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Internal problem ID [3052]
Internal file name [OUTPUT/2544_Sunday_June_05_2022_03_18_54_AM_13569753/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

3y2y′ = 2x− 1

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
2x
3 − 1

3
y2

Where f(x) = 2x
3 − 1

3 and g(y) = 1
y2
. Integrating both sides gives

1
1
y2

dy = 2x
3 − 1

3 dx

∫ 1
1
y2

dy =
∫ 2x

3 − 1
3 dx
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y3

3 = 1
3x

2 − 1
3x+ c1

Which results in

y =
(
x2 + 3c1 − x

) 1
3

y = −(x2 + 3c1 − x)
1
3

2 + i
√
3 (x2 + 3c1 − x)

1
3

2

y = −(x2 + 3c1 − x)
1
3

2 − i
√
3 (x2 + 3c1 − x)

1
3

2

Summary
The solution(s) found are the following

(1)y =
(
x2 + 3c1 − x

) 1
3

(2)y = −(x2 + 3c1 − x)
1
3

2 + i
√
3 (x2 + 3c1 − x)

1
3

2

(3)y = −(x2 + 3c1 − x)
1
3

2 − i
√
3 (x2 + 3c1 − x)

1
3

2

Figure 1: Slope field plot
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Verification of solutions

y =
(
x2 + 3c1 − x

) 1
3

Verified OK.

y = −(x2 + 3c1 − x)
1
3

2 + i
√
3 (x2 + 3c1 − x)

1
3

2

Verified OK.

y = −(x2 + 3c1 − x)
1
3

2 − i
√
3 (x2 + 3c1 − x)

1
3

2

Verified OK.

1.1.2 Solving as differentialType ode

Writing the ode as

y′ = 2x− 1
3y2 (1)

Which becomes (
3y2
)
dy = (2x− 1) dx (2)

But the RHS is complete differential because

(2x− 1) dx = d
(
x2 − x

)
Hence (2) becomes (

3y2
)
dy = d

(
x2 − x

)
Integrating both sides gives gives these solutions

y =
(
x2 + c1 − x

) 1
3 + c1

y = −(x2 + c1 − x)
1
3

2 + i
√
3 (x2 + c1 − x)

1
3

2 + c1

y = −(x2 + c1 − x)
1
3

2 − i
√
3 (x2 + c1 − x)

1
3

2 + c1
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Summary
The solution(s) found are the following

(1)y =
(
x2 + c1 − x

) 1
3 + c1

(2)y = −(x2 + c1 − x)
1
3

2 + i
√
3 (x2 + c1 − x)

1
3

2 + c1

(3)y = −(x2 + c1 − x)
1
3

2 − i
√
3 (x2 + c1 − x)

1
3

2 + c1

Figure 2: Slope field plot
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Verification of solutions

y =
(
x2 + c1 − x

) 1
3 + c1

Verified OK.

y = −(x2 + c1 − x)
1
3

2 + i
√
3 (x2 + c1 − x)

1
3

2 + c1

Verified OK.

y = −(x2 + c1 − x)
1
3

2 − i
√
3 (x2 + c1 − x)

1
3

2 + c1

Verified OK.

1.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x− 1
3y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

7



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
2x
3 − 1

3

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
2x
3 − 1

3

dx

Which results in

S = 1
3x

2 − 1
3x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x− 1
3y2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 2x
3 − 1

3
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

9



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
3x

2 − 1
3x = y3

3 + c1

Which simplifies to

1
3x

2 − 1
3x = y3

3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x−1
3y2

dS
dR

= R2

R = y

S = 1
3x

2 − 1
3x

Summary
The solution(s) found are the following

(1)1
3x

2 − 1
3x = y3

3 + c1
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Figure 3: Slope field plot

Verification of solutions

1
3x

2 − 1
3x = y3

3 + c1

Verified OK.

1.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3y2
)
dy = (2x− 1) dx

(1− 2x) dx+
(
3y2
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1− 2x
N(x, y) = 3y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(1− 2x)

= 0

And
∂N

∂x
= ∂

∂x

(
3y2
)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
1− 2x dx

(3)φ = −x2 + x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3y2. Therefore equation (4) becomes

(5)3y2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
3y2
)
dy

f(y) = y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y3 − x2 + x+ c1

13



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y3 − x2 + x

Summary
The solution(s) found are the following

(1)y3 − x2 + x = c1

Figure 4: Slope field plot

Verification of solutions

y3 − x2 + x = c1

Verified OK.
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1.1.5 Maple step by step solution

Let’s solve
3y2y′ = 2x− 1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
3y2y′dx =

∫
(2x− 1) dx+ c1

• Evaluate integral
y3 = x2 + c1 − x

• Solve for y

y = (x2 + c1 − x)
1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 60� �
dsolve(3*y(x)^2*diff(y(x),x)=2*x-1,y(x), singsol=all)� �

y(x) =
(
x2 + c1 − x

) 1
3

y(x) = −
(x2 + c1 − x)

1
3
(
1 + i

√
3
)

2

y(x) =
(x2 + c1 − x)

1
3
(
i
√
3− 1

)
2
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3 Solution by Mathematica
Time used: 0.257 (sec). Leaf size: 71� �
DSolve[3*y[x]^2*y'[x]==2*x-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
√

x2 − x+ 3c1
y(x) → − 3

√
−1 3
√

x2 − x+ 3c1
y(x) → (−1)2/3 3

√
x2 − x+ 3c1

16



1.2 problem 2
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Internal problem ID [3053]
Internal file name [OUTPUT/2545_Sunday_June_05_2022_03_18_56_AM_40200477/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 6y2x = 0

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= 6x y2

Where f(x) = 6x and g(y) = y2. Integrating both sides gives

1
y2

dy = 6x dx∫ 1
y2

dy =
∫

6x dx

−1
y
= 3x2 + c1

17



Which results in

y = − 1
3x2 + c1

Summary
The solution(s) found are the following

(1)y = − 1
3x2 + c1

Figure 5: Slope field plot

Verification of solutions

y = − 1
3x2 + c1

Verified OK.
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1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 6x y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
6x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
6x
dx

Which results in

S = 3x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 6x y2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 6x
Sy = 0

20



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3x2 = −1
y
+ c1

Which simplifies to

3x2 = −1
y
+ c1

Which gives

y = 1
−3x2 + c1

21



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 6x y2 dS
dR

= 1
R2

R = y

S = 3x2

Summary
The solution(s) found are the following

(1)y = 1
−3x2 + c1

22



Figure 6: Slope field plot

Verification of solutions

y = 1
−3x2 + c1

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
6y2

)
dy = (x) dx

(−x) dx+
(

1
6y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
6y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
6y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
6y2 . Therefore equation (4) becomes

(5)1
6y2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
6y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
6y2

)
dy

f(y) = − 1
6y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − 1
6y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − 1
6y

The solution becomes

y = − 1
3 (x2 + 2c1)

Summary
The solution(s) found are the following

(1)y = − 1
3 (x2 + 2c1)
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Figure 7: Slope field plot

Verification of solutions

y = − 1
3 (x2 + 2c1)

Verified OK.

1.2.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= 6x y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 6x y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 0 and f2(x) = 6x. Let

y = −u′

f2u

= −u′

6xu (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 6

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

6xu′′(x)− 6u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1

The above shows that
u′(x) = 2c2x

Using the above in (1) gives the solution

y = − c2
3 (c2x2 + c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 1
3x2 + 3c3
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Summary
The solution(s) found are the following

(1)y = − 1
3x2 + 3c3

Figure 8: Slope field plot

Verification of solutions

y = − 1
3x2 + 3c3

Verified OK.

1.2.5 Maple step by step solution

Let’s solve
y′ − 6y2x = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y2
= 6x

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
6xdx+ c1

• Evaluate integral
− 1

y
= 3x2 + c1

• Solve for y
y = − 1

3x2+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=6*x*y(x)^2,y(x), singsol=all)� �

y(x) = 1
−3x2 + c1

3 Solution by Mathematica
Time used: 0.12 (sec). Leaf size: 22� �
DSolve[y'[x]==6*x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
3x2 + c1

y(x) → 0
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1.3 problem 3
1.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Solving as first order special form ID 1 ode . . . . . . . . . . . . 33
1.3.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 34
1.3.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 42

Internal problem ID [3054]
Internal file name [OUTPUT/2546_Sunday_June_05_2022_03_18_58_AM_74491113/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − ey sin (x) = 0

1.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= ey sin (x)

Where f(x) = sin (x) and g(y) = ey. Integrating both sides gives

1
ey dy = sin (x) dx∫ 1
ey dy =

∫
sin (x) dx

−e−y = − cos (x) + c1
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Which results in
y = − ln (cos (x)− c1)

Summary
The solution(s) found are the following

(1)y = − ln (cos (x)− c1)

Figure 9: Slope field plot

Verification of solutions

y = − ln (cos (x)− c1)

Verified OK.
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1.3.2 Solving as first order special form ID 1 ode

Writing the ode as

y′ = ey sin (x) (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= sin (x)
u

The above simplifies to

u′(x) = − sin (x) (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

− sin (x) dx

= c1 + cos (x)

Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))
= − ln (c1 + cos (x))
= − ln (c1 + cos (x))

Summary
The solution(s) found are the following

(1)y = − ln (c1 + cos (x))
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Figure 10: Slope field plot

Verification of solutions

y = − ln (c1 + cos (x))

Verified OK.

1.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ey sin (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
sin (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
sin(x)

dx

Which results in

S = − cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ey sin (x)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = sin (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− cos (x) = −e−y + c1

Which simplifies to

− cos (x) = −e−y + c1

Which gives

y = − ln (c1 + cos (x))

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ey sin (x) dS
dR

= e−R

R = y

S = − cos (x)

Summary
The solution(s) found are the following

(1)y = − ln (c1 + cos (x))
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Figure 11: Slope field plot

Verification of solutions

y = − ln (c1 + cos (x))

Verified OK.

1.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
e−y
)
dy = (sin (x)) dx

(− sin (x)) dx+
(
e−y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)
N(x, y) = e−y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x))

= 0

And
∂N

∂x
= ∂

∂x

(
e−y
)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x) dx

(3)φ = cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−y. Therefore equation (4) becomes

(5)e−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
e−y
)
dy

f(y) = −e−y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = cos (x)− e−y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x)− e−y

The solution becomes
y = − ln (cos (x)− c1)

Summary
The solution(s) found are the following

(1)y = − ln (cos (x)− c1)

Figure 12: Slope field plot

Verification of solutions

y = − ln (cos (x)− c1)

Verified OK.
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1.3.5 Maple step by step solution

Let’s solve
y′ − ey sin (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

ey = sin (x)

• Integrate both sides with respect to x∫
y′

ey dx =
∫
sin (x) dx+ c1

• Evaluate integral
− 1

ey = − cos (x) + c1

• Solve for y
y = − ln (cos (x)− c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=exp(y(x))*sin(x),y(x), singsol=all)� �

y(x) = − ln (cos (x)− c1)
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3 Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 15� �
DSolve[y'[x]==Exp[y[x]]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − log(cos(x)− c1)
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1.4 problem 4
1.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 44
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Internal problem ID [3055]
Internal file name [OUTPUT/2547_Sunday_June_05_2022_03_19_00_AM_33203565/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − e−y+x = 0

1.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= e−yex

Where f(x) = ex and g(y) = e−y. Integrating both sides gives

1
e−y

dy = ex dx∫ 1
e−y

dy =
∫

ex dx

ey = ex + c1
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Which results in
y = ln (ex + c1)

Summary
The solution(s) found are the following

(1)y = ln (ex + c1)

Figure 13: Slope field plot

Verification of solutions

y = ln (ex + c1)

Verified OK.

45



1.4.2 Solving as first order special form ID 1 ode

Writing the ode as

y′ = e−y+x (1)

And using the substitution u = ey then

u′ = y′ey

The above shows that

y′ = u′(x) e−y

= u′(x)
u

Substituting this in (1) gives

u′(x)
u

= ex
u

The above simplifies to

u′(x) = ex (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

ex dx

= ex + c1

Substituting the solution found for u(x) in u = ey gives

y = ln (u(x))
= ln (ex + c1)
= ln (ex + c1)

Summary
The solution(s) found are the following

(1)y = ln (ex + c1)
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Figure 14: Slope field plot

Verification of solutions

y = ln (ex + c1)

Verified OK.

1.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = e−y+x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = e−x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

e−x
dx

Which results in

S = ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = e−y+x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ex

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ey (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex = ey + c1

Which simplifies to

ex = ey + c1

Which gives

y = ln (ex − c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= e−y+x dS
dR

= eR

R = y

S = ex

Summary
The solution(s) found are the following

(1)y = ln (ex − c1)
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Figure 15: Slope field plot

Verification of solutions

y = ln (ex − c1)

Verified OK.

1.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(ey) dy = (ex) dx
(−ex) dx+(ey) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex

N(x, y) = ey

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ex)

= 0

And
∂N

∂x
= ∂

∂x
(ey)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex dx

(3)φ = −ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= ey. Therefore equation (4) becomes

(5)ey = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = ey

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(ey) dy

f(y) = ey + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex + ey + c1

53



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex + ey

The solution becomes
y = ln (ex + c1)

Summary
The solution(s) found are the following

(1)y = ln (ex + c1)

Figure 16: Slope field plot

Verification of solutions

y = ln (ex + c1)

Verified OK.
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1.4.5 Maple step by step solution

Let’s solve
y′ − e−y+x = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ey = ex

• Integrate both sides with respect to x∫
y′eydx =

∫
exdx+ c1

• Evaluate integral
ey = ex + c1

• Solve for y
y = ln (ex + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)=exp(x-y(x)),y(x), singsol=all)� �

y(x) = ln (ex + c1)
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3 Solution by Mathematica
Time used: 0.769 (sec). Leaf size: 12� �
DSolve[y'[x]==Exp[x-y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log (ex + c1)
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1.5 problem 5
1.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 57
1.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 59
1.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 63
1.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 67

Internal problem ID [3056]
Internal file name [OUTPUT/2548_Sunday_June_05_2022_03_19_03_AM_91409749/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x sec (y) = 0

1.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x sec (y)

Where f(x) = x and g(y) = sec (y). Integrating both sides gives

1
sec (y) dy = x dx∫ 1
sec (y) dy =

∫
x dx

sin (y) = x2

2 + c1
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Which results in

y = arcsin
(
x2

2 + c1

)
Summary
The solution(s) found are the following

(1)y = arcsin
(
x2

2 + c1

)

Figure 17: Slope field plot

Verification of solutions

y = arcsin
(
x2

2 + c1

)
Verified OK.

