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1.1 problem 1

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5

Solving as separableode . . . . . . ... ... oL,
Solving as differentialTypeode . . . .. ... ... ... ....
Solving as first order ode lie symmetry lookup ode . . . . . .. [7]
Solving asexactode . . . .. ... .. .. ... ......... 11l
Maple step by step solution . . . . . .. ... ... ... ... 151

Internal problem ID [3052]
Internal file name [OUTPUT/2544_Sunday_June_05_2022_03_18_54_AM_13569753/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316
Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separablel

3y%y =22 —1

1.1.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)




=-x—-x+aq

Which results in
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Summary
The solution(s) found are the following
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Figure 1: Slope field plot



Verification of solutions

Verified OK.
(8 +38a - J:)% iv/3 (22 + 3¢1 — x)%
- 2

Verified OK.
(@ +38a - z)? V3 (2?4 3¢ — z)3
- 2

Verified OK.

1.1.2 Solving as differentialType ode
Writing the ode as

Which becomes
(3y*) dy = 2z — 1) dz
But the RHS is complete differential because
(22 — 1) dz = d(2° — x)
Hence (2) becomes
(3y%) dy = d(2* — z)

Integrating both sides gives gives these solutions

W=

y= (e +a—z)° +a

(x2+c1—x)% +i\/§(x2+cl—x)

=

y=- 2 2

(22 4+ ¢; — )

Wl

V3@ + o —x)

W=

y=- 2 2

+c

+C

1)

(2)



Summary
The solution(s) found are the following

y=(w2+cl—x)%+c1 (1)
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Figure 2: Slope field plot



Verification of solutions

Y= (z2+cl—x)%+cl

Verified OK.
24 ¢ —2)7 | iVB(a*+ e —a)
Y= — (x 021 x) N iV3 (z - ¢ — ) Lo
Verified OK.
240 —x)°  iV3(@+ e —a)
Y= (x 021 T)® V3 (z 201 x) te
Verified OK.

1.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, 2x—1
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - gm) - w2£y - wxf —Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to

solve the PDE (A), and can just use the lookup table shown below to find £, 7



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode y = f(m) Y+ g(x) y" 0 e f(n—l)f(x)d:cyn
Reduced Riccati v = fi(x)y + folx) y? 0 e— [ fidz
The above table shows that
1
f(x,y) 2z 1
3 " 3
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the




canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
Sz/—dx
13
=/ } dz

3

S is found from

NI

Which results in
1, 1

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ _ Sp+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2z — 1
U)(.’L', y) = 3y2
Evaluating all the partial derivatives gives
R,=0
R, =1
2z 1
Se=——12
3 3
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ﬂ% =Y (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

_ = 2
dR R



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

3

R
=—+Cl

3

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

Which simplifies to

3

Y
T="+c
3 1

3

Y
—-z="=+c¢
3 1

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates
(R, S)

~ e e —b—>—b
T e o3 —s—s]
NN 3 S

NN\ e NN a2

> o> > _v_v_v v 7
> v v v 7T AN
e T AL N
e P

AT e

f
A R i
VIPRTTT %1’ i
RS TIrRER
——r T A A J PN
> oo v v T 7 7 A
> > _v_v_v v 7

—>—>—> > > > o _v_

ds _ p2
iz =R

b

> 7 A
— 7 A
— 7
7 A
— 7 A
— 7
7 A
— 7 f
— 7
— 7 f

—s
—s

b

—
—

NN NN
2

Y
NNN NN
by bbb

o7/
A7 f
Al 7 f
77 ]
e Vs
Ao 7 f
Ao 7 f
g 7 J
7 A
—> 7 f

N
2

bbb —B—b—B—b—B—B—B—B—B—B—b—b—b—>—b
—
—

— bbb bbb bbb bbb —b—b—b——>
\\\\\\\\\\\\\\\5‘\\\\

D D
D D —
! D
A AT AT T AT AT A T A T A RA AT AT A T A TS E A T A T A T e
\s\b\b\s\b\b\s\b\aw\s\b\b\‘\b\b\‘\b\b\‘\b
S D,
A D —
IEGOEOS T eaEEE.
D D

N\
!

—
—

Summary

The solution(s) found are the following
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Figure 3: Slope field plot

Verification of solutions

Verified OK.

1.1.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
—_— —_— —y =
ox + Oy dz 0 (B)

11



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(3y*) dy = (2z — 1) dz
(1—2z)dz+(3y*)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y)=1-2x
N(z,y) = 3y*

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
—=—01-2
3y 3y( z)
=0
And
ON 0, ,
oz "oV

12



Since %M = 5. N then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

o
o= M M
0p

Integrating (1) w.r.t. z gives
— dx = / Mdz

3¢
ax /1 — 2z dx

¢=—-2"+z+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

¢ .
3y =0+ f'(y) (4)

But equation (2) says that 8¢ = 3y?. Therefore equation (4) becomes

3y =0+ f'(y) (5)

Solving equation (5) for f’'(y) gives

Integrating the above w.r.t y gives
/f’(y) dy:/(3y2) dy
fy) =9’ +a
Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
¢=y3—w2—|—z+c1

13



But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

a=y -2’4z

Summary
The solution(s) found are the following
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Figure 4: Slope field plot

Verification of solutions

y3—z2+x=cl

Verified OK.
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1.1.5 Maple step by step solution

Let’s solve
3y*y =2z —1
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[3y*y'dz = [ (22 —1)dz + 1

° Evaluate integral

Yr=x’+c —x

° Solve for y

|

y= (2> +c; — 1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 60

Ldsolve(B*y(x)“2*diff(y(x),x)=2*x—1,y(x), singsol=all)

ol

y(x) = (xz +c — :B)
(22 + ¢ — x)% (1 + 7,\/3)

ol O

(iv3—1)

(z2+ ¢ —x)

15



v/ Solution by Mathematica
Time used: 0.257 (sec). Leaf size: 71

kDSolve [3*xy [x] ~"2*y' [x]==2%x-1,y[x],x,IncludeSingularSolutions -> True]

y(z) = V12— 2+ 3¢
y(z) > —vV—=1v/22 — 2+ 3¢
y(z) = (=1)¥3Y22 —z + 3¢,

16



1.2 problem 2

1.2.1 Solving as separableode . . . . . . . ... ... ... ... ... 17
1.2.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 19]
1.2.3 Solvingasexactode . . ... ... .. ... ... ... ... . 23
1.2.4 Solving asriccatiode . . . . . . . . ... ... ... 271
1.2.5 Maple step by step solution . . . . . .. ... ... .. ... .. 29]

Internal problem ID [3053]
Internal file name [OUTPUT/2545_Sunday_June_05_2022_03_18_56_AM_40200477/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type
[_separable]

Yy — 6y’ =0

1.2.1 Solving as separable ode

In canonical form the ODE is

yl = F(.l?,y)
= f(z)9(y)
= 6z y2

Where f(z) = 6z and g(y) = y*. Integrating both sides gives

1
?dy=6xdx
1
Edy: 6z dx
1
—~ =32 +¢
Y

17



(1)

The solution(s) found are the following

Which results in
Summary
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Figure 5: Slope field plot
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Verification of solutions

Verified OK.



1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ :6$y2

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz

19




The above table shows that
1
n(@,y) =0 (A1)

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
1
S = / —dx
3
1
= le’
6z
Which results in
S = 32

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = 6y’

Evaluating all the partial derivatives gives

R, =0
R, =1
S, = 6z
Sy =0

20



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
-~ - 2A
TR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR R?
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = -~ +c (4)
=-g+ta
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
1
3P =—>+¢
Y
Which simplifies to
1
32 =—-"+4¢
Which gives
. 1
y= —3z2 4+ ¢

21



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Summary
The solution(s) found are the following

1)

1
—312+¢;

y:
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Verification of solutions

Verified OK.

Figure 6: Slope field plot

1

y= —312 +¢;

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) - =0

dzx

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
0p  0bdy _
oxr  Oydr

23



Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

(6%/2) dy = (z)dz

1
Comparing (1A) and (2A) shows that
M(x7 y) =T
1
N(z,y) 62

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM_ o
dy Oy
=0

24



And
ON _0(1
oxr Oz \ 6y?
=0

Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

0¢ .
%dx— /—zdx

2

b=—-5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)

But equation (2) says that g—i = #. Therefore equation (4) becomes

1 ,
6—y2=0+f(y) (5)

Solving equation (5) for f'(y) gives

1
f'ly) = 6y?
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Integrating the above w.r.t y gives

/f’(y) dy:/(%yz) dy

f(y)=—é+01

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
|

¢:—?—@+01

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cp constants into new constant c¢; gives the solution as

2 1
C —_—— _——
! 2 6y
The solution becomes
1
Y= T3 @ + 20)
Summary
The solution(s) found are the following
1
- 1
y 3 (% 4+ 2¢1) (1)
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Figure 7: Slope field plot

Verification of solutions

3 (% 4 2¢1)

Verified OK.

1.2.4 Solving as riccati ode

In canonical form the ODE is

F(z,y)
6z 3>

yl

This is a Riccati ODE. Comparing the ODE to solve

y/ — 6.’I,'y2

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(x)y®

27



Shows that fo(z) =0, fi(z) =0 and fa(z) = 6x. Let

- fou

_u’

Y

1)

- 6zu

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" () = (f + fufa) w'(z) + f3 fou(z) = 0 (2)
But
f=6
fifa=0
f3fo=0

Substituting the above terms back in equation (2) gives
6zu” (z) — 6u'(z) =0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = 2 + ¢

The above shows that
v (z) = 2c0%

Using the above in (1) gives the solution

C2

y= 3 (coz? + 1)

Dividing both numerator and denominator by c; gives, after renaming the constant

£ = c3 the following solution
1

T 322+ 3¢
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1)

The solution(s) found are the following

Summary
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Figure 8: Slope field plot
29

Highest derivative means the order of the ODE is 1

Separate variables

Let’s solve
Yy —6y’z=0

1.2.5 Maple step by step solution
[ J

Verification of solutions

Verified OK.



!
¥ = 6x

<

. Integrate both sides with respect to x
fg—;dx = [6zdz + 1

° Evaluate integral
—le =322+ ¢

° Solve for y

- ___1
Y= 3x24c;

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(diff(y(x),x)=6*x*y(x)”2,y(x), singsol=all)

_ 1
3224 ¢

y(z)

v/ Solution by Mathematica
Time used: 0.12 (sec). Leaf size: 22

LDSolve[y'[x]==6*x*y[x]“2,y[x],x,IncludeSingularSolutions -> True]
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1.3 problem 3

1.3.1 Solving as separableode . . . . . . .. .. ... ... ... ... 31]
1.3.2 Solving as first order special form ID 1ode. . . . . . .. .. .. 33|
1.3.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 34
1.34 Solvingasexactode . .. ... .. ... ... .......... 38}
1.3.5 Maple step by step solution . . . . . ... ... ... ... ... 42

Internal problem ID [3054]
Internal file name [OUTPUT/2546_Sunday_June_05_2022_03_18_58_AM_74491113/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

y —eYsin(z) =0

1.3.1 Solving as separable ode

In canonical form the ODE is

y, = F(.’L‘, y)
= f(z)9(y)

= eYsin ()

Where f(z) = sin (z) and g(y) = €Y. Integrating both sides gives

1 .
o dy = sin (z) dx

/e—lydy=/sin(x) dx

—e ¥V =—cos(z)+ ¢
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Which results in

Summary

y = —In(cos(z) — c1)

The solution(s) found are the following

Verification of solutions

Verified OK.

y = —In(cos(z) —c1)
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Figure 9: Slope field plot

y = —In(cos(z) —c1)
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1.3.2 Solving as first order special form ID 1 ode
Writing the ode as

y' = eYsin ()

And using the substitution © = e™¥ then

UI — _y/e—y

The above shows that

y = —u(z)e

__v@)

Substituting this in (1) gives

The above simplifies to

v/ (z) = —sin ()

Now ode (2) is solved for u(x) Integrating both sides gives

u(z) = /—sin (z) dz
= ¢; + cos (z)
Substituting the solution found for u(z) in u = e gives
y = —In (u(z))

= —In(c; + cos(x))
= —In(c; + cos (z))

Summary
The solution(s) found are the following

y=—In(c; + cos(x))
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Figure 10: Slope field plot

Verification of solutions

y = —1In(c; + cos(z))
Verified OK.

1.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = e¥sin (z)

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gz) - wzfy — wz§ — wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
1
z,Y) = —
€l@,y) = @)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ N

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

5= [ zis
=/idx

sin(z)

S is found from

Which results in
S = —cos ()

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = e’ sin (x)

Evaluating all the partial derivatives gives

R,=0
R,=1
Sz = sin (z)
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ZTS:; =e Y (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds

- = e_R

dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —e_R +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—cos(z) =—e?V+¢
Which simplifies to

—cos(z) =—e?Y+¢
Which gives

y=—1In(c; + cos(z))

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates

(R,5)

transformation

% — ¢¥sin (z)
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|
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Y & et
S e
re /««4&,—4—4—«—«
¥ & et
NS bbb —b
N N\ s
f f e e
o 4 a—a— e
o 4 G—a——a—a—
Attt t——

N AL h— b h— b
NN e
YN N e
/ o e

7~ %%\ R=y

t
t
t
t
t
t
f
)
f
A

A 25— e 7= A

T T b a A B —B—P T T _T_—b—b—na b

e S S ———
A g as
Aot oo

> > > > > o s—n—n—s P N

bbb bbb —b—B B> —>—b—b—b—b

e e e e

AT oo bbb

DS T T A S
N
%
\
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A A A A A e A A A A ta e T A T A A T A e

—>——b bbb —B—b—B—B > —B—>—b—B—B—B—b—b—>
e e e S S e e e

AT o> bbb

Summary
The solution(s) found are the following

y=—In(c; + cos(x)) (1)
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Verification of solutions

Verified OK.
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Figure 11: Slope field plot

y=—In(c; + cos(x))

1.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

dz =0

M(z,y) + N(z,y)

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d

%Qb(xa y) =0
0¢p  Opdy _
oz ay dr
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(e7¥) dy = (sin (z)) dz
(—sin(z))dz+(e™¥)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —sin (z)
N(z,y) =e™

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 .
En = 8_y(_ sin (z))
=0
And
ON 0, _
o =2
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Since %M = 5. N then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

9
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. = gives

@dx=/Mdz

Oz

09 :

e dac—/—sm(:c)dx

¢ = cos (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

9y — 0+ (4)

But equation (2) says that g—‘z = e~ Y. Therefore equation (4) becomes
eV =0+ f(y) (5)
Solving equation (5) for f'(y) gives
flly)=e™
Integrating the above w.r.t y gives
[ o=
fly)=—e"+ac
Where c¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

p=cos(z)—e Y+
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

The solution becomes

Summary

¢ =cos(x) —e™?

y = —In(cos(z) —c1)

The solution(s) found are the following

Verification of solutions

Verified OK.

y = —In(cos (z) — ¢1)
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Figure 12: Slope field plot

y = —In(cos(z) — c1)
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1.3.5 Maple step by step solution

Let’s solve
Yy —eVsin(z) =0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
f—; = sin ()
° Integrate both sides with respect to x
[Ydx = [sin(z)dz+c
° Evaluate integral
—L =—cos(z)+a
° Solve for y

y = —1In(cos(z) — 1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

Ldsolve(diff(y(x),x)=exp(y(x))*sin(x),y(x), singsol=all)

y(xz) = —In(cos (z) — ¢1)
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v/ Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 15

-

kDSolve [y' [x]==Exply[x]]1*Sin[x],y[x],x,IncludeSingularSolutions -> Truel

—

y(xz) — —log(cos(z) — ¢1)
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1.4 problem 4

1.4.1 Solving as separableode . . . . . .. ... ... ... ...,
1.4.2 Solving as first order special form ID 1ode. . . . . . . . .. ..

1.4.3 Solving as first order ode lie symmetry lookup ode . .. .. ..
1.44 Solvingasexactode . ... ... ... ... . ..........
1.4.5 Maple step by step solution . . . . ... ... ... ... ...

Internal problem ID [3055]

Internal file name [OUTPUT/2547_Sunday_June_05_2022_03_19_00_AM_33203565/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order

special form ID 1", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

y —e VT =90

1.4.1 Solving as separable ode

In canonical form the ODE is

yl = F(xay)
= f(z)g(y)

=e Ye”

Where f(z) = €® and g(y) = e7Y. Integrating both sides gives

1
Tydy=e”d:r

e
1 T

e =e"+0;

44



Which results in

Summary

y=In(e”+c)

The solution(s) found are the following

y=In(e”+¢c)

1—=———~ /7

Verification of solutions

Verified OK.
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Figure 13: Slope field plot

y=1In(e"+¢c)
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1.4.2 Solving as first order special form ID 1 ode
Writing the ode as

y/ — e—y—l—x
And using the substitution u = €Y then
ul — yley

The above shows that

_ w(z)
u
Substituting this in (1) gives
u'(z) e
v w
The above simplifies to
v (z) = €”

Now ode (2) is solved for u(x) Integrating both sides gives

u(z) = /e’” dz

=e"+¢
Substituting the solution found for u(z) in u = e¥ gives
y = In (u(z))

=In(e” + 1)
=In(e” + )

Summary
The solution(s) found are the following

y=In(e”+¢c)
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Figure 14: Slope field plot

Verification of solutions

y=In(e”+¢c)
Verified OK.
1.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ — e—y—l—x
Y = w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Ny + w(ny - gz) - wzfy - wzg —Wyn = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =e"

n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
1
S = / —dzx
13
1
= [ —dz
e xT
Which results in
S=¢"

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =e ¥+

Evaluating all the partial derivatives gives

R, =0
R,=1
S, =¢"
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

aS g
E—e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

e” (2A)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =ef +¢; (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
e =e'+¢
Which simplifies to
e =e"+¢
Which gives
y=In(e” —c)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy __ —y+z ds _ R
ar — © ar — ©
e e R AEE
2/ L AP
4 ettt [ Attt =t
bassvyity Beaasaswns AREE
——b—b—b—b—b ———e > v 7 A ————b—> 7 A
»»»»» I B R e DR 1
»»»»»»»» 2o P Y} Ay
S A pp N S I EEEN
»»»»»»»» A TR _ e oo AP
s i LV i i =Y e L B
Sacsenzt (AR INAR e Sacsuas s A INAY
44444 > 7 — —— > T 7
BESESSSFIY IERREE ¢ =R SRR
S AT RS RS REGEEE RS
R LA IR R R R T L L SR AR
A R I N N R I AR
e PP A oo A P
D AR N R NI ARE
oA A O O O O N I e s e A
AP EEEEEHEEEEY e L VAV
Summary
The solution(s) found are the following
y=In(e" - cy) &
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Figure 15: Slope field plot

Verification of solutions

y=In(e" —¢c)
Verified OK.

1.4.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,9) L =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%Qb(xa y) =0
Hence 8(15 8¢ p
ay
oz ay dz =0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(€*)dy = (¢") dz
(—e®)dz+(e?)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —€”
N(z,y) = e

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM _ 0
dy Oy
And
ON 0
= — (aY
dr Oz )
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
¢
ay @

Integrating (1) w.r.t. = gives

@dx=/Mdz
or

oo . -
%daz—/—e dz

¢ =—e"+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

=0 ! 4
=0+ (@
But equation (2) says that g—‘z = e¥. Therefore equation (4) becomes

& =0+ /') 6)

Solving equation (5) for f’(y) gives
fly)=¢
Integrating the above w.r.t y gives
/ﬂw®=/WNy
fly) =€+
Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
¢=—e"+e'+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

The solution becomes

Summary

cp=—e"+¢¥

y=1In(e"+¢c)

The solution(s) found are the following

Verification of solutions

Verified OK.

y=In(e”+¢c)
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Figure 16: Slope field plot

y=In(e”+¢c)
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1.4.5 Maple step by step solution

Let’s solve
Yy —e ¥t =0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y/ey —

° Integrate both sides with respect to x
[y'evdz = [e"dz +

° Evaluate integral
ey =¢e"+¢
° Solve for y

y=In(e®"+c)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(diff(y(x),x)=exp(x—y(X)),y(X), singsol=all)

y(xz) =In (e + ¢1)
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v/ Solution by Mathematica
Time used: 0.769 (sec). Leaf size: 12

-

kDSolve [y' [x]==Exp[x-y[x]],y[x],x,IncludeSingularSolutions -> True]

—

y(x) — log (e + 1)

96



1.5 problem 5

1.5.1 Solving as separableode . . . . . . ... ... ... ... ... BTl
1.5.2 Solving as first order ode lie symmetry lookup ode . .. .. .. Ol
1.5.3 Solvingasexactode . . ... ... ... ... .......... 631
1.5.4 Maple step by step solution . . . . ... ... ... .. ..... 671

Internal problem ID [3056]
Internal file name [OUTPUT/2548_Sunday_June_05_2022_03_19_03_AM_91409749/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

y —zxsec(y) =0

1.5.1 Solving as separable ode

In canonical form the ODE is

y/ = F(.’E,y)
= f(=)g(y)

= zsec(y)
Where f(z) = = and g(y) = sec (y). Integrating both sides gives

1

sec (1) dy =zdz
1
/—dy = /xdx
sec (y)
2
sin (y) = % +c
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Summary
The solution(s) found are the following

Which results in

T T T T T T T
on N — (=) — N o

Verification of solutions

Verified OK.



1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = zsec(y)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

o)
|
.
8

|
——

8= = | =
ISH
8

Which results in

.’152

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = xsec (y)
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Evaluating all the partial derivatives gives

R, =0
R,=1
Sy =1
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

2 —cos(y) 24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
JR = o8 (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =sin(R) + 1 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2
T
5 = sin (y) + &1

Which simplifies to

2
T
5= sin (y) + ¢

Which gives

. z?
Yy = — arcsin <_? + cl>

61



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,

5)

Z—z = x sec (y)
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Summary
The solution(s) found are the following

. z?
Yy = —arcsin <_E + cl>
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Figure 18: Slope field plot

Verification of solutions

+Cl>

72
2

— arcsin (

y:

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
Aﬂ%w+N@whﬁ=0

¢(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dz
9¢

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; E‘fy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(e ) =

1
(—z)dz + (M) dy =0 (2A)
Comparing (1A) and (2A) shows that
M(x,y) =T
Vo) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM _o,
dy Oy
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And

N _o( 1
Or Oz \sec(y)

=0
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

0¢ .
%dx— /—zdx

2

b=—-5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99 :
- = 4
= 0+1W) (@
But equation (2) says that g—i = Secl(y). Therefore equation (4) becomes
=0+ () )
seey) Y
Solving equation (5) for f’(y) gives
1
o) —
f (y) - sec (y)
= cos (y)
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1)

sin (y) + ¢
+5in (y)

[ teosw)ay
+sin (y) + ¢

2

X

+sin(y) = ¢

e
2

f(y)
Cc1 =
72
2

[ rway
¢ =

T T e~ N N N N Y v~ I

T T T e~ N N N Y — = _ >~ _~ |

T NN\ N\ \\ " 7 7T

Y Pt NG NO NN NN NG N
J 77 =\ \\N——m 77/

777 7~NANANNNA\\\N~—+"/777/
117 7NANAAAAAANANNT7T T T L
AAAANNZTZ7 T L7 NN A
NNNN~—=7/7777777=~N\N\N\1I
\N\\~N~—~— -~/ 777 ~7——~N\\\

X

66

NN\ ~~—— 777 7 7 7 m—~—~N N\ [
NN N\N~~—— 7 77T NN |

NN~ _F 7 T _Z e U

NN ——— >~ _F 7 T e~ ~_U [

NN —— 77 7T s
NN T ———— 7T T T e N

Where c¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

Integrating the above w.r.t y results in
The solution(s) found are the following

Summary

Figure 19: Slope field plot




Verification of solutions

—— +sin(y) =¢
Verified OK.

