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Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 1, Nature and meaning of a differential equation between two variables.
page 12
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + y tan (x) = 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −y tan (x)
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Where f(x) = − tan (x) and g(y) = y. Integrating both sides gives

1
y
dy = − tan (x) dx∫ 1

y
dy =

∫
− tan (x) dx

ln (y) = ln (cos (x)) + c1

y = eln(cos(x))+c1

= cos (x) c1

Summary
The solution(s) found are the following

(1)y = cos (x) c1

Figure 1: Slope field plot

Verification of solutions

y = cos (x) c1

Verified OK.
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1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = 0

Hence the ode is

y′ + y tan (x) = 0

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)

Which simplifies to
µ = sec (x)

The ode becomes

d
dxµy = 0

d
dx(sec (x) y) = 0

Integrating gives

sec (x) y = c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = cos (x) c1

Summary
The solution(s) found are the following

(1)y = cos (x) c1
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Figure 2: Slope field plot

Verification of solutions

y = cos (x) c1

Verified OK.

1.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) + u(x)x tan (x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(tan (x)x+ 1)
x
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Where f(x) = − tan(x)x+1
x

and g(u) = u. Integrating both sides gives
1
u
du = −tan (x)x+ 1

x
dx∫ 1

u
du =

∫
−tan (x)x+ 1

x
dx

ln (u) = ln (cos (x))− ln (x) + c2

u = eln(cos(x))−ln(x)+c2

= c2eln(cos(x))−ln(x)

Which simplifies to

u(x) = c2 cos (x)
x

Therefore the solution y is

y = xu

= c2 cos (x)
Summary
The solution(s) found are the following

(1)y = c2 cos (x)

Figure 3: Slope field plot
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Verification of solutions

y = c2 cos (x)

Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y tan (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y tan (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sec (x) y = c1

Which simplifies to

sec (x) y = c1

Which gives

y = c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y tan (x) dS
dR

= 0

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = c1
sec (x)
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Figure 4: Slope field plot

Verification of solutions

y = c1
sec (x)

Verified OK.

1.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy = (tan (x)) dx

(− tan (x)) dx+
(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− tan (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x))− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x))− ln (y)

The solution becomes
y = cos (x) e−c1

Summary
The solution(s) found are the following

(1)y = cos (x) e−c1

Figure 5: Slope field plot

Verification of solutions

y = cos (x) e−c1

Verified OK.
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1.1.6 Maple step by step solution

Let’s solve
y′ + y tan (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − tan (x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− tan (x) dx+ c1

• Evaluate integral
ln (y) = ln (cos (x)) + c1

• Solve for y
y = cos (x) ec1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve(diff(y(x),x)+y(x)*tan(x)=0,y(x), singsol=all)� �

y(x) = cos (x) c1
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3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 15� �
DSolve[y'[x]+y[x]*Tan[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos(x)
y(x) → 0
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Internal problem ID [4682]
Internal file name [OUTPUT/4175_Sunday_June_05_2022_12_36_47_PM_50821876/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 1, Nature and meaning of a differential equation between two variables.
page 12
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_1", "second_order_change_of_variable_on_y_method_2",
"linear_second_order_ode_solved_by_an_integrating_factor", "second_or-
der_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

x2y′′ − 2xy′ + 2y = 0
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1.2.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − 2xrxr−1 + 2xr = 0

Simplifying gives
r(r − 1)xr − 2r xr + 2xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− 2r + 2 = 0

Or
r2 − 3r + 2 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 1
r2 = 2

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c2x
2 + c1x

Summary
The solution(s) found are the following

(1)y = c2x
2 + c1x

Verification of solutions

y = c2x
2 + c1x

Verified OK.
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1.2.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = − 2
x
. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
− 2

x
dx

= 1
x

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0(y
x

)
′′ = 0

Integrating once gives (y
x

)′
= c1

Integrating again gives (y
x

)
= c1x+ c2

Hence the solution is

y = c1x+ c2
1
x

Or
y = c1x

2 + c2x

Summary
The solution(s) found are the following

(1)y = c1x
2 + c2x

Verification of solutions

y = c1x
2 + c2x

Verified OK.
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1.2.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ − 2xy′ + 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2
x

q(x) = 2
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 2
x
dx
)
dx

=
∫

e2 ln(x) dx

=
∫

x2dx

= x3

3 (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
2
x2

x4

= 2
x6 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 2y(τ)

x6 = 0

But in terms of τ
2
x6 = 2

9τ 2

Hence the above ode becomes

d2

dτ 2
y(τ) + 2y(τ)

9τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

9
(

d2

dτ 2
y(τ)

)
τ 2 + 2y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

9τ 2(r(r − 1))τ r−2 + 0rτ r−1 + 2τ r = 0

Simplifying gives
9r(r − 1) τ r + 0 τ r + 2τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

9r(r − 1) + 0 + 2 = 0

Or
9r2 − 9r + 2 = 0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
3

r2 =
2
3

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1τ
1
3 + c2τ

2
3

The above solution is now transformed back to y using (6) which results in

y = c13
2
3 (x3)

1
3

3 + c23
1
3 (x3)

2
3

3
Summary
The solution(s) found are the following

(1)y = c13
2
3 (x3)

1
3

3 + c23
1
3 (x3)

2
3

3
Verification of solutions

y = c13
2
3 (x3)

1
3

3 + c23
1
3 (x3)

2
3

3

Verified OK.

1.2.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ − 2xy′ + 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2
x

q(x) = 2
x2
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Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
2
√

1
x2

c
(6)

τ ′′ = −
√
2

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
−

√
2

c
√

1
x2 x3

− 2
x

√
2
√

1
x2

c(√
2
√

1
x2

c

)2

= −3c
√
2

2
Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)−

3c
√
2
(

d
dτ
y(τ)

)
2 + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = e 3
√

2 cτ
4

(
c1 cosh

(√
2 cτ
4

)
+ ic2 sinh

(√
2 cτ
4

))
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
2
√

1
x2dx

c

=

√
2
√

1
x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = x
3
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))

Summary
The solution(s) found are the following

(1)y = x
3
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))
Verification of solutions

y = x
3
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))
Verified OK.

1.2.5 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2
x

q(x) = 2
x2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 2
x2 −

(
− 2

x

)′
2 −

(
− 2

x

)2
4

= 2
x2 −

( 2
x2

)
2 −

( 4
x2

)
4

= 2
x2 −

(
1
x2

)
− 1

x2

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 2

x
2

= x (5)

Hence (3) becomes

y = v(x)x (4)

Applying this change of variable to the original ode results in

x3v′′(x) = 0

Which is now solved for v(x) Integrating twice gives the solution

v(x) = c1x+ c2

Now that v(x) is known, then

y = v(x) z(x)
= (c1x+ c2) (z(x)) (7)

But from (5)

z(x) = x
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Hence (7) becomes

y = (c1x+ c2)x

Summary
The solution(s) found are the following

(1)y = (c1x+ c2)x
Verification of solutions

y = (c1x+ c2)x

Verified OK.

1.2.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ − 2xy′ + 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2
x

q(x) = 2
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − 2n

x2 + 2
x2 = 0 (5)
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Solving (5) for n gives

n = 2 (6)

Substituting this value in (3) gives

v′′(x) + 2v′(x)
x

= 0

v′′(x) + 2v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 2u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u
x

Where f(x) = − 2
x
and g(u) = u. Integrating both sides gives

1
u
du = −2

x
dx∫ 1

u
du =

∫
−2
x
dx

ln (u) = −2 ln (x) + c1

u = e−2 ln(x)+c1

= c1
x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= −c1
x

+ c2
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Hence

y = v(x)xn

=
(
−c1

x
+ c2

)
x2

= (c2x− c1)x

Summary
The solution(s) found are the following

(1)y =
(
−c1

x
+ c2

)
x2

Verification of solutions

y =
(
−c1

x
+ c2

)
x2

Verified OK.

1.2.7 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0
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By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = −2x
C = 2
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (−2x) (−2) + (2) (−2x)

= 0

Hence the ode in v given in (1) now simplifies to

−2x3v′′ + (0) v′ = 0

Now by applying v′ = u the above becomes

−2x3u′(x) = 0

Which is now solved for u. Integrating both sides gives

u(x) =
∫

0 dx

= c1

The ode for v now becomes

v′ = u

= c1

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1 dx

= c1x+ c2
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Therefore the solution is

y(x) = Bv

= (−2x) (c1x+ c2)
= −2(c1x+ c2)x

Summary
The solution(s) found are the following

(1)y = −2(c1x+ c2)x
Verification of solutions

y = −2(c1x+ c2)x

Verified OK.

1.2.8 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 2xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 4: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2(x(x))
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Summary
The solution(s) found are the following

(1)y = c2x
2 + c1x

Verification of solutions

y = c2x
2 + c1x

Verified OK.

1.2.9 Maple step by step solution

Let’s solve
x2y′′ − 2xy′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y′

x
− 2y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′

x
+ 2y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − 2xy′ + 2y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2
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Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2 d

dt
y(t) + 2y(t) = 0

• Simplify
d2

dt2
y(t)− 3 d

dt
y(t) + 2y(t) = 0

• Characteristic polynomial of ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
(r − 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (1, 2)

• 1st solution of the ODE
y1(t) = et

• 2nd solution of the ODE
y2(t) = e2t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
y(t) = c1et + c2e2t

• Change variables back using t = ln (x)
y = c2x

2 + c1x

• Simplify
y = x(c2x+ c1)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) = x(c1x+ c2)

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 14� �
DSolve[x^2*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(c2x+ c1)
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1.3 problem 3
1.3.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 37

Internal problem ID [4683]
Internal file name [OUTPUT/4176_Sunday_June_05_2022_12_36_55_PM_64077409/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 1, Nature and meaning of a differential equation between two variables.
page 12
Problem number: 3.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

yy′
2 + 2xy′ − y = 0

1.3.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y p2 + 2xp− y = 0

Solving for y from the above results in

y = − 2xp
p2 − 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = − 2p
p2 − 1

g = 0

Hence (2) becomes

p+ 2p
p2 − 1 = x

(
− 2
p2 − 1 + 4p2

(p2 − 1)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 2p
p2 − 1 = 0

Solving for p from the above gives

p = 0
p = i

p = −i

Substituting these in (1A) gives

y = 0
y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 2p(x)

p(x)2−1

x

(
− 2

p(x)2−1 +
4p(x)2(

p(x)2−1
)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 2

p2−1 +
4p2

(p2−1)2

)
p+ 2p

p2−1
(4)

This ODE is now solved for x(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 2
p3 − p

q(p) = 0

Hence the ode is

d

dp
x(p)− 2x(p)

p3 − p
= 0

The integrating factor µ is

µ = e
∫
− 2

p3−p
dp

= e− ln(p+1)−ln(p−1)+2 ln(p)

Which simplifies to

µ = p2

p2 − 1

The ode becomes

d
dpµx = 0

d
dp

(
p2x

p2 − 1

)
= 0

Integrating gives

p2x

p2 − 1 = c3

Dividing both sides by the integrating factor µ = p2

p2−1 results in

x(p) = c3(p2 − 1)
p2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x+
√
x2 + y2

y

p = −x+
√
x2 + y2

y

Substituting the above in the solution for x found above gives

x = − 2c3x
−x+

√
x2 + y2

x = 2c3x
x+

√
x2 + y2

Summary
The solution(s) found are the following

(1)y = 0
(2)y = −ix
(3)y = ix

(4)x = − 2c3x
−x+

√
x2 + y2

(5)x = 2c3x
x+

√
x2 + y2
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Verification of solutions

y = 0

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.

x = − 2c3x
−x+

√
x2 + y2

Verified OK.

x = 2c3x
x+

√
x2 + y2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 71� �
dsolve(y(x)*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = −ix
y(x) = ix
y(x) = 0
y(x) =

√
c1 (c1 − 2x)

y(x) =
√

c1 (c1 + 2x)
y(x) = −

√
c1 (c1 − 2x)

y(x) = −
√
c1 (c1 + 2x)

3 Solution by Mathematica
Time used: 0.462 (sec). Leaf size: 126� �
DSolve[y[x]*(y'[x])^2+2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e
c1
2
√
−2x+ ec1

y(x) → e
c1
2
√
−2x+ ec1

y(x) → −e
c1
2
√
2x+ ec1

y(x) → e
c1
2
√
2x+ ec1

y(x) → 0
y(x) → −ix
y(x) → ix
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1.4 problem 4
1.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 44

Internal problem ID [4684]
Internal file name [OUTPUT/4177_Sunday_June_05_2022_12_37_08_PM_24285594/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 1, Nature and meaning of a differential equation between two variables.
page 12
Problem number: 4.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2(−x2 + 1

)
= −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1√
x2 − 1

(1)

y′ = − 1√
x2 − 1

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1√

x2 − 1
dx

= ln
(
x+

√
x2 − 1

)
+ c1

Summary
The solution(s) found are the following

(1)y = ln
(
x+

√
x2 − 1

)
+ c1

43



Verification of solutions

y = ln
(
x+

√
x2 − 1

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− 1√
x2 − 1

dx

= − ln
(
x+

√
x2 − 1

)
+ c2

Summary
The solution(s) found are the following

(1)y = − ln
(
x+

√
x2 − 1

)
+ c2

Verification of solutions

y = − ln
(
x+

√
x2 − 1

)
+ c2

Verified OK.

1.4.1 Maple step by step solution

Let’s solve
y′2(−x2 + 1) = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2(−x2 + 1) dx =

∫
(−1) dx+ c1

• Cannot compute integral∫
y′2(−x2 + 1) dx = −x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)^2*(1-x^2)+1=0,y(x), singsol=all)� �

y(x) = ln
(
x+

√
x2 − 1

)
+ c1

y(x) = − ln
(
x+

√
x2 − 1

)
+ c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 89� �
DSolve[y'[x]^2*(1-x^2)+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
log
(
1− x√

x2 − 1

)
− log

(
x√

x2 − 1
+ 1
)
+ 2c1

)
y(x) → 1

2

(
− log

(
1− x√

x2 − 1

)
+ log

(
x√

x2 − 1
+ 1
)
+ 2c1

)
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1.5 problem 5
1.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 46
1.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 47
1.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 50
1.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 54

Internal problem ID [4685]
Internal file name [OUTPUT/4178_Sunday_June_05_2022_12_37_17_PM_58498289/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 1, Nature and meaning of a differential equation between two variables.
page 12
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − ya = eax

1.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −a

q(x) = eax

Hence the ode is

y′ − ya = eax
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The integrating factor µ is

µ = e
∫
−adx

= e−ax

The ode becomes
d
dx(µy) = (µ) (eax)

d
dx
(
e−axy

)
=
(
e−ax

)
(eax)

d
(
e−axy

)
= dx

Integrating gives

e−axy =
∫

dx

e−axy = x+ c1

Dividing both sides by the integrating factor µ = e−ax results in

y = x eax + c1eax

which simplifies to

y = eax(x+ c1)

Summary
The solution(s) found are the following

(1)y = eax(x+ c1)
Verification of solutions

y = eax(x+ c1)

Verified OK.

