 1)
B x2—1

2 =w(z, 2)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(nz - é.:c) - w2§z - wm£ — W= 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7

Table 36: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f(@)y(z) + g(z) 0 el fd=
separable ode Yy = f(x)g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)ﬁ 1 —:
Class C

homogeneous class D | ¥ = £ + g(z) F (%) x? zy
First order special | ¥’ = g(x) eh@+by 4 f(z) e—fbf:&‘;z—h(z) f(z)e™ f;’g’;)dm_h(’”)
form ID 1

polynomial type ode

y =4 z+biy+c
a2z+b2y+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azci

a1bs—aszb

a1ba—aszb;

Bernoulli ode y = f(z)y+g(x)y™ 0 e~ /(=D f(@)dzyn
Reduced Riccati v = filz)y+ folx)y? |0 e~ [ frdw
The above table shows that
2
-1
6(:1"7 z) = _x
x
n(z,z) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,z) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _ds _

§ 7
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The above comes from the requirements that (¢2 +n2) S(z,2) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R==z

5= [ s
Y

/ 2 dx

T

S is found from

Which results in

S__ln(:c—l) _In(z+1)
- 2 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ St w(z,2)8, @)
dR R, +w(z,2)R,

Where in the above R, R,,S,, S, are all partial derivatives and w(z, z) is the right
hand side of the original ode given by

zz(az + 1)
w(z,z) = 21
Evaluating all the partial derivatives gives
R.=0
R,=1
x

Sy =—

x2—1
S,=0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds 1
dR  z(az+1)

We now need to express the RHS as function of R only. This is done by solving for z, 2
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR~ R(Ra+1)

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=—-In(Ra+1)+In(R)+ ¢

(4)

To complete the solution, we just need to transform (4) back to z, z coordinates. This

results in

In (x2— 1) In (x2+ 1)  Cln(az+1) +1n(2) + 6

Which simplifies to

_In (x2— 1) In (332+ 1)  Cln(az+1) +1n(2) +

Summary
The solution(s) found are the following

In(z—-1) In(z+1)
2 2
Verification of solutions

=—In(az+1)+In(z)+c

_111(1172— 1) _ 111(172+ 1) _ —ln(az+1) +ln(z)+cl

Verified OK.

1.19.3 Solving as bernoulli ode

In canonical form, the ODE is

Z = F(z,?)
_zz(az +1)
x?2—1
This is a Bernoulli ODE.
, x ar

Z = — z

2 — 1z 21
The standard Bernoulli ODE has the form

7 = fo(z)z + fi(z)2"

The first step is to divide the above equation by 2™ which gives

ZI

— =fo@)z "+ fil@)

n
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The next step is use the substitution 7 = 2!~ in equation (3) which generates a new
ODE in r(x) which will be linear and can be easily solved using an integrating factor.

Backsubstitution then gives the solution z(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)

Shows that
z
fo(z) = 2 —1
azx
filz) = T2 -1
n=2

Dividing both sides of ODE (1) by 2" = 2?2 gives

Z,l _ z ax
2 (x2-1)z 22-1
Let
r=z'""
1
2

Taking derivative of equation (5) w.r.t  gives

1
r'=——=2
z

Substituting equations (5) and (6) into equation (4) gives

oy ar(z)  az
rz) = z2—-1 22-1
, xr ax
r =

z2—-1 22-1
The above now is a linear ODE in r(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r'(z) + p(z)r(z) = q(z)

Where here
T
p(w) _x2 _ 1
ar
q(x) - xQ _ 1
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Hence the ode is

oy 2r(z) _ az
(@) r2—1 22-1

The integrating factor u is

z
/J’ = ef_mz—ldx

_ In(z—1) _ In(z+1)
= e 2 2

Which simplifies to

The ode becomes

= ()

di<mm> B (mlm) (— 1)

d(mm> ((ﬂ—l)«f%\/H) 4

Integrating gives

\/m\/m=/(x2_1)\/m\/md“’
. Va—1vatla

\/:v—kl\/z—l_ 2 -1

Dividing both sides by the integrating factor u = Wﬁ results in

+c

@)= -ETNE=Da T

2 -1

which simplifies to

r(z) =—a+avz+1lvr—1
Replacing r in the above by % using equation (5) gives the final solution.

1
;=—a—|—01\/m+1\/m—1
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1
—a+cvr+1ly/z—1

z =

Summary
The solution(s) found are the following

1
z= 1
—a+cavr+1lyz—1 (1)

Verification of solutions

1
—a+cvr+1yz—1

z =

Verified OK.

1.19.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
el -0
Hence 06 06d
Y
i st B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
09
M
ox
09
TN
Oy
But since % = aa; 5’; then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
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59; g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,z)dz+N(z,z)dz=0 (1A)

(~ra) = (@m0

x 1
Comparing (1A) and (2A) shows that

Therefore

x
2 -1
1

z(az+1)

M(z,z) =—

N(z,2z) =—

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
0z  Ox

Using result found above gives

oM_o0( =
8z 0z\ x2-1

=0

ON _o( 1 _
or 0r\ z(az+1)

=0

And

Since %—Aj = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z, 2)

96
g—x—M (1)
¢ _

=N 2)
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Integrating (1) w.r.t. z gives

@dx=/de
or

oo . T
%dx—/—ﬁ_ldx

b= _In (ac2— 1) In (x2+ 1) + () 3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
z. Taking derivative of equation (3) w.r.t z gives

9¢
A W 4
5, — 0+ () (4)
But equation (2) says that % = —m. Therefore equation (4) becomes
=04 () ©
z(az+1)
Solving equation (5) for f'(z) gives
1
/ e
fz) = z(az+1)

Integrating the above w.r.t z gives

[ree=[(-men)*

f(z)=In(az+1)—In(2) + 1

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
In(z—1) In(z+1)

¢=— 5 — 5 +In(az+1)—In(2) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as
In(z—1) In(zx+1)

a=-—— - 5 +In(az +1) — In(2)
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Summary
The solution(s) found are the following

In(z—-1) In(z+1)
2 2
Verification of solutions

+In(az+1)—In(z) =¢ (1)

In(z—1) In(z+1)
22

+In(az+1)—In(z) =¢
Verified OK.

1.19.5 Solving as riccati ode

In canonical form the ODE is

? = F(z,2)
__z2(az+1)
B z? -1

This is a Riccati ODE. Comparing the ODE to solve

, x 2%a Tz
7 =— -
z2—-1 z22-1

With Riccati ODE standard form

2 = fo(z) + fi(2)z + falz)2®
Shows that fo(z) =0, fi(r) = —="5 and fo(z) = —5%5. Let

r2-1"

B fou

_u/

= axry (1)

T z2o1

z

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(€) = (fo + fufo) v/ (z) + f3 fou(z) = 0 (2)
But
;L a 2a x?
f2__$2—1+ (1'2—1)2
ax?
fife = m
f3fo=0
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Substituting the above terms back in equation (2) gives

azu’(z) a 3a z? o
T 21 _<_$2—1+(x2—1)2 u(z) =0

Solving the above ODE (this ode solved using Maple, not this program), gives

C2
u(a:) =c + ﬁ
The above shows that
W(@) =~
(@2 = 1)}

Using the above in (1) gives the solution

C2

vz —1a <cl + :22_1>

zZ=—

Dividing both numerator and denominator by c; gives, after renaming the constant

£ = c3 the following solution
1

1
a (csvVz?2 —1+1)

Z =

Summary
The solution(s) found are the following

1
z=— 1
a(C3\/:c2—1+1) (1)
Verification of solutions
1
Z =

T a (03\/302 -1+ 1)
Verified OK.
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1.19.6 Maple step by step solution

Let’s solve
(—2>+1)2 —zz—azz’=0

° Highest derivative means the order of the ODE is 1

/

z
° Separate variables
2 - _ z
2(az+1) @—1)(z+1)
° Integrate both sides with respect to x
[ z(#;l)dx = [ —aamdz +a
° Evaluate integral

_ln(az—l—1)—|—ln(z):_w_i_Cl

° Solve for z
_ e2cl a—+/e2¢1 22 _e2¢1 . e2c1 a+ /e2€1 22 _e2¢1
Z=— e2c1 a2—$2+1 I z=—- e2cl a2 —l‘2+1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

Ldsolve((1-x“2)*diff(z(x),x)-x*z(x)=a*x*z(x)“2,z(x), singsol=all)

1
N vVe—1+y/1+xc1 —a

z(z)
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v/ Solution by Mathematica
Time used: 3.943 (sec). Leaf size: 47

-

N
kDSolve [(1-x"2) *z' [x] -x*z [x]==a*x*z[x] "2,z [x] ,x,IncludeSingularSolutions -> Trﬁ.\e]

e
_) —_
(@) —V1— 122 + aex
z(z) = 0
1
z(z) = —
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1.20 problem 10.2

1.20.1 Solving as first order ode lie symmetry lookup ode . . . .. .. 237
1.20.2 Solving as bernoulliode . . . .. ... ... ... ... ..... 240)
1.20.3 Solvingasexactode . . .. ... ... ... ... ... ... 243]

Internal problem ID [4374]
Internal file name [OUTPUT/3867_Sunday_June_05_2022_11_32_35_AM_44700999/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 10.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_rational, _Bernoullil

3227 —al=z+1

1.20.1 Solving as first order ode lie symmetry lookup ode
Writing the ode as

g 2+z+1
N 322
2 =w(z,2)
The condition of Lie symmetry is the linearized PDE given by
Ne +w(n, — &) — W, — we€ —wn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,
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Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,z) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dz _

§ n

The above comes from the requirements that (¢2 +n2) S(z,2) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

ds (1)
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=z

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S; +w(z,2)S; @)
dR R, +w(z,2)R,

Where in the above R, R,, S, S, are all partial derivatives and w(z, z) is the right
hand side of the original ode given by

_az3+x+1

wle,2) = 2

Evaluating all the partial derivatives gives

R,=1
R,=0
Sz _ _23ae—ax

S, = 2%
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS e *(z+1)
dR 3
We now need to express the RHS as function of R only. This is done by solving for z, 2
in terms of R, S from the result obtained earlier and simplifying. This gives

(24)

as e B(R+1)
dR 3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

(4)

gives
(aR+a+1)ef
S (R) = — 30,2 + C1
To complete the solution, we just need to transform (4) back to z, z coordinates. This
results in
237 (ax+a+1)e
= — + cl
3 3a?
Which simplifies to
23e79® ar+a+1)e
= — ( ) + C1
3 3a?

Summary
The solution(s) found are the following

23e7® (ax+a+1)e
3 342 ta
Verification of solutions
e (ax+a+1)e™™
3 302 T

Verified OK.

1.20.2 Solving as bernoulli ode

In canonical form, the ODE is

Z = F(z,z2)
e +r+1
o 322

This is a Bernoulli ODE.
, a z 11
=gzt gt o

3 3 322
The standard Bernoulli ODE has the form

2= fo(z)z + fi(z)2"
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The first step is to divide the above equation by 2™ which gives

zl

— = fo@)2"" + fi(x) (3)
The next step is use the substitution 7 = 2!~ in equation (3) which generates a new
ODE in r(x) which will be linear and can be easily solved using an integrating factor.

Backsubstitution then gives the solution z(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo@) =3
z 1
hl@)=5+3

n=-2

3
, 9 az® oz 1
2T 4
2’z 5 t3T3 (4)
Let
r=z""

=2’ (5)

Taking derivative of equation (5) w.r.t  gives
v =322 (6)

Substituting equations (5) and (6) into equation (4) gives

r(z) ar(z) =z 1
3~ 3 373

r=ar+z+1 (7)

The above now is a linear ODE in 7(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r'(z) + p(z)r(z) = ¢(2)

Where here
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Hence the ode is

The integrating factor u is

The ode becomes

Integrating gives

e ¥r = /e_‘“”(x +1) dz

1 e—ax
e "r=— (az + aa-|2— ) +c

Dividing both sides by the integrating factor u = e~** results in

r(z) =

e“(ar+a+1)e ™
— 5

+e¢ %%

which simplifies to

e’ —14(-1—-1x)a

r(z) =

a2
Replacing r in the above by 23 using equation (5) gives the final solution.

5 ce¥a?—1+(-1—2x)a
yA—

a?

Solving for z gives

W=

oz) = ((cre*®a* — 1+ (=1 —1z)a)a)

_ ((ce™a® =14 (-1 —-2)a) a)% (iv3—1)
" 2a

_ ((ae®a® —1+(-1-2)a) a)? (1+4iv3)
"= 2a
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Summary
The solution(s) found are the following

[

y = ((ce®a® =1+ (-1 —1)a)a) (1)

| (31

W=

5= ((clea$a2 —1+(-1-2z)a)a) (2)

2a
((cre®a? — 1+ (-1 —z)a)a)? (1 +iv/3)

=

2a
Verification of solutions
_ ((ce™a®* =14 (-1—=)a) a)%
o a
Verified OK.
_ ((ae®a® =14 (-1 ~—1)a) a)% (iv3—1)
2= 2a
Verified OK.
_ ((ae™a? =1+ (-1—1z)a) a)% (1+4v3)
2= 2a
Verified OK.

1.20.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
M(z,) + N(z,y) 22 = 0 (4)
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< ow,9) =0

Hence 06 06 d
0¢  0pdy _

dr ' dydz 0 (B)
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Comparing (A,B) shows that

09
T M
Oz
9 _ n
Oy
But since ;ﬂ:gy = 8‘9; g; then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,z)dz+N(z,z)dz=0 (1A)
Therefore
(32*)dz = (a2’ +z+1)ds
(—a2® —z—1)dz+(32°)dz =0 (2A)

Comparing (1A) and (2A) shows that
M(z,2)=—az—2—1
N(z,z) = 32*

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
0z O
Using result found above gives

oM 0
E = &(—0,23—.'15—1)

= —3q 2>

And
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Since %—M # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
A= N(E B %)
= 5 ((-32) - 0)

Since A does not depend on z, then it can be used to find an integrating factor. The

integrating factor p is
—e [Adz

— ef—ada:

I

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = puM
=e (-az®—z—1)
=—e (a2’ +z+1)

And
N = uN
=e ¥ (322)
= 32% ™
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
M + N% =0
dz

(—e (a2’ +z4+1)) + (32% ™) j—i =0

The following equations are now set up to solve for the function ¢(z, z)

9 —
g—x—M (1)
6

=N @)
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Integrating (1) w.r.t. z gives

%dx = /de
or

(2*a®’ +azx+a+1)e™

¢ +f(2) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
z. Taking derivative of equation (3) w.r.t z gives

¢

5, = 32%7% + f'(2) (4)

But equation (2) says that % = 32%e7%*. Therefore equation (4) becomes
32%e™% = 32%e7 " + f'(2) (5)

Solving equation (5) for f'(z) gives
fl(z)=0
Therefore
f(z)=qa
Where ¢, is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢

_(Pa*tazt+a+l)e™
= 3

¢ +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

(22’ +ar+a+1)e ™
a2

C1 =
Summary
The solution(s) found are the following

(Z2a’+ar+a+1)e
a2

= (1)
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Verification of solutions

(FPa®+azx+a+1)e™™

a? -a
Verified OK.
Maple trace
"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful’
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 106
Ldsolve(S*z(x)“2*diff(z(x),x)-a*z(x)“3=x+1,z(x), singsol=all) J
2(z) = ((e*cia® =1+ (-1 —1z)a) a)%
a
1
((ecia? — 1+ (-1 —z)a)a)? (1 +1v/3)
2(z) = —
2a
1
((e®cia? — 1+ (-1 —1z)a)a)? (iv/3 — 1)
z(z) = o

v/ Solution by Mathematica
Time used: 14.566 (sec). Leaf size: 111

LDSolve[B*z[x]“2*z'[x]—a*z[x]‘3==x+1,z[x],x,IncludeSingularSolutions -> True] J

3/ 12 ar __ 1)—=1
_)\/acle a(z+1)

z(z) 42/3
vV—1¥/a%cie® —a(z+1) —1
z(z) > — 33
(=1)*3{/a2cie® —a(z +1) — 1
z(x) — 23
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1.21 problem 10.3
1.21.1 Solving as first order ode lie symmetry lookup ode . .. .. .. 248]
1.21.2 Solving as bernoulliode . . . . . ... ... ... ... ..... 2511

Internal problem ID [4375]
Internal file name [OUTPUT/3868_Sunday_June_05_2022_11_32_51_AM_63725271/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 10.3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first__order__ode_ lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_Bernoullil

2 +2x2—2a132> =0

1.21.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

2 =2ax%2% — 2z2

2 =w(z, 2)
The condition of Lie symmetry is the linearized PDE given by
Ne +w(n: — &) — W2§z —wz —w,n =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) "M@+ 4 f(z) | & Jof ;?;‘;f—h(@ f(z)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
&(z,2)=0
3 2x2

n(z,z) = z°e

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z, z) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dz _

§ n

The above comes from the requirements that (¢2 +n2) S(z,z) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

ds (1)
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy
n
1

= / z362m2 dy

_ 9.2
eZ:c

222

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S;+w(z,2)S; @)
dR R, +w(z,2)R,

Where in the above R, R,,S,, S, are all partial derivatives and w(z, z) is the right
hand side of the original ode given by

w(z,2) = 2a2°2® — 222

Evaluating all the partial derivatives gives

R, =1
R,=0
27 e~ 2
Sy = o
—2z2
e
s.= %5

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 2

— =2z%% 2A

g 25" a (2A)
We now need to express the RHS as function of R only. This is done by solving for z, 2
in terms of R, S from the result obtained earlier and simplifying. This gives

as

a9 _ 5p3.—2R?
iR 2R’e a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

+c

+ ¢

(4)

gives
2R? +1)e 2
sy = —GE D0
4
To complete the solution, we just need to transform (4) back to z, z coordinates. This
results in
_e_2“”2 _ (22 +1) e 2,
222 4
Which simplifies to
e~ 2’ o (222+1) e 2
222 4

Summary
The solution(s) found are the following

e (2224 1)e*q
222 4
Verification of solutions
e (222+1)e*q
222 4

Verified OK.

1.21.2 Solving as bernoulli ode
In canonical form, the ODE is
? = F(z,z2)
=2ax32% — 2z2

This is a Bernoulli ODE.
2 = —2zx2 + 2a 2323

The standard Bernoulli ODE has the form

2 = fo(x)z + fi(z)2"
The first step is to divide the above equation by 2™ which gives

ZI

n
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The next step is use the substitution 7 = 2!~ in equation (3) which generates a new

ODE in r(x) which will be linear and can be easily solved using an integrating factor.

Backsubstitution then gives the solution z(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)

Shows that
folw) = -2z
fi(z) = 2a2®
n=3

Dividing both sides of ODE (1) by 2" = 23 gives

1 2z
/ _ 3
z A 2 +2azx
Let
r=2z""
1
T2

Taking derivative of equation (5) w.r.t z gives

2
r'=——=2
2

Substituting equations (5) and (6) into equation (4) gives

- = —2r(z) z + 2a z*
r' = —4az3 + dzr
The above now is a linear ODE in r(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r'(z) + p(z)r(z) = q(z)

Where here

Hence the ode is
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The integrating factor u is

The ode becomes

Integrating gives
e 2y = /—4x3e_2z2a dx

Lo (222 +1)e¥q

B 2
Dividing both sides by the integrating factor u = e~2%” results in
r(z) = e2* (222 —; 1) e 2’g

(S

+Cl

2
+c 62m

which simplifies to

r(r) =ax® + g + c6®*

Replacing r in the above by Z% using equation (5) gives the final solution.

1 a
o az® + 2 + 6%
Solving for z gives
2
z(z) =
V4az? + 4162 + 20
2

2(z) =

V4az? + 4162 + 20

Summary
The solution(s) found are the following
2

a V4az? + 4162 + 2a
2

V4ax? + 4cie*’ + 20

z

z =
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Verification of solutions

2
z =
VAaz? + 4c,e2* + 2a
Verified OK.
2
z=— -
V4ax? + 4ce2” + 20

Verified OK.

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 53

Ldsolve(diff(z(x),x)+2*x*z(x)=2*a*x‘3*z(x)‘3,z(x), singsol=all) J
2
z(z) = — -
\/4ax2 +4e?c; 4 2a
2

z2(z) =

Vdaz? +4e*c; + 2a

v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 29

LDSolve[z'[x]+2*x*z[x]==2*a*x“3*z[x],z[x],x,IncludeSingularSolutions -> True] J

2(z) = cres 7

z(z) =0
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1.22 problem 10.4

1.22.1 Solving as first order ode lie symmetry lookup ode . .. .. .. 255
1.22.2 Solving as bernoulliode . . . .. ... ... ... ... ..... 258]

Internal problem ID [4376]
Internal file name [OUTPUT/3869_Sunday_June_05_2022_11_33_02_AM_57925054/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 10.4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first__order__ode_ lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_Bernoullil

2/ + zcos (z) — 2" sin (2z) = 0

1.22.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Z' = —zcos(z) + 2" sin (2z)

Z' = w(z, 2)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(n, — &) — W, —we€ —wn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

&(z,2) =0

’I’](l’, Z) — zne(n—l)sin(a:)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,z) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _ds _

§ 7

as

1)

The above comes from the requirements that (E a% + 17%) S(z,z) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R==z

S is found from

1
S = / —dy
n
1
= / 2ne(n—1)sin(z) dy
Which results in
g _Z Z—ne—(n—l) sin(z)

n—1

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S;+w(z,2)S; @)
dR R, +w(z,2)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z, z) is the right
hand side of the original ode given by

w(z, z) = —zcos (z) + 2" sin (2z)
Evaluating all the partial derivatives gives

R, =1
R,=0
S, = 2z " cos (z) e~ (nV)sin(@)

Sz — Z—ne—(n—l) sin(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
dR

We now need to express the RHS as function of R only. This is done by solving for z, z

in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

= 2~ (=D cog (1) sin () (2A)

= 2~ (= Dsin(®) o5 (R) sin (R)
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

n— 1) —2e~-DsnB)(1 4 (n — 1)sin (R))
(n—1)*

C1
s(r) = 4t (@
To complete the solution, we just need to transform (4) back to z, z coordinates. This
results in

z—n-l-le—(n—l) sin(z) L (’TL _ 1)2 _ 2e—(n—1) sin(w)(l + (n _ 1) sin (I))
n—1 (n — 1)2

Which simplifies to

(—n+1) 27" + 2 4 (2n — 2) sin (z)) e~ Dsin@) _ ¢ (n —1)?
(n—1)°

=0

Which gives

< 2 sin(:c)ef("fl) sin(z) n—cy n2—2 sin(z)ef(nfl) sin(z) +2cin+2 e~ (n—1)sin(z) —c1 )
n—1

sin(z)n+1n —sin(z)

Zz=e€ n—1

Summary
The solution(s) found are the following

sin(z)n+I1n —sin(z)

z=e n—1 (1)

Verification of solutions

< 2 sin(z)e_(n_l) Sin(z)n—cl n2-2 sin(z)e_(f_l) sin(z) +2cyn+2 e_(n_l) sin(z) —c1 )
e

2 sin(z)e_(n_l) Sin(z)n—cl n2_2 sin(z)e_(:’_l) sin(z) +2cyn+2 e_(n_]') sin(z) —c1 ) _sin(x)
i

sin(a:)n+ln<
z=e n—1

Verified OK.

1.22.2 Solving as bernoulli ode

In canonical form, the ODE is

Z = F(z,z2)

= —zcos (z) + 2" sin (2z)
This is a Bernoulli ODE.

2 = —cos(z) z + 2sin (z) cos (z) 2" (1)
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The standard Bernoulli ODE has the form

?' = fo(z)z + fi(z)2" (2)
The first step is to divide the above equation by 2™ which gives

ZI

2 = h@# "+ i) 3)

The next step is use the substitution 7 = 2!~ in equation (3) which generates a new
ODE in r(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution z(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(@) = — cos (z)
fi(z) = 2sin (z) cos (x)

n=mn

Dividing both sides of ODE (1) by 2™ = 2" gives

227" = —cos (z) 27" 4 2sin (z) cos (z) )
Let
r= Zl—n
— z—n—i—l (5)

Taking derivative of equation (5) w.r.t = gives
r'=(-n+1)27"2 (6)
Substituting equations (5) and (6) into equation (4) gives

r'(z)
—n +

;= —cos (z) r(z) + 25sin (z) cos (z)
r'=—(—n+1)cos(z)r + 2(—n + 1) sin (z) cos () (7)
The above now is a linear ODE in 7(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

r'(z) + p(z)r(z) = q(z)
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Where here

p(z) = —(n —1)cos (z)

q(z) = —(n — 1) sin (2z)
Hence the ode is

r'(x) — (n — 1) cos (z) r(z) = —(n — 1) sin (2z)
The integrating factor u is
p= ef—(n—l) cos(z)dz

—n+1) sin(z)

=e(

Which simplifies to

b= e—(n—l) sin(x)

The ode becomes
L (ur) = (1) (~(n — 1)sin (22))

% (e—(n—l) sin(w),r) — (e—(n—l) sin(x)) (—(’I’L _ 1) sin (2%’))

d(e_(”_l)sm("”)r) = (—(n — 1) sin (2z) e~(=1) Sin(z)) dz
Integrating gives
g~ (nD)sin(@), — / —(n — 1) sin (2z) g~ (n—1)sin(@) 44,

(;p)r _ 2 e(_n+1) sin(z)(_n + 1) Sin (:1:) _ 2 e(_n+1) sin(z)

—(n—1)sin
e
-n+1

+

Dividing both sides by the integrating factor p = e~(»~1s2() results in

2 e(n—l)sin(w) e(—n+1) sin(z) —n + 1) sin (z) — e(—n+1) sin(z) )
’I"(.’E) — ( ( — ) ( ) ) 4+ cle(n—l) sin(x)
—Nn

which simplifies to

(n — 1) ce V(@) 1 2 4 (2n — 2) sin (z)
n—1

r(z) =

—n+1

Replacing r in the above by z using equation (5) gives the final solution.