58



1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x sec (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x sec (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = sin (y) + c1

Which simplifies to

x2

2 = sin (y) + c1

Which gives

y = − arcsin
(
−x2

2 + c1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x sec (y) dS
dR

= cos (R)

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)y = − arcsin
(
−x2

2 + c1

)
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Figure 18: Slope field plot

Verification of solutions

y = − arcsin
(
−x2

2 + c1

)
Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

sec (y)

)
dy = (x) dx

(−x) dx+
(

1
sec (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
sec (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1

sec (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
sec(y) . Therefore equation (4) becomes

(5)1
sec (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
sec (y)

= cos (y)

65



Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(cos (y)) dy

f(y) = sin (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + sin (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + sin (y)

Summary
The solution(s) found are the following

(1)−x2

2 + sin (y) = c1

Figure 19: Slope field plot
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Verification of solutions

−x2

2 + sin (y) = c1

Verified OK.

1.5.4 Maple step by step solution

Let’s solve
y′ − x sec (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

sec(y) = x

• Integrate both sides with respect to x∫
y′

sec(y)dx =
∫
xdx+ c1

• Evaluate integral
sin (y) = x2

2 + c1

• Solve for y

y = arcsin
(

x2

2 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=x*sec(y(x)),y(x), singsol=all)� �

y(x) = arcsin
(
x2

2 + c1

)
3 Solution by Mathematica
Time used: 0.436 (sec). Leaf size: 31� �
DSolve[y'[x]==x*Sec[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin
(
x2

2 + c1

)
y(x) → arcsin

(
x2

2 + c1

)
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1.6 problem 6
1.6.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 69
1.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 70

Internal problem ID [3057]
Internal file name [OUTPUT/2549_Sunday_June_05_2022_03_19_07_AM_58817057/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − 3 cos (y)2 = 0

1.6.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
3 cos (y)2

dy = x+ c1

tan (y)
3 = x+ c1

Solving for y gives these solutions

y1 = arctan (3c1 + 3x)

Summary
The solution(s) found are the following

(1)y = arctan (3c1 + 3x)
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Figure 20: Slope field plot

Verification of solutions

y = arctan (3c1 + 3x)

Verified OK.

1.6.2 Maple step by step solution

Let’s solve
y′ − 3 cos (y)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cos(y)2 = 3

• Integrate both sides with respect to x∫
y′

cos(y)2dx =
∫
3dx+ c1

• Evaluate integral
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tan (y) = 3x+ c1

• Solve for y
y = arctan (3x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=3*cos(y(x))^2,y(x), singsol=all)� �

y(x) = arctan (3x+ 3c1)

3 Solution by Mathematica
Time used: 0.387 (sec). Leaf size: 32� �
DSolve[y'[x]==3*Cos[y[x]]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctan(3x+ 2c1)
y(x) → −π

2
y(x) → π

2
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1.7 problem 7
1.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 72
1.7.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 74
1.7.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 75
1.7.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 76
1.7.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 80
1.7.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 84

Internal problem ID [3058]
Internal file name [OUTPUT/2550_Sunday_June_05_2022_03_19_09_AM_41697940/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − y = 0

1.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x
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Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c1

y = eln(x)+c1

= c1x

Summary
The solution(s) found are the following

(1)y = c1x

Figure 21: Slope field plot

Verification of solutions
y = c1x

Verified OK.
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1.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 0

Hence the ode is

y′ − y

x
= 0

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dxµy = 0

d
dx

(y
x

)
= 0

Integrating gives
y

x
= c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x

Summary
The solution(s) found are the following

(1)y = c1x
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Figure 22: Slope field plot

Verification of solutions
y = c1x

Verified OK.

1.7.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x = 0

Integrating both sides gives

u(x) =
∫

0 dx

= c2

Therefore the solution y is

y = ux

= c2x
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Summary
The solution(s) found are the following

(1)y = c2x

Figure 23: Slope field plot

Verification of solutions
y = c2x

Verified OK.

1.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 17: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= c1

Which simplifies to
y

x
= c1

Which gives

y = c1x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x

dS
dR

= 0

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = c1x
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Figure 24: Slope field plot

Verification of solutions
y = c1x

Verified OK.

1.7.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (y)

The solution becomes
y = ec1x

Summary
The solution(s) found are the following

(1)y = ec1x

Figure 25: Slope field plot

Verification of solutions

y = ec1x

Verified OK.
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1.7.6 Maple step by step solution

Let’s solve
xy′ − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = ec1x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 7� �
dsolve(x*diff(y(x),x)=y(x),y(x), singsol=all)� �

y(x) = c1x
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3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 14� �
DSolve[x*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
y(x) → 0
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Internal problem ID [3059]
Internal file name [OUTPUT/2551_Sunday_June_05_2022_03_19_10_AM_77143573/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "dif-
ferentialType", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(1− x) y′ − y = 0

1.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y

x− 1
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Where f(x) = − 1
x−1 and g(y) = y. Integrating both sides gives

1
y
dy = − 1

x− 1 dx∫ 1
y
dy =

∫
− 1
x− 1 dx

ln (y) = − ln (x− 1) + c1

y = e− ln(x−1)+c1

= c1
x− 1

Summary
The solution(s) found are the following

(1)y = c1
x− 1

Figure 26: Slope field plot

Verification of solutions

y = c1
x− 1

Verified OK.
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1.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x− 1

q(x) = 0

Hence the ode is

y′ + y

x− 1 = 0

The integrating factor µ is

µ = e
∫ 1

x−1dx

= x− 1

The ode becomes

d
dxµy = 0

d
dx((x− 1) y) = 0

Integrating gives

(x− 1) y = c1

Dividing both sides by the integrating factor µ = x− 1 results in

y = c1
x− 1

Summary
The solution(s) found are the following

(1)y = c1
x− 1
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Figure 27: Slope field plot

Verification of solutions

y = c1
x− 1

Verified OK.

1.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(1− x) (u′(x)x+ u(x))− u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(2x− 1)
x (x− 1)
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Where f(x) = − 2x−1
x(x−1) and g(u) = u. Integrating both sides gives

1
u
du = − 2x− 1

x (x− 1) dx∫ 1
u
du =

∫
− 2x− 1
x (x− 1) dx

ln (u) = − ln (x(x− 1)) + c2

u = e− ln(x(x−1))+c2

= c2
x (x− 1)

Therefore the solution y is

y = ux

= c2
x− 1

Summary
The solution(s) found are the following

(1)y = c2
x− 1

Figure 28: Slope field plot
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Verification of solutions

y = c2
x− 1

Verified OK.

1.8.4 Solving as differentialType ode

Writing the ode as

y′ = y

1− x
(1)

Which becomes

0 = (1− x) dy + (−y) dx (2)

But the RHS is complete differential because

(1− x) dy + (−y) dx = d(−xy + y)

Hence (2) becomes

0 = d(−xy + y)

Integrating both sides gives gives these solutions

y = c1
x− 1 + c1

Summary
The solution(s) found are the following

(1)y = c1
x− 1 + c1
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Figure 29: Slope field plot

Verification of solutions

y = c1
x− 1 + c1

Verified OK.

1.8.5 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − Y (X) + y0

X + x0 − 1
Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −Y (X)

X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −Y

X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u

du
dX = −2u(X)

X

Or
d

dX
u(X) + 2u(X)

X
= 0

Or (
d

dX
u(X)

)
X + 2u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2u
X
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Where f(X) = − 2
X

and g(u) = u. Integrating both sides gives

1
u
du = − 2

X
dX∫ 1

u
du =

∫
− 2
X

dX

ln (u) = −2 ln (X) + c2

u = e−2 ln(X)+c2

= c2
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = c2
X

Using the solution for Y (X)

Y (X) = c2
X

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x+ 1

Then the solution in y becomes

y = c2
x− 1

Summary
The solution(s) found are the following

(1)y = c2
x− 1
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Figure 30: Slope field plot

Verification of solutions

y = c2
x− 1

Verified OK.

1.8.6 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y

x− 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x− 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x−1

dy

Which results in

S = (x− 1) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

x− 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y(x− 1) = c1

Which simplifies to

y(x− 1) = c1

Which gives

y = c1
x− 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x−1

dS
dR

= 0

R = x

S = (x− 1) y

Summary
The solution(s) found are the following

(1)y = c1
x− 1
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Figure 31: Slope field plot

Verification of solutions

y = c1
x− 1

Verified OK.

1.8.7 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1

x− 1

)
dx(

− 1
x− 1

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x− 1

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x− 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x− 1 dx

(3)φ = − ln (x− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)− ln (y)

The solution becomes

y = e−c1

x− 1

Summary
The solution(s) found are the following

(1)y = e−c1

x− 1

Figure 32: Slope field plot
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Verification of solutions

y = e−c1

x− 1

Verified OK.

1.8.8 Maple step by step solution

Let’s solve
(1− x) y′ − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
((1− x) y′ − y) dx =

∫
0dx+ c1

• Evaluate integral
−y(x− 1) = c1

• Solve for y
y = − c1

x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve((1-x)*diff(y(x),x)=y(x),y(x), singsol=all)� �

y(x) = c1
x− 1
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3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 20� �
DSolve[(1-x)*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
1− x

y(x) → 0
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Internal problem ID [3060]
Internal file name [OUTPUT/2552_Sunday_June_05_2022_03_19_12_AM_71725833/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 4xy
x2 + 1 = 0

1.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 4xy
x2 + 1
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Where f(x) = 4x
x2+1 and g(y) = y. Integrating both sides gives

1
y
dy = 4x

x2 + 1 dx∫ 1
y
dy =

∫ 4x
x2 + 1 dx

ln (y) = 2 ln
(
x2 + 1

)
+ c1

y = e2 ln
(
x2+1

)
+c1

= c1
(
x2 + 1

)2
Summary
The solution(s) found are the following

(1)y = c1
(
x2 + 1

)2

Figure 33: Slope field plot

Verification of solutions

y = c1
(
x2 + 1

)2
Verified OK.
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1.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 4x
x2 + 1

q(x) = 0

Hence the ode is

y′ − 4xy
x2 + 1 = 0

The integrating factor µ is

µ = e
∫
− 4x

x2+1dx

= 1
(x2 + 1)2

The ode becomes

d
dxµy = 0

d
dx

(
y

(x2 + 1)2
)

= 0

Integrating gives
y

(x2 + 1)2
= c1

Dividing both sides by the integrating factor µ = 1
(x2+1)2 results in

y = c1
(
x2 + 1

)2
Summary
The solution(s) found are the following

(1)y = c1
(
x2 + 1

)2
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Figure 34: Slope field plot

Verification of solutions

y = c1
(
x2 + 1

)2
Verified OK.

1.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 4x2u(x)
x2 + 1 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(3x2 − 1)
x (x2 + 1)
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Where f(x) = 3x2−1
x(x2+1) and g(u) = u. Integrating both sides gives

1
u
du = 3x2 − 1

x (x2 + 1) dx∫ 1
u
du =

∫ 3x2 − 1
x (x2 + 1) dx

ln (u) = 2 ln
(
x2 + 1

)
− ln (x) + c2

u = e2 ln
(
x2+1

)
−ln(x)+c2

= c2e2 ln
(
x2+1

)
−ln(x)

Which simplifies to

u(x) = c2

(
x3 + 2x+ 1

x

)

Therefore the solution y is

y = xu

= xc2

(
x3 + 2x+ 1

x

)
Summary
The solution(s) found are the following

(1)y = xc2

(
x3 + 2x+ 1

x

)
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Figure 35: Slope field plot

Verification of solutions

y = xc2

(
x3 + 2x+ 1

x

)
Verified OK.

1.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 4xy
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) =
(
x2 + 1

)2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

(x2 + 1)2
dy

Which results in

S = y

(x2 + 1)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4xy
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4yx
(x2 + 1)3

Sy =
1

(x2 + 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(x2 + 1)2
= c1

Which simplifies to
y

(x2 + 1)2
= c1

Which gives

y = c1
(
x2 + 1

)2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4xy
x2+1

dS
dR

= 0

R = x

S = y

(x2 + 1)2

Summary
The solution(s) found are the following

(1)y = c1
(
x2 + 1

)2
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Figure 36: Slope field plot

Verification of solutions

y = c1
(
x2 + 1

)2
Verified OK.

1.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
4y

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
1
4y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1
N(x, y) = 1

4y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1
4y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
4y . Therefore equation (4) becomes

(5)1
4y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
4y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
4y

)
dy

f(y) = ln (y)
4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + ln (y)

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + ln (y)

4

The solution becomes
y = e4c1

(
x2 + 1

)2
Summary
The solution(s) found are the following

(1)y = e4c1
(
x2 + 1

)2
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Figure 37: Slope field plot

Verification of solutions

y = e4c1
(
x2 + 1

)2
Verified OK.