1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = eax + ya

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eax (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eaxdy

Which results in

S = e−axy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = eax + ya

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −a e−axy

Sy = e−ax

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−axy = x+ c1

Which simplifies to

e−axy = x+ c1

Which gives

y = eax(x+ c1)

Summary
The solution(s) found are the following

(1)y = eax(x+ c1)
Verification of solutions

y = eax(x+ c1)

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (eax + ya) dx
(−eax − ya) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −eax − ya

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−eax − ya)

= −a

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−a)− (0))
= −a

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−adx

The result of integrating gives

µ = e−ax

= e−ax

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−ax(−eax − ya)
= −1− a e−axy

And

N = µN

= e−ax(1)
= e−ax

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−1− a e−axy
)
+
(
e−ax

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1− a e−axy dx

(3)φ = −x+ e−axy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−ax + f ′(y)

But equation (2) says that ∂φ
∂y

= e−ax. Therefore equation (4) becomes

(5)e−ax = e−ax + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ e−axy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ e−axy

The solution becomes
y = eax(x+ c1)

Summary
The solution(s) found are the following

(1)y = eax(x+ c1)
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Verification of solutions

y = eax(x+ c1)

Verified OK.

1.5.4 Maple step by step solution

Let’s solve
y′ − ya = eax

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = eax + ya

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − ya = eax

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − ya) = µ(x) eax

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − ya) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) a

• Solve to find the integrating factor
µ(x) = e−ax

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) eaxdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) eaxdx+ c1

• Solve for y

y =
∫
µ(x)eaxdx+c1

µ(x)

• Substitute µ(x) = e−ax

y =
∫
eaxe−axdx+c1

e−ax
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• Evaluate the integrals on the rhs
y = x+c1

e−ax

• Simplify
y = eax(x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=exp(a*x)+a*y(x),y(x), singsol=all)� �

y(x) = (x+ c1) eax

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 15� �
DSolve[y'[x]==Exp[a*x]+a*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → eax(x+ c1)
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1.6 problem 9
1.6.1 Solving as second order ode missing y ode . . . . . . . . . . . . 56
1.6.2 Solving as second order ode missing x ode . . . . . . . . . . . . 60
1.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 63

Internal problem ID [4686]
Internal file name [OUTPUT/4179_Sunday_June_05_2022_12_37_30_PM_88618282/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 1, Nature and meaning of a differential equation between two variables.
page 12
Problem number: 9.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

(
1 + y′

2
)3

− a2y′′
2 = 0

1.6.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

−a2p′(x)2 +
(
p(x)5 + 3p(x)3 + 3p(x)

)
p(x) + 1 = 0
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Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p′(x) =
(
p(x)2 + 1

) 3
2

a
(1)

p′(x) = −
(
p(x)2 + 1

) 3
2

a
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
a

(p2 + 1)
3
2
dp =

∫
dx

p(x) a√
p (x)2 + 1

= x+ c1

Solving equation (2)

Integrating both sides gives ∫
− a

(p2 + 1)
3
2
dp =

∫
dx

− p(x) a√
p (x)2 + 1

= c2 + x

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′a√
1 + y′2

= x+ c1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − x+ c1√
a2 − c21 − 2c1x− x2

(1)

y′ = x+ c1√
a2 − c21 − 2c1x− x2

(2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

− x+ c1√
a2 − c21 − 2c1x− x2

dx

= (c1 + a+ x) (a− x− c1)√
a2 − c21 − 2c1x− x2

+ c3

Solving equation (2)

Integrating both sides gives

y =
∫

x+ c1√
a2 − c21 − 2c1x− x2

dx

= −(c1 + a+ x) (a− x− c1)√
a2 − c21 − 2c1x− x2

+ c4

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− y′a√
1 + y′2

= c2 + x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = c2 + x√
a2 − c22 − 2c2x− x2

(1)

y′ = − c2 + x√
a2 − c22 − 2c2x− x2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

c2 + x√
a2 − c22 − 2c2x− x2

dx

= −(c2 + a+ x) (a− x− c2)√
a2 − c22 − 2c2x− x2

+ c5

Solving equation (2)
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Integrating both sides gives

y =
∫

− c2 + x√
a2 − c22 − 2c2x− x2

dx

= (c2 + a+ x) (a− x− c2)√
a2 − c22 − 2c2x− x2

+ c6

Summary
The solution(s) found are the following

(1)y = (c1 + a+ x) (a− x− c1)√
a2 − c21 − 2c1x− x2

+ c3

(2)y = −(c1 + a+ x) (a− x− c1)√
a2 − c21 − 2c1x− x2

+ c4

(3)y = −(c2 + a+ x) (a− x− c2)√
a2 − c22 − 2c2x− x2

+ c5

(4)y = (c2 + a+ x) (a− x− c2)√
a2 − c22 − 2c2x− x2

+ c6

Verification of solutions

y = (c1 + a+ x) (a− x− c1)√
a2 − c21 − 2c1x− x2

+ c3

Verified OK.

y = −(c1 + a+ x) (a− x− c1)√
a2 − c21 − 2c1x− x2

+ c4

Verified OK.

y = −(c2 + a+ x) (a− x− c2)√
a2 − c22 − 2c2x− x2

+ c5

Verified OK.

y = (c2 + a+ x) (a− x− c2)√
a2 − c22 − 2c2x− x2

+ c6

Verified OK.
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1.6.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

−a2p(y)2
(

d

dy
p(y)

)2

+
(
p(y)5 + 3p(y)3 + 3p(y)

)
p(y) = −1

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) =

(
p(y)2 + 1

) 3
2

p (y) a (1)

d

dy
p(y) = −

(
p(y)2 + 1

) 3
2

p (y) a (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
pa

(p2 + 1)
3
2
dp =

∫
dy

− a√
p (y)2 + 1

= y + c1

Solving equation (2)
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Integrating both sides gives ∫
− pa

(p2 + 1)
3
2
dp =

∫
dy

a√
p (y)2 + 1

= y + c2

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− a√
1 + y′2

= y + c1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
−y2 − 2yc1 − c21 + a2

y + c1
(1)

y′ = −
√

−y2 − 2yc1 − c21 + a2

y + c1
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫
y + c1√

a2 − c21 − 2c1y − y2
dy =

∫
dx

−(y + c1 + a) (a− c1 − y)√
−y2 − 2yc1 − c21 + a2

= x+ c3

Solving equation (2)

Integrating both sides gives∫
− y + c1√

a2 − c21 − 2c1y − y2
dy =

∫
dx

(y + c1 + a) (a− c1 − y)√
−y2 − 2yc1 − c21 + a2

= x+ c4
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For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

a√
1 + y′2

= y + c2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
−y2 − 2c2y − c22 + a2

y + c2
(1)

y′ = −
√

−y2 − 2c2y − c22 + a2

y + c2
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫
y + c2√

a2 − c22 − 2c2y − y2
dy =

∫
dx

−(y + c2 + a) (a− c2 − y)√
−y2 − 2c2y − c22 + a2

= x+ c5

Solving equation (2)

Integrating both sides gives∫
− y + c2√

a2 − c22 − 2c2y − y2
dy =

∫
dx

(y + c2 + a) (a− c2 − y)√
−y2 − 2c2y − c22 + a2

= x+ c6
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Summary
The solution(s) found are the following

(1)−(y + c1 + a) (a− c1 − y)√
−y2 − 2yc1 − c21 + a2

= x+ c3

(2)(y + c1 + a) (a− c1 − y)√
−y2 − 2yc1 − c21 + a2

= x+ c4

(3)−(y + c2 + a) (a− c2 − y)√
−y2 − 2c2y − c22 + a2

= x+ c5

(4)(y + c2 + a) (a− c2 − y)√
−y2 − 2c2y − c22 + a2

= x+ c6

Verification of solutions

−(y + c1 + a) (a− c1 − y)√
−y2 − 2yc1 − c21 + a2

= x+ c3

Verified OK.

(y + c1 + a) (a− c1 − y)√
−y2 − 2yc1 − c21 + a2

= x+ c4

Verified OK.

−(y + c2 + a) (a− c2 − y)√
−y2 − 2c2y − c22 + a2

= x+ c5

Verified OK.

(y + c2 + a) (a− c2 − y)√
−y2 − 2c2y − c22 + a2

= x+ c6

Verified OK.

1.6.3 Maple step by step solution

Let’s solve
−a2y′′2 +

(
y′5 + 3y′3 + 3y′

)
y′ = −1

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
−a2u′(x)2 +

(
u(x)5 + 3u(x)3 + 3u(x)

)
u(x) = −1
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• Separate variables
u′(x)(

u(x)2+1
) 3

2
= 1

a

• Integrate both sides with respect to x∫ u′(x)(
u(x)2+1

) 3
2
dx =

∫ 1
a
dx+ c1

• Evaluate integral
u(x)√
u(x)2+1

= x
a
+ c1

• Solve for u(x){
u(x) = ac1+x√

−c21a
2−2c1ax+a2−x2

, u(x) = − ac1+x√
−c21a

2−2c1ax+a2−x2

}
• Solve 1st ODE for u(x)

u(x) = ac1+x√
−c21a

2−2c1ax+a2−x2

• Make substitution u = y′

y′ = ac1+x√
−c21a

2−2c1ax+a2−x2

• Integrate both sides to solve for y∫
y′dx =

∫
ac1+x√

−c21a
2−2c1ax+a2−x2

dx+ c2

• Compute integrals
y = (ac1+a+x)(ac1−a+x)√

−c21a
2−2c1ax+a2−x2

+ c2

• Solve 2nd ODE for u(x)
u(x) = − ac1+x√

−c21a
2−2c1ax+a2−x2

• Make substitution u = y′

y′ = − ac1+x√
−c21a

2−2c1ax+a2−x2

• Integrate both sides to solve for y∫
y′dx =

∫
− ac1+x√

−c21a
2−2c1ax+a2−x2

dx+ c2

• Compute integrals
y = − (ac1+a+x)(ac1−a+x)√

−c21a
2−2c1ax+a2−x2

+ c2
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (_b(_a)^2+1)^(3/2)/a, _b(_a), HINT = [[1, 0], [y, -_b^2-1]]` ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0], [y, -_b^2-1]� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 93� �
dsolve((diff(y(x),x)^2+1)^3=a^2*(diff(y(x),x$2))^2,y(x), singsol=all)� �

y(x) = −ix+ c1
y(x) = ix+ c1

y(x) = (a+ x+ c1) (−a+ x+ c1)√
a2 − c21 − 2c1x− x2

+ c2

y(x) = (a+ x+ c1) (a− x− c1)√
a2 − c21 − 2c1x− x2

+ c2
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3 Solution by Mathematica
Time used: 0.658 (sec). Leaf size: 141� �
DSolve[(y'[x]^2+1)^3==a^2*(y''[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 − i
√

a2 (−1 + c12)− 2ac1x+ x2

y(x) → i
√

a2 (−1 + c12)− 2ac1x+ x2 + c2

y(x) → c2 − i
√

a2 (−1 + c12) + 2ac1x+ x2

y(x) → i
√

a2 (−1 + c12) + 2ac1x+ x2 + c2
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2.1 problem 1
2.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 68
2.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 70
2.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 74
2.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 78

Internal problem ID [4687]
Internal file name [OUTPUT/4180_Sunday_June_05_2022_12_37_47_PM_84375049/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ 1) y + (1− y)xy′ = 0

2.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x+ 1) y
(y − 1)x

Where f(x) = x+1
x

and g(y) = y
y−1 . Integrating both sides gives

1
y

y−1
dy = x+ 1

x
dx

∫ 1
y

y−1
dy =

∫
x+ 1
x

dx

y − ln (y) = x+ ln (x) + c1
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Which results in

y = −LambertW
(
−e−c1−x

x

)
Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = −LambertW
(
−e−c1−x

x

)
gives

y = −LambertW
(
−e−x

c1x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−x

c1x

)

Figure 6: Slope field plot
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Verification of solutions

y = −LambertW
(
−e−x

c1x

)
Verified OK.

2.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x+ 1) y
(y − 1)x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 11: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
x+1

dx

Which results in

S = x+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ 1) y
(y − 1)x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1 + 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x+ ln (x) = y − ln (y) + c1

Which simplifies to

x+ ln (x) = y − ln (y) + c1

Which gives

y = −LambertW
(
−e−x+c1

x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+1)y
(y−1)x

dS
dR

= R−1
R

R = y

S = x+ ln (x)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−x+c1

x

)
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Figure 7: Slope field plot

Verification of solutions

y = −LambertW
(
−e−x+c1

x

)
Verified OK.

2.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y − 1
y

)
dy =

(
x+ 1
x

)
dx(

−x+ 1
x

)
dx+

(
y − 1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x

N(x, y) = y − 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
y − 1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y−1
y
. Therefore equation (4) becomes

(5)y − 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y − 1
y

)
dy

f(y) = y − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x) + y − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x) + y − ln (y)

The solution becomes

y = −LambertW
(
−e−c1−x

x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−c1−x

x

)

Figure 8: Slope field plot
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Verification of solutions

y = −LambertW
(
−e−c1−x

x

)
Verified OK.

2.1.4 Maple step by step solution

Let’s solve
(x+ 1) y + (1− y)xy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1−y)

y
= −x+1

x

• Integrate both sides with respect to x∫ y′(1−y)
y

dx =
∫
−x+1

x
dx+ c1

• Evaluate integral
−y + ln (y) = −x− ln (x) + c1

• Solve for y

y = −LambertW
(
− e−x+c1

x

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve((1+x)*y(x)+(1-y(x))*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −LambertW
(
−e−x

c1x

)
3 Solution by Mathematica
Time used: 3.094 (sec). Leaf size: 28� �
DSolve[(1+x)*y[x]+(1-y[x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W

(
−e−x−c1

x

)
y(x) → 0
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2.2 problem 2
2.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 80
2.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 81
2.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 84
2.2.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 89

Internal problem ID [4688]
Internal file name [OUTPUT/4181_Sunday_June_05_2022_12_37_55_PM_94198481/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y2ax = 0

2.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y2ax

Where f(x) = ax and g(y) = y2. Integrating both sides gives

1
y2

dy = ax dx∫ 1
y2

dy =
∫

ax dx
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−1
y
= a x2

2 + c1

Which results in

y = − 2
a x2 + 2c1

Summary
The solution(s) found are the following

(1)y = − 2
a x2 + 2c1

Verification of solutions

y = − 2
a x2 + 2c1

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2ax

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 14: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
ax

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
ax

dx

Which results in

S = a x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2ax

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ax

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

a x2

2 = −1
y
+ c1

Which simplifies to

a x2

2 = −1
y
+ c1

Which gives

y = 2
−a x2 + 2c1

Summary
The solution(s) found are the following

(1)y = 2
−a x2 + 2c1

Verification of solutions

y = 2
−a x2 + 2c1

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2a

)
dy = (x) dx

(−x) dx+
(

1
y2a

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y2a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
y2a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2a

. Therefore equation (4) becomes

(5)1
y2a

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2a
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2a

)
dy

f(y) = − 1
ay

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − 1
ay

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − 1
ay

The solution becomes

y = − 2
a (x2 + 2c1)

Summary
The solution(s) found are the following

(1)y = − 2
a (x2 + 2c1)

Verification of solutions

y = − 2
a (x2 + 2c1)

Verified OK.
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2.2.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y2ax

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2ax

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 0 and f2(x) = ax. Let

y = −u′

f2u

= −u′

axu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = a

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

axu′′(x)− au′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1

The above shows that
u′(x) = 2c2x
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Using the above in (1) gives the solution

y = − 2c2
a (c2x2 + c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 2
a (x2 + c3)

Summary
The solution(s) found are the following

(1)y = − 2
a (x2 + c3)

Verification of solutions

y = − 2
a (x2 + c3)

Verified OK.