Cpp1 (n—=1) e Dsn@) 4 2 4 (2n — 2) sin (z)
VA =

n—1
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Summary
The solution(s) found are the following

ol _ (n — 1) ceVsin(@) 4 2 4 (2n — 2) sin ()

n—1
Verification of solutions

Cpp1 (n—1) e Vs 4 2 4 (2n — 2) sin ()

z n—1

Verified OK.
Maple trace

(1)

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 49

Ldsolve(diff(z(x),x)+z(x)*cos(x)=z(x)‘n*sin(2*x),z(x), singsol=all)

() (eSin(x)("_l)cln — (@D, 4 2sin (z) n — 2sin (z) + 2
2(z) =

n—1

v Solution by Mathematica
Time used: 6.964 (sec). Leaf size: 36

LDSolve[z'[x]+z[x]*Cos[x]==z[x]‘n*Sin[2*x],z[x],x,IncludeSingularSolutions —>/True]

; 2
z(z) — (cle(n_l) sin(z) 4 — 2sin(x)) =
n —
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1.23 problem 10.5

1.23.1 Solving as first order ode lie symmetry lookup ode . .. .. .. 262
1.23.2 Solving as bernoulliode . . . .. ... ... ... ... ..... 266]
1.23.3 Solvingasexactode . . .. ... ... .. ... ... ... . 2701
1.23.4 Solving asriccatiode . . . . . . . . . ... ... ... ... 2775

Internal problem ID [4377]
Internal file name [OUTPUT/3870_Sunday_June_05_2022_11_33_11_AM_64842096/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 2

Problem number: 10.5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exact With-
IntegrationFactor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_Bernoullil

zy' +y—In(z)y* =0

1.23.1 Solving as first order ode lie symmetry lookup ode
Writing the ode as
,_y(n(z)y—1)
y -z 7= 7
x

Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - gm) - w2€y — wz§ — wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 45: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) =y’

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx

Sz/ldy
n

1
= [ —d
vl

S is found from

Which results in

1
S=——
yxr

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y(n(z)y —1)

w(z,y) = .
Evaluating all the partial derivatives gives
R, =1
R, =0
1
Se = —
y x?
1
Sy - y2_:L‘

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS In(xz)
R 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS In (R)

dR  R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

In(R) 1

- +a @

S(R) = R 7

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

1 (@) 1

Which simplifies to

—yaz+hn(z)y+y—1
zy N

0

Which gives
_ 1
 —ar+In(z)+1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’

dy _ y(n(z)y—1) ds __ In(R)

dx T dR R?
Vit [N
vyttt Ll ~—r oo oo

db bttt P S
SN RSSESSSEEt

Sa ~N—P ¥ P> P> —b>—b>—b

YO NSNS r s SR
IR ettt 2| v oo s

L \ \ﬂawﬁ/vﬂ» L ~N— T > ——b

b N w— s R=z | ~—rrrrr v

4 - [ e 1 _ - o[ v s
IRt sttt S - Jv\"""”‘?("’*”*’""’
Sa/«/d//d///w/q/ yx L\, »»»»»» —>—&

N AP Y R
VARLEILL T N
LAttt | o

Vot trrrrtt l v oo oo e
—4qb=t SPH [ (NN
=ttt |~ .

AN I ~—rr oo oo
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Summary
The solution(s) found are the following

1
V= —ciz+In(x)+1 (1)

y(x) o P
P
N 7777777
—1 \—~77777777

NONNNNN

~ NN N\

I e e e
e . e

N —a NN\
| — e\

I

\S]

1
——
l———
W N\

|
W

I
\S]

|
—
o
—_

Figure 47: Slope field plot

Verification of solutions

1
—ciz+In(x)+1

Verified OK.

1.23.2 Solving as bernoulli ode

In canonical form, the ODE is

y = F(z,y)
_y(n(z)y—1)
T
This is a Bernoulli ODE. ) In (z)
n(z
y=——y+——y (1)
T T
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The standard Bernoulli ODE has the form
Y = fo(x)y + fi(z)y" (2)

The first step is to divide the above equation by y™ which gives

Y _ fh@y "+ i) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) =~
fi(2) = lnim)
n =2

Dividing both sides of ODE (1) by y™ = y? gives

= ) @
Yy yx x
Let
w = yl—n
1
== 5
” (5)
Taking derivative of equation (5) w.r.t z gives
1
w/ — _Ey/ (6)
Substituting equations (5) and (6) into equation (4) gives
x x
w =2 - In (2) (7)
x x

The above now is a linear ODE in w(z) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q()

Where here
1
p(z) = T
In ()
q(z) = ——
Hence the ode is
1
ey V@) _ @
x x
The integrating factor u is
p= ef—%dz
1
oz

The ode becomes

Integrating gives

which simplifies to
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Replacing w in the above by % using equation (5) gives the final solution.

1
g7=clx+ln(ac)-i—1

1
v= caz+1In(z)+1

Summary
The solution(s) found are the following

1
= 1
y ar+In(z)+1 (1)
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Figure 48: Slope field plot

Verification of solutions

~czr+In(z) +1
Verified OK.
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1.23.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (—y +1n(z) y2) dz
(-In(z)y*+y)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —In(z)y* +y
N(m,y)=m
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

8M_2 B 9

=—2ln(z)y+1
And
ON 8
o 02
=1

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] <8M azv)

T N\dy Oz

- %((—2ln (z)y+1) (1))
_ 2@y

X

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g 1(ON _om
M\ 0z Oy

1
= _y(lIl (w)y _ 1)((1) - (—2111(117)y+ 1))

__ 2In(z)
- In(z)y-—-1

Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

ON _ oM
__ Oz Oy
xM —yN
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R is now checked to see if it is a function of only ¢ = xy. Therefore

ON _ M
R= or Oy
xM — yN

_ (1) = (—2In(z)y+1)
z(—In(z)y?+vy) —y(z)

2
=
Replacing all powers of terms zy by t gives
2
R=—
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be u then

p=e J Rdt
— (=3t
The result of integrating gives
= 2l
_1
12
Now t is replaced back with zy giving
1
h

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

1
= x2—y2(—1n($)y2+y)

_—In(z)y+1
=2

And
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

— __dy
M —~Z =0
+ dzx

—In(z)y+1 1 \dy
< y 2 )+ (y2w> dz "

The following equations are now set up to solve for the function ¢(z,y)

0p

Integrating (1) w.r.t. = gives

0p . [+
%dx—/de

%dx=/—_ln(m)y+1dx
Ox y x?
_In(z)y+y-—1
= xy

¢ + 1) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 1l+hn(z) In(@=)y+y-1
oy wy zy?

+ () (4)

- W)

Yz

But equation (2) says that g—i = y%x Therefore equation (4) becomes

R T
iz gz W (5)
Solving equation (5) for f'(y) gives
f'y) =0
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Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
In(z)y+y—1
Yy

¢ = ta

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and c; constants into new constant c; gives the solution as

In(z)y+y—1
C1 =
zy
The solution becomes
1
y fry

—az+In(z)+1

Summary
The solution(s) found are the following

1
V= —cz+In(x)+1 (1)
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Figure 49: Slope field plot
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Verification of solutions

1
—cz+1In(z)+1

Verified OK.

1.23.4 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)
_y(n(z)y—1)
x
This is a Riccati ODE. Comparing the ODE to solve

T T

y,zln(w)lf_y

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®

Shows that fo(z) =0, fi(z) = —1 and fo(z) = 22, Let

y =
fou
!

= In(z)u (1)

x

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () — (fy + fufo) W' (2) + f3 fou(z) = 0 (2)
But
p=-m0 L
X Xz
fufo = - 2@
X
fifo=0

Substituting the above terms back in equation (2) gives

In (z) u"(z) ( 2ln(z) i) W (z) = 0

T 2 2
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Solving the above ODE (this ode solved using Maple, not this program), gives

—coln (z) + 12 — ¢y

u(z) = -
The above shows that
o (z) = 2 1;12(1:)
Using the above in (1) gives the solution
(&)

¥y= _—02111(1:) + iz — ¢
Dividing both numerator and denominator by c; gives, after renaming the constant
£ = c3 the following solution

C1

1
- —cz+In(z) +1

Summary
The solution(s) found are the following

1
—c3z+1n(z) +1

(1)

y:

276



_—

\ \ NN s s

Pt
N/ 777777
\—r7 7777777

NNNNNN
N e
—_— e NN\
e . e

I
[\
1
—_——————
——

— et NN\

I
w

I
[\

I
J—
(e}
—

Figure 50: Slope field plot

Verification of solutions

1
—csz+1n(z) +1

Verified OK.
Maple trace

Sk IECCNE N N
L G\

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve (xxdiff (y(x) ,x)+y(x)=y(x) "2*1n(x) ,y(x), singsol=all) J
1
y(z) = 1+ ciz+1n(z)

v/ Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 20

LDSolve [xxy' [x]+y[x]==y[x] ~"2*Log[x],y[x],x,IncludeSingularSolutions -> Truel J

1
+Cl.’13+].

y(z) — og(@)
y(x) =0
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2 Chapter 3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

problem 1
problem 2
problem 3
problem 4
problem 5
problem 6
problem 7

problem 8.1 . . . . .. L

problem 10
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2.1 problem 1

2.1.1 Solving asexactode . .. ... ... .....
2.1.2 Maple step by step solution . . . ... .. ..

Internal problem ID [4378]

.......... 2831

Internal file name [OUTPUT/3871_Sunday_June_05_2022_11_33_19_AM_2745998/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _exact, _rational,

3zy + (y° + 3yz®) y = —2°

2.1.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

=0
dx

M(z,y) + N(z,y)

_dAlembert]

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence
op  0¢dy _,
or  Oydx
Comparing (A,B) shows that
o¢
P M
o¢
3y N
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. 824 _ 829
But since 520y = yos

then for the above to be valid, we require that

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(3y z? + y3) dy = (—x3 — 3y2x) dz
(z° + 3y’z) dz+(Byz® + y*)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2° + 3y°x
N(z,y) = 3yz*+¢°

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0, , 9
- _Z 3
o 0y (z° + 3y’z)
= bzxy
And
ON 0 9 3
= 6ry
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
L =M 1
e (1)
o
— =N 2
o )
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Integrating (1) w.r.t. z gives

@dx=/Mdz
or

%dx = /x3+3y2xdx
2 2\2
=TT 4 gy ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—j =3 + 35 y+ £ (9) (4)

But equation (2) says that ‘g—‘z = 3y x? + y*. Therefore equation (4) becomes
3ya® +y° = 3(2* +3y°) y + f'(v) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f’(y) dy = / (—8y°) dy
fly)=-2y"+a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

(@ +3y?)°

1 — 2yt 4 ¢

¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

2 212
¢ = (w +43y) _2y4
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Summary
The solution(s) found are the following

(@ 439"

1 2y4 =C (1)
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Figure 51: Slope field plot

Verification of solutions

2 1 342)?
@) gt
4

Verified OK.
2.1.2 Maple step by step solution

Let’s solve

3zy® + (y* + 3y2?) y = —a°

° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact
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ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

Compute derivative of lhs

F'(z,y) + (%F(x, y)) Y =0

Evaluate derivatives

6zry = 6y

Condition met, ODE is exact

Exact ODE implies solution will be of this form

|F(2,9) = c1, M(z,9) = F'(w,9) , N(2,9) = §F(,1)
Solve for F(z,y) by integrating M (x,y) with respect to x
F(z,y) = [ («* + 3y*z) dz + f1(y)

Evaluate integral

F(z,y) = “0 4 ()

Take derivative of F'(x,y) with respect to y

N(z,y) = £ F(z,y)

Compute derivative

3ya® +y° =3(2> +3y*) y + L fi(y)

Isolate for d% fi(y)

i f1(y) = =3(2? + 3y*) y + 3yz® +¢°

Solve for fi(y)

fily) = —2y*

Substitute f;(y) into equation for F(z,y)

F(z,y) = E00 gy

Substitute F'(z,y) into the solution of the ODE

E oyt =y
Solve for y

{y = /=322 — 2V20" + ¢1,y = /=322 + 2221 ¥ 1,y = —/—322 — 2V/207 + ¢1,y = —\/—
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 119

Ldsolve((x‘3+3*x*y(x)*2)+(y(x)A3+3*x‘2*y(x))*diff(y(x),x)=0,y(x), singsol=a11{

\/—3clx2 —/83z* +1
y(z) = NG
\/—301332 +/8c3zt +1
y(z) = e
\/—3(21:E2 — 82zt +1
- Ve
\/—301352 ++/8crt + 1
y(z) = — NG

y(z)
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v/ Solution by Mathematica
Time used: 8.383 (sec). Leaf size: 245

kDSolve [(x~3+3*x*xy[x] ~2) +(y [x] "3+3*x~2*y [x]) *y' [x]==0,y[x],x, IncludeSingularSo}Lutions -> True

\/ 3% — 8z + el

y(x) — \/ —3x2 — \/8x + elr

y(z \/ 322 + V81 + et
y(x \/—2\/_\/_4 — 3z
y(x) — \/ 2v2Vzt — 322

y(x \/2\/_\/_ 32
y(x) — \/2\/_\/_ Ry

) =
)
) =
y(@) = /322 + VBT o
) =
)
) —
)
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2.2 problem 2

2.2.1 Solvingasexactode . .. ... ... ... ... ... ... 287
2.2.2 Maple step by step solution . . . . ... ... ... .. 29T

Internal problem ID [4379]
Internal file name [OUTPUT/3872_Sunday_June_05_2022_11_33_25_AM_40343060/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _exact, _rational, _Bermnoulli]
2
v 2yy 1
= - = —
T T

2.2.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
M(z,9)+ N(z,y) 2 =0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06d
vy _
ox + Ooydr 0
Comparing (A,B) shows that

9¢

or
9¢

oy
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But since % = % then for the above to be valid, we require that
Y yox

oM  ON

dy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
gj E‘fy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<1 + i—i) dx—i—(—z;y) dy =0 (2A)

Comparing (1A) and (2A) shows that

2

Yy

M(.’E,y) = 1 + CIT2
2y

N = —-—
(z,9) .

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
2
oM _ 0 ( v
Jdy Oy x?
2y
T 22
And
ON _ 9 ( 2%
0x O x
2y
T 22
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0

5 =M @
09

ay = @

Integrating (1) w.r.t. = gives

%dwz/de
ox

op . Y2
%dx—/1+ﬁdx

s=2-Y 1 1) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o9 _ %

/
S 4
=2 (@)
But equation (2) says that g—‘z = —2U_ Therefore equation (4) becomes
2y _ %Y
g __Z 5
Vo ) )
Solving equation (5) for f'(y) gives
fy)=0
Therefore
fy)=a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
2
¢=£B—y—+C1
x
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

The solution(s) found are the following

Summary

— = -
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Figure 52: Slope field plot
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Verification of solutions

Verified OK.



2.2.2 Maple step by step solution

Let’s solve
2 2 /
A
. Highest derivative means the order of the ODE is 1
y/

O Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

o Compute derivative of lhs
F'(z,y) + (B%F(w,y)> y =0

o Evaluate derivatives

2y __ 2y
72~ 22

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,9) = F'(z,3), N(w,9) = 5 F(w,)]
. Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y)= [ (1 + g—i) dz + f1(y)
° Evaluate integral
F(z,y) =z — L + fi(y)
o Take derivative of F'(z,y) with respect to y
N(z,y) = 5. F(z,y)
° Compute derivative
— =2+ L)
o Isolate for % fi(y)
d%f 1(y) =0
° Solve for f1(y)
fily) =0
. Substitute f(y) into equation for F'(z,y)
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2

F(g;)y):gg—ZL

T

o Substitute F'(z,y) into the solution of the ODE
T — % =C
° Solve for y

{3/ =+V—cazr+2%y= —\/—clx+x2}

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

‘dsolve((1+y(x)‘2/x“2)—2*y(x)/x*diff(y(x),x)=0,y(x), singsol=all)

y(@) =V +a)z

y(@) = —v(c+a)z

v/ Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 38

tDSolve[(1+y[x]‘2/x‘2)—2*y[x]/x*y'[x]==0,y[x],x,IncludeSingularSolutions -> T;?e]

y(@) = —Vavz+a
y(@) = Vv +o
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2.3 problem 3
2.3.1 Solvingasexactode . .. ... ... ... ... ... ... 293]

Internal problem ID [4380)]
Internal file name [OUTPUT/3873_Sunday_June_05_2022_11_33_30_AM_61368743/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]
3z 1 322
— (—2 - —4> y=0
Y Y Y

2.3.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) 3 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or + oydr 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

o =V
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But since % = % then for the above to be valid, we require that

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
aa: gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

3z 1 322
(3 ) ae+ (o= ) =

Comparing (1A) and (2A) shows that

3z
M(z,y) = —
(z,9) .

1 3x?
N(x,y)=E—F

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

oM _ 9 (3z
oy Oy \y?

9x

Using result found above gives

And
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A=l<3_M_3_N)

N\ oy Oz
~w((5)- ()
L& y* yt
3z

322 — g2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

o L(ON _oum
- M\ oz Oy

()5

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be y. Then

u= e/ Bdy
frnd ef % dy
The result of integrating gives
b= e ()
=Y

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M =uM

_ 3z
3z
2
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And

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

. _dy
M b A
+ 1z 0

y? y3 dz

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x—M (1)
¢

Integrating (1) w.r.t. z gives

0p . [~
a—mdx—/de

0¢ 3z
R

¢=-——5+f(y) 3)

2?

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0¢ 32,
T 4
() (@)
But equation (2) says that g—z = % Therefore equation (4) becomes
—32% 4 92 32
BT —?"‘f/(y) ()
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Solving equation (5) for f'(y) gives
1
/ = —
) y
Integrating the above w.r.t y gives
, 1
fly)dy= [ |~ )dy
)
fy) =In(y) +a

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
3z?
¢ = 2—y2+ln(y)+c1

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

The solution becomes

LambertW(—3z2e_2C1 )

y=e 2 +e
Summary
The solution(s) found are the following
LambertW(—3m2e_201)
y=e 2 +e (1)
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Figure 53: Slope field plot

Verification of solutions

LambertW(—3z2e_2C1 )

y:e 2

Verified OK.
Maple trace

+c1

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

Ldsolve ((3*x/y(x)"3)+(1/y(x) ~2-3*x"2/y (x) ~4) *diff (y(x) ,x)=0,y(x), singsol=a11)J

1
y(z) = V3 \/_ LambertW (—3c;z2) ’

v/ Solution by Mathematica
Time used: 6.543 (sec). Leaf size: 66

LDSolve [(3*x/y[x]~3)+(1/y[x]~2-3*x~2/y[x] ~4) *y' [x]==0,y[x],x, IncludeSingularSojLutions -> True

_ z\/gac

VW (—3e-2122)
\/W (—3e~2c112)
y(z) =0

y(z) —

y(z) —
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2.4 problem 4
24.1 Solvingasexactode . .. ... ... ... ... ... ... 3001
2.4.2 Maple step by step solution . . . . ... ... ... ..., 3041

Internal problem ID [4381]
Internal file name [OUTPUT/3874_Sunday_June_05_2022_11_33_39_AM_69767660/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _exact, _rationall]
Jy A
.,11.2 + y2 IL'2 + y2
2.4.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

dr
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
Yy _
oxr  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

3 =
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But since 22 _ ¢

Bay = Byds then for the above to be valid, we require that

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5?: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
z _(_ Yy
(y+x2+y2)dy—( x+x2+y2)dx
Yy z A
Ty dz + Zl‘l‘m dy =0 (2A)

Comparing (1A) and (2A) shows that

M =z
(z,y) ==z 1

N(z,y)=y+

$2 + y2
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON

oy Oz

Using result found above gives

oM _o( __y
oy Oy x2 + 2

x4y
(@2 +12)*

ON_o( T
or oz \’ T 2242

—z? + g2

(22 +y2)°

And
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Since 2M — ‘%, then the ODE is exact The following equations are now set up to solve

5
for the Zf}unction o(z,y)
0¢p _
=M (1)
0p
o = N (2)

Integrating (1) w.r.t. = gives

/%dm=/de

op . Yy
axdz—/x x2+y2dx

¢=§1amM4§)+ﬂw 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 T ’

e 4

&y~ 2 (Z_;“) f'(y) (4)
ZﬁyQ‘F]ﬂ(y)

T
z2+y2

But equation (2) says that g—‘g =y+ . Therefore equation (4) becomes

T T

e R A ) ©)

Y+
Solving equation (5) for f’(y) gives
flly)=y

Integrating the above w.r.t y gives

[rwa=[waw

2

f(y)=%+01
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
2 2
z z
¢ = — — arctan (—) +y—+cl

2 Y 2
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1 = z* arctan z —i—y2
T2 y 2

Summary
The solution(s) found are the following

2 2
% — arctan (g) + % =0 (1)
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Figure 54: Slope field plot

Verification of solutions

2’ arctan z +y2 =c
2 y 2

Verified OK.
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2.4.2 Maple step by step solution

Let’s solve
° Highest derivative means the order of the ODE is 1
y/

U Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
F(z,y)=0
o Compute derivative of lhs
F'(z,y) + (%F(w,y)) y =0

o Evaluate derivatives

__1 + 2y® — 1 212
?4y? T (22492)7 T 24y’ (224?)’
o Simplify
ey _g24q2
@2~ @)
o Condition met, ODE is exact
° Exact ODE implies solution will be of this form
F(z,9) = o1, M(z,9) = F'(2,9), N(2,9) = $F(3,9)|
° Solve for F'(z,y) by integrating M (z,y) with respect to x
F(o,y) = [ (v = 75 ) dz + fi(y)
° Evaluate integral
F(z,y) = 5 — arctan (2) + £(y)
o Take derivative of F'(z,y) with respect to y
N(z,y) = 5. F(z,y)
° Compute derivative

Y+ o = y2(§+l) + & h(y)

° Isolate for %f 1(v)
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T

d%fl(y) =y+ z2f_y2 - y2<x2+1)

vz
o Solve for fi(y)
hy) =%
. Substitute f1 (y) into equation for F'(z,y)
F(z,y) =% —arctan ( ) + L
. Substitute F'(z,y) into the solution of the ODE

y)
;—arctan< >+y7= c1

° Solve for y

tan( RootOf (o2 tan(__Z)" 21 t:n(_Z)lztan<_z>2_z_mz)>

Yy=-

Maple trace

"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE, diff(y(x), x) = -x/y(x), y(x)° *kk
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- 1st order, canonical coordinates successful"
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v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 26

Ldsolve(x+y(x)*diff(y(x),x)+x/(x“2+y(x)“2)*diff(y(x),x)— y(x)/(x‘2+y(x)‘2)=0,y}x), singsol=al

y(z) = cot (RootOf (2¢; sin (_2)? -2 Zsin(_2)* + %))z

v Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 31

LDSolve[x+y[x]*y'[x]+x/(x‘2+y[x]‘2)*y'[x]- yx]l/(x"2+y[x] ~2)== ,y[x],x,Includg?ingularSolutio

z 2’ | y(z)®
Solve [— arctan (m) + 5 + 5 = c1,y(x)
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2.5 problem 5

2.5.1 Solvingasexactode . . ... ... ... ... ... ...
2.5.2 Maple step by step solution . . . . . ... ... ... ... ... 311

Internal problem ID [4382]
Internal file name [OUTPUT/3875_Sunday_June_05_2022_11_33_46_AM_38092062/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _exact, _dAlembert]

ez+e:(1_£)yf=_1
)

2.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
9y _ A
Iz 0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

M(z,y) + N(z,y)

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

8_;1/ =N
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But since % = % then for the above to be valid, we require that
Y yox

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘?: gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

<e?5 (1 - g)) dy=(-1-e')dz
(eF +1) dx+(e$ (1 - g)) dy =0 (2A)

Comparing (1A) and (2A) shows that

Therefore

M(z,y) =ev +1
N(z,y)=e§(1—£>

Y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

OM 0/ =
ay ~a Y
zev
:—y2
And
6_N_ﬁ ey 1_£
oxr Oz Y
Tev
=—y2
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

5¢_
o= M @
8(;5_
8_y_N (2)

Integrating (1) w.r.t. z gives

%dx=/de
oz

@dzz/ez—l—ldx
ox

p=yer +z+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

3(;5 . % _ .'L'€§ ,
oy e ” + f'(y) (4)
— _ey(xy_ y) + f/(y)

e (1 _ f) L ) TN (5)

Solving equation (5) for f’'(y) gives
flly)=0

Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=yev +z+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary
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Figure 55: Slope field plot
LambertW <—

Verification of solutions

Verified OK.



2.5.2 Maple step by step solution

Let’s solve
e§+e%<1—§> y =-1

° Highest derivative means the order of the ODE is 1
y/

O Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0
o Compute derivative of lhs
F'(z,y) + (,%F(w,y)) Yy =0

o Evaluate derivatives

y2 Y
o Simplify
x x
zeY zeY

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(w,9) = 5 F ()]
. Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ (e7 +1) do+ fi(y)
° Evaluate integral
F(z,y) =yer +z+ fi(y)
° Take derivative of F'(x,y) with respect toy
N(z,y) = 5.F(z,y)
° Compute derivative
ev (1 - §> —ev — ZZ% + d%fl(y)
o Isolate for % fi(y)
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dh)y=ei(1-2) —eb 42

o Solve for fi(y)
fily) =0

o Substitute f;(y) into equation for F(z,y)
F(z,y) =yes +a

o Substitute F'(z,y) into the solution of the ODE
Y evtr=c

° Solve for y

T

LambertW(— _ZiCI )

y=-

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

Ldsolve((1+exp(x/y(x)))+exp(x/y(x))*(1—x/y(x))*diff(y(x),x)=0,y(x), singsol=a¥})

T

yle) = _La,mbertW <ﬂ>

ciz—1
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v/ Solution by Mathematica
Time used: 1.182 (sec). Leaf size: 34

[DSolve [(1+Exp[x/y [x]1]1)+Exp[x/y [x]]1*(1-x/y [x]) *y' [x]==0,y[x] ,x, IncludeSingular%olutions -> Tr

y(z) — _—Ww(z—iq)
y(z) = _W
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2.6 problem 6
2.6.1 Solvingasexactode . . ... ... ... ... ... ... ... 3141
2.6.2 Maple step by step solution . . . . . . ... ... ... ... .. 317

Internal problem ID [4383]
Internal file name [OUTPUT/3876_Sunday_June_05_2022_11_33_52_AM_65941304/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[[_homogeneous, ~class D], _exact, _rational, _Bernoulli]

e (2 +y> + 2z) +2yey =0

2.6.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

M(z,y) + N(z,y) >= =0 (A)

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

o¢

P M

o¢

3y N
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. 824 _ 829
But since 520y = yos

then for the above to be valid, we require that

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
(2ye”)dy = (—€” (2 +y* + 2z)) dz
(e"(z* + y* +2z)) dz +(2ye*) dy = 0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) =" (2 + y* + 2x)
N(z,y) =2ye”

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON

TR
Using result found above gives

oM 9, ,
By = a—y(e (2 +y* + 22))
=2ye”

And

ON 0

o 5(231‘3 )

=2ye”

Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
=M (1)

8¢
o =V 2)
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Integrating (1) w.r.t. z gives
% dx = / Mdz
or

0¢ -
%dm=/e (:c2—|—y2+2x)dx

¢ = (2 +9°) "+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
8—;5 — 2" + f(y) (4)

But equation (2) says that g—‘z = 2y e”. Therefore equation (4) becomes
2ye” =2ye” + f'(y) (5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fly) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=("+y*) "+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

a=(z"+y?) e

Summary
The solution(s) found are the following

(P +yP) e’ = (1)
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Figure 56: Slope field plot

Verification of solutions

(P+y*) e’ =
Verified OK.