1.5.4 Maple step by step solution

Let’s solve

y —xsec(y) =0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
secy) ¥
. Integrate both sides with respect to x

f%dx:fa:dx—i-cl
° Evaluate integral
. 2
sin(y) = 5 + a1
° Solve for y

Yy = arcsin (“”—22 + c1>

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x)=x*sec(y(x)),y(x), singsol=all)

2
y(x) = arcsin (% + cl>

v Solution by Mathematica
Time used: 0.436 (sec). Leaf size: 31

LDSolve [y' [x]==x*Sec[y[x]1],y[x],x,IncludeSingularSolutions -> True]

2
y(x) — arcsin (% + cl)

2
y(x) — arcsin (% + cl)
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1.6 problem 6

1.6.1 Solving as quadratureode . . . . ... .. ... ....
1.6.2 Maple step by step solution . . . .. ... ... .. ..

Internal problem ID [3057]

Internal file name [OUTPUT/2549_Sunday_June_05_2022_03_19_07_AM_58817057/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y —3cos(y)> =0

1.6.1 Solving as quadrature ode

Integrating both sides gives

[ ady=ate
3cos (y)° v '

tan (y)
3

=zrz+c
Solving for y gives these solutions

y1 = arctan (3¢; + 3x)

Summary
The solution(s) found are the following

y = arctan (3¢; + 3x)
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Figure 20: Slope field plot

Verification of solutions

y = arctan (3c; + 3z)

Verified OK.

1.6.2 Maple step by step solution

Highest derivative means the order of the ODE is 1

/

Y —3cos(y)’ =0

Let’s solve

Y

Separate variables

!

Y

cos(y)?

3

Integrate both sides with respect to x

de = [3dz + ¢

y/
cos(y)2

J

Evaluate integral
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tan (y) =3z + ¢
° Solve for y

y = arctan (3z + ¢;)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x)=3*cos(y(x))‘2,y(x), singsol=all)

y(x) = arctan (3z + 3¢;)

v Solution by Mathematica
Time used: 0.387 (sec). Leaf size: 32

LDSolve[y'[x]==3*Cos[y[x]]“2,y[x],x,IncludeSingularSolutions -> True]

y(x) — arctan(3z + 2¢;)
y(@) > -

71_2
Z/(x)—>§
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1.7 problem 7

1.7.1 Solving as separableode . . . . . . .. ... ... ... ..., [72]
1.72 Solving aslinearode . . . . . .. . .. ... ... [74
1.7.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 75}
1.7.4 Solving as first order ode lie symmetry lookup ode . .. .. .. 76
1.75 Solvingasexactode . . ... ... ... ... ... ..... 80
1.7.6 Maple step by step solution . . . . ... ... ... ....... 84

Internal problem ID [3058]
Internal file name [OUTPUT/2550_Sunday_June_05_2022_03_19_09_AM_41697940/index . tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

zy' —y=0
1.7.1 Solving as separable ode
In canonical form the ODE is
y =F(z,y)
= f(2)9(v)
_Y
x
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Where f(z) = 1 and g(y) = y. Integrating both sides gives

— dy = — dx
/ dy = / dx
In(y) =In(z) + ¢
y= eln(z)-i—cl
=T

Summary
The solution(s) found are the following

Y =CzT
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Figure 21: Slope field plot

Verification of solutions

Yy=cz

Verified OK.
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1.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = Tz
q(z) =0
Hence the ode is
y -2 =0
T
The integrating factor u is
p= ef—%dz
1
oz
The ode becomes
d - _
dz ny
d (Q) _
dz \z
Integrating gives
Y_,
T

Dividing both sides by the integrating factor u = % results in
Yy=ocz

Summary
The solution(s) found are the following

Y=

74



HANNNNNNNNV VU 1777777
NNNNNNNNV V77
NNNNNNN\NNN Vs

HSNNNNNN\N\NN\NN V1117777770
SNNNN\N\\\ Vs
SSSNNNN\\\N\\ V11

| ~~~~\\\\\\\\1/ /s
~~~~~~\\\\ /s
ddddddd \\\\\ //)))_)—-s—-s—_s__»

y(x) 4 P el A e S e
7] l \,\\\\\\\\\\
W77 7N NN NN NN
sz 77 7 7 0N VNN
77777 7TV NNNNNNN
277777777110V NNNNNN
////////i1\\\\\\\\\\
777777700100V NNNN

=31 777777 7001V NNNN

-3 -2 —1 0 1 2 3

Figure 22: Slope field plot

Verification of solutions

y=cz
Verified OK.

1.7.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

z(vw'(z) z + u(z)) —u(z)z =0

u(z) = /O dz

:CQ

Integrating both sides gives

Therefore the solution y is

Yy =uzr

= CT
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Summary
The solution(s) found are the following

Y = CoT (1)
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Figure 23: Slope field plot

Verification of solutions

Y = CoT
Verified OK.

1.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

[
€ 8w

y
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - fﬂc) - w2€y - wxf — Wy = 0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 17: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(r,y) ==

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Yy
(AJ(CL‘,y) = 5

Evaluating all the partial derivatives gives

R, =1
R,=0
Y
Se= -
1
Sy =~

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S (R) =C (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

Yy _

x
Which simplifies to

Y_,

x
Which gives

y=acazx

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _y a$s _
dr ~ =« dR —

NNNNNNNVNV W H A

NSNNNNNNNV AP AP A A

NSNYNNNNNNNYNYH A A 4
\\\\\\\\it;;;;//////

S~ N N NN AAAAAS -

\\\\\\J{EQ\ W r A A A A mm S(R)
SN\ A A e 2
——sw~wa NN\ Y tpAAA oo ”

i il ston F=z

RSP | N S G S - .

i B | N S Y S S
o o w77 AN VN N NS e e T

e v w T AAAA f_%¥ NONON N N N e o
b A A E T T N

m A2 22 A VNN N Y N

AAZZZ28 PPV VNN NN N

AAZ222 0 EHE LV YN N N 4

AAZZ2727 PPV VN NN NN Y

22277220 HE LV VNN NN N

Summary
The solution(s) found are the following
Y=z (1)
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Figure 24: Slope field plot

Verification of solutions

y=cz
Verified OK.

1.7.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

Yo *)

AH%M+JW%yLm

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 8¢ 96 d
ay
oz oy Oy dz =0 (B)
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<—£> dx+<§) dy =0 (2A)

Comparing (1A) and (2A) shows that

1
M(x,y)z—;

N(z,y) =

<=

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 9 (1
oy Oy\ =z
=0
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And

ON _ 0 (1
or  Ox\y

=0
Since %’I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
o (1)
99
— =N 2
o )

Integrating (1) w.r.t. z gives

oo .
a—mdx—/de

0¢ 1
¢ =—In(z) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

But equation (2) says that g—‘z = zl/ Therefore equation (4) becomes
1 /
~=0+f(y) (5)
Y
Solving equation (5) for f'(y) gives
1
f'ly) =~
W)=

Integrating the above w.r.t y gives

[row=[(5)e

fly)=In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=—In(z)+In(y) +a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1=—In(z)+1n(y)

The solution becomes

y=e%zx
Summary
The solution(s) found are the following
y=ex (1)
HANNNNNNNNV V1777777
NNNNNNN\NNNVH 77
NNNNNNN\NNN Vs
HASNNNNNN\N\NNN V1117777777
SN\N\N\N\\\\\N V11
SSsNNN\N\\\\\\ s
1 ~SNNONNNN \, 1 ]/ 77
~—~~~~N\\\\\ /s
\\\\\\\\\\\\\\‘ ///////)/»)
ddddddd —_\
y(X) 07 e I T e
o277 71 NN NN
—1 777 [TAAN NV N NC N N
o777 7 7 1TV NN
s7277777 71TV NNNNNNN
=2 7777777 7010V NNNNNNN
////////l1\\\\\\\\\\
777777700100 VN NN
=31 777777 71011V VNV NN
-3 -2 -1 0 1 2 3

Figure 25: Slope field plot

Verification of solutions

Verified OK.
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1.7.6 Maple step by step solution

Let’s solve
zy —y=0
° Highest derivative means the order of the ODE is 1

Yy
° Separate variables
¥y 1
Y z
. Integrate both sides with respect to x

f%dmzf%dx+c1

° Evaluate integral
In(y)=ln(z)+c
° Solve for y
y =€z

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

Ldsolve(x*diff(y(x),x)=y(x),y(x), singsol=all)

y(z) =z
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v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 14

kDSolve [x*xy' [x]==y[x],y[x],x,IncludeSingularSolutions -> True]

y(x) = az
y(z) =0
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1.8 problem 8

1.8.1 Solving as separableode . . . . . . ... ... ... ... ..
1.8.2 Solving aslinearode . . . . . .. . .. ... ... ... 8]
1.8.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 89
1.8.4 Solving as differentialTypeode . . . .. ... ... ... .... OT]
1.8.5 Solving as homogeneousTypeMapleCode . . . . . . .. ... .. 92
1.8.6 Solving as first order ode lie symmetry lookup ode . .. .. .. 951
1.8.7 Solvingasexactode . . ... ... ... ... ... .. ... 99]
1.8.8 Maple step by step solution . . . . . .. ... ... ... ..., 103

Internal problem ID [3059]
Internal file name [OUTPUT/2551_Sunday_June_05_2022_03_19_10_AM_77143573/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "dif-

nn

ferentialType", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_ or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

1-2)y—y=0

1.8.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)

= f(z)g(y)
Y
r—1
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Where f(z) = —-1; and g(y) = y. Integrating both sides gives

1d 1 dx

5 - _
/dy—/ w—ldm

In(y)=—In(z—1)+¢

y:e—ln(w—l)-l—q
-1
Summary
The solution(s) found are the following
— cl
y_m—l @)
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Figure 26: Slope field plot

Verification of solutions

Verified OK.
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1.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Where here

Hence the ode is

The integrating factor u is

The ode becomes

Integrating gives

Y +p(z)y = q(z)

=z—1

d
S =0
M

L(@-1)y) =0

(x—1Dy=ac

Dividing both sides by the integrating factor u = x — 1 results in

Summary

C1

yzx—l

The solution(s) found are the following
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Verification of solutions

Verified OK.
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Figure 27: Slope field plot

1.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

(1-2) (W (z)z+u(z) —u(z)z=0

In canonical form the ODE is

v = F(z,u)
= f(z)g(u)
_u(2z 1)
z(x—1)
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Where f(z) =

x(x 1) and g(u) = u. Integrating both sides gives

1 2z —
—du=—x—1dx
u z(x—1)

1 —
/ L / 2=l
u z(x—1)
In(u)=—In(z(z—1)) +c
—In(z(z—1))+c2

u=e
z(x—1)
Therefore the solution y is
Y = ux
-1
Summary
The solution(s) found are the following
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Figure 28: Slope field plot
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Verification of solutions

Verified OK.

1.8.4 Solving as differentialType ode
Writing the ode as

y=10 (1)
Which becomes
0=(1—-2)dy+ (—y)dz (2)
But the RHS is complete differential because
(1 —z)dy + (—y) dz = d(—zy +y)
Hence (2) becomes
0=d(—zy +vy)

Integrating both sides gives gives these solutions

C1

- ta
Summary
The solution(s) found are the following
(4]
= 1
Y rz—1 ta 1)
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Figure 29: Slope field plot

Verification of solutions

Verified OK.

1.8.5 Solving as homogeneousTypeMapleC ode

Let Y =y + yo and X = x + x, then the above is transformed to new ode in Y (X)

d Y(X) + o
LY (X) = — TR
X) =% o1

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

o =
Y% =0
Using these values now it is possible to easily solve for Y (X). The above ode now
becomes
d Y(X)
ax X =%
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In canonical form, the ODE is

Y'=F(X,Y)

Y
=% (1)

An ode of the form Y’ = %g}};)) is called homogeneous if the functions M(X,Y) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

f(tnXa tny) = tnf(X> Y)

In this case, it can be seen that both M = —Y and N = X are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution v = %, or

Y = uX. Hence

dY duw
ax —ax~t
Applying the transformation Y = uX to the above ODE in (1) gives
du
du  2u(X)
dX X
Or d 2u(X)
u
Or

(%U(X)) X + 2u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is
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Where f(X) = —2 and g(u) = u. Integrating both sides gives

1 2
—du=—-——dX
U Y X

1 2
—du= [ ——dX
/ U u / X
In(u) =-2In(X) +c2
U = e—2Im(0+es

Co
= _X2

Now u in the above solution is replaced back by Y using u = % which results in the

solution

&)
Y(X)==
(%) X
Using the solution for Y'(X)
&)
Y(X)==
(%) X

And replacing back terms in the above solution using

Y=y+uw
X=z+ i)
Or
Y=y
X=z+1
Then the solution in y becomes
v= z—1
Summary
The solution(s) found are the following
Co
= 1
y=_—7 (1)
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Figure 30: Slope field plot

Verification of solutions

Verified OK.

1.8.6 Solving as first order ode lie symmetry lookup ode
Writing the ode as

Yy
r—1

Y =w(z,y)

y =-

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - wzéy - wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
1
n(z,y) = —— (A1)

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

ds
§ 7

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S:/ldy
n
1

z—1

S is found from

Which results in
S=(@z-1)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —— ﬁ 1
Evaluating all the partial derivatives gives
R,=1
R,=0
Sz =Y
Sy=z—1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yx—1)=¢
Which simplifies to
Yz —1)=c
Which gives
v= z—1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
. . ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

dy _ _ y s —
de = z—1 dR —
AAZZAZZ APV VN NN
AR P VYV NN NN
AAAAAZ22 APV NN NN 4
////////;;;gtié\\\\\
A AA T NN N NN
,////»ﬂé/ffr;x\\\\\\ S(R]
D e 4 I BNV NN NO VO 2
R ettt O Ol A e
> ¥ T Vd NN e
4444444 kel AR, R=1z
e R R D e Sy =
»»»»» NN\ A — —_
e e S O A e atnd S (x 1)y R
B OOV VN N AV B B A =%
O e R B
~SsSaNaNNNNNN PP
D A Y B O B A
N NNNNNNNMY VPP 4
SNNNNNNNNNV VA
SNNNSNNNNNNN At
Summary
The solution(s) found are the following
&1
= 1
y=_——7 (1)
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Figure 31: Slope field plot
Verification of solutions
y= r—1
Verified OK.
1.8.7 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y)+ N(@,y) 72 = 0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 00 d
0¢ , Oddy _

dr  Odydz 0 (B)
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Comparing (A,B) shows that

09
h Y /s
oz
9 _ n
Oy
But since aa;gy = 8‘9; ;’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘?: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—xil) dx+<—§) dy =0 (24)

Comparing (1A) and (2A) shows that

1
1
N(z,y) = ——
(z,9) ”

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz

oM _o( 1)
oy Ooy\ z-1

Using result found above gives
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And

oN _ 0 (1
N A
=0

Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
g—gC_M (1)
¢ _

5y =N 2)

Integrating (1) w.r.t. z gives

0¢ B
%dz—/de

%dxz/— 1 dz

or z—1
¢=-In(z—1)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
=0 ! 4
=0+ 1) @
But equation (2) says that g—‘z = —i. Therefore equation (4) becomes
1 /
—==0+f(y) (5)
)
Solving equation (5) for f'(y) gives
1
fly)=—=
W) =

Integrating the above w.r.t y gives

[ o= (L)

fly)=-In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=—In(z—1)—In(y)+a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

ci=—In(z—1) —In(y)

The solution becomes

J— e_C:l
y_x—l
Summary
The solution(s) found are the following
e
y=_—— 1)

N7 777777 70001 VYV VNN
7777777777000V VNN
sro77777 7770100V VNN
Hsrr7777777 71100V NNN
o777 77 VYV NNNN
s 777 7 0 VNN
- s 2777 7 VNN
e 27 7NN
»»»»»»»» ))2// NS —a—a s s
y(x) O \\\>//))»»
~~~SSCNCNNNN\\N\W\ V17
~sSNNNN\N\\N\ NVt
—2ISOONNNNNNN\WN\ NV s
SNNNNNNNNNN NV 77
SNNNNNNNNNN VY1277
=3NNNNNNNNNNN NV V7
-3 -2 -1 0 1 2 3

X

Figure 32: Slope field plot
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Verification of solutions

Verified OK.

1.8.8 Maple step by step solution

Let’s solve

1-z)y—y=0
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
J(1—2)y —y)dz = [0dz +
° Evaluate integral
—yz-1)=a
° Solve for y
y=-—z1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

-

Ldsolve((l—x)*diff(y(x),x)=y(x),y(x), singsol=all)

~—
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v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 20

kDSolve [(1-x)*y' [x]==y[x],y[x],x,IncludeSingularSolutions -> Truel

C1

y(@) =
y(z) =0
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1.9 problem 9

1.9.1 Solving as separableode . . . . . . ... ... ... ... ... 105
1.9.2 Solving aslinearode . . . . . .. ... ... ... 107
1.9.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 108}
1.9.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 110
1.9.5 Solvingasexactode . ... ... ... ... ........... 114
1.9.6 Maple step by step solution . . . . . ... ... ... ...... 118

Internal problem ID [3060]
Internal file name [OUTPUT/2552_Sunday_June_05_2022_03_19_12_AM_71725833/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

, Ay

iad A
241

Y

1.9.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)

= f(z)9(y)
_ Azy
241
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1)

Y= cl(m2 + 1)2

S—e— SO NN\
—e— S SO ONON
—m—S— SN N
— NN
———— SO N
————m— U NN
————— e NN
———m— SO SO N
—m—— NN
SNSNNNNNN AN
PO
—— 7
—_—— = = 7
—_—— == _=_ = 7 7
——— - _~ 7
—_—— - _ 7 7
—_—— = 7 7
—_—— = _ 7 7
—— 77 7
—— 777
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B S S S S e i g i i
] e e

\\\\\\\‘\1\1\1\1
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T T
s ==

N\
Vo
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VA
W
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J 7T
Y Oroal
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/7
71
11
11
1
(1
1

7777777 7 =N NN NN

and g(y) = y. Integrating both sides gives

4z
241

The solution(s) found are the following

Where f(z)
Summary

T T T
on (@\| —

0
1
2
3

)

X

(

y

J ST s

\\\\l\\\l\ll

X

y=oc(z>+1)
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Figure 33: Slope field plot

Verification of solutions

Verified OK.



1.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
4z
p(z) = 2241
q(z) =0
Hence the ode is
, dxy _
2+1
The integrating factor y is
L=e J —xgj_ dz
. 1
(a2 +1)°
The ode becomes
d
L =0
et
a(_ v \_,
dz \ (22 +1)°
Integrating gives
v,
(a2 +1)°
Dividing both sides by the integrating factor u = ﬁ results in

y=oc(z*+ 1)2

Summary
The solution(s) found are the following

y=oc (2> + 1)2
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Figure 34: Slope field plot

Verification of solutions

Y= cl(x2 + 1)2

Verified OK.

1.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

0

4z%u(x)
z2+1

v (z) z + u(z) —

In canonical form the ODE is

F(z,u)

u =

f(@)g(w)

u(3z? — 1)

z(z2+1)
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Where f(z) = x%fczjr}) and g(u) = u. Integrating both sides gives

1 32 —1
Tdu= >
u z(z2+1)
2 _
/ L= / Sl
u z(x2+1)
In(u) =2In(z*+1) —In(z) + e
21n(z2+1)—In(z)+cz

dz

Uu==e

— 0262 In(z2+1)—In(z)

Which simplifies to

1
u(z) = co (x3 + 2z + —)
T

Therefore the solution y is

Y =zTU

1
= 2C2 (x3 + 2z + ;)

Summary
The solution(s) found are the following

1
yszQ(x3+2x+—)
x
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Figure 35: Slope field plot

Verification of solutions

1
Y= xcz(x?’ + 2z + —)
T
Verified OK.

1.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

4y
r_

y o241
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2§y —wz§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = (x2 + 1)2 (A1)

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ n

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
1
S = / —dy
n
1
= | ————d
/(z2 +1)? v
Which results in
_ Y
(2 + 1)2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(z,7) 4dzy
w(z,y) = ———
Evaluating all the partial derivatives gives
R, =1
R,=0
4
S, = _L?)
(z? +1)
B 1
Y (a2 +1)?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0

112



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
Y
_—— =
(@+17
Which simplifies to
)
—_—— =
@+1)7%

Which gives
Yy=c (z2 + 1)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy __ 4zy ﬁ_o

der ~ z2+1 dR ~—
[ R IR RN
VAYVY VLR RNttt
R R R 4
S A
R C RN AR R SRR S(R]
NNNNNNNNNK AL L PP L2 23
NNYNNNNNNNN| AP 2A2A2P P22
NN N NN NN S A A R=zx
e S S N S B PP P o
/"/’—’Vﬂ/”'/’—"f//’(f\‘\‘\‘\é\‘\“\“%\“ y = >3 5 g
A2 272 500 0 NN w = 3 R
AAAAPATE T AN VANV NN (2 +1)
ZAPAPE AN VY VNN N NN -
RN AR R EE R R R R
FAELL AP ANVE LYYV VY
IR EEE R R R
DA A A A S A A & SV i A A AR AN 4
IR R R
2 S A A A A D RV A A A A R AR

Summary
The solution(s) found are the following
2
y=oc(z>+1) (1)
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Figure 36: Slope field plot
Verification of solutions
yzcl(x2+l)2
Verified OK.
1.9.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
—_— —_— —y =
ox + Oy dz 0 (B)
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Comparing (A,B) shows that

99
M
ox
% _ n
Oy
But since % = (,;9; g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
2¢ _ 8¢
Ozdy ~ Oydzx
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

is satisfied. If this condition is not satisfied then this method will not work

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

()
(—xzil>dx+<%) dy =0 (2A)

Comparing (1A) and (2A) shows that

x
241

M(x,y) = -

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM _0( s
oy Oy\ 2241
=0
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And
oN_o(1
Ox  Or \4y
=0

Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

op .
de—/de

0¢ z
a—wdxz/—xQ_'_ldx
o= 3D | g Q@

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)

But equation (2) says that g—i = ﬁ. Therefore equation (4) becomes

1 ,
@=0+f(y) (5)

Solving equation (5) for f'(y) gives
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Integrating the above w.r.t y gives

/f'(y) dy = / (%) dy

f(y)=¥+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
In(z24+1) In

( ) 1n@)

o=—""7 4

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

In(z%+1) N In (y)
2 4

Cl = —

The solution becomes
y = e461 (:L'2 + 1)2

Summary
The solution(s) found are the following

y = pler (x2 + 1)2 (1)
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Figure 37: Slope field plot

Verification of solutions

y=e* (22 +1)°
Verified OK.

1.9.6 Maple step by step solution

Let’s solve
Y -5 =0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
Y _ 4z
y @2+l
° Integrate both sides with respect to x
f%dm= 2+1dx+cl
° Evaluate integral
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In(y) =2In(z?2+1) + ¢
° Solve for y

y=e(z2+1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

tdsolve(diff(y(x),x)=(4*x*y(x))/(x‘2+1),y(x), singsol=all)

y(z) = c1(z* + 1)2

v Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 20

LDSolve[y'[x]==(4*x*y[x])/(x‘2+1),y[x],x,IncludeSingularSolutions -> True]

y(z) = c1(z® + 1)2
y(z) =0
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1.10 problem 10

1.10.1 Solving as separableode . . . . . . .. ... ... ... ..... 1201
1.10.2 Solving as linearode . . . . . . . . .. ... ... ... .. 1221
1.10.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 123]
1.10.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 125]
1.10.5 Solving asexactode . . . .. ... ... .. ... ... ... . 129
1.10.6 Maple step by step solution . . . . . ... ... ... ...... 133

Internal problem ID [3061]
Internal file name [OUTPUT/2553_Sunday_June_05_2022_03_19_14_AM_8146082/index . tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

2y
/ —_ =
y 2 -1 0
1.10.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
_ %
o2 —1
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Where f(z) = *5 and g(y) = y. Integrating both sides gives

1 2
—dy—x2_1dx

/ dy = / o dz

n (y) = —2 arctanh (z) + ¢;
y=e
_a(—2?+1)

T (z+1)?