2.2.5 Maple step by step solution

Let’s solve
y′ − y2ax = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2
= ax

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
axdx+ c1

• Evaluate integral
− 1

y
= a x2

2 + c1

• Solve for y
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y = − 2
a x2+2c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)=a*y(x)^2*x,y(x), singsol=all)� �

y(x) = − 2
a x2 − 2c1

3 Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 24� �
DSolve[y'[x]==a*y[x]^2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2
ax2 + 2c1

y(x) → 0
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2.3 problem 3
2.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 91
2.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 93
2.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 97
2.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 101

Internal problem ID [4689]
Internal file name [OUTPUT/4182_Sunday_June_05_2022_12_38_04_PM_68724526/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y2 + xy2 +
(
x2 − yx2) y′ = 0

2.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2(x+ 1)
x2 (y − 1)

Where f(x) = x+1
x2 and g(y) = y2

y−1 . Integrating both sides gives

1
y2

y−1

dy = x+ 1
x2 dx

∫ 1
y2

y−1

dy =
∫

x+ 1
x2 dx
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ln (y) + 1
y
= ln (x)− 1

x
+ c1

Which results in

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Which simplifies to

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Summary
The solution(s) found are the following

(1)y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Figure 9: Slope field plot

Verification of solutions

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Verified OK.
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2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2(x+ 1)
x2 (y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 17: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2

x+1
dx

Which results in

S = ln (x)− 1
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2(x+ 1)
x2 (y − 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x+ 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)x− 1
x

= ln (y) + 1
y
+ c1

Which simplifies to

ln (x)x− 1
x

= ln (y) + 1
y
+ c1

Which gives

y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2(x+1)
x2(y−1)

dS
dR

= R−1
R2

R = y

S = ln (x)x− 1
x

Summary
The solution(s) found are the following

(1)y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x
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Figure 10: Slope field plot

Verification of solutions

y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x

Verified OK.

2.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y − 1
y2

)
dy =

(
x+ 1
x2

)
dx(

−x+ 1
x2

)
dx+

(
y − 1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x2

N(x, y) = y − 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y − 1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x2 dx

(3)φ = − ln (x) + 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y−1
y2

. Therefore equation (4) becomes

(5)y − 1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y − 1
y2

)
dy

f(y) = ln (y) + 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + 1
x
+ ln (y) + 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + 1
x
+ ln (y) + 1

y

The solution becomes

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Summary
The solution(s) found are the following

(1)y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x
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Figure 11: Slope field plot

Verification of solutions

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Verified OK.

2.3.4 Maple step by step solution

Let’s solve
y2 + xy2 + (x2 − yx2) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y−1)

y2
= x+1

x2

• Integrate both sides with respect to x∫ y′(y−1)
y2

dx =
∫

x+1
x2 dx+ c1
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• Evaluate integral
ln (y) + 1

y
= ln (x)− 1

x
+ c1

• Solve for y

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve((y(x)^2+x*y(x)^2)+(x^2-y(x)*x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x e
LambertW

− e
−c1x+1

x
x

x+c1x−1

x

3 Solution by Mathematica
Time used: 5.302 (sec). Leaf size: 30� �
DSolve[(y[x]^2+x*y[x]^2)+(x^2-y[x]*x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

W
(
− e

1
x−c1

x

)
y(x) → 0
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2.4 problem 4
2.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 103
2.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 105
2.4.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 109
2.4.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 113
2.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 117

Internal problem ID [4690]
Internal file name [OUTPUT/4183_Sunday_June_05_2022_12_38_12_PM_61438760/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy
(
x2 + 1

)
y′ − y2 = 1

2.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1
xy (x2 + 1)

Where f(x) = 1
x(x2+1) and g(y) = y2+1

y
. Integrating both sides gives

1
y2+1
y

dy = 1
x (x2 + 1) dx
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∫ 1
y2+1
y

dy =
∫ 1

x (x2 + 1) dx

ln (y2 + 1)
2 = − ln (x2 + 1)

2 + ln (x) + c1

Raising both side to exponential gives

√
y2 + 1 = e−

ln
(
x2+1

)
2 +ln(x)+c1

Which simplifies to

√
y2 + 1 = c2e−

ln
(
x2+1

)
2 +ln(x)

Which simplifies to √
1 + y2 = c2x ec1√

x2 + 1

The solution is √
1 + y2 = c2x ec1√

x2 + 1

Summary
The solution(s) found are the following

(1)
√

1 + y2 = c2x ec1√
x2 + 1
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Figure 12: Slope field plot

Verification of solutions √
1 + y2 = c2x ec1√

x2 + 1

Verified OK.

2.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1
xy (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x
(
x2 + 1

)
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x (x2 + 1)dx

Which results in

S = − ln (x2 + 1)
2 + ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1
xy (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x (x2 + 1)

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1

Which simplifies to

− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1
xy(x2+1)

dS
dR

= R
R2+1

R = y

S = − ln (x2 + 1)
2 + ln (x)

Summary
The solution(s) found are the following

(1)− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1
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Figure 13: Slope field plot

Verification of solutions

− ln (x2 + 1)
2 + ln (x) = ln (1 + y2)

2 + c1

Verified OK.

2.4.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y2 + 1
xy (x2 + 1)

This is a Bernoulli ODE.

y′ = 1
x (x2 + 1)y +

1
x (x2 + 1)

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

x (x2 + 1)

f1(x) =
1

x (x2 + 1)
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

x (x2 + 1) +
1

x (x2 + 1) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

x (x2 + 1) +
1

x (x2 + 1)

w′ = 2w
x (x2 + 1) +

2
x (x2 + 1) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − 2
x (x2 + 1)

q(x) = 2
x (x2 + 1)

Hence the ode is

w′(x)− 2w(x)
x (x2 + 1) = 2

x (x2 + 1)

The integrating factor µ is

µ = e
∫
− 2

x
(
x2+1

)dx

= eln
(
x2+1

)
−2 ln(x)

Which simplifies to

µ = x2 + 1
x2

The ode becomes

d
dx(µw) = (µ)

(
2

x (x2 + 1)

)
d
dx

(
(x2 + 1)w

x2

)
=
(
x2 + 1
x2

)(
2

x (x2 + 1)

)
d
(
(x2 + 1)w

x2

)
=
(

2
x3

)
dx

Integrating gives

(x2 + 1)w
x2 =

∫ 2
x3 dx

(x2 + 1)w
x2 = − 1

x2 + c1

Dividing both sides by the integrating factor µ = x2+1
x2 results in

w(x) = − 1
x2 + 1 + c1x

2

x2 + 1
which simplifies to

w(x) = c1x
2 − 1

x2 + 1
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
2 − 1

x2 + 1

Solving for y gives

y(x) =
√

(x2 + 1) (c1x2 − 1)
x2 + 1

y(x) = −
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Summary
The solution(s) found are the following

(1)y =
√
(x2 + 1) (c1x2 − 1)

x2 + 1

(2)y = −
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Figure 14: Slope field plot
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Verification of solutions

y =
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Verified OK.

y = −
√

(x2 + 1) (c1x2 − 1)
x2 + 1

Verified OK.

2.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

y2 + 1

)
dy =

(
1

x (x2 + 1)

)
dx(

− 1
x (x2 + 1)

)
dx+

(
y

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (x2 + 1)

N(x, y) = y

y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (x2 + 1)

)
= 0

And

∂N

∂x
= ∂

∂x

(
y

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (x2 + 1) dx

(3)φ = ln (x2 + 1)
2 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
y2+1 . Therefore equation (4) becomes

(5)y

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

y2 + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

y2 + 1

)
dy

f(y) = ln (y2 + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x2 + 1)
2 − ln (x) + ln (y2 + 1)

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + 1)

2 − ln (x) + ln (y2 + 1)
2

Summary
The solution(s) found are the following

(1)ln (x2 + 1)
2 − ln (x) + ln (1 + y2)

2 = c1

Figure 15: Slope field plot

Verification of solutions

ln (x2 + 1)
2 − ln (x) + ln (1 + y2)

2 = c1

Verified OK.
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2.4.5 Maple step by step solution

Let’s solve
xy(x2 + 1) y′ − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y
1+y2

= 1
x(x2+1)

• Integrate both sides with respect to x∫
y′y
1+y2

dx =
∫ 1

x(x2+1)dx+ c1

• Evaluate integral
ln
(
1+y2

)
2 = − ln

(
x2+1

)
2 + ln (x) + c1

• Solve for yy =

√
(x2+1)

(
(ec1 )2x2−x2−1

)
x2+1 , y = −

√
(x2+1)

(
(ec1 )2x2−x2−1

)
x2+1


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
dsolve(x*y(x)*(1+x^2)*diff(y(x),x)=1+y(x)^2,y(x), singsol=all)� �

y(x) =
√
(x2 + 1) (c1x2 − 1)

x2 + 1

y(x) = −
√
(x2 + 1) (c1x2 − 1)

x2 + 1
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3 Solution by Mathematica
Time used: 1.206 (sec). Leaf size: 131� �
DSolve[x*y[x]*(1+x^2)*y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−1 + (−1 + e2c1)x2

√
x2 + 1

y(x) →
√

−1 + (−1 + e2c1)x2
√
x2 + 1

y(x) → −i
y(x) → i

y(x) → −
√
−x2 − 1√
x2 + 1

y(x) →
√
−x2 − 1√
x2 + 1
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2.5 problem 5
2.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 119
2.5.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 124
2.5.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 128
2.5.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 132
2.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 136

Internal problem ID [4691]
Internal file name [OUTPUT/4184_Sunday_June_05_2022_12_38_20_PM_15470054/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x

1 + y
− yy′

x+ 1 = 0

2.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(x+ 1)
(1 + y) y

Where f(x) = x(x+ 1) and g(y) = 1
(1+y)y . Integrating both sides gives

1
1

(1+y)y
dy = x(x+ 1) dx
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∫ 1
1

(1+y)y
dy =

∫
x(x+ 1) dx

1
3y

3 + 1
2y

2 = 1
2x

2 + 1
3x

3 + c1

Which results in

y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2
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Summary
The solution(s) found are the following

(1)y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

(2)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

(3)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2
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Figure 16: Slope field plot
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Verification of solutions
y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

Verified OK.
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2.5.2 Solving as differentialType ode

Writing the ode as

y′ = x(x+ 1)
(1 + y) y (1)

Which becomes (
y2 + y

)
dy = (x(x+ 1)) dx (2)

But the RHS is complete differential because

(x(x+ 1)) dx = d

(
1
2x

2 + 1
3x

3
)

Hence (2) becomes

(
y2 + y

)
dy = d

(
1
2x

2 + 1
3x

3
)

Integrating both sides gives gives these solutions

y =

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2 + 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3
− 1

2 + c1

y = −

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4 − 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3
− 1

2 +

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2 + c1

y = −

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4 − 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3
− 1

2 −

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2 + c1

(2)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1
(3)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1
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Figure 17: Slope field plot
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Verification of solutions
y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2 + c1

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1

Verified OK.
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2.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(x+ 1)
(1 + y) y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x (x+ 1)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x(x+1)

dx

Which results in

S = 1
2x

2 + 1
3x

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(x+ 1)
(1 + y) y
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2 + x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (1 + y) y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (1 +R)R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
3R

3 + 1
2R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1

Which simplifies to

1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(x+1)
(1+y)y

dS
dR

= (1 +R)R

R = y

S = 1
2x

2 + 1
3x

3

Summary
The solution(s) found are the following

(1)1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1
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Figure 18: Slope field plot

Verification of solutions

1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1

Verified OK.

2.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

((1 + y) y) dy = (x(x+ 1)) dx
(−x(x+ 1)) dx+((1 + y) y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x(x+ 1)
N(x, y) = (1 + y) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x(x+ 1))

= 0

And
∂N

∂x
= ∂

∂x
((1 + y) y)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x(x+ 1) dx

(3)φ = −1
3x

3 − 1
2x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= (1 + y) y. Therefore equation (4) becomes

(5)(1 + y) y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = (1 + y) y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
((1 + y) y) dy

f(y) = 1
3y

3 + 1
2y

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3 − 1
2x

2 + 1
3y

3 + 1
2y

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 − 1
2x

2 + 1
3y

3 + 1
2y

2

Summary
The solution(s) found are the following

(1)−x3

3 + y3

3 − x2

2 + y2

2 = c1

Figure 19: Slope field plot

Verification of solutions

−x3

3 + y3

3 − x2

2 + y2

2 = c1

Verified OK.
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2.5.5 Maple step by step solution

Let’s solve
x

1+y
− yy′

x+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1 + y) y = x(x+ 1)

• Integrate both sides with respect to x∫
y′(1 + y) ydx =

∫
x(x+ 1) dx+ c1

• Evaluate integral
y3

3 + y2

2 = 1
2x

2 + 1
3x

3 + c1

• Solve for y

y =

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 + 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3
− 1

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 498� �
dsolve(x/(1+y(x))=y(x)/(1+x)*diff(y(x),x),y(x), singsol=all)� �
y(x)

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

y(x) =

−

(
1 + i

√
3
) (

4x3 + 6x2 + 2
√

(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1
) 2

3 − i
√
3 + 2

(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3 + 1

4
(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3

y(x)

=

(
i
√
3− 1

) (
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 2
3 − i

√
3− 2

(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3 − 1

4
(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3
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3 Solution by Mathematica
Time used: 4.125 (sec). Leaf size: 346� �
DSolve[x/(1+y[x])==y[x]/(1+x)*y'[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

2

 3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1

+ 1
3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1
− 1


y(x) → 1

8

2i
(√

3 + i
)

3
√

4x3 + 6x2 +
√
−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1

+ −2− 2i
√
3

3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1
− 4


y(x) → 1

8

−2
(
1 + i

√
3
)

3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1

+
2i
(√

3 + i
)

3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1
− 4



138



2.6 problem 6
2.6.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 139
2.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 140

Internal problem ID [4692]
Internal file name [OUTPUT/4185_Sunday_June_05_2022_12_38_28_PM_87658595/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + y2b2 = a2

2.6.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−y2b2 + a2

dy =
∫

dx

− ln (by − a)
2ab + ln (by + a)

2ab = x+ c1

The above can be written as(
− 1
2ab

)
(ln (by − a)− ln (by + a)) = x+ c1

ln (by − a)− ln (by + a) = (−2ab) (x+ c1)
= −2ab(x+ c1)

Raising both side to exponential gives

eln(by−a)−ln(by+a) = −2abc1e−2abx

139



Which simplifies to

by − a

by + a
= c2e−2abx

Summary
The solution(s) found are the following

(1)y = −
a
(
c2e−2abx + 1

)
b (c2e−2abx − 1)

Verification of solutions

y = −
a
(
c2e−2abx + 1

)
b (c2e−2abx − 1)

Verified OK.