1.9.6 Maple step by step solution

Let’s solve
y′ − 4xy

x2+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 4x

x2+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 4x
x2+1dx+ c1

• Evaluate integral
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ln (y) = 2 ln (x2 + 1) + c1

• Solve for y
y = ec1(x2 + 1)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=(4*x*y(x))/(x^2+1),y(x), singsol=all)� �

y(x) = c1
(
x2 + 1

)2
3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 20� �
DSolve[y'[x]==(4*x*y[x])/(x^2+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
(
x2 + 1

)2
y(x) → 0
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Internal problem ID [3061]
Internal file name [OUTPUT/2553_Sunday_June_05_2022_03_19_14_AM_8146082/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 2y
x2 − 1 = 0

1.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y
x2 − 1
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Where f(x) = 2
x2−1 and g(y) = y. Integrating both sides gives

1
y
dy = 2

x2 − 1 dx∫ 1
y
dy =

∫ 2
x2 − 1 dx

ln (y) = −2 arctanh (x) + c1

y = e−2 arctanh(x)+c1

= c1(−x2 + 1)
(x+ 1)2

Summary
The solution(s) found are the following

(1)y = c1(−x2 + 1)
(x+ 1)2

Figure 38: Slope field plot

Verification of solutions

y = c1(−x2 + 1)
(x+ 1)2

Verified OK.
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1.10.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 2
x2 − 1

q(x) = 0

Hence the ode is

y′ − 2y
x2 − 1 = 0

The integrating factor µ is

µ = e
∫
− 2

x2−1dx

= (x+ 1)2

−x2 + 1

Which simplifies to

µ = −x− 1
x− 1

The ode becomes
d
dxµy = 0

d
dx

(
(−x− 1) y

x− 1

)
= 0

Integrating gives

(−x− 1) y
x− 1 = c1

Dividing both sides by the integrating factor µ = −x−1
x−1 results in

y = c1(1− x)
x+ 1

which simplifies to

y = −c1(x− 1)
x+ 1
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Summary
The solution(s) found are the following

(1)y = −c1(x− 1)
x+ 1

Figure 39: Slope field plot

Verification of solutions

y = −c1(x− 1)
x+ 1

Verified OK.

1.10.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2u(x)x
x2 − 1 = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(x2 − 2x− 1)
x (x2 − 1)

Where f(x) = −x2−2x−1
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = −x2 − 2x− 1

x (x2 − 1) dx∫ 1
u
du =

∫
−x2 − 2x− 1

x (x2 − 1) dx

ln (u) = − ln (x+ 1) + ln (x− 1)− ln (x) + c2

u = e− ln(x+1)+ln(x−1)−ln(x)+c2

= c2e− ln(x+1)+ln(x−1)−ln(x)

Which simplifies to

u(x) = c2

(
1

x+ 1 − 1
x (x+ 1)

)

Therefore the solution y is

y = ux

= xc2

(
1

x+ 1 − 1
x (x+ 1)

)
Summary
The solution(s) found are the following

(1)y = xc2

(
1

x+ 1 − 1
x (x+ 1)

)
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Figure 40: Slope field plot

Verification of solutions

y = xc2

(
1

x+ 1 − 1
x (x+ 1)

)
Verified OK.

1.10.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = −x2 + 1
(x+ 1)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+1
(x+1)2

dy

Which results in

S = (x+ 1)2 y
−x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y
(x− 1)2

Sy =
−x− 1
x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

127



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y(x+ 1)
x− 1 = c1

Which simplifies to

−y(x+ 1)
x− 1 = c1

Which gives

y = −c1(x− 1)
x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y
x2−1

dS
dR

= 0

R = x

S = −y(x+ 1)
x− 1
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Summary
The solution(s) found are the following

(1)y = −c1(x− 1)
x+ 1

Figure 41: Slope field plot

Verification of solutions

y = −c1(x− 1)
x+ 1

Verified OK.

1.10.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
2y

)
dy =

(
1

x2 − 1

)
dx(

− 1
x2 − 1

)
dx+

(
1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 − 1

N(x, y) = 1
2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x2 − 1

)
= 0

130



And
∂N

∂x
= ∂

∂x

(
1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 − 1 dx

(3)φ = arctanh (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y . Therefore equation (4) becomes

(5)1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
2y

)
dy

f(y) = ln (y)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = arctanh (x) + ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = arctanh (x) + ln (y)
2

The solution becomes
y = e−2 arctanh(x)+2c1

Summary
The solution(s) found are the following

(1)y = e−2 arctanh(x)+2c1

Figure 42: Slope field plot
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Verification of solutions

y = e−2 arctanh(x)+2c1

Verified OK.

1.10.6 Maple step by step solution

Let’s solve
y′ − 2y

x2−1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2

x2−1

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 2
x2−1dx+ c1

• Evaluate integral
ln (y) = −2 arctanh(x) + c1

• Solve for y
y = e−2 arctanh(x)+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=(2*y(x))/(x^2-1),y(x), singsol=all)� �

y(x) = −(x− 1) c1
x+ 1
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3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 22� �
DSolve[y'[x]==(2*y[x])/(x^2-1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c1(x− 1)
x+ 1

y(x) → 0
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Internal problem ID [3062]
Internal file name [OUTPUT/2554_Sunday_June_05_2022_03_19_16_AM_77046355/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2 − y2 = 0

With initial conditions

[y(1) = −1]

1.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y2

x2

The x domain of f(x, y) when y = −1 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = −1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y2

x2

)
= 2y

x2

The x domain of ∂f
∂y

when y = −1 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = −1 is inside this domain. Therefore solution exists and is unique.

1.11.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2

x2

Where f(x) = 1
x2 and g(y) = y2. Integrating both sides gives

1
y2

dy = 1
x2 dx∫ 1

y2
dy =

∫ 1
x2 dx

−1
y
= −1

x
+ c1

Which results in
y = − x

c1x− 1

136



Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = − 1
c1 − 1

c1 = 2

Substituting c1 found above in the general solution gives

y = − x

2x− 1

Summary
The solution(s) found are the following

(1)y = − x

2x− 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − x

2x− 1

Verified OK.
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1.11.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(u− 1)
x

Where f(x) = 1
x
and g(u) = u(u− 1). Integrating both sides gives

1
u (u− 1) du = 1

x
dx∫ 1

u (u− 1) du =
∫ 1

x
dx

ln (u− 1)− ln (u) = ln (x) + c2

Raising both side to exponential gives

eln(u−1)−ln(u) = eln(x)+c2

Which simplifies to

u− 1
u

= c3x

Therefore the solution y is

y = xu

= − x

c3x− 1

Initial conditions are used to solve for c3. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = − 1
−1 + c3

c3 = 2
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Substituting c3 found above in the general solution gives

y = − x

2x− 1
Summary
The solution(s) found are the following

(1)y = − x

2x− 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − x

2x− 1

Verified OK.

1.11.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 29: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2dx

Which results in

S = −1
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= −1

y
+ c1

Which simplifies to

−1
x
= −1

y
+ c1

Which gives

y = x

c1x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x2
dS
dR

= 1
R2

R = y

S = −1
x
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Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1
c1 + 1

c1 = −2

Substituting c1 found above in the general solution gives

y = − x

2x− 1

Summary
The solution(s) found are the following

(1)y = − x

2x− 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − x

2x− 1

Verified OK.
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1.11.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2

)
dy =

(
1
x2

)
dx(

− 1
x2

)
dx+

(
1
y2

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0

And
∂N

∂x
= ∂

∂x

(
1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
y2
. Therefore equation (4) becomes

(5)1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
− 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
− 1

y

The solution becomes
y = − x

c1x− 1

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = − 1
c1 − 1

c1 = 2
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Substituting c1 found above in the general solution gives

y = − x

2x− 1
Summary
The solution(s) found are the following

(1)y = − x

2x− 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − x

2x− 1

Verified OK.

1.11.6 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 0 and f2(x) = 1
x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 2u′(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x

The above shows that
u′(x) = − c2

x2

Using the above in (1) gives the solution

y = c2
c1 + c2

x

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

148



y = 1
c3 + 1

x

Initial conditions are used to solve for c3. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1
c3 + 1

c3 = −2

Substituting c3 found above in the general solution gives

y = − x

2x− 1

Summary
The solution(s) found are the following

(1)y = − x

2x− 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − x

2x− 1

Verified OK.
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1.11.7 Maple step by step solution

Let’s solve
[y′x2 − y2 = 0, y(1) = −1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2
= 1

x2

• Integrate both sides with respect to x∫
y′

y2
dx =

∫ 1
x2dx+ c1

• Evaluate integral
− 1

y
= − 1

x
+ c1

• Solve for y
y = − x

c1x−1

• Use initial condition y(1) = −1
−1 = − 1

c1−1

• Solve for c1
c1 = 2

• Substitute c1 = 2 into general solution and simplify
y = − x

2x−1

• Solution to the IVP
y = − x

2x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 14� �
dsolve([x^2*diff(y(x),x)-y(x)^2=0,y(1) = -1],y(x), singsol=all)� �

y(x) = − x

2x− 1

3 Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 14� �
DSolve[{x^2*y'[x]-y[x]^2==0,y[1]==-1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

1− 2x
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Internal problem ID [3063]
Internal file name [OUTPUT/2555_Sunday_June_05_2022_03_19_18_AM_30911201/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + 2yx = 0

With initial conditions

[y(0) = 5]

1.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2x
q(x) = 0
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Hence the ode is

y′ + 2yx = 0

The domain of p(x) = 2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. Hence solution exists and is unique.

1.12.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −2xy

Where f(x) = −2x and g(y) = y. Integrating both sides gives

1
y
dy = −2x dx∫ 1

y
dy =

∫
−2x dx

ln (y) = −x2 + c1

y = e−x2+c1

= c1e−x2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = c1

c1 = 5

Substituting c1 found above in the general solution gives

y = 5 e−x2

Summary
The solution(s) found are the following

(1)y = 5 e−x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5 e−x2

Verified OK.

1.12.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
2xdx

= ex2

The ode becomes
d
dxµy = 0

d
dx

(
ex2

y
)
= 0

Integrating gives

ex2
y = c1

Dividing both sides by the integrating factor µ = ex2 results in

y = c1e−x2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = c1

c1 = 5

Substituting c1 found above in the general solution gives

y = 5 e−x2

Summary
The solution(s) found are the following

(1)y = 5 e−x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5 e−x2

Verified OK.
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1.12.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) + 2u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(2x2 + 1)
x

Where f(x) = −2x2+1
x

and g(u) = u. Integrating both sides gives

1
u
du = −2x2 + 1

x
dx∫ 1

u
du =

∫
−2x2 + 1

x
dx

ln (u) = −x2 − ln (x) + c2

u = e−x2−ln(x)+c2

= c2e−x2−ln(x)

Which simplifies to

u(x) = c2e−x2

x

Therefore the solution y is

y = xu

= c2e−x2

Initial conditions are used to solve for c2. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = c2

c2 = 5

Substituting c2 found above in the general solution gives

y = 5 e−x2
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Summary
The solution(s) found are the following

(1)y = 5 e−x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5 e−x2

Verified OK.

1.12.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 32: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2 dy

Which results in

S = ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x ex2

y

Sy = ex2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
y = c1

Which simplifies to

ex2
y = c1

Which gives

y = c1e−x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2xy dS
dR

= 0

R = x

S = ex2
y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = c1
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c1 = 5

Substituting c1 found above in the general solution gives

y = 5 e−x2

Summary
The solution(s) found are the following

(1)y = 5 e−x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5 e−x2

Verified OK.

1.12.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
2y

)
dy = (x) dx

(−x) dx+
(
− 1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = − 1
2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
2y . Therefore equation (4) becomes

(5)− 1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
2y

)
dy

f(y) = − ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (y)
2

The solution becomes
y = e−x2−2c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = e−2c1

c1 = − ln (5)
2

Substituting c1 found above in the general solution gives

y = 5 e−x2

Summary
The solution(s) found are the following

(1)y = 5 e−x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5 e−x2

Verified OK.

1.12.7 Maple step by step solution

Let’s solve
[y′ + 2yx = 0, y(0) = 5]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −2x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−2xdx+ c1

• Evaluate integral
ln (y) = −x2 + c1

• Solve for y
y = e−x2+c1
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• Use initial condition y(0) = 5
5 = ec1

• Solve for c1
c1 = ln (5)

• Substitute c1 = ln (5) into general solution and simplify
y = 5 e−x2

• Solution to the IVP
y = 5 e−x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve([diff(y(x),x)+2*x*y(x)=0,y(0) = 5],y(x), singsol=all)� �

y(x) = 5 e−x2

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 14� �
DSolve[{y'[x]+2*x*y[x]==0,y[0]==5},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 5e−x2
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1.13 problem 13
1.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 167
1.13.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 168
1.13.3 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 169
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Internal problem ID [3064]
Internal file name [OUTPUT/2556_Sunday_June_05_2022_03_19_20_AM_84176619/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

cot (x) y′ − y = 0

With initial conditions

[y(0) = 2]

1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = 0
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Hence the ode is

y′ − y tan (x) = 0

The domain of p(x) = − tan (x) is{
x <

1
2π + π_Z142∨ 1

2π + π_Z142 < x

}

And the point x0 = 0 is inside this domain. Hence solution exists and is unique.

1.13.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

cot (x)

Where f(x) = 1
cot(x) and g(y) = y. Integrating both sides gives

1
y
dy = 1

cot (x) dx∫ 1
y
dy =

∫ 1
cot (x) dx

ln (y) = − ln (cos (x)) + c1

y = e− ln(cos(x))+c1

= c1
cos (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

y = 2
cos (x)
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Summary
The solution(s) found are the following

(1)y = 2
cos (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
cos (x)

Verified OK.