—2 arctanh(z)+c1

Summary
The solution(s) found are the following

ci(—x%+1)
T w1y
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Figure 38: Slope field plot

Verification of solutions

_a(—2?+1)
(@)

Verified OK.
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1.10.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2
p(x) - _$2 -1
q(z) =0
Hence the ode is
2y
!
— =0
y 2 -1
The integrating factor u is
p=e [ da
_(z+ 1)2
2241
Which simplifies to
_ —x— 1
B= r—1
The ode becomes
d
S =0
dz ny
d ((zz=Dy) _,
dzx z—1
Integrating gives
(cz-Dy _
r—1

—2-1 results in

Dividing both sides by the integrating factor u =
_a(l—x)
oz +1

which simplifies to

__cl(x—l)
- r+1
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Summary
The solution(s) found are the following

cilz—1
y=_1;+1) (1)
Noz7 7 VNNV WL s
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7770100 VANNNNVL L s
A 777711V NN\ 17777
sos7 7 VNNV s s
77 VNNV s
Ao 7 TV 7
=77 I \V\NN\N\\N\\ | /7
»»»»» NN\
y(X) O \\<//////<\ ﬂﬂﬂﬂﬂ
===\ \ 77777 A N\
==~V LS VNN ==
TSN LTSNS~
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SSNNNN PP VNSNS
2SNV LT VN NN
SNNANN VLT VNN
SNNANN VLTV VNN
S3HNNANNN VLTV VNNNN
-3 -2 —1 0 1 2 3
X

Figure 39: Slope field plot

Verification of solutions

_a(r—-1)
B z+1

Verified OK.

1.10.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

2u(z)r
r2—1

u'(z) z 4+ u(z) — 0
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In canonical form the ODE is

v = F(z,u)

f(@)g(u)

_u(a® -2z —1)
z(x?2—-1)

Where f(z) = —”;2 (;22{;)1 and g(u) = u. Integrating both sides gives

2 _ —
1du=——x 22 ldx
u z(z2-1)

/ldu=/——x2_2x_1dx
u z(x?—1)
In(u)=—In(z+1)+In(z—1)—In(z)+c
u=e" In(z+1)+In(z—1)—In(z)+c2
— cye~ (@+1)+in(a—1)~In(z)

Which simplifies to

Therefore the solution y is

~ e 1 1
TP\ \z+1 z(@+1)

Summary
The solution(s) found are the following

1 1
= zc -
v \z+1 z(@@+1)
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Verification of solutions

Verified OK.

1.10.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

VAV I T T T U T O B Y A A A g
sz777 00 VAVNNVVL L s
777000 VANNNNVL L s
o777 VNNV L s
o777 VNNV s
77 I VNNV 7
=77 I AVNNANNN S
=77 I \V\NN\N\\\ |/ 7rmm—
)))///7\\\\\\7///)))
——— e e NN\
AAAAA ~\ /== \ ~—m———
==\ N\ /77 NS N ———
==~V ST NN ==
~SSNNN LT NN S~
SOSOSNNN LT VNSNS
SNNNNN P VNSNS
SNNNN VLTV VNN
SNNANN VLTV NVNNNN
SNNANN VLT VYV NNNN
SNNNN VPV VNN
-3 =2 -1 0 1 2 3
X

Figure 40: Slope field plot

1 1
= zc -
Y \e+1 z(z+1)

2y
2 —1

Y = w(z,y)

y =

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —wg€ — Wyl = 0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,

125



Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode "= f(x)y + g(x) y"™ 0 e~ /(=D f(@)dzyn
Y Yyr+g\r)y Y
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
—z?2+1
n(z,y) = m (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n

1
zi/tﬁﬁdy
(z+1)

S is found from

Which results in

g @+1)’y
—x2+1

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ 2
Cox2—1

w(z,y)
Evaluating all the partial derivatives gives

R, =1

R, =0
_ %
C(z—1)

—z—1
S, = —

T

z—1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
ylx+1)
z—1
Which simplifies to
y(z+1)
z—1
Which gives
ci(z—1)
B r+1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ 2y das __ 0
de = z2-1 dR ~—
A A A N TR S R B A et
AR IR R
Rt R T 5 R T A A g 4
AN s
— v T 7 A AR o
Bttty & R B IR B S ssbnina S(R]
»””)///fL%Afo///)”»» 24
et el N R R B e Ead
e T FANN S e R==x
»»»»»» e T I T e o e
——Tg—e— A Gl S ey =g =y i T
»»»»» RN RA NN R e __y(x—i—l) R
RN AT B e, 71
»x\\\\\xt%ff;\\\\wxw -
e T T B B R
RSO NIRRT
RS NI ERRAR R S
N D R = 2 i R N 4
RN NI EEERER R D SN
SN N Y PP N N N e
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Summary
The solution(s) found are the following

_a (x—1)
B r+1 (1)
k2 VA O R T TR TR R B Y AV e
777100V VAWANNVL s
s777 000 VANNNNVL L s
A 777711V NN\ 77777
oz 7 7 VNNANNV s
o777 I VNNV 77
H===77 11T VNNNNN T 7 7rree
=7 IANNNNNN | /7
)))///7\\\\\\7///)))
JIE2 I — OISRt -
===\ /777 VNS ———
==~V L7 NN ==
TSN\ V7L NSNS~
SONNNN LT NN~
SSNNNN P VNSNS
2SN\ L VNN
SNNANN VLTV NVNNNN
SNNNN VP VNV NNNN
SHNNNNNY LT VAN
-3 -2 -1 0 1 2 3
X
Figure 41: Slope field plot
Verification of solutions
_a (x—1)
- r+1
Verified OK.
1.10.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 7 =0 (A)

dx
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
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Hence

0p  O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
09
T M
oz
09
Y _N
Ay
But since a‘fgy = 88: (9¢x then for the above to be valid, we require that
oM _ oN
oy  Ox

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (,;9; 5’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

(30) = ()
<—ﬁ> dz + (%) dy = (2A)

Comparing (1A) and (2A) shows that

Therefore

M(:E7y):_

2 -1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON
R
Using result found above gives
oM 0 1
Wl w1)
=0
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And

oN_o(1
oxr Oz \2y

=0
Since %—A; = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
e (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

@dx:/de
or

0¢ 1
%dx_/_ﬂ—ldx

¢ = arctanh (z) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

o =0+ /W @
But equation (2) says that g—i = ﬁ Therefore equation (4) becomes
=0+ /() )
2y
Solving equation (5) for f'(y) gives
f'y) = %

Integrating the above w.r.t y gives

/f’(y) dy = / (%) dy

fly) = 1n2(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

In (y)

¢ = arctanh (z) + 5

+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

In (y)
2

¢, = arctanh (x) +

The solution becomes

Y= e—2 arctanh(z)+2c¢1

Summary
The solution(s) found are the following

y = e—2 arctanh(z)+2c¢1 (1)

Noz7 7 VNNV s
s777 0P VAVNNNVL s
s777 00 VNNNNVL s
Hss777 1 VNNV 7777
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———=— 7 | \\NN\\\\ | /e
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Figure 42: Slope field plot
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Verification of solutions

Y= e—2 arctanh(z)+2c;
Verified OK.

1.10.6 Maple step by step solution

Let’s solve

y, - z2231 =0
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
y _ 2
y ~ xz2-1
° Integrate both sides with respect to x

f%dzzfﬁdx-l-cl
° Evaluate integral

In (y) = —2arctanh(z) + ¢
° Solve for y

y= e—2 arctanh(z)+c1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

Ldsolve(diff(y(x),x)=(2*y(x))/(x‘2-1),y(x), singsol=all)

(x—1)c
z+1

y(z) = —
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v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 22

kDSolve [y' [x]==(2*y[x])/(x~2-1),y[x],x,IncludeSingularSolutions -> Truel

R _alz-1)

y(2) z+1

y(z) =0
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1.11 problem 11

1.11.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 135]
1.11.2 Solving as separableode . . . . . . .. ... ... ... ..... 136
1.11.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 138
1.11.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 139
1.11.5 Solvingasexactode . . .. .. .. ... ... .......... 144
1.11.6 Solving asriccatiode. . . . . . . . .. .. ... ... ... ... 147
1.11.7 Maple step by step solution . . . . ... ... ... ... .... 1501

Internal problem ID [3062]
Internal file name [OUTPUT/2554_Sunday_June_05_2022_03_19_16_AM_77046355/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 11.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separablel

y'm2 _ y2 —

With initial conditions
[y(1) = —1]
1.11.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)

<

&Ml

The z domain of f(x,y) when y = —1 is

{r<0VO0<uz}
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And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is

{—o00 <y < oo}

And the point yy = —1 is inside this domain. Now we will look at the continuity of
of _ o (v
Oy Oy \ z2
_ %
T2
The z domain of %t when y = —1 is
Y

{r<0Vvoio<uz}
And the point zy = 1 is inside this domain. The y domain of g—i when z =1 is
{—o0 <y < o0}
And the point yo = —1 is inside this domain. Therefore solution exists and is unique.

1.11.2 Solving as separable ode

In canonical form the ODE is

yl = F(.’E,y)
= f(z)g(y)
_y

Where f(z) = & and g(y) = y*. Integrating both sides gives

1 1
1 1
1 1
Y
Which results in
_ x
N caxr —1
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Initial conditions are used to solve for c;. Substituting z = 1 and y = —1 in the above
solution gives an equation to solve for the constant of integration.

1
01—1

—1=—

01:2

Substituting ¢; found above in the general solution gives

B T
Y=o
Summary
The solution(s) found are the following
T
= — 1
y=—5 7 (1)
777 / 1 1 ’ ////// )))))
A
0.5 —_——=_ ] / 1 ////— ))))))))
A e
AAAAA vl //,—
0 o )7/
———— // QQQQQQQQQQQ
y(x) —05 »(x) ):j;;; ! ;;,) ——
e 7 PN T s
N S AR R RN S
—1 ////7 1 1 f 7T
77001 1 S
—15 77111 l g
771111 1 g
_2_//711] 1 J /7777
_2 ARERRRER T
10 1 2 3 4 S0 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
B T
Y= "1

Verified OK.
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1.11.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(W' (z) z + u(z)) 2?2 —u(z)’ 2> =0
In canonical form the ODE is

v = F(z,u)

= f(z)g(u)
u(u — 1)

Where f(z) =1 and g(u) = u(u — 1). Integrating both sides gives

b
u(u—1)

/ﬁdu=/£dx

In(u—1)—In(u) =ln(z) + ¢

du:ldx
z

Raising both side to exponential gives

eln(u— 1)-In(u) _ eln(x)—l—cz

Which simplifies to

u—1
= C3T
u
Therefore the solution y is
Yy =TU
B x
ez —1
Initial conditions are used to solve for c3. Substituting z = 1 and y = —1 in the above
solution gives an equation to solve for the constant of integration.
B 1
N -1 +c3
C3 = 2
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Substituting cs found above in the general solution gives

B x
y= 2z — 1
Summary
The solution(s) found are the following
x
S 1
y=-57 (1)
1
0.5
0_
y(x) 057
_1.
p— 1.5'
-2 T
—1 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
B x
Y= T

Verified OK.

1.11.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

2

;Y
y=2
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - 5:1:) - w2€y - Wx€ — Wyl = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7

Table 29: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode v = f(z)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — [bf(z)dz—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

&(z,y) = 2°

n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2
Yy
w(z,y) = 2

Evaluating all the partial derivatives gives

R, =0
R, =1

1
Se=—
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds 1
dR 4?2
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds _ 1
dR R2

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)= -5 +o @

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

1
x
Which simplifies to
1
x
Which gives
T
y= ar+1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . ) ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R,S)
transformation ’

dy _ v s _ 1

dz — 2 iR~ R
R U D R ———— e p it g
trttrrr A e et | R
N I e it |
R RN N gl 1WA
IRttt _b_‘)'b.»'*’v]ﬁ/?f//
[ A A = N B A A~
"MWtrr e e L R N
; f Ao R —»—»—»»—»»»/v; ; ;;/v
A = -~
EESEIERESS ’ e
Dt e e 5:_1 At A
Rttt T 210t
7S] f_%ﬁi‘ e /_%AT i
Sttt N N B et s A
A A U R N A et PRI
AR R IR RN 21|17
R B R = % I N U g At f
R A O O L O O A O A A o g A Rt
VA A A O O K O O O 0 Y A A VARl
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Initial conditions are used to solve for c;. Substituting z = 1 and y = —1 in the above
solution gives an equation to solve for the constant of integration.

1
—1=
Cl+1
61:—2

Substituting ¢; found above in the general solution gives

B T
Y=o
Summary
The solution(s) found are the following
T
= — 1
y=—5 7 (1)
777 / 1 1 ’ ////// )))))
A
0.5 —_——=_ ] / 1 ////— ))))))))
A e
AAAAA vl //,—
0 o )7/
———— // QQQQQQQQQQQ
y(x) —05 »(x) ):j;;; ! ;;,) ——
e 7 PN T s
N S AR R RN S
—1 ////7 1 1 f 7T
77001 1 S
—15 77111 l g
771111 1 g
_2_//711] 1 J /7777
_2 ARERRRER T
10 1 2 3 4 S0 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
B T
Y= "1

Verified OK.
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1.11.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

(3)- ()
(-%) dx—i—(%) dy =0 (24)

Therefore
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Comparing (1A) and (2A) shows that
1
a2

1
N(z,y) = —
@9) =

M(x7y) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON
R
Using result found above gives
oM 0 1
-2
=0
And
ON 0 /1
oz Oz (zﬁ)
=0

Since %i; = %%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

09
g—x =M (1)
¢ N

Integrating (1) w.r.t. = gives

%dr=/Md:r
ox

o6 . [ 1

b= +f) 6

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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9¢

But equation (2) says that 3

= 2. Therefore equation (4) becomes
Y

1 :
2 =0+ f'(y) (5)
Solving equation (5) for f'(y) gives

f'ly) =

tdl\')l —

Integrating the above w.r.t y gives

/f’(y) dy=/(%) dy

f(y)=—§+01

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
1 1

b=-—-"+a
Yy

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

1 1
cp=——-
r Yy
The solution becomes
. x
N car—1
Initial conditions are used to solve for c;. Substituting z = 1 and y = —1 in the above

solution gives an equation to solve for the constant of integration.
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Substituting c¢; found above in the general solution gives

. z
Y= "9z 1
Summary
The solution(s) found are the following
T
= — 1
y=-5—7 (1)
! Jerr it 7 s
A AR RN
A R A
0.5 —_——=_ ] / 1 / J e =
A e
AAAAA vl / P
0 o )//' =
—— / PN
y(w) -os N I
e 7 TN T s
N e A AR R R A
-1 ////7 1 1 / ST
777011 1 SIS
—15 77111 l g
/7111 1 S saae
_2_//711] 1 J 77777
. ARERRRER T
10 1 > 3 4 S0 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
B T
Y= "1
Verified OK.
1.11.6 Solving as riccati ode
In canonical form the ODE is
y = F(z,y)
_y
=

This is a Riccati ODE. Comparing the ODE to solve
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With Riccati ODE standard form
y' = fo(z) + fi(z)y + fa(z)y?

Shows that fy(z) =0, fi(z) =0 and fa(z) = . Let

_u’

v= f2U
- (1)

K
z2

Using the above substitution in the given ODE results (after some simplification)in a

second order ODE to solve for u(z) which is

fou" (@) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)

But
2
fo= 3
fifa=0
f3fo=0

Substituting the above terms back in equation (2) gives

" 2 /
u (2x) 4 ugx) _0
x T

Solving the above ODE (this ode solved using Maple, not this program), gives

Co
u(z) =c1 + .

The above shows that
! _ Co

Using the above in (1) gives the solution

C2
y:
Cl‘|‘c;2

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
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Initial conditions are used to solve for c3. Substituting z = 1 and y = —1 in the above
solution gives an equation to solve for the constant of integration.

1
—-1=
C3+1
03=—2

Substituting cs found above in the general solution gives

. x
Y= T
Summary
The solution(s) found are the following
x
=- 1
Y 2z — 1 (1)
: N AR E—
A R R R RN S
22 B RN PN
0.57 -7 / 1 / J T~ s
- 1 Y
))))) vl //v)
0 o 7‘/
——— > // ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
y(x) o] SN et B ASmm—
AR R R
=1 | 1) 7 rrrmr oo
=1 77711 1777 e
7771111 nt1r7ssr-rr ==
—1.5 7710 11 o
77111 i I
AR RRR R RN
- AR RRR IR RN
-1 0 1 2 3 4 JR P T S S S S
x x
(a) Solution plot (b) Slope field plot
Verification of solutions
. x
Y= T

Verified OK.
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1.11.7 Maple step by step solution

Maple trace

Let’s solve

[y'z® —y* =0,y(1) = —1]
Highest derivative means the order of the ODE is 1

/

Yy

Separate variables
¥y — 1

v 22

Integrate both sides with respect to x
f;’—;dxzfx%da:—i-cl

Evaluate integral

—le = —% +c
Solve for y
y = _01;—1

Use initial condition y(1) = —1

_ 1
1_ c1—1

Solve for ¢;
C1 = 2

Substitute c; = 2 into general solution and simplify

—_ z
Y=~

Solution to the IVP

-z
Y= "9

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"
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v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 14

Ldsolve([x“2*diff(y(x),x)—y(x)“2=0,y(1) = -1],y(x), singsol=all) J

v Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 14

LDSolve [{x~2*y' [x]-y[x]"2==0,y[1]==-1},y[x] ,x,IncludeSingularSolutions -> True}]

T
1-—2x

y(z) —
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1.12 problem 12

1.12.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 1521
1.12.2 Solving as separableode . . . . . . .. ... ... ... ..... 153]
1.12.3 Solving as linearode . . . . . . . . .. ... ... ... ..., 154
1.12.4 Solving as homogeneousTypeD2ode . .. ... ... ......
1.12.5 Solving as first order ode lie symmetry lookup ode . . . .. .. 157
1.12.6 Solvingasexactode . . ... ... ... ... .. ... .. ... 161
1.12.7 Maple step by step solution . . . . . ... ... ... ... ... 165

Internal problem ID [3063]
Internal file name [OUTPUT/2555_Sunday_June_05_2022_03_19_18_AM_30911201/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

v +2yzx =0

With initial conditions

[y(0) = 5]
1.12.1 Existence and uniqueness analysis
This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)
Where here
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Hence the ode is
v +2yr =0
The domain of p(x) = 2z is
{—o0 <z < o0}

And the point zy = 0 is inside this domain. Hence solution exists and is unique.

1.12.2 Solving as separable ode

In canonical form the ODE is

y/ = F(.’L',y)
= f(z)g(y)

= —2zy

Where f(z) = —2z and g(y) = y. Integrating both sides gives

1
—dy— -2z dx
/ dy—/ —2zx dx
(y) = —2*+c
y — e—z +01
—g?
= C1€

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5=01

01=5

Substituting c; found above in the general solution gives

—z2

y=>e

Summary
The solution(s) found are the following

y=>5e" (1)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

y= 5e~%

Verified OK.

1.12.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

e [ 2zdx

u:

The ode becomes

Integrating gives

2
eCy=q

2
Yy = cie
154

Dividing both sides by the integrating factor u = e®” results in



Initial conditions are used to solve for c¢;. Substituting = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5=Cl

Cl=5

Substituting c¢; found above in the general solution gives

—z2

y=>5de

Summary
The solution(s) found are the following

2

y=>5e" (1)
5

1 NEEAREEE RN,
s S EEEEEEEEE D N ERRRRE
: 1 Y AVEERERE
N EERER/ A RREES
o 1 e AERERE
s EERET A VRREEES
: 1 117 Vil
. RERR/ AN\ RANES
SEERRRRRE AN S REEE
y(x) 23] (¥) Crpigrosv vl
] Y Vi
2 I Y ViV
| rr1rrtyr7- Vb
15 1111 - BERRE
dtrrtryrss- ViV
! trrrrgr7zs= A
11111y77-= \RARARR
05 1777777 SN\

O—
-3 -2 -1 0 1 2 3 30 S0 1 23

(a) Solution plot (b) Slope field plot

Verification of solutions

Verified OK.
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1.12.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
u'(z) T + u(z) + 2u(z) 2> = 0
In canonical form the ODE is

v = F(z,u)

f(2)g(u)
_u(22? +1)

T
Where f(z) = —2.*L and g(u) = u. Integrating both sides gives

222 +1

1
—du = — dz
U

T
2

/ldu:/—2x +1dw
u T

In(u) = —2® —In(z) + ¢z

e—xz—ln(x)—i—CQ

u =
— CQe—x2—ln(z)
Which simplifies to
2
coe™”
u(z) =
() =2
Therefore the solution y is
Y =TU
g2
= (€

Initial conditions are used to solve for c,. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5:C2

62:5

Substituting ¢, found above in the general solution gives

—z2

y=>He
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Summary
The solution(s) found are the following

2

y=>5e" (1)
3 IBERRERAREERRRRRE
is ST IV bbb
: INEEERVAVERERRRE:
4 IREEEY A\ REEEN |
n NEREEN AL REEEN |
il LI 7N\ Vbbb
: IR AR VEEEN! |
| INERR ANV AR |
| (AR
y(x) 25 y(x) AR YRR
| P11 7 7NNV VL
2 2 T 77NNV LV VL
Pttt g77-o~N\VE vyl
131 P11 100,77~V
A7 7~N NN VYL
1 P11 77 7~=NNAN VL
1111777 7==~NNNN D
0.51 17777 77— NN
0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(a) Solution plot (b) Slope field plot
Verification of solutions
y=>5 e
Verified OK.
1.12.5 Solving as first order ode lie symmetry lookup ode
Writing the ode as
y' = —2zy
y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny — &) — wzfy —we§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 32: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
n
1
=/_2dy
ez

S=e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —2zy

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy = 2xe’”2y
Sy =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

e””zy =C
Which simplifies to
1132
e y=a
Which gives
Y= cre™®

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy __ ds __

de — 2.’Ey dR_O
BN AR )
BEEEEEEEwAREE R
IR AR i
TR
R I N SRR R RS Lies!
R EEREEE SRR =
IR AR R
Pttt 27NNV Vbbb R=
BB E Y IR =z
TR R e I E g = o S L
NN R RN €y R
L O O O N N VS O O >
POb i bbby NS 2rrttrrtttt
PYbb bbb vN Attt ettt
PR bbbl ANAr PR LRt
PR b bbb bRttt ettt 3
PR d bbb iNgAt ettt
L R R A A O O O

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5=Cl
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6125

Substituting c¢; found above in the general solution gives

—z2

y=>de

Summary
The solution(s) found are the following

2

5 R AN
is 51 BERREN N ERR NN
: BERREVAVERER!
A EERRR/ A\ REER!
. EEREE AN TRER!
15 EEERN FAS RN
: ERERRI AN\ VRN
N EERRI A RN
IR
y(x) 259 y(x) R EASR I RN
REREI 22NN R
2] 2 BEER INZ2S R AR |
| RERRN NS BN
15 A1) 77~V
A0t 7 7NNV WV VL
! P11 1 7477 7~~NAW VL
111771777 7=~~NNNAA L
0.5 1777077 NN\
05
-3 -2 —1 0 1 2 3 -3 -2 —1 0 1 2 3
a) dolution plo ope fiela plo
Soluti lot b) Slope field plot

Verification of solutions

Verified OK.