2.6.2 Maple step by step solution

Let’s solve
y′ + y2b2 = a2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2b2+a2
= 1

• Integrate both sides with respect to x∫
y′

−y2b2+a2
dx =

∫
1dx+ c1

• Evaluate integral
− ln(by−a)

2ab + ln(by+a)
2ab = x+ c1

• Solve for y

y = −a
(
e−2c1ab−2abx+1

)
b
(
e−2c1ab−2abx−1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)+b^2*y(x)^2=a^2,y(x), singsol=all)� �

y(x) = −
a
(
e−2ba(x+c1) + 1

)
b (e−2ba(x+c1) − 1)

3 Solution by Mathematica
Time used: 3.208 (sec). Leaf size: 37� �
DSolve[y'[x]+b^2*y[x]^2==a^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a tanh(ab(x+ c1))
b

y(x) → −a

b

y(x) → a

b
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2.7 problem 7
2.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 142
2.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 144
2.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 148
2.7.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 152
2.7.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 154

Internal problem ID [4693]
Internal file name [OUTPUT/4186_Sunday_June_05_2022_12_38_38_PM_93334403/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 1 + y2

x2 + 1 = 0

2.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1
x2 + 1

Where f(x) = 1
x2+1 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = 1

x2 + 1 dx
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∫ 1
y2 + 1 dy =

∫ 1
x2 + 1 dx

arctan (y) = arctan (x) + c1

Which results in
y = tan (arctan (x) + c1)

Summary
The solution(s) found are the following

(1)y = tan (arctan (x) + c1)

Figure 20: Slope field plot

Verification of solutions

y = tan (arctan (x) + c1)

Verified OK.

143



2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2 + 1dx

Which results in

S = arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1
x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (x) = arctan (y) + c1

Which simplifies to

arctan (x) = arctan (y) + c1

Which gives

y = − tan (− arctan (x) + c1)

146



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1
x2+1

dS
dR

= 1
R2+1

R = y

S = arctan (x)

Summary
The solution(s) found are the following

(1)y = − tan (− arctan (x) + c1)

147



Figure 21: Slope field plot

Verification of solutions

y = − tan (− arctan (x) + c1)

Verified OK.

2.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
1

x2 + 1

)
dx(

− 1
x2 + 1

)
dx+

(
1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 + 1

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 + 1 dx

(3)φ = − arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan (x) + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan (x) + arctan (y)

Summary
The solution(s) found are the following

(1)− arctan (x) + arctan (y) = c1

Figure 22: Slope field plot

Verification of solutions

− arctan (x) + arctan (y) = c1

Verified OK.
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2.7.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2 + 1
x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 + 1 + 1
x2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
x2+1 , f1(x) = 0 and f2(x) = 1

x2+1 . Let

y = −u′

f2u

= −u′

u
x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2x

(x2 + 1)2

f1f2 = 0

f 2
2 f0 =

1
(x2 + 1)3

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 1 + 2xu′(x)

(x2 + 1)2
+ u(x)

(x2 + 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2√
x2 + 1
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The above shows that

u′(x) = −c2x+ c1

(x2 + 1)
3
2

Using the above in (1) gives the solution

y = −−c2x+ c1
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x− c3
c3x+ 1

Summary
The solution(s) found are the following

(1)y = x− c3
c3x+ 1

Figure 23: Slope field plot

153



Verification of solutions

y = x− c3
c3x+ 1

Verified OK.

2.7.5 Maple step by step solution

Let’s solve

y′ − 1+y2

x2+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= 1

x2+1

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫ 1
x2+1dx+ c1

• Evaluate integral
arctan (y) = arctan (x) + c1

• Solve for y
y = tan (arctan (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)=(y(x)^2+1)/(x^2+1),y(x), singsol=all)� �

y(x) = tan (arctan (x) + c1)

3 Solution by Mathematica
Time used: 0.237 (sec). Leaf size: 25� �
DSolve[y'[x]==(y[x]^2+1)/(x^2+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan(arctan(x) + c1)
y(x) → −i
y(x) → i
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2.8 problem 8
2.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 156
2.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 158
2.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 162
2.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 166

Internal problem ID [4694]
Internal file name [OUTPUT/4187_Sunday_June_05_2022_12_38_49_PM_78703214/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

sin (x) cos (y)− cos (x) sin (y) y′ = 0

2.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= sin (x) cot (y)
cos (x)

Where f(x) = sin(x)
cos(x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = sin (x)

cos (x) dx∫ 1
cot (y) dy =

∫ sin (x)
cos (x) dx

− ln (cos (y)) = − ln (cos (x)) + c1
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Raising both side to exponential gives

1
cos (y) = e− ln(cos(x))+c1

Which simplifies to

sec (y) = c2
cos (x)

Summary
The solution(s) found are the following

(1)y = arcsec
(

c2ec1
cos (x)

)

Figure 24: Slope field plot

Verification of solutions

y = arcsec
(

c2ec1
cos (x)

)
Verified OK.
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2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x) cos (y)
cos (x) sin (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = cos (x)
sin (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

cos(x)
sin(x)

dx

Which results in

S = − ln (cos (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x) cos (y)
cos (x) sin (y)

159



Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (cos (x)) = − ln (cos (y)) + c1

Which simplifies to

− ln (cos (x)) = − ln (cos (y)) + c1

Which gives

y = arccos (cos (x) ec1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin(x) cos(y)
cos(x) sin(y)

dS
dR

= tan (R)

R = y

S = − ln (cos (x))

Summary
The solution(s) found are the following

(1)y = arccos (cos (x) ec1)
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Figure 25: Slope field plot

Verification of solutions

y = arccos (cos (x) ec1)

Verified OK.

2.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
sin (y)
cos (y)

)
dy =

(
sin (x)
cos (x)

)
dx(

− sin (x)
cos (x)

)
dx+

(
sin (y)
cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)
cos (x)

N(x, y) = sin (y)
cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− sin (x)
cos (x)

)
= 0
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And

∂N

∂x
= ∂

∂x

(
sin (y)
cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x)
cos (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin(y)
cos(y) . Therefore equation (4) becomes

(5)sin (y)
cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sin (y)
cos (y)

= tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(tan (y)) dy

f(y) = − ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x))− ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x))− ln (cos (y))

Summary
The solution(s) found are the following

(1)ln (cos (x))− ln (cos (y)) = c1

Figure 26: Slope field plot
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Verification of solutions

ln (cos (x))− ln (cos (y)) = c1

Verified OK.

2.8.4 Maple step by step solution

Let’s solve
sin (x) cos (y)− cos (x) sin (y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ sin(y)
cos(y) = sin(x)

cos(x)

• Integrate both sides with respect to x∫ y′ sin(y)
cos(y) dx =

∫ sin(x)
cos(x)dx+ c1

• Evaluate integral
− ln (cos (y)) = − ln (cos (x)) + c1

• Solve for y

y = arccos
(

cos(x)
ec1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 11� �
dsolve(sin(x)*cos(y(x))=cos(x)*sin(y(x))*diff(y(x),x),y(x), singsol=all)� �

y(x) = arccos
(
cos (x)
c1

)
3 Solution by Mathematica
Time used: 5.183 (sec). Leaf size: 47� �
DSolve[Sin[x]*Cos[y[x]]==Cos[x]*Sin[y[x]]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
1
2c1 cos(x)

)
y(x) → arccos

(
1
2c1 cos(x)

)
y(x) → −π

2
y(x) → π

2
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2.9 problem 9
2.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 168
2.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 169
2.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 172
2.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 175

Internal problem ID [4695]
Internal file name [OUTPUT/4188_Sunday_June_05_2022_12_38_59_PM_67758324/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter 2, Equations of the first order and degree. page 20
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

axy′ + 2y − xyy′ = 0

2.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y
x (y − a)

Where f(x) = 2
x
and g(y) = y

y−a
. Integrating both sides gives

1
y

y−a

dy = 2
x
dx

∫ 1
y

y−a

dy =
∫ 2

x
dx

y − ln (y) a = 2 ln (x) + c1
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Which results in

y = e−
aLambertW

− e−
2 ln(x)+c1

a
a

+2 ln(x)+c1

a

Which simplifies to

y = e
−LambertW

(
−x

− 2
a e−

c1
a

a

)
x− 2

a e−
c1
a

Summary
The solution(s) found are the following

(1)y = e
−LambertW

(
−x

− 2
a e−

c1
a

a

)
x− 2

a e−
c1
a

Verification of solutions

y = e
−LambertW

(
−x

− 2
a e−

c1
a

a

)
x− 2

a e−
c1
a

Verified OK.

2.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y
x (y − a)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

2
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
2
dx

Which results in

S = 2 ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y
x (y − a)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 2
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − a

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− a

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R) a+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (x) = y − ln (y) a+ c1

Which simplifies to

2 ln (x) = y − ln (y) a+ c1

Which gives

y = e−
aLambertW

− e−
2 ln(x)−c1

a
a

+2 ln(x)−c1

a

Summary
The solution(s) found are the following

(1)y = e−
aLambertW

− e−
2 ln(x)−c1

a
a

+2 ln(x)−c1

a

Verification of solutions

y = e−
aLambertW

− e−
2 ln(x)−c1

a
a

+2 ln(x)−c1

a

Verified OK.

2.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

y − a

2y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
y − a

2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = y − a

2y
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
y − a

2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y−a
2y . Therefore equation (4) becomes

(5)y − a

2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −a− y

2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y − a

2y

)
dy

f(y) = y

2 − ln (y) a
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + y

2 − ln (y) a
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + y

2 − ln (y) a
2

The solution becomes

y = e−
aLambertW

− e−
2(ln(x)+c1)

a
a

+2 ln(x)+2c1

a

Summary
The solution(s) found are the following

(1)y = e−
aLambertW

− e−
2(ln(x)+c1)

a
a

+2 ln(x)+2c1

a

Verification of solutions

y = e−
aLambertW

− e−
2(ln(x)+c1)

a
a

+2 ln(x)+2c1

a

Verified OK.

2.9.4 Maple step by step solution

Let’s solve
axy′ + 2y − xyy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(a−y)

y
= − 2

x

• Integrate both sides with respect to x
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∫ y′(a−y)
y

dx =
∫
− 2

x
dx+ c1

• Evaluate integral
−y + ln (y) a = −2 ln (x) + c1

• Solve for y

y = e−
aLambertW

− e−
2 ln(x)−c1

a
a

+2 ln(x)−c1

a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 44� �
dsolve(a*x*diff(y(x),x)+2*y(x)=x*y(x)*diff(y(x),x),y(x), singsol=all)� �

y(x) = x− 2
a e

−aLambertW

−x
− 2

a e−
2c1
a

a

−2c1

a

3 Solution by Mathematica
Time used: 60.019 (sec). Leaf size: 29� �
DSolve[a*x*y'[x]+2*y[x]==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −aW

(
−e

c1
a x−2/a

a

)
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3.1 problem 1
3.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 188

Internal problem ID [4696]
Internal file name [OUTPUT/4189_Sunday_June_05_2022_12_39_07_PM_53153814/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (x+ n) y′ + (1 + n) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (x+ n) y′ + (1 + n) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ n

x

q(x) = 1 + n

x
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Table 36: Table p(x), q(x) singularites.

p(x) = x+n
x

singularity type
x = 0 “regular”

q(x) = 1+n
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (x+ n) y′ + (1 + n) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (x+ n)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ (1 + n)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

nxn+r−1an(n+ r)
)

+
(

∞∑
n=0

(1 + n) anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

(1 + n) anxn+r =
∞∑
n=1

an−1(1 + n)xn+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

nxn+r−1an(n+ r)
)

+
(

∞∑
n=1

an−1(1 + n)xn+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + nxn+r−1an(n+ r) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + nx−1+ra0r = 0

Or (
x−1+rr(−1 + r) + nx−1+rr

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−1 + r + n) = 0
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Since the above is true for all x then the indicial equation becomes

r(−1 + r + n) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −n+ 1

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−1 + r + n) = 0

Solving for r gives the roots of the indicial equation as Assuming the roots differ by
non-integer Since r1 − r2 = n− 1 is not an integer, then we can construct two linearly
independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) =
∞∑
n=0

bnx
n−n+1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + nan(n+ r) + an−1(1 + n) = 0

Solving for an from recursive equation (4) gives

an = − an−1(n+ n+ r)
nn+ nr + n2 + 2nr + r2 − n− r

(4)

Which for the root r = 0 becomes

an = − an−1(n+ n)
n (n+ n− 1) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− n− r

(r + 1) (r + n)

Which for the root r = 0 becomes

a1 =
−n− 1

n

And the table now becomes

n an,r an

a0 1 1
a1

−1−n−r
(r+1)(r+n)

−n−1
n

For n = 2, using the above recursive equation gives

a2 =
n+ 2 + r

(r + 1) (r + n) (r + 2)

Which for the root r = 0 becomes

a2 =
n+ 2
2n

And the table now becomes

n an,r an

a0 1 1
a1

−1−n−r
(r+1)(r+n)

−n−1
n

a2
n+2+r

(r+1)(r+n)(r+2)
n+2
2n

For n = 3, using the above recursive equation gives

a3 =
−n− 3− r

(r + 3) (r + 2) (r + 1) (r + n)
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Which for the root r = 0 becomes

a3 =
−n− 3

6n
And the table now becomes

n an,r an

a0 1 1
a1

−1−n−r
(r+1)(r+n)

−n−1
n

a2
n+2+r

(r+1)(r+n)(r+2)
n+2
2n

a3
−n−3−r

(r+3)(r+2)(r+1)(r+n)
−n−3
6n

For n = 4, using the above recursive equation gives

a4 =
n+ 4 + r

(r + 3) (r + 2) (r + 1) (r + n) (r + 4)