1.13.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)

The ode becomes

d
dxµy = 0

d
dx(cos (x) y) = 0
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Integrating gives

cos (x) y = c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = c1 sec (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

y = 2 sec (x)

Summary
The solution(s) found are the following

(1)y = 2 sec (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 sec (x)

Verified OK.
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1.13.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

cot (x) (u′(x)x+ u(x))− u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(cot (x)− x)
cot (x)x

Where f(x) = − cot(x)−x
cot(x)x and g(u) = u. Integrating both sides gives

1
u
du = −cot (x)− x

cot (x)x dx∫ 1
u
du =

∫
−cot (x)− x

cot (x)x dx

ln (u) = − ln (cos (x))− ln (x) + c2

u = e− ln(cos(x))−ln(x)+c2

= c2e− ln(cos(x))−ln(x)

Which simplifies to

u(x) = c2
x cos (x)

Therefore the solution y is

y = ux

= c2
cos (x)

Initial conditions are used to solve for c2. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c2

c2 = 2

Substituting c2 found above in the general solution gives

y = 2
cos (x)
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Summary
The solution(s) found are the following

(1)y = 2
cos (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
cos (x)

Verified OK.

1.13.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 35: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = c1

Which simplifies to

cos (x) y = c1

Which gives

y = c1
cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
cot(x)

dS
dR

= 0

R = x

S = cos (x) y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1
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c1 = 2

Substituting c1 found above in the general solution gives

y = 2
cos (x)

Summary
The solution(s) found are the following

(1)y = 2
cos (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
cos (x)

Verified OK.
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1.13.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1

cot (x)

)
dx(

− 1
cot (x)

)
dx+

(
1
y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1
cot (x)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
cot (x)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
cot (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x)) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x)) + ln (y)

The solution becomes

y = ec1
cos (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = ec1

c1 = ln (2)

Substituting c1 found above in the general solution gives

y = 2
cos (x)
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Summary
The solution(s) found are the following

(1)y = 2
cos (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
cos (x)

Verified OK.

1.13.7 Maple step by step solution

Let’s solve
[cot (x) y′ − y = 0, y(0) = 2]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

cot(x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
cot(x)dx+ c1
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• Evaluate integral
ln (y) = − ln (cos (x)) + c1

• Solve for y
y = ec1

cos(x)

• Use initial condition y(0) = 2
2 = ec1

• Solve for c1
c1 = ln (2)

• Substitute c1 = ln (2) into general solution and simplify
y = 2 sec (x)

• Solution to the IVP
y = 2 sec (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve([cot(x)*diff(y(x),x)=y(x),y(0) = 2],y(x), singsol=all)� �

y(x) = 2 sec (x)

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 9� �
DSolve[{Cot[x]*y'[x]==y[x],y[0]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 sec(x)
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1.14 problem 14
1.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 182
1.14.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 183
1.14.3 Solving as first order special form ID 1 ode . . . . . . . . . . . . 185
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1.14.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 195

Internal problem ID [3065]
Internal file name [OUTPUT/2557_Sunday_June_05_2022_03_19_22_AM_33004422/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x e−2y = 0

With initial conditions

[y(0) = 0]

1.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= x e−2y

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
x e−2y)

= −2x e−2y

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.14.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x e−2y

Where f(x) = x and g(y) = e−2y. Integrating both sides gives

1
e−2y dy = x dx∫ 1
e−2y dy =

∫
x dx

e2y
2 = x2

2 + c1

Which results in

y = ln (x2 + 2c1)
2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 + ln (c1)

2

c1 =
1
2

Substituting c1 found above in the general solution gives

y = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)y = ln (x2 + 1)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x2 + 1)
2

Verified OK.
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1.14.3 Solving as first order special form ID 1 ode

Writing the ode as

y′ = x e−2y (1)

And using the substitution u = e2y then

u′ = 2y′e2y

The above shows that

y′ = u′(x) e−2y

2

= u′(x)
2u

Substituting this in (1) gives

u′(x)
2u = x

u

The above simplifies to

u′(x) = 2x (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

2x dx

= x2 + c1

Substituting the solution found for u(x) in u = e2y gives

y = ln (u(x))
2

= ln (x2 + c1)
2

= ln (x2 + c1)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (c1)
2
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c1 = 1

Substituting c1 found above in the general solution gives

y = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)y = ln (x2 + 1)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x2 + 1)
2

Verified OK.
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1.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x e−2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 38: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x e−2y
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e2R
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = e2y
2 + c1

Which simplifies to

x2

2 = e2y
2 + c1

Which gives

y = ln (x2 − 2c1)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x e−2y dS
dR

= e2R

R = y

S = x2

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 + ln (−c1)

2

c1 = −1
2

Substituting c1 found above in the general solution gives

y = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)y = ln (x2 + 1)
2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x2 + 1)
2

Verified OK.

1.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

e2y
)
dy = (x) dx

(−x) dx+
(
e2y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = e2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
e2y
)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= e2y. Therefore equation (4) becomes

(5)e2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = e2y

= e2y

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
e2y
)
dy

f(y) = e2y
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + e2y
2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + e2y
2

The solution becomes

y = ln (x2 + 2c1)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 + ln (c1)

2

c1 =
1
2

Substituting c1 found above in the general solution gives

y = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)y = ln (x2 + 1)
2

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = ln (x2 + 1)
2

Verified OK.

1.14.6 Maple step by step solution

Let’s solve
[y′ − x e−2y = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

e−2y = x

• Integrate both sides with respect to x∫
y′

e−2y dx =
∫
xdx+ c1

• Evaluate integral
1

2 e−2y = x2

2 + c1

• Solve for y

y = ln
(
x2+2c1

)
2

• Use initial condition y(0) = 0
0 = ln(2c1)

2

• Solve for c1
c1 = 1

2

• Substitute c1 = 1
2 into general solution and simplify

y = ln
(
x2+1

)
2

• Solution to the IVP

y = ln
(
x2+1

)
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 12� �
dsolve([diff(y(x),x)=x*exp(-2*y(x)),y(0) = 0],y(x), singsol=all)� �

y(x) = ln (x2 + 1)
2

3 Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 15� �
DSolve[{y'[x]==x*Exp[-2*y[x]],y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 log

(
x2 + 1

)
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Internal problem ID [3066]
Internal file name [OUTPUT/2558_Sunday_June_05_2022_03_19_25_AM_44151141/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 2yx = 2x

With initial conditions

[y(0) = 1]

1.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −2x
q(x) = 2x
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Hence the ode is

y′ − 2yx = 2x

The domain of p(x) = −2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.15.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x(2 + 2y)

Where f(x) = x and g(y) = 2 + 2y. Integrating both sides gives

1
2 + 2y dy = x dx∫ 1
2 + 2y dy =

∫
x dx

ln (y + 1)
2 = x2

2 + c1

Raising both side to exponential gives√
y + 1 = ex2

2 +c1

Which simplifies to √
y + 1 = c2e

x2
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c22e2c1 − 1
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c1 =
ln
(

2
c22

)
2

Substituting c1 found above in the general solution gives

y = 2 ex2 − 1

Summary
The solution(s) found are the following

(1)y = 2 ex2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 ex2 − 1

Verified OK.

1.15.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
−2xdx

= e−x2
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The ode becomes

d
dx(µy) = (µ) (2x)

d
dx

(
y e−x2

)
=
(
e−x2

)
(2x)

d
(
y e−x2

)
=
(
2x e−x2

)
dx

Integrating gives

y e−x2 =
∫

2x e−x2 dx

y e−x2 = −e−x2 + c1

Dividing both sides by the integrating factor µ = e−x2 results in

y = −ex2e−x2 + c1ex
2

which simplifies to

y = −1 + c1ex
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1 − 1

c1 = 2

Substituting c1 found above in the general solution gives

y = 2 ex2 − 1

Summary
The solution(s) found are the following

(1)y = 2 ex2 − 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 ex2 − 1

Verified OK.

1.15.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy + 2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

201



Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex2 dy

Which results in

S = y e−x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy + 2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2yx e−x2

Sy = e−x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x e−x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R e−R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y e−x2 = −e−x2 + c1

Which simplifies to

y e−x2 = −e−x2 + c1

Which gives

y = −
(
e−x2 − c1

)
ex2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2xy + 2x dS
dR

= 2R e−R2

R = x

S = y e−x2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1 − 1
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c1 = 2

Substituting c1 found above in the general solution gives

y = 2 ex2 − 1

Summary
The solution(s) found are the following

(1)y = 2 ex2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 ex2 − 1

Verified OK.

1.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

2 + 2y

)
dy = (x) dx

(−x) dx+
(

1
2 + 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
2 + 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1

2 + 2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2+2y . Therefore equation (4) becomes

(5)1
2 + 2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2 + 2y

207



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2 + 2y

)
dy

f(y) = ln (y + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y + 1)
2

The solution becomes
y = ex2+2c1 − 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e2c1 − 1

c1 =
ln (2)
2

Substituting c1 found above in the general solution gives

y = 2 ex2 − 1

Summary
The solution(s) found are the following

(1)y = 2 ex2 − 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 ex2 − 1

Verified OK.

1.15.6 Maple step by step solution

Let’s solve
[y′ − 2yx = 2x, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y+1 = 2x

• Integrate both sides with respect to x∫
y′

y+1dx =
∫
2xdx+ c1

• Evaluate integral
ln (y + 1) = x2 + c1

• Solve for y
y = ex2+c1 − 1

209



• Use initial condition y(0) = 1
1 = ec1 − 1

• Solve for c1
c1 = ln (2)

• Substitute c1 = ln (2) into general solution and simplify
y = 2 ex2 − 1

• Solution to the IVP
y = 2 ex2 − 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve([diff(y(x),x)-2*x*y(x)=2*x,y(0) = 1],y(x), singsol=all)� �

y(x) = 2 ex2 − 1

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 14� �
DSolve[{y'[x]-2*x*y[x]==2*x,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2ex2 − 1
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Internal problem ID [3067]
Internal file name [OUTPUT/2559_Sunday_June_05_2022_03_19_27_AM_44005436/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − yx− y = 0

With initial conditions

[y(1) = 1]

1.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −x+ 1
x

q(x) = 0
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Hence the ode is

y′ − y(x+ 1)
x

= 0

The domain of p(x) = −x+1
x

is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. Hence solution exists and is unique.

1.16.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(x+ 1)
x

Where f(x) = x+1
x

and g(y) = y. Integrating both sides gives

1
y
dy = x+ 1

x
dx∫ 1

y
dy =

∫
x+ 1
x

dx

ln (y) = x+ ln (x) + c1

y = ex+ln(x)+c1

= c1ex+ln(x)

Which can be simplified to become

y = c1x ex

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1e

c1 = e−1
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Substituting c1 found above in the general solution gives

y = x ex−1

Summary
The solution(s) found are the following

(1)y = x ex−1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x ex−1

Verified OK.

1.16.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
−x+1

x
dx

= e−x−ln(x)

Which simplifies to

µ = e−x

x
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The ode becomes
d
dxµy = 0

d
dx

(
e−xy

x

)
= 0

Integrating gives
e−xy

x
= c1

Dividing both sides by the integrating factor µ = e−x

x
results in

y = c1x ex

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1e

c1 = e−1

Substituting c1 found above in the general solution gives

y = x ex−1

Summary
The solution(s) found are the following

(1)y = x ex−1

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = x ex−1

Verified OK.

1.16.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x2 − u(x)x = 0

Integrating both sides gives ∫ 1
u
du = x+ c2

ln (u) = x+ c2

u = ex+c2

u = c2ex

Therefore the solution y is

y = xu

= c2x ex

Initial conditions are used to solve for c2. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c2e

c2 = e−1

Substituting c2 found above in the general solution gives

y = x ex−1

Summary
The solution(s) found are the following

(1)y = x ex−1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x ex−1

Verified OK.

1.16.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(x+ 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

216



Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex+ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex+ln(x)dy

Which results in

S = e−xy

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(x+ 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −e−xy(x+ 1)
x2

Sy =
e−x

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−xy

x
= c1

Which simplifies to
e−xy

x
= c1

Which gives

y = c1x ex

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(x+1)
x

dS
dR

= 0

R = x

S = e−xy

x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1e
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c1 = e−1

Substituting c1 found above in the general solution gives

y = x ex−1

Summary
The solution(s) found are the following

(1)y = x ex−1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x ex−1

Verified OK.

1.16.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
y

)
dy =

(
x+ 1
x

)
dx(

−x+ 1
x

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x+ 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x) + ln (y)

The solution becomes
y = ex+c1x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = ec1+1

c1 = −1

Substituting c1 found above in the general solution gives

y = x ex−1

Summary
The solution(s) found are the following

(1)y = x ex−1

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = x ex−1

Verified OK.

1.16.7 Maple step by step solution

Let’s solve
[xy′ − yx− y = 0, y(1) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x+1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x+1
x
dx+ c1

• Evaluate integral
ln (y) = x+ ln (x) + c1

• Solve for y
y = x

e−x−c1

• Use initial condition y(1) = 1
1 = 1

e−1−c1

• Solve for c1
c1 = −1

• Substitute c1 = −1 into general solution and simplify
y = x ex−1

• Solution to the IVP
y = x ex−1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve([x*diff(y(x),x)=x*y(x)+y(x),y(1) = 1],y(x), singsol=all)� �

y(x) = x ex−1

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 12� �
DSolve[{x*y'[x]==x*y[x]+y[x],y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex−1x
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1.17 problem 17
1.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 226
1.17.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 227
1.17.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 228

Internal problem ID [3068]
Internal file name [OUTPUT/2560_Sunday_June_05_2022_03_19_29_AM_98851381/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
x3 + 1

)
y′ = 3 tan (x)x2

With initial conditions [
y(0) = π

2

]
1.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 0

q(x) = 3 tan (x)x2

x3 + 1
Hence the ode is

y′ = 3 tan (x)x2

x3 + 1
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The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 3 tan(x)x2

x3+1 is

{
−∞ ≤ x < −1,−1 < x <

1
2π + π_Z142, 12π + π_Z142 < x ≤ ∞

}

But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

1.17.2 Solving as quadrature ode

Integrating both sides gives

y =
∫ 3 tan (x)x2

x3 + 1 dx

= −i ln
(
x3 + 1

)
− 3i

(∫
− 2x2

(e2ix + 1) (x3 + 1)dx
)
+ c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = π
2 in the above

solution gives an equation to solve for the constant of integration.