2.6.2 Maple step by step solution

Let’s solve
e®(x® + y? + 2x) + 2y ey =0
° Highest derivative means the order of the ODE is 1

/

Yy
OJ Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

o Compute derivative of lhs

F'(z,y) + (%F(w,y)) y =0
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(¢]

Evaluate derivatives

2ye® =2ye”

Condition met, ODE is exact

Exact ODE implies solution will be of this form
Flo,y) = o1, M(z,9) = F'(2,9), N(2,9) = $F(3,9)|
Solve for F'(z,y) by integrating M (z,y) with respect to z
F(z,y) = [e*(z* + ¥ + 2z) dz + fi(y)
Evaluate integral

F(z,y) = (z* +y*) e" + fi(y)

Take derivative of F'(x,y) with respect toy
N(z,y) = 5, F(z,y)

Compute derivative

2ye” =2ye” + & fi(y)

Isolate for % fi(y)

d%f 1(y) =0

Solve for fi(y)

fily) =0

Substitute f;(y) into equation for F(z,y)
F(z,y) = (2* +y*) "

Substitute F'(z,y) into the solution of the ODE
@+ e =

Solve for y
_ y/—e%(ez2—cq) . —e%(eTz2—cy)
Yy="—g Y=g
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

Ldsolve(exp(x)*(x‘2+y(x)‘2+2*x)+2*y(x)*exp(x)*diff(y(x),x)=0,y(x), singsol=all}

Y(a) = Vo 2
y(z) = —ve%c; — a2

v Solution by Mathematica
Time used: 5.67 (sec). Leaf size: 47

LDSolve[Exp[x]*(x‘2+y[x]‘2+2*x)+2*y[x]*Exp[x]*y'[x]==0,y[x],x,IncludeSingularS#lutions => Tru

y(z) > —v/ -2+ cre®
y(x) > v —22+cre7®
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2.7 problem 7
2.7.1 Solvingasexactode . .. ... ... ... ... ... ... 320
2.7.2 Mabple step by step solution . . . . ... ... 323

Internal problem ID [4384]
Internal file name [OUTPUT/3877_Sunday_June_05_2022_11_33_58_AM_24987842/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 7.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

ncos (nx + my) — msin (mz + ny) + (m cos (nz + my) — nsin (mz + ny))y' =0

2.7.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 04d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

3 =
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. 824 _ 829
But since 520y = yos

then for the above to be valid, we require that

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
aa; gy = aa; a"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(mcos (my + nx) — nsin (mz + ny)) dy = (—n cos (my + na
(—msin (mz + ny) + ncos (my + nz)) dz +(m cos (my + nx) — nsin (mz + ny))dy =0
(24)
Comparing (1A) and (2A) shows that
M (z,y) = —msin (mz + ny) + n cos (my + nx)
N(z,y) = mcos (my + nz) — nsin (mz + ny)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

oM _ 2(—msim (mz + ny) + ncos (my + nzx))
By = By Y Y
= mn(—sin (my + nx) — cos (mz + ny))
And
ON 0 :
B a(m cos (my + nz) — nsin (mz + ny))
= mn(—sin (my + nx) — cos (mz + ny))
Since %i; = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
Y =M 1
5 (1)
o
=N 2
3 (2)
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Integrating (1) w.r.t. z gives

%dx:/de
or

%dx:/—msin (mz + ny) + ncos (my + nz) dx

¢ = cos (mz + ny) + sin (my + nz) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o¢

By = mcos (my + nx) — nsin (mz + ny) + f'(y) (4)

But equation (2) says that g—z = m cos (my + nz) —nsin (mx + ny). Therefore equation
(4) becomes

mcos (my + nx) — nsin (mz + ny) = mcos (my + nz) — nsin (mz +ny) + f'(y) (5)

Solving equation (5) for f’(y) gives
fly)=0
Therefore

fly)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = cos (mzx + ny) + sin (my + nz) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cp constants into new constant c¢; gives the solution as

¢ = cos (mzx + ny) + sin (my + nx)

Summary
The solution(s) found are the following

cos (mz + ny) + sin (nz + my) = ¢ (1)

Verification of solutions

cos (mz + ny) + sin (nz + my) = ¢

Verified OK.
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2.7.2 Maple step by step solution

Let’s solve
n cos (nz + my) — msin (mz + ny) + (m cos (nz + my) — nsin (mz +ny))y’' =0

° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0
o Compute derivative of lhs
F'(z,y) + (%F(x, y)) Y =0
o Evaluate derivatives
—mn sin (my + nz) — nm cos (mz + ny) = —mnsin (my + nz) — nm cos (Mmz + ny)

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
|Fle,y) = e, M(z,) = F'(z,9), N(w,9) = 3 F(z,9)
. Solve for F(z,y) by integrating M (x,y) with respect to x

F(z,y) = [ (—=msin (mz + ny) + ncos (my + nz)) dz + f1(y)
° Evaluate integral

F(z,y) = cos (mz + ny) + sin (my + nz) + f1(y)

o Take derivative of F'(x,y) with respect to y
N(z,y) = £ F(z,y)
° Compute derivative
m cos (my + nz) — nsin (mz + ny) = —nsin (mz + ny) +m cos (my + nz) + £ f1(y)
o Isolate for d% fi(y)
whiw) =0
o Solve for fi(y)
fily) =0
o Substitute fi(y) into equation for F'(z,y)
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F(z,y) = cos (mx + ny) + sin (my + nx)

. Substitute F'(z,y) into the solution of the ODE
cos (mx + ny) + sin (my + nx) = ¢

° Solve for y

—mx+ RootOf (—m21+n21—arcsin (— cos (_Z) +c1 ) n+_Zm)
Y= n

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 43

Ldsolve((n*cos(n*x+m*y(x))-m*sin(m*x+n*y(x)))+(m*cos(n*x+m*y(x))-n*sin(m*x+n*ykx)))*diff(y(x)

—nz + RootOf (2m2x — 2n%z — 2arcsin (sin (_2) + ¢;) m — mw + 2__Zn)
m

y(z) =

v/ Solution by Mathematica
Time used: 0.741 (sec). Leaf size: 50

LDSolve[(n*Cos[n*x+m*y[x]]-m*Sin[m*x+n*y[x]])+(m*Cos[n*x+m*y[x]]-n*Sin[m*x+n*yﬁx]])*y'[x]==0,

Solve[sin(mz) sin(ny(x)) — cos(mz) cos(ny(x)
— sin(nz) cos(my(z)) — cos(nz) sin(my(z)) = c1, y(x)]
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2.8 problem 8.1

2.8.1 Solvingasexactode . . ... ... ... ... ... ... ...
2.8.2 Maple step by step solution . . . . . ... ... 329

Internal problem ID [4385]
Internal file name [OUTPUT/3878_Sunday_June_05_2022_11_34_13_AM_49205020/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 8.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _exact]

/ /

z LW Ly
\/1+x2+y2 \/1+x2+y2 1'2+y2 x2+y2

2.8.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t.  gives

d

Hence 06 06d
Yy _
or + dydr 0
Comparing (A,B) shows that

9¢

or
9¢

oy
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But since % = % then for the above to be valid, we require that
Y yox

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66; g’y = 8‘9; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

X

y T g B B
VR ES SRR A 2+ P+ 1 2?4y

(24)

( N | ) dz + ( Y 2 ) d
2+y2+1 22+ y? Zrp+1 2+y)
Comparing (1A) and (2A) shows that

M(z,y) = z + 7
S/~ T B R

Y i
N(z,y) =

22+l a4y
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM _ ON
oy Oz

Using result found above gives

u_o( 1 v )
Oy  Oy\Vrr+y?+1 a22+y?
Ty 1 2y
7T 5 2 2
(@2+92+1)2 T+Y (2497

2

And

N_o( y e
or Or\/22+y>+1 x2+792

zY 1 N 212
(a2 +y2+1)2  FY (22 +y?)
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

o9
¢ _

Integrating (1) w.r.t. = gives

@dx=/de
ox

99 dr = / v + LA
or ) VP ¥ P+l z2+y?
¢ =+/x%2+y?>+ 1+ arctan <§) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 y T :
= = — + f(y 4
B y T :
- :1:2+y2+1 $2+y2 +f(y)
8¢ _ y

But equation (2) says that . Therefore equation (4) becomes

T
Oy — ai+y2+l  2Hy?

e B ey e e () 5)
24+ P+ 1 2P+ y? 2+ y?+1 2+ y?

Solving equation (5) for f'(y) gives

f'(y) =0
Therefore

fly) =a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

¢ =+/x%+y?>+ 1+ arctan (E) +c
)
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

01:\/x2+y2+1:+anmm1<§>
y

Summary
The solution(s) found are the following

v/ 1+ 22 4+ y? + arctan (g) =c (1)
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Figure 57: Slope field plot

Verification of solutions

v/ 1+ 22 4+ y? + arctan (E> =
)

Verified OK.
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2.8.2 Maple step by step solution

Let’s solve

L L+

/
2 2 2 2 7 = 0
VitaZ+y VitaZ+y

y _ _
2 +y2 $2+y2 -

° Highest derivative means the order of the ODE is 1

!/

Y
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function

F'(z,y) =0
o Compute derivative of lhs
F'(z,y) + ((%F(x, y)) Yy =0

o Evaluate derivatives

Ty 1 2y — _ Ty

1 2x2
5+

- + - = _
@+24)d P @) T @i PP T @)

o Simplify
zy - _I_ 21 — 2y2 == Ty - 2]_ ; _'_ 222 ]
(z2+y241)2  THY (%+y?) (@+y241)3 PP T (@42

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form

Fl@,y) = 1, M(2,9) = F'(z,3), N(2,9) = 5 F(x,)

. Solve for F(z,y) by integrating M (x,y) with respect to

F(a:,y) = f <\/x2—fy2+1 + x2_1:_y2> dr + fl(y)

° Evaluate integral
F(z,y) = Va?+y7 + 1 +arctan (2 ) + f1(y)
o Take derivative of F'(z,y) with respect to y
N(z,y) = & F(z,y)
° Compute derivative

Y _ x _ y _ T d
\/:c2+y2+1 x24y2 \/m2+y2+1 y2<Z—§+1> + dyfl(y)

° Isolate for d% fi(y)
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d _ = T
@fl(y)_ wz+y2+y2(§+1)

o Solve for fi(y)

fily) =0
o Substitute f;(y) into equation for F(z,y)

F(z,y) = V22 + y?> + 1 + arctan (%)
o Substitute F'(z,y) into the solution of the ODE
vz +y?+ 1+ arctan <§> =

° Solve for y

T

y =
tan (RootOf (—_Z— e (_Z) Z+w2-)t;n (_Z) 2 +cl) )

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

differential order: 1; looking for linear symmetries

differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

<- 1st order, canonical coordinates successful"

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 25

Ldsolve( x/sqrt (1+x72+y(x)"2) + y(x)/sqrt(1+x"2+y(x) "2)*diff (y(x),x)+ yx)/(xT2+y(x)"2) - x/

X

y(2)

arctan( >+\/1+x2+y(:c)2—c1=0
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v/ Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 27

[DSolve [ x/Sqrt[1+x~2+y[x]~2] + y[x]/Sqrtl[1+x~2+y[x]~2]*y' [x]+y[x]/(x"2+y[x] ’"2}) - x/(x"2+y[x]

Solve [arctan (ﬁ) + VB2 +y@2+ 1= c,y(@)
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2.9 problem 10
29.1 Solvingasriccatiode. . . . . ... ... L L

Internal problem ID [4386]
Internal file name [OUTPUT/3879_Sunday_June_05_2022_11_34_20_AM_19298257/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 3

Problem number: 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

a—1

"y ayx
by2 — cx2a by2 — cx2a

— _ma—l

2.9.1 Solving as riccati ode
In canonical form the ODE is
y =F(z,y)
= (=by*+cz* +ya) z* 'z "
This is a Riccati ODE. Comparing the ODE to solve

ez "by? N 3" N zr "ya
T x T

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®

Y =

Shows that fo(z) = z"x?z% e, fi(z) = axz® 7™ and fo(x) = —bz® 1z~ Let
v fau
S B 1
—bxro—lr—ny ( )
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou"(€) = (fo + fufo) v/ (z) + f3 fou(z) = 0 (2)
But
f = _bx“‘l(a —1)z™ N bz 1z "n
z x
flf? — _aan—Qx—2nb

f22f0 — b2x3a—3$—3nx2ac
Substituting the above terms back in equation (2) gives

bz Ya—1)z™ bz lz"n

T T

—bz® " (x) — (— — ax2“_2w_2"b> u'(z) + 6?2 P cu(z) =

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x)

= DESol <{_ Y'(z) + _Y(z)(1—a+n—z* ")

X

—be_Y(z) x4“—2"‘2} A Y(x)})

The above shows that

w(z) = a% DESol ({_ yi(z) + =L @)

l1-—a+n—2z""a)
T

—be_Y(z) m4“—2"‘2} A Y(x)})

Using the above in (1) gives the solution

)
<% DESol ({_ Y'(z) + —Y/(x)(l_fn_waina) —bc_Y(z) x4“_2n_2} L Y(x)}>> gt ign

b DESol ({_ Y'(z) + = Y(m)(l_;“r"_za_na) —bc_Y(x) x4a—2"—2} , {_Y(x)})

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution
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)
patntl ((% DESol ({— Y”(CL') n Y@ (1—Z+n_xa*"a) — b Y(:I?) x4a—2n—2} , {_ Y(CL’)}))

x2

—be_ Y(@)zto—2n_qgga—n+l_ Y (z)-z(— Y@ Y (2)(a=1-n
bDESol({ be_ Y(a) +1_Y(@-o(—_YV'@z+_Y(@) (-1 ))}’{_Y(x)})

Summary
The solution(s) found are the following

y (1)
- (8% DESol ({_ Y'(z) + _Y'(z)(l—ZJrn—za—"a) —be_Y(z) x4a—2n—2} A y(@}))

o —be_ Y(z)zto-2n_qga—n+l_ Y (2)-z(— Y'@)e Y (2)(a=1-n
bDESol({ be_ V(o) 1Y @-a(—_ Y (@z+_Y(@)(a1 ))}’{_Y(x)})

x2

Verification of solutions

- (a% DESol ({_ Y'(z) + _Y'(z)(l—ZJrn—xa—"a) —be_Y(z) x4a—2n—2} A y(@}))

—be_ Y(@)zto-2n_qga—n+l Y (z)-z(— Y'@)e Y (2)(a=1-n
bDESOl({ be_ V(o) 1Y @-a(—_ Y (@a+_Y(@)(a-1 ))}’{_Y(x)})

x2

Verified OK.
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Maple trace

s N

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE", diff(diff(y(x), x), x) = (x~(a-1-n)*a*x+a-n-1)*(diff (y(
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in §3gnd y(x)
trying to convert to a linear ODE with constant coefficients

trying 2nd order, integrating factor of the form mu(x,y)

I T T . T . T . D o . Y B .. I 2 N |



X Solution by Maple

Ldsolve( x"n/ (bxy (x) "2-c*x~ (2*%a) ) *diff (y(x) ,x) - a*y(x)*x“(a—1)/(b*y(x)‘2—c*xf}2*a)) + x" (a-1

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve[x‘n/(b*y[x]“2—c*x‘(2*a))*y'[x] - axy[x]*x~(a-1) / (bxy[x] "2-c*x~ (2*a)) fJx“(a—1)==O,y[x

Not solved
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3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Chapter 4

problem 2 .
problem 4 .

problem 5.1
problem 5.2
problem 5.3
problem 5.4
problem 5.4
problem 7.1
problem 7.1
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3.1 problem 2
3.1.1 Solvingasexactode . .. ... ... ... ... ... .. ... 338

Internal problem ID [4387]
Internal file name [OUTPUT/3880_Sunday_June_05_2022_11_34_56_AM_27826988/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_homogeneous, ~class A" ], _rational, _dAlembert]

2zy + (y* —22°)y' =0

3.1.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 0d
Yy _
or + oydr 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

a—y =N
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But since aa g = a a then for the above to be valid, we require that
yox

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’); gy = 5) ;5 is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—2932 + y2) dy = (—2zy)dz
(2zy) dz +(—22% + y*) dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2zy

N(z,y) = —22% + 42

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
2x
By ay( Y)
=2z
And
ON 0
oz 8x( 20 +y )
= —4x

Smce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

OM ON
A= (a—y - %)
1
= 7 yz((%) — (—4x))
6z
222 — 2
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (ON OM
- h(E-%)

ox oy
1
= 2y—x((—4w) — (27))
__3
oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

w= e/ Bdy
= ef _% dy
The result of integrating gives
= e—3ln(y)
1
NG

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

= —(2zy)

And

2
=5 (—22° +9%)
_21.2 + ,y2
= T
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N@=0
dz

2 (224 dy
y? Y3 dz

340



The following equations are now set up to solve for the function ¢(z,y)

0  —
g—JE_M (1)
¢ _w

Integrating (1) w.r.t. z gives
% dx = / M dx
ox

0¢p 2z

2

= % + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

610) 22
. A 4
= 1) ()
But equation (2) says that g—f = # Therefore equation (4) becomes
—2x2 + 92 212
R —F‘Ffl(y) ()
Solving equation (5) for f’(y) gives
1
f'ly) =~
(v) y

Integrating the above w.r.t y gives

frin-{ (3

fly) =In(y) +c
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
72
¢ = E—i—ln(y)—i—cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

2
x
= E‘Hn(y)

The solution becomes

LambertW (—sze_2cl )
y = e 2

+c1

Summary
The solution(s) found are the following

LambertW (—2z2e_2cl )

y = e 2 te (1)
HNNNV /77—~ \ | 1]/
NNVV T/ 77—\ V1177
NNNN 177N\ /77
HANNNNN /77NN |77 77
NNNN\N\ WV /7N 1/ /7777
SSNNNN\N\ VNNV