Which for the root r = 0 becomes

a4 =
n+ 4
24n

And the table now becomes

n an,r an

a0 1 1
a1

−1−n−r
(r+1)(r+n)

−n−1
n

a2
n+2+r

(r+1)(r+n)(r+2)
n+2
2n

a3
−n−3−r

(r+3)(r+2)(r+1)(r+n)
−n−3
6n

a4
n+4+r

(r+3)(r+2)(r+1)(r+n)(r+4)
n+4
24n

For n = 5, using the above recursive equation gives

a5 =
−n− 5− r

(r + 5) (r + 4) (r + 3) (r + 2) (r + 1) (r + n)

Which for the root r = 0 becomes

a5 =
−n− 5
120n
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And the table now becomes

n an,r an

a0 1 1
a1

−1−n−r
(r+1)(r+n)

−n−1
n

a2
n+2+r

(r+1)(r+n)(r+2)
n+2
2n

a3
−n−3−r

(r+3)(r+2)(r+1)(r+n)
−n−3
6n

a4
n+4+r

(r+3)(r+2)(r+1)(r+n)(r+4)
n+4
24n

a5
−n−5−r

(r+5)(r+4)(r+3)(r+2)(r+1)(r+n)
−n−5
120n

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + (−n− 1)x
n

+ (n+ 2)x2

2n + (−n− 3)x3

6n + (n+ 4)x4

24n + (−n− 5)x5

120n +O
(
x6)

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1) + nbn(n+ r) + bn−1(1 + n) = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1(n+ n+ r)
nn+ nr + n2 + 2nr + r2 − n− r

(4)

Which for the root r = −n+ 1 becomes

bn = bn−1(n+ 1)
n (n− n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −n+ 1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
−1− n− r

(r + 1) (r + n)

Which for the root r = −n+ 1 becomes

b1 =
2

−2 + n

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−n−r
(r+1)(r+n)

2
−2+n

For n = 2, using the above recursive equation gives

b2 =
n+ 2 + r

(r + 1) (r + n) (r + 2)

Which for the root r = −n+ 1 becomes

b2 =
3

(−2 + n) (n− 3)

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−n−r
(r+1)(r+n)

2
−2+n

b2
n+2+r

(r+1)(r+n)(r+2)
3

(−2+n)(n−3)

For n = 3, using the above recursive equation gives

b3 =
−n− 3− r

(r + 3) (r + 2) (r + 1) (r + n)

Which for the root r = −n+ 1 becomes

b3 =
4

(−2 + n) (n− 3) (n− 4)

And the table now becomes
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n bn,r bn

b0 1 1
b1

−1−n−r
(r+1)(r+n)

2
−2+n

b2
n+2+r

(r+1)(r+n)(r+2)
3

(−2+n)(n−3)

b3
−n−3−r

(r+3)(r+2)(r+1)(r+n)
4

(−2+n)(n−3)(n−4)

For n = 4, using the above recursive equation gives

b4 =
n+ 4 + r

(r + 3) (r + 2) (r + 1) (r + n) (r + 4)

Which for the root r = −n+ 1 becomes

b4 =
5

(n− 4) (n− 3) (−2 + n) (n− 5)

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−n−r
(r+1)(r+n)

2
−2+n

b2
n+2+r

(r+1)(r+n)(r+2)
3

(−2+n)(n−3)

b3
−n−3−r

(r+3)(r+2)(r+1)(r+n)
4

(−2+n)(n−3)(n−4)

b4
n+4+r

(r+3)(r+2)(r+1)(r+n)(r+4)
5

(n−4)(n−3)(−2+n)(n−5)

For n = 5, using the above recursive equation gives

b5 =
−n− 5− r

(r + 5) (r + 4) (r + 3) (r + 2) (r + 1) (r + n)

Which for the root r = −n+ 1 becomes

b5 =
6

(n− 4) (n− 3) (−2 + n) (n− 5) (n− 6)

And the table now becomes
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n bn,r bn

b0 1 1
b1

−1−n−r
(r+1)(r+n)

2
−2+n

b2
n+2+r

(r+1)(r+n)(r+2)
3

(−2+n)(n−3)

b3
−n−3−r

(r+3)(r+2)(r+1)(r+n)
4

(−2+n)(n−3)(n−4)

b4
n+4+r

(r+3)(r+2)(r+1)(r+n)(r+4)
5

(n−4)(n−3)(−2+n)(n−5)

b5
−n−5−r

(r+5)(r+4)(r+3)(r+2)(r+1)(r+n)
6

(n−4)(n−3)(−2+n)(n−5)(n−6)

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x−n+1
(
1 + 2x

−2 + n
+ 3x2

(−2 + n) (n− 3) +
4x3

(−2 + n) (n− 3) (n− 4) +
5x4

(n− 4) (n− 3) (−2 + n) (n− 5) +
6x5

(n− 4) (n− 3) (−2 + n) (n− 5) (n− 6) +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + (−n− 1)x

n
+ (n+ 2)x2

2n + (−n− 3)x3

6n + (n+ 4)x4

24n + (−n− 5)x5

120n

+O
(
x6))+ c2x

−n+1
(
1 + 2x

−2 + n
+ 3x2

(−2 + n) (n− 3)

+ 4x3

(−2 + n) (n− 3) (n− 4) +
5x4

(n− 4) (n− 3) (−2 + n) (n− 5)

+ 6x5

(n− 4) (n− 3) (−2 + n) (n− 5) (n− 6) +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1+ (−n− 1)x

n
+ (n+ 2)x2

2n + (−n− 3)x3

6n + (n+ 4)x4

24n + (−n− 5)x5

120n +O
(
x6))

+ c2x
−n+1

(
1 + 2x

−2 + n
+ 3x2

(−2 + n) (n− 3) +
4x3

(−2 + n) (n− 3) (n− 4)

+ 5x4

(n− 4) (n− 3) (−2 + n) (n− 5) +
6x5

(n− 4) (n− 3) (−2 + n) (n− 5) (n− 6)

+O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1

(
1 + (−n− 1)x

n
+ (n+ 2)x2

2n + (−n− 3)x3

6n + (n+ 4)x4

24n + (−n− 5)x5

120n

+O
(
x6))+ c2x

−n+1
(
1 + 2x

−2 + n
+ 3x2

(−2 + n) (n− 3)

+ 4x3

(−2 + n) (n− 3) (n− 4) +
5x4

(n− 4) (n− 3) (−2 + n) (n− 5)

+ 6x5

(n− 4) (n− 3) (−2 + n) (n− 5) (n− 6) +O
(
x6))

Verification of solutions

y = c1

(
1+ (−n− 1)x

n
+ (n+ 2)x2

2n + (−n− 3)x3

6n + (n+ 4)x4

24n + (−n− 5)x5

120n +O
(
x6))

+ c2x
−n+1

(
1 + 2x

−2 + n
+ 3x2

(−2 + n) (n− 3) +
4x3

(−2 + n) (n− 3) (n− 4)

+ 5x4

(n− 4) (n− 3) (−2 + n) (n− 5) +
6x5

(n− 4) (n− 3) (−2 + n) (n− 5) (n− 6)

+O
(
x6))

Verified OK.

3.1.1 Maple step by step solution

Let’s solve
y′′x+ (x+ n) y′ + (1 + n) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (1+n)y
x

− (x+n)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+n)y′
x

+ (1+n)y
x

= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+n
x
, P3(x) = 1+n

x

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= n

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (x+ n) y′ + (1 + n) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r + n)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r + n) + ak(k + r + n+ 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r + n) = 0
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• Values of r that satisfy the indicial equation
r ∈ {0,−n+ 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + n) + ak(k + r + n+ 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+n+1)

(k+1+r)(k+r+n)

• Recursion relation for r = 0
ak+1 = − ak(k+1+n)

(k+1)(k+n)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak(k+1+n)

(k+1)(k+n)

]
• Recursion relation for r = −n+ 1

ak+1 = − ak(k+2)
(k+2−n)(k+1)

• Solution for r = −n+ 1[
y =

∞∑
k=0

akx
k−n+1, ak+1 = − ak(k+2)

(k+2−n)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k−n+1

)
, ak+1 = − ak(k+1+n)

(k+1)(k+n) , bk+1 = − bk(k+2)
(k+2−n)(k+1)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 248� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(x+n)*diff(y(x),x)+(n+1)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

1−n

(
1 + 2 1

n− 2x+ 3 1
(−3 + n) (n− 2)x

2 + 4 1
(−4 + n) (−3 + n) (n− 2)x

3

+ 5 1
(−5 + n) (−4 + n) (−3 + n) (n− 2)x

4

+ 6 1
(−6 + n) (−5 + n) (−4 + n) (−3 + n) (n− 2)x

5 +O
(
x6))+

(
1

+ −1− n

n
x+ 1

2
n+ 2
n

x2 − 1
6
n+ 3
n

x3 + 1
24

n+ 4
n

x4 − 1
120

n+ 5
n

x5 +O
(
x6)) c2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 519� �
AsymptoticDSolveValue[x*y''[x]+(x+n)*y'[x]+(n+1)*y[x]==0,y[x],{x,0,5}]� �
y(x)

→ c2

(
(−n− 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)x5

n(2n+ 2)(3n+ 6)(4n+ 12)(5n+ 20) − (−n− 1)(n+ 2)(n+ 3)(n+ 4)x4

n(2n+ 2)(3n+ 6)(4n+ 12)

+ (−n− 1)(n+ 2)(n+ 3)x3

n(2n+ 2)(3n+ 6) − (−n− 1)(n+ 2)x2

n(2n+ 2) + (−n− 1)x
n

+ 1
)

+c1

(
− 720x5

((1− n)(2− n) + n(2− n))((2− n)(3− n) + n(3− n))((3− n)(4− n) + n(4− n))((4− n)(5− n) + n(5− n))((5− n)(6− n) + n(6− n))

+ 120x4

((1− n)(2− n) + n(2− n))((2− n)(3− n) + n(3− n))((3− n)(4− n) + n(4− n))((4− n)(5− n) + n(5− n))

− 24x3

((1− n)(2− n) + n(2− n))((2− n)(3− n) + n(3− n))((3− n)(4− n) + n(4− n))

+ 6x2

((1− n)(2− n) + n(2− n))((2− n)(3− n) + n(3− n))

− 2x
(1− n)(2− n) + n(2− n) + 1

)
x1−n
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3.2 problem 2
3.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 200

Internal problem ID [4697]
Internal file name [OUTPUT/4190_Sunday_June_05_2022_12_39_12_PM_34227600/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_or-
der_bessel_ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + xy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (52)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (53)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y − xy′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −2y′ + yx2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= x(xy′ + 4y)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −yx3 + 6xy′ + 4y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −y(0)
F2 = −2y′(0)
F3 = 0
F4 = 4y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
3 + 1

180x
6
)
y(0) +

(
x− 1

12x
4
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −x

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=1

an−1x
n

)
= 0

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + an−1 = 0
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Solving for an+2, gives

(5)an+2 = − an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 + a0 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
6

For n = 2 the recurrence equation gives

12a4 + a1 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
12

For n = 3 the recurrence equation gives

20a5 + a2 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

30a6 + a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
180

For n = 5 the recurrence equation gives

42a7 + a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
a1
504

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
6a0x

3 − 1
12a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x3

6

)
a0 +

(
x− 1

12x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x3

6

)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

6x
3 + 1

180x
6
)
y(0) +

(
x− 1

12x
4
)
y′(0) +O

(
x6)

(2)y =
(
1− x3

6

)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

6x
3 + 1

180x
6
)
y(0) +

(
x− 1

12x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x3

6

)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Verified OK.
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3.2.1 Maple step by step solution

Let’s solve
y′′ = −xy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak−1 = 0

• Shift index using k− >k + 1
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(
(k + 1)2 + 3k + 5

)
ak+3 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = − ak

k2+5k+6 , 2a2 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x3

6

)
y(0) +

(
x− 1

12x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x4

12

)
+ c1

(
1− x3

6

)
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3.3 problem 3
Internal problem ID [4698]
Internal file name [OUTPUT/4191_Sunday_June_05_2022_12_39_19_PM_55110410/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

2x2y′′ − xy′ +
(
−x2 + 1

)
y = x2

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ − xy′ +
(
−x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1
2x

q(x) = −x2 − 1
2x2
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Table 39: Table p(x), q(x) singularites.

p(x) = − 1
2x

singularity type
x = 0 “regular”

q(x) = −x2−1
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2y′′ − xy′ +
(
−x2 + 1

)
y = x2

Since this is an inhomogeneous, then let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ode 2x2y′′ − xy′ + (−x2 + 1) y = 0, and
yp is a particular solution to the inhomogeneous ode.which is found using the balance
equation generated from indicial equation

First, we solve for yh Let the solution be represented as Frobenius power series of the
form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

203



Substituting the above back into the ode gives

(1)
2x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

− x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =0

(
−xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+r+2an

)
=

∞∑
n=2

(
−an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =2

(
−an−2x

n+r
)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r)− xra0r + a0x
r = 0
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Or
(2xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 − 3r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 − 3r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1

r2 =
1
2

The corresponding balance equation is found by replacing r by m and a by c to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is

(2xmm(−1 +m)− xmm+ xm) c0 = x2

This equation will used later to find the particular solution.

Since a0 6= 0 then the indicial equation becomes(
2r2 − 3r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) =
∞∑
n=0

bnx
n+ 1

2
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We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1)− an(n+ r)− an−2 + an = 0

Solving for an from recursive equation (4) gives

an = an−2

2n2 + 4nr + 2r2 − 3n− 3r + 1 (4)

Which for the root r = 1 becomes

an = an−2

2n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1

2r2 + 5r + 3

Which for the root r = 1 becomes
a2 =

1
10

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2r2+5r+3

1
10
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2r2+5r+3

1
10

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

4r4 + 36r3 + 113r2 + 144r + 63

Which for the root r = 1 becomes

a4 =
1
360

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2r2+5r+3

1
10

a3 0 0
a4

1
4r4+36r3+113r2+144r+63

1
360

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

1
2r2+5r+3

1
10

a3 0 0
a4

1
4r4+36r3+113r2+144r+63

1
360

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x2

10 + x4

360 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)2bn(n+ r) (n+ r − 1)− bn(n+ r)− bn−2 + bn = 0

Solving for bn from recursive equation (4) gives

bn = bn−2

2n2 + 4nr + 2r2 − 3n− 3r + 1 (4)

Which for the root r = 1
2 becomes

bn = bn−2

n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
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For n = 2, using the above recursive equation gives

b2 =
1

2r2 + 5r + 3

Which for the root r = 1
2 becomes

b2 =
1
6

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
2r2+5r+3

1
6

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
2r2+5r+3

1
6

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

4r4 + 36r3 + 113r2 + 144r + 63

Which for the root r = 1
2 becomes

b4 =
1
168

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

1
2r2+5r+3

1
6

b3 0 0
b4

1
4r4+36r3+113r2+144r+63

1
168

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
2r2+5r+3

1
6

b3 0 0
b4

1
4r4+36r3+113r2+144r+63

1
168

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x

(
1 + x2

6 + x4

168 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x2

10 + x4

360 +O
(
x6))+ c2

√
x

(
1 + x2

6 + x4

168 +O
(
x6))

The particular solution is found by solving for c,m the balance equation

(2xmm(−1 +m)− xmm+ xm) c0 = F
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Where F (x) is the RHS of the ode. If F (x) has more than one term, then this is done for
each term one at a time and then all the particular solutions are added. The function
F (x) will be converted to series if needed. in order to solve for cn,m for each term, the
same recursive relation used to find yh(x) is used to find cn,m which is used to find
the particular solution

∑
n=0 cnx

n+m by replacing an by cn and r by m.