π

2 = 6i
(∫ 0 _a2

(e2i_a + 1) (_a3 + 1)d_a
)
+ c1

c1 = −6i
(∫ 0 _a2

(e2i_a + 1) (_a3 + 1)d_a
)
+ π

2

Substituting c1 found above in the general solution gives

y = −i ln
(
x3 + 1

)
− 3i

(∫
− 2x2

(e2ix + 1) (x3 + 1)dx
)
− 6i

(∫ 0 _a2

(e2i_a + 1) (_a3 + 1)d_a
)
+ π

2

Summary
The solution(s) found are the following

(1)
y = −i ln

(
x3 + 1

)
− 3i

(∫
− 2x2

(e2ix + 1) (x3 + 1)dx
)

− 6i
(∫ 0 _a2

(e2i_a + 1) (_a3 + 1)d_a
)
+ π

2
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Verification of solutions

y = −i ln
(
x3 + 1

)
− 3i

(∫
− 2x2

(e2ix + 1) (x3 + 1)dx
)

− 6i
(∫ 0 _a2

(e2i_a + 1) (_a3 + 1)d_a
)
+ π

2

Verified OK. {positive}

1.17.3 Maple step by step solution

Let’s solve[
(x3 + 1) y′ = 3 tan (x)x2, y(0) = π

2

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables

y′ = 3 tan(x)x2

x3+1

• Integrate both sides with respect to x∫
y′dx =

∫ 3 tan(x)x2

x3+1 dx+ c1

• Evaluate integral

y = −I ln (x3 + 1)− 3 I
(∫

− 2x2(
(eIx)2+1

)
(x3+1)

dx

)
+ c1

• Use initial condition y(0) = π
2

π
2 = −3 I

(∫ 0− 2_a2(
(eI_a)2+1

)(_a3+1
)d_a

)
+ c1

• Solve for c1

c1 = 3 I
(∫ 0− 2_a2(

(eI_a)2+1
)(_a3+1

)d_a
)
+ π

2

• Substitute c1 = 3 I
(∫ 0− 2_a2(

(eI_a)2+1
)(_a3+1

)d_a
)
+ π

2 into general solution and simplify

y = −I ln (x3 + 1) + 6 I
(∫

x2

(e2 Ix+1)(x3+1)dx
)
− 6 I

(∫ 0 _a2

(e2 I_a+1)
(_a3+1

)d_a)+ π
2

• Solution to the IVP

y = −I ln (x3 + 1) + 6 I
(∫

x2

(e2 Ix+1)(x3+1)dx
)
− 6 I

(∫ 0 _a2

(e2 I_a+1)
(_a3+1

)d_a)+ π
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 36� �
dsolve([(1+x^3)*diff(y(x),x)=3*x^2*tan(x),y(0) = 1/2*Pi],y(x), singsol=all)� �

y(x) = 3
(∫ x

0

tan (_z1)_z12
(_z1+ 1) (_z12 − _z1+ 1)d_z1

)
+ π

2

3 Solution by Mathematica
Time used: 8.597 (sec). Leaf size: 35� �
DSolve[{(1+x^3)*y'[x]==3*x^2*Tan[x],y[0]==Pi/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
∫ x

0

3K[1]2 tan(K[1])
K[1]3 + 1 dK[1] + π

2
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1.18 problem 18
1.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 230
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1.18.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 233
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1.18.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 241

Internal problem ID [3069]
Internal file name [OUTPUT/2561_Sunday_June_05_2022_03_19_32_AM_28200195/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x cos (y) y′ − sin (y) = 1

With initial conditions

[y(1) = 0]

1.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 1 + sin (y)
x cos (y)

The x domain of f(x, y) when y = 0 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{
y <

1
2π + π_Z171∨ 1

2π + π_Z171 < y

}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
1 + sin (y)
x cos (y)

)
= 1

x
+ (1 + sin (y)) sin (y)

x cos (y)2

The x domain of ∂f
∂y

when y = 0 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{
y <

1
2π + π_Z171∨ 1

2π + π_Z171 < y

}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.18.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= sec (y) + tan (y)
x

Where f(x) = 1
x
and g(y) = sec (y) + tan (y). Integrating both sides gives

1
sec (y) + tan (y) dy = 1

x
dx∫ 1

sec (y) + tan (y) dy =
∫ 1

x
dx

ln (1 + sin (y)) = ln (x) + c1
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Raising both side to exponential gives

1 + sin (y) = eln(x)+c1

Which simplifies to

1 + sin (y) = c2x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = arcsin (−1 + ec1c2)

c1 = − ln (c2)

Substituting c1 found above in the general solution gives

y = arcsin (x− 1)

Summary
The solution(s) found are the following

(1)y = arcsin (x− 1)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = arcsin (x− 1)

Verified OK.
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1.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 1 + sin (y)
x cos (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 48: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

233



The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1 + sin (y)
x cos (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (y)

1 + sin (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)

1 + sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (1 + sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = ln (1 + sin (y)) + c1

Which simplifies to

ln (x) = ln (1 + sin (y)) + c1

Which gives

y = − arcsin
(
(ec1 − x) e−c1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 1+sin(y)
x cos(y)

dS
dR

= cos(R)
1+sin(R)

R = y

S = ln (x)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − arcsin
(
(ec1 − 1) e−c1

)
c1 = 0

Substituting c1 found above in the general solution gives

y = arcsin (x− 1)

Summary
The solution(s) found are the following

(1)y = arcsin (x− 1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = arcsin (x− 1)

Verified OK.

1.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
cos (y)

1 + sin (y)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
cos (y)

1 + sin (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = cos (y)
1 + sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And

∂N

∂x
= ∂

∂x

(
cos (y)

1 + sin (y)

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= cos(y)
1+sin(y) . Therefore equation (4) becomes

(5)cos (y)
1 + sin (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = cos (y)
1 + sin (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( cos (y)
1 + sin (y)

)
dy

f(y) = ln (1 + sin (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (1 + sin (y)) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (1 + sin (y))

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

− ln (x) + ln (1 + sin (y)) = 0

Solving for y from the above gives

y = arcsin (x− 1)
Summary
The solution(s) found are the following

(1)y = arcsin (x− 1)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = arcsin (x− 1)

Verified OK.
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1.18.5 Maple step by step solution

Let’s solve
[x cos (y) y′ − sin (y) = 1, y(1) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ cos(y)
1+sin(y) =

1
x

• Integrate both sides with respect to x∫ y′ cos(y)
1+sin(y)dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (1 + sin (y)) = ln (x) + c1

• Solve for y
y = arcsin (ec1x− 1)

• Use initial condition y(1) = 0
0 = arcsin (ec1 − 1)

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = arcsin (x− 1)

• Solution to the IVP
y = arcsin (x− 1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 8� �
dsolve([x*cos(y(x))*diff(y(x),x)=1+sin(y(x)),y(1) = 0],y(x), singsol=all)� �

y(x) = arcsin (x− 1)

3 Solution by Mathematica
Time used: 37.067 (sec). Leaf size: 53� �
DSolve[{x*Cos[y[x]]*y'[x]==1+Sin[y[x]],y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 arccos
(
1
2
(√

2− x+
√
x
))

y(x) → 2 arccos
(
1
2
(√

2− x+
√
x
))
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1.19 problem 19
1.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 243
1.19.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 244
1.19.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 246
1.19.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 250
1.19.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 253
1.19.6 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 257

Internal problem ID [3070]
Internal file name [OUTPUT/2562_Sunday_June_05_2022_03_19_35_AM_37186856/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − 2y(y − 1) = 0

With initial conditions [
y

(
1
2

)
= 2
]

1.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 2y(y − 1)
x

The x domain of f(x, y) when y = 2 is

{x < 0∨ 0 < x}
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And the point x0 = 1
2 is inside this domain. The y domain of f(x, y) when x = 1

2 is

{−∞ < y < ∞}

And the point y0 = 2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
2y(y − 1)

x

)
= 2y − 2

x
+ 2y

x

The x domain of ∂f
∂y

when y = 2 is

{x < 0∨ 0 < x}

And the point x0 = 1
2 is inside this domain. The y domain of ∂f

∂y
when x = 1

2 is

{−∞ < y < ∞}

And the point y0 = 2 is inside this domain. Therefore solution exists and is unique.

1.19.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y(y − 1)
x

Where f(x) = 2
x
and g(y) = y(y − 1). Integrating both sides gives

1
y (y − 1) dy = 2

x
dx∫ 1

y (y − 1) dy =
∫ 2

x
dx

ln (y − 1)− ln (y) = 2 ln (x) + c1

Raising both side to exponential gives

eln(y−1)−ln(y) = e2 ln(x)+c1
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Which simplifies to
y − 1
y

= c2x
2

Initial conditions are used to solve for c2. Substituting x = 1
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = − 4
c2 − 4

c2 = 2

Substituting c2 found above in the general solution gives

y = − 1
2x2 − 1

Summary
The solution(s) found are the following

(1)y = − 1
2x2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − 1
2x2 − 1

Verified OK.

245



1.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y(y − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 51: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

2
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
2
dx

Which results in

S = 2 ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y(y − 1)
x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 2
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y − 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R− 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R− 1)− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (x) = ln (y − 1)− ln (y) + c1

Which simplifies to

2 ln (x) = ln (y − 1)− ln (y) + c1

Which gives

y = ec1
ec1 − x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y(y−1)
x

dS
dR

= 1
R(R−1)

R = y

S = 2 ln (x)

Initial conditions are used to solve for c1. Substituting x = 1
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 4 ec1
4 ec1 − 1

c1 = − ln (2)

Substituting c1 found above in the general solution gives

y = − 1
2x2 − 1

Summary
The solution(s) found are the following

(1)y = − 1
2x2 − 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − 1
2x2 − 1

Verified OK.

1.19.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 2y(y − 1)
x

This is a Bernoulli ODE.
y′ = −2

x
y + 2

x
y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −2
x

f1(x) =
2
x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 2
xy

+ 2
x

(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −2w(x)
x

+ 2
x

w′ = 2w
x

− 2
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −2
x

Hence the ode is

w′(x)− 2w(x)
x

= −2
x
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The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ)

(
−2
x

)
d
dx

( w
x2

)
=
(

1
x2

)(
−2
x

)
d
( w
x2

)
=
(
− 2
x3

)
dx

Integrating gives

w

x2 =
∫

− 2
x3 dx

w

x2 = 1
x2 + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = c1x
2 + 1

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= c1x

2 + 1

Or

y = 1
c1x2 + 1

Initial conditions are used to solve for c1. Substituting x = 1
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 4
c1 + 4

c1 = −2
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Substituting c1 found above in the general solution gives

y = − 1
2x2 − 1

Summary
The solution(s) found are the following

(1)y = − 1
2x2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − 1
2x2 − 1

Verified OK.

1.19.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
2y (y − 1)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

2y (y − 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
2y (y − 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

2y (y − 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y(y−1) . Therefore equation (4) becomes

(5)1
2y (y − 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y (y − 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
2y (y − 1)

)
dy

f(y) = ln (y − 1)
2 − ln (y)

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (y − 1)
2 − ln (y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (y − 1)
2 − ln (y)

2

Initial conditions are used to solve for c1. Substituting x = 1
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

ln (2)
2 = c1

c1 =
ln (2)
2

Substituting c1 found above in the general solution gives

− ln (x) + ln (y − 1)
2 − ln (y)

2 = ln (2)
2

Summary
The solution(s) found are the following

(1)− ln (x) + ln (y − 1)
2 − ln (y)

2 = ln (2)
2

Verification of solutions

− ln (x) + ln (y − 1)
2 − ln (y)

2 = ln (2)
2

Verified OK.

256



1.19.6 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 2y(y − 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2y2
x

− 2y
x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 2
x
and f2(x) = 2

x
. Let

y = −u′

f2u

= −u′

2u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x2

f1f2 = − 4
x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

2u′′(x)
x

+ 6u′(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x2
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The above shows that

u′(x) = −2c2
x3

Using the above in (1) gives the solution

y = c2
x2
(
c1 + c2

x2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 1
c3x2 + 1

Initial conditions are used to solve for c3. Substituting x = 1
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 4
c3 + 4

c3 = −2

Substituting c3 found above in the general solution gives

y = − 1
2x2 − 1

Summary
The solution(s) found are the following

(1)y = − 1
2x2 − 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − 1
2x2 − 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 15� �
dsolve([x*diff(y(x),x)=2*y(x)*(y(x)-1),y(1/2) = 2],y(x), singsol=all)� �

y(x) = − 1
2x2 − 1
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3 Solution by Mathematica
Time used: 0.339 (sec). Leaf size: 14� �
DSolve[{x*y'[x]==2*y[x]*(y[x]-1),y[1/2]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
1− 2x2
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1.20 problem 20
1.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 261
1.20.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 262
1.20.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 264
1.20.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 268
1.20.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 272
1.20.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 274

Internal problem ID [3071]
Internal file name [OUTPUT/2563_Sunday_June_05_2022_03_19_37_AM_73106503/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2xy′ + y2 = 1

With initial conditions

[y(1) = 0]

1.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −y2 − 1
2x

The x domain of f(x, y) when y = 0 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−y2 − 1

2x

)
= −y

x

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.20.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
−y2

2 + 1
2

x

Where f(x) = 1
x
and g(y) = −y2

2 + 1
2 . Integrating both sides gives

1
−y2

2 + 1
2

dy = 1
x
dx

∫ 1
−y2

2 + 1
2

dy =
∫ 1

x
dx

2 arctanh (y) = ln (x) + c1

Which results in

y = tanh
(
ln (x)
2 + c1

2

)
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ec1 − 1
ec1 + 1

c1 = 0

Substituting c1 found above in the general solution gives

y = x− 1
x+ 1

Summary
The solution(s) found are the following

(1)y = x− 1
x+ 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x− 1
x+ 1

Verified OK.
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1.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2 − 1
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2 − 1
2x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 2

y2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R2 − 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 arctanh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = 2 arctanh (y) + c1

Which simplifies to

ln (x) = 2 arctanh (y) + c1

Which gives

y = − tanh
(
− ln (x)

2 + c1
2

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2−1
2x

dS
dR

= − 2
R2−1

R = y

S = ln (x)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −ec1 + 1
ec1 + 1

c1 = 0

Substituting c1 found above in the general solution gives

y = x− 1
x+ 1

Summary
The solution(s) found are the following

(1)y = x− 1
x+ 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x− 1
x+ 1

Verified OK.