H>>SNNN\N\ | /~\ [/ /rrrrs
~~~NNN\N\ N\ s
ﬂﬂﬂﬂﬂﬂﬂ ~ S~ P e
y(x) o A»é»»—v)/> <\\ ﬂﬂﬂﬂﬂﬂﬂ
e 27 7 NN NN N e
e AR AR RS S S
WV 77N~ ] N NN
77777 TAN~—/77 1 L NN\
[ ANN=—=~/7{

Figure 58: Slope field plot
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Verification of solutions

LambertW(—2:v2e_2C1 )
y = e 2

+c

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

Ldsolve(2*x*y(x)+(y(x)“2—2*x‘2)*diff(y(x),x)=0,y(x), singsol=all) J

1
= 2 -
y(z) = V2 \/ LambertW (—2c¢;z2) ’

v/ Solution by Mathematica
Time used: 7.214 (sec). Leaf size: 66

LDSolve[2*x*y[x]+(y[x]“2—2*x‘2)*y'[x]== ,y[x],x,IncludeSingularSolutions -> T?#e]

_ z\/iac

VW (—2e-2122)
\/W (—2e~2c112)
y(z) =0

y(z) —

y(z) =
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3.2 problem 4
3.21 Solvingasexactode . . ... ... ... ... ... ... [3441

Internal problem ID [4388]
Internal file name [OUTPUT/3881_Sunday_June_05_2022_11_35_02_AM_61121252/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type’,
class A~]]

3.2.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

8_:1/ =N
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. 824 _ 829
But since 520y = yos

then for the above to be valid, we require that

oM _ ON

0y Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
26 _ 8¢
ox0y ~ OyOx
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

is satisfied. If this condition is not satisfied then this method will not work

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—z+2y)dy = (2z +y)dz
(—2z —y)dz+(—z+2y)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = =2z —y
N(z,y) = —x+2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
T (9 —
3y 8y( Y)
=-1
And
ON 0
—=—(—xz+2
or Ox T+2)
=-1
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o
— =N 2
o )
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Integrating (1) w.r.t. z gives

9¢
%dx:/de
%dr=/—2x—ydx
¢=—z(z+y)+f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
oy~ o ) (4)

But equation (2) says that g—i = —z + 2y. Therefore equation (4) becomes

—z+2y=—z+ f'(y) (5)
Solving equation (5) for f’(y) gives
f'ly) =2y
Integrating the above w.r.t y gives
[rway=[enay
f) =y +a
Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=—-z(z+y)+y’+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

a1 =—z(z+y)+ 9
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.

—z(z+y)+y’=a

AN~ 7 7

T
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Figure 59: Slope field plot

—z(z+y)+y¥=¢

347



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 51

Ldsolve(l/x+1/y(x)*diff(y(x),x)+2*(1/y(x)—1/x*diff(y(x),x))=0,y(x), singsol=a;})

c1r — /br2c? + 4
y(z) = %
o(z) = az + +/5z2ct + 4
B 2c

1

v/ Solution by Mathematica
Time used: 0.46 (sec). Leaf size: 102

‘DSolve[l/x+1/y[x]*y'[x]+2*(1/y[x]—1/x*y'[x] ==0,y[x],x,IncludeSingularSolutio#s -> True]

y(z) = %(az—M)
y(z) = %<x+\/m>
y(z) = %(x— VBV
y(x) — %(\/Bx/ﬁm)
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3.3 problem 5.1
3.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 349

Internal problem ID [4389]
Internal file name [OUTPUT/3882_Sunday_June_05_2022_11_35_08_AM_62087181/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 5.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

zy —y— 22 +y?=0

3.3.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

Y+t +y?
T
Y = w(z,y)

y =

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny -&) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + ay (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

by 4 Y+ V) (bs—a2) (y+vVIZ+9°) as

2 - 2

xr X

[ n2 2
- ! _YEVEEY (zas + yas + a1)
/1-2 _+_y2 $2
Yy
(14 k) (b + ybs + by)

— =0
x

(5E)

Putting the above in normal form gives

3
(2% + y?)? a3 + 2%as — 23b3 + 22%yas + 22ybs + Yas + V22 + y2 xby — V2?2 + Y2 yar + zyb — Y’

=0

Setting the numerator to zero gives

3
— (x2 + y2) 2 a3 — 23ay + x3b3 — 22%yas — 2’ybs — yas (6E)
— Va2 +y2ab + /22 + y?yar — zyb + 9y =0

Simplifying the above gives

3
—(2®+9%)% a3+ (2° +9°) zbs — (2° + ¥°) yas — 2°az — 2’yas — 2’yby (6E)
2 2 2 2 2 2 2 2 —
—zy’bs + (22 + y°) a1 — V22 + y?ab + V2% + y?yar — 2as — zybs =0

Since the PDE has radicals, simplifying gives

—z3ay + 235 — 2%\/22 + y? a3 — 20%yas — 2’yby — /22 + y2 ylas

—ylas — /a2 + y2 wby — zyby + /22 + y?yar1 + yar = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{w,y,\/w2+y2}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x:vl,y=vz,vw2+y2=v3}

The above PDE (6E) now becomes

—’U?ag - 2’0%’02013 — ’U%’U3G;3 — ’Ugag - ’U3’U§CL3 — ’U%’Ugbz (7E)
3 2
+ vibs 4+ v3a; + v3vaa; — v1V2by — v3U1by =0

Collecting the above on the terms v; introduced, and these are
{vla V2, ’03}

Equation (7E) now becomes

3 2 2
(b3 — CLQ) (%1 + (—2(13 — b2) VU2 — VU343 — ’U1’l)2b1 (8E)
3 2 2
— v3v1b; — v5a3 — vsvyas + vyaq + v3vaa; =0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 =0

—a3 =0
-b1=0
—2a3 — by =0
bs —ay =0

Solving the above equations for the unknowns gives

a1 =0
as = b3
a3 =0
by =0
b =0
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-wy)¢

_(y+VEP Y
x
= —\/ 712 + y2

§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

()

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n

The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
= [ ————=d
/—\/:v2+y2 Y

S is found from

Which results in

S=—ln<y+ \/W)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y+ vVl +y?

w(z,y) = -
Evaluating all the partial derivatives gives
R, =1
R, =0
g _ x
VTR V)
1
Sy =—

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds  2(Va?+yly+a®+yP) (24)
dR  zva?+ o (y+ Va2 +7)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
as 2
dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —2In(R) + &1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—1n<y+\/x2+y>=—21n z)+ ¢

Which simplifies to

—ln<y+\/z2+y)——2ln x)+ ¢
Which gives

e—cl (6201 _ 1'2)
2

y=-
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ y+veity® as _ _ 2
de — T dR R
R R mrm A A A2 VN NN N e
RO VRV Vs U A A A A A A A mm A m A2 7 P VN N N e
NYNNNN NVttt Rt mmm A A2 AN N N e e
NYNNNNNV Lt mrm A A2 P VN N N e
\\\\\\ﬁﬁ&l??fffffff/ B PYY) AT B S S SV EN
\\\\\\Xxxif?ffff/f// PSSy f;&\\\\\\\\\
NNNNNNNNVNYE A AL el A A & AN R R
NNNNNNYNNNY TP AAA AR S bt A NN
ARARRRRRRR R IR R=zx w2 2P VN NN N e
NNNNNNNNNNAAAASA A A2 P NN N M e
SN SSNSNSW A A S F A A 5 — /v/_/';'l/'/’/_'/j/‘/; H E\\Q\\\&,\\
NN NN NN NN a—f ¥ T T T T 7 AT A — — A/ P P NN NP S Saata
\\\\\\\\\s»»»///x;//// S In (y +Vz+y > PP POV N IR \\R\\\a\\
D o R ) P O ////////L%&\\\\\\\\\
NN NN NN v T T T T ¥ T A /v/v/v/v////f ; \\\\\\\\\
N bt __7 = 7 _7 mmm A A2 AL VN N e
NIRRT mmrm A2 N N R e
N A —s—a s> v v v v ¥ ¥ mmm A A2 AN N N N e
NN A SA A —A bbb > T_T_T_T_T_T_T B OO B A R e
NN B —b BB b P T T _T_T_T mmm AR AAL SN VN N N N
Summary

The solution(s) found are the following

e—cl (e261 _ x2)
2

y=-
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Figure 60: Slope field plot

Verification of solutions

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

Ldsolve (x*diff (y(x),x)-y(x)=sqrt(x~2+y(x)~2),y(x), singsol=all) J

—c1z? + /22 +y () + y(z)

xr2

v/ Solution by Mathematica
Time used: 0.336 (sec). Leaf size: 27

kDSolve [x*y' [x]-y[x]==Sqrt [x~2+y[x]~2],y[x],x,IncludeSingularSolutions -> True}]

y(x) — %e_‘” (—1 + e2°1:L'2)
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3.4 problem 5.2
3.4.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 357
3.4.2 Solving as first order ode lie symmetry calculated ode . . . . . . 359

Internal problem ID [4390]
Internal file name [OUTPUT/3883_Sunday_June_05_2022_11_35_18_AM_24872058/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 5.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A], _rational, [_Abel, “2nd type,
class A°]]

8y + (by + Tz)y = —10z

3.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) « on the above ode results in new ode in u(z)
8u(z) z + (bu(z) z + 7z) (uv'(z)  + u(z)) = —10z

In canonical form the ODE is

v = F(z,u)

= f(z)g(u)

_ 5w +3u+2)

B z (5u+7)

Where f(z) = —2 and g(u) = “Z%f;’z Integrating both sides gives
1 )
iy W= dT
Su+T7
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Raising both side to exponential gives
)

Which simplifies to
Therefore the solution y is

(1)

Z+ 81'5 — 63)

ST 7 7
TSI ]
VO PPN NA
SIS SIS S S ] N—L
SIS [~
S ] |~
SIS N |
SIS m S
SIS ST
P
PO PP Oy rooodal
PP
ST ST
P VPP rrrrrrorea
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The solution(s) found are the following
Y

Summary
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Figure 61: Slope field plot
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Verification of solutions

y = RootOf (_Z5 +8z 7'+ 2522 72 +38x% 72+ 28z* Z+8z° — 03)
Verified OK.

3.4.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,_ 2(4y+5a)
- by+4Tx
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Mo +w(ny — &) — W2€y —wz —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zas +yaz + a; (1E)

n = xbs +ybs + by (2E)

Where the unknown coeflicients are

{al, as, as, by, by, b3}

Substituting equations (1E,2E) and w into (A) gives

2(4y +57) (bs —a2)  4(4y + 5z)% a
5y + Tz (5y + 7z)?
B (_ 10 56y + 70z
Sy +Tx  (5y+ Tx)’
( 8 40y + 50z
— — + 3
S5y+T7r  (5y+ Tx)

by —

(5E)

) (a2 + yas + a1)

> (.’L‘bz +yb3 + bl) =0

Putting the above in normal form gives

70z2ay — 100z2as + 55x2by — 70x2bs + 100xyay — 160zyas + 70zybs — 100zybs + 40y2as — 70y%as + 251
(5y + 7z)?

=0
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Setting the numerator to zero gives

70z2ay — 1002%a3 + 55x2by — 702%bs + 100zyay — 160zyas + T0xyb, (6E)
— 100zybs + 40y%ays — 70yas + 25y2by — 40y>bs + 62b; — 6ya; = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

7Oa21)f + 100asv1v9 + 40a2v§ — 100a3vf — 160asvv9 — 70a3v§ + 55b2v% (7E)
+ 7Ob2’01’02 + 25()2’0% — 7063’0% — 100b31)1?)2 — 40b3’U§ — 60/1’02 + 6b11)1 =0

Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(70as — 100as + 55by — 70b3) v2 + (100as — 160as + 70by — 100b3) viv,  (8E)
+ 6b1’l}1 + (40@2 — 7Oa3 + 25b2 — 40b3) ’U% - 6a1v2 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—6a; =0

6b; =0

40ay — 70a3 + 25by — 40b3 = 0
70ay — 100a3 + 55by — 70b3 = 0
100ae — 160as + 70by — 100bs = 0
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Solving the above equations for the unknowns gives

a; =0

as = 3as + b3
az = as
by=0

by = —2a3
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

=y—<—%%iéﬁ>®)

oy + Tx
_ 102? + 15zy + 5y°
N 5y + Tz
£E=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n
The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

ds (1)

S is found from

= / 1022+ 152y +5y2 dy
S5y+Tz

361



Which results in
2In(z+y)  3In(2z+y)
T 5 T s

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S

@ _ Spt+w(z,y)S,
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(2)

2(4y + 5z)
w(z,y) = T syt 7z
Evaluating all the partial derivatives gives

R,=1
R,=0
2$+Sgy

(z+y) 2z +y)
oy + Tz

YT 5(z+y) (2T +y)

r =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

R
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2ln(z+y) 3In(2z+y)
) + )

:Cl
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dz

Original ode in z,y coordinates
dy

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Which simplifies to

A A A A
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3ln (2z + y)
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The solution(s) found are the following

Summary
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Figure 62: Slope field plot

Verification of solutions

:Cl

3In (22 +y)
)

2In(z+y)
)

Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.187 (sec). Leaf size: 38

dsolve ((8xy(x)+10%x)+(5*y (x)+7*x) *diff (y(x),x)=0,y(x), singsol=all)

N J

y(z) = x(RootOf (_Z2501x5 —2 72’ +_7%cia’ — 1)5 — 2)

v/ Solution by Mathematica
Time used: 2.162 (sec). Leaf size: 276

DSolve [ (8*y [x]+10%x)+(5*y [x]+7*x)*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

N\ J

y(z) — Root [#1° + 841%z + 254 1°3% + 38#1%2> + 284 12" + 82° — e &, 1]
y(z) — Root [#1° + 841%z + 254 1%z + 38#1%2> + 284 12" + 82° — e &, 2]
y(x) — Root [#15 + 8#1%z + 2541322 + 384122 + 284-1z* + 82° — 1 &, 3]
y(z) — Root [#1° + 84 1%z + 254 1%z + 38#1%2> + 284 12" + 82° — e &, 4]
y(x) — Root [#15 + 8#1%z + 2541322 + 384122 + 284-1z* + 82° — &, 5]
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3.5 problem 5.3

3.5.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 366]
3.5.2 Solving as first order ode lie symmetry calculated ode . . . . . . 368]

Internal problem ID [4391]
Internal file name [OUTPUT/3884_Sunday_June_05_2022_11_35_28_AM_14982222/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 5.3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

2¢y —y* + (v + 22y — 2°) y = —2?

3.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
2x%u(z) — u(z)® 2% + (u(az)2 z* + 20°u(z) — 2°) (v (z) z + u(z)) = —2°

In canonical form the ODE is

v = F(z,u)
= f(z)g(u)
(u+1) (v +1)
z(u?+2u—1)
Where f(z) = —1 and g(u) = % Integrating both sides gives
1 1
ey = T dz
u2+2u—1
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1 1
/(u+1)(u2+1) du=/—5dx

uZ+2u—1

—In(u+1)+In(v’+1)=-In(z) +c

Raising both side to exponential gives

e In(u+1)+1In(u2+1) —e" In(z)+c2

Which simplifies to

w+1 ¢
u+1l =z
The solution is
wz)?+1 ¢

u(z)+1 =

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

&H+1 _c
L1
?+y*
z(z+y)
Which simplifies to
22 + ¢
= 03
r+y
Summary
The solution(s) found are the following
22 4+ 4
=c3
T+y
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Figure 63: Slope field plot

Verification of solutions

o +y°
r+y

Verified OK.

3.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

, —x? —2zy+ 9P
v= —z2 4 2zy + y?
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - fx) - w2€y - wx€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(—2* —2zy +9°) (b3 —az) (=2° —2zy+ %)’ as

bt —z2 + 27y + 92 (—22 + 22y + y2)?
B ( 20 -2y (=2’ —2zy+y°) (=2 + 2y)> (203 + yas + @) (5E)
—z2 4 2J:y+y2 (—xz + 2xy+y2)2 2 T Yas 1
_< -2z + 2y _(—x2—2xy+y2)(2y+2x)>(wb+ by + by) = 0
—z2 + 2zy + 32 (—22 +2xy+y2)2 2 TYo3 T 01

Putting the above in normal form gives

ztag + ztas + 3x*by — xbs — 423yay + 4x3yas + 4adyby + 4xybs — 622y2as — 22%y%as + 22°yby + 62
(22

=0
Setting the numerator to zero gives

—ztay — 2tas — 3x*by 4+ b3 + 4x3ya, — 4xyas — 4xdyby — 4aPybs + 62°y2a, (6E)
+ 22%9%a3 — 22%y%by — 622y%bs + 4z y3ay + 4z yPas + 4z y3by — 4z y3bs
— ytas + 3ytas + yiby + yibs — 423b; + 42yar — 4z y?by + 4yPa; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them
{z =v1,y =9}

The above PDE (6E) now becomes

—azvjL + 4a2v:fv2 + 6a2va§ + 4a2v1v§’ — a2v§ — agvjl — 4a3v:13v2 + 2a3va§ (7E)
+ 4a3v103 + 3a3vy — 3bovt — 4bovdvy — 2bov302 + 4byv1v3 4 bov + bav}
— 4b3v3vy — 6b3vPv3 — 4bsv1 V3 + b3vy +4ayvivy +4ayvs — 4byv? — 4bjviv3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(—(Lz — asz — 3b2 + b3) ’U;L + (4&2 - 4(13 - 4b2 - 4b3) ’U?’Ug — 4b1’Ui’

+ (6@2 + 2(13 - 2b2 - 6b3) U%’Ug + 4a1v%v2 + (40,2 + 4(13 + 4b2 — 4b3) ’Ul’l)g

— 4byv1v3 + (—ag + 3az + by + b3) vy + 4a,vs =0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a;1 =0

—4b; =0

—ag —az —3by +b3=0
—as+3a3+by+b3=0
4as — 4az — 4by — 4b3 =0
4a9 + 4az + 4by — 4b3 =0
6as + 2a3 — 2by — 6b3 = 0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

(8E)

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for

any unknown in the RHS) gives

E=x
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-wy)¢
—z% — 22y + 92

=Y - ) 2 (.I)

¢+ 2xy+y

-yt -y —y

3

x?2 — 2zy — y?
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S = /—dy
n
1
/_xs_yxz_y%_yady

z2—2zy—y?

S is found from

Which results in
S=-In(z+y)+n(z*+y°)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sz +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—z2 — 2zy + 2

—22 4+ 2zy + 2

w(x?y) =
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Evaluating all the partial derivatives gives

R, =1
R,=0
_ 1 n 2x
T 1'_|_y 1.2_|_y2
1 2
S, = Y

Tty Ty y?
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s

E—O

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In(z+y)+In(2*+ %) =a
Which simplifies to

—In(z+y)+In (2> +¢°) =a
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, 9)

—z2—2zy+9y> as _ 0
T —z242zy+y? dR

A 7 r—e—s~a~a N\
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N7 7——a~~aN N\ N\ 4
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Summary
The solution(s) found are the following

—In(z+y)+In(z®+y*) =a (1)
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Verification of solutions
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Figure 64: Slope field plot

—In(z+y)+In(z*+y*) =a

Verified OK.
Maple trace

"Methods for first order ODEs:
-—- Trying classification methods ---

trying a quadrature

trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D

<- homogeneous successful
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 55

Ldsolve((x“2+2*x*y(x)-y(x)“2)+(y(x)‘2+2*x*y(x)—x‘2)*diff(y(x),x)=0,y(x), singsol=all)

1—+/—422c} +4ciz + 1

y(z) = 2!
1+ \/—422¢ + 4cix + 1
y(z) = %!

v/ Solution by Mathematica
Time used: 1.304 (sec). Leaf size: 75

tDSolve[(x‘2+2*x*y[x]—y[x]‘2)+(y[x]“2+2*x*y[x]-x‘2)*y'[x]==0,y[x],x,IncludeSin larSolutions

1
y(z) — 3 (ecl — v/ —422 + decrz + 6201)

1
y(z) — 3 (\/—4.752 + decrx + e 4 ecl>
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3.6 problem 5.4

3.6.1 Solving as homogeneousTypeD2ode . ... .. ... ......
3.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 378

Internal problem ID [4392]
Internal file name [OUTPUT/3885_Sunday_June_05_2022_11_35_41_AM_43678614/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 5.4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A], _rational, [_Abel, “2nd type,
class B"]11]

v+ (zy+2°)y =0

3.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
w(z)?2? + (zu(z) + 7%) (W'(z) = + u(z)) = 0
In canonical form the ODE is

v = F(z,u)
= f(z)g(w)
2u® +u
Cz(u+1)

Where f(z) = —1 and g(u) = 222% Integrating both sides gives

1

2u2+u

1
du=——dz
u+1 z
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1 1

u+1

In(2u+1)

In (u) — 5

=—In(z)+c

Raising both side to exponential gives

In(2u+1
eln(u)—% —e" In(z)+c2

Which simplifies to

The solution is

Yy _ %
Zy/ 2m—y +1 Z
Yy _ %
2y+zx T T
Which simplifies to
Y _g
2y+z
Summary
The solution(s) found are the following
L _g (1)

2y+zx

H
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Figure 65: Slope field plot

Verification of solutions

C3

[\V]
&

Verified OK.

3.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as
2

R
z(z+y)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2§y - wx§ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala az, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

_y2(bg—a2) _ ytas B y? y? . e
z(z+y) wQ(z"‘y)z (x2(x+y)+x(x+y)2)( 2+ yas+a) (5E)

_<_ R )(xb+b+b)—0
z(z+y) x(x—l—y)2 27T Y0 =

Putting the above in normal form gives

x2by + 423yby — 2%y%as + 222y2by + 22?3 — 2z y3as — 2yas + 22%yby — 22z y2a, + v y?b — yias
2% (z +y)°

=0
Setting the numerator to zero gives

ztby + 423yby — 22y2as + 22%yby + 22y%bs — 2z y3as (6E)
— 2tas + 22%yb; — 2z y2a1 + z y?by — yPa; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v,y = v}

The above PDE (6E) now becomes

—agvivs — 2a3v,05 — 2a3vy + bavy + 4bgvivg + 2bov3 V3 (7E)

+ bgvag — 2a1v1v§ — alvé3 + 2b1va2 + blvlvg =0

Collecting the above on the terms v; introduced, and these are

{vl’ 1)2}
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Equation (7E) now becomes

bavt + 4bavivg + (—ag + 2by + b3) viv3 + 2b1v3vy (8E)
— 2a3v105 + (—2a; + b)) v1v5 — 2a3v5 — a,v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b, =0

—a; =0
—2a3 =0

2b; =0

4by =0
—2a;+b; =0

—a2+2b2+b3=0

Solving the above equations for the unknowns gives

a; =0
as = b3
a3 =0
by =0
b, =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-—uw(y)é
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

5= [Lay
n
_ 1

- / Ty+2y2 dy

z+y

S is found from

Which results in
In (2y + z)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

§=1n(y) -

ﬁ — Sx +w(a:,y)Sy (2)
dR R, + w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y2

w(z,y) = —m

Evaluating all the partial derivatives gives

R, =1
R,=0

1
_4y+2x
Tty
T yQy+a)

x:
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as 1
dR 2
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
as 1
dR~ 2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

(24)

In (R
sy = -0 4, (@

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In (2 1

2 2

Which simplifies to

In (2 1

In(y) — w = - n;x) +c

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )

.. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ 2 as 1
dz z(z+y) dR 2R
N I S O T T I O N T e 7 A\ N~

I A A A A A A R N oo v v v 7 f|\ amam—a—a—b— s
\0 ; T f f f f f ?‘FL \1\\\\\\\\ »»»»»» /'/V/v;‘\\\a\&‘\&‘bhb““““
\\§¥?;ff;;i§§\\\\\\\ »»»»» )»//;E\\\B‘ wwwww
N\ N S e a—a o> ~ & A A A —h
~NN\ Y ‘Tyi'«; f $ LA\ NN amwm——— | e e e e s SI @// \ e e e e —a—p—b——n
e B o R o S S S I o 7 9"\ N A A b bbb
———s—~a | f f x\\\s »»»»» S 1 (S e e 7 A\ a e —a——s
ﬂﬂﬂﬂﬂﬂ ~ N\ 7; \ e s> =2 »4»»»»/»/; 2\\,\»\»“%%»
——s ~N\———B—B—B——B——> | e D — v v 7 e e e
SO St N SR, | In(2y+4) oo A Ee i
ﬂﬂﬂﬂﬂ T S=h(y) - ST e
——p—a—a—aaa N \_%]‘ ot b Y N e 44»»»»»//_54\ NN A A bbb
——s—s—saa N\ )\ f tt f \l, VNSNS e e w7 A\ N a—e e
e e VO VR W W I S A Y NN (0 e e —wr 7 AN N
~sssseaA Bt Rrr e TNy L e o fN e
RN " " N VR R b A A A N S R N > o 7 2 fI\ a e m—e—e—e—— —
O O 1 I R e AN e
S N A N T T T T S N S A N
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(1)

Summary
The solution(s) found are the following

77111111 1117 7=
AR EEE R RN e
AR AR EEEE RNy
FIIIII I 7 ———
AR R R RN .
777711 [ 7= —————1
77 7 ] 7 —————|
-7 7] \ 7 oe—c—c—c——~——
—_——— 7 ] \ /////////
ttttttt \1\\ ——_r——————
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Figure 66: Slope field plot
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Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

Ldsolve(y(x)“2+(x*y(x)+x‘2)*diff(y(x),x)=0,y(x), singsol=all) J

++Ver?+1

1
y(z) = e

1—\/611132+1

1T

y(z) =

v/ Solution by Mathematica
Time used: 2.31 (sec). Leaf size: 80

-

N
LDSolve[y[x]*2+(x*y[x]+x‘2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True] J

6201 _ \/6201 (1172 + 6201)

y(z) — .

y(a) o V@ F ) et
X

y(z) =0
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3.7 problem 5.4
3.7.1 Solvingasexactode . ... ... ... .. ... ... ... 385

Internal problem ID [4393]
Internal file name [OUTPUT/3886_Sunday_June_05_2022_11_35_49_AM_26170709/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 5.4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

(reon(2) s (2)) -+ (o (2) =i (4) v =

3.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) B =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

3 =

385



But since aa g = a a then for the above to be valid, we require that
yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6'9; g’y = 86 gs is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

((rso(2) = (2)) ) = (-l (2) v (2)))

(y(xcos (y) + ysin (i))) dx+(<xcos (%) — ysin (%)) x) dy=0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) = y(xcos <y> + ysin (i))

N(z,y) = (mcos (%) — ysin <%>> x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

2 (2 +sen(2)

(z® + y?) cos () +sin (¥) zy

And
e = g ((zeos (4) —wsin (1)) )
_cos (¥) (227 + ¢?)

T
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Sl (8M 6N)

~ N\dy Oz

= (zcos (%) —1ysin (%)) . ((xCOS (%) + ysin (%) + ijﬂ) — <<cos (%) + ySﬂ;(%) 4+

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor yu is

)= el Ads
_ ot
The result of integrating gives
)
_1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

L feom () v (2)
_ y(zcos (¥) +ysin (1))

(e (2)-ven (1)
ox(2) ()

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N3—z =0
y(@eos (3) +ysin (7)) Yy _ o (U))
( - b (meos (2) —ysin (1)) & =0
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The following equations are now set up to solve for the function ¢(z,y)

9¢

g—x =M (1)
6
- N (2)
Integrating (1) w.r.t. = gives

0p . [—

3 dx = /de

0¢ . [y(wcos (%) +ysin(}))

3z dx = / - dx

¢ =yeos () + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—i = T COS (%) — ysin (g) + f'(y) (4)

T

But equation (2) says that g—‘f; =z cos (£) — ysin (¥). Therefore equation (4) becomes

x cos (%) — ysin <%> = I COS (%) — ysin (%) + f'(y) (5)
Solving equation (5) for f’'(y) gives
flly)=0
Therefore
fly) =a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

¢ = ycos <%>x+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1 = Y Ccos (Q) x
x
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1)

(z)ve=
cos (= )yz =c
x
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The solution(s) found are the following