The following are the values of an found in terms of the indicial root r.

a1 = 0
a2 = a0

2r2+5r+3

a3 = 0
a4 = a0

(2r2+5r+3)(2r2+13r+21)

a5 = 0

Now we determine the particular solution yp associated with F = x2 by solving the
balance equation

(2xmm(−1 +m)− xmm+ xm) c0 = x2

For c0 and x. This results in

c0 =
1
3

m = 2

The particular solution is therefore

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n+2

Where in the above c0 = 1
3 .

The remaining cn values are found using the same recurrence relation given in the earlier
table which was used to find the homogeneous solution but using c0 in place of a0 and
using m = 2 in place of the root of the indicial equation used to find the homogeneous
solution. By letting a0 = c0 or a0 = 1

3 and r = m or r = 2. The following table gives
the resulting cn values. These values will be used to find the particular solution. Values
of cn found not defined when doing the substitution will be discarded and not used
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c0 = 1
3

c1 = 0
c2 = 1

63

c3 = 0
c4 = 1

3465

c5 = 0

The particular solution is now found using

yp = xm
∞∑
n=0

cnx
n

= x2
∞∑
n=0

cnx
n

Using the values found above for cn into the above sum gives

yp = x2
(
1
3 + 1

63x
2 + 1

3465x
4
)

= 1
3x

2 + 1
63x

4 + 1
3465x

6

Adding all the above particular solution(s) gives

yp =
x2

3 + x4

63 + x6

3465 +O
(
x6)

Hence the final solution is

y = yh + yp

= x2

3 + x4

63+
x6

3465+O
(
x6)+c1x

(
1+ x2

10+
x4

360+O
(
x6))+c2

√
x

(
1+ x2

6 + x4

168+O
(
x6))

Summary
The solution(s) found are the following

(1)
y = x2

3 + x4

63 + x6

3465 +O
(
x6)+ c1x

(
1 + x2

10 + x4

360 +O
(
x6))

+ c2
√
x

(
1 + x2

6 + x4

168 +O
(
x6))
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Verification of solutions

y = x2

3 + x4

63 + x6

3465 +O
(
x6)+ c1x

(
1 + x2

10 + x4

360 +O
(
x6))

+ c2
√
x

(
1 + x2

6 + x4

168 +O
(
x6))

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+(1-x^2)*y(x)=x^2,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1 + 1

6x
2 + 1

168x
4 +O

(
x6))

+ c2x

(
1 + 1

10x
2 + 1

360x
4 +O

(
x6))+ x2

(
1
3 + 1

63x
2 +O

(
x4))

213



3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 160� �
AsymptoticDSolveValue[2*x^2*y''[x]-x*y'[x]+(1-x^2)*y[x]==x^2,y[x],{x,0,5}]� �
y(x)→ c2x

(
x6

28080+
x4

360+
x2

10+1
)
+c1

√
x

(
x6

11088+
x4

168+
x2

6 +1
)
+
√
x

(
−x11/2

1980−
x7/2

35

− 2x3/2

3

)(
x6

11088 +
x4

168 +
x2

6 +1
)
+x

(
x5

840 +
x3

18 +x

)(
x6

28080 +
x4

360 +
x2

10 +1
)
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3.4 problem 4
Internal problem ID [4699]
Internal file name [OUTPUT/4192_Sunday_June_05_2022_12_39_26_PM_66133488/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

xy′′ + 2y′ + a3x2y = 2

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 2y′ + a3x2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x

q(x) = a3x

215



Table 40: Table p(x), q(x) singularites.

p(x) = 2
x

singularity type
x = 0 “regular”

q(x) = a3x

singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 2y′ + a3x2y = 2

Since this is an inhomogeneous, then let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ode xy′′ + 2y′ + a3x2y = 0, and yp is a
particular solution to the inhomogeneous ode.which is found using the balance equation
generated from indicial equation

First, we solve for yh Let the solution be represented as Frobenius power series of the
form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ 2
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ a3x2

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+
(

∞∑
n=0

a3x2+n+ran

)
= 0

(2A)

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

a3x2+n+ran =
∞∑
n=3

an−3a
3xn+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+
(

∞∑
n=3

an−3a
3xn+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0
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Since a0 6= 0 then the above simplifies to

r x−1+r(1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −1

The corresponding balance equation is found by replacing r by m and a by c to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is (

x−1+mm(−1 +m) + 2mx−1+m
)
c0 = 2

This equation will used later to find the particular solution.

Since a0 6= 0 then the indicial equation becomes

r x−1+r(1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

For 3 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an(n+ r) + an−3a
3 = 0

Solving for an from recursive equation (4) gives

an = − an−3a
3

n2 + 2nr + r2 + n+ r
(4)

Which for the root r = 0 becomes

an = − an−3a
3

n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 = − a3

r2 + 7r + 12

Which for the root r = 0 becomes

a3 = −a3

12

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 − a3

r2+7r+12 −a3

12

For n = 4, using the above recursive equation gives
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 − a3

r2+7r+12 −a3

12

a4 0 0

For n = 5, using the above recursive equation gives
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 − a3

r2+7r+12 −a3

12

a4 0 0
a5 0 0

Using the above table, then the solution y1(x) is
y1(x) = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .

= 1− a3x3

12 +O
(
x6)
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→−1

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

Substituting n = 2 in Eq(3) gives
b2 = 0

For 3 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 2(n+ r) bn + bn−3a
3 = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2) + 2(n− 1) bn + bn−3a
3 = 0

221



Solving for bn from the recursive equation (4) gives

bn = − bn−3a
3

n2 + 2nr + r2 + n+ r
(5)

Which for the root r = −1 becomes

bn = − bn−3a
3

n2 − n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
b2 0 0

For n = 3, using the above recursive equation gives

b3 = − a3

r2 + 7r + 12

Which for the root r = −1 becomes

b3 = −a3

6

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 − a3

r2+7r+12 −a3

6

For n = 4, using the above recursive equation gives

b4 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 − a3

r2+7r+12 −a3

6

b4 0 0

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 − a3

r2+7r+12 −a3

6

b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− a3x3

6 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− a3x3

12 +O
(
x6))+

c2
(
1− a3x3

6 +O(x6)
)

x

The particular solution is found by solving for c,m the balance equation(
x−1+mm(−1 +m) + 2mx−1+m

)
c0 = F
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Where F (x) is the RHS of the ode. If F (x) has more than one term, then this is done for
each term one at a time and then all the particular solutions are added. The function
F (x) will be converted to series if needed. in order to solve for cn,m for each term, the
same recursive relation used to find yh(x) is used to find cn,m which is used to find
the particular solution

∑
n=0 cnx

n+m by replacing an by cn and r by m.

The following are the values of an found in terms of the indicial root r.

a1 = 0
a2 = 0
a3 = − a0a3

r2+7r+12

a4 = 0
a5 = 0

Now we determine the particular solution yp associated with F = 2 by solving the
balance equation (

x−1+mm(−1 +m) + 2mx−1+m
)
c0 = 2

For c0 and x. This results in

c0 = 1
m = 1

The particular solution is therefore

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n+1

Where in the above c0 = 1.

The remaining cn values are found using the same recurrence relation given in the earlier
table which was used to find the homogeneous solution but using c0 in place of a0 and
using m = 1 in place of the root of the indicial equation used to find the homogeneous
solution. By letting a0 = c0 or a0 = 1 and r = m or r = 1. The following table gives
the resulting cn values. These values will be used to find the particular solution. Values
of cn found not defined when doing the substitution will be discarded and not used
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c0 = 1
c1 = 0
c2 = 0
c3 = −a3

20

c4 = 0
c5 = 0

The particular solution is now found using

yp = xm
∞∑
n=0

cnx
n

= x
∞∑
n=0

cnx
n

Using the values found above for cn into the above sum gives

yp = x

(
1− a3x3

20

)
= x− 1

20a
3x4

Adding all the above particular solution(s) gives

yp = x− a3x4

20 +O
(
x6)

Hence the final solution is

y = yh + yp

= x− a3x4

20 +O
(
x6)+ c1

(
1− a3x3

12 +O
(
x6))+

c2
(
1− a3x3

6 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = x− a3x4

20 +O
(
x6)+ c1

(
1− a3x3

12 +O
(
x6))+

c2
(
1− a3x3

6 +O(x6)
)

x
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Verification of solutions

y = x− a3x4

20 +O
(
x6)+ c1

(
1− a3x3

12 +O
(
x6))+

c2
(
1− a3x3

6 +O(x6)
)

x

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
Order:=6;
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+a^3*x^2*y(x)=2,y(x),type='series',x=0);� �
y(x) = c1

(
1− 1

12a
3x3 +O

(
x6))+

c2
(
1− 1

6a
3x3 +O(x6)

)
x

+ x

(
1− 1

20a
3x3 +O

(
x5))
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3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 136� �
AsymptoticDSolveValue[x*y''[x]+2*y'[x]+a^3*x^2*y[x]==2,y[x],{x,0,5}]� �

y(x) → c1

(
a6x6

504 − a3x3

12 + 1
)
+

c2
(

a6x6

180 − a3x3

6 + 1
)

x

+
(
2x− a3x4

12

)(
a6x6

504 − a3x3

12 + 1
)
+

(
a3x5

30 − x2
)(

a6x6

180 − a3x3

6 + 1
)

x
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3.5 problem 5
Internal problem ID [4700]
Internal file name [OUTPUT/4193_Sunday_June_05_2022_12_39_32_PM_6838053/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + a x2y = x+ 1

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (57)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (58)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −a x2y + x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −2yax− a x2y′ + 1

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= a
(
ya x4 − x3 − 4xy′ − x2 − 2y

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= a
((
a x4 − 6

)
y′ + 8ya x3 − 7x2 − 6x

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= a
(
−ya2x6 + a x5 + 12a x3y′ + a x4 + 30a x2y − 20x− 12

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 1
F1 = 1
F2 = −2y(0) a
F3 = −6y′(0) a
F4 = −12a

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− a x4

12

)
y(0) +

(
x− 1

20a x
5
)
y′(0) + x2

2 + x3

6 − a x6

60 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −a x2

(
∞∑
n=0

anx
n

)
+ x+ 1 (1)

Expanding x+ 1 as Taylor series around x = 0 and keeping only the first 6 terms gives

x+ 1 = x+ 1 + . . .

= x+ 1

Hence the ODE in Eq (1) becomes(
∞∑
n=2

n(n− 1) anxn−2

)
+ a x2

(
∞∑
n=0

anx
n

)
= x+ 1

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

a xn+2an

)
= x+ 1

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

a xn+2an =
∞∑
n=2

aan−2x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=2

aan−2x
n

)
= x+ 1

n = 0 gives
(2a2) 1 = 1

2a2 = 1

Or

a2 =
1
2

n = 1 gives
(6a3)x = x

6a3 = 1

Which after substituting earlier equations, simplifies to

6a3 = 1

Or

a3 =
1
6

For 2 ≤ n, the recurrence equation is

(4)((n+ 2) an+2(n+ 1) + aan−2)xn = x+ 1

For n = 2 the recurrence equation gives

(aa0 + 12a4)x2 = 0
aa0 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −aa0
12
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For n = 3 the recurrence equation gives

(aa1 + 20a5)x3 = 0
aa1 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −aa1
20

For n = 4 the recurrence equation gives

(aa2 + 30a6)x4 = 0
aa2 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = − a

60

For n = 5 the recurrence equation gives

(aa3 + 42a7)x5 = 0
aa3 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = − a

252

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
2x

2 + 1
6x

3 − 1
12aa0x

4 − 1
20aa1x

5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− a x4

12

)
a0 +

(
x− 1

20a x
5
)
a1 +

x2

2 + x3

6 +O
(
x6)

At x = 0 the solution above becomes

y =
(
1− a x4

12

)
c1 +

(
x− 1

20a x
5
)
c2 +

x2

2 + x3

6 +O
(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− a x4

12

)
y(0) +

(
x− 1

20a x
5
)
y′(0) + x2

2 + x3

6 − a x6

60 +O
(
x6)

(2)y =
(
1− a x4

12

)
c1 +

(
x− 1

20a x
5
)
c2 +

x2

2 + x3

6 +O
(
x6)

Verification of solutions

y =
(
1− a x4

12

)
y(0) +

(
x− 1

20a x
5
)
y′(0) + x2

2 + x3

6 − a x6

60 +O
(
x6)

Verified OK.

y =
(
1− a x4

12

)
c1 +

(
x− 1

20a x
5
)
c2 +

x2

2 + x3

6 +O
(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
Order:=6;
dsolve(diff(y(x),x$2)+a*x^2*y(x)=1+x,y(x),type='series',x=0);� �

y(x) =
(
1− a x4

12

)
y(0) +

(
x− 1

20a x
5
)
D(y) (0) + x2

2 + x3

6 +O
(
x6)

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 44� �
AsymptoticDSolveValue[y''[x]+a*x^2*y[x]==1+x,y[x],{x,0,5}]� �

y(x) → c2

(
x− ax5

20

)
+ c1

(
1− ax4

12

)
+ x3

6 + x2

2
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3.6 problem 7
Internal problem ID [4701]
Internal file name [OUTPUT/4194_Sunday_June_05_2022_12_39_38_PM_27103984/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

x4y′′ + xy′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x4y′′ + xy′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x3

q(x) = 1
x4
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Table 41: Table p(x), q(x) singularites.

p(x) = 1
x3

singularity type
x = 0 “irregular”

q(x) = 1
x4

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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7 Solution by Maple� �
Order:=6;
dsolve(x^4*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

No solution found

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 49� �
AsymptoticDSolveValue[x^4*y''[x]+x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1(1− x2)
x

+ c2e
1

2x2
(
420x6 + 45x4 + 6x2 + 1

)
x4

239



3.7 problem 8
3.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 251

Internal problem ID [4702]
Internal file name [OUTPUT/4195_Sunday_June_05_2022_12_39_44_PM_57910761/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ +
(
2x2 + x