1.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y2

2 + 1
2

)
dy =

(
1
x

)
dx

(
−1
x

)
dx+

(
1

−y2

2 + 1
2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
−y2

2 + 1
2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

−y2

2 + 1
2

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
− y2

2 + 1
2
. Therefore equation (4) becomes

(5)1
−y2

2 + 1
2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 2
y2 − 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 2
y2 − 1

)
dy

f(y) = 2 arctanh (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + 2 arctanh (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + 2 arctanh (y)

The solution becomes

y = tanh
(
ln (x)
2 + c1

2

)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ec1 − 1
ec1 + 1

c1 = 0

Substituting c1 found above in the general solution gives

y = x− 1
x+ 1

Summary
The solution(s) found are the following

(1)y = x− 1
x+ 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x− 1
x+ 1

Verified OK.

1.20.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2 − 1
2x

This is a Riccati ODE. Comparing the ODE to solve

y′ = − y2

2x + 1
2x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
2x , f1(x) = 0 and f2(x) = − 1

2x . Let

y = −u′

f2u

= −u′

− u
2x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
2x2

f1f2 = 0

f 2
2 f0 =

1
8x3

Substituting the above terms back in equation (2) gives

−u′′(x)
2x − u′(x)

2x2 + u(x)
8x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2√
x

The above shows that

u′(x) = c1x− c2

2x 3
2

Using the above in (1) gives the solution

y = c1x− c2
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3x− 1
c3x+ 1

Initial conditions are used to solve for c3. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −1 + c3
c3 + 1
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c3 = 1

Substituting c3 found above in the general solution gives

y = x− 1
x+ 1

Summary
The solution(s) found are the following

(1)y = x− 1
x+ 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x− 1
x+ 1

Verified OK.

1.20.6 Maple step by step solution

Let’s solve
[2xy′ + y2 = 1, y(1) = 0]

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

1−y2
= 1

2x

• Integrate both sides with respect to x∫
y′

1−y2
dx =

∫ 1
2xdx+ c1

• Evaluate integral
arctanh(y) = ln(x)

2 + c1

• Solve for y

y = tanh
(

ln(x)
2 + c1

)
• Use initial condition y(1) = 0

0 = tanh (c1)
• Solve for c1

c1 = 0
• Substitute c1 = 0 into general solution and simplify

y = tanh
(

ln(x)
2

)
• Solution to the IVP

y = tanh
(

ln(x)
2

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 13� �
dsolve([2*x*diff(y(x),x)=1-y(x)^2,y(1) = 0],y(x), singsol=all)� �

y(x) = x− 1
x+ 1

3 Solution by Mathematica
Time used: 0.514 (sec). Leaf size: 14� �
DSolve[{2*x*y'[x]==1-y[x]^2,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− 1
x+ 1
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1.21 problem 21
1.21.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 277
1.21.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 279
1.21.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 280
1.21.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 282
1.21.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 286
1.21.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 290

Internal problem ID [3072]
Internal file name [OUTPUT/2564_Sunday_June_05_2022_03_19_40_AM_7786684/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(1− x) y′ − yx = 0

1.21.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − xy

x− 1
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Where f(x) = − x
x−1 and g(y) = y. Integrating both sides gives

1
y
dy = − x

x− 1 dx∫ 1
y
dy =

∫
− x

x− 1 dx

ln (y) = −x− ln (x− 1) + c1

y = e−x−ln(x−1)+c1

= c1e−x−ln(x−1)

Which simplifies to

y = c1e−x

x− 1

Summary
The solution(s) found are the following

(1)y = c1e−x

x− 1

Figure 82: Slope field plot

278



Verification of solutions

y = c1e−x

x− 1

Verified OK.

1.21.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x− 1
q(x) = 0

Hence the ode is

y′ + xy

x− 1 = 0

The integrating factor µ is

µ = e
∫

x
x−1dx

= ex+ln(x−1)

Which simplifies to
µ = (x− 1) ex

The ode becomes
d
dxµy = 0

d
dx((x− 1) exy) = 0

Integrating gives

(x− 1) exy = c1

Dividing both sides by the integrating factor µ = (x− 1) ex results in

y = c1e−x

x− 1
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Summary
The solution(s) found are the following

(1)y = c1e−x

x− 1

Figure 83: Slope field plot

Verification of solutions

y = c1e−x

x− 1

Verified OK.

1.21.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(1− x) (u′(x)x+ u(x))− u(x)x2 = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(x2 + x− 1)
x (x− 1)

Where f(x) = −x2+x−1
x(x−1) and g(u) = u. Integrating both sides gives

1
u
du = −x2 + x− 1

x (x− 1) dx∫ 1
u
du =

∫
−x2 + x− 1

x (x− 1) dx

ln (u) = −x− ln (x− 1)− ln (x) + c2

u = e−x−ln(x−1)−ln(x)+c2

= c2e−x−ln(x−1)−ln(x)

Which simplifies to

u(x) = c2e−x

(x− 1)x

Therefore the solution y is

y = ux

= c2e−x

x− 1

Summary
The solution(s) found are the following

(1)y = c2e−x

x− 1
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Figure 84: Slope field plot

Verification of solutions

y = c2e−x

x− 1

Verified OK.

1.21.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − xy

x− 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x−ln(x−1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x−ln(x−1)dy

Which results in

S = (x− 1) exy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − xy

x− 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exxy
Sy = (x− 1) ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1) exy = c1

Which simplifies to

(x− 1) exy = c1

Which gives

y = c1e−x

x− 1
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − xy
x−1

dS
dR

= 0

R = x

S = (x− 1) exy

Summary
The solution(s) found are the following

(1)y = c1e−x

x− 1
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Figure 85: Slope field plot

Verification of solutions

y = c1e−x

x− 1

Verified OK.

1.21.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
x

x− 1

)
dx(

− x

x− 1

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x− 1
N(x, y) = −1

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x− 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x− 1 dx

(3)φ = −x− ln (x− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x− 1)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x− 1)− ln (y)

The solution becomes

y = e−x−c1

x− 1

Summary
The solution(s) found are the following

(1)y = e−x−c1

x− 1

Figure 86: Slope field plot
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Verification of solutions

y = e−x−c1

x− 1

Verified OK.

1.21.6 Maple step by step solution

Let’s solve
(1− x) y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x

1−x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x

1−x
dx+ c1

• Evaluate integral
ln (y) = −x− ln (x− 1) + c1

• Solve for y
y = e−x+c1

x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((1-x)*diff(y(x),x)=x*y(x),y(x), singsol=all)� �

y(x) = c1e−x

x− 1
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3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 23� �
DSolve[(1-x)*y'[x]==x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x

x− 1
y(x) → 0
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1.22 problem 22
1.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 292
1.22.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 294
1.22.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 295
1.22.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 297
1.22.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 301
1.22.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 305

Internal problem ID [3073]
Internal file name [OUTPUT/2565_Sunday_June_05_2022_03_19_41_AM_46160276/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 − 1

)
y′ −

(
x2 + 1

)
y = 0

1.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x2 + 1) y
x2 − 1
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Where f(x) = x2+1
x2−1 and g(y) = y. Integrating both sides gives

1
y
dy = x2 + 1

x2 − 1 dx∫ 1
y
dy =

∫
x2 + 1
x2 − 1 dx

ln (y) = x+ ln (x− 1)− ln (x+ 1) + c1

y = ex+ln(x−1)−ln(x+1)+c1

= c1ex+ln(x−1)−ln(x+1)

Summary
The solution(s) found are the following

(1)y = c1ex+ln(x−1)−ln(x+1)

Figure 87: Slope field plot

Verification of solutions

y = c1ex+ln(x−1)−ln(x+1)

Verified OK.
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1.22.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −x2 + 1
x2 − 1

q(x) = 0

Hence the ode is

y′ − (x2 + 1) y
x2 − 1 = 0

The integrating factor µ is

µ = e
∫
− x2+1

x2−1dx

= e−x−ln(x−1)+ln(x+1)

Which simplifies to

µ = (x+ 1) e−x

x− 1

The ode becomes
d
dxµy = 0

d
dx

(
(x+ 1) e−xy

x− 1

)
= 0

Integrating gives

(x+ 1) e−xy

x− 1 = c1

Dividing both sides by the integrating factor µ = (x+1)e−x

x−1 results in

y = c1ex(x− 1)
x+ 1

Summary
The solution(s) found are the following

(1)y = c1ex(x− 1)
x+ 1
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Figure 88: Slope field plot

Verification of solutions

y = c1ex(x− 1)
x+ 1

Verified OK.

1.22.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 − 1

)
(u′(x)x+ u(x))−

(
x2 + 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x3 − x2 + x+ 1)
x (x2 − 1)
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Where f(x) = x3−x2+x+1
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = x3 − x2 + x+ 1

x (x2 − 1) dx∫ 1
u
du =

∫
x3 − x2 + x+ 1

x (x2 − 1) dx

ln (u) = x− ln (x+ 1) + ln (x− 1)− ln (x) + c2

u = ex−ln(x+1)+ln(x−1)−ln(x)+c2

= c2ex−ln(x+1)+ln(x−1)−ln(x)

Which simplifies to

u(x) = c2

(
ex

x+ 1 − ex
(x+ 1)x

)

Therefore the solution y is

y = ux

= xc2

(
ex

x+ 1 − ex
(x+ 1)x

)
Summary
The solution(s) found are the following

(1)y = xc2

(
ex

x+ 1 − ex
(x+ 1)x

)
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Figure 89: Slope field plot

Verification of solutions

y = xc2

(
ex

x+ 1 − ex
(x+ 1)x

)
Verified OK.

1.22.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x2 + 1) y
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex+ln(x−1)−ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex+ln(x−1)−ln(x+1)dy

Which results in

S = (x+ 1) e−xy

x− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x2 + 1) y
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −e−xy(x2 + 1)
(x− 1)2

Sy =
(x+ 1) e−x

x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 1) e−xy

x− 1 = c1

Which simplifies to

(x+ 1) e−xy

x− 1 = c1

Which gives

y = c1ex(x− 1)
x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
x2+1

)
y

x2−1
dS
dR

= 0

R = x

S = (x+ 1) e−xy

x− 1
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Summary
The solution(s) found are the following

(1)y = c1ex(x− 1)
x+ 1

Figure 90: Slope field plot

Verification of solutions

y = c1ex(x− 1)
x+ 1

Verified OK.

1.22.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
y

)
dy =

(
x2 + 1
x2 − 1

)
dx(

−x2 + 1
x2 − 1

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + 1
x2 − 1

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 + 1
x2 − 1

)
= 0

302



And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + 1
x2 − 1 dx

(3)φ = −x− ln (x− 1) + ln (x+ 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x− 1) + ln (x+ 1) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x− 1) + ln (x+ 1) + ln (y)

The solution becomes

y = ex+c1(x− 1)
x+ 1

Summary
The solution(s) found are the following

(1)y = ex+c1(x− 1)
x+ 1

Figure 91: Slope field plot
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Verification of solutions

y = ex+c1(x− 1)
x+ 1

Verified OK.

1.22.6 Maple step by step solution

Let’s solve
(x2 − 1) y′ − (x2 + 1) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x2+1

x2−1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x2+1
x2−1dx+ c1

• Evaluate integral
ln (y) = x+ ln (x− 1)− ln (x+ 1) + c1

• Solve for y

y = ex+c1 (x−1)
x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((x^2-1)*diff(y(x),x)=(x^2+1)*y(x),y(x), singsol=all)� �

y(x) = ex(x− 1) c1
x+ 1

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 25� �
DSolve[(x^2-1)*y'[x]==(x^2+1)*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c1e
x(x− 1)
x+ 1

y(x) → 0
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1.23 problem 23
1.23.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 307
1.23.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 309
1.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 313
1.23.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 317
1.23.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 319

Internal problem ID [3074]
Internal file name [OUTPUT/2566_Sunday_June_05_2022_03_19_43_AM_21842232/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − ex
(
y2 + 1

)
= 0

1.23.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= ex

(
y2 + 1

)
Where f(x) = ex and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = ex dx∫ 1
y2 + 1 dy =

∫
ex dx

arctan (y) = ex + c1
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Which results in
y = tan (ex + c1)

Summary
The solution(s) found are the following

(1)y = tan (ex + c1)

Figure 92: Slope field plot

Verification of solutions

y = tan (ex + c1)

Verified OK.
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1.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ex
(
y2 + 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = e−x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

e−x
dx

Which results in

S = ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ex
(
y2 + 1

)
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ex

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex = arctan (y) + c1

Which simplifies to

ex = arctan (y) + c1

Which gives

y = − tan (−ex + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ex(y2 + 1) dS
dR

= 1
R2+1

R = y

S = ex

Summary
The solution(s) found are the following

(1)y = − tan (−ex + c1)
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Figure 93: Slope field plot

Verification of solutions

y = − tan (−ex + c1)

Verified OK.