1.12.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

09 Opdy
oz " oydr 0 (B)
Comparing (A,B) shows that
09
5 =
99
dy
But since % = (,;9; g; then for the above to be valid, we require that
oM  ON
By Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—%) dy = (z)dz

(—z)dz+ (—%) dy =0 (24)

Comparing (1A) and (2A) shows that

M(z,y) = —z

1
N(z,y) = —+
@) =5

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
OM ON
oy Oz
Using result found above gives
oM 0
)
9y Oy
=0
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And
oN _ o ( 1
ox Oz \ 2y
=0

Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
—gx =M (1)
¢ N

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

0¢ .
%dx— /—zdx

2

b=—-5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

=0+ @
But equation (2) says that g—i = —2—1y. Therefore equation (4) becomes
— L0+ /(y) (5)
2y
Solving equation (5) for f'(y) gives
f'ly) = —%
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Integrating the above w.r.t y gives

[rwa= [ (-5 )

f(y)=—¥+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

2 In(y)
2 2

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

The solution becomes

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 — e—201

_ In(5)

1= ——

2

Substituting ¢; found above in the general solution gives

y=>5 e
Summary

The solution(s) found are the following

2

y=>5e”®
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4.5

3.51

1.59

0.51

(b) Slope field plot

(a) Solution plot

Verification of solutions

y= 5e "

Verified OK.

Maple step by step solution

1.12.7

Let’s solve

[y’ +2yz = 0,y(0) = 5]

Highest derivative means the order of the ODE is 1

Y

-2

Integrate both sides with respect to x

Separate variables
[ Yda
y

Y
y

= [—2zdz+ ¢

Evaluate integral

=—-z’+¢

)

In (y

Solve for y

e—w2 +c1

y:
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. Use initial condition y(0) =5

5=¢e4

° Solve for ¢;
c1 =In(5)

. Substitute ¢; = In (5) into general solution and simplify
y=>5 e

° Solution to the IVP
2
y=205e"

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

Ldsolve([diff(y(x),x)+2*x*y(x)=0,y(0) = 5],y(x), singsol=all) J

2

y(x) =5e™"

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 14

DSolve [{y' [x]+2*x*y[x]==0,y[0]==5},y[x],x,IncludeSingularSolutions -> True]

N\ J

y(z) — e~
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Internal problem ID [3064]
Internal file name [OUTPUT/2556_Sunday_June_05_2022_03_19_20_AM_84176619/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

With initial conditions

1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(2)
Where here

p(z) = —tan (z)
q(z) =0
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Hence the ode is
y —ytan(z) =0

The domain of p(xz) = —tan (x) is
1 1
T < §7r +7_ 7142V §7r +7 7142 < x

And the point zy = 0 is inside this domain. Hence solution exists and is unique.

1.13.2 Solving as separable ode

In canonical form the ODE is

y =F(z,y)
= f(2)g(y)
Yy
cot (z)
Where f(z) = #(m) and ¢g(y) = y. Integrating both sides gives
1 1
y °  cot(z) de
1 1
/gdy_/cot(x) dz

In(y) = —In(cos (z)) + ¢;
y=e" In(cos(z))+c1
~ cos (z)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2201

01=2

Substituting c¢; found above in the general solution gives

2
cos ()
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The solution(s) found are the following

Summary

(b) Slope field plot

=0

aﬂy
169

ef —tan(z)dz

cos ()
(cos (z)y) =0

W
dz

(a) Solution plot

Entering Linear first order ODE solver. The integrating factor y is

1.13.3 Solving as linear ode

Verification of solutions
Verified OK.
The ode becomes



Integrating gives

cos (2)y =1

Dividing both sides by the integrating factor u = cos (x) results in

y = ¢y sec (z)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2=Cl

6122

Substituting ¢; found above in the general solution gives

y = 2sec ()

Summary
The solution(s) found are the following

y = 2sec (z)

(a) Solution plot

Verification of solutions
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VLl
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|
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21NN
——————— e e\ S e
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POV

y = 2sec (z)

Verified OK.
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1.13.4 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
cot (z) (v'(z) z + u(z)) —u(z)z =0
In canonical form the ODE is
u = F(z,u)

= f(z)g(u)
__u(cot (z) — z)

cot (z)

Where f(z) = —<®)=% and g(u) = u. Integrating both sides gives

cot(z)x

_cot(z) —z
cot (z) x

In (u) = —In(cos (z)) — In (z) + ¢z
u=e" In(cos(z))—In(z)+c2

1
—du = dz
U

= e In(cos(z))—In(z)

Which simplifies to

u(z) = —=
~ xcos(x)
Therefore the solution y is
Y = uzx
~ cos(z)

Initial conditions are used to solve for c;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=62

62:2

Substituting c, found above in the general solution gives

2
cos ()
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Summary
The solution(s) found are the following

2
= 1
Y= cos (x) (1)
8 1V
HERRAR
61 IHERRR
11V NN~
o AN
f1 VNN~
{1 NN~N—
21 [V NN~—
AR e
/N~
y(x) o R
\ /o=
—2 \ 77—
V1 77—
\17177=
-4 V1 1/77-
V1177
— 61 L 1 7 /7=
V1 177-
i 1117
-2 -1 0 1 2 3 2 3
X
(a) Solution plot (b) Slope field plot
Verification of solutions
2
~ cos(z)
Verified OK.
1.13.5 Solving as first order ode lie symmetry lookup ode
Writing the ode as
)
Y= ot (x)
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - w2£y —we€ — Wy = 0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 35: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
1
= —" Al
n(z,y) = — @ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy
n
1
= / W
cos(z)

S =cos(z)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —~
’ cot (z)
Evaluating all the partial derivatives gives
R, =1
R, =0
Sy = —sin(z)y
Sy = cos (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

cos (2)y =1
Which simplifies to
cos(z)y =1

Which gives

C1

Y= cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ _y a$s _

dx ~ cot(z) dR —
PLANZAP VAN AP AN
fAANAP AN ANt
B ERR R R YA 4
NIRRT

N A Nal A~ a7 ~
BN N R R RN R SR
PANST 2P LNt L Nsm ) 24
PANS—= A AN~ LN
P AN AN 7 f AN 7 R =
/\\‘s—....,v/\\s—..../v/\\‘—...../‘v/\ = : ‘
NP Bt PSR SR, S = cos () SR R
s B e = cos (1

N D IPERNE B D RO A MR y R
I R R A N A N >
A AN R - AN
AR RN AR R
L S N A i s DR O B A S
Vi ANV RNV LA N 3
Pt aNVE PP ANV P ANV
Lt sNVE P ANVt ANVt

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=Cl
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(1)

B

\

] 7 ===\
] 7 7==~\'\
| 7 7—==\\
17 7==\\

B —

6122

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

=

(b) Slope field plot
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(a) Solution plot

Verification of solutions

Verified OK.



1.13.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

(i) W= (cot1<z>> 4

(‘FL;)) dx+(§> dy =0 (24)

Therefore
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Comparing (1A) and (2A) shows that

1

Mz,y) = - cot ()

1
N(z,y) = -
@)=y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM _0( 1
oy Oy\ cot(x)
=0
And
oN _ 9 (1
0x Oz \y
=0
Since %i; = %{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
i M (1)
09
2 —N 2
o )

Integrating (1) w.r.t. = gives

%dxz/Mdz
or

% dz = / _cotl(a:) de
¢ = In (cos (z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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99 _

But equation (2) says that 37 = 5 Therefore equation (4) becomes

=0+ 1) 5)
Solving equation (5) for f'(y) gives
) = 1
f@—y

Integrating the above w.r.t y gives

fro] (3)

fly)=In(y) +a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ =In(cos(z)) +1In(y) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1 = In (cos (z)) + In (y)

The solution becomes
ec

~ cos(z)

Initial conditions are used to solve for c;. Substituting z = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=¢4

¢ =1n(2)
Substituting c¢; found above in the general solution gives
2
~ cos (2)
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1)

The solution(s) found are the following

Summary

TAAAVAAANAN
AN NN NNNNS
NN NN S S
NN N S s—
T
VA s
17777777
111177771
TAVANANAN
AN N NN NN N
NN N NSNS
W™ T S
J T
VA
117777777
t11111777
Q A__.. ) co

(b) Slope field plot
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dxr + ¢,

1
cot(z)

y —y=0,y(0) =2
/

Highest derivative means the order of the ODE is 1

1
cot(z)

’s solve
)
dz

’
Y
Y

v
Integrate both sides with respect to x

Separate variables

Let
[cot (x
y

(a) Solution plot

1.13.7 Maple step by step solution

Verification of solutions

Verified OK.



° Evaluate integral

In (y) = —In(cos (z)) + ¢

° Solve for y
y= cfsc(lz)
. Use initial condition y(0) = 2
2=e
° Solve for ¢;
¢ =1In(2)
° Substitute ¢; = In (2) into general solution and simplify
y = 2sec ()

° Solution to the IVP
y = 2sec ()

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

Ldsolve([cot(x)*diff(y(x),x)=y(x),y(0) = 2],y(x), singsol=all) J

y(z) = 2sec ()

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 9

LDSolve[{Cot[x]*y'[x]==y[x],y[0]==2},y[x],x,IncludeSingularSolutions -> True] J

y(x) — 2sec(z)
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1.14 problem 14

1.14.1 Existence and uniqueness analysis. . . . . . . .. ... .. ... 182
1.14.2 Solving as separableode . . . . . . ... ... ... ... ..., 183l
1.14.3 Solving as first order special form ID 1ode. . . . . . .. .. .. 185
1.14.4 Solving as first order ode lie symmetry lookup ode . . . .. .. [187]
1.14.5 Solvingasexactode . . ... ... ... ... . ......... 191l
1.14.6 Maple step by step solution . . . . . ... ... ... ...... 195

Internal problem ID [3065]
Internal file name [OUTPUT/2557_Sunday_June_05_2022_03_19_22_AM_33004422/index . tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

With initial conditions

1.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)
=ze

The = domain of f(z,y) when y =0 is

{—o0 <z < o0}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is
{—o0 <y < o0}

And the point yo = 0 is inside this domain. Now we will look at the continuity of

g — 2 -2y
oy Oy (ze )
= —2ze %

The z domain of % when y = 0 is
{—o0 <z < o0}

And the point zo = 0 is inside this domain. The y domain of %5 when z = 0 is
{—00 <y < o0}

And the point yo = 0 is inside this domain. Therefore solution exists and is unique.

1.14.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)

=ge W

Where f(z) = = and g(y) = e~?. Integrating both sides gives

1
= dy = xdr

1
e2y 2
PR

Which results in
_In (2% + 2¢1)
N 2
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Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

_ In(2) + In(¢;)

Substituting c; found above in the general solution gives

_In(z®+1)
2

Summary
The solution(s) found are the following

_In(z?+1)
y=77
1.1 124 NNNNNN N~ 7 S 7 S ]
NN\~ 7 7 7 ] ]
17 ANNANNNNNN~—er P s 7 ] ]
ANNNNNNNS~—— 77 T
0.97 AVNANNNNSNS—— s /7]
0.7 VAMANNNNNSN~—~/7/777111
RRR NN AR
0.61 N
y(x) Y(X) 061\ V VNN NN NS~ 7T
0.5 VAV AVANAVNNNN~=7 7711111
0.4 TVVVANNNNNNS—7 7770111
’ 041 LV VW NNNNN~=/ 77111111
03] LUV VNSNS~ 77110111
LAYV VVNNNNS~7 77110111
0.2 027 LV V VWV NNNNS~7 7111111
PV VUV VYNNNSNAZ 7T
0.14 PV VYV VNNSNAZ
N [0S T T A A R A A SR NNy A A B I IR IR A I
-2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
In(z? +1)
y: 2

Verified OK.
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1.14.3 Solving as first order special form ID 1 ode

Writing the ode as

Yy =ze

And using the substitution © = e? then

The above shows that

Substituting this in (1) gives

The above simplifies to

Now ode (2) is solved for u(x) Integrating both sides gives

Substituting the solution found for u(z) in u = e* gives

ul — 2y/62y

e

u'(z) =2z

u(z) = /235 dz

=x2+cl

T
_ In(2?+c)
=5
_In(2?+ )
=5

1)

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.
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(1)

6121

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

NN N N R e T T ———
AN N N N
NN N N N N T S
AN N N N N R .
AN NN N N N N e e e e e
AN N N N N N N
N N N N N N N N N N N
A T T T T T N N N e e
L T T T T N N N
T T T T T W W O O L L S L S W N
t 149110110111 1771777777
1111777777777 777r "
YAV AV AV AV AV AV AV VAP Vb
VAVAV A A el
J /T~
J ST~
VA A A A P e
g~
T e e~~~ =
PP P PP
N - B &) < N =
— S S S S

=

=
T3 & % % % % 54T
— S o 3 S S o o o o

a3

~

(b) Slope field plot
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(a) Solution plot

Verification of solutions

Verified OK.



1.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Yy =ze

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 38: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

o)
|
.
8

|
——

8= = | =
ISH
8

Which results in

.’152

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =z
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Evaluating all the partial derivatives gives

R, =0
R,=1
Sy =1
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 2

S 2A

aR = °© (24)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

E—e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

o2R

S(R) = 7 + (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

z? e

2 3274
Which simplifies to

z? ¥

2 - ta
Which gives

_ In(2? — 2¢1)

Y 2
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ —2y dS _ 2R
de — L€ R=e
»»»»»»»» /11
D eaeesaaaad N B e YA
44444 > 7|
(s e emaeesdil HE Bl ~Ar ]
ﬂﬂﬂﬂﬂﬂﬂﬂﬂ R ————sss> e f ¢}
B e e e e S > e e v > [ | e s s s s s> b )/V/’ff
NN S R=y ﬁﬁﬁﬁﬁﬁﬁﬁﬁ At
P T T S S el A A S N R R
T3 VNS A7 AT TR T T 72 g T T 6 3
L R T TR TN . A % A A O S== | e A7t R
PRy bbb bbbttt ettt 9 | o oA p P}
$$$$$$$$L{?H‘1“T‘TT‘T‘TT »»»»»»»» —=5/ 11
L T I N B Vi
L O T s BRI S et At
L O A T T 1 0 s N —Af
L O T 5 o O e s e =/ 11
L T T T 1 e I s N e g A2t
L T T % T s I B it g —AAL

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0

Ci = —=

_In (2) N In(—c)

2 2

2

Substituting c¢; found above in the general solution gives

Summary

In(z% +1)
2

The solution(s) found are the following

y:

In (2% +1)
2
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1.1 124 NN NN\ \N\~~—eorr 7 7 7 7/ [ ]
NN NN\ \ N\~ 7 77 7 ] ]
11 NANNNNNNSN~—~—rr 7 7 S ]
i HNNNNNNNSN~——rm s s 7 1 7 ]
0.9 AANNNNNN S~ 77 7]
0.7 CINNVNNNNNNN~=~ 777 1]
BN

0.61 N~
y(x) MEINE R ENNNNNSAAL AR RS
0.57 VANV ANNNN~=7 7711111
ol DUVY VN NNN~= 77111111
: O VAV VNN NNNN~= 77111111
0.34 PAYVVYVNNNNS=77 711111
LY VVVNNNN~~777111111
0.2 029 L LV bV NANNNS~7 7111111
PYVEVVNNNSNAZ T
0.14 S T A L T A SN N A A I A B I I
0 oA bbbV VYV VNN
-2 -1 0 1 2 3 -3 -2 =1 0 1 2 3

X X

(a) Solution plot (b) Slope field plot

Verification of solutions
In(z% +1)

Verified OK.

1.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,y) -

dy
dz

=0

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

Comparing (A,B) shows that

d

0¢ L9 0¢ dy
0z ' Oydr

9¢ _
or
9¢ _
oy
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM _ ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(e*) dy = (z)dz
(—z)dz+(e®)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —z
N(z,y) =€

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM_ 0
0y Oy
=0
And
ON 0  ,,
o 5
=0
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
9 =M (1)
o

192



Integrating (1) w.r.t. z gives

%dx:/de
or

0¢
%dm— /—mdx

2

o= 5 + 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p .
6_y_0+f(y) (4)

But equation (2) says that g—;’j = e%. Therefore equation (4) becomes

e =0+ f(y) (5)
Solving equation (5) for f’'(y) gives

f'(y) = e®
ey

Integrating the above w.r.t y results in

/ f(y)dy = / (€*) dy

e

fly) =5 +a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
2 e

¢=—5+7+61
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as
z? e
¢ =——+—=
! 2 2
The solution becomes
_ In(2?+2¢)
N 2

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

In (2) n In (¢1)

0=
2 2
1
==
)
Substituting c¢; found above in the general solution gives
In(z?+1)
B 2
Summary
The solution(s) found are the following
In (22 +1)
-\ 7 1
y 5 (1)
1.1 124 N\NNNNNN~~—er 7 7 7 7 S S ]
NANNNNNNSN~—m 7 7 7 7 [ ]
1 NNNNNNNN~—— s s 7 7 ] ]
HNNNNNNNSN~——rr s /7 7 1 7 ]
097 AANNNNNNS——=—s 7 77 7]
05 VANNN NN~ 777 7T
0.7 VANNNNNNSN—=—~ 77771
NS
0.6 N~
y(x) e NN AR
057 VAVVANNNNN~—= 77711111
ol LUV N VNN~ 77 11101
. 04 LV VNV NANNNNS=/ 7/ 11111
03] LU LUV VNN~ 7 7111111
LIV VYNNNNS—7 7711111
0.2 020V LV VLV VNNNSA7 T
PAYV VYV VANNNSAZ T
0.11 VL LV VYV NNSNAZ T
0 bbbV VNN T
2 1 o0 1 2 3 -3 -2 -1 0 1 2 3
X
(a) Solution plot (b) Slope field plot
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Verification of solutions

In(z? +1)

Verified OK.

1.14.6 Maple step by step solution

Let’s solve
[y —ze™? =0,y(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Yy

° Separate variables
ef’;y =z

° Integrate both sides with respect to x
[ Ypdr = [zdz+cy

° Evaluate integral

1 _z?
22y 2 t+a

° Solve for y

In(z2+2¢1)
2

o Use initial condition y(0) =0

0= bz
° Solve for ¢;
a=1
° Substitute ¢c; = % into general solution and simplify
_ 1)

2
° Solution to the IVP

_ ln(mz—i-l)
- 2
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 12

tdsolve([diff(y(x),x)=x*exp(—2*y(x)),y(O) = 0],y(x), singsol=all) J

() = In (x2+ 1)

v/ Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 15

LDSolve[{y'[x]==x*Exp[-2*y[x]],y[0]==0},y[x],x,IncludeSingularSolutions -> True]

y(z) = %log (2 +1)
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1.15 problem 15

1.15.1 Existence and uniqueness analysis . . . . . ... ... .. .... 197
1.15.2 Solving as separableode . . . . . . .. ... ... ... ..... 198]
1.15.3 Solving aslinearode . . . . . . . . .. ... .. ... ..., 199
1.15.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 20T]
1.15.5 Solvingasexactode . . ... ... ... ... .......... 2051
1.15.6 Maple step by step solution . . . . ... ... ... ....... 209

Internal problem ID [3066]
Internal file name [OUTPUT/2558_Sunday_June_05_2022_03_19_25_AM_44151141/index. tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 15.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

Yy —2yr =2z

With initial conditions
[y(0) = 1]

1.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here
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Hence the ode is
Yy — 2yx = 2x
The domain of p(z) = —2z is

{—o0 <z < o0}

And the point zy = 0 is inside this domain. The domain of g(z) = 2z is

{—00 <z < o0}
And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.15.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
=z(2 + 2y)

Where f(x) = z and g(y) = 2 + 2y. Integrating both sides gives

2+2ydy=xdz
1

/2+2ydy_/mdm
In(y+1) 22

Raising both side to exponential gives
22
y + 1 — 674‘01
Which simplifies to

Vy+1l= e

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=cie* —1
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(1)

ln(
2

Substituting ¢; found above in the general solution gives
y=2 e —1

y:2ex2—1

Cci =

The solution(s) found are the following

Summary

——— e~ e

77777777 SISO NN
—— OSSOSO OO NN NN
NNNNNANNNANNANA A A A A
ST
e m S]]
\\\\\\\ 7

S

= = = = = > -~

B

(b) Slope field plot

ef —2zdz
199

2

y=2e‘”2—1
W

15

1

05

—05 0

(a) Solution plot

“2 —15 -1

60

50
40
201
10

Entering Linear first order ODE solver. The integrating factor y is

1.15.3 Solving as linear ode

Verification of solutions

Verified OK.



The ode becomes

Integrating gives
ye_””2 = / 2re™ dz
ye ™ = - +¢

Dividing both sides by the integrating factor u = e~ results in
Y= —e”e™® + ¢’

which simplifies to

y=—14ce”

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1201—1

Cl=2

Substituting ¢; found above in the general solution gives

Summary
The solution(s) found are the following
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15

(b) Slope field plot

(a) Solution plot

Verification of solutions

y=2e“’2—1

Verified OK.

1.15.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = 2zy + 2z
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - €z) - w2£y —wg€ — Wy

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve

the PDE (

A), and can just use the lookup table shown below to find &, 7
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S= [ —dy
n
1
Which results in
S=ye

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = 2zy + 2z

Evaluating all the partial derivatives gives

R, =1

R,=0

Sy = —2yx e’
Sy = e

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 2
2 _9pe®
IR xe

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _R2
de =2Re

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

(24)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
2

S(R) = —e % 4 ¢ 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ye ¥ = —e % 4 ¢
Which simplifies to

ye ¥ = —e " 4 ¢
Which gives

y=— (e_””2 — cl> e®

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

(R,5)

ODE in canonical coordinates

L = 2zy + 2z 45 = 2Re

NSOV 2§ S

R bbby [T T

\J Kraarasaaaaea

Szye—z ﬁﬁﬁﬁﬁﬁﬁ ~ N\ |7 A T

R IR Tt
P RIS
v ey |\ N[amm—e—m—e e

NSNS NS - S
N

— e a Yy /««««é-«e—««

bbb bbb a4 GGGt
bbb bbb A x|ttt
-»-»-»ﬂ—»—»\»\/_é/re—«q—e—e—e—e—efe—
—S bbb A 4| d— GGt
bty Tttt
———p——>—n /T/rreke—««q—q—q—
e Y \ ae—a—e bbb
—a—e—e——a—a et
PR W FEEE
et a—a— s bbb
et d— o A bbb
et e a Sa—b>—b—b—>—>—b—>—>—b—>
ettt Sa— Db —B—b—b—D—b—>
N
4
v
4
'
v
v
|
i
/
s
4
\
N
%
o
v
'
'
+
'
'

\»\»Tp\a\a\s
AN NN

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

].:Cl—l
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1)

6122
y=2e“’2—1

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary
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(b) Slope field plot
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y=2e’”2 -1
¢(z,y) =0

dz

15

d
M(w,y)+N(w,y)£=0

—05 0 05

(a) Solution plot

—2 —15 -1

———— e
: : : : : : :
(=3 (=3 (=3 S f=} (=} (=}
3 bt F S Q =
—_
=
=
~
S =) =) S = S
o v < o o —
—
=
N
~

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)
ode. Taking derivative of ¢ w.r.t. z gives

1.15.5 Solving as exact ode
To solve an ode of the form

Verification of solutions

Verified OK.



Hence

09 Opdy
oz " oydr 0 (B)
Comparing (A,B) shows that
09
5 =
99
dy
But since % = (,;9; g; then for the above to be valid, we require that
oM  ON
By Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(24—12y)d = (z)dz
(—2) d:c+(2_l_12y) dy =0 (24)

Comparing (1A) and (2A) shows that

M(z,y) = —zx
1
N(may)=m

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
OM ON
oy Oz
Using result found above gives
oM 0
)
9y Oy
=0
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And
oN_o( 1
ox  Or\2+2y
=0

Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
—gx =M (1)
¢ N

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

0¢ .
%dx— /—zdx

2

b=—-5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99
=0 ! 4
= 0+1W) (@
But equation (2) says that g—i = ﬁ Therefore equation (4) becomes
= / 5
o =0+ )
Solving equation (5) for f'(y) gives
1
/ —_—
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Integrating the above w.r.t y gives

[rwan= [ (55,) @

In(y+1)

f(y):T+Cl

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

z2 In(y+1
¢:_5+_(% ) e,

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

2 In(y+1
o= T my+D

2 2

The solution becomes

2
yzea}-l—?cl_l

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

Summary
The solution(s) found are the following

y=2e" —1 (1)
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(b) Slope field plot
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15
y= 2¢” — 1
22 +¢

0.5

de = [2zdz + ¢

—05 0
2
ex +c1 1

Y
y+1

Highest derivative means the order of the ODE is 1

Integrate both sides with respect to x

[y — 2yz = 2x,y(0) = 1]

Separate variables
Evaluate integral

Let’s solve
Si=2x
In(y+1)
Solve for y

J

(a) Solution plot
)

—2 —15 -1
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1.15.6 Maple step by step solution

Verification of solutions

Verified OK.