)
y′ − 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
2x2 + x

)
y′ − 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x+ 1
x

q(x) = − 4
x2
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Table 42: Table p(x), q(x) singularites.

p(x) = 2x+1
x

singularity type
x = 0 “regular”

q(x) = − 4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
2x2 + x

)
y′ − 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + 2an−1(n+ r − 1) + an(n+ r)− 4an = 0

Solving for an from recursive equation (4) gives

an = − 2an−1(n+ r − 1)
n2 + 2nr + r2 − 4 (4)
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Which for the root r = 2 becomes

an = −2an−1(1 + n)
n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 2r
r2 + 2r − 3

Which for the root r = 2 becomes
a1 = −4

5
And the table now becomes

n an,r an

a0 1 1
a1 − 2r

r2+2r−3 −4
5

For n = 2, using the above recursive equation gives

a2 =
4r + 4

r3 + 6r2 + 5r − 12

Which for the root r = 2 becomes
a2 =

2
5

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

r2+2r−3 −4
5

a2
4r+4

r3+6r2+5r−12
2
5
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For n = 3, using the above recursive equation gives

a3 =
−16− 8r

r4 + 11r3 + 35r2 + 13r − 60

Which for the root r = 2 becomes

a3 = − 16
105

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

r2+2r−3 −4
5

a2
4r+4

r3+6r2+5r−12
2
5

a3
−16−8r

r4+11r3+35r2+13r−60 − 16
105

For n = 4, using the above recursive equation gives

a4 =
16

r4 + 14r3 + 59r2 + 46r − 120

Which for the root r = 2 becomes
a4 =

1
21

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

r2+2r−3 −4
5

a2
4r+4

r3+6r2+5r−12
2
5

a3
−16−8r

r4+11r3+35r2+13r−60 − 16
105

a4
16

r4+14r3+59r2+46r−120
1
21

For n = 5, using the above recursive equation gives

a5 = − 32
r5 + 20r4 + 140r3 + 370r2 + 99r − 630
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Which for the root r = 2 becomes

a5 = − 4
315

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

r2+2r−3 −4
5

a2
4r+4

r3+6r2+5r−12
2
5

a3
−16−8r

r4+11r3+35r2+13r−60 − 16
105

a4
16

r4+14r3+59r2+46r−120
1
21

a5 − 32
r5+20r4+140r3+370r2+99r−630 − 4

315

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− 4x

5 + 2x2

5 − 16x3

105 + x4

21 − 4x5

315 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 16
r4 + 14r3 + 59r2 + 46r − 120

Therefore

lim
r→r2

16
r4 + 14r3 + 59r2 + 46r − 120 = lim

r→−2

16
r4 + 14r3 + 59r2 + 46r − 120

= −2
9
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The limit is −2
9 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 2bn−1(n+ r − 1) + bn(n+ r)− 4bn = 0

Which for for the root r = −2 becomes

(4A)bn(n− 2) (n− 3) + 2bn−1(n− 3) + bn(n− 2)− 4bn = 0

Solving for bn from the recursive equation (4) gives

bn = − 2bn−1(n+ r − 1)
n2 + 2nr + r2 − 4 (5)

Which for the root r = −2 becomes

bn = −2bn−1(n− 3)
n2 − 4n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 2r
r2 + 2r − 3

Which for the root r = −2 becomes

b1 = −4
3
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And the table now becomes

n bn,r bn

b0 1 1
b1 − 2r

r2+2r−3 −4
3

For n = 2, using the above recursive equation gives

b2 =
4r + 4

(r2 + 2r − 3) (r + 4)

Which for the root r = −2 becomes

b2 =
2
3

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2r

r2+2r−3 −4
3

b2
4r+4

r3+6r2+5r−12
2
3

For n = 3, using the above recursive equation gives

b3 = − 8(2 + r)
(r + 5) (r2 + 2r − 3) (r + 4)

Which for the root r = −2 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2r

r2+2r−3 −4
3

b2
4r+4

r3+6r2+5r−12
2
3

b3
−16−8r

(r+5)(3+r)(−1+r)(r+4) 0
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For n = 4, using the above recursive equation gives

b4 =
16

(r + 6) (r + 4) (−1 + r) (r + 5)

Which for the root r = −2 becomes

b4 = −2
9

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2r

r2+2r−3 −4
3

b2
4r+4

r3+6r2+5r−12
2
3

b3
−16−8r

(r+5)(3+r)(−1+r)(r+4) 0

b4
16

(r+6)(r+4)(−1+r)(r+5) −2
9

For n = 5, using the above recursive equation gives

b5 = − 32
(r + 6) (−1 + r) (r + 5) (r2 + 10r + 21)

Which for the root r = −2 becomes

b5 =
8
45

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2r

r2+2r−3 −4
3

b2
4r+4

r3+6r2+5r−12
2
3

b3
−16−8r

(r+5)(3+r)(−1+r)(r+4) 0

b4
16

(r+6)(r+4)(−1+r)(r+5) −2
9

b5 − 32
(r+7)(3+r)(r+5)(−1+r)(r+6)

8
45
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Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
=

1− 4x
3 + 2x2

3 − 2x4

9 + 8x5

45 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− 4x

5 + 2x2

5 − 16x3

105 + x4

21 − 4x5

315 +O
(
x6))

+
c2
(
1− 4x

3 + 2x2

3 − 2x4

9 + 8x5

45 +O(x6)
)

x2

Hence the final solution is

y = yh

= c1x
2
(
1− 4x

5 + 2x2

5 − 16x3

105 + x4

21 − 4x5

315 +O
(
x6))

+
c2
(
1− 4x

3 + 2x2

3 − 2x4

9 + 8x5

45 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1− 4x

5 + 2x2

5 − 16x3

105 + x4

21 − 4x5

315 +O
(
x6))

+
c2
(
1− 4x

3 + 2x2

3 − 2x4

9 + 8x5

45 +O(x6)
)

x2

Verification of solutions

y = c1x
2
(
1− 4x

5 + 2x2

5 − 16x3

105 + x4

21 − 4x5

315 +O
(
x6))

+
c2
(
1− 4x

3 + 2x2

3 − 2x4

9 + 8x5

45 +O(x6)
)

x2

Verified OK.
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3.7.1 Maple step by step solution

Let’s solve
x2y′′ + (2x2 + x) y′ − 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 4y
x2 − (2x+1)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2x+1)y′
x

− 4y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x

, P3(x) = − 4
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(2x+ 1) y′ − 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 2) + 2ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 2) + 2ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
ak+1(k + 3 + r) (k + r − 1) + 2ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak(k+r)

(k+3+r)(k+r−1)

• Recursion relation for r = −2 ; series terminates at k = 2
ak+1 = − 2ak(k−2)

(k+1)(k−3)

• Apply recursion relation for k = 0
a1 = −4a0

3

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 2a0

3

• Terminating series solution of the ODE for r = −2 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1− 4

3x+ 2
3x

2)
• Recursion relation for r = 2

ak+1 = − 2ak(k+2)
(k+5)(k+1)
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• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = − 2ak(k+2)

(k+5)(k+1)

]
• Combine solutions and rename parameters[

y = a0 ·
(
1− 4

3x+ 2
3x

2)+ ( ∞∑
k=0

bkx
k+2
)
, bk+1 = − 2bk(k+2)

(k+5)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+(x+2*x^2)*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1− 4

5x+ 2
5x

2 − 16
105x

3 + 1
21x

4 − 4
315x

5 +O
(
x6))

+
c2
(
−144 + 192x− 96x2 + 32x4 − 128

5 x5 +O(x6)
)

x2
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3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 208� �
AsymptoticDSolveValue[x^2*y''[x]+(x+2*x^2)*y'[x]-4*y[x]==2,y[x],{x,0,5}]� �
y(x) →

c1
(

2x2

3 − 4x
3 + 1

)
x2 + c2

(
−4x5

315 + x4

21 − 16x3

105 + 2x2

5 − 4x
5 + 1

)
x2

+
(
−4x5

315 + x4

21 − 16x3

105 + 2x2

5 − 4x
5 + 1

)(
7x6

2430 + 19x5

2025 + 5x4

216 + 2x3

45 + x2

18

− 1
4x2 − 1

3x

)
x2 +

(
2x2

3 − 4x
3 + 1

)(
−x6

84 −
4x5

105 −
x4

10 −
x3

5 − x2

4

)
x2
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3.8 problem 9
3.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 265

Internal problem ID [4703]
Internal file name [OUTPUT/4196_Sunday_June_05_2022_12_39_52_PM_74022088/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
−x2 + x

)
y′′ + 3y′ + 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ + 3y′ + 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 3
x (x− 1)

q(x) = − 2
x (x− 1)
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Table 44: Table p(x), q(x) singularites.

p(x) = − 3
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = − 2
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x(x− 1) + 3y′ + 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ 2
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=0

2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

2anxn+r =
∞∑
n=1

2an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+r−1) (n+r−2)xn+r−1)+( ∞∑

n=0

xn+r−1an(n+r) (n+r−1)
)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=1

2an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2 + r) = 0
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Since the above is true for all x then the indicial equation becomes

r(2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −2

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1) + 3an(n+ r) + 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = (n+ r − 3) an−1

n+ 2 + r
(4)

Which for the root r = 0 becomes

an = (n− 3) an−1

n+ 2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2 + r

3 + r

Which for the root r = 0 becomes
a1 = −2

3
And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

For n = 2, using the above recursive equation gives

a2 =
r2 − 3r + 2

(3 + r) (4 + r)
Which for the root r = 0 becomes

a2 =
1
6

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6
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For n = 3, using the above recursive equation gives

a3 =
(r2 − 3r + 2) r

(4 + r) (5 + r) (3 + r)

Which for the root r = 0 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6

a3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) 0

For n = 4, using the above recursive equation gives

a4 =
(−1 + r) (−2 + r) r(1 + r)

(3 + r) (4 + r) (5 + r) (6 + r)

Which for the root r = 0 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6

a3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) 0

a4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 0

For n = 5, using the above recursive equation gives

a5 =
r5 − 5r3 + 4r

(3 + r) (4 + r) (5 + r) (6 + r) (7 + r)
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Which for the root r = 0 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6

a3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) 0

a4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 0

a5
r5−5r3+4r

(3+r)(4+r)(5+r)(6+r)(7+r) 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 2x
3 + x2

6 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= r2 − 3r + 2
(3 + r) (4 + r)

Therefore

lim
r→r2

r2 − 3r + 2
(3 + r) (4 + r) = lim

r→−2

r2 − 3r + 2
(3 + r) (4 + r)

= 6
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The limit is 6. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)−bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1) + 3(n+ r) bn + 2bn−1 = 0

Which for for the root r = −2 becomes

(4A)−bn−1(n− 3) (n− 4) + bn(n− 2) (n− 3) + 3(n− 2) bn + 2bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = (n+ r − 3) bn−1

n+ 2 + r
(5)

Which for the root r = −2 becomes

bn = (n− 5) bn−1

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−2 + r

3 + r

Which for the root r = −2 becomes

b1 = −4
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And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

For n = 2, using the above recursive equation gives

b2 =
r2 − 3r + 2

(3 + r) (4 + r)

Which for the root r = −2 becomes

b2 = 6

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

For n = 3, using the above recursive equation gives

b3 =
(r2 − 3r + 2) r

(4 + r) (5 + r) (3 + r)

Which for the root r = −2 becomes

b3 = −4

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

b3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) −4
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For n = 4, using the above recursive equation gives

b4 =
(r2 − 3r + 2) r(1 + r)

(5 + r) (3 + r) (6 + r) (4 + r)

Which for the root r = −2 becomes

b4 = 1

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

b3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) −4

b4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 1

For n = 5, using the above recursive equation gives

b5 =
(r2 − 3r + 2) r(1 + r) (2 + r)

(6 + r) (3 + r) (4 + r) (5 + r) (7 + r)

Which for the root r = −2 becomes

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

b3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) −4

b4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 1

b5
(−2+r)(−1+r)r(1+r)(2+r)
(6+r)(3+r)(4+r)(5+r)(7+r) 0
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Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1− 4x+ 6x2 − 4x3 + x4 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 2x

3 + x2

6 +O
(
x6))+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))

x2

Hence the final solution is

y = yh

= c1

(
1− 2x

3 + x2

6 +O
(
x6))+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))

x2

Summary
The solution(s) found are the following

(1)y = c1

(
1− 2x

3 + x2

6 +O
(
x6))+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))

x2

Verification of solutions

y = c1

(
1− 2x

3 + x2

6 +O
(
x6))+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))

x2

Verified OK.

3.8.1 Maple step by step solution

Let’s solve
−y′′x(x− 1) + 3y′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y

x(x−1) +
3y′

x(x−1)

265



• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 3y′

x(x−1) −
2y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 3
x(x−1) , P3(x) = − 2

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(x− 1)− 3y′ − 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r
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Rewrite ODE with series expansions

−a0r(2 + r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k + 3 + r) + ak(k + 1 + r) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• Each term in the series must be 0, giving the recursion relation
((−k − 3− r) ak+1 + ak(k + r − 2)) (k + 1 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−2)

k+3+r

• Recursion relation for r = −2 ; series terminates at k = 4
ak+1 = ak(k−4)

k+1

• Apply recursion relation for k = 0
a1 = −4a0

• Apply recursion relation for k = 1
a2 = −3a1

2

• Express in terms of a0
a2 = 6a0

• Apply recursion relation for k = 2
a3 = −2a2

3

• Express in terms of a0
a3 = −4a0

• Apply recursion relation for k = 3
a4 = −a3

4

• Express in terms of a0
a4 = a0

• Terminating series solution of the ODE for r = −2 . Use reduction of order to find the second linearly independent solution
y = a0 · (1− 4x+ 6x2 − 4x3 + x4)

• Recursion relation for r = 0 ; series terminates at k = 2
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ak+1 = ak(k−2)
k+3

• Apply recursion relation for k = 0
a1 = −2a0

3

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

6

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1− 2

3x+ 1
6x

2)
• Combine solutions and rename parameters[

y = a0 · (1− 4x+ 6x2 − 4x3 + x4) + b0 ·
(
1− 2

3x+ 1
6x

2)]
Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
Order:=6;
dsolve((x-x^2)*diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1− 2

3x+ 1
6x

2 +O
(
x6))+ c2(−2 + 8x− 12x2 + 8x3 − 2x4 +O(x6))

x2
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3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 40� �
AsymptoticDSolveValue[(x-x^2)*y''[x]+3*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x2 + 1

x2 − 4x− 4
x
+ 6
)
+ c2

(
x2

6 − 2x
3 + 1

)
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3.9 problem 10
3.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 280

Internal problem ID [4704]
Internal file name [OUTPUT/4197_Sunday_June_05_2022_12_39_59_PM_6718125/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
4x3 − 14x2 − 2x