1.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy = (ex) dx

(−ex) dx+
(

1
y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−ex)

= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex dx

(3)φ = −ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex + arctan (y)

The solution becomes
y = tan (ex + c1)

Summary
The solution(s) found are the following

(1)y = tan (ex + c1)

Figure 94: Slope field plot

Verification of solutions

y = tan (ex + c1)

Verified OK.
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1.23.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= ex

(
y2 + 1

)
This is a Riccati ODE. Comparing the ODE to solve

y′ = exy2 + ex

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = ex, f1(x) = 0 and f2(x) = ex. Let

y = −u′

f2u

= −u′

exu (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = ex

f1f2 = 0
f 2
2 f0 = e3x

Substituting the above terms back in equation (2) gives

exu′′(x)− exu′(x) + e3xu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin (ex) + c2 cos (ex)

The above shows that

u′(x) = ex(c1 cos (ex)− c2 sin (ex))
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Using the above in (1) gives the solution

y = −c1 cos (ex)− c2 sin (ex)
c1 sin (ex) + c2 cos (ex)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −c3 cos (ex) + sin (ex)
c3 sin (ex) + cos (ex)

Summary
The solution(s) found are the following

(1)y = −c3 cos (ex) + sin (ex)
c3 sin (ex) + cos (ex)

Figure 95: Slope field plot

Verification of solutions

y = −c3 cos (ex) + sin (ex)
c3 sin (ex) + cos (ex)

Verified OK.
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1.23.5 Maple step by step solution

Let’s solve
y′ − ex(y2 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2+1 = ex

• Integrate both sides with respect to x∫
y′

y2+1dx =
∫
exdx+ c1

• Evaluate integral
arctan (y) = ex + c1

• Solve for y
y = tan (ex + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)=exp(x)*(y(x)^2+1),y(x), singsol=all)� �

y(x) = tan (ex + c1)
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3 Solution by Mathematica
Time used: 0.274 (sec). Leaf size: 26� �
DSolve[y'[x]==Exp[x]*(y[x]^2+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan (ex + c1)
y(x) → −i
y(x) → i
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1.24 problem 24
1.24.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 321
1.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 323
1.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 327
1.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 331

Internal problem ID [3075]
Internal file name [OUTPUT/2567_Sunday_June_05_2022_03_19_46_AM_7653916/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ey − 2x ey = −2x

1.24.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= 2x

(
−e−y + 1

)
Where f(x) = 2x and g(y) = −e−y + 1. Integrating both sides gives

1
−e−y + 1 dy = 2x dx∫ 1
−e−y + 1 dy =

∫
2x dx

ln
(
e−y − 1

)
− ln

(
e−y
)
= x2 + c1
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Raising both side to exponential gives

eln
(
e−y−1

)
−ln

(
e−y

)
= ex2+c1

Which simplifies to

−ey + 1 = c2ex
2

Summary
The solution(s) found are the following

(1)y = ln
(
1− c2ex

2
)

Figure 96: Slope field plot

Verification of solutions

y = ln
(
1− c2ex

2
)

Verified OK.
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1.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x(ey − 1) e−y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
2x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
2x
dx

Which results in

S = x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x(ey − 1) e−y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 2x
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ey

ey − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

eR − 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln
(
eR − 1

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2 = ln (ey − 1) + c1

Which simplifies to

x2 = ln (ey − 1) + c1

Which gives

y = ln
(
ex2−c1 + 1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x(ey − 1) e−y dS
dR

= eR
eR−1

R = y

S = x2

Summary
The solution(s) found are the following

(1)y = ln
(
ex2−c1 + 1

)
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Figure 97: Slope field plot

Verification of solutions

y = ln
(
ex2−c1 + 1

)
Verified OK.

1.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
ey

2 ey − 2

)
dy = (x) dx

(−x) dx+
(

ey
2 ey − 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = ey
2 ey − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And
∂N

∂x
= ∂

∂x

(
ey

2 ey − 2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= ey
2 ey−2 . Therefore equation (4) becomes

(5)ey
2 ey − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = ey
2 ey − 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( ey
2 ey − 2

)
dy

f(y) = ln (ey − 1)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (ey − 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (ey − 1)
2

The solution becomes

y = ln
(
ex2+2c1 + 1

)
Summary
The solution(s) found are the following

(1)y = ln
(
ex2+2c1 + 1

)

Figure 98: Slope field plot
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Verification of solutions

y = ln
(
ex2+2c1 + 1

)
Verified OK.

1.24.4 Maple step by step solution

Let’s solve
y′ey − 2x ey = −2x

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ey
ey−1 = 2x

• Integrate both sides with respect to x∫
y′ey
ey−1dx =

∫
2xdx+ c1

• Evaluate integral
ln (ey − 1) = x2 + c1

• Solve for y

y = ln
(
ex2+c1 + 1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 19� �
dsolve(exp(y(x))*diff(y(x),x)+2*x=2*x*exp(y(x)),y(x), singsol=all)� �

y(x) = − ln
(
− 1
ex2c1 − 1

)
3 Solution by Mathematica
Time used: 2.015 (sec). Leaf size: 21� �
DSolve[Exp[y[x]]*y'[x]+2*x==2*x*Exp[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
1 + ex

2+c1
)

y(x) → 0
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1.25 problem 25
1.25.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 333
1.25.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 334
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Internal problem ID [3076]
Internal file name [OUTPUT/2568_Sunday_June_05_2022_03_19_48_AM_40397258/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

e2xyy′ = −2x

With initial conditions

[y(0) = 1]

1.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −2x e−2x

y

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−2x e−2x

y

)
= 2x e−2x

y2

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.25.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −2x e−2x

y

Where f(x) = −2x e−2x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −2x e−2x dx

∫ 1
1
y

dy =
∫

−2x e−2x dx

y2

2 = (1 + 2x) e−2x

2 + c1
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Which results in
y = e−2x

√
e2x (2 e2xc1 + 2x+ 1)

y = −e−2x
√
e2x (2 e2xc1 + 2x+ 1)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −
√
2c1 + 1

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 0 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1 =
√
2c1 + 1

c1 = 0

Substituting c1 found above in the general solution gives

y = e−2x
√
e2x + 2x e2x

Summary
The solution(s) found are the following

(1)y = e−2x
√
e2x + 2x e2x

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = e−2x
√
e2x + 2x e2x

Verified OK.

1.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x e−2x

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 68: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −e2x
2x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− e2x
2x

dx

Which results in

S = (1 + 2x) e−2x

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x e−2x

y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −2x e−2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(1 + 2x) e−2x

2 = y2

2 + c1

Which simplifies to

(1 + 2x) e−2x

2 = y2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x e−2x

y
dS
dR

= R

R = y

S = (1 + 2x) e−2x

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1
2 = 1

2 + c1
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c1 = 0

Substituting c1 found above in the general solution gives

(1 + 2x) e−2x

2 = y2

2

Solving for y from the above gives

y =
√

(1 + 2x) e−2x

Summary
The solution(s) found are the following

(1)y =
√

(1 + 2x) e−2x

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√

(1 + 2x) e−2x

Verified OK.
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1.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−y

2

)
dy =

(
x e−2x) dx(

−x e−2x) dx+(−y

2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x e−2x

N(x, y) = −y

2

341



The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x e−2x)

= 0

And
∂N

∂x
= ∂

∂x

(
−y

2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x e−2x dx

(3)φ = (1 + 2x) e−2x

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y
2 . Therefore equation (4) becomes

(5)−y

2 = 0 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −y

2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y

2

)
dy

f(y) = −y2

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (1 + 2x) e−2x

4 − y2

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(1 + 2x) e−2x

4 − y2

4

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

(1 + 2x) e−2x

4 − y2

4 = 0

Solving for y from the above gives

y =
√

(1 + 2x) e−2x
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Summary
The solution(s) found are the following

(1)y =
√

(1 + 2x) e−2x

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√

(1 + 2x) e−2x

Verified OK.

1.25.5 Maple step by step solution

Let’s solve
[e2xyy′ = −2x, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = − 2x

e2x

• Integrate both sides with respect to x∫
yy′dx =

∫
− 2x

e2xdx+ c1

• Evaluate integral
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y2

2 = 1+2x
2 e2x + c1

• Solve for y{
y =

√
e2x(2 e2xc1+2x+1)

e2x , y = −
√

e2x(2 e2xc1+2x+1)
e2x

}
• Use initial condition y(0) = 1

1 =
√
2c1 + 1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify

y =
√
(ex)2 (1 + 2x) e−2x

• Use initial condition y(0) = 1
1 = −

√
2c1 + 1

• Solution does not satisfy initial condition
• Solution to the IVP

y =
√
(ex)2 (1 + 2x) e−2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 16� �
dsolve([exp(2*x)*y(x)*diff(y(x),x)+2*x=0,y(0) = 1],y(x), singsol=all)� �

y(x) =
√
(2x+ 1) e−2x
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3 Solution by Mathematica
Time used: 1.816 (sec). Leaf size: 20� �
DSolve[{Exp[2*x]*y[x]*y'[x]+2*x==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
e−2x(2x+ 1)
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1.26 problem 26
1.26.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 347
1.26.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 348
1.26.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 349
1.26.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 354
1.26.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 357

Internal problem ID [3077]
Internal file name [OUTPUT/2569_Sunday_June_05_2022_03_19_51_AM_37109703/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xyy′ −
√

y2 − 9 = 0

With initial conditions

[y
(
e4
)
= 5]

1.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

=
√
y2 − 9
xy

The x domain of f(x, y) when y = 5 is

{x < 0∨ 0 < x}
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And the point x0 = e4 is inside this domain. The y domain of f(x, y) when x = e4 is

{3 ≤ y ≤ ∞,−∞ ≤ y ≤ −3}

And the point y0 = 5 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(√
y2 − 9
xy

)
= 1√

y2 − 9x
−

√
y2 − 9
x y2

The x domain of ∂f
∂y

when y = 5 is

{x < 0∨ 0 < x}

And the point x0 = e4 is inside this domain. The y domain of ∂f
∂y

when x = e4 is

{−∞ ≤ y < −3, 3 < y ≤ ∞}

And the point y0 = 5 is inside this domain. Therefore solution exists and is unique.

1.26.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
y2 − 9
xy

Where f(x) = 1
x
and g(y) =

√
y2−9
y

. Integrating both sides gives

1√
y2−9
y

dy = 1
x
dx

∫ 1√
y2−9
y

dy =
∫ 1

x
dx

(y − 3) (y + 3)√
y2 − 9

= ln (x) + c1

348



The solution is
(y − 3) (y + 3)√

y2 − 9
− ln (x)− c1 = 0

Initial conditions are used to solve for c1. Substituting x = e4 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

−c1 = 0

c1 = 0

Substituting c1 found above in the general solution gives

− ln (x)
√
y2 − 9 + y2 − 9√
y2 − 9

= 0

The above simplifies to

− ln (x)
√

y2 − 9 + y2 − 9 = 0

Summary
The solution(s) found are the following

(1)− ln (x)
√
y2 − 9 + y2 − 9 = 0

Verification of solutions

− ln (x)
√
y2 − 9 + y2 − 9 = 0

Verified OK.

1.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
y2 − 9
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 71: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
y2 − 9
xy

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y√

y2 − 9
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R√

R2 − 9
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (R− 3) (R + 3)√
R2 − 9

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = (y − 3) (y + 3)√
y2 − 9

+ c1

Which simplifies to

ln (x) = (y − 3) (y + 3)√
y2 − 9

+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√

y2−9
xy

dS
dR

= R√
R2−9

R = y

S = ln (x)

Initial conditions are used to solve for c1. Substituting x = e4 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

4 = c1 + 4
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c1 = 0

Substituting c1 found above in the general solution gives

ln (x) =
√
y2 − 9

Solving for y from the above gives

y =
√

ln (x)2 + 9

Summary
The solution(s) found are the following

(1)y =
√

ln (x)2 + 9

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√

ln (x)2 + 9

Verified OK.
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1.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y√

y2 − 9

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
y√

y2 − 9

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = y√
y2 − 9

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
y√

y2 − 9

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

355



But equation (2) says that ∂φ
∂y

= y√
y2−9

. Therefore equation (4) becomes

(5)y√
y2 − 9

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y√
y2 − 9

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y√

y2 − 9

)
dy

f(y) = (y − 3) (y + 3)√
y2 − 9

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (y − 3) (y + 3)√
y2 − 9

− ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(y − 3) (y + 3)√

y2 − 9
− ln (x)

Initial conditions are used to solve for c1. Substituting x = e4 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

(y − 3) (y + 3)√
y2 − 9

− ln (x) = 0
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The above simplifies to

− ln (x)
√

y2 − 9 + y2 − 9 = 0

Summary
The solution(s) found are the following

(1)− ln (x)
√
y2 − 9 + y2 − 9 = 0

Verification of solutions

− ln (x)
√
y2 − 9 + y2 − 9 = 0

Verified OK.