° Use initial condition y(0) =1

l=e2-1
) Solve for ¢;
c1 =In(2)
. Substitute ¢; = In (2) into general solution and simplify
y=2e" —1
° Solution to the IVP
y=2 e — 1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

Ldsolve([diff(y(x),x)—2*x*y(x)=2*x,y(0) = 1],y(x), singsol=all) J

2

ylx) =26" —1

v/ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 14

DSolve [{y' [x]-2*x*y[x]==2*x,y[0]==1},y[x],x,IncludeSingularSolutions -> True]

N\

y(z) = 2¢* — 1
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1.16 problem 16

1.16.1 Existence and uniqueness analysis. . . . . .. ... ... .... 211
1.16.2 Solving as separableode . . . . . . .. ... ... ... ..... 212
1.16.3 Solving aslinearode . . . . . . . . .. ... ... ... ... . 213]
1.16.4 Solving as homogeneousTypeD2ode . ... ... ... ..... 215
1.16.5 Solving as first order ode lie symmetry lookup ode . .. .. .. 216
1.16.6 Solvingasexactode . . ... ... ... ... .. ... .. ... 2200
1.16.7 Maple step by step solution . . . . ... ... ... ... ... 224

Internal problem ID [3067]
Internal file name [OUTPUT/2559_Sunday_June_05_2022_03_19_27_AM_44005436/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 16.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

zy —yr—y=0

With initial conditions

[y(1) =1]

1.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
Y +p(@)y = q(2)

Where here

211



Hence the ode is

The domain of p(r) = —Z is

T

{r<0VO0<z}

And the point zy = 1 is inside this domain. Hence solution exists and is unique.

1.16.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)

_ylz+1)

Where f(z) = £ and g(y) = y. Integrating both sides gives

ld a:+1d

/ dy = /x+1dx

In(y)=xz+In(z)+c
y = ea:-l—ln(x)—i—q

= C1€

z+In(z)
Which can be simplified to become

y=czre’

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

].che

Ci =¢€
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Substituting c¢; found above in the general solution gives

y:mez—l
Summary
The solution(s) found are the following
y=re! 1)
30 177-N\) EEEERERER Y
301777-N\ ) Pttt
55 177N\ NEERREERI N
177NN\ INREREEEE N
177N\ Pttt
777NN Pttt
20 ol 777N
777N\ frrtrtrrtgrd
15 AWy
y(x) Y)Y A Z V1
77 7=\ rrirrrifirri
101 10 77 =—=~\\ Trrrrryrrrvz
77 m==N\\ 11117717777
7 o=\ 117774077777
5 e\ I 7T Y 77777
-\ O
) e— Se—
\\\\\ =7 1 NN
-2 —050 05 1 15 2 25 3 35 52 210 1 2 3
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
y=zxe* !

Verified OK.

1.16.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

_ f—m—ﬂdw
p=e e

— e—m—ln(w)

Which simplifies to
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The ode becomes

Integrating gives

Dividing both sides by the integrating factor u = % results in

y=cze”

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1 =ce

cp = e !

Substituting ¢; found above in the general solution gives

y=ze" "
Summary
The solution(s) found are the following
y=ze!
30
25
201
yx) ] »(x)
101
5]
o

" 050 05 1 15 2 25 3 35
X

_2'

(a) Solution plot
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Verification of solutions

Verified OK.

1.16.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) x on the above ode results in new ode in u(z)
(v (z) T+ u(x)) — u(x) 2* —u(r)z =0
Integrating both sides gives

1
/—du=m+02
U
In

(u) =+ co

U= ew+62

U = coe”
Therefore the solution y is

Y =TU

= cox e”

Initial conditions are used to solve for c;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=cqe

Cy = e !

Substituting ¢, found above in the general solution gives

y=ze" !
Summary
The solution(s) found are the following
y=get 1)
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P17NNV ety
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J77NNV et
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777NN\ Pttt
207 ol 777NVt
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: Zaiiin g
y(x) y(x) SERRERRRRAN AR
Prirrriyiriri
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1111777777
117774077777
5- 1777777777
TS
o o N
\\\\\ =7 1 NN
—2 =050 05 1 15 2 25 3 35 52 10 1 2 3
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
y:xem—l
Verified OK.
1.16.5 Solving as first order ode lie symmetry lookup ode
Writing the ode as
W ICha)
x
y =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
nx+w(ny_§x) _w2§y_wx§_wy'r]:0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =
n ( ) z+In(x) ( Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dz _dy _

ds
§ n

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

217



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S = / —dy
n
1
:/ez+ln($) dy

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

ylr+1
wla,y) = LY
x

Evaluating all the partial derivatives gives

R, =1

R,=0

S, — _e‘“”y(l; +1)

x
e—(t
Sy = -

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

e—l‘
Yy _ et
x
Which simplifies to
e %y
= Cl
x
Which gives
y=cxe®

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R,S)
transformation ’

dy _ y(z+1) s _

dx — T dR ~—
frrtrrr A AN
frrrrr s ANt
frrrrrr a4ttt 4
BN I

~a

NN EEEY, S(R]
PAAAZA A=Y P LAY 24
AAAAA AN PP IPLS
mam e m s\ F APPSR SSS R=zx
\"\’\ﬁ\"\“‘“—‘?""/d\\\\z\‘\\‘?\“\ e—my g g ) vig
AR LR S = 7
R N N T
\\\\\\\\4;;43,\,\.\\\\\\\ =5
NNNYNNN NSV LV VYL
AR I R R R
R A T T T T T O G S S
L O T T 02 = I e S A T A ¥ 4
VYV AYNYNNYN AP R VYLV
[ YA I IR R T R A S s

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 =ce
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C1 = e_l

Substituting ¢; found above in the general solution gives

Y= xex—l
Summary
The solution(s) found are the following
y=ze"" (1)
307 P17Vt
3017 /77-N\ f1rrtrtrr1tql
| 777NVt
25 177N\ Pttt
777NN\ EEEEEREN I
777NN RN IR
204 ol 777N T
J77NNVI gt
i
y(x) y(x) SERERRERRRY AR
Prrrrrifrrri
101 107 111111417177
1111717777
1117777777
5 1777777777
VO o4
o] o
\\\\\ =7 1 NN
“2 050 05 1 15 2 25 3 35 520200 1 2 3
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
y=z ea:—l
Verified OK.
1.16.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy
M(z,y) + N(z,y) 2 =0 (A)

dx

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p O¢dy
AT el B
Oor Oydx (B)
Comparing (A,B) shows that
99 _
oxr
o
T _N
Oy
But since aajgy = ;’: g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—le>dx+<§) dy = (2A)

Comparing (1A) and (2A) shows that

1
N (.’I? ) y) - y
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
oy Oz

Using result found above gives

om0 (st
0y Oy x
=0
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And

ON _ 0 (1
or  Ox\y

=0
Since %’I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
o (1)
99
— =N 2
o )

Integrating (1) w.r.t. z gives

oo .
%dx—/de

@dx—/—w+1dx

or =~ z
¢=—-z—1In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

But equation (2) says that g—‘z = zl/ Therefore equation (4) becomes
1 /
~=0+f(y) (5)
Y
Solving equation (5) for f'(y) gives
1
f'ly) =~
W)=

Integrating the above w.r.t y gives

[row=[(5)e

fly)=In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=—z—In(z)+In(y) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

c1=—z—In(z)+1n(y)

The solution becomes

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1= e61+1

Cl=—1

Substituting c¢; found above in the general solution gives

y =7 ex—l
Summary
The solution(s) found are the following
y=ze"" (1)
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(a) Solution plot (b) Slope field plot

223



Verification of solutions

Verified OK.

1.16.7 Maple step by step solution

Let’s solve
[zy —yz —y = 0,y(1) = 1]
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

y_’_z—i—l

Y z

° Integrate both sides with respect to z
f%d:c=f“”7‘”dr—|—cl

° Evaluate integral
In(y)=z+In(z)+c

° Solve for y
y=ia

o Use initial condition y(1) =1

1= e

° Solve for ¢;
c=-1

° Substitute c; = —1 into general solution and simplify
y=1ze*!

° Solution to the IVP

y=ze* 1
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

Ldsolve([x*diff(y(x),x)=x*y(x)+y(x),y(1) = 1],y(x), singsol=all) J

y(z) =ze

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 12

LDSolve[{x*y'[x]==x*y[x]+y[x],y[1]==1},y[x],x,IncludeSingularSolutions -> Trug?
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1.17 problem 17

1.17.1 Existence and uniqueness analysis. . . . . .. ... ... .... 226
1.17.2 Solving as quadratureode . . . . . .. .. ... ... ... ... 227
1.17.3 Maple step by step solution . . . . . ... .. .. ... ... .. 228]

Internal problem ID [3068]
Internal file name [OUTPUT/2560_Sunday_June_05_2022_03_19_29_AM_98851381/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 17.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

1.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(x)y = q(z)
Where here

p(z)=0

3tan (x) z?
A
Hence the ode is

, _ 3tan (z) x?

3+ 1
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The domain of p(z) = 0 is
{—00 <z < o0}

3tan(z)z?

And the point zo = 0 is inside this domain. The domain of ¢(z) = =75 is

1 1
{—oo <z<-—-1l,-1l<z< §7T+7T_Z142, §7r—|-7r_Z142 <zr< oo}

But the point zy = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

1.17.2 Solving as quadrature ode

Integrating both sides gives

[ 3tan(z)2?
_/ 3 +1 dz
222
_ 3 2 _
= —iln (z° + 1) 32(/ @) (x3+1)d33) +c

Initial conditions are used to solve for c;. Substituting z = 0 and y = T in the above

solution gives an equation to solve for the constant of integration.

T A a?
5 = 67, (/ (627:—“ n 1) (_a3 T 1)d_a> + C1

- </ O (e?ie +T)a(2_a3 T 1)‘“) 3

Substituting ¢; found above in the general solution gives

y=—iln (e’ +1) =3 </ CE iﬁx&* T 1)‘”) - </ 0 (eFie +T)a(2_a3 T 1)d—“> 3

Summary
The solution(s) found are the following

y=—iln(z 31(/ e2w+1) w3+1)d ) (1)
‘6’(/ (2 e+t 1>a<_a3+1>d ) :
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Verification of solutions

y=—iln(z _3Z</ e2“”+1) x3+1)d )

Verified OK. {positive}
1.17.3 Maple step by step solution

Let’s solve
[(.’B3 + 1)y = 3tan () z%,y(0) = %}
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
. Integrate both sides with respect to x
[ydz= [ 3t2‘;(f1)””2 dz + ¢
° Evaluate integral
— 3 _ 2x2
BRSNS,
o Use initial condition y(0) =
T 0 2_a?
° Solve for ¢;
_ 0 2_a? P
€ = 3I(f (e—P+1) Car) d_a) + 3
; — 0_ 2 a? T . . .
° Substitute ¢; = 31( i ((el_a)2+1> C o) d_a) + 5 into general solution and simplify

2

22 0
y=-In(z°+1)+ GI(I mdﬂﬂ) - 61<f sy

° Solution to the IVP

2
y =T (& + 1) +61( [ mfiprmde) — 61(/° @remamda) + 5

a’+1) d—“) + %
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Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---

‘trying a quadrature ‘
‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 36

Ldsolve([(1+x‘3)*diff(y(x),x)=3*x“2*tan(x),y(O) = 1/2%Pi],y(x), singsol=all) J

y(z) =3 ( /O (A +t T)l E:Zz :ziz n 1)d—ﬂ> 3

v/ Solution by Mathematica
Time used: 8.597 (sec). Leaf size: 35

LDSolve[{(1+x*3)*y'[x]==3*x“2*Tan[x],y[0]==Pi/2},y[x],x,IncludeSingularSolutiq#s -> True]

y(z) — /0 " 3K [}1{][ 1321111( 1D gy + g
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1.18 problem 18

1.18.1 Existence and uniqueness analysis . . . . . .. ... ... .... 230
1.18.2 Solving as separableode . . . . . . .. ... ... ... ..... 231
1.18.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 233]
1.18.4 Solvingasexactode . . . ... ... ... ... ......... 237
1.18.5 Maple step by step solution . . . . ... ... .. ... ... .. 247]

Internal problem ID [3069]
Internal file name [OUTPUT/2561_Sunday_June_05_2022_03_19_32_AM_28200195/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 18.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

zcos(y)y —sin(y) =1

With initial conditions
[y(1) = 0]

1.18.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

_ Ll+sin (v)
z cos (y)

The z domain of f(x,y) when y =0 is

{r<0Vvo0<uz}
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And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is
1 1
y < §7r +7 Z171V §7r+7r_Zl71 <y

And the point yo = 0 is inside this domain. Now we will look at the continuity of

of 0 <1+sin(y)>

dy ~ 9y \ wcos(y)
=1+ﬁl+$n@Dfn@)
z x cos (y)

The z domain of % when y =0 is
{r<0VO0<z}

And the point o = 1 is inside this domain. The y domain of g—i when z =1 is

1 1
{y < §7r +7 Z171V ivr +7 Z171 < y}

And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.18.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)

_ sec (y) + tan (y)

Where f(x) = % and g(y) = sec (y) + tan (y). Integrating both sides gives

T

1 1
sec (y) + tan (y)

1 1
| wrmm =/
In(1+sin(y)) =ln(z) + ¢
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Raising both side to exponential gives
1 + sin (y) = e@+a
Which simplifies to
1 +sin (y) = cox

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = arcsin (—1 + e“¢y)

¢ = —In(ep)
Substituting ¢; found above in the general solution gives
y = arcsin (z — 1)

Summary
The solution(s) found are the following

y = arcsin (z — 1) (1)

1.54
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0.57
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = arcsin (z — 1)

Verified OK.
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1.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_ 14sin(y)
x cos (y)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - wzfy - wx§ — Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 48: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode v = f(@)y(z) + g9(x) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode v =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy
First order special | y' = g(z) M@+ + f(x) W f)e” fgb:;;)dz_h(m)
form ID 1

polynomial type ode

/ — amztbhiyta
Yy azz+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aice—azcy

ai1ba—azb;

ai1ba—azb;

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz
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The above table shows that

{(z,y) =2
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
1
S = / —dzx
§
= / 1dan
z
Which results in
S =In(x)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

1 + sin (y)

wz,y) = z cos (y)
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Evaluating all the partial derivatives gives

R, =0
R, =1
1
Sp ==
xr
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS  cos(y)

dR ~ 1+sin(y) (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ cos(R)
dR  1+sin(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=In(1+sin(R))+c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(z)=In(1+sin(y)) + ¢
Which simplifies to

In(z) =In(1+sin(y)) +c
Which gives

y = —arcsin ((€” — z)e™)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy __ l+4sin(y) dsS __  cos(R)
dx ~  =zcos(y) dR ~— 1+sin(R)

bbb bbb b > I a—b—b—b—b—B bbb ——~=N N\ t LA 7=\ } f
B e B L A S G B R A o e
—v—a»»/v»///f L NN e S R I A et o N N
»»////;Ex;s Z 0 N N e aa—a— ——~a\ \‘SfR? VA e N N
PPy £ PV N N N e ——~a 0\ ?)/‘/‘//V»w\\\\ Vot
AP EE PRV VAN NN e S I B P
NNNNNANY VLAt ——~NN\N N b PN
S N S R R R N A R— e Y R SNV N
\s\s\m\\\\\\ \ [P A A7 m e w s y —v\»\vg\\\q} P LA~ ]
sy | soesastectll NN SN Ees Y
bbb | T > B> b bbb ( ) ——~NN NP ///»\»\R\\ A
S > bbb P I o —a—b—b——b——b—b—b ——~=~NN\ N ) f_é{//—v\»\\\\ Vot
A= SRR \\\\\\\ =N\ ) ) P A NN
VAV A A A B R T R SR ——~NN N L PNV
TR O e e e S AR A A A A A A4 ===V P AN N

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

—1)e™ @)

0 = — arcsin ((e”

C1 = 0
Substituting ¢; found above in the general solution gives
y = arcsin (z — 1)

Summary
The solution(s) found are the following

y = arcsin (z — 1) (1)
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0.57

—0.57

(a) Solution plot (b) Slope field plot

Verification of solutions

y = arcsin (z — 1)
Verified OK.

1.18.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

8_3/ =N
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But since % = % then for the above to be valid, we require that
y Yoz

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

in
1 cos (y B
(_5) dx+<1 + sin y)) dy =

Comparing (1A) and (2A) shows that

(24)

M(x,y) = _i
_ cos(y)
Mo = 1 i)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

oM _ 2(_1)
oy Oy\ =z

Using result found above gives

And
ON a( cos (y) )

8z 8z \1+sin (y)
=0

238



Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
=M 1
oz (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

a—(bdav:/Mdac
ox

0o 1
%dm = /—5 dz
¢=—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢
Lo+ yf 4
2~ 0+ 1) (@)
But equation (2) says that g—;’j = 13-23151%) Therefore equation (4) becomes
cos(y) _ :

Solving equation (5) for f'(y) gives

1oy — 08 (¥)
Fy) = 1 + sin (y)

Integrating the above w.r.t y gives
: _ cos (y)
/f(y)dy_/<1+sin(y)> W
f(y) =In(1+sin(y)) +c

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=—In(z)+In(1l+sin(y)) +c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

¢ =—1In(z)+1In(1+sin(y))
Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

O=Cl

c1=0
Substituting c¢; found above in the general solution gives
—In(z) +In(1+sin(y)) =0
Solving for y from the above gives
y = arcsin (z — 1)

Summary
The solution(s) found are the following

y = arcsin (z — 1) (1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = arcsin (z — 1)

Verified OK.
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1.18.5 Maple step by step solution

Maple trace

Let’s solve

[z cos (y) ¥’ —sin (y) = 1,y(1) = 0]
Highest derivative means the order of the ODE is 1

/

Y

Separate variables
y'cos(y) _ 1
1+sin(y) =~ =

Integrate both sides with respect to x
[ £5is = [ b+

Evaluate integral

In(1+sin(y)) =In(z)+c

Solve for y

y = arcsin (e“z — 1)

Use initial condition y(1) =0

0 = arcsin (e — 1)

Solve for ¢;

=0

Substitute ¢c; = 0 into general solution and simplify
y = arcsin (z — 1)

Solution to the IVP

y = arcsin (z — 1)

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli
trying separable

<- separable successful”
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v/ Solution by Maple
Time used: 0.188 (sec). Leaf size: 8

Ldsolve([x*cos(y(x))*diff(y(x),x)=1+sin(y(x)),y(1) = 0],y(x), singsol=all) J

y(x) = arcsin (x — 1)

v/ Solution by Mathematica
Time used: 37.067 (sec). Leaf size: 53

LDSolve [{x*Cos [y [x]]*y' [x]==1+Sin[y[x]],y[1]==0},y[x],x, IncludeSingularSolutiofls -> True]

y() — —2arccos (% (VI—z+ ﬁ))
y() - 2arccos (%(m + \/5))
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1.19 problem 19

1.19.1 Existence and uniqueness analysis . . . . . ... ... .. .... 243]
1.19.2 Solving as separableode . . . . . . ... ... ... ... ..., 244
1.19.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 2706}
1.19.4 Solving as bernoulliode . . ... ... ... ... ........ 250
1.19.5 Solving asexactode . . ... ... ... .. ... ... ..., . 253
1.19.6 Solving asriccatiode. . . . . . . . .. ... .. ... ... .. 257

Internal problem ID [3070]
Internal file name [OUTPUT/2562_Sunday_June_05_2022_03_19_35_AM_37186856/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

zy —2y(y—1)=0

)

1.19.1 Existence and uniqueness analysis

With initial conditions

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)

_ @y —-1)

The = domain of f(z,y) when y =2 is

{r<0VO0<uz}
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And the point zo = 1 is inside this domain. The y domain of f(z,y) when z = 1 is

{—00 <y < oo}

And the point yy = 2 is inside this domain. Now we will look at the continuity of
g;hg<%@—n)

oy Oy x
20—2 2
_ -2 2%

T T

The z domain of % when y = 2 is
{r<0VO0<uz}

And the point z¢ = % is inside this domain. The y domain of g—i when x = % is

{—o0 <y < o0}
And the point yy = 2 is inside this domain. Therefore solution exists and is unique.

1.19.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)

= f(z)g(y)

_2yly-1)

Where f(z) = 2 and g(y) = y(y — 1). Integrating both sides gives

9
— _dy=Zdz
yy-1 "Y1

1 2
[ownt=] o
In(y—1)—In(y) =2In(z) + ¢

Raising both side to exponential gives

eln(y—l)—ln(y) — e2 In(z)+c1
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Which simplifies to
-1
) — cya?
Initial conditions are used to solve for c,. Substituting x = % and y = 2 in the above
solution gives an equation to solve for the constant of integration.

4

2=—
02—4

C2=2

Substituting ¢, found above in the general solution gives

_ 1
Y= "oz 1
Summary
The solution(s) found are the following
1
S — 1
Y= "9z 1 (1)
2.5 RN RNl FRER RN
VAVVVLV LV Ity
2 MYV VRt r sy
HANNNNNVVV 117777
1.5 NNNNNNNVY 777777
NNN\N\\\\N\VtVHyr s
11 " ~=~aN\L VP
0.5 —— ] / NN NSNS
»(x) B T ettt IR
07 — a0\ ( J S
—0.5 ~SsN\N\\\\\ /7
: NNNNNNN V770
L NNV L1177 777
NNV YRt 77
_1s BEEEE RN
: VAAVY VLR L LTttt
| SV vVl b bttt
-2 Py bbb bbbttt
—25 —15 —050 05 1 1.5 2 2.5 3 3.5 -1 o 1 2 3
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
_ 1
Y= "9z 1

Verified OK.
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1.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

) = 2y(y —1)

i
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - fﬂc) - w2€y - wxf - Wy"? =0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 51: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode v = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —!
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

Q

o— [ bf(@)de—h(z)
g(z)

f(;l:)e_ Jof (z)dz—h(z)
g(z)

polynomial type ode

/a1 z+bi1y+c1
Y a2z+bay+ca

aibosr—aobix—bico+bacy

a1bay—agbiy—aica—ascs

a1b2—agby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e=J (n=1)f @dayn

Reduced Riccati

Y = fiz)y + foz) y?

e~ J fidz

246




The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

1
S = / —dx
3
= / %dz
2
Which results in
S =2In(z)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2y(y — 1)

w(x,y) = T
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Evaluating all the partial derivatives gives

R, =0
R, =1
2
Sp=2
xr
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

dR ~ y(y—1) (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR~ R(R-1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=In(R—1)—In(R)+ ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2ln(z)=In(y—1)—In(y) +
Which simplifies to
2In(z)=In(y—1)—In(y) +

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

.. ) ) i ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ 2y(y—1) ds 1
z z dR — R(R-1)

L T A 2 2 0 (O A U N I st s g R S IR
T O O 1 5 U O O O O A A U A N B ettt B I L .
R EEEEEE RO EEE e Y 1 N I P
L O O A A A A A B e e g B S IR
WNAVLLG ez e U e
\\\\\&\&&i??ffff/f// N I T2 R .
N N A R A 0 N ISR RS L IR IS,
R e S S Sy S B S N /v/; i i ;/'/v »»»»»
e po oo e o7 A\ ww—a—s—b—b—a—s—s [ | s oo 7 A o os
o 7 N e e e R==y it | DI W e e e
NSNS 5T 75755 S —2In(2) Seeaz o0t BEGSeatas:
SNNNNANNV VAt s DS S IR
RN RC SR SR S S S A N B e o R
L O O X O O A A A B e g B I I .
B R R R EEE B gy L N I S
L O 2 1 U (O A N B e Y 31 DR S .
A A A L 1 N A U A U O O O Y B ettt P I I
Vib b bbb bbrrret ettt B o A L I N
L T T L O O O e N B e Y 32 DR S .