Summary

T T T T
on N — )

X
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Figure 67: Slope field plot
cos (%) Yyr =c;

Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.062 (sec). Leaf size: 18

[dsolve((x*cos(y(x)/x)+y(x)*sin(y(x)/x))*y(x)+(x*cos(y(x)/x)—y(x)*sin(y(x)/x)i}x*diff(y(x),x)

y(z) = zRootOf (_Zcos (_2)z° — c1)

v Solution by Mathematica
Time used: 0.347 (sec). Leaf size: 31

LDSolve[(x*Cos[y[x]/x]+y[x]*Sin[y[x]/x])*y[x]+(x*Cos[y[x]/x]—y[x]*Sin[y[x]/x])#x*y'[x]==0,y[x

e o (1) g (o (422)) =215+ )
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3.8 problem 7.1
3.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3911
3.8.2 Solvingasexactode . ... .. ... ... ... ... ... ... 396

Internal problem ID [4394]
Internal file name [OUTPUT/3887_Sunday_June_05_2022_11_35_57_AM_27411867/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 7.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rational, [_Abel, “2nd type,
class B"]11]

(Y’ +zy)y+ (P2 — 1) 2y’ =0

3.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as
J = — Yy
zy—1

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + o (1E)
1 = xby + ybs + by (2E)
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Where the unknown coeflicients are

{a'la aq, as, bl) b2, b3}

Substituting equations (1E,2E) and w into (A) gives

y%(bs — ay) B yias B y3(zaz + yas + a;)
-1 (ay—1) (zy — 1)° (5E)

2y s >
— (- + Ty + ybs + by) = 0
( 2y —1 (xy_l)Q (zbs + ybs + b1)

by —

Putting the above in normal form gives

2229%by — 2ytas + x y?b; — yPa; — dxyby — y?as — y?bz — 2yby + by

: =0
(zy — 1)

Setting the numerator to zero gives
22%1%by — 2ytas + T y?by — yPa; — dwyby — y?ay — y?bs —2yby + b, =0  (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =2}
The above PDE (6E) now becomes
—2a3v;5 + 2020202 — a V5 4 biv1vs — agvs — 4byv1vy — bavi — 2b1vy + by =0 (TE)
Collecting the above on the terms v; introduced, and these are
{vi, v2}
Equation (7E) now becomes

2b2’l)%’l}% + blvlvg — 4b2’01’02 - 2(1,31};L - alvg’ + (—a2 - b3) ’U% - 2b1U2 + b2 =0 (SE)
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Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

by =0

—a1 =0
—2a3 =0
—2b; =0
—4by =0
2by =0
—ay—b3=0

Solving the above equations for the unknowns gives

a; =0
as = —bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=z
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

o ()i

Y
zy —1

£=0

The next step is to determine the canonical coordinates R, .S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =18 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx
S is found from
5= [ La
n
1
= / W
zy—1

Which results in
S§=—-zy+In(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2

_ Y
Evaluating all the partial derivatives gives
R,=1
R,=0

Sw =Y

1

Sy=—c+—

! y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

=0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—zy+In(y) =a
Which simplifies to

—zy+In(y) =c
Which gives
y = ¢~ LambertW(—zet)+e;
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . )
.. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

dy _ _ ¢ a5 _
dr —  zy-1 dR —

A7 7220 HE LV VYN NN NN
AZZ27272 70 HE VYV VNN NN N
AAZZZ27 P LV VN N NN N 4
///////f;;;iit\\\\\\
AAAAAS NN N N NN .
/v/////}éff £V N N N e S(R]
O 4 NN RO N 2
»»»»/ﬂ////f$x\\\\\x\
iiiﬁiiiiiiiiilil)’?:: R==x
B T S s i 7
—w—wwaN\| AT —
-~~~ NN ) {7 /‘//"/"/Vx/‘?»/v/v/» S .'L'y+].n (y)
S~ NN\ Y L%f/"//"/’/'///v/v S—
SN A e
~NNaNNNNNNY NP A S A
SNSNNSNNNNNV PP Ao
SNMNNNNNNN WP PP -
SNSNNNNNNNAV AN
SNNNNNNN NP r A
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Summary
The solution(s) found are the following

y = e—LambertW(—acecl)—i-cl (1)
N7 7777 7000V
777777770010V VNN
77777777701V NNNN
o777 7777 7011 F VYV VNNNN
sz 7777 77110V NNNN
s 777 7 111V NN
- 77 7 VAN NN
e 27 7 7NN
y(x) o
~\\ |/ s~ -
~SSs\N\\\\ /s
— 17 ~NN\N\\\\\\1/ /77
SNSNNN\N\\N\\N\ V11
NNN\N\\\N\N\NVV 1
“2INN\\\\\N\N\V1171 77777
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—3 -2 0 1 2 3

Figure 68: Slope field plot

Verification of solutions

y=e" LambertW(—z e°1)+c1

Verified OK.

3.8.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
dz
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

M(z,y) + N(z,y) o= =0 (A)

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

((y’2* —1)z)dy = (—(y*2* + zy) y) dz
((v°2* + 2y) y) dz +((y*2" - 1) 2) dy = 0 (24)

Comparing (1A) and (2A) shows that

M(z,y) = (y*2” + zy) y
N(z,y) = (y*z° - 1)z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
E i a—y((y2x2 +zy) y)
= 3y%z? + 2xy
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And

ON 0
5 = 5g (W —1)7)

= 3y’z® — 1

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] (aM 8N)

- N Oy or
1
= 5 (u2* +2)y + 40 +ay) — (372 1)
_ 2zy+1
- Y23 — o

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

p_ L(oN _ou
- M\ oz Oy
1
= m((&vfﬁ — 1) — ((2ym2 +:c) y—l—y2x2 —}-xy))
—2zy — 1

zy? (zy +1)

Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

ON _ oM
or Ay
R=—"— =7
M — yN

R is now checked to see if it is a function of only ¢ = xy. Therefore

ON _ oM
_ Oz Oy
M —yN

_ By2® —1) — ((2y2® + 2) y + y*2° + 2y
z ((y?2? + zy)y) —y ((y?2? — 1) 7)
—2zy —1
zy (zy + 1)

Replacing all powers of terms zy by t gives

—2t—1
t(t+1)
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Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be u then

p=e JRadt
o (i)
The result of integrating gives
[ = e~ n(t(E+D)
_ 1
Ct(t+1)
Now t is replaced back with zy giving
. 1
h= zy (zy + 1)

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N
M = puM
1

oy Y

And

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M+N%=O
dzx

i+ () a0

The following equations are now set up to solve for the function ¢(z,y)

0 _
5§=M (1)
0  —
9= ()
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Integrating (1) w.r.t. z gives

0¢ Iy
%dz—/de

%dw = /ydx
¢=zy+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

o /
a—y—$+f(?/) (4)

But equation (2) says that g—ﬁ = xyy_l. Therefore equation (4) becomes

W=l _ ot r) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives
, 1
ffly)dy= [ (—=)dy
Yy
fly)=-In(y) +a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=zy—In(y)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cp constants into new constant c¢; gives the solution as

c =zy —In(y)
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The solution becomes

y=e

Summary
The solution(s) found are the following

y=e

— LambertW(—w e”°1 ) —c

— LambertW(—z e 1 ) —c1
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Figure 69: Slope field plot

Verification of solutions

y=e

Verified OK.

— LambertW(—w e~ °1 ) —c
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful"

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 25

Ldsolve((x‘Z*y(x) ~2+xxy (x) ) ¥y (x) +(x~2%y (x) "2-1) *x*diff (y(x) ,x)=0,y(x), singsolj=a11)

1
y(r) = Tz

LambertW (—z e
y(z) = — ( )

T

v/ Solution by Mathematica
Time used: 2.043 (sec). Leaf size: 43

LDSolve[(x‘Z*y[x]‘2+x*y[x])*y[x]+(x‘2*y[x]‘2—1)*x*y'[x]==0,y[x],x,IncludeSing?}arSolutions =>

y(z) — —%
y(z) =0 .
y(z) — 7
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3.9 problem 7.1
3.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 403]
3.9.2 Solvingasexactode . .. ... ... ... ... ... ... ... 409

Internal problem ID [4395]
Internal file name [OUTPUT/3888_Sunday_June_05_2022_11_36_05_AM_89436757/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 4

Problem number: 7.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rationall

(x3y3 +y22® +xy + 1) Y+ (ac3y3 —yr? —xy + 1) zy =0

3.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y = WPty
z (y2z? — 2zy + 1)
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €x) - w2€y —wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

@2+ Dyl —a) (Y2 + 1)* y2as

2 (y?2% —2xy +1) 22 (y222 — 2zy + 1)°
2y° (Y’ +1)y
B <_y2x2 —2zy+1  2?(y?x? — 22y +1) (5E)
2,2 2 2
L W+ 1) y(2y x—zy)> (23 + yaz + ay) — (_ _ 2y°z
z (y?z? — 2zy + 1) y2x2 — 2ry + 1
y’r? +1 (y?*z* + 1) y(2y z* — 2z)

B xby + ybs + b)) =0
a:(y2x2_2;cy+1) w(y2x2—2xy+1)2 )( 2 T Y03 1)

Putting the above in normal form gives

225y*by — 22*98as + 2Oy*h, — xtyPa; — 82%y3by — 2xtytay — 22tytbs — 4xty3hy + Sxty?by — 42%ytas + 2
(y2? — 2zy +

=0

Setting the numerator to zero gives

22%9%by — 22%ybas + 2Pytby — ztyPar — 82°y3b, — 2ztytay — 22y s (6E)
— 4zty3by + 8xty?by — 42?yas + 223y2b, — 22%y3ar — 4x3yby + 22°y2as
+ 222y%bs + 4z y3as + 4z yPar + 20,2 — 2y%as + by —ya; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z=v,y =02}

The above PDE (6E) now becomes
—2a30705 + 2620505 — a1v Vs + bivdvs — 2a9v v — 8byvius — 2bsutvy 7E)

— 4b1vivd — dazvivy 4 8byvivi — 20,0303 + 261302 4 2a20°v2 + dasv v
— 4b221§’v2 + 2b3va§ + 4a1vlv§ — 2a3v§ + 2b2v% —a1v9 +bjv; =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

20,0505 + b1vPvs — 8byvivs — 2a3v7vS — a1vivl 4 (—2ag — 2b3) vivs (SE)
— 4byv}v3 + 8byuiva + 2b1v3vE — dbyviuy — 4azvivy — 2a1vivs
+ (2ay + 2b3) viv2 + 2by0? + 4azvivs + 4aiv1v3 + bivy — 20303 — a1va =0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

—2a1 =0
—a; =0

4a; =0

—4a3 =0
—2a3=0

4a3 =0

—4b; =0

20 =0

—8b, =0
—4by =0

260 =0

8by =0

—2a9 —2b3 =0
2a9 +2b5 =0

Solving the above equations for the unknowns gives

a; =0
az = —b3
a3 =0
by =0
b, =0
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=3
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=1n-wzy)
vz + 1)y
v~ ()
2y%x
y2x? —2xy + 1
£E=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S:/ldy
n
1
=/ 2y2x dy

T 222 —2zy+1

S is found from

Which results in
1

_ % =
S = +ln(y)+2yx

2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

@+ 1)y
z (y2z? — 2zy + 1)

w(x’ y) =

Evaluating all the partial derivatives gives

R, =1
R,=0
szﬂ
2y x?
—1)?
g, = @y =-1"

2y%x
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS
B 2A
iR =" (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
>~ -0
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = @)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—y’2? +2In(y)zy+1 .
2zy -
Which simplifies to

—y*® +2In(y)zy+1
2zy N

(&1
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
ay _ ey s _ g
dz —  z(y?z2-2zy+1) dR —
AZZZ272 8PPV VNN NN
AAZ727272 7 8P HE LV VNN NN N
AAZZZ272 P ALV VNN NN Y 4
NS
AFAAAS NN -
phsteletels )Ny N Y S(R]
www e mm 22 A2 N N e 23
»»»»»» e AL LN R=z
eSS feee == 22 '
~ e — 5> —p——> — = =
DA I S S _"yz +2In (y) 2y | : z Pt
S S e A R B B I e e 2xy
~NNNMNN Y Y L%f AAAT A T v -
SN NNNNV VP A s
SNNNNNNNV WP A A A A
SMNNNNNN VAP
NNNNNNNV P 4
NNNNNNNV VWA A
SNNNNNNNVEV W RS
Summary
The solution(s) found are the following
2,2
—y‘z°+2In(y)zy + 1
y Wezy+1_ 0

2zy
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Figure 70: Slope field plot

Verification of solutions

—y’2? +2In(y)zy+1
2zy

C1
Verified OK.

3.9.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,9) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 96 06d
Yy _
or  Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(v’ —y’2® —zy+ 1) z)dy = (—y(¥*’2° + y’2* + 2y + 1)) dz
(y(v°2® + y*2® + oy + 1)) de+((y°2° —y*2® —zy + 1) z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = y(y’z® + y*2° + oy + 1)
N(z,y) = (¢’ —y’z’ —zy+ 1)z
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
T
Using result found above gives
oM 0
by oy
= 4932 + 3y°2% + 22y + 1

(y(v°z® + ¢’z + zy + 1))

And
ON 0
9 Oz
= 49323 — 3%z — 2y + 1

((y3z3 —yiz? —zy + 1) x)
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
1 <8M ON )

N

Oy ox
1 3,3 | .22 2,3 2 2,3 2 3
= yvr'+y ' +ry+1+y3yz° + 2y +x)) — ((32°y° — 2y°r —y) ¢ + y°s
_ 6y’ + 4y
(2y +1) (zy — 1)*

Since A depends on y, it can not be used to obtain an integrating factor. We will now

try a second method to find an integrating factor. Let

B 1 /ON OM
- M\ oz Oy
_ 1
~y(zy+1) (y222 + 1)
. —byz®—4x

(oy+ 1) %" + 1)

Since B depends on z, it can not be used to obtain an integrating factor.We will now

(((3z2y3 — 2z — y) z + 32 — y?2? —xy + 1) - (y3w3 + v’z +zy+ 14yl

try a third method to find an integrating factor. Let

.
R is now checked to see if it is a function of only ¢ = zy. Therefore
B= oM —yN

_ (B2 — 2%z —y)z +¢°2® — y*2® —xy + 1) — (1°2° +9%2% + 2y + 1+ y(3y’2® + 2y 2® + 7))
z(y(yPr® +y22? + oy + 1)) —y ((v®2% — y?2? —zy + 1) 7)

_ —3zy—2
zy (zy + 1)
Replacing all powers of terms zy by t gives
_ —3t—2
t(t+1)

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be y then

— o/ Rt

_ J(7s) e

W
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The result of integrating gives
—e In(t+1)—21n(t)

1
t+1)e

L

Now t is replaced back with zy giving

1

SNCTEN Vo

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

1
- m(y(y3x3 +y’z* +zy+1))
Y41
=

And

1 3,3 .22
= - — 1
(a:y+1)a:2y2((y o’ —y'z’ —zy +1)z)

_ (zy—1)°

=
A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

_dy _

M <=0
+ dzx

vz’ +1 N (zy — 1) %:0
y 2 y2x dz

The following equations are now set up to solve for the function ¢(z,y)

8(15_—
g,—%_M (1)
6
6_y_N (2)
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Integrating (1) w.r.t. z gives

0p . [
6—zdx—/de

2.2
@dx:/mdx
ox y 2

YR -1
-

¢ + () (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0¢ y2x? —1
EAN IS B 4
=2 2 ) ()
2,.2
oyt +1 ,
But equation (2) says that g—‘;’ = (”;2;11)2 Therefore equation (4) becomes

(xy — 1)2 B y2x? +1
vz oy

+ () (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

[ o= ()

fly) =—-2n(y) +a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

_ y2 .'1,'2 -1
=

¢ —2In(y) +a
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

2 2_1
¢ = Y wxy —21In (y)
Summary
The solution(s) found are the following
y2x2—1 B
- 1
3977777777700 VYV VNN
27777777000 E VYV VY NN
srz7777 7 000V VYN NN
Hsrr77777 710 VYV VY NNNN
sz 7LV YV NNNN
s 7 7 VLYV NN NN
H=—=====771 V11 VNNNN
=== VNV VPPV NN
*))))2///£i\\\\\ll\\
y(x) 0 B e Y \\\\\\\//) »»»»»»»
VYV PPV e
INNNV LV e
NN\ VLV Vs
SNNN\ANAV VYV
NNN\N\\N\NVVVVW s
“2N\\\\\N\NVV VW11
NNN\NN\NN\NNNV VIV s s
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=H\N\\NNNNN VLV s
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Figure 71: Slope field plot

Verification of solutions

y2x? —1
Ty

—2In(y) =¢

Verified OK.

414



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful’

v Solution by Maple
Time used: 0.063 (sec). Leaf size: 42

Ldsolve((x‘S*y(x)‘3+x‘2*y(x)‘2+x*y(x)+1)*y(x)+(x“3*y(x)“3—x‘2*y(x)“2—x*y(x)+1?#x*diff(y(x),x)

1
y(z) = Tz
eRootOf(—e2fZ 2 ln(x)%Z-{—ch%Z-l—Z_ZcLZ—i-l)
y(z) =

T

v/ Solution by Mathematica
Time used: 0.219 (sec). Leaf size: 35

[DSolve[(x‘S*y[X]‘3+x“2*y[x]‘2+x*y[x]+1)*y[x]+(x“3*y[x]“3-x*2*y[x]*2—x*y[x]+1)}x*y'[x]==0,y[x

y(z) = —%

Solve |zy(z) — i(x) —2log(y(x)) = c1,y(x)
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4 Chapter 5

4.1
4.2
4.3
4.4

problem 1.1 . . . . . . . . e
problem 1.2 . . . . . . . e

problem 2
problem 3
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4.1 problem 1.1
4.1.1 Solvingasexactode . . ... ... ... ... ... ... . ... 417

Internal problem ID [4396]
Internal file name [OUTPUT/3889_Sunday_June_05_2022_11_36_14_AM_82116322/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5

Problem number: 1.1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_homogeneous, “class D°], _rational, _Bernoulli]

v+ 20y =—2 -2z

4.1.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) I

=0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

a_y =N
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

;f g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(2y)dy = (—2* —y* — 2z) dz
(2 +y*+ 2z) dz+(2y)dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2* +y* + 22
N(z,y) = 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0,4,
- 2 92
By By (x + vy + .13)
And
ON 0
=T (9
ox ax( )

=0

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 o)

- N Oy oz
1

= 5((2@/) —(0))

=1
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Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor u is
— efAd:z

— efldz

I

The result of integrating gives
p=e

:ez

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=e"(z* +y* + 22)
=e"(z* + y* + 2z)

And

= e”(2y)
=2ye”

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
m+N¥ g
dx

dy

2 _

(e"(z* + 3> + 22)) + (2y€”) e

The following equations are now set up to solve for the function ¢(z,y)

1)

0p —
g_x_
¢ =

Integrating (1) w.r.t. z gives
% dzr = / M dx
or

%dm= /e“’(:c2—|—y2+2x) dx

or
¢ = (¢®+9°) " + f(y)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
8—3 — oy + () (4)

But equation (2) says that g—‘z = 2y e®. Therefore equation (4) becomes
2ye” =2ye” + f'(y) (5)
Solving equation (5) for f’'(y) gives

fy)=0

Therefore
fly) =ca
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=("+y°) "+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

¢ = (x2 _|_y2) o®

Summary
The solution(s) found are the following

(P +y}) e’ = (1)

420



e~ S S
T T T T e e ~—— N — N — e N S
P g e R N N

P e e S R S S
P it S S S R S

T T T T T T T eSS N NN NN

P P S NN NN N S SN
ST 77 7NN N NN NN

s 77777 7 7NN NNNNNNNN |
Zo7777 7 1N 1T ANNNNNNN
Z77 777 T AINS—7 1T ANNNNNN
s77 77 TANS—/71T 1 NNNNNN
7777 AN~ T ANNNNNNT
Zo77 77 AN~ 1T ANNNNNN
7777 77T TANT P ANNNNNNN
oo 777777 7NN NNNNNNNNT

7777 7 7 NN NN NN N
P PPt N N NN NN N NG

7T T T T T T =SSNSO N NN N

N R

X

Figure 72: Slope field plot

Verification of solutions

(P+y*) e’ =

Verified OK.

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

Ldsolve((x“2+y(x) ~2+2%x) +2xy (x) *diff (y(x) ,x)=0,y(x), singsol=all) J

y(x) = Ve %c; — x?
Y(@) = oo —

v/ Solution by Mathematica
Time used: 5.675 (sec). Leaf size: 47

LDSolve [(x~2+y [x] "2+2*xx) +2xy [x] *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Trj.le]

y(z) > —v/ -2+ cre®
y(x) = V/—x2+ cre~®
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4.2 problem 1.2
4.2.1 Solvingasexactode . .. ... ... ... .. ... ... .. .. 423]

Internal problem ID [4397]
Internal file name [OUTPUT/3890_Sunday_June_05_2022_11_36_19_AM_16649650/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5

Problem number: 1.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Bernoulli]

2

y* —2zyy = —x

4.2.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) I

=0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

a_y =N
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But since aa g = a a then for the above to be valid, we require that
yox

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9; g’y = g; a¢w is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—2zy)dy = (—2* — y*) dz
(2" +y*) dz +(—2zy)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2* +y’
N(z,y) = —2zy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 ( + )
By Oy Y
And
ON 0
T2 (-9
ox Bx( )

Smce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

oM ON
A= (a—y‘%)
1

= 2yw((2y) (—2y))

2

T
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
—e J —% dz
The result of integrating gives
w= 6_2 In(z)
1
Tz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

H+N%=0
dz

ac2+y2 2y dy
() (2@

The following equations are now set up to solve for the function ¢(z,y)

8¢_—
g—w—M 1)
6
8_y_N (2)
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Integrating (1) w.r.t. z gives

0¢ [
6—$dx—/de

2 2
8_¢dx_/a: ty dx

or =~ x2
¢p=z— "+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 _ 2y
T _ 4
2 W) (@
But equation (2) says that g—?‘f = —2_ Therefore equation (4) becomes
Yy _ %Y
Y- W) ®)

Solving equation (5) for f'(y) gives

f'y) =0
Therefore

fly) =a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
2
¢=.’Ii—y—+C1
x

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

2

_ Y
c=z— =
x
Summary
The solution(s) found are the following
2
T — y; =c (1)
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Figure 73: Slope field plot

Verification of solutions

=Y

r——=C

Verified OK.

Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

Ldsolve((x“2+y(x) ~2) -2%x*y (x) *diff (y(x),x)=0,y(x), singsol=all) J

yz)=+(z+c)zx

)
y(@) = —V(z+a)z

v Solution by Mathematica
Time used: 0.209 (sec). Leaf size: 38

LDSolve [(x~2+y [x] ~2) -2*x*y [x] *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True}]

y(z) = —Vavr + o
y(z) = Vavz +a
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4.3 problem 2
4.3.1 Solvingasexactode . .. ... ... ... .. ... .. ... .. 429

Internal problem ID [4398]
Internal file name [OUTPUT/3891_Sunday_June_05_2022_11_36_25_AM_59487004/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_homogeneous, ~class A" ], _rational, _dAlembert]

2y + (y* —32%)y' =0

4.3.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 0d
Yy _
or + oydr 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

a—y =N
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But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

5’); gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—3932 + y2) dy = (—2zy)dz
(2zy) dz +(—3z% + ¢y*) dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2zy

N(z,y) = —3z% + 42

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
(9
3y ay( zy)
=2z
And
ON 0 9 o
or 8x( 3"+ )
= —6z

Since %i; F# %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
am k(2 o)

N\ oy Oz
B 1
T

8z

57—

(22) - (~62))
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (ON OM
- h(E-%)

ox oy
1
= 2y—x((—6w) — (27))
__4
oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

w= e/ Bdy
= ef _% dy
The result of integrating gives
= e—4ln(y)
1
NG

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

= — (2zy)

And

= (=32 + )
—3z% + ¢*
= T
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N@=0
dz

2 _ 9,2 2
2z 4 3z“+y @ —0
y? y! dz
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The following equations are now set up to solve for the function ¢(z,y)

0  —
g—w_M (1)
¢ _w

Integrating (1) w.r.t. z gives
% dx = / M dx
ox

0¢p 2z

2

¢=§;+ﬂw (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

oo _ 3z

e R\ @

But equation (2) says that g—f = % Therefore equation (4) becomes

—3z% + 92 RY
A —F‘Ffl(y) ()

Solving equation (5) for f’(y) gives

f'ly) =

le —

Integrating the above w.r.t y gives

/f’(y) dy = / (i) dy
fly) = —i +
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
2
x 1
6=" -t

Y )
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

P
Ty oy
Summary
The solution(s) found are the following
2 1
y oy .
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Figure 74: Slope field plot

Verification of solutions

8

—_ =0

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 317

Ldsolve ((2%x*y (x) )+ (y(x) ~2-3*x"2) *diff (y(x),x)=0,y(x), singsol=all) J

1

3
(12\/:%, /27223 —4 c1—108x2c§+8)

1+ 5 + 2 T
(12\/:7,951 [2Tz2c3—4 c1 —108m2c%+8>
y(z) = 3or
y(e) =

2
(1+iv/3) (12\/5 o\/2T523 — Ay — 1082262 + 8) 43— 4(12\/3 2\/2T523 — Ay — 1082%¢2 -
1
12 (12\/5 o\/2T2E — Ay — 108222 + 8) e

y(z) 2

(iv/3 - 1) (12\/?3 o\/2T2E — 4y — 10827 + 8) — 43 + 4(12\/5 2\/2T2E — dey — 10827 + §
1
12 (12\/5 o\/2T22E — d ey — 108222 + 8> o
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v/ Solution by Mathematica
Time used: 60.189 (sec). Leaf size: 458

kDSolve [(2xx*xy [x])+(y[x] "2-3*x~2) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> jl‘rue]

1 f/ 27ec1z2 4 3v/81e2c1 4 — 12e4c142 — 2e3cr
3 V2

y(z) =

\3/56201
+ 3
\/ 27e132 + 3v/8le21 gt — 12et132 — 2e3
7,(\/3 + z) €/Q7eclx2 + 3v/8le2c1t — 12¢de1 42 — 2e3c1
6v/2
Z(\/g - 1/) 6201 ecl

— &t

y(z) —

3 22/3 {'/27601.152 + 3V/8le2eigt — 12ede172 — 2e3cr

i(v3—1) {’/ 27e13? + 3v/8le2i gt — 12ete132 — 2e3a1
6v/2
'L(\/§ + Z) e2a el

y(z) > —

+

3 92/3 {’/27601 22 4 3v/81e2c1 24 — 12etc12 — 2¢3cr
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4.4 problem 3
441 Solvingasexactode . .. ... ... .. ... ... .. ... .. 436

Internal problem ID [4399]
Internal file name [OUTPUT/3892_Sunday_June_05_2022_11_36_33_AM_76381200/index . tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 5

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type’,
class A°]]

y+(—z+2y)y =0

4.4.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9) + N(z,9) % =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< ow,y) =0

Hence
9¢  Opdy _

dr ' Oydzx 0 (B)

Comparing (A,B) shows that
99

or
9¢

oy
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But since % = % then for the above to be valid, we require that
Y yox

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’); gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—z+2y)dy = (-y)dz
(y)dz+(—z+2y)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y

N(z,y) =—x+2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM _ o,
oy Oy y
=1
And
ON 0
o~ osl ")
=-1

Since %i; F# %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] (8M aN)

- N oy Oox
1
= _x—_|_2y((1) —(-1))
_ 2