1.26.5 Maple step by step solution

Let’s solve[
xyy′ −

√
y2 − 9 = 0, y(e4) = 5

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′y√
y2−9

= 1
x

• Integrate both sides with respect to x∫
y′y√
y2−9

dx =
∫ 1

x
dx+ c1

• Evaluate integral
√
y2 − 9 = ln (x) + c1

• Solve for y{
y =

√
9 + c21 + 2c1 ln (x) + ln (x)2, y = −

√
9 + c21 + 2c1 ln (x) + ln (x)2

}
• Use initial condition y(e4) = 5

5 =
√

c21 + 8c1 + 25

• Solve for c1
c1 = (0,−8)

• Substitute c1 = (0,−8) into general solution and simplify
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y =
√

ln (x)2 + 9

• Use initial condition y(e4) = 5
5 = −

√
c21 + 8c1 + 25

• Solution does not satisfy initial condition
• Solution to the IVP

y =
√

ln (x)2 + 9

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 12� �
dsolve([x*y(x)*diff(y(x),x)=sqrt(y(x)^2-9),y(exp(4)) = 5],y(x), singsol=all)� �

y(x) =
√
9 + ln (x)2

3 Solution by Mathematica
Time used: 0.256 (sec). Leaf size: 33� �
DSolve[{x*y[x]*y'[x]==Sqrt[y[x]^2-9],y[Exp[4]]==5},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

log2(x) + 9

y(x) →
√

log2(x)− 16 log(x) + 73
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1.27 problem 27
1.27.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 359
1.27.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 361
1.27.3 Solving as first order ode lie symmetry calculated ode . . . . . . 364
1.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 369
1.27.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 373

Internal problem ID [3078]
Internal file name [OUTPUT/2570_Sunday_June_05_2022_03_19_55_AM_35932265/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(y + x− 1) y′ + y = x+ 1

1.27.1 Solving as differentialType ode

Writing the ode as

y′ = x− y + 1
y + x− 1 (1)

Which becomes

(y − 1) dy = (−x) dy + (x− y + 1) dx (2)

But the RHS is complete differential because

(−x) dy + (x− y + 1) dx = d

(
1
2x

2 − xy + x

)
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Hence (2) becomes

(y − 1) dy = d

(
1
2x

2 − xy + x

)
Integrating both sides gives gives these solutions

y = −x+ 1 +
√

2x2 + 2c1 + 1 + c1

y = −x+ 1−
√

2x2 + 2c1 + 1 + c1

Summary
The solution(s) found are the following

(1)y = −x+ 1 +
√
2x2 + 2c1 + 1 + c1

(2)y = −x+ 1−
√

2x2 + 2c1 + 1 + c1

Figure 103: Slope field plot

Verification of solutions

y = −x+ 1 +
√
2x2 + 2c1 + 1 + c1

Verified OK.

y = −x+ 1−
√

2x2 + 2c1 + 1 + c1

Verified OK.
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1.27.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −Y (X) + y0 −X − x0 − 1

Y (X) + y0 +X + x0 − 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − Y (X)−X

Y (X) +X

In canonical form, the ODE is

Y ′ = F (X,Y )

= −Y −X

Y +X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −Y + X and N = Y + X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u+ 1

u+ 1
du
dX =

−u(X)+1
u(X)+1 − u(X)

X
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Or
d

dX
u(X)−

−u(X)+1
u(X)+1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + u(X)2 + 2u(X)− 1 = 0

Or
X(u(X) + 1)

(
d

dX
u(X)

)
+ u(X)2 + 2u(X)− 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 + 2u− 1
X (u+ 1)

Where f(X) = − 1
X

and g(u) = u2+2u−1
u+1 . Integrating both sides gives

1
u2+2u−1

u+1
du = − 1

X
dX

∫ 1
u2+2u−1

u+1
du =

∫
− 1
X

dX

ln (u2 + 2u− 1)
2 = − ln (X) + c2

Raising both side to exponential gives
√
u2 + 2u− 1 = e− ln(X)+c2

Which simplifies to
√
u2 + 2u− 1 = c3

X

Which simplifies to √
u (X)2 + 2u (X)− 1 = c3ec2

X

The solution is √
u (X)2 + 2u (X)− 1 = c3ec2

X
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Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution √

Y (X)2

X2 + 2Y (X)
X

− 1 = c3ec2
X

Using the solution for Y (X)√
Y (X)2 + 2Y (X)X −X2

X2 = c3ec2
X

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
X = x

Then the solution in y becomes√
(y − 1)2 + 2x (y − 1)− x2

x2 = c3ec2
x

Summary
The solution(s) found are the following

(1)

√
(y − 1)2 + 2x (y − 1)− x2

x2 = c3ec2
x
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Figure 104: Slope field plot

Verification of solutions √
(y − 1)2 + 2x (y − 1)− x2

x2 = c3ec2
x

Verified OK.

1.27.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−x+ y − 1
x− 1 + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−x+ y − 1) (b3 − a2)

x− 1 + y
− (−x+ y − 1)2 a3

(x− 1 + y)2

−
(

1
x− 1 + y

+ −x+ y − 1
(x− 1 + y)2

)
(xa2 + ya3 + a1)

−
(
− 1
x− 1 + y

+ −x+ y − 1
(x− 1 + y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 − 3x2b2 − x2b3 + 2xya2 − 2xya3 − 2xyb2 − 2xyb3 − y2a2 + 3y2a3 − y2b2 + y2b3 − 2xa2 + 2xa3 − 2xb1 + 2xb2 + 2ya1 + 2ya2 − 4ya3 + 2yb2 − 2yb3 − 2a1 − a2 + a3 − b2 + b3

(x− 1 + y)2
= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 + 3x2b2 + x2b3 − 2xya2 + 2xya3 + 2xyb2 + 2xyb3
+ y2a2 − 3y2a3 + y2b2 − y2b3 + 2xa2 − 2xa3 + 2xb1 − 2xb2 − 2ya1
− 2ya2 + 4ya3 − 2yb2 + 2yb3 + 2a1 + a2 − a3 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 − 2a2v1v2 + a2v

2
2 − a3v

2
1 + 2a3v1v2 − 3a3v22 + 3b2v21 + 2b2v1v2

+ b2v
2
2 + b3v

2
1 + 2b3v1v2 − b3v

2
2 − 2a1v2 + 2a2v1 − 2a2v2 − 2a3v1

+ 4a3v2 + 2b1v1 − 2b2v1 − 2b2v2 + 2b3v2 + 2a1 + a2 − a3 + b2 − b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + 3b2 + b3) v21 + (−2a2 + 2a3 + 2b2 + 2b3) v1v2
+ (2a2 − 2a3 + 2b1 − 2b2) v1 + (a2 − 3a3 + b2 − b3) v22
+ (−2a1 − 2a2 + 4a3 − 2b2 + 2b3) v2 + 2a1 + a2 − a3 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 + 2a3 + 2b2 + 2b3 = 0
−a2 − a3 + 3b2 + b3 = 0
a2 − 3a3 + b2 − b3 = 0

2a2 − 2a3 + 2b1 − 2b2 = 0
−2a1 − 2a2 + 4a3 − 2b2 + 2b3 = 0

2a1 + a2 − a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = −b2

a2 = 2b2 + b3

a3 = b2

b1 = −b3

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y − 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
−−x+ y − 1

x− 1 + y

)
(x)

= −x2 + 2xy + y2 − 2x− 2y + 1
x− 1 + y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+2xy+y2−2x−2y+1
x−1+y

dy

Which results in

S = ln (−x2 + 2xy + y2 − 2x− 2y + 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x+ y − 1
x− 1 + y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x− y + 1
x2 + (2− 2y)x− (y − 1)2

Sy =
−x+ 1− y

x2 + (2− 2y)x− (y − 1)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
−x2 + (2y − 2)x+ (y − 1)2

)
2 = c1

Which simplifies to
ln
(
−x2 + (2y − 2)x+ (y − 1)2

)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x+y−1
x−1+y

dS
dR

= 0

R = x

S =
ln
(
−x2 + (2y − 2)x+ (y − 1)2

)
2
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Summary
The solution(s) found are the following

(1)
ln
(
−x2 + (2y − 2)x+ (y − 1)2

)
2 = c1

Figure 105: Slope field plot

Verification of solutions

ln
(
−x2 + (2y − 2)x+ (y − 1)2

)
2 = c1

Verified OK.

1.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the

369



ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x− 1 + y) dy = (x− y + 1) dx
(−x+ y − 1) dx+(x− 1 + y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ y − 1
N(x, y) = x− 1 + y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(−x+ y − 1)

= 1

And
∂N

∂x
= ∂

∂x
(x− 1 + y)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ y − 1 dx

(3)φ = −x(x− 2y + 2)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x− 1 + y. Therefore equation (4) becomes

(5)x− 1 + y = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 1
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y − 1) dy

f(y) = 1
2y

2 − y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x− 2y + 2)
2 + y2

2 − y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x− 2y + 2)
2 + y2

2 − y

Summary
The solution(s) found are the following

(1)−x(x− 2y + 2)
2 + y2

2 − y = c1
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Figure 106: Slope field plot

Verification of solutions

−x(x− 2y + 2)
2 + y2

2 − y = c1

Verified OK.

1.27.5 Maple step by step solution

Let’s solve
(y + x− 1) y′ + y = x+ 1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x+ y − 1) dx+ f1(y)

• Evaluate integral
F (x, y) = −x2

2 + xy − x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x− 1 + y = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y − 1

• Solve for f1(y)
f1(y) = 1

2y
2 − y

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

2x
2 + xy − x+ 1

2y
2 − y

• Substitute F (x, y) into the solution of the ODE
−1

2x
2 + xy − x+ 1

2y
2 − y = c1

• Solve for y{
y = −x+ 1−

√
2x2 + 2c1 + 1, y = −x+ 1 +

√
2x2 + 2c1 + 1

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.391 (sec). Leaf size: 28� �
dsolve((x+y(x)-1)*diff(y(x),x)=(x-y(x)+1),y(x), singsol=all)� �

y(x) = −c1x−
√

2c21x2 + 1 + c1
c1

3 Solution by Mathematica
Time used: 0.163 (sec). Leaf size: 47� �
DSolve[(x+y[x]-1)*y'[x]==(x-y[x]+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

2x2 + 1 + c1 − x+ 1
y(x) →

√
2x2 + 1 + c1 − x+ 1
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1.28 problem 28
1.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 376
1.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 378
1.28.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 382
1.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 385

Internal problem ID [3079]
Internal file name [OUTPUT/2571_Sunday_June_05_2022_03_20_01_AM_91956305/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

xyy′ + y2 = 2x2

1.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x)) + u(x)2 x2 = 2x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(u2 − 1)
ux
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Where f(x) = − 2
x
and g(u) = u2−1

u
. Integrating both sides gives

1
u2−1
u

du = −2
x
dx

∫ 1
u2−1
u

du =
∫

−2
x
dx

ln (u− 1)
2 + ln (u+ 1)

2 = −2 ln (x) + c2

The above can be written as(
1
2

)
(ln (u− 1) + ln (u+ 1)) = −2 ln (x) + 2c2

ln (u− 1) + ln (u+ 1) = (2) (−2 ln (x) + 2c2)
= −4 ln (x) + 4c2

Raising both side to exponential gives

eln(u−1)+ln(u+1) = e−4 ln(x)+2c2

Which simplifies to

u2 − 1 = 2c2
x4

= c3
x4

The solution is
u(x)2 − 1 = c3

x4

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − 1 = c3
x4

y2

x2 − 1 = c3
x4

Summary
The solution(s) found are the following

(1)y2

x2 − 1 = c3
x4
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Figure 107: Slope field plot

Verification of solutions

y2

x2 − 1 = c3
x4

Verified OK.

1.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−2x2 + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 75: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2y

dy

Which results in

S = y2x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x2 + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = x y2

Sy = x2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R4

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x2

2 = x4

2 + c1

Which simplifies to

y2x2

2 = x4

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x2+y2

yx
dS
dR

= 2R3

R = x

S = y2x2

2

Summary
The solution(s) found are the following

(1)y2x2

2 = x4

2 + c1
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Figure 108: Slope field plot

Verification of solutions

y2x2

2 = x4

2 + c1

Verified OK.

1.28.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −−2x2 + y2

yx

This is a Bernoulli ODE.
y′ = −1

x
y + 2x1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = 2x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

x
+ 2x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

x
+ 2x

w′ = −2w
x

+ 4x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = 4x
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Hence the ode is

w′(x) + 2w(x)
x

= 4x

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ) (4x)
d
dx
(
x2w

)
=
(
x2) (4x)

d
(
x2w

)
=
(
4x3) dx

Integrating gives

x2w =
∫

4x3 dx

x2w = x4 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = x2 + c1
x2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x2 + c1
x2

Solving for y gives

y(x) =
√
x4 + c1
x

y(x) = −
√
x4 + c1
x

Summary
The solution(s) found are the following

(1)y =
√
x4 + c1
x

(2)y = −
√
x4 + c1
x
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Figure 109: Slope field plot

Verification of solutions

y =
√
x4 + c1
x

Verified OK.

y = −
√
x4 + c1
x

Verified OK.

1.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
2x2 − y2

)
dx(

−2x2 + y2
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x2 + y2

N(x, y) = xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2x2 + y2

)
= 2y
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And
∂N

∂x
= ∂

∂x
(xy)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy
((2y)− (y))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
−2x2 + y2

)
= −2x3 + x y2

And

N = µN

= x(xy)
= x2y

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x3 + x y2
)
+
(
x2y
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3 + x y2 dx

(3)φ = −(2x2 − y2)2

8 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (2x2 − y2) y

2 + f ′(y)

= x2y − 1
2y

3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2y. Therefore equation (4) becomes

(5)x2y = x2y − 1
2y

3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y3

2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y3

2

)
dy

f(y) = y4

8 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(2x2 − y2)2

8 + y4

8 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(2x2 − y2)2

8 + y4

8

Summary
The solution(s) found are the following

(1)−(−y2 + 2x2)2

8 + y4

8 = c1

Figure 110: Slope field plot

Verification of solutions

−(−y2 + 2x2)2

8 + y4

8 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(x*y(x)*diff(y(x),x)=2*x^2-y(x)^2,y(x), singsol=all)� �

y(x) =
√
x4 + c1
x

y(x) = −
√
x4 + c1
x

3 Solution by Mathematica
Time used: 0.206 (sec). Leaf size: 38� �
DSolve[x*y[x]*y'[x]==2*x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x4 + c1
x

y(x) →
√
x4 + c1
x
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