Initial conditions are used to solve for c¢;. Substituting z = % and y = 2 in the above
solution gives an equation to solve for the constant of integration.

_ 4 e
T 4er —1

Cl1 = —In (2)

Substituting ¢; found above in the general solution gives

Summary

Yy=-

1
2z2 — 1

The solution(s) found are the following

Yy=-

1
212 — 1
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251 VUV VV LRttt
BEEEEEEERI NN
24 MYV VYV iy
HANNNNNVVVN 177777
1.51 NN\NNNVVEY YLt
SNSNN\N\\\\N\tVYyrrssssss s
- ~~~=>~NN\\\ J S
H—e——————— A ~————— s
05 7] NN NS SN
— 71 N NSNS S —— e
»(x) y(x)  |ZZZ2Z A/ NN
01 0 <<\ /oo~
—05 SSsN\N\\\\\ /s
’ NN\NN\N\N\N\N\VY s
1 —HNNNNNN NV 77777
NNV VI r 77
- REEEE RN
—13 IRER RN
| NN EE RN
—2 VY VRLb bbbttt

—-25 —15 =050 05 1152 25 3 35 -2 —1 0 1 2 3

X X

(a) Solution plot (b) Slope field plot

Verification of solutions

_ 1
Y= T
Verified OK.
1.19.4 Solving as bernoulli ode
In canonical form, the ODE is
y' = F(z,y)
_ @y —-1)
x

This is a Bernoulli ODE. 9 5

Y =——y+ -y
x x
The standard Bernoulli ODE has the form
y = fo(x)y + fi(z)y"
The first step is to divide the above equation by y™ which gives

g% = fol@y' ™ + fi(z)

(1)

(2)

3)

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.

Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)

Shows that

folw) = -
filz) =

n =

N ]I

Dividing both sides of ODE (1) by y™ = y? gives

Let

1 2 2
Yo =——+=
Y ry X
w:yl—n
1
)

Taking derivative of equation (5) w.r.t z gives

Substituting equations (5) and (6) into equation (4) gives

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

Where here

Hence the ode is

1
wl — _Eyl

2 2

T T
, 2w 2
w=——-=
T T

w'(z) + p(z)w(z) = q()

p(z) = —%
q(z) = —%
W (z) — 2wagx) _ _%
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The integrating factor u is

The ode becomes

()= () (-2)
()= (-5) o

Integrating gives

Dividing both sides by the integrating factor yu = xiz results in

w(z) =z’ +1

Replacing w in the above by % using equation (5) gives the final solution.

1
S =cri+1
Yy
Or
_ 1
y_clz2+1

Initial conditions are used to solve for c¢;. Substituting = = % and y = 2 in the above
solution gives an equation to solve for the constant of integration.
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Substituting c¢; found above in the general solution gives

_ 1
Y=o
Summary
The solution(s) found are the following
1
= 1
Y= "o 1 (1)
251 SNSRI RN
BEEEEEEERI NN
2 AR EERERI RN
HANNNNNV VAVt 117777
1.5 NN\NNNVVEY YLt
NSNN\N\\\\N\V s
H N ~~~~NN\\ ) ST
0.5 )/‘////; ; i“i\\\\ \\\\\
— 7 e e
T, R e D P P,
—0.5 ~SsN\N\\\\\1V1/7/777rrrms
: NNN\N\NNN Vs
_ —HNNNNNN VW17 7777
NYANYVY YL
—1s VAVVAYVY VYRR r
: IEERE RNy
| RN EE NN
-2 Vbbb vttt ettt
—25 —15 —050 0.5 1 1.5 2 25 3 3.5 —2 21 o 1 23
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
_ 1
y 222 — 1
Verified OK.
1.19.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p 0¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o¢ _
or
o¢ _
oy
But since aajgy = 86—;94’; then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

(s5-m) 0= ()

1 1
—— | dz+ (—> dy=0 2A
( w) 2y-1)" 24)
Comparing (1A) and (2A) shows that

Therefore

M(xay) = _%
N _ 1
(#,y) = 2y (y — 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON
R
Using result found above gives
oM 0 1
-5
=0
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And

ox_a( 1)
or 0z \2y(y—1)

=0

Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

o9
g—x—M (1)
¢ _
=N 2)

Integrating (1) w.r.t. z gives

op .
a—zdx—/de
0¢ 1
¢ =—In(z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1"(y) (4)

But equation (2) says that g—‘z = Wl—n Therefore equation (4) becomes

1

-1 =0+ f'(y) (5)
Solving equation (5) for f'(y) gives
1oy 1

Integrating the above w.r.t y gives

/f’(y) dy:/(Wl_l)) dy
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

_ In(y—1) In(y)
¢——1H(.’IJ)+ 9 - 9 +c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢ = —In (IL‘) + In (y2_ 1) _ In (y)

Initial conditions are used to solve for c¢;. Substituting z = % and y = 2 in the above
solution gives an equation to solve for the constant of integration.

In (2)
2

:Cl

In (2)
2

ci =

Substituting c¢; found above in the general solution gives

(o) + In (y2— 1) lnéy) _ ln2(2)

Summary
The solution(s) found are the following

o (o) + In (y2— 1) lnéy) _ ln2(2) (1)

Verification of solutions

CIn(z) + In (y2— 1) B lnéy) _ ln2(2)

Verified OK.
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1.19.6 Solving as riccati ode

In canonical form the ODE is

y = F(z,y)
_2yly-1)

This is a Riccati ODE. Comparing the ODE to solve

;27 2y
y:

Z T

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y?

Shows that fo(z) =0, fi(z) = —2 and fo(z) = 2. Let

_u/

v= f2U

= "u (1)

x

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou"(x) = (fo + fufo) v/ (z) + f3 fou(z) = 0 (2)
But
S 2
f2 = _ﬁ
fifo= =
z
fafo=0

Substituting the above terms back in equation (2) gives

=0

2 " 6 /
T x

Solving the above ODE (this ode solved using Maple, not this program), gives

Co
u(z) =c + =
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The above shows that

w(z) = ——

Using the above in (1) gives the solution

Y=
7 (a+3)
Dividing both numerator and denominator by c; gives, after renaming the constant

£ = c3 the following solution
1

. 1
y_03$2—|—1

Initial conditions are used to solve for c3. Substituting x = % and y = 2 in the above
solution gives an equation to solve for the constant of integration.

63=—2

Substituting c3 found above in the general solution gives

_ 1
Y= T o
Summary
The solution(s) found are the following
1
- 1
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X X
(a) Solution plot (b) Slope field plot
Verification of solutions
B 1
y 222 — 1

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 15

Ldsolve([x*diff(y(x),x)=2*y(x)*(y(x)—1),y(1/2) = 2],y(x), singsol=all)

1

y(z)
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v/ Solution by Mathematica
Time used: 0.339 (sec). Leaf size: 14

e B

kDSolve [{x*y' [x]==2*y[x]*(y[x]-1),y[1/2]==2},y[x],x,IncludeSingularSolutions -# True]
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1.20 problem 20

1.20.1 Existence and uniqueness analysis. . . . . .. ... ... .... 261
1.20.2 Solving as separableode . . . . . . .. .. ... ... ... ... 262
1.20.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 264
1.20.4 Solvingasexactode . . ... ... ... ... ... ..... 268}
1.20.5 Solving asriccatiode . . . . . . . . ... ... oL 272
1.20.6 Maple step by step solution . . . . . ... ... ... ...... 271

Internal problem ID [3071]
Internal file name [OUTPUT/2563_Sunday_June_05_2022_03_19_37_AM_73106503/index . tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

2zy’ +1y* =1

With initial conditions
[y(1) = 0]

1.20.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

Y —1
2x

The = domain of f(z,y) when y =0 is

{r<0VO0<uz}
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And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is
{—00 <y < oo}
And the point yy = 0 is inside this domain. Now we will look at the continuity of
of _ 0 ( y -1
oy Oy 2z

Y

X

The z domain of % when y = 0 is
{—00 <z < o0}

And the point zy = 1 is inside this domain. The y domain of g—i when z =1 is
{—o00 <y < oo}

And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.20.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
y2
T

N[ =

Where f(z) = 1 and g(y) = —% + 1. Integrating both sides gives

1 1
dy = —dx
y2 41
—7 T3 T
1 1
— W= —dx
Y 1
—zt2 T

2 arctanh (y) = In (z) + ¢

Which results in

In(z) ¢
= h _ —
y = tan ( 9 + 2)
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Initial conditions are used to solve for c¢;. Substituting = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.
el —1
T e t+1

Cl=0

Substituting c¢; found above in the general solution gives

oz - 1
y_x+1
Summary
The solution(s) found are the following
r—1
= 1
Y z+1 (1)
7 AEEREEE IR
61 0 T O S A A T Y Y W A MY
G R RRRRR
51 F I 0 I T A A A A A A R AR Y
| A S R Y
4 A770 00T EV VNN NN
3 Z77 70TV
277777 1TV NN NS~
2 Horrr 7 77 1 NN S ——————
y(x) 1 y(x) SO .
~N\ /7
O <\
— 1 LA
[l
] I
_4 1
1
_5 T .
—1 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
_T— 1
y_x+1

Verified OK.
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1.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

2
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - 51:)

— Wy —wf —wyn =0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,

Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f()y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —g
Class C

homogeneous class D | y = £ + g(z) F(¥) z? zy
First order special | ¥ = g(z)e"®+% 4 f(z) E_IW;E# f@)e” f;g?dz_h(z)
form ID 1

polynomial type ode

/ _ a1zthiyta
Yy a2z+b2y—+ca

ai1boz—agbiz—bica+bacy

a1bay—agbiy—aica—ascs

a1ba—aszb;

a1bs—aszb;

Bernoulli ode

y = f(x)y+g(z)y"

e (n=Df(@)dryn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J frdz
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The above table shows that

{(z,y) ==
n(z,y) =0 (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dz _dy _
£

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

5= [ s
=/édm

S =1n(z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as _ S +w(z,y)S, @)
dR R, +w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

2
__y -t
Evaluating all the partial derivatives gives

R,=0
R, =1

1
Sy = —
Sy =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 2

dR ~ y?—1

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 2

dR~ R*—1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = 2 arctanh (R) + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In () = 2 arctanh (y) + ¢;
Which simplifies to
In (x) = 2 arctanh (y) + ¢;

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _y?-1 as _ 2
dz 2z dR —  R2-1

R I EEE R R R R i S B T N
AALEEEE LNV VYV NN e SN RN A A B N
VAV A A A & R IR T R R R RN NN A e
YT N RS ERINNNNN Bt VR A
AFA AV N VN —e——a— s N e e —a s
//////)ffxf) 7 $ DY NN N N »ﬂ%»\‘:‘stR\\? f AL N e
ettt AV A ANV ———s—aa\ ) »7 f Y N
»»»»» e e 7 A\ a~a—a——e—e—s—s—s ——s—a—s~aa g E ; ; ; ; é A
ﬂﬂﬂﬂﬂﬂ — Ny > ——b——s—aa g A o
R=y ;é;;i\‘\.\»ﬂvwﬂ.
Ng s p s
f 217 1\ e
——s—s—saa N\ f_zﬁf VN
——s—s—wuN\ ALV N mm—
————waN\ 1\ s
—w——a—waN ) AV e
——s—w—=uN\ 1AV N
————waN\ A s

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

—e +1

et +1

1=0

Substituting ¢; found above in the general solution gives

y:

Summary
The solution(s) found are the following

y:

r—1
r+1

r—1
z+1
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(a) Solution plot (b) Slope field plot

Verification of solutions

r—1
rz+1

Verified OK.

1.20.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
M(z,y) + N(z,y) 2 =0 (4)
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Yy _
ox  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

o =V
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But since % = % then for the above to be valid, we require that
y Yoz

oM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
gj gy = ;’: 5’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy=0 (2A)

Comparing (1A) and (2A) shows that

1
M({L‘,y)=—5
N(z,y) = —7

T

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ o (_ 1
oy Oy\ =z
=0
And
oN _o( 1
or Oz \_¥ +%
=0
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. = gives

@dxz/de
or

96 1

¢=—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢
=0 ! 4
=0+ 1) @
But equation (2) says that —g‘z = — %%Jr e Therefore equation (4) becomes

1
A =0+ W) ©
2 T2
Solving equation (5) for f'(y) gives
2
4 — —

Integrating the above w.r.t y gives

/f’(y)dy=/<—y22_1) dy

f(y) = 2 arctanh (y) + ¢1
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = —In (z) + 2 arctanh (y) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

¢; = —In(z) + 2 arctanh (y)

The solution becomes

In(z) ¢
= h _ —
y = tan ( 2 + 2)

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

et —1
e 41

Cl=0

Substituting ¢; found above in the general solution gives

_z—1
y_x+1
Summary
The solution(s) found are the following
z—1
= 1
Y=y +1 (1)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

r—1
r+1

Verified OK.

1.20.5 Solving as riccati ode

In canonical form the ODE is

F(z,y)

yl

y*—1

2z

This is a Riccati ODE. Comparing the ODE to solve

1
2z

2
Y
2x+

/

Y

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y?

. Let

_1
2x

=0 and fo(z) =

fi(z)

1
2x?

Shows that fo(z) =
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" (@) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
1
f2 = @
fifa=0
fifo=—
2J0= 23

Substituting the above terms back in equation (2) gives

W) () | () _
2z 22 83

Solving the above ODE (this ode solved using Maple, not this program), gives

T + ¢

The above shows that

Using the above in (1) gives the solution

C1T¥ — Cy
y =
C1T + C2

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

_c;;x—l
y_03m+1

Initial conditions are used to solve for c3. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0= —1+C3
Cg+1
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(1)

r—1
r+1

r—1
z+1

C3=].
y:

Substituting cs found above in the general solution gives

The solution(s) found are the following

Summary

A I T N O I A A AV e
77NN s
7 ANV
77 WA s
-7 NN s
\\\\\ AR R e
\\\\\ 7 AN S
\\\\\\ =71 \N\\ 17
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11111111 RN
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) R & £ % En

(b) Slope field plot

r—1
rz+1
274
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Highest derivative means the order of the ODE is 1

[2zy +y? = 1,y(1) = 0]

(a) Solution plot
Let’s solve

- & 0 v 0 A& =~ &5 L A A on

Maple step by step solution

Verification of solutions

Verified OK.
1.20.6



° Separate variables

. Integrate both sides with respect to x
i y dz = [ 5-dz+ ¢

1—y2

° Evaluate integral
arctanh(y) = # +c
° Solve for y

y = tanh (@ + c1>

) Use initial condition y(1) =0

0 = tanh (¢;)
° Solve for ¢;
=0
° Substitute c; = 0 into general solution and simplify

y = tanh (@)
° Solution to the IVP

— In(x)
y = tanh (T)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

Ldsolve([2*x*diff(y(x),x)=1—y(x)“2,y(1) = 0],y(x), singsol=all) J

r—1
y(x)—x+1

v/ Solution by Mathematica
Time used: 0.514 (sec). Leaf size: 14

LDSolve [{2*x*y' [x]==1-y[x]~2,y[1]==0},y[x],x,IncludeSingularSolutions -> True]J

rz—1

_>
y(x) 1
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1.21 problem 21

1.21.1 Solving as separableode . . . . . . .. ... ... ... ..., 27T
1.21.2 Solving as linearode . . . . . . . . .. ... ... ... .. 279
1.21.3 Solving as homogeneousTypeD2ode . .. ... ... .. .... 280
1.21.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 282
1.21.5 Solvingasexactode . . ... ... ... ... . .........
1.21.6 Maple step by step solution . . . . . ... ... ... ...... 290

Internal problem ID [3072]
Internal file name [OUTPUT/2564_Sunday_June_05_2022_03_19_40_AM_7786684/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

(l1-2)y —yz=0

1.21.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)

= f(z)g(y)
Ty
r—1
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Where f(z) = —-%; and g(y) = y. Integrating both sides gives

—z—In(z—1)+c1

y=e
— cle—z—ln(m—l)
Which simplifies to
. cie ”®
¥= rz—1

Summary
The solution(s) found are the following

—_—————a
-

NOANNANNNNNN =~/
1 NOANONNNNNN N~
NNNNNNNN =

e —————

///////z)éﬂ\\]//////

oo~ \N 17T
W, s rrrmme\111717177
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21777777 777~\\1111111
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Figure 82: Slope field plot
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Verification of solutions

Verified OK.

1.21.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
x
q(z) =
Hence the ode is
O
z—1
The integrating factor u is
p= ef yda
— e:v+ln(z—1)
Which simplifies to
p=(r—1)€"
The ode becomes
d
=0
d 2
L(@-1ey) =0
Integrating gives
(x—1)e"y=0c

Dividing both sides by the integrating factor u = (x — 1) €* results in
e’

r—1
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Summary
The solution(s) found are the following

ci€e

= 1

y=_—7 (1)
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H NSNS == VLV
NN S S == VNN
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ —_— NN NN~
y(x) O \>/////)

e\ S
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N, s rrrre—\11171777
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JI7I I e\ 11111
—27 7777777 ~\\ 1111111
J77777777~N1111111
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Figure 83: Slope field plot

Verification of solutions

—x

Verified OK.

1.21.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

(1—z) (W (z)x +u(x)) —u(x)2z* =0
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In canonical form the ODE is

v = F(z,u)

f(@)g(u)

u(z®+z—1)
z(x—1)

Where f(z) = —”;2 (‘;ﬁ)l and g(u) = u. Integrating both sides gives

1 24 g
u z(x—1)

2 _
u z(x—1)

In(u)=—z—In(z—1) —In(z) + ¢

u= e—ac—ln(x—l)—ln(w)+02

— cze—m—ln(z—l)—ln(m)

Which simplifies to

. [6)1S]
wz) (z—1)z
Therefore the solution y is
Yy =uzc
e z
-1
Summary
The solution(s) found are the following
coe™*
= 1
y= 7 (1)
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Figure 84: Slope field plot

Verification of solutions

Verified OK.

1.21.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as
r_ %y
z—1

Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w( fz) - € —we€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
n(x, y) — e—x—ln(w—l) (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z
S is found from
1o
= / e
Which results in
S=(z—-1)e"y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)Ry

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

x
w(z,y) =~ _y 1
Evaluating all the partial derivatives gives
R,=1
R,=0
Sy =€"xy
Sy=(x—1)€"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(x—1)e"y=0c
Which simplifies to
(x—1)e"y=0c
Which gives
_ ce ®
z—1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ zy s _
dz = z—1 dR —
VAV LV VYN VNN ALy
L N N 2 I T Y T N AR
L O o T T T A S G 4
SR
N
NENENNIVHE N A S AR SR]
I NN N U L N VRNV =
AR R R R R R R
»»»»»»»» — 7 NS a e e a =X
S I R TR o (a1)e R =
//////////\Hff“‘;/f// =(z—1)e% R
PAPPAA A AN LB PP ? -
FIIII AP AAN LY
PRI ANV Y
PRPPIRIIAANLL I
PRERIRI AN LI :
PEPEERE A AN I
PEEEEREPI AN b L
Summary
The solution(s) found are the following
cie ®
= (1)
r—1
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Figure 85: Slope field plot
Verification of solutions
e z
-1
Verified OK.
1.21.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 2 =0 (A)

dz
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
E;M%y)zo

Hence
8¢ 8(;5 dy
oz 8y dr
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Comparing (A,B) shows that

09
M
ox
9 _ n
Oy
But since % = (,f; g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(_acil) dx+(—§) dy =0 (24)

Comparing (1A) and (2A) shows that

x
-1

M(.’L’,y) = _.'E
N(x,y)=—§

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM _9( =
oy Oy\ z-—1
=0
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And

oN _ 0 (1
N A
=0

Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
g—gC_M (1)
¢ _

5y =N 2)

Integrating (1) w.r.t. z gives

0¢ .
gdx—/de

%dxz/— 7 dz

or z—1
¢p=—-z—In(z—1)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
=0 ! 4
=0+ 1) @
But equation (2) says that g—‘z = —i. Therefore equation (4) becomes
1 /
—==0+f(y) (5)
)
Solving equation (5) for f'(y) gives
1
fly)=—=
W) =

Integrating the above w.r.t y gives

[ o= (L)

fly)=-In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
p=—zxz—In(z—1)—In(y)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

ci=—-x—In(z—1)—In(y)

The solution becomes

_ e~ z—a
v= z—1
Summary
The solution(s) found are the following
e—.’l)—C]_
y=_—7 (1)
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Figure 86: Slope field plot
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Verification of solutions

Verified OK.
1.21.6 Maple step by step solution

Let’s solve
(l-2z)y —yz=0
° Highest derivative means the order of the ODE is 1

° Separate variables

° Integrate both sides with respect to x
Jids = [ {Zdz+ o
. Evaluate integral

h(y)=—2z—-In(z—-1)+¢

° Solve for y
—z+c
y= : z—1 :

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve((l—x)*diff(y(x),x)=x*y(x),y(x), singsol=all)

cie ®

y(z) =

rz—1
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v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 23

kDSolve [(1-x)*y' [x]==x*y[x],y[x],x,IncludeSingularSolutions -> True]

ce ”®

y(z) = —
y(x) =0
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1.22 problem 22

1.22.1 Solving as separableode . . . . . . .. ... ... ... ..... 292
1.22.2 Solving as linearode . . . . . . . . .. ... ... ... 294
1.22.3 Solving as homogeneousTypeD2ode . ... ... ... ... .. 295
1.22.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 297
1.22.5 Solvingasexactode . . ... ... ... ... ..........
1.22.6 Maple step by step solution . . . . . ... .. ... .......

Internal problem ID [3073]
Internal file name [OUTPUT/2565_Sunday_June_05_2022_03_19_41_AM_46160276/index . tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 22.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

(* -1y — (z>+1)y=0

1.22.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(2)9(v)

(2 + 1)y
oz —1
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(1)

z4+ln(z—1)—ln(x+1)+¢

e:c—i—ln(w—l)—ln(m—i—l)-i—cl
y = clex+ln(ac—1)—ln(:;lr:—i-l)

clex-{—ln(ac— 1)—In(z+1)

y. Integrating both sides gives

Y

111111 ~ N\ / \ e
111111111 NS —m——— =~~~
\\\\\\\ - _ \ / N T — — —
s 7 7 7NN NN NN S
e 7 7 NN N N S

In (y)

The solution(s) found are the following

Summary

Where f(z) = zzf} and g(y)

LLLLLL — N\ N ————————
111111111 NS —m—————— ===
111111 —~ N\ / \ T =
———~~~N\\W\NV /S
B Cha
I I |
—_
=
=

Figure 87: Slope field plot
y = clez+ln(z—l)—ln(z+1)
293

Verification of solutions

Verified OK.



1.22.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
|
p(fL’) - _1:2 1
q(z) =0
Hence the ode is
2
, (@E+y
y 2—1 0

The integrating factor y is

:c2+1
= ef _z2—1dz

I
— e—w—ln(x—l)+ln(m+1)
Which simplifies to
_(z+1)e”
- oz—1
The ode becomes
d
S =0
dr Ky
d((@+1)ey\ _
dx x—1 N
Integrating gives
(x+1)ey
=~ 000z 0¥ — Cl
z—1
« e e . . . _ (m-}-l)e_z .
Dividing both sides by the integrating factor y = *=_—7— results in
cie®(x —1
,_aeE@=1)
z+1
Summary
The solution(s) found are the following
cie®(x —1
,_ =1
z+1

294



J ST s |
J T
T T
g |
T T

— N NN
S——v— S SN N
S—m—S— eSO NN
— ——— NN
——m— SO SO N

J 77777

————— —~—— N —
e —_— . a a a

—_———— == ~————————~———

N
~NN\

X

77 ]
—_—— = 7 7 ]
1111111111111
11111111111111111

~———————~— —_—— ==

SN NN\