N _x—2y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (ON OM
-4 )

Oz Oy
1
= (=)= )
__2
oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

= el B
_ el
The result of integrating gives
= e~2n)
_1
=7

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N.
M = uM

(y)

|~ E

N

LRI

And

= E(_x +2y)
—z+ 2y
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

. _dy
M =J_
+ 1z 0

1 —z+2y\dy
(y)+( y? )dw_o
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The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x =M (1)
[0) =
3y N (2)
Integrating (1) w.r.t. = gives
0p —
9z dx = /de
op . [1
b=+ 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

=) @
But equation (2) says that g—‘z = _“”;52”. Therefore equation (4) becomes
-z + 2y x ,
i R A (5)
Solving equation (5) for f'(y) gives
2
f'ly) = "

Integrating the above w.r.t y gives

Jrwa=[(5)a
f(y) =2In(y) +a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=§+mmw+q
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

x
c1=—+2In(y
1= ()

The solution becomes

_<a
LambertW <— ze 27 > +%1
y=¢e

Summary
The solution(s) found are the following

_c
LambertW <— “27> + %1

y=e
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Figure 75: Slope field plot

Verification of solutions

_<a
LambertW <— “”627> +4
y=¢e

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve(y(x)+(2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)

y(o) = — B
2 LambertW (—%)

v/ Solution by Mathematica
Time used: 4.711 (sec). Leaf size: 31

LDSolve[y[x]+(2*y[x]—x)*y'[x]== ,y[x],x,IncludeSingularSolutions -> Truel
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5.1
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9.3
5.4
5.5
9.6

Chapter 6

problem 1
problem 2
problem 3
problem 4
problem 5
problem 12
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5.1 problem 1
5.1.1 Solving asriccatiode . . . . . . . ... ... L. 443]

Internal problem ID [4400]
Internal file name [OUTPUT/3893_Sunday_June_05_2022_11_36_39_AM_95241541/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_rational, _Riccatil

2a

vy —ya+y =2

5.1.1 Solving as riccati ode
In canonical form the ODE is
Y = F(z,y)

_—ya+yt—a”
X

2a

This is a Riccati ODE. Comparing the ODE to solve

a 2 x—2a
=YY,

T T Z

With Riccati ODE standard form
y' = folz) + fi(@)y + fa(z)y”

Shows that fo(z) = 2, fi(z) = ¢ and fo(z) = —1. Let

T

_u/

v= f2u
/

== (1)

ERIS
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fau"(z) = (fz + frfo) W'(2) + f3 fou(z) = 0

= (2)
But
, 1
f2 = 2
fifs=——
T
—2a
fafo=

Substituting the above terms back in equation (2) gives

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = z° <c1 sinh (“’;) + ¢ cosh (i))

The above shows that

(@) — (acax® — c1) cosh < ) + sinh ( ) (ac1z® — c3)

X

Using the above in (1) gives the solution

. ((a@x — ¢1) cosh ( ) + sinh ( ) (aciz® — 02)> e

¢y sinh (£2) + ¢; cosh (£2)

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

B ((x a — c3) cosh < ) + sinh ( > (acsz® — 1)> x
V= czsinh (£) + cosh (£7)
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Summary
The solution(s) found are the following

((z a — c3) cosh ( > + sinh ( ) acsz® — 1)) x e

V= czsinh (%) + cosh (£°)

Verification of solutions

((x a — c3) cosh < > + sinh ( ) (acgz® — 1)> x®

V= czsinh (£2) + cosh (£7)

Verified OK.
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Maple trace Kovacic algorithm successful

"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE™, diff(diff(y(x), x), x) = (a-1)*(diff(y(x
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful
<- Riccati to 2nd Order successful’

N\ J

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 74

‘dsolve(x*diff(y(x),x)—a*y(x)+y(x)‘2=x“(—2*a),y(x), singsol=all)

(—x~% + a) sinh (?) + (c1a — %) cosh (m;“)
cosh (£%) ¢1 + sinh (%)

y(z) =
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v/ Solution by Mathematica
Time used: 0.393 (sec). Leaf size: 112

kDSolve [x*xy' [x]-a*y[x]+y[x] "2==x"(-2%a) ,y[x] ,x,IncludeSingularSolutions -> Truel

- x‘“((ax“ + ic1) cosh (%) —i(ac;z® — i) sinh (%))

cosh (£*) — icy sinh (£°)

y(x) = a — x~%coth (:v; )

y(z
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5.2 problem 2

5.2.1 Solving asriccatiode . . . . . . . ... ... oL 48]

Internal problem ID [4401]
Internal file name [OUTPUT/3894_Sunday_June_05_2022_11_36_47_AM_40904880/index . tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_rational, _Riccatil

2a

zy —ya+y? =173

5.2.1 Solving as riccati ode
In canonical form the ODE is
y =F(z,y)
2 _2a
_—yaty —as
x
This is a Riccati ODE. Comparing the ODE to solve

,_ya P zd
= +

T T T
With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(z)y®

Shows that fo(x) = ””727&, fi(z) = ¢ and fo(z) = —1. Let

T

_u/

v= f2u
/

== (1)

ERIS
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fal'(@) = (f5+ fif2) (@) + f foulz) = 0 @
But
fi=
fh ===
fh=o]

Substituting the above terms back in equation (2) gives
u’(x) 1 a) , ™5 u(z)
‘7?“‘@5‘@)“@*“—27—20

Solving the above ODE (this ode solved using Maple, not this program), gives

=1 c 3\/—+a +ea 1—3\/x_—2?a+a T
( Jo ( )

The above shows that
u' ()

(cz<(2a+3w“§) \/ﬁ—i-a(a—kx—%)) _

- C1<(—2a +3z75) Vo5 + a(a— z‘§)>) x

Using the above in (1) gives the solution

Yy
62((2a+3x_%) T +ala+z” 3))

((—2a+3x_%) \/36_—23*&+a(a—x_%)>
02(3\/$__27a+a> wd et ( 3Ve % + )

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

03((—2a+3x_%) \/ﬁ+a(a—x_%)> e
C3 (—3\/af—2?a+ a) e

+ (2a + 3z738) \/f—%+a(a+x_%)

y= 2a
r 3 +a
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Summary
The solution(s) found are the following

)
_a
6z 3

c3<(—2a+3$_%) m_z?a—l—a(a—x_%))e a —|—(2a—|—3x_%) m_%?+a(a+m_%)

C3 (—3 7% + a) em;? +3Vz % +a
(1)

Verification of solutions

a
3

03((—2a+ 3x_%) 5 + a(a — x_%)> e”a + (2a + 393_%) =% + a(a+m_%)

c3 (—3 7% + a) eﬁmf +3Vz % +a

y:

Verified OK.
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Maple trace Kovacic algorithm successful

"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE™, diff(diff(y(x), x), x) = (a-1)*(diff(y(x
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful
<- Riccati to 2nd Order successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 119

Ldsolve (x*diff (y(x),x)-a*xy(x)+y(x) "2=x"(-2*a/3) ,y(x), singsol=all) J

y(x)
((—2a+ 3275) Va5 +a(a— x_%)> e + <(2a +3275) Va5 +afa +g;—%)> ¢

(—3 =5 + a> ergg +c (3 =5 + a)

v/ Solution by Mathematica
Time used: 0.427 (sec). Leaf size: 270

LDSolve [x*xy' [x]-a*y[x]+y[x] “2==x"(-2%a/3),y[x] ,x,IncludeSingularSolutions -> Tﬁrue]

y(z)
z_a/3((a2m2“/3 — 3iac;z/3 + 3) cosh (#) + i(a®c12%/® + 3iaz®/® + 3¢;) sinh (#))

(axa/g _ 3%61) COSh <@> + Z (aclxa/'g + 32) Sil’lh <3x;a/3>
(a22?9/3 + 3) sinh (@) — 3az%3 cosh (@)

ax22/3 sinh (#) — 3x%/3 cosh <¥>

_>

y(z) -
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5.3 problem 3
5.3.1 Solving asriccatiode. . . . . . . ... ... L. 453

Internal problem ID [4402]
Internal file name [OUTPUT/3895_Sunday_June_05_2022_11_36_56_AM_11134300/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_rational, [_Riccati, _specialll
c
w4 ut = —
3
5.3.1 Solving as riccati ode
In canonical form the ODE is
v = F(z,u)
ulzs — ¢
= _—é
T3

This is a Riccati ODE. Comparing the ODE to solve

C
u'=—u2—|-—4
3

With Riccati ODE standard form
u = fo(x) + fi(z)u + faolz)u?

Shows that fo(x) = —‘;;, fi(z) =0 and fo(z) = —1. Let

453



Using the above substitution in the given ODE results (after some simplification)in a
(2)

second order ODE to solve for u(z) which is
fu"(z) = (fs + fif2) W/ (@) + f3 fou(z) = 0

But
f2=0
fife=0
c
fifo=—
T3

Substituting the above terms back in equation (2) gives

Solving the above ODE (this ode solved using Maple, not this program), gives

1 1 1
u(z) = 02e3x3‘/5<3x%\/5 — 1) + 3ce 3 Ve <x§\/5 + —>

The above shows that
1 1
3c (0263“ Ve _ ¢pe3e3 ﬁ)

Using the above in (1) gives the solution
1 1
3c (c2e3:c3 Ve _ Cle—3x3 \/E)

u =
T3 <cze3z%\ﬁ <3z§\/5 - 1) + 3cie=3eive (a:%\/E + %))

Dividing both numerator and denominator by c; gives, after renaming the constant

£2 = ¢3 the following solution

C1

1
3c (—erg ve 4 C3>

u=— - R
3 (3x%\/5e6’”§‘/5 +3y/cxzicy — efriVe 4 03)
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Summary
The solution(s) found are the following

1
3c<—e6””3 ve 4 C3>

3 <3x%\/566‘”%‘/5 + 3\/Exé03 N NG + 03>

u=—

Verification of solutions

1
3c (—eﬁwg Ve 4 03>

T3 <3x%\/5e6’”%\/5 +3y/czics — efoive 4 C3>

u=—

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

Ldsolve(diff(u(x),x)+u(x)“2=c*x“(—4/3),u(x), singsol=all)

3c

u(z) = —

3 <3x% tan (3\/—_0 <x% — cl>> V—c+ 1)

455




v/ Solution by Mathematica
Time used: 0.286 (sec). Leaf size: 183

kDSolve [u' [x]+ul[x] "2==c*x~(-4/3) ,ulx] ,x,IncludeSingularSolutions -> True]

3c(3isinh (3y/cy/z) + 8¢ cosh (31/c¥/z))

u(z) —

vz ((9i4/cv/z — 8c1) cosh (3v/c¥/z) + 3 (8y/ce1v/x — i) sinh (3y/ci/x))
3ccosh (3v/cv/z)
vz (cosh (3y/c/z) — 3y/cv/zsinh (3y/ci/z))

u(z) - —

456



5.4 problem 4
5.4.1 Solving asriccatiode . . . . . . . ... ... L. 457

Internal problem ID [4403]
Internal file name [OUTPUT/3896_Sunday_June_05_2022_11_37_04_AM_85092418/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_rational, [_Riccati, _specialll

U+ b= o

4
5.4.1 Solving as riccati ode
In canonical form the ODE is
u' = F(z,u)
buz* — ¢
— —T

This is a Riccati ODE. Comparing the ODE to solve
v = —bu?® + é
With Riccati ODE standard form
v = fo(z) + fi(@)u + fola)w®
Shows that fo(z) = 5, fi(z) = 0 and fa(z) = —b. Let

_ul

B f 2U

T “hu (1)

u
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" (@) — (fy + fifz) ' () + f3 fou(z) = 0 (2)
But
fa=0
fif2=0
fr ="

Substituting the above terms back in equation (2) gives

b cu(zx)
o

—bu"(z) + =0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) =z (cl sinh (?) + c2 cosh (?) )

The above shows that

—c9V/be sinh (\/TE> — ¢1Vbe cosh <£> + ¢y sinh (‘ﬁ> + cox cosh (

X

L

v (z) =

Using the above in (1) gives the solution

—coV/be sinh ( ) c1Vbe cosh ( be ) + ¢yz sinh (‘F> + cox cosh (‘F>

2 (o (25) 4 coco ()

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

u =

( —c3vbe + :c) cosh ( > + sinh \/T% (Cg.’L’ — \/E)
z2b (03 sinh bc) + cosh <‘/—ITC>>

T x

u =
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Summary
The solution(s) found are the following

( —c3vbe + :v) cosh g) sinh (lj) (031' — \/E)

u =

+ T
x2b (c3 sinh ‘/—E> + cosh <—bc>>

Verification of solutions

u =

Verified OK.
Maple trace

(1)

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

Ldsolve(diff(u(x),x)+b*u(x)“2=c*x‘(—4),u(x), singsol=all)

—+/—bc tan (—”_bc(:”c_l)) +x

bx?

u(z) =
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v/ Solution by Mathematica
Time used: 0.308 (sec). Leaf size: 98

kDSolve [u' [x]+b*u[x] "2==x"(-4) ,ulx] ,x,IncludeSingularSolutions -> True]

—2bcle2T\/g + \/5<1 + 2clerTﬂ> +zx

x2 (b + 263/201627ﬁ>

z— b

bx?

u(z) =

u(z) =
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5.5 problem 5
5.5.1 Solving asriccatiode. . . . . . ... ... .. 461

Internal problem ID [4404]
Internal file name [OUTPUT/3897_Sunday_June_05_2022_11_37_14_AM_82274080/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6

Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_rational, [_Riccati, _specialll
2
v —ut =
€T3
5.5.1 Solving as riccati ode
In canonical form the ODE is
( T, u)
= 8
T3

This is a Riccati ODE. Comparing the ODE to solve

u=u?+

8

With Riccati ODE standard form
u' = fo(z) + fu(@)u + folx)u?
Shows that fy(z) = l%, fi(z) =0 and fo(z) = 1. Let

_u’

fou

- )

u =
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is
fu"(@) = (f3 + fifo) W/ (2) + f3 fou(z) = 0 (2)

But
f2=0
fifa=0

2

f22f0 = "3
T3

Substituting the above terms back in equation (2) gives
2
ulz) _

u”(x) §
T3

Solving the above ODE (this ode solved using Maple, not this program), gives

3iv2 _3i\1/5 2 1
6| c LIV S T3/2 — Bie o8 4 20 =0 Vait8VaSvaiei | o2
6 6
T )
32 — 6i
3iv/2

u(z) =

The above shows that
31:\1/§ 2 1 1
5 +12(i0iV2 - 3iv2 - £ +40% ) ValV2 - 6ie sh o
3
V73 +18 (x%\/i _ 6i) > 252 + 6ixh

u'(z)
5 —
36 (zm§\/§ +18iv/2 + % + 1225 + _§§> coe

Using the above in (1) gives the solution
_31\1/E 2 1 i 3i\1/5
5+ (i8V2 - 3iv2 - +40% ) Va2~ 6ie st
‘ _3iv2
?Zi%ﬁ 4 2 ="V 23 \/

1
222 4 4) Vaiv2 - Gie

NE

u =
5
2(3(iw§x/§+ 18iv/2 + 3 + 1225 + _g’;‘) cpe

\/x§+18 <x%\/§—6i> 32

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
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u
3i

5 —
(3608 V2 +54iv/2 + 52 + 3621 + 2} ) e =

3vz3 +1825\/z3v/2 + 6i (—

S

3iv/2

. 2 . 1 1 12
+ (zx§\/§—3z\/§—%+4x§) 23/2 — 6ie <3 csVzx
2

I

- 3iv/2
3iv/2 -1

1 1 1 2
ﬁsﬁ + Z) (03 (-—wgﬁﬁ + z) Vz5v/2 — 6ie s 4 & =2 Voitls m§+6181

Summary
The solution(s) found are the following

u (1)

.2 . 1 5\ —2 .2 . 1 1 22
<3zx§\/§+54z\/§+5m+36x§ —l—%)e 23 4+ (zm§\/§—3z\/_—%+4m§) z3y/2 — 6ie =3 c3Vx
2

3vz3 +1825\/z3v/2 + 6i (—

S

[N

3iv2
3iV2 -1
z3

1 1 2 X
x36ﬁ+i> (03 <_x36ﬁ+i> 52 —6ie o5 +° m§+618

\ NSNS
\ NN e e
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Figure 76: Slope field plot
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Verification of solutions

u
3iv/2

5 —
(3608 V2 +54iv2 + 5o+ 3621 + % ) e o8 + (iwfv2—3iv2 - § + 4ot

)

Y
@D
8
%]
()
w
ﬁ
[SIIN]

1
3Vt + 1808 Valva+6i (—22 +

Verified OK.
Maple trace

1
) 3 (—%ﬁ +i> 13v/2 — 6ie

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful’”

differential order: 1; looking for linear symmetries

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 78

-

tdsolve(diff(u(x),x)-u(x)‘2=2*x‘(-8/3),u(x), singsol=all)

—

3<tan (3\/5 ((%)% — Cl)) ﬁx(%)ﬁ i w(%)%

=

u(z) = —
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v/ Solution by Mathematica
Time used: 0.266 (sec). Leaf size: 215

-

kDSolve [u' [x]-ul[x]~2==x"(-8/3) ,ulx] ,x,IncludeSingularSolutions -> True]

—

u(z) —
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5.6 problem 12

5.6.1 Solving as separableode . . . . . .. ... ... 466]
5.6.2 Solving as first order ode lie symmetry lookup ode . . ... .. 467
5.6.3 Solvingasexactode . . ... ... ... ... ... ....... 469

Internal problem ID [4405]
Internal file name [OUTPUT/3898_Sunday_June_05_2022_11_37_22_AM_10384012/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 6

Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_ or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

Vizt+crd+cal+br+ay
va+by+cy’ + ey’ + fyt

5.6.1 Solving as separable ode

In canonical form the ODE is

y' = F(z,y)
= f(z)g(y)
_ Viy't+ey+ceyPtbyta
Vit +cxdi+cx2+bzx+a
Where f(z) = —\/fm4+cz31+cz2+bm+a and g(y) = Vfy* +cy® + cy? + by + a. Integrat-
ing both sides gives
L d L d
S x
Viyr+ceyr+cecy +by+a v Vit +cxdi+cx2+br+a

1 1
dy= | — dx
Vivr+eyd+ey! +by+a Y / Vizt+cxd+cr?+bxr+a
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4 1 1
d a= | —
/ V_a‘f+_alc+_a*c+_ab+a / Vitt+cxd+cx:+bzr+a

dx + c;

Which results in

1 1

Yy
d a= | — dx +c
/ V_ad*f+_alc+_a*c+_ab+a — / Vit +cxP+cx2+br+a !

The solution is

1

)
/ d_a
V_a*f+_alc+_a*c+_ab+a

—( — ! dm)—c =0
Vit +cxdi+cx2+br+a L

Summary
The solution(s) found are the following

Y 1
d
/ V_ad*f+_alc+_a’c+_ab+a —4 (1)

1
_ — drx | —c1 =0
( Vizt+cxd+cx?+br+a x) “

Verification of solutions

1

Yy
d
/ V_adf+_alc+_a’c+_ab+a —a

1
_ — dr ) —c; =0
< Vitt+crd+cx?+br+a x) “
Verified OK.

5.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

f_ Iy teyP+ey’tby+a
v Vit +cxdi+cx2+bzx+a
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - fx) - w2€y - Wx€ — Wyl = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7

Table 54: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

E(z,y) = —/fat+cad +ca? + bz +a
n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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The above comes from the requirements that (£ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

5= [ s
1

= dzx
/—\/fm4+cx3+cx2+bz+a

Which results in

S = Expression too large to display

5.6.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

09
M
Oz
9 _ n
Oy
;;gy = 198: g; then for the above to be valid, we require that

But since

oM _ oN
oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

;’; ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

1 1
— dy =
( \/fy4+cy3+cy2+by+a) Y (\/f:v4+cx3+cw2+

1 1
— d — dy =0 (2A
( \/fm4+cr3+cr2+bw+a) H( \/fy4+cy3+cy2+by+a> y=0 (24)
Comparing (1A) and (2A) shows that

1
M(z,y) = —
(z) Viztt+crd+cx?+br+a
1
N(z,y) =

VIt et tbyta
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

o 1 )
Oy Oy\ fzr+ca®+tcal+br+a

=0
And
ow_o( 1 )
or 0\ Vfyi+tcyP+cyi+by+ta
=0
Since %i: = %’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
—=M 1
e (1)
99
- N 2
o )
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Integrating (1) w.r.t. z gives

@dx=/de
ox

86 1
—dzx= [ — dz
Oz Vizt+crd+cx?+bx+a
o= - !
h V_d'f+_dc+ _a*c+_ab+a

d_a+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

09

0+ 4

2= 0+10) (@)

But equation (2) says that g—‘;’ == fy4+cy3l+cy2+by+a. Therefore equation (4) becomes
1

=0+ f'(y) (5)

Vit e thyta
Solving equation (5) for f'(y) gives

1
VIVt fek by +a

fly) =

Integrating the above w.r.t y gives

1
o= )
/f(y) v Vivr+cyd+cey? +by+a v
f(y) = Expression too large to display + ¢,

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = Expression too large to display + c;

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

c; = Expression too large to display
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Summary
The solution(s) found are the following

Expression too large to display (1)

Verification of solutions

Expression too large to display

Warning, solution could not be verified

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 56

Ldsolve((sqrt(a+b*x+c*x‘2+c*x‘3+f*x‘4))/(sqrt(a+b*y(x)+c*y(x)‘2+c*y(x)‘3+f*y(§}‘4))*diff(y(x)

1 y(z) 1

dx + d_a+c
Vit +x3c+z2c+zb+a V_ad*f+_alc+_a*c+_ab+a !

=0

v/ Solution by Mathematica
Time used: 21.472 (sec). Leaf size: 2239

LDSolve[Sqrt[a+b*x+c*x“2+c*x“3+f*x“4]/Sqrt[a+b*y[x]+c*y[x]“2+c*y[x]“3+f*y[x]“4¥*y'[x]==-1,y[x

Too large to display
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6.1 problem 1
6.1.1 Maple step by step solution . . . . ... ... ... ..., %\yds)

Internal problem ID [4406]
Internal file name [OUTPUT/3899_Sunday_June_05_2022_11_37_32_AM_31421343/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 1.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y? — b5y = —6

Solving the given ode for y results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y =3 (1)
y =2 (2)
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y=/3dx

=3rx+c
Summary
The solution(s) found are the following
y=3z+c (1)
Verification of solutions
y=3r+¢

Verified OK.
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Solving equation (2)

Integrating both sides gives

y:/2dx

=22+ ¢y
Summary
The solution(s) found are the following
y=2r+cy
Verification of solutions
y=2r+cy

Verified OK.

6.1.1 Maple step by step solution

Let’s solve
y* -5y =—6
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[ (y?=5y)dz = [(—6)dz +c

o Cannot compute integral

[ (y*—5y)ds = -6z +c;
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful
Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve((diff(y(x),x))‘2—5*diff(y(x),x)+6=0,y(x), singsol=all)

y(x) =3z + ¢
y(x) =2+ ¢

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 21

LDSolve[(y'[x])”2—5*y'[x]+6==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = 2x 4+ ¢
y(xz) > 3+ a1
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6.2 problem 2
6.2.1 Maple step by step solution . . . .. ... ... ... ...... 478

Internal problem ID [4407]
Internal file name [OUTPUT/3900_Sunday_June_05_2022_11_37_40_AM_32836822/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 2.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y=2 1)
y=— (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives
Y= / % o
x
=aln(z)+ ¢

Summary
The solution(s) found are the following

y=aln(z)+c (1)
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Verification of solutions

y=aln(z)+c

Verified OK.
Solving equation (2)

Integrating both sides gives
Y= / % 4z
x
= —aln(z)+c

Summary
The solution(s) found are the following

y=—aln(x)+c

Verification of solutions

y=—aln(z)+c
Verified OK.

6.2.1 Maple step by step solution

Let’s solve
2 _ a?
Y =4

° Highest derivative means the order of the ODE is 1

Yy

° Integrate both sides with respect to x
[y?dz = [ Gdz + ¢

° Cannot compute integral

fy’2dac = —% +c
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

<- quadrature successful

Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

<- quadrature successful’

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

e

tdsolve((diff(y(x),x))‘2—a‘2/x‘2=0,y(x), singsol=all)

e—

y(z) =aln(z) + ¢
y(z) = —aln(z) +

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24

LDSolve[(y'[x])‘2—a‘2/x‘2==0,y[x],x,IncludeSingularSolutions -> True]

y(z) > —alog(z) + ¢1
y(x) = alog(x) + 1
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6.3 problem 3
6.3.1 Maple step by step solution . . . .. ... ... ... ...... 481l

Internal problem ID [4408]
Internal file name [OUTPUT/3901_Sunday_June_05_2022_11_37_49_AM_18271090/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 3.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

12 11—z

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y =Vl )
y = ——_xix ab) (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

- [VEED,

arcsin (2z — 1
=vV-z?+z+ (2 )+c1

Summary
The solution(s) found are the following

in(2z — 1
y:f_z2+x+arcsm(2‘” ) 4o, (1)

480



Verification of solutions

arcsin (2z — 1
y=v-22+z+ (2 ) e,

Verified OK.
Solving equation (2)

Integrating both sides gives

y:/_de

x
in(2z —1
_ ,—_w2+x_arcsm(2m )_'_c2

Summary
The solution(s) found are the following

arcsin (2z — 1
y=—vV-22+x— (2 )+02

Verification of solutions

arcsin (2x — 1
y=—-vV—-z2+z— (2 )+02

Verified OK.

6.3.1 Maple step by step solution

Let’s solve

12 1-z

Yy ==

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x
[yPdz = [2dz+ ¢

o Cannot compute integral

[y%dz = —z+1In(z) + ¢
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

e

tdsolve((diff(y(x),x))‘2=(1-x)/x,y(x), singsol=all)

L

y(z) = /—z(z— 1)+ arcsin (2236 ~1)

y(z) = —/—z (e = 1) — arcsin(22x— 1) te

v/ Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 81

+c

LDSolve[(y'[x])‘2==(1—x)/x,y[x],x,IncludeSingularSolutions -> True]

y(x) = —2arctan (\/;:_T) +vV—(x—1z)+ ¢

y(z) — 2arctan (\/;;:i) —vV=((z-1z)+c
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6.4 problem 4
6.4.1 Solving as dAlembertode . . . .. ... ... .. ... ... .. 483l

Internal problem ID [4409]
Internal file name [OUTPUT/3902_Sunday_June_05_2022_11_37_57_AM_52028092/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 4.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]
2 2xy’
y =———+1
)

6.4.1 Solving as dAlembert ode

Let p = ¢ the ode becomes

(1A)
This has the form

y=zf(p) +9(p) *)

Where f, g are functions of p = y/'(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. = gives

p=f+(af +9) P
d;
p—f=(@f+d) (2)
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Comparing the form y = zf + g to (1A) shows that

2p
f - _p2 _ 1
9=0
Hence (2) becomes
2p 2 4p?
=z - / 2A
Pty =+ g ) 7@ (24)

The singular solution is found by setting fl—s = 0 in the above which gives

2p
=0
D+ 21
Solving for p from the above gives
p=0
b=1
p=—1
Substituting these in (1A) gives
y =
Yy =—ix
Y =1ix

The general solution is found when g—z # 0. From eq. (2A). This results in

p(z) + B
p(z)°-1 (3)

p(z) =
2 4p(x)®
v < pe—1 T (p(:l:)z—l)z)

This ODE is now solved for p(x).

Inverting the above ode gives

2 4p?
LI (-5 + &) (4)
dp P+ 7

This ODE is now solved for z(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is

Where here

Hence the ode is

The integrating factor u is

Which simplifies to

The ode becomes

Integrating gives

dipx(p) + p(P)x(p) = q(p)

2
pP—p

p(p) = —
q(p) =0

Dividing both sides by the integrating factor u = i 7 results in

p2_

_a@-1)

z(p) p
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

—r+ /x2_'_y2
Y
T+ Vz? +y?

B y

Substituting the above in the solution for xz found above gives

- 2c3x
Va2 P
2c3x
T

eV T

Summary
The solution(s) found are the following

y=0 (1)

y = —izx (2)

y=1iz (3)

o 2c3x @)
—z+ 12+ y?

- 2c3x (5)

eV T
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Verification of solutions

y=0
Verified OK.
Yy = —1T
Verified OK.
Y =1
Verified OK.
o 2c3x
YT
Verified OK.
o 2c3T
VTP
Verified OK.
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Maple trace

“Methods for first order ODEs:

*%*% Sublevel 2 **x*

Methods for first order ODEs:

-> Solving
trying 1st
trying 1st
trying 1st
trying 1st

1st order ODE of high degree, 1st attempt

order WeierstrassP solution for high degree ODE