——— NN\

Figure 88: Slope field plot
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Verification of solutions

cie®(z —1)
z+1

Verified OK.

1.22.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

(22— 1) (W(z) z + u(z)) — (2 + 1) u(z)z =0

—~
i
l_l
8=
+| 1
\I/szw
T~ ™
2 88
kR = 3
| |
S

In canonical form the ODE is

295



Where f(z) = £=2%2+1 and g(u) = u. Integrating both sides gives

z(z2-1)
1 3 _ 2
—du:z T +x+1dx
u z (2?2 —1)

3_ 2
/ldu=/m x+m+1dx

u z(z2—1)
In(u)=z—In(z+1)+In(x—1) —In(z) +c

— ez—ln(m+1)+ln(m—1)—ln(z)+02

— CQGw—ln(z+1)+ln(z—1)—ln(w)

Which simplifies to

T

u(z) = ¢y (x(il- 1 (= -I(i)w)

Therefore the solution y is

Yy =uzr

T\ z+1 (z+ 1)z

Summary
The solution(s) found are the following

y:xc2<xi1 @ f1)x) 1)
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Figure 89: Slope field plot

Verification of solutions

=)

e
(z+1
1.22.4 Solving as first order ode lie symmetry lookup ode

e(L‘
re (x +1

y:

Verified OK.

Writing the ode as

(z2+1)y

2 —1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - €z) - w2€y —wg€ — Wy

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =

ex+ln(z—1) —In(z+1)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R==x

S is found from

9]
Il

dy

I | =

/ez—i—ln(x 1)—In a:-l—l)dy

Which results in

(x+1)e*y
r—1

S =

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +uw(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ @41y
UJ(.’E, y) - .1:2 _ 1
Evaluating all the partial derivatives gives
R, =1
R,=0
S, e 7y(s® —1—2 1)
(z—1)
(z+1)e™®
Sy=—""
v z—1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
=0 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
E—O
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ¢, (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(x+1)e ™y
________:cl
z—1
Which simplifies to
(x+1)e*y
—_— =
z—1
Which gives
cae’(z—1
,_ae@=1)
z+1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ; .
ODE in canonical coordinates

Original ode i dinat dinat
riginal ode in z,y coordinates coordinates (R, S)

transformation

U
<

u
8
8
)|
|
Ju

(z2+1)y as _
dR —

IS

S
=

~ e —b—p

NN e Sa e e —a—s—s
A S s

R=x=x

JIN N m—m s
YU N e

«««yr(%)‘

»»w\\\\\\gJ//z/«y«««

e aa—a e o ]\ e

_(z+1)e ™y Sy 3 ¥
N r—1

e \]y 4 et

Pt e e e g J x A S G

e aa s I\ N
e aaaaa N ~a—e e

£ 41\

41N
P P P /_,IJ‘X, A e e
B e P A R e aE ae
et | ettt i
D /“/A Y N e s
R e N I

i a N
e a—a— il s 4
it s s

——er—r—e—
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(1)

c1e®(x — 1)
z+1

y:

111111 ~~~\\/
111111111 NS ———— e~ _~—_~__~
\\\\\\\ - _ \ / N TS — ——
e 7 7 AN NN N S
D et 4y A B WANA N NG SO SO M
LLLLLL —— 7 N\ N —————
111111111 NS e e e
111111 —~ N\ / \ T - =

The solution(s) found are the following

Summary

————~~N\\\N St
e
=
=

0

X

ce®(z —1)
z+1
¢(z,y)
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Figure 90: Slope field plot
dz

d
M(w,y)+N(x,y)£=0

Entering Exact first order ODE solver. (Form one type)

ode. Taking derivative of ¢ w.r.t. = gives

1.22.5 Solving as exact ode
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

To solve an ode of the form

Verification of solutions

Verified OK.



Hence

0p  O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99 _
oxr
09 _
oy
But since aa;;’y = ;; g’x then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
gj gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

1 2241
() o= (i)
2241 1
(—z2_1>dx+(?3) dy=0 (2A)

Comparing (1A) and (2A) shows that

Therefore

M('Tvy):_

2 —1

1
N(z,y) = -
(z,9) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
oy Oz
Using result found above gives
oM 0 ([ x2°+1
552
=0
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And

oN _ 0 (1
ox Oz \y

=0
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
o (1)
0
— =N 2
o 2)

Integrating (1) w.r.t. z gives

@dx=/de
or

2
%dx:/—x +lda:

oz 2 —1

p=—z—Iln(z—1)+In(z+1)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p )
6_y_0+f(y) (4)

But equation (2) says that g—;’j = i Therefore equation (4) becomes
1 /
, =~ 0t ()

Solving equation (5) for f'(y) gives

oy 1
) y
Integrating the above w.r.t y gives

, 1
(/f@ﬂy=/(?>®

fly)=In(y) +a

303



(1)

et (x —1)
z+1
et (x —1)
z+1

Y

ST T
T
g7

— NN N /
7
7
7 m |
e
7

/
—c——e NN N
AN
N

——— SN N

————— SO S O N T T
111111 N\ = == T
111111111 ~ N S
\\\\\\\ - _ \ T S —— —
-7 /] NN N SN S

111111 N\ / \ P et
———~~~N\\W\NV S}

Where ¢; is constant of integration. Substituting result found above for f(y) into
p=—z—In(z—-1)+nx+1)+In(y)+ac
cg=—z—Iln(z—1)+In(x+1)+1n(y)

equation (3) gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary

A A -~ S - N A

X

Figure 91: Slope field plot
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Verification of solutions

etz —1)
B z+1

Verified OK.

1.22.6 Maple step by step solution

Let’s solve
(z> -1y — (> +1)y=0
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

!

y z2+1

y z2—1
. Integrate both sides with respect to x
i %dm = [ZHdr 4 ¢

z2—1

° Evaluate integral
In(y)=z+n(z—1)—In(z+1)+¢

° Solve for y

_ "t (a—1)
y= z+1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve((x“2—1)*diff (y(x),x)=(x"2+1)*y(x) ,y(x), singsol=all) J
ez —-1)c
y(z) = r+1

v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 25

LDSolve [(x~2-1)*y' [x]==(x"2+1)*y[x] ,y[x] ,x,IncludeSingularSolutions -> True] J

_ae’(z—1)
z+1
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1.23 problem 23

1.23.1 Solving as separableode . . . . . . . ... ... ... .....
1.23.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 309
1.23.3 Solvingasexactode . . .. ... ... .. ... ... ... . 313}
1.23.4 Solving asriccatiode . . . . . . . . . ... ... ... ... 317
1.23.5 Maple step by step solution . . . . . ... ... ... ... ...

Internal problem ID [3074]
Internal file name [OUTPUT/2566_Sunday_June_05_2022_03_19_43_AM_21842232/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 23.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yl_e:t(y2+1) =0

1.23.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)

= f(=)9(y)
— ex(y2 + 1)

Where f(z) = e® and g(y) = y* + 1. Integrating both sides gives

1
y* +1

1 €T

arctan (y) = e* + 1

dy = e” dx
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Which results in

Summary

y =tan (e + ¢1)

The solution(s) found are the following

Verification of solutions

Verified OK.

y = tan (e° + ¢1)
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Figure 92: Slope field plot

y = tan (6" + ¢1)
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1.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ — ew(yQ + 1)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

{(z,y) =e""

n(z,y) =0 (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is

dr dy

& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1

Sz/—dx
13

~ [ o
e$

S=¢"

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =e"(y* +1)

Evaluating all the partial derivatives gives

R, =0
R, =1
S, =¢€"
Sy =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

d_R:yz—i-l (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _ 1
dR R2+1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = arctan (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

e” = arctan (y) + ¢
Which simplifies to

e” = arctan (y) + 1
Which gives

y = —tan(—e” 4+ ¢;)

311



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,

5)

~—a——a—b—b

S T ?‘
- > v v A S
IS
———b—b—b > > ¥ 7 7
44_;&—»-».—9_',7»/7,6
e v v v S
bbb > v 7 A /‘
—-—>—> > v v A
——e— e w7 AN
——e>_ > 7 7 A

/
!
f

()
——p—>
g

——e_w 7 7
St
f

— w7 A S

————s——b—-aa |\ a e ——>——>
— bbb A a[ N> —>—>—>—>
— bbb bbb bbb —b—b—b—b—b—b—>——b

—> P —s—n—alNa

t
’t
tt
P
ft
ft

R=y

ds _
dR —

—-—>—>—> > > > v 7 A
——>—>—>—> > > ¥ T A
——b—> > > T 7T 4
D e g 3
B Py
IV, i
e oo o> oo 7 ]
——>—>—>—v > > v 7 A
——>—>—b—> > > ¥ T 7

e Y.

1
R2+1

AR A >
P G
AA T o
AR A > >
AA > b
AA o
AR A > >
AA T o>
AA o

AT >

—»—»_-'z-»—-a,v_',zr//,d
——>—>—>—> > > ¥ 7T
D T g P
—»-»-»-».—a»»//’_é"‘
——>—>——>—b> > > ¥ 7T
> > > v v 7
R e e P
——a———>_>_ v ¥ 7 f
——b—>—o > v T 7 7

oo oo T

A ///i»—v..%r»—.
A A

AT >

B

AA T o>
AA T o>
AAZ o o——b—b—b
AA T o>
AA T o>
AR >>—> >

AA T o>

Summary

The solution(s) found are the following

y=—tan(—€” +¢;)
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Figure 93: Slope field plot

Verification of solutions

y=—tan(—e” +¢;)
Verified OK.

1.23.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy

M(.’E,y)-i—N(iE,y)%

=0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%Qb(xa y) =0
Hence 8(15 8¢ p
ay
oz ay dz =0 (B)
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

(—e?) dz + <y2 : 1) dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —€°
1
N =
(1:7y) y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM _ o
dy oy
=0

314



And

N _o( 1
or Ox\y?+1

=0
Since %’I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
o (1)
99
— =N 2
o )

Integrating (1) w.r.t. z gives

@dx=/Mdz
or

o . -
%dx—/—e dz

¢ =—e"+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

op __ 1

But equation (2) says that 3% = 5.

Therefore equation (4) becomes

_ /
Solving equation (5) for f'(y) gives
1
, —

Integrating the above w.r.t y gives

/f’(y)dy=/(y211) dy

f(y) = arctan (y) + 1
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Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

¢ = —e” + arctan (y) + ¢;

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining c¢; and ¢, constants into new constant c; gives the solution as

The solution becomes

Summary

c1 = —e” 4 arctan (y)

y =tan (e® + ¢1)

The solution(s) found are the following

Verification of solutions

Verified OK.

y =tan (e + ¢1)
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Figure 94: Slope field plot

y = tan (e” + ¢1)
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1.23.4 Solving as riccati ode
In canonical form the ODE is
y =F(z,y)
— e (y2 n 1)
This is a Riccati ODE. Comparing the ODE to solve
y =e"y’ +e
With Riccati ODE standard form

Y = fo(z) + fi(z)y + folz)y”

Shows that fo(z) = e*, fi(z) =0 and fo(z) = €®. Let
fau

_u’

= (1)

ety

y:

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" (@) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
fo=¢
fifa2=0
fifo=¢€*

Substituting the above terms back in equation (2) gives
e“u’(z) — e"u'(x) + ¥ u(x) =0
Solving the above ODE (this ode solved using Maple, not this program), gives
u(z) = c1 sin (€*) + ¢3 cos (€)

The above shows that

u'(z) = €”(cy cos (€7) — ¢z sin (€7))
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Using the above in (1) gives the solution

_cicos (e”) — cpsin (e”)
c1 sin (%) + c; cos (e?)

Dividing both numerator and denominator by c; gives, after renaming the constant
z—j = ¢3 the following solution

_ —cgcos (e”) +sin (e”)
"~ cssin (e?) 4 cos (e?)

Summary
The solution(s) found are the following

_ —cgcos (e”) +sin (e”)
~ c3sin (e®) + cos (e7)
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Figure 95: Slope field plot

Verification of solutions

_ —cgcos (e”) +sin (e?)
"~ c3sin (e?) 4 cos (e?)

Verified OK.
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1.23.5 Maple step by step solution

Let’s solve
Y-y +1)=0
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
yz-;-l =e
. Integrate both sides with respect to x

fyﬁ’—jrldx = [e"dz + ¢
° Evaluate integral
arctan (y) = € + ¢
° Solve for y

y = tan (e” + ¢1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

tdsolve(diff(y(x),x)=exp(x)*(y(x)‘2+1),y(x), singsol=all)

y(x) = tan (e” + ¢1)
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v/ Solution by Mathematica
Time used: 0.274 (sec). Leaf size: 26

-

kDSolve [y' [x]==Exp[x]*(y[x]~2+1),y[x],x,IncludeSingularSolutions -> True]

—

y(x) — tan (e° + ¢1)
y(x) = —i
y(z) =i
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1.24 problem 24

1.24.1 Solving as separableode . . . . . . .. ... ... ... ... . 321
1.24.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 323]
1.24.3 Solvingasexactode . . .. ... ... ... ... ... ..., 3271
1.24.4 Maple step by step solution . . . . . ... .. ... ... ... B31]

Internal problem ID [3075]
Internal file name [OUTPUT/2567_Sunday_June_05_2022_03_19_46_AM_7653916/index.tex]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 24.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separablel

y'e¥ —2zxe¥ = —2x

1.24.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)

= f(z)g(y)
=2z(—e ¥ +1)

Where f(z) = 2z and g(y) = —e ¥ + 1. Integrating both sides gives

1
—e v +1

1

In (e_y — 1) —In (e_y) =2+

dy = 2z dx
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(1)

2
e:c “+c1

—e¥Y+1= C2e”2
2
y:ln<1—026z>

eln (e_y —1) —In (e_y)
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Summary
The solution(s) found are the following

Raising both side to exponential gives

Which simplifies to
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Figure 96: Slope field plot
y=In <1 — 02612)

Verification of solutions

Verified OK.



1.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y =2z(e? —1)e

Y =w(z,y)

-y

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that
1
n(@,y) =0 (A1)

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
1
S = / —dx
3
1
2x
Which results in
S = z?

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =2x(e¥ —1)e™¥

Evaluating all the partial derivatives gives

R, =0
R, =1
S, =2z
Sy =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS ey

d_R:ey—l (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _ o
dR eR—1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=In(ef—1) +¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

?=In(e —1)+¢
Which simplifies to

?=In(e —1) +¢
Which gives

y=1In (e””Lcl + 1)
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

ODE in canonical coordinates

(R,5)

eR
eR—1

ds
dR
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Canonical
coordinates

transformation

Original ode in z,y coordinates
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The solution(s) found are the following

Summary

(1)

In (e””z_cl + 1)

y:
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Figure 97: Slope field plot

Verification of solutions

In (e””z_cl + 1)

Verified OK.

1.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(@,y) 2 = 0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

0

d(z,y) =

a
dzx
99

Hence
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; E‘fy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(25—2) dy = (z)da

(—z)dz + (2;?’_ 2) dy =0 (24)
Comparing (1A) and (2A) shows that
M(z,y) = —x
Y
N@w) =55

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM _ 0
oy Oy
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And

ON_o( o
Or Ox\2e¥—2

=0
Since %]‘; = 62: , then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o
— =M 1
o (1)
0¢
=N 2
o )

Integrating (1) w.r.t. z gives

@dxz/de
or

0¢ _
9z dz = /—xdx

2

b= —5+ 1) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

09
G =0+ 1) @

3¢_

Zey

But equation (2) says that . Therefore equation (4) becomes

ey

=0+ ) )
Solving equation (5) for f'(y) gives
!/ ey
Fy) =555

Integrating the above w.r.t y gives

/16 dy‘/<2 y—2>dy

In(e? — 1)

f(y)ZT‘i‘Cl
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
z2  In(e¥ —1)

b=—3t— g ta

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

. _2* In(e!-1)
177 2

The solution becomes

y=In (e’”2+201 + 1>

Summary
The solution(s) found are the following

y=1In (e”’2+201 + 1> (1)
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Figure 98: Slope field plot
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Verification of solutions

y=In (e’”z’LQCl - 1)
Verified OK.

1.24.4 Maple step by step solution

Let’s solve
y'e¥ —2xe¥ = -2z

° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
/oY
ye — o
° Integrate both sides with respect to x

ff%dx = [2zdz + ¢
° Evaluate integral
In(eV —1) =22+ ¢;
° Solve for y

y=1In (e”2+01 + 1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 19

Ldsolve (exp(y(x))*diff (y(x) ,x)+2*x=2*x*exp(y(x)),y(x), singsol=all) J

P

v Solution by Mathematica
Time used: 2.015 (sec). Leaf size: 21

LDSolve [Exp [y [x]]*y' [x]+2*x==2%x*Exp [y [x]],y[x],x,IncludeSingularSolutions -> jl'rue]

y(z) — log <1 + em2+cl>
y() =0
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1.25 problem 25

1.25.1 Existence and uniqueness analysis. . . . . .. ... ... .... 333
1.25.2 Solving as separableode . . . . . . .. ... .. ... ... ... [3341
1.25.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 33061
1.25.4 Solvingasexactode . . ... ... ... ... ... ..... 341
1.25.5 Maple step by step solution . . . . . ... ... ... .. .... 3441

Internal problem ID [3076]
Internal file name [OUTPUT/2568_Sunday_June_05_2022_03_19_48_AM_40397258/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 25.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

2x

With initial conditions
[y(0) = 1]

1.25.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
y = f(z,y)

2rxe”
Y

2z

The = domain of f(z,y) when y =1 is

{—o0 <z < o0}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is
{—o0 <y < o0}

And the point yy = 1 is inside this domain. Now we will look at the continuity of

g _ g(_Qxe_%)
oy Oy Y
2re 2

The z domain of % when y =1 is
{—o0 <z < o0}

And the point zy = 0 is inside this domain. The y domain of g—?’; when z = 0 is
{—o0 <y < o0}

And the point yy = 1 is inside this domain. Therefore solution exists and is unique.

1.25.2 Solving as separable ode

In canonical form the ODE is

y/ = F(.’IJ, y)
= f(z)g(y)
2re 2"

Y

Where f(z) = —2ze7%* and g(y) = 1. Integrating both sides gives
y

dy = —2xe **dx

/ —2re 2 dx

> (1+4+2z)e™™

2 2

QIR = @] =
U
<
|
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Which results in

y =e \/e2® (2e2c; 4 2z + 1)

y=—e /e (2ec; + 22 + 1)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=—v2¢+1

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c¢;. Substituting x = 0 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1=+2c+1

01=0
Substituting c¢; found above in the general solution gives

y = e /2t 4 2z e2®

Summary
The solution(s) found are the following

A D R R D N S e
0.9 N I A I R N e B
T2 N NN
0.8 0.9 1 ,/\\ NN NS S S
' [ AR R R e
] I A N
07 75N VNN S S s
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0.61 o ?f\b‘t}‘%\\:\\\\\\ﬂﬂﬂ
. N NN NN
Y(x) o) S{CO R R F VAN NN NN IR
' AR R R R
0.4 0.4- A T I N e
A T R I I N e
0.3 0.3 A AEEEEEERRE N
NV LV VAN N NN S~
0 0.21 AR ERRERRRRRR N
) AR RRRRRARR RS
0.1 BEEEREERERRRRRRRN
01 FPARER RV VVVNNN
-3 2 -1 0 1 2 3 0 1 2 3
x x
(a) Solution plot (b) Slope field plot
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Verification of solutions

Verified OK.

1.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, 2re 2
y=-
)
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €x) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,
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Table 68: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
Sz/—dx

§
=/%dm

2x

S is found from

Which results in

g_ 1+ 2;) e

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2r e 2®
w(z,y) = — y
Evaluating all the partial derivatives gives
R.,=0
R, =1
S, =—2ze >
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates

dS
E% =Y (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar =B
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
2
S(R) = -5 +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

1+2z)e 20 o2
Which simplifies to

1+ 2z)e™ 2 o2

# — y_ + cl

2 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, 9)

|
&

Bl
I

<

5%

'

&

———b—b—b—b—b—b—>—>

/

=

—>—>——b—s—>—>—>—>—>

/

— e NaNa e
W&&}?&&
{
¢
i
'

'

'

v
'

'

z‘c‘,n]//g///

//i///
RRRRRER
NNNN NN X

s
&

-
-
ol

T

=

/
/
"
Y
{
{
{
'
!
i
»nn X
Il
—~

1+2z)e™ %

N
N e =N\
\
%
\

> > > > bbb

>—>—>—b——b—b—b—b—b—b

/A/é/r/éfrﬂ—‘b‘-b\b

B e e

N O N TS N N N T N
B N O T e T N N e N
e e e N N S i
e S S e e S N I S SN
e e e e e O G N
e e e S S e N e S e e

N N N D e N A TN D T
\a\a\»\a\a\»\a\a&\m\a\»\a\a\»\a\a\»\a\a

PRSP SN . T

Verd

et et a e et et e e G e a G e
Dl it i el P e e P L st e at e e
P o o i o o i e e P e e P

P R e e
//////////////@////

AN A AL A
4 1 i i

¥
(iR iy lid

/////////T///////////
RRRRRRRR]
ARARARR AR

4/4/(4/4/(4/4/(_&/4/(4/(4/(4/4/(4/
P R e s

éJgJJ!

-

- >—>—b—b—b—b—b—b—>—b

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 1+
—_ = — C
2 9™
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6120

Substituting c¢; found above in the general solution gives

(1+2z)e7 2 42

2 2

Solving for y from the above gives
y=+v(14+2z)e 2

Summary
The solution(s) found are the following

y=+(1+2z)e 2

0.9 1.01
0] 0.9
0.8
0.7
0.7
0.61
(x) (x)
yx - X
0.5 0.5
0.44 0.41
0.3 0.3
0.21 021
0.1
0.1

(a) Solution plot

Verification of solutions

y= V¥ )™

Verified OK.
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1.25.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06 d
Yy _
ox  Oydr 0 (B)

Comparing (A,B) shows that
0p
97 M
9¢
YN
Ay

8%¢ __ 82%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—%) dy = (a: e_zm) dx
(—ze ) dz —i—(—%) dy =0 (2A)

Comparing (1A) and (2A) shows that
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
M
8_ — 2 (_ T e—2x)
Jy Oy
=0
And
ON _ 9 (-2)
ox Or\ 2
=0
Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

9
g—x—M (1)
¢ _

=N 2)

Integrating (1) w.r.t. z gives

op .
%dx—/de

8¢ _ —2x
%dx—/ re “*dzx

o= TF20TE | 1) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3y =0+ f'(y) (4)

o _

But equation (2) says that 37 = —%. Therefore equation (4) becomes

y
2

=0+ f'(y) (5)
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Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f’(y) dy=/(—%) dy

2

f(y)=—yz+cl

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

1+2z)e 2@ ¢
_ (I+20)e™ o7

¢ 4 4

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

(1+2z)e72 2
a="—Fp— -7

4

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

0=Cl

C = 0
Substituting c¢; found above in the general solution gives

(1+2z)e 2

2
Yy _
4 4_0

Solving for y from the above gives

y=+v(1+2zx)e 2
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Summary

The solution(s) found are the following

0.91 1.0-
0] 0.91
0.8
0.71
0.71
0.61
(x) @ ]
Y 05 Y s
0.4+ 0.4
0.3 0.31
0.21 0-21
0.11
0.11
-3 -2 -1 0 1 2 3
X X
(a) Solution plot (b) Slope field plot

Verification of solutions

Verified OK.

y= AT e ™

1.25.5 Maple step by step solution

Let’s solve

[e**yy’ = —2z,y(0) = 1]
Highest derivative means the order of the ODE is 1

/

Y
Separate variables
yy = -3

Integrate both sides with respect to x
[yydz = [ —;—ﬁdx + ¢

Evaluate integral
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2

2 T 2e22