order WeierstrassPPrime solution for high degree ODE
order JacobiSN solution for high degree ODE

order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying homogeneous B
trying homogeneous types:
trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE", diff(y(x), x) = y(x)/x, y(x)°
Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

<- 1st order linear successful

<- 1st order, canonical coordinates successful

<- homogeneous successful”

v/ Solution by Maple

Time used: 0.047 (sec). Leaf size: 45

Ldsolve((diff(y(x),x))‘2+2*x/y(x)*diff(y(x),x)—1=0,y(x), singsol=all)

y(z) = —ix
y(x) =iz
o= BT
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v/ Solution by Mathematica
Time used: 0.466 (sec). Leaf size: 126

e B

kDSolve [(y' [x])~2+2*xx/y [x]*y' [x]-1==0,y[x],x,IncludeSingularSolutions -> True]J

y(z) = —e?/—2z + e
y(z) = €7 /—2z + et
y(z) = —e7 2z + et
y(x) — e /2 + et
y(z) =0

y(z) —» —iz

y(x) — iz
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6.5 problem 5
6.5.1 Maple step by step solution . . . . ... ... ... .. 49T]

Internal problem ID [4410)]
Internal file name [OUTPUT/3903_Sunday_June_05_2022_11_38_11_AM_57655295/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 5.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y—ay —by* =0

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

,  —a++a?+4by

y = 5% 1)
, a + +v/a? + 4by
y == 5% (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ 2 d —/dx
—a++/a? + 4by v=

In(y)a N aln (—a++va?+4by) aln(a++a? +4by) N
2 2 2

a?+4dby=z+¢

Summary
The solution(s) found are the following

In(y)a N aln (—a++va?+4by) aln(a++/a?+4by) N
2 2 2

a?+4by=z+c; (1)
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Verification of solutions
In(y)a N aln (—a++a?+4by) aln(a++a? +4by) N
2 2 2

Verified OK.
Solving equation (2)

a?+4dby=z+¢

Integrating both sides gives

/_ 2 d—/dm
a + va? + 4by V=

_ 2 2
ln(éy)a_aln( a+2\/a +4by) +aln(a-}—\Q/a +4by) —\/M=x+cz

Summary
The solution(s) found are the following

1 In (—a + +/a? + 4b 1 ++va? + 4b
2ol (ot VAT D) el @ VEFTI) iy ok e (1)
Verification of solutions

In (— 2+4b 1 24+ 4b
ln(éy)a_an( a+2\/a - y)+an(a+\2/a + y)—\/m=x+02
Verified OK.

6.5.1 Maple step by step solution

Let’s solve
y—ay —by* =0
° Highest derivative means the order of the ODE is 1

/!

Y

° Separate variables
1

v 1
et aiiaby %

° Integrate both sides with respect to z
f_aﬂ/mdx—f 2dT + ¢
° Evaluate integral
aln(y) 2\/a2+4by+aln<—a+\/a2+4by> aln<a+\/a2+4b>
n T T2 =g Ta
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing x successful’

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 207

e

tdsolve(y(x)=a*diff(y(x),x)+b*(diff(y(x),x))‘2,y(x), singsol=all)

e—

—c1—a+tz —c1—a+tzx
7‘1’) —a+x—cy

—a LambertW <267ai> —atz—cq 1 —a LambertW ( 2e ~
Vi Vi
yiz) = a ofs+e a

—ey—ate —cj—atw
a? (LambertW (—M> + 2> LambertW (——2‘/5‘3 " )

a a

y(z) = 0
—ci1—a+tz —c1—a+zx
a? (LambertW (W+> + 2) LambertW (W+)
y(z) = m

v/ Solution by Mathematica
Time used: 0.803 (sec). Leaf size: 123

‘DSolve[y[x]==a*y'[x]+b*(y'[x])“2,y[x],x,IncludeSingularSolutions -> True]

[ VAFTb + @ + alog (b(a — VAFIL + a2
y(x) — InverseFunction #1b+a” +alog ( (a #lh+a )) & [2 + 01]
2b 2b
[ VAFTb + a? — alog (vAFIb+ a2
y(x) — InverseFunction #lb+a”—a Og’b( #1b+a? +a) & [—% + 01}

y(z) =0

492



6.6 problem 6
6.6.1 Maple step by step solution . . . . ... ... ... L. 494

Internal problem ID [4411]
Internal file name [OUTPUT/3904_Sunday_June_05_2022_11_38_21_AM_13572593/index. tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 6.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

2

—ay — by = —x

Solving the given ode for ¢ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

,  —a++va?+4bx

y = 5% (1)
, _ a++a®+4bx 5

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ —a ++va? + 4bx
Yy = dz

2b
3
(a2-|—64bbx) 2 — ax
% +ca

Summary

The solution(s) found are the following

(a2+4bx)% —az
y=—2 5% +c (1)
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Verification of solutions

[NOY)

(a2+4bx)

6b — ar

2% +c

Verified OK.
Solving equation (2)

Integrating both sides gives

/_a+ va? + 4bx de

2b
3
az + (a?+4bz) 2
=y te
Summary
The solution(s) found are the following
012 T 3
__‘“H'( +;bb)2 +
v= 2 “
Verification of solutions
0,2 T 3
_ax+ ( +;)b )2 .
V= 2 “

Verified OK.

6.6.1 Maple step by step solution

Let’s solve

—ay —by® = -z

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x

[ (—ay —by?)dz = [ —zdz +c;
o Cannot compute integral

[ (~ay —by?) dz = —% +c;
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 80

e

tdsolve(x=a*diff(y(x),x)+b*(diff(y(x),x))“2,y(x), singsol=all)

L

(a® + 4zb)% + 12¢1b? — 6axb

y(z) = 1952
y(z) = 12¢1b% — a?v/a? + 4xb — 6axb — 4bzv/a? + 4zb
N 1262

v/ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 74

e

LDSolve[x==a*y'[x]+b*(y'[x])‘2,y[x],x,IncludeSingularSolutions -> True]

~—

(@) = (a® + 4baz:)3/2 — 6abz + 12b%¢c;

y 1202

(a2+4bm)3/2
&b

2b

+ ax

y(z) =» — +c
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6.7 problem 7

Internal problem ID [4412]
Internal file name [OUTPUT/3905_Sunday_June_05_2022_11_38_30_AM_10840435/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 7.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y—\/1+y?—ay =0

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y,_ya+x/y2+a2—1

2—1 1)
ya —Vy?+a?2 -1

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ @ 1 dy= [ do
vt Vet -1

v a®—1
/ d a=z+¢
_aa++/_a?+a?—

Summary
The solution(s) found are the following

v a’?—1

d
_aa++_a+a? -1

a=z+0 (1)
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Verification of solutions

y a®—1

_aa++/_a*+a?—

d a=zx+¢

Verified OK.
Solving equation (2)

Integrating both sides gives

/ a1 dy /dz
ya— Var+y? -1

/ a1 d +
a=2x C
_aa—+_a+a?2—-1 2

Summary
The solution(s) found are the following

/ @1 d a=zI+c
_aa—+_a+a?-1 ?

Verification of solutions

/ it d +
a=2x C
_aa—+_a+a2-1 ?

Verified OK.
Maple trace

(1)

"Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE

trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables

<- differential order: 1; missing =x successful’
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 112

Ldsolve (y(x)=a*diff (y(x),x)+sqrt (1+(diff (y(x),x))"2),y(x), singsol=all) J

y(z) 1 y(z) 1
— / d al|ad®+ / d a—c
a_a++v_a*+a?— a_a++_a*+a?—
+2=0

y(z) 1
/ d_a | a?
—a_a++v_a2+a?—

y(z) 1
— / d al—c+x=0
—a_a++_a*+a?—

v/ Solution by Mathematica
Time used: 0.597 (sec). Leaf size: 210

‘ DSolve [y [x]==a*y' [x]+Sqrt[1+(y' [x])~2],y[x],x,IncludeSingularSolutions -> Tru#]

y(z)
a(log (\/#12+a2 11— #1 —a+1) +log (\/#12+a2 —1—#14a— 1)) —(a
— InverseFunction 5
a’?—1
+C11
y(z)
a(log (x/#12-|—a2— —#1l—a-— 1) + log (V#12+a2— —#1+a+1)> —(a
— InverseFunction 5
a?—1
+C11
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6.8 problem 8
6.8.1 Maple step by step solution . . . . ... ... ... L. H00

Internal problem ID [4413]
Internal file name [OUTPUT/3906_Sunday_June_05_2022_11_38_52_AM_79502661/index. tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 8.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

—\/1+y?—ay = —x

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

, ez +vai+a?—1
v= a’?—1
—ar ++va?+22 -1

Now each one of the above ODE is solved.

1)

Solving equation (1)

Integrating both sides gives

y_/aw+\/a2+x2—1 e

a?—1
m\/m (4(12—4) ln<w+v a2+z2—1> ﬁ
— 2 + 8 + 2 + 1
a?—1

Summary
The solution(s) found are the following

ax

_ 2 8 2
y_ a2_1 +Cl (1)

NI (40%—4) In(2+va?+2?—1) e
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Verification of solutions

2_ 2 2 _
xm + (4a 4) 1n<z+va “+x 1) + az
2 8 2 + c
a?—1

2

y:

Verified OK.
Solving equation (2)

Integrating both sides gives

/ —azr++vat+22-1
'y= —_ d:L'

a?—1
2_ /a2 2__
m\/m + (4a 4) ln<x+ a“+x 1) . @
— 2 8 2 4o
a?—1

Summary
The solution(s) found are the following

ovaZiar=1 | (16°—4)In(a+Va?+2?-1) )
— 2 + ) - T
=" a?—1 T C

Verification of solutions

NS (42 =) In(o+Va™ 1)

— 2 8 2
v=- a?—1 to

Verified OK.

6.8.1 Maple step by step solution

Let’s solve

—V1+y?—ay = —x

° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
Ik <—\/1 +y? — ay’> de = [ —zdz + ¢
° Cannot compute integral

i (—\/1+y’2 —ay’) dex = —x—; +c
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 113

e

tdsolve(x=a*diff(y(x),x)+sqrt(1+(diff(y(x),x))‘2),y(x), singsol=all)

e—

ar® +zval+ 22— 1+ (In(z++va®>+22—1)+2¢) (1+a)(a—1)

y(@) = 22 — 2
y(@) = ar®—zva?+22—1—(1+a)(a—1) (In(z+Va®+22—1) — 2¢;)
202 — 2

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 113

tDSolve[x==a*y'[x]+Sqrt[1+(y'[x])“2],y[x],x,IncludeSingularSolutions -> True] J

y(x)_)1<x(ax—\/a2+x2_1)+log(m_£)>+q

2 a? -1
1(z(Va?+27 -1+
y(@”)—>§<x( ¢ :1 ax)—log(\/a2+m2—1—x>>+01
a_
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6.9 problem 9
6.9.1 Maple step by step solution . . . . ... ... ..., H03

Internal problem ID [4414]
Internal file name [OUTPUT/3907_Sunday_June_05_2022_11_39_21_AM_33254320/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 9.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

p_VI+y®

T

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

1
y' = ﬁ (1)
1
N o (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
= [ ————d
Y /\/x2—1 v
=ln<x+\/z2—1>+cl

Summary
The solution(s) found are the following

y=n(z+Va?—1) +c (1)
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Verification of solutions

y=1n<x+m)+c1

Verified OK.
Solving equation (2)

Integrating both sides gives

1
= [ — d
Y / va2—1 v
=—1n<x+\/:v2—1>+02

Summary
The solution(s) found are the following

y:—ln<x+\/x2—1>+02

Verification of solutions

y=—In <x+\/x2—1> +co
Verified OK.

6.9.1 Maple step by step solution

Let’s solve
y/ e —— 1:—:yl2 = O

° Highest derivative means the order of the ODE is 1

/

Y

. Integrate both sides with respect to x
i (y’— —Vljyﬂ> dz = [0dz + ¢;
° Cannot compute integral

f(y’—@>dx=cl

T
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 33

e

tdsolve(diff(y(x),x)-1/x*sqrt(1+(diff(y(x),x))‘2)=0,y(x), singsol=all)

L

y(z) =1n (x+m> +a
y(z) =—1In <x+m> +c

v/ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 89

-

B
LDSolve[y'[x]-l/x*Sqrt[1+(y'[x])‘2]==0,y[x],x,IncludeSingularSolutions -> Trug}

1 T T
z) = —|log|l— —— ) —log| —+1] +2¢
1) = 5 (10 (1= ) s (= 1) 20
1 T T
| =log|l— —— ) +log| ——+1| +2¢
2( g( w2—1> g(\/:v2—1 ) 1)
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6.10 problem 10
6.10.1 Maple step by step solution . . . . ... ... .. ... ... .. HI0

Internal problem ID [4415]
Internal file name [OUTPUT/3908_Sunday_June_05_2022_11_39_52_AM_42926693/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 10.

ODE order: 1.

ODE degree: 6.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

3
z? <1 + y'2) = a?

Solving the given ode for ¢’ results in 6 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

n \/a: ((a2:)% - m)
o)

, \/x <(a2w)

y=- T
\/_\/ %\/_ a’x )%—( 21)

W=

ol
|
N
&
~

f \/ 3 (a2z)? — (a2z)% — 2:1:)

\/—Zx <Z\/§ (an)§ + (an)% + 23:)
2z
, \/ z (i3 (a%2)° + (a%)* + 20

y=- 2z

/

y:

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives
1
\/x ((a2x)3 - x)
Y= / dx
x

4 2
\/_ (a?2)3 <(Zzz)3 —a2) <(a2z)% — a2>

(a2x)3

Summary
The solution(s) found are the following

4 2
\/_ (a2)3 ((ij)ﬁ—az) <(a2z)% — a2>

y= ta
(a%)g
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Verification of solutions

4 2
\/_ (a*z)3 (tjz)g_a’z) <(a,2:1;)% — a,2>

(a2z)3

y:

Verified OK.
Solving equation (2)

Integrating both sides gives
\/ x ((a%) - x>
y= / — dx
x

4 2
\/_ (a2z)3 ((Zix) 3 —a2) ((azx)% _ a2>

ol

(a2x)3
Summary
The solution(s) found are the following
alx 3 a2x 2—a2 2
\/_( )3((a4 )3 ) ((a2x)§ . a2>
y=- +C
(a%)g
Verification of solutions
a’z % a’zx %’—a2 2
\/_< ) ((a4) ) ((a?x)? —a2)
Yy=- +C

(a2z)3

Verified OK.
Solving equation (3)

Integrating both sides gives

dzx
T

V24 /z (V3 (azx)%—(a%)%—2m
R

wiN

a’x 3 iv3a2—2(a?z %—(ﬂ
\/5\/( 3( — (@) ~a?) (i\/ga2—2(a2x)

—a

2

)

B 4 (azz)%
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Summary
The solution(s) found are the following

a2m% iv3a2—-2(ax 3_ a2
\/ﬁ\/( Al a4( ) (z 3a? — 2(a’r)
4(a2x)%

win

a2

N———

y=- tc

Verification of solutions

a’x 3 iv3a2—2(a?z %—a2 2
ﬁ\/< i( 20 ) (iv3a - 2@0)} - )
4(a2z)§

Yy=- +c3

Verified OK.
Solving equation (4)

Integrating both sides gives

\/_\/ %—(a%)% 235)

dzx

a2x)3 i\/§a2—2 a’x 7—a2 2
\/ﬁ\/( Al p )} —e?) (i\/§a2 —2(a2:10)g —a2)

2 +c4
4 (a?z)?
Summary
The solution(s) found are the following
a’zx 3 iv3a2—2(a2z 2—112 2
\/5\/( )5 ( - (a22)5 —a?) (i\/§a2—2(a2x)§—a2>
y= 2 + C4
4 (a’x)3
Verification of solutions
a’z 3 30,2 2(a?x 3 a.2 2
\/_\/( ) (a2) Z\/%Q_Mx)g az)
Y= 2 + Cq
4 (a?x)?
Verified OK.

Solving equation (5)
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Integrating both sides gives

-2z (/3 (a2x)% + (a%)é + 2z
v= / \/ < 2z )

dx

=

alz 14? iv3a2+2(a2z % a? 2
\/—230 (zx/g (a2z)? + (az) + 2x) \/( 3 aj (@a)! +) (i\/§a2 + 2(a2x)§ + a2)

4\/x <2\/§ (an)% + (a2a:)% + 2x> (a2x)

[SIN]

Summary
The solution(s) found are the following

y (1)
ax % iv3a2+2(a2x %+a2
(a22) ( (a%2)3 +a?) +a2>

_ \/_Qx (’L\/g (a2x)% + (a%)é + 2x> \/ - (z 3a? + 2(a%c)
4\/”0 (V3 (a%2)° + (a%0)* +20) (a%0)}

wln

+ c5
Verification of solutions

Y

4
(a?z)3 ('L 3a2+2(a?z) 3 +a2)

\/—2:1: <2\/§ (a%‘)é + (a%)% + 293) \/ — (7,\/§ a’ + 2(a2x)§ + a2>
4\/x (z\/§ (azx)% + (a%)é + 2x> (a%)g

+cs

Verified OK.
Solving equation (6)

Integrating both sides gives

dx

y = / _ \/_235 <"/§ (a22)$ + (a?z)" + 2x>

2z

. 1 1 (a%:)%(i 3a2+2(a2z)%+a2) . 9 9 N2 9
—2z <z\/§ (a%x)3 + (a2z)® + 21:) i (z 3a*+2(a*x)3 +a )

W z (V3 (@%2)* + (a?2)* +20) (a%0)’
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Summary
The solution(s) found are the following

y= (1)
a?x 3 V3 a? a?x 3 a?
\/—2x <Z\/§ (a?2)’ + (a?z)’ + 2x> \/( ML ;2( khid) (i\/§a2 +2(a?z)® + a2>
4\/x <2\/§ (an)% + (a%)é + 2x> (a%)g
+ ¢cg
Verification of solutions
y fry
. 1 1 (a2m)% (z 3a2+2(a2x)%+a2) . 2
—2x (’L\/§ (a2:1;)3 + (a2x)3 + 233) — (Z\/g a? + 2(a2m)3 + a2>
4\/33 (z\/g (azac)% + (a%)% + 23:> (a%)%
+ cg
Verified OK.

6.10.1 Maple step by step solution

Let’s solve
*(1+ y’2)3 = a?
° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x
[z*(1+ y'2)3 dz = [a’dz + ¢

o Cannot compute integral

[22(1+y?) dz = a?z + ¢4
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 605

Ldsolve (x~2% (1+(diff (y(x),x))~2)"3-a"2=0,y(x), singsol=all) J

:va?:cl a2— a2x2 2
+\/ (a*2)3 -~ )3) (@20)}

a

1N

z(a2x 3 a?—(a?zx 3
_\/( )3( 2( )3) a2+c1(a2m)

a

y(x) = (a2x)%

= @) et |
T (a22)?
y(r) =

[

i(a2x 3 ia2—/3a2)z(az 3 2
\/5\/—:1: (z\/§ (a?z)’ + (a?z)? +2x> \/(2( i AL Jataa)? (2(a2:19)g +a2+i\/§a2>

4\/<z (azsc)% + 2iz — /3 (aQw)%> x (a2x)%

+c
y(x)

V2 \/ - (zx/g (a22)7 + (a2z) + 256) \/ (%(a%)%+m2‘;\/§a2>w(a%)% (2(a2x)§ +a%+iv/3 a2>

4\/<z (a2x)% + 2iz — /3 (a2x)%> x (aQ:v)%
+c
<_2 (@) Va4 (i v2) a2> \/ ((m_gaz_i(;zx)%)x(aax)% + doy(a?a)}
le) = 4 (a%)g
. (_2 (@) Va4 (16— v2) aQ) \/ ((m_l)az_z:;zm%)z(azw)é  ter(aa)?

y(z) = -

4 (a%)g
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v/ Solution by Mathematica
Time used: 18.927 (sec). Leaf size: 375

kDSolve [x~2x(1+(y' [x])~2)"3-a~2==0,y[x],x,IncludeSingularSolutions -> True]

J

_}\/—/ (2% — a?%) + ¢4

y(z) > vz ——1( 23 _ 2/3)—|-cl
T

1 i (V3+1) a3
y(x) — €1 — _\3/5\/_1 + 2.’[;2/3

y(w)—>1€/5\/ 4 V3] et (207 + (1-v3) a*) +

212/3

<2x2/3 + (1 _ z«/ﬁ) a2/3>

i (V3—1i) a3

]' 3
y(z) > — 5\/5\/—1 - 0023
i (V3—1i)a??

y(z) = =v/T\[ -1 — 50773 (2 23 4 <1+2\/_> 2/3>—|—cl
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6.11 problem 11
6.11.1 Maple step by step solution . . . . ... ... .. ... ... .. HI5

Internal problem ID [4416]
Internal file name [OUTPUT/3909_Sunday_June_05_2022_11_40_07_AM_14979362/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 11.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

(a+z)*

12
= 14T
y + 2az + z2

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

= 1)
Y 2az + x2
a
!

V= _\/2ax+x2 @)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

a
= [ —— dz
Y /\/2ax+w2
=aln<a+x+\/2ax+x2>+cl

Summary
The solution(s) found are the following

y:aln<a+x+\/2am+x2>+cl (1)
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Verification of solutions

y=aln(a—|—x+\/2ax+x2> +c

Verified OK.
Solving equation (2)

Integrating both sides gives

a
= [ ———dzx
Y / V2az + x2
= —aln (a+x—|—\/2az—|—x2> + ¢y

Summary
The solution(s) found are the following

y=—a1n<a+x+v2ax+x2> + o

Verification of solutions

y=—aln <a+x+v2ax+x2> + o
Verified OK.

6.11.1 Maple step by step solution

Let’s solve

(atz)?
2ax+12

y'=—1+

° Highest derivative means the order of the ODE is 1

/

Y

. Integrate both sides with respect to x
fy'zdm = <—1 + 2(2:-9:9);> dr +c;

o Cannot compute integral
I o2de = _aln(22a+z) n alr;(m) ¥

015
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 42

e

tdsolve(1+(diff(y(x),x))‘2=(x+a)‘2/(x‘2+2*a*x),y(x), singsol=all)

L

y(x):aln<x+a+ x(2a+x)) +c

y(xz) = —aln (x—i—a—i— x(2a+x)> +c

v/ Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 107

-

N
LDSolve[1+(y'[x])‘2==(x+a)‘2/(x‘2+2*a*x),y[x],x,IncludeSingularSolutions -> T%#e]

_ 2av/zv2a + zlog (V2a + 7 — V/z)

y(@) = z(2a + ) ta
o) » SV WA EZVE)

016



6.12 problem 12
6.12.1 Solving as clairautode . . . . . . . . . ... ... ... BIT7

Internal problem ID [4417]
Internal file name [OUTPUT/3910_Sunday_June_05_2022_11_40_15_AM_98915764/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 12.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _Clairaut]

y—azy —y +y" =0

6.12.1 Solving as clairaut ode

This is Clairaut ODE. It has the form
y=zy +9@)
Where g is function of ¢/'(z). Let p = ¢/ the ode becomes
pP—azp—p+y=0
Solving for y from the above results in
y=-—p'+ap+p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y' by p
which gives

y=—p"+zp+p
=—p’+azp+p

017



Writing the ode as

y=zp+ g(p)

We now write g = g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of . Hence the above becomes

y=azp+g (1)

Then we see that
g=-p"+p

Taking derivative of (1) w.r.t. z gives

—i(z +9)

_ dp ,dp
p= (“‘”dm) * (g dx)

dp
_ /
p—p+(x+g)—dx
dp
_ /
0—(w+g)—dm

Where ¢’ is derivative of g(p) w.r.t. p. The general solution is given by

dp
L _o
dz
b=

Substituting this in (1) gives the general solution as

yz—cf—i-clx—i-cl

The singular solution is found from solving for p from

t+4(p)=0

And substituting the result back in (1). Since we found above that g = —p? + p, then
the above equation becomes

z+g'(p)=r—-2p+1
=0

018



Solving the above for p results in

pL=-+

z
2

N =

Substituting the above back in (1) results in

T+ 1)
= —( 1 )
Summary
The solution(s) found are the following
Y= —cf+clx+cl
_(z+ 1)2
y="y
Verification of solutions
y=-c+cazr+o
Verified OK.
(x + 1)2
4
Verified OK.

Maple trace

“Methods for first order ODEs:
*x* Sublevel 2 **x
Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert
<- dAlembert successful"
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

Ldsolve(y(x)=x*diff (y(x) ,x)+diff (y(x),x)-(diff (y(x),x))"2,y(x), singsol=all) J

1+ x)2
o) = S

y(z)=ci(—aa+z+1)

v/ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 28

LDSolve [y [x]==x*y' [x]+y' [x]-(y' [x])~2,y[x],x,IncludeSingularSolutions -> True]J

y(z) — ('il(x +1—0¢)
y(z) — 1(90 +1)°
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6.13 problem 13
6.13.1 Solving as clairautode . . . . . . . ... ... ... H21]

Internal problem ID [4418]
Internal file name [OUTPUT/3911_Sunday_June_05_2022_11_40_28_AM_68233945/index. tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 13.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

y—xy —\/b2—a2y?=0

6.13.1 Solving as clairaut ode

This is Clairaut ODE. It has the form
y=xzy +9(y)

Where g is function of y/(z). Let p = ¢’ the ode becomes
y—ap—\/—a’p? +5? =0
Solving for y from the above results in
y=ap+\/—a?p? + (14)

The above ode is a Clairaut ode which is now solved. We start by replacing 4’ by p
which gives

y=ap+—a’p? + b’
=xp+ / —a?p? + b?
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Writing the ode as

y=zp+g(p)

We now write g = g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of . Hence the above becomes

y=zp+g (1)

Then we see that
g= /—a2p2 T B2

Taking derivative of (1) w.r.t. x gives

—i(m +9)
p_Mrp 9

. dp ,dp
p= (””dx) * <g dw)

dp
_ /
p—p+(w+g)—dx
dp
_ /
0—(a:+g)—dx

Where ¢’ is derivative of g(p) w.r.t. p. The general solution is given by
g

dp
T -0
dx
b=

Substituting this in (1) gives the general solution as

Yy =1z + \/ —a?c? + b?

The singular solution is found from solving for p from

r+4(p)=0

And substituting the result back in (1). Since we found above that g = v/—a?p? + b2,
then the above equation becomes

+4(p) = S
SR Y ey
=0
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Solving the above for p results in

zb

Pr= va2+z2a
zb

2= V@ +ala

Substituting the above back in (1) results in

a‘;ib;z Va? +z2a 4+ ba?
= V&t 2a

L Ve +2%a—ba?
2= Vva?+z2a

Summary
The solution(s) found are the following

y =z + 4/ —a?c + b (1)
a%ibig Va2 +22a+ba?
S Vet
a‘éib; Va2 +1r2a — ba?
' V& + oa

y=caz+\/—a?E + b2

a‘;iﬁ’; Va2 + z2a+ ba?
V= va?+x2a

(2)

(3)

Verification of solutions

Verified OK.

Verified OK.
agj?:ﬂ v a? + z’a
V= va2+z2a

Verified OK.
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful’

v/ Solution by Maple
Time used: 0.297 (sec). Leaf size: 22

e N

Ldsolve(y(x)=x*diff (y(x),x)+sqrt (b~2-a~2% (diff (y(x),x))"2),y(x), singsol=all) J

y(z) = c1z + )/ —a2c + b2
v/ Solution by Mathematica

Time used: 0.349 (sec). Leaf size: 38

LDSolve[y[x]==x*y'[x]+Sqrt[b‘2—a‘2*(y'[x])‘2],y[x],x,IncludeSingularSolutions f> True]

y(x) = Vb —a’c? + iz
y(z) — Vb2
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6.14 problem 14

6.14.1 Solving as homogeneousTypeD2ode . . ... ... . ... ... 525
6.14.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 527
6.14.3 Solving as bernoulliode . . . ... ... ... .......... 63T
6.14.4 Solving as dAlembertode . . .. .. ... ... ... ...... H35)

Internal problem ID [4419]
Internal file name [OUTPUT/3912_Sunday_June_05_2022_11_40_53_AM_721168/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "dAlembert", "homo-
geneousTypeD2", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _Bernoulli]

y—xy —z\/1+y?=0

6.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

u(z)z — z(v'(z) z + u(z)) — :c\/l + (v (2)z +u(2)’ =0

In canonical form the ODE is
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Where f(z) = — and g(u) = 1. Integrating both sides gives

1

1
/u2+1 du—/—gdx

u

In(w*+1)  In(z)
2 2

Raising both side to exponential gives

_In(x)
Vu2+1=e 2z te

Which simplifies to

C3
VuZ4+1l=—
u® + \/5

/ c;;,ec2
Vz

Which simplifies to

The solution is

c3e?
1 —
\/ U >+ N

Replacing u(z) in the above solution by £ results in the solution for y in implicit form

Summary
The solution(s) found are the following

2+ 1y? cze?
V= (1)
T N
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Figure 77: Slope field plot

Verification of solutions

T2+ Y2 c3e®

2z

Verified OK.

6.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
y/ — _1"2 — y2
2zy

Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny -&) — w2€y —we§ —wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _

dsS
§ 7

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=z

S is found from

U
<

o)
Il
—

LBl = | =
QU
N

I
—

Which results in
2
)
S==
2z
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS Sy +w(z,y)S,

dR ~ R, +w(z,y)R, @

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

22 — g2
Evaluating all the partial derivatives gives

R, =1
R, =0

__v

¥ 2x2
Y
Sy = -

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

— == 2A

dR 2 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

1
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

:-——“+Cl

2

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

gives
S(R)

results in

Yy

2z
Which simplifies to

Yy

2z

x
-5 ta

=
——+c
2 1

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ o’y s _ _1
dx 2zy dR — 2
NN\ S B S R T VO VN
——w——aNN\ N\ A RSN D S T S
»»4»\\\\\¢ff///»»4»w A A A S A e S e S e Sa Sa S Sa e S Sa e S Sa
B Gt N WAV B I N D Gt SN R R D N e N
//»»ﬁ»\sl@\q WVt fAm s~ N SNa e NaNa IRI\\\\\\\\\\\\
AA A > \&f//»%x\\\\ A Sa e S Sa e ~a SafMa e Sa Sa S Sa N S Sa Na
AP AA T r N L] A=~ N\ N O S e B
APAAA A A==\ =N ) N AN B TR D D e N N
T A e N e T R::x R S S R Y SN D
ftttttrr/7—=r=NN A bbb e e
I MV VAN "7 AT T 411 y2 R S N S O S S
YAV NY NN N N AN A A S S____ T O R D
NN NN NN A\ aer A A A AL _'2 B I B
\\\\\\‘ﬁ»/v/_;‘\‘ A T R e RS N
NN a7 A V N\ a~w—>w o 7 7 7 A e A e e e Se e S SN e e S Sa e e Sa Na Sa
\\\w»)//ff&\\\ﬂ%»/// e N N N N YN
\N%%»///ffx\\\\Wﬁd/ﬂ A S e S S S Sa e N NN e N S e N N N N N
v 7 7 A AR e OO N T
e e A A i B B N e T D S R R
——er 2 A2 PN N e R D N R SN
Summary
The solution(s) found are the following
2
y T
Y- lea 1)
2z 2
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Figure 78: Slope field plot

Verification of solutions

Verified OK.

6.14.3 Solving as bernoulli ode

In canonical form, the ODE is

Y = F(z,y)
22 — g2
- 2zy
This is a Bernoulli ODE.
1, =zl
Y=Y 2y

The standard Bernoulli ODE has the form

y = fo(z)y + fi(z)y"

The first step is to divide the above equation by y™ which gives

g% = fol@y' ™ + fi(z)
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fol@) = 5
filz) = —g
n=-—1

Dividing both sides of ODE (1) by y" = , gives

2

’ T
=4 _Z 4
Yy 5 (4)

S

Let

Taking derivative of equation (5) w.r.t  gives
w' = 2yy/ (6)

Substituting equations (5) and (6) into equation (4) gives

W) _ve) o
2 2z 2
w’=%—x (7)

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is
w'(z) + p(z)w(z) = ¢(z)

Where here
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Hence the ode is

w(x
w'(z) i ) =
The integrating factor u is
p=e [—Lldz
_1
x

The ode becomes

2 (uw) = (1) (~2)

()= ()

4(2) =-1ds
x
Integrating gives
v / —1dz
x
w
—=—x4+C
x

Dividing both sides by the integrating factor yu = % results in
w(z) = cx — z°

which simplifies to

w(z) =z(—z+ 1)

Replacing w in the above by 3? using equation (5) gives the final solution.
Yy =z(—x+c1)

Solving for y gives

933



Summary

The solution(s) found are the following

Verification of solutions

Verified OK.

Verified OK.

y=+vz(—z+c)

1T ~~—w—oem 7/

__\)//////

y=—vz(-z+a)
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Figure 79: Slope field plot

y= el ra)
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6.14.4 Solving as dAlembert ode

Let p = ¢ the ode becomes

y—azp—az/pPP+1=0
Solving for y from the above results in
y= (VP +1+p)s
This has the form

y=2zf(p) +9(p)

*)

Where f, g are functions of p = y/'(x). The above ode is dAlembert ode which is now

solved. Taking derivative of (*) w.r.t. z gives

p=f+(af +g) P

p—f=(af +9) P

Comparing the form y = zf 4+ g to (1A) shows that

f=vP+1+p

g=>0

Hence (2) becomes

—J}T—H:x(\/zﬁpiﬂ-l—l) e

The singular solution is found by setting g—ﬁ = 0 in the above which gives

—VPP+1=0

Solving for p from the above gives

p=1i

p=—1
Substituting these in (1A) gives

Yy = —IiT

Yy =1z
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The general solution is found when 2 # 0. From eq. (2A). This results in

p()’ +1
plz)=- (3)
. < po) 1>
p(z)*+1
This ODE is now solved for p(x).
Inverting the above ode gives
d z(p) (75 +1
—a(p) = - (s ) )
dp p?+1

This ODE is now solved for z(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

22(6) + pD)a(s) = a0

Where here
—VPP+1-p
pp)=—"75 "
p*+1
q(p) =

Hence the ode is

d
d_px(p) -

The integrating factor u is

The ode becomes

i (ef— 52:11%1)1') =

Integrating gives

- 7\/p2+17pd

e 2+t Pr =y
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[

Dividing both sides by the integrating factor u =e 21 P pesults in

24+1+p
z(p) = cze ( i

Since the solution z(p) has unresolved integral, unable to continue.

Summary
The solution(s) found are the following
y=—iz (1)
y =iz (2)
H=—==>SNN\N\W\ V777
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Figure 80: Slope field plot

Verification of solutions

Verified OK.

Verified OK.
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful’

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 97

Ldsolve(y(x)=x*diff (y(x),x)+x*sqrt (1+(diff (y(x),x))"2),y(x), singsol=all) J

( [ o 2ccll+w)\/ T (— 2c1+x)—x+c1>

y(=) = V—z (—2c1 + )
<\/ - 2Cc11+a;) \/ T (—2c1+ )+ — C1>
¥(z) = V-2 (—2c + )

v/ Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 37

LDSolve[y[x]==x*y'[x]+x*Sqrt[1+(y'[x])‘2],y[x],x,IncludeSingularSolutions -> T#ue]

y(x) = —v/—z(z — 1)

y(x) = /—z(z — 1)
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6.15 problem 15
6.15.1 Solving as dAlembertode . . . .. ... ... ... ... ... 539

Internal problem ID [4420]
Internal file name [OUTPUT/3913_Sunday_June_05_2022_11_41_28_AM_42177893/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 15.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, ~class A°], _dAlembert]

y—zy —az\/1+y?=0

6.15.1 Solving as dAlembert ode

Let p = v the ode becomes
Yy—Tp— aa:\/]T—l-l =0
Solving for y from the above results in
y=(VP+1la+p)s (14)
This has the form

y = zf(p) + g(p) *)

Where f, g are functions of p = ¢/(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. = gives

p=f+(af +9) P
d;
p—f=(@f+d) (2)
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Comparing the form y = zf + g to (1A) shows that

f=vP+la+p

g=>0

Hence (2) becomes

VPP +1la= x( + 1) P (x) (24)

_ 9w
VP +1
The singular solution is found by setting j—z = 0 in the above which gives

—Vp?+1la=0

Solving for p from the above gives

p=1
p=—i
Substituting these in (1A) gives
= —IT
Y =1

The general solution is found when 2 # 0. From eq. (2A). This results in

VP@)’ +1a

p(z) = - ( - +1> 3)

p(z)’+1

This ODE is now solved for p(zx).

Inverting the above ode gives

) = i (pff:i: ) @)

This ODE is now solved for z(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

dipfv(p) + p(p)z(p) = q(p)
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Where here

Hence the ode is

d_ . (coo—VP+T)a) _

The integrating factor u is
f e P2+1dp

(7+1)e

p=e
The ode becomes
d z=0
dp
_ —ap—\/p241 p
di ef e | =0
D
Integrating gives
_—ap—\/p241 p
ef (p+1)a pa; =y
_ —ap—\/p?+1

i) dp
Dividing both sides by the integrating factor y = e (p2+1)a results in
g y g g %
s ap+\/p2+1dp
2 1
z(p) = cpe” i

Since the solution z(p) has unresolved integral, unable to continue.

Summary
The solution(s) found are the following
y=—iz (1)
y =iz (2)
Verification of solutions
Yy = —1iT
Verified OK.
Y =1z
Verified OK.

941



Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful"

v/ Solution by Maple
Time used: 0.046 (sec). Leaf size: 340

Ldsolve(y(x)=x*diff (y(x),x)+a*x*sqrt (1+(diff (y(x) ,x))"2),y(x), singsol=all) J

. ( V-22a2+224y(2)2 aty(z) )
arcsinh 3
\/—w2a2+y(w)2a2+2 —z2a2 422 +y(x)? ay(z)+z2+y(z)? (a _l)z
x —e€ 1

a

(a2—1)%z2
=0
—22a24y(z)2a2+21/ —z2a24224+y(z)? ay(z)+22+y(z)?
(a2—1)2z2
. (—\/ —22a24+224y(x)? a+y(m)>
arcsinh 3
\/—x2a2+y(x)2a2—2\/ —22a24-224y(x)? ay(z)+o2+y(z)? (a _1)z
x 5 —e a c1
(a2—1)"z2
=0
—z2a24y(z)?a2—2,/ —z2a24+22+y(z)? ay(z)+o2+y(z)?
(a2—-1)%z2
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v/ Solution by Mathematica
Time used: 0.993 (sec). Leaf size: 223

kDSolve [y [x]==x*y' [x]+a*x*Sqrt [1+(y' [x])~2],y[x],x,IncludeSingularSolutions ->J True]

2t arctan —v@ | _ 2ia arctan __ayl®) +a log <y(m2)2 + 1)
m\/@ z\/@ alog (z — a*z)

Solve T _ —
+ C1, y(.’L‘)

—2arctan | ——¥@ + 2ia arctan @ +alog (ﬁ + 1>

z)2 )2 x
] z\/a'z—yij m\/‘@ alog (z — a’z)

Solve 202 —2 - 1 — a2
+ C1, y(m)
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6.16 problem 16
6.16.1 Solving as dAlembertode . . . . ... ... ... ... ... .. L¥!

Internal problem ID [4421]
Internal file name [OUTPUT/3914_Sunday_June_05_2022_11_41_54_AM_95615808/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 16.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[_dAlembert]

—yy—ay’ = -z

6.16.1 Solving as dAlembert ode

Let p = v the ode becomes

—ap® —py = -z

Solving for y from the above results in

_T_, 1A
y=_ - (1A)

This has the form

y =zf(p) + g9(p) *)

Where f, g are functions of p = ¢/(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

p=f+@af+9)L
p—f= @l +) L )
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Comparing the form y = zf + g to (1A) shows that

Hence (2) becomes

The singular solution is found by setting %2 = 0 in the above which gives

dx
1
p——=0
p
Solving for p from the above gives
p=1
p=-—1
Substituting these in (1A) gives
y=a—2x
y=—a+zx

The general solution is found when 2 # 0. From eq. (2A). This results in

P(@) = o
Pla)=—7"2 (3)
p(z)”
This ODE is now solved for p(x).
Inverting the above ode gives
z(p)
d - —a
—z(p)= L 4
0= @

This ODE is now solved for z(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

%mm+mmmm=«m
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Where here

1
b\p)=
(p) 57
___ap
Hence the ode is
d z(p) ap
——(p) -

The integrating factor u is

1
p=e F®

R ()
Which simplifies to
_VpHIvp—1
p

The ode becomes

) = (-5
B ) () ()

dp P P p?2—1
d(\/p—i-l\/p—lx)_(_a\/p—i-l p—1) ap
D B p?—1

Integrating gives

vVp+1yp—1zx :/_a\/p+1\/p—1dp
p

pP-1
VPFIvp—1z  a/pF+Iyp-—1 In (p++p*—1) e
p Vvp* =1 '
Dividing both sides by the integrating factor u = —”’HP V=1 regults in

_paln(p++/p?—1) c1p

#(p) = N/ SN == W
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p= —y +Vy? + dax
B 2a

Y+ Vy? + daz
2a

p=-

Substituting the above in the solution for x found above gives

V2| -2+ Va Tl et e

a

T = (—y-l-\/M) -

2\/—y y2+4ax—2a2+2azx+y>?

a2

&

\/—y+\/y2+4az+2a \/—y+\/y2+4az—2a a
a a

+

Vy2+4az—2a2+2az+y?
ﬁ\/y N Ny

a

V2| -In(2)+1n

T = (y+\/m>

92 \/y\ /y? +4az—§a2 +2az+y?
a

C1

\/—y—«/ 24 4ax+2a \/—y—\/ 24dazx—2a a
a a
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Summary
The solution(s) found are the following

Yy=a—2z (1)
y=—a+cx (2)

o= (=

— 2 44ax—2a2+2ax+y2
Vay et

a

V2| -In(2)+1In

+ vy +daz) | -

2\/—y\/y2+4am—2a2+2aa:+y2
a2

C1

\/—y+\/y2+4aw+2a \/—y+\/y2+4ax—2a a
a a

+

(3)

21 4ax—2a242 2
ﬁ\/y\/y +4azx aza +2azx+y a— /;y2+4aw—y

a

V2| -In(2)+In

= <y+ \/m>

2\/y y2+4az— 2a2+2ax+y

&1

\/—y— y2+4az+2a \/—y— y2+4ax—2aa
a a

(4)
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Verification of solutions

y=a—2

Verified OK.

y=—a+tvzx

Verified OK.

o= (-

V2

—In(2)+1n

— 2+4 —2 2+2 + 2
Vay TRt

a

+ VP +4az) | -

Warning, solution could not be verified

V2

—In(2)+1n

a2

2\/—y y2+4azx—2a2+2ax+y?

&1

_|._
\/—y+\/y2+4ax+2a \/—y+\/y2+4ax—2a a
a a

24 4az—2a242 2
ﬂ\/y\/y +4az a2a +2azt+y a— /7y2+4ax—y

a

T = <y+\/m>

Warning, solution could not be verified

9 \/y\ /y2+4ax—2a2+2azx+y?
a2

(8]

\/—y—\/ 2+4az+2a \/—y—\/y2+4aa:—2a a
a a
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful"

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 396

Ldsolve(x—y(x)*diff (y(x),x)=a*(diff (y(x),x))"2,y(x), singsol=all) J

€1 (y(w) - \/‘m)

\/—y(x)+\/4az+y(z)2—2a \/—y(x)+\/4az+y(w)2+2a
a a
x 2— x ax x 2— Q2 axr
g1/ Y@@V aﬁz-y( )2-2a2+2a (y(z)_ 4az+y(x)2>\/§

(y(:c) —\/4daz+y (:c)2) —3In(2) +2In \/ - V2

4\/y(w)2—y(z)\/4a$+y(z)2—2a2+2ax
a2

+x

a (y(x) +\/4dar +y (w)2)
2\/—y(z)—\/4az+y(m)2—2a —y(z)—1/4az+y(z)?+2a

a

+x

y(z) 4am+y(m)2—2a2+2am+y(x)2

2 a—( y(x)+1/4az+y(z)? ) V2
—30@) 4 1n \/ - ( ) (y(x) +1/4az +y (x)2) V2

a

2\/y(w) daz+y(z)?—2a2+2az+y(z)?

a2
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v/ Solution by Mathematica
Time used: 0.55 (sec). Leaf size: 79

kDSolve [x-y [x]*y' [x]==ax*(y' [x])~2,y[x],x,IncludeSingularSolutions -> Truel

2aK[1] arctan ( v Ilq_lﬁ_[i]z)
Solve | ¢ z

B J1- K[
ClK[l] xT

N . aKm} {y(2), K1)}

NI A i)
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6.17 problem 17
6.17.1 Solving as dAlembertode . . . .. ... ... ... ... ... 552]

Internal problem ID [4422]
Internal file name [OUTPUT/3915_Sunday_June_05_2022_11_44_35_AM_53176799/index.tex]

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 17.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _dAlembert]

yy—a\/1+y? = -z

6.17.1 Solving as dAlembert ode

Let p = ¢ the ode becomes

py—aVp’+l=—z

Solving for y from the above results in

[T
b b
This has the form
y=2zf(p) + 9(p) *)

Where f, g are functions of p = y/(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. = gives

p=f+(af +9) P
d;
p—f=(@f+d) (2)
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Comparing the form y = zf + g to (1A) shows that

1
f=—
p
g= av/p*+1
p

Hence (2) becomes

1 z a avp? +1
pei= (54 - B 24)
p p p*+1 p
The singular solution is found by setting g—m = 0 in the above which gives
1
p+-=0
p
Solving for p from the above gives
p=1
p=—i
Substituting these in (1A) gives
Y= —IiT
Y =1ix

The general solution is found when S—Z # 0. From eq. (2A). This results in

1
p(z) + @)

/
p(z) =
( ) a ay/p(z)?+1

p(@)” " \/p(x)2+1 Ok

(3)

This ODE is now solved for p(z).

Inverting the above ode gives

z(p) + a _ aV/p*+1
p2

Vp2+1 p?
il = 4
z(p) D zl) (4)

This ODE is now solved for z(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

%mm+mmmm=«m
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Where here

1
plp) = p(P*+1)
alp) = ———
p(p*+1)
Hence the ode is
d vz _  a

dp ®) p(P*+1) p(p2+1)%

The integrating factor u is

Which simplifies to

The ode becomes

0 ()
) Cwn)

(757) = (open)

OJ

dp(“T ) ("

Integrating gives

VP F1a / e g
p p*(p*+1)
vprtle = aarctan (p) + 2t
p p
Dividing both sides by the integrating factor u = ~ p;“ results in

p(a arctan (p) + %) e
x(p) = +
®) Vp*+1 p?+1
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which simplifies to

2(p) = aarctan (p)p+cip+a
g VP

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

zy + Vy?a? — a* + a?z?
p= 2 _ .2
a” -y
—ay + Vi — At a2

a2 — 2
Substituting the above in the solution for z found above gives

T
a(zy +/=a? (—y2 + a2 — x2)> arctan <$y+ "“22(:35"'“2‘”’2)) +ad—yfa+yez+\/—a (—y2 +a’—

\/2\/—a2(—y2+a2—w2)wy+y4+(—a2+w2)y2+a2w2 (a2 _ yz)

(a2—y?)?
x
eyt~ (PR —a?) ,
—a (zy ——a?(—y2 +a? — :vz)) arctan < 2yt Z;iyﬂuﬁ m2)> +a® — y?a + yerx — /—a? (—y? + @
— —a2(—q2 2_p2 4 —a2 24,2 2,2
\/ 2\/—a?(—y%+a ac(c32x_g/y—|;;;/2+( a?+z2)y%+a’x (CL2 _ y2)
Summary

The solution(s) found are the following

y= i (1)
v (3)
a(my +v/—a? (2 +a® - z2)> arctan (myh/W) +ad — yla+yow + /—a (-2 + a2 —
2/~ (Pt =) oyty+(— a2y +a’a?
\/ (=y’+ (3123;3);( +x2)y2+ (a2 — y?)
N (4)

oyt T ,
—a (zy —-a?(—y2+a?— x2)) arctan < ot Zﬁ(_;f“” $2)) +a® —y?a+yox — /—a? (-2 + &

-2 _a2(_y2+a2_12)$y+y4+(_a2+m2)y2+a21‘2 (az_ 2)
(a2—y2)? Y
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Verification of solutions

Yy =—iz
Verified OK.

Yy =1z
Verified OK.
T

a(xy +v/—a? (—y> +a? — mz)) arctan (z“ _“j§:Z;+a2_z2)> +a® —yPa+yerx 4+ \/—a? (—y? + a? —
QJW 44 (—a2412)y24+a2 12
\/ a?(-y3%+a x(l:;g—;y);-( a?+z?)y?+a?z (a2 _ y2)
Verified OK.
T
_a (wy —/—a?(—y*+a® — x2)> arctan <_my+ _Zz(_;ZQ+“2_“”2)> +d® —yPa+yar— /a2 (-2 +a
—2./— 2(_q12 2__p2 4 2 2),,2 2.2
\/ a?(—y%+a 90((323?;;1)42-1-( a?+z?)y?+a?z (a2 _ y2)

Verified OK.

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful"

956



v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 237

Ldsolve(x+y(x)*diff (y(x) ,x)=a*sqrt (1+(diff (y(x),x))"2),y(x), singsol=all) J

y(z)
= csc (RootOf ((sin (_Z)_Za+sin (__Z) c;—cos (_Z) a—x) (sin (_2) _Za+sin (_Z)c;+cos (_Z)a—1)))
( —)cot (RootOf ((sin (__Z)_Za+sin (__Z) c;—cos (_Z)a—x) (sin (_Z)_Za+sin (_Z) c;+cos (__Z)a—x)
y(z
= csc (RootOf ((sin (_Z) _Za+sin (__Z) ¢1+cos (_2) a+z) (sin (_Z) _Za+sin (_Z) c1—cos (_2) a+z)))
—cot (RootOf ((sin (_2) _Za+sin (__Z) cy+cos (_Z)a+z) (sin(_2)_Za+sin(_Z) c;—cos(_Z)a+zx)

v Solution by Mathematica
Time used: 3.538 (sec). Leaf size: 388

LDSolve [x+y[x]*y' [x]==a*Sqrt [1+(y' [x])~2],y[x],x,IncludeSingularSolutions —-> T#ue]

2‘1\/Warctan ‘””\/y(ab)f—a2
y(w)(\/‘12 (y($>2_a2>_\/a2(—a2+w2+y(z)2))+a2w 5 . - -
Vy(2)?—a? — a2 (—a? + 2% + y(z)?)
Solve 2
a

Vy(@)?—a®
a\/y(z)? — a? arctan (%) @
— =c,y(z

Ve (y(x)® - a)

a\/m arctan (—W)
Va? (y(z)* — @)

Solve

2‘1\/¢Warctan ( ‘190\/?,/(90)27*¢12 )
2(—a? + a7 +y(2)? e e e I el ) R
Va2 (—a? + 22 + y(z)?) — o
i :Cl7y(x)

a2
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6.18 problem 18

Internal problem ID [4423]
Internal file name [OUTPUT/3916_Sunday_June_05_2022_11_48_17_AM_21845302/index.tex|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 18.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_rational, [_1st_order, ~_with_symmetry_I[F(x),G(y)] 1]

Unable to solve or complete the solution.

2
Yy—yv+vy ==z

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

IS UNRV/EEEET:
2

/ 2
y = 1
y 1)
1 V1+4y’+4a
y =2 ” 2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.
Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.
Unable to determine ODE type.
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Maple trace

“Methods for first order ODEs:
*k* Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
*x* Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
) 3
4 [1, -1/2/y1, [1/2+x, 1/2x(2xy~2+x)/y], [1/2*x"

, —> Computing symmetries using: way

, —> Computing symmetries using: way

N

v Solution by Maple
Time used: 0.063 (sec). Leaf size: 77

e hY

dsolve (y(x)*diff (y(x) ,x)=x+(y(x) "2-y(x) 2% (diff (y(x),x))"2),y(x), singsol=a11?

N J

v—1—-4dzx

y(@) = ———
v—1—4dz
Y(o) = ~—5—
y(z) = — \/4:1;2 + (—8¢c; 2— Dz +42 -1
y(z) = V4z? + (=8¢ —4)z 4+ 4] — 1

2
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v/ Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 69

LDSolve [y [x]*y' [x]==x+(y[x]~2-y[x] 2% (y' [x])"2),y[x],x, IncludeSingularSolutionﬁs -> True]

1
y(x) — —5\/41'2 —4(14+4c1)z — 1+ 16¢42

1
y(z) — 5\/4952 —4(1 +4c))x — 1+ 16¢,2
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6.19 problem 19
6.19.1 Solving as dAlembertode . . . . ... ... ... ... ... .. 5611

Internal problem ID [4424]
Internal file name [OUTPUT/3917_Sunday_June_05_2022_11_48_39_AM_42490421/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 19.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _dAlembert]

VI Viee?

6.19.1 Solving as dAlembert ode
Let p = v the ode becomes

1 p
J— J— =
v+l VpP+1

Solving for y from the above results in

Y

p+1
= 1A
Y o (1A)
This has the form
y=2zf(p) + g(p) *)

Where f, g are functions of p = y/(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. = gives

p=f+(af +9) P
d;
p—f=(@f+d) (2)
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Comparing the form y = zf + g to (1A) shows that

f=1
p+1

VPFI

Hence (2) becomes

p—1=< . -—@+”€)ﬂ@> (24)
P+1 (p2+1)>
The singular solution is found by setting 3_95 = 0 in the above which gives
p—1=0
Solving for p from the above gives
p=1

Substituting these in (1A) gives

y=z+2

The general solution is found when 2 # 0. From eq. (2A). This results in

/ _ p(x)—l
P(@) = o (3)

Vo 1 ()

This ODE is now solved for p(z).

Inverting the above ode gives

d - 1 _ (p+1);z;
P (p41)2
= 4
o) = @

This ODE is now solved for z(p). Integrating both sides gives

1
z(p) = /—m dp

p
p+1

+ co
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

y(—z+y+v—y?P+20y—22+2) z(—z+y+v—y>+2zy—22+2)

- _ _1
P x?2—2zy+y?—1 x?2—2zy+y?—1

_x(—y—l—x+\/—y2+2my—w2+2) _y(—y+x+\/—y2+2xy—:c2+2) 1
P= 2 —2zy+9y2—1 2 —2zy+ 92 —1

Substituting the above in the solution for  found above gives

V2 (=14 (z —y) vV—y* + 2zy — 22 +2)
T = + co

2z—y+1)(z—y—1) \/ _W_y2+2xy(;f2_;i:f¥:§j§’ Zry—a’+2+1

V2(1+ (z—y) V=92 + 22y — 2% +2)
r = — +Cz

z\/—y2+2zy—x2+2—y/—y2+2zy—x2
2 (-’E —y+ 1) (x —Yy—- 1) \/ Yoyt y(z2j22myi\§2_yl;2_2 yr e

Summary
The solution(s) found are the following

y=x+\/§ (1)
(=14 (z—y)vV—y® T 20y — 22+ 2
o V2 (=14 (z—y)vV—y% +2zy — 2% + 2) te @)
—x+/—y2 ry—x2 2 Ty —12
2z -—y+D(z-y- 1)\/ s y<xz_;§;f¥—?i>2+2 e
2 (14 (z —y) V=92 + 22y — a2 + 2
e V2 (1+ (2 —y) vV=y* + 22y — 27 +2) te
20 —y+1)(z—y—1) \/ oy y Hey TRy oy ey w2

(22 —2zy+y2—1)°
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Verification of solutions

y:x+\/§

Verified OK.

V2 (=14 (z —y) vV—y% + 23y — 2% + 2)
T = + c2

—xz+/—y2+2zy—x2+2+y/ —y2+2zy—x2+2+1
20—y + 1) (o -y = 1) [ T

Warning, solution could not be verified

V2 (14 (z —y) V=92 + 2zy — 22 + 2)
r = — +Cz

T/ —y2+2zy—x2+2—y\/ —y2+2zy—x2
2(x—y+1)(x—y—1)\/ ¢y+2y(z2f§wyi¢yaf’l;52y =

Warning, solution could not be verified

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful"

v Solution by Maple
Time used: 0.156 (sec). Leaf size: 49

Ldsolve(y(x)-l/sqrt(1+(diff(y(x),x))‘2)=(x+diff(y(x),x)/sqrt(1+(diff(y(x),x))i?)),y(x), sings

1
a \/_ (—c1+z+1)(z—c1—1) +1

y@) = ——7 -
\/ (—c1+z+1)(z—c1—1)
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v/ Solution by Mathematica
Time used: 42.598 (sec). Leaf size: 15753

[DSolve [y[x]1-1/8qrt[1+(y' [x]) ~2]==(x+y' [x]1/Sqrt[1+(y' [x])"2]1),y[x],x, IncludeSi\ gularSolutions

Too large to display
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6.20 problem 20
6.20.1 Solving as dAlembertode . . . .. ... ... .. ... ... .. 560!

Internal problem ID [4425]
Internal file name [OUTPUT/3918_Sunday_June_05_2022_11_48_56_AM_11174133/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 20.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, ~class A°], _rational, _dAlembert]

y—2zy —zy> =0

6.20.1 Solving as dAlembert ode

Let p = v the ode becomes
—zp’ —2xp+y=0
Solving for y from the above results in
y=(p*+2p)x (1A)
This has the form
y =zf(p) +9(p) *)

Where f, g are functions of p = y/(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

p=f+(af +9) P
d;
p—f=(f+9) (2)
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Comparing the form y = zf + g to (1A) shows that

f=pr+2p
g=0
Hence (2) becomes
—p* —p=1(2p+2)p () (2A)

The singular solution is found by setting j—i = 0 in the above which gives

—p°—p=0
Solving for p from the above gives
p=-1
p=0
Substituting these in (1A) gives
y=-—1
y=0

The general solution is found when g—z # 0. From eq. (2A). This results in

o —pE)* — p(x)
p(z) = z (2p (z) + 2) (3)

This ODE is now solved for p(z).
Entering Linear first order ODE solver. In canonical form a linear first order is
p'(z) + p(z)p(z) = q(x)
Where here
1

p(z) = %

q(z) =0
Hence the ode is

P (z) +I% =0
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The integrating factor u is

b= ef idw
=z
The ode becomes

d
2 mw=0
azHP

d
iz (Vzp) =0
Integrating gives
Vzp=c

Dividing both sides by the integrating factor u = 1/ results in

&1

p(z) = %

Substituing the above solution for p in (2A) gives

B c%+201 .
V=% N7

Summary
The solution(s) found are the following
y=-zx (1)
y=0 (2)
2
¢ 2a
=—=—4+—= 3
(5+%)- )
Verification of solutions
y=—1
Verified OK.
y=0
Verified OK.
2
¢ 2a
Verified OK.
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Maple trace

“Methods for first order ODEs:
*k* Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 31

Ldsolve(y(x)—Q*x*diff(y(x),x)=(x*(diff(y(x),x))‘2),y(x), singsol=all) J

y(z) =~z
y(z) = c1 + 2y/c1x
y(@) = -2yaz

v Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 63

LDSolve[y[x]-2*x*y'[x]==(x*(y'[x])“2),y[x],x,IncludeSingularSolutions -> True]J

—0
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6.21 problem 21
6.21.1 Maple step by step solution . . . . .. ... ... ... ... .. Y

Internal problem ID [4426]
Internal file name [OUTPUT/3919_Sunday_June_05_2022_11_49_07_AM_64437950/index. tex]|

Book: Differential Equations, By George Boole F.R.S. 1865
Section: Chapter 7

Problem number: 21.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "riccati", "sepa-
rable", "homogeneousTypeD2", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

y—zy y—zy _0
y2_+_y/ 1+z2y’_

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

P Y
= — ].
y=" (1)
2
! y_l
= 2

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is
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Where f(z) = % and g(y) = y. Integrating both sides gives

T

1
—dy = 1 dx
Y x
1
/ —dy = 1 dz
Y x
In(y) =In(z)+ ¢
y= eln(z)+cl
=C1T

Summary
The solution(s) found are the following

Y=z
Verification of solutions
Y=cr
Verified OK.
Solving equation (2)
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
y?—1
|

Where f(r) = 5 and g(y) = y? — 1. Integrating both sides gives

r2—1

1 1
dy = — dr

1 1
/yQ—ldy_/xQ—ldx

—arctanh (y) = — arctanh (z) + ¢

Which results in
y = — tanh (— arctanh (z) + ¢»)

Summary
The solution(s) found are the following

y = —tanh (— arctanh (:c) + Cz)
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Verification of solutions

y = —tanh (— arctanh (:U) + Cz)

Verified OK.

6.21.1 Maple step by step solution

Let’s solve

y2+y/ 1+mzyl

y=zy' _ y=zy' _

° Highest derivative means the order of the ODE is 1

° Separate variables

° Integrate both sides with respect to x
f%dz=f%dz+cl

° Evaluate integral
In(y) =ln(z)+c

° Solve for y

y=xe?
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables

trying simple symmetries for implicit equations

<- symmetries for implicit equations successful

Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables

trying simple symmetries for implicit equations

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

N\ J

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 19

‘dsolve((y(x)—x*diff(y(x),x))/(y(x)‘2+diff(y(x),x))=(y(x)—x*diff(y(x),x))/(1+xT2*diff(y(x),x)

y(z) = cz
y(z) = — tanh (— arctanh (z) + ¢;)
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v/ Solution by Mathematica
Time used: 60.122 (sec). Leaf size: 45

-

kDSolve [(y[x]-x*y' [x])/(y[x]"2+y' [x])==(y [x]-x*y' [x])/(1+x~2*y' [x]) ,y[x],x, Inc}[udeSingularSol

r+e*(z—1)+1
—zx+ei(z—1)—1
y(x) = az

y(z) = —
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