° Solve for y
_ y/e27(2e2%c14+22+1) _ \/e2%(2e2%cy+2z+1)
y - e2z ) y - - e29:

o Use initial condition y(0) =1

12\/2014‘1

° Solve for ¢;
C = 0
° Substitute ¢c; = 0 into general solution and simplify

y=1/(e)?(142z)e >

o Use initial condition y(0) =1

1=—2¢,+1

° Solution does not satisfy initial condition

° Solution to the IVP

y=1/(e?)?(1+2z)e 2

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.109 (sec). Leaf size: 16

Ldsolve([exp(2*x)*y(x)*diff(y(x),x)+2*x=0,y(0) = 1],y(x), singsol=all)

y(x) =+ (2zx+1)e 2=
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v/ Solution by Mathematica
Time used: 1.816 (sec). Leaf size: 20

e B

kDSolve [{Exp [2*x] *y [x] *y' [x]+2*x==0,y[0]==1},y[x] ,x,IncludeSingularSolutions -# True]

y(z) = Ve 22 (2x + 1)
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1.26 problem 26

1.26.1 Existence and uniqueness analysis. . . . . ... ... .. .... [3471
1.26.2 Solving as separableode . . . . . . ... ... ... ... ... . 348
1.26.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 349]
1.26.4 Solvingasexactode . . ... ... ... ... ... ..... 354
1.26.5 Maple step by step solution . . . . . ... ... ... .. ... 357

Internal problem ID [3077]
Internal file name [OUTPUT/2569_Sunday_June_05_2022_03_19_51_AM_37109703/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 26.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

With initial conditions

1.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as
y = f(z,y)

V=9

Yy

The = domain of f(z,y) when y =5 is

{r<0VO0<z}
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And the point zy = e? is inside this domain. The y domain of f(z,y) when z = e* is

{3<y<o0,—00<y< -3}

And the point yy = 5 is inside this domain. Now we will look at the continuity of

o _ 0 ()
oy Oy\ =y
1 VY2 —9

VY2 -9z x y?

The z domain of % when y =5 is

{r<0Vvo0o<uz}

4 4

And the point zy = €* is inside this domain. The y domain of g—i when z = e* is

{-c0<y<-3,3<y<oo}
And the point yy = 5 is inside this domain. Therefore solution exists and is unique.

1.26.2 Solving as separable ode

In canonical form the ODE is

Where f(z) =1 and g(y) = —Vy;_g. Integrating both sides gives

1
—— dy = —dx
Yy
1 1
/mdy_/idx
Yy
(y_3)(y+3) =ll’1(x)+01
y?—9
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The solution is
(y—3)(y+3)
Vyr =9

—In(z)—c; =0
Initial conditions are used to solve for c;. Substituting = e* and y = 5 in the above
solution gives an equation to solve for the constant of integration.

—CIZO

Cl=0

Substituting c¢; found above in the general solution gives

—In(z)vVy?—9+4y> -9

0
ViF =9

The above simplifies to

~In(z) Vy2—9+9y*°—9=0

Summary
The solution(s) found are the following

—In(z)\/y2—9+14*-9=0 (1)

Verification of solutions

—In(z) V¥ —9+4°—-9=0
Verified OK.

1.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

/ y2_9
y:
zy
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ny - &) — W2£y —we§ —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 71: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

{(z,y) =2
n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

5= [ s
=/%dm

S =1In(z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ vy -9
LU(SC ’ y) - Ty
Evaluating all the partial derivatives gives

R, =0
R, =1

1
Sy = —

x
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as Y
- 2A
dR y?—9 28)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as R

dR~ VRZ-9
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

_(R=3)R+Y

S(R) = = @

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ln(m): (y_3)(y+3)

+c
y* -9 '
Which simplifies to
—-3)(y+3
¥y -9

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

Original ode in x,y coordinates coordinates (R, S)

transformation

ODE in canonical coordinates

dy _ Vy*-9 as R
dz Ty dR R2-9

——e—e e Na N Y fP Ao oo
e e e S B P S e s

IS

»(x)

e e e P g A A A N o o e S
oo r 7 7 A\ (aam e

|

IS

|

8]

(=]

]

-
IS O OGN E e e adddd
N
/////////"(//////////
P P R R R R AR R a e

N O R R O A S
N D N o Y N
S N NN N N N N NN N N N N N N N e N
NN N N N N N N N NN N N N N N N N NN

Initial conditions are used to solve for c;. Substituting = e* and y = 5 in the above
solution gives an equation to solve for the constant of integration.

4=Cl+4
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6120

Substituting c¢; found above in the general solution gives

Solving for y from the above gives
y=1/In(z)*+9

Summary
The solution(s) found are the following

5.04 53 e e e e e e e . o

5.03- e e e e == = ==

5.02+

5.014 e e e e s s s s s s s s s s s s s

4.991

4.98- e
T L S
4.974 48— - -

4.96

N

5252.55353.5 54 54.5 55 55.5 56 56.5 57 57.5 2 53 54 55 56 57
X X

(a) Solution plot (b) Slope field plot

Verification of solutions

y=1/In(z)* 49

Verified OK.
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1.26.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that

1
M(CL‘,y) = _E
Yy

ViF—9

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

N(IL‘,y) =

oM ON
dy oz
Using result found above gives
oM 0 1
-5
=0

And

W _0(
0r O \\/yZ—9
=0

Since %i: = %’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

% =M (1)
g—j =N 2)
Integrating (1) w.I.t.  gives
%Mz/MM
%d = / —idaz
¢ =—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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But equation (2) says that g—‘z = —2_. Therefore equation (4) becomes

<
N
QQ T
©

H5 =0+ W) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/ﬂw®=/(ﬁ%3>®

f(y) — (y — 3)2 (y 3)
Y2 —

+c

ol +

Where c¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

(y—=3)(y+3)
N

¢ = —In(z)+ ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

W=y
V9

C1
Initial conditions are used to solve for c;. Substituting = e* and y = 5 in the above
solution gives an equation to solve for the constant of integration.

0=Cl

01=0

Substituting ¢; found above in the general solution gives

(v=3)(y+3)
V-9

—In(z)=0
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The above simplifies to

—In(z)vVy2—9+4y°—9=0

Summary
The solution(s) found are the following

—In(@) V¥ —9+4°—-9=0

Verification of solutions

—In(z) V2 —9+9y*—9=0

Verified OK.

1.26.5 Maple step by step solution

Let’s solve

[zyy’ — vy — 9 =0,y(e*) = 5]

° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
vy _ 1
y?-9 =
° Integrate both sides with respect to x
/ \/Z;?’jdx:f%dx-l-cl
° Evaluate integral
ViZ—=9=In(z) + ¢
° Solve for y

{y: \/9+c%+2clln(x)—|—ln(:c)2,y:—\/9+c%+2clln(ac)+ln(x)2}

e  Use initial condition y(e*) =5
5=/ +8c+25
° Solve for ¢;
¢ = (0,-8)
. Substitute ¢; = (0, —8) into general solution and simplify
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y=1/In(z)*+9

e  Use initial condition y(e*) =5
5=—y/c2+8c;+25
° Solution does not satisfy initial condition

° Solution to the IVP

y=1/In(z)*+9

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 12

Ldsolve([x*y(x)*diff(y(x),x)=sqrt(y(x)“2—9),y(exp(4)) = 5],y(x), singsol=all) J

y(z) = /9 +In(z)°
v/ Solution by Mathematica

Time used: 0.256 (sec). Leaf size: 33

DSolve[{x*y[x]*y'[x]==Sqrt[y[x]“2—9],y[Exp[4]]==5},y[x],x,IncludeSingularSolg}ions -> Truel

N\

y(z) — \/log*(x) +9

y(z) — \/logQ(ac) — 161og(z) + 73
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1.27 problem 27

1.27.1 Solving as differentialTypeode . . . . .. ... ... ... ... 359
1.27.2 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 3611
1.27.3 Solving as first order ode lie symmetry calculated ode . . . . . . 364
1.27.4 Solvingasexactode . . ... ... ... ... ... ..... 369
1.27.5 Maple step by step solution . . . . . .. ... ... .. ... ..

Internal problem ID [3078]
Internal file name [OUTPUT/2570_Sunday_June_05_2022_03_19_55_AM_35932265/index. tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 27.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _exact, _rational, [_Abel, ~2nd
type”, “class A"]]

(y+z-1)y' +y=2+1

1.27.1 Solving as differentialType ode
Writing the ode as

, T—y+1
_zJr= 1
Y y+z—1 1)
Which becomes
(y—1Ddy=(-=z)dy+(z—y+1)dz (2)

But the RHS is complete differential because

1
(—x)dy-l—(x—y+1)dm=d<§x2—my+a:)
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Summary
The solution(s) found are the following

Hence (2) becomes

- Ddy=d( 52 ~ay+)

Integrating both sides gives gives these solutions

y=—-c+1+/2224+2c;+1+ ¢
y=—x+1—v2224+2c;+1+¢

y=—-c+1++/2224+2c1+14+¢;
y=—2+1—222+4+2c;+1+¢

K I R R O B
R R
A B R R A R e

A A A B B B R N g
7777111 N\N~—errrrm
J7777 111 ANSN——rrrrrrs

777777777 =777 777777
SIS\
///////zﬂ\l:\t' iL ; ;;;;;;
7T e\

y(x) 07 sV VT
e SNANN N VLT

NN AR
AAAAA \\\\\\\\\\\:‘L11
SNV VNV VYV L
e NN N N N R R
e NG N N N W W Vi W W S R R ¥ \! L

—3 N\\\\\\\\\\\\\\\i \ \ \ \, \v \
-3 -2 -1 0 1 2 3

Figure 103: Slope field plot

Verification of solutions

y=—-c+1++/2224+2c1+14+¢;

Verified OK.

y=—2+1—222+2c;+1+¢

Verified OK.
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1.27.2 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z, then the above is transformed to new ode in Y (X)

d Y (X —X—-zp—1
dX Y(X)+yo+X+xz—1
Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in
To = 0
Yo=1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d Y(X)-X
—YX)=——+—F—
dX (X) Y(X)+ X
In canonical form, the ODE is
Y'=F(X,Y)
Y- X
- _ 1
Y+ X (1)

An ode of the form Y’ = % is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = —-Y + X and N = Y + X are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u = %,

or Y = uX. Hence

dY du
X ~ax
Applying the transformation Y = uX to the above ODE in (1) gives
du —u+1
ax Xt T
du Siomr —u(X)
dx X
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—u(X)+1
d u(X)+1 _u(X) _
d—Xu(X) - e =0
Or q p
(500 ) Xux) + 000 ) X () 4 20X) = 1 =0
Or

X(u(X)+1) (—u(X)> +u(X)? +2u(X)—1=0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u' = F(X,u)

= f(X)g(u)

u? +2u—1
X (u+1)

Where f(X) = —% and g(u) = % Integrating both sides gives

1 1
oy W= Ty dX

u+1

1 1
/mdu=/—§dX

u+1

In (u® + 2u — 1)

5 =—In(X)+ec

Raising both side to exponential gives

Vu2 4+ 2u — 1 = ¢~ X+
Which simplifies to

\/u2+2u—1:%

Which simplifies to

C2
Vu(X) +2u(X) -1 =%
X
The solution is
C2
\/u (X +2u(X)—1= cz’;
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Now u in the above solution is replaced back by Y using u = % which results in the
solution

Y (X)? LY (X) | _ e
X? X X

Using the solution for Y'(X)

V(X)?+2Y (X)X — X2 cge®
X2 T X

And replacing back terms in the above solution using

Y=y+w
X=£13+CL'0
Or
Y=y+1
X=z

Then the solution in y becomes

z2 T

\/(y — 1)’ +2z(y—1)—a® _ ce”

Summary
The solution(s) found are the following

\/(y—1)2+2w(y—1)—z2_03ec2 (1)

x2 T
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Figure 104: Slope field plot

Verification of solutions

Verified OK.
1.27.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as
o —z4y-—1
y z—14+y
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - w2€y - wx€ — Wy = 0 (A)
The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
§ = zas + yas + aq (1E)

n = xby + ybs + b (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(czty—1(bs—a) (-z+y—1)’as
z—1+y (z—1+y)
1 —x—i—y—l)

— xTas + yas + a

(m—1—|—y (w—1+y)2 (waz +yas 1)

1 —x-l—y—l)
~ (- + by + ybs +b1) =0
< r—14+y (z—1+y)° (wb2 +bs + 1)

by

(5E)

Putting the above in normal form gives

_x2a2 + 22a3 — 3x2by — 22bs + 2xyas — 2zyas — 2xyby — 2xybs — y2as + 3y2ag — y2by + y2bs — 2xas + ¢
(x—1+y)

=0

Setting the numerator to zero gives

—z%ay — x2as + 32%by + 22b3 — 2zyay + 2zyas + 2zxyb, + 22ybs (6E)
+ y2a2 — 3y2a3 + y2b2 — y2b3 + 2zay — 2zxas + 2xb; — 2xby — 2ya,
— 2yag + 4yas — 2yby + 2ybs + 2a1 + a2 —az + by — b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

—agv% — 2a9v1V9 + azvg — a3v% + 2a3v1v9 — 3a3v§ + 3b2v% + 2byv1 V9 (TE)
+ bg’Ug + b3’U% + 2b3’l)1’U2 - b3’U% — 2(11’02 + 2a2’l)1 - 2a2v2 — 2(13’01
+ 4(13’02 + 2b1’l}1 - 262’01 - 2b2’02 + 2b3’02 + 2(11 + ag — as + b2 - b3 =0
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Collecting the above on the terms v; introduced, and these are
{’Ul, 1}2}

Equation (7E) now becomes

(—az —as + 3b2 + bg) ’U% + (—2CL2 + 2a3 + 2b2 + 2b3) V1V (SE)
+ (2a2 — 2(13 + 2b1 — 2b2) U1 + (CLQ — 3a3 + b2 - bg) ’U%
+ (—2&1 —2a2+4a3 —2b2+2b3)v2+2a1 + as —a3+b2 —b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve
—2ay + 2a3 4 2by + 2b3 = 0
—ay —az +3bs +b3 =0
as —3as3+by —b3 =0
2ao — 2a3 + 2by — 2b, =0
—2a1 — 2a9 + 4a3 — 2by +2b3 =0
2a1 + a3 —az3+by—b3 =0

Solving the above equations for the unknowns gives

a1 = —by

as = 2by + b3
as = by

by = —bs

by = b2

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=c
n=y—1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-—wzy)
—z+y—1
—y—1— (=TI
y ( x—1+y)(x)
—r?+2zy+1y? -2z —2y+1
z—1+4+y

£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n

1 d
- —1242zy+y?—2x—2y+1 Yy

z—1+y

S is found from

Which results in
In(—z?+2zy+9y? — 2z — 2y + 1)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

EES — 5}-+wu(w,y)55 (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
(z,1) —r+y—1
w(z,y) = ———F"—
Y z—14+y
Evaluating all the partial derivatives gives

R, =1
R,=0
z—y+1
2+ 2-2)z—(y—1)°
_ —r+1-—y
2+ 2—2)z—(y—1)

r =

Sy
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

R 0 (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

0

gives
S(R)=c (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In(—2®+ 2y — 2)z + (y — 1)*) .
2 =
Which simplifies to
In (-2 + 2y — 2) z + (y — 1)*) .
=

2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

(R,5)

ODE in canonical coordinates

_—aty-1 s —
z—1+y dR —
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Summary
The solution(s) found are the following

In(—z24 2y —2)z+ (y — 1)°
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A A B R g
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/7777777 =rr7 777777
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i
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Figure 105: Slope field plot
Verification of solutions
In(—2?+Qy—2)z+ (y— 1)2) _
2 -
Verified OK.
1.27.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y)+ N(@,y) 72 = 0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06d
Y
I T i A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
09
h N /s
ox
09
TN
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

Ef,: (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z—14+y)dy=(x—y+1)dz
(—z+y—1)de+(z—-1+y)dy=0 (2A)

Comparing (1A) and (2A) shows that

M(.’L’,y) =-—z+y-—1
N(z,y)=z—1+y
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

oM 0
= = (= -1
By ay( z+y—1)
And
ON 0
o o " 1Y)
=1
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o¢
L =M 1
o (1)
o
— =N 2
o ©)

Integrating (1) w.r.t. = gives

@dm=/de
ox

%dzz/—x—l—y—ldx
R Q

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ /
6—y=w+f(y) (4)

9 —

9y =€ — 1 +y. Therefore equation (4) becomes

But equation (2) says that
z—l+y=z+f(y) (5)
Solving equation (5) for f’'(y) gives

flly)=y—-1
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Integrating the above w.r.t y gives

[rwa=[w-nay

1
f(y)ziyz—y—i-cl

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
z(r—2y+2) 92

9 +3—y+cl

¢ =
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

z(z—2y+2) 9
2 + 2

C = —-vY

Summary
The solution(s) found are the following

z(z — 2y + 2 2
_%4_%_3;:01 1)
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Figure 106: Slope field plot
Verification of solutions
zz-2+2) ¥
T2 2 YT
Verified OK.
1.27.5 Maple step by step solution
Let’s solve
(y+z-1)y+y=z+1
° Highest derivative means the order of the ODE is 1
yl

O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y)=0
o Compute derivative of lhs

Fﬁaw+<%F@wD¢=0
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o Evaluate derivatives
1=1
o Condition met, ODE is exact

Exact ODE implies solution will be of this form
Fl@,y) = e, M(z,1) = F'(z,9), N(z,9) = $F(2,9)

Solve for F'(z,y) by integrating M (z,y) with respect to =
F(z,y)= [ (-z+y—1)dz+ fiy)

Evaluate integral

F(z,y) = % +ay—z+ fi(y)

Take derivative of F'(x,y) with respect to y
N(z,y) = £ F(z,y)

Compute derivative

z—1+y=z+ L fi(y)

Isolate for diy fi(y)

why) =y-1

Solve for fi(y)

Aly)=3v"—vy

Substitute fi(y) into equation for F'(z,y)
F(z,y)=—3z®+zy—z+3y° —y

Substitute F'(z,y) into the solution of the ODE
—ititzy—z+iyi—y=a

Solve for y

{y=—-2+1-v222+2c1+L,y=—2+1++222+2¢; + 1}
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

v/ Solution by Maple
Time used: 0.391 (sec). Leaf size: 28

Ldsolve((x+y(x)-1)*diff (y(x),x)=(x-y(x)+1) ,y(x), singsol=all) J
—cx — /2222 +1+¢
y(z) = — o 1

v/ Solution by Mathematica
Time used: 0.163 (sec). Leaf size: 47

‘DSolve[(x+y[x]-1)*y'[x]==(x—y[x]+1),y[x],x,IncludeSingularSolutions -> True] ‘

y(xz) > —v222+ 14—z +1
y(x) > V222 +1+cp—xz+1
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1.28 problem 28

1.28.1 Solving as homogeneousTypeD2ode . .. ... ... .. .. ..
1.28.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 378
1.28.3 Solving as bernoulliode . . . . . .. ... ... ... ...... 382
1.28.4 Solvingasexactode . . ... ... .. ... .. ... ..... 3851

Internal problem ID [3079]
Internal file name [OUTPUT/2571_Sunday_June_05_2022_03_20_01_AM_91956305/index.tex|

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section: Chapter 11.3, page 316

Problem number: 28.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _Bernoulli]

zyy +y° = 222

1.28.1 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

ghu(z) (u'(2) @ + u(2)) + u(2)”2* = 2¢°

In canonical form the ODE is

v = F(z,u)

= f(2)g(u)
2(u? —1)
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Where f(z) = —2 and g(u) = “~1. Integrating both sides gives

1 2
S du= — dz

/%du=/—gdx
u =1 T

u

In (u—1) +ln(u+1) B
2 2

—21In (z) + ¢

The above can be written as

(%) (In(u—1)+In(u+1)) =—-2In(z) + 2¢
In(u—1)+In(u+1)=(2)(—2In(x) + 2¢)

= —4In(z) + 4cy

Raising both side to exponential gives

eln(u—1)+ln(u+1) — e—4ln(z)+2cz
Which simplifies to
2c
2 . 2
Tt
The solution is
2 C3
u(z)" —1= o

v o G
x2 x4
y? _C3
x2 x4

Summary
The solution(s) found are the following
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Figure 107: Slope field plot

Verification of solutions

Verified OK.

1.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yxr

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny — &) — Wny — wz§ —wyn

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 75: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

1
?7(95,3/) = x_2y

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S:/ldy
n

1
= | T

2y

S is found from

Which results in

2.’L'2

Yy
5= 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Spt+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = ———
yz
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy =zy?
S, = z%y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _
dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
as

@ _ op3
g = 2R

213 (24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

4

am:%+q (@)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2,.2 4
yz _z
9 = 9 +C
Which simplifies to
2,.2 4
yz- _z
9 = 9 +C

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

- . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R,S)

transformation

_ —2z%4y? a5 — 3
yzx dR 2R
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Summary
The solution(s) found are the following

2,.2 4
Yz x
S 1
2 g T (1)
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) = —i
fi(z) =2z
n=-—1

Dividing both sides of ODE (1) by y" = , gives

2

yy=-2+2 (4)
xr
Let
w = 1-n
=y’ (5)

Taking derivative of equation (5) w.r.t  gives
w' = 2yy/ (6)

Substituting equations (5) and (6) into equation (4) gives

w'(z) _ _w(z) .
2 z
, 2w
w = —? + 4z (7)

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is
w'(z) + p(z)w(z) = q(z)

Where here
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Hence the ode is

'(z) + wle) _ 4z
The integrating factor u is
p= ef %dm
= 1}2
The ode becomes
d
3z Hw) = (k) (42)

Integrating gives

2w = / 423 dz
2w =zt +c

Dividing both sides by the integrating factor u = z? results in

C1
w(z) = 2° + o

Replacing w in the above by y? using equation (5) gives the final solution.
c
v = a2? + _12
x

Solving for y gives

Vzt+ e

y(z) = —
Vit o
yla) = ————

Summary
The solution(s) found are the following

Vrt+a

y=Y=ta )
y=-YZta e
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Figure 109: Slope field plot

Verification of solutions

Verified OK.

Verified OK.

1.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
Aﬂ%w+N@wkﬁ=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

0

P(z,y) =

d
dz

385



Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(xy)dy = (2332 - y2) dz
(—22° + y*) dz +(zy)dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —22° +y°
N(z,y) = zy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
o 2 _2 2 2
dy 8y( vty )
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And

o _ o
or Oz Y
=Y

Since %’I # %—J;], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

. <aM 6N)

- N Oy ox
- %((231) ~ W)
1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
—e J %dx
The result of integrating gives
= eln(x)
=z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= a:(—2z2 + y2)
= —22° + zv°
And

= z(zy)
= x2y

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%:0
dz
dy _

dz_o

(—22° + z¢*) + (2%y)
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The following equations are now set up to solve for the function ¢(z,y)

00 1)

azﬂ
0p
oy =V 2)

Integrating (1) w.r.t. = gives
% dx = / M dz
ox

%dx=/—2x3+xy2dx
2 .2)\2
=2V 4 p) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

0¢ (22 -9y , .
w- 2 TIW (4)
=z’y — %y3 +f(v)

But equation (2) says that g—z = z2y. Therefore equation (4) becomes

T’y =2’y — %yg’ + f'(y) (5)

Solving equation (5) for f'(y) gives
3

) = L
Fly) =73

Integrating the above w.r.t y gives

/f’(y) dy:/(y;) dy

y4

f(y)=§+01
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Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c¢; gives the solution as

The solution(s) found are the following

Summary
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J 7 e o~ ~—~— ~ NN\
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X

Figure 110: Slope field plot
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Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

Ldsolve(x*y(x)*diff(y(x),x)=2*x‘2-y(x)‘2,y(x), singsol=all) J
ya) = YA
y(o) = -

v/ Solution by Mathematica
Time used: 0.206 (sec). Leaf size: 38

LDSolve[x*y[x]*y'[x]==2*x“2-y[x]“2,y[x],x,IncludeSingularSolutions -> True] J

Vzt+ e

y(z) = ——
y(z) = vzita

X
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