)
y′′ −

(
6x2 − 7x+ 1

)
y′ + (−1 + 6x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

4x3 − 14x2 − 2x
)
y′′ +

(
−6x2 + 7x− 1

)
y′ + (−1 + 6x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 6x2 − 7x+ 1
2x (2x2 − 7x− 1)

q(x) = −1 + 6x
2 (2x2 − 7x− 1)x
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Table 46: Table p(x), q(x) singularites.

p(x) = − 6x2−7x+1
2x(2x2−7x−1)

singularity type
x = 0 “regular”

x = 7
4 −

√
57
4 “regular”

x = 7
4 +

√
57
4 “regular”

q(x) = −1+6x
2(2x2−7x−1)x

singularity type
x = 0 “regular”

x = 7
4 −

√
57
4 “regular”

x = 7
4 +

√
57
4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 74 −

√
57
4 , 74 +

√
57
4 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2y′′x
(
2x2 − 7x− 1

)
+
(
−6x2 + 7x− 1

)
y′ + (−1 + 6x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x
(
2x2 − 7x− 1

)
+
(
−6x2 + 7x− 1

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−1 + 6x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−14xn+ran(n+ r) (n+ r− 1)

)
+

∞∑
n =0

(
−2xn+r−1an(n+ r) (n+ r − 1)

)
+

∞∑
n =0

(
−6x1+n+ran(n+ r)

)
+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
∞∑

n =0

(
−(n+ r) anxn+r−1)

+
∞∑

n =0

(
−anx

n+r
)
+
(

∞∑
n=0

6x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

(
−14xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−14an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−6x1+n+ran(n+ r)

)
=

∞∑
n=2

(
−6an−2(n+ r − 2)xn+r−1)

∞∑
n =0

7xn+ran(n+ r) =
∞∑
n=1

7an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)
∞∑

n =0

6x1+n+ran =
∞∑
n=2

6an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r−1

)

+
∞∑

n =1

(
−14an−1(n+ r − 1) (n+ r − 2)xn+r−1)

+
∞∑

n =0

(
−2xn+r−1an(n+r) (n+r−1)

)
+

∞∑
n =2

(
−6an−2(n+r−2)xn+r−1)

+
(

∞∑
n=1

7an−1(n+ r − 1)xn+r−1

)
+

∞∑
n =0

(
−(n+ r) anxn+r−1)

+
∞∑

n =1

(
−an−1x

n+r−1)+( ∞∑
n=2

6an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

−2xn+r−1an(n+ r) (n+ r − 1)− (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

−2x−1+ra0r(−1 + r)− ra0x
−1+r = 0

Or (
−2x−1+rr(−1 + r)− r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to(
−2r2 + r

)
x−1+r = 0

Since the above is true for all x then the indicial equation becomes

−2r2 + r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes(
−2r2 + r

)
x−1+r = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−14r2 + 21r − 1
2r2 + 3r + 1

For 2 ≤ n the recursive equation is

(3)4an−2(n+r−2) (n−3+r)−14an−1(n+r−1) (n+r−2)−2an(n+r) (n+r−1)
− 6an−2(n+ r − 2) + 7an−1(n+ r − 1)− an(n+ r)− an−1 + 6an−2 = 0

Solving for an from recursive equation (4) gives

an = 4n2an−2 − 14n2an−1 + 8nran−2 − 28nran−1 + 4r2an−2 − 14r2an−1 − 26nan−2 + 49nan−1 − 26ran−2 + 49ran−1 + 42an−2 − 36an−1

2n2 + 4nr + 2r2 − n− r
(4)

Which for the root r = 1
2 becomes

an = (4an−2 − 14an−1)n2 + (−22an−2 + 35an−1)n+ 30an−2 − 15an−1

2n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−14r2+21r−1
2r2+3r+1 2
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For n = 2, using the above recursive equation gives

a2 =
204r4 − 204r3 − 231r2 + 141r
4r4 + 20r3 + 35r2 + 25r + 6

Which for the root r = 1
2 becomes

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−14r2+21r−1
2r2+3r+1 2

a2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

For n = 3, using the above recursive equation gives

a3 =
−1484r4 + 4577r2 − 2103r

4r4 + 36r3 + 119r2 + 171r + 90

Which for the root r = 1
2 becomes

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−14r2+21r−1
2r2+3r+1 2

a2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

a3
−1484r4+4577r2−2103r

4r4+36r3+119r2+171r+90 0

For n = 4, using the above recursive equation gives

a4 =
10796r4 + 10796r3 − 54371r2 + 23137r

4r4 + 52r3 + 251r2 + 533r + 420

Which for the root r = 1
2 becomes

a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−14r2+21r−1
2r2+3r+1 2

a2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

a3
−1484r4+4577r2−2103r

4r4+36r3+119r2+171r+90 0

a4
10796r4+10796r3−54371r2+23137r

4r4+52r3+251r2+533r+420 0

For n = 5, using the above recursive equation gives

a5 =
−78540r4 − 157080r3 + 548853r2 − 225339r

4r4 + 68r3 + 431r2 + 1207r + 1260

Which for the root r = 1
2 becomes

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−14r2+21r−1
2r2+3r+1 2

a2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

a3
−1484r4+4577r2−2103r

4r4+36r3+119r2+171r+90 0

a4
10796r4+10796r3−54371r2+23137r

4r4+52r3+251r2+533r+420 0

a5
−78540r4−157080r3+548853r2−225339r

4r4+68r3+431r2+1207r+1260 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1 + 2x+O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
−14r2 + 21r − 1
2r2 + 3r + 1
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For 2 ≤ n the recursive equation is

(3)4bn−2(n+r−2) (n−3+r)−14bn−1(n+r−1) (n+r−2)−2bn(n+r) (n+r−1)
− 6bn−2(n+ r − 2) + 7bn−1(n+ r − 1)− (n+ r) bn − bn−1 + 6bn−2 = 0

Solving for bn from recursive equation (4) gives

bn = 4n2bn−2 − 14n2bn−1 + 8nrbn−2 − 28nrbn−1 + 4r2bn−2 − 14r2bn−1 − 26nbn−2 + 49nbn−1 − 26rbn−2 + 49rbn−1 + 42bn−2 − 36bn−1

2n2 + 4nr + 2r2 − n− r
(4)

Which for the root r = 0 becomes

bn = (4bn−2 − 14bn−1)n2 + (−26bn−2 + 49bn−1)n+ 42bn−2 − 36bn−1

2n2 − n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

−14r2+21r−1
2r2+3r+1 −1

For n = 2, using the above recursive equation gives

b2 =
204r4 − 204r3 − 231r2 + 141r
4r4 + 20r3 + 35r2 + 25r + 6

Which for the root r = 0 becomes
b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−14r2+21r−1
2r2+3r+1 −1

b2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

For n = 3, using the above recursive equation gives

b3 =
−1484r4 + 4577r2 − 2103r

4r4 + 36r3 + 119r2 + 171r + 90
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Which for the root r = 0 becomes
b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−14r2+21r−1
2r2+3r+1 −1

b2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

b3
−1484r4+4577r2−2103r

4r4+36r3+119r2+171r+90 0

For n = 4, using the above recursive equation gives

b4 =
10796r4 + 10796r3 − 54371r2 + 23137r

4r4 + 52r3 + 251r2 + 533r + 420

Which for the root r = 0 becomes
b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−14r2+21r−1
2r2+3r+1 −1

b2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

b3
−1484r4+4577r2−2103r

4r4+36r3+119r2+171r+90 0

b4
10796r4+10796r3−54371r2+23137r

4r4+52r3+251r2+533r+420 0

For n = 5, using the above recursive equation gives

b5 =
−78540r4 − 157080r3 + 548853r2 − 225339r

4r4 + 68r3 + 431r2 + 1207r + 1260

Which for the root r = 0 becomes
b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

−14r2+21r−1
2r2+3r+1 −1

b2
204r4−204r3−231r2+141r
4r4+20r3+35r2+25r+6 0

b3
−1484r4+4577r2−2103r

4r4+36r3+119r2+171r+90 0

b4
10796r4+10796r3−54371r2+23137r

4r4+52r3+251r2+533r+420 0

b5
−78540r4−157080r3+548853r2−225339r

4r4+68r3+431r2+1207r+1260 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x+O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1 + 2x+O

(
x6))+ c2

(
1− x+O

(
x6))

Hence the final solution is

y = yh

= c1
√
x
(
1 + 2x+O

(
x6))+ c2

(
1− x+O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x
(
1 + 2x+O

(
x6))+ c2

(
1− x+O

(
x6))

Verification of solutions

y = c1
√
x
(
1 + 2x+O

(
x6))+ c2

(
1− x+O

(
x6))

Verified OK.
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3.9.1 Maple step by step solution

Let’s solve
2y′′x(2x2 − 7x− 1) + (−6x2 + 7x− 1) y′ + (−1 + 6x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (−1+6x)y
2x(2x2−7x−1) +

(
6x2−7x+1

)
y′

2x(2x2−7x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
6x2−7x+1

)
y′

2x(2x2−7x−1) +
(−1+6x)y

2x(2x2−7x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x2−7x+1
2x(2x2−7x−1) , P3(x) = −1+6x

2(2x2−7x−1)x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x(2x2 − 7x− 1) + (−6x2 + 7x− 1) y′ + (−1 + 6x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r + (−a1(1 + r) (1 + 2r)− a0(14r2 − 21r + 1))xr +
(

∞∑
k=1

(−ak+1(k + 1 + r) (2k + 1 + 2r)− ak(14k2 + 28kr + 14r2 − 21k − 21r + 1) + 2ak−1(k − 2 + r) (2k − 5 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
−a1(1 + r) (1 + 2r)− a0(14r2 − 21r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−14ak + 4ak−1 − 2ak+1) k2 + ((−28ak + 8ak−1 − 4ak+1) r + 21ak − 18ak−1 − 3ak+1) k + (−14ak + 4ak−1 − 2ak+1) r2 + (21ak − 18ak−1 − 3ak+1) r − ak + 20ak−1 − ak+1 = 0

• Shift index using k− >k + 1
(−14ak+1 + 4ak − 2ak+2) (k + 1)2 + ((−28ak+1 + 8ak − 4ak+2) r + 21ak+1 − 18ak − 3ak+2) (k + 1) + (−14ak+1 + 4ak − 2ak+2) r2 + (21ak+1 − 18ak − 3ak+2) r − ak+1 + 20ak − ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = 4k2ak−14k2ak+1+8krak−28krak+1+4r2ak−14r2ak+1−10kak−7kak+1−10rak−7rak+1+6ak+6ak+1
2k2+4kr+2r2+7k+7r+6

• Recursion relation for r = 0

ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1
2k2+7k+6
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6 ,−a1 − a0 = 0
]

• Recursion relation for r = 1
2

ak+2 = 4k2ak−14k2ak+1−6kak−21kak+1+2ak−ak+1
2k2+9k+10

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4k2ak−14k2ak+1−6kak−21kak+1+2ak−ak+1
2k2+9k+10 ,−3a1 + 6a0 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6 ,−a1 − a0 = 0, bk+2 = 4k2bk−14k2bk+1−6kbk−21kbk+1+2bk−bk+1
2k2+9k+10 ,−3b1 + 6b0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 28� �
Order:=6;
dsolve((4*x^3-14*x^2-2*x)*diff(y(x),x$2)-(6*x^2-7*x+1)*diff(y(x),x)+(6*x-1)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x
(
1 + 2x+O

(
x6))+ c2

(
1− x+O

(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 25� �
AsymptoticDSolveValue[(4*x^3-14*x^2-2*x)*y''[x]-(6*x^2-7*x+1)*y'[x]+(6*x-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x(2x+ 1) + c2(1− x)
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3.10 problem 11
3.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 294

Internal problem ID [4705]
Internal file name [OUTPUT/4198_Sunday_June_05_2022_12_40_07_PM_21174301/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x2y′ + (−2 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + x2y′ + (−2 + x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1

q(x) = −2 + x

x2
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Table 48: Table p(x), q(x) singularites.

p(x) = 1
singularity type

q(x) = −2+x
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + x2y′ + (−2 + x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x2

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ (−2 + x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−2anxn+r

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−2anxn+r

)
+
(

∞∑
n=1

an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 2anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 2a0xr = 0

Or
(xrr(−1 + r)− 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − r − 2

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1)− 2an + an−1 = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n+ r)
n2 + 2nr + r2 − n− r − 2 (4)

Which for the root r = 2 becomes

an = −an−1(n+ 2)
n (n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− r

r2 + r − 2
Which for the root r = 2 becomes

a1 = −3
4

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+r−2 −3

4

For n = 2, using the above recursive equation gives

a2 =
1 + r

(r + 3) r (−1 + r)
Which for the root r = 2 becomes

a2 =
3
10

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+r−2 −3

4

a2
1+r

(r+3)r(−1+r)
3
10
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For n = 3, using the above recursive equation gives

a3 = − 1
(r + 4) r (−1 + r)

Which for the root r = 2 becomes

a3 = − 1
12

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+r−2 −3

4

a2
1+r

(r+3)r(−1+r)
3
10

a3 − 1
(r+4)r(−1+r) − 1

12

For n = 4, using the above recursive equation gives

a4 =
1

r (−1 + r) (r + 5) (2 + r)

Which for the root r = 2 becomes
a4 =

1
56

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+r−2 −3

4

a2
1+r

(r+3)r(−1+r)
3
10

a3 − 1
(r+4)r(−1+r) − 1

12

a4
1

r(−1+r)(r+5)(2+r)
1
56

For n = 5, using the above recursive equation gives

a5 = − 1
r (−1 + r) (2 + r) (r + 6) (r + 3)
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Which for the root r = 2 becomes

a5 = − 1
320

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+r−2 −3

4

a2
1+r

(r+3)r(−1+r)
3
10

a3 − 1
(r+4)r(−1+r) − 1

12

a4
1

r(−1+r)(r+5)(2+r)
1
56

a5 − 1
r(−1+r)(2+r)(r+6)(r+3) − 1

320

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− 3x

4 + 3x2

10 − x3

12 + x4

56 − x5

320 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= − 1
(r + 4) r (−1 + r)

Therefore

lim
r→r2

− 1
(r + 4) r (−1 + r) = lim

r→−1
− 1
(r + 4) r (−1 + r)

= −1
6
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The limit is −1
6 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1)− 2bn + bn−1 = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2) + bn−1(n− 2)− 2bn + bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−1(n+ r)
n2 + 2nr + r2 − n− r − 2 (5)

Which for the root r = −1 becomes

bn = −bn−1(n− 1)
n2 − 3n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 1 + r

r2 + r − 2

Which for the root r = −1 becomes

b1 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+r−2 0

For n = 2, using the above recursive equation gives

b2 =
1 + r

(r + 3) r (−1 + r)

Which for the root r = −1 becomes

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+r−2 0

b2
1+r

(r+3)r(−1+r) 0

For n = 3, using the above recursive equation gives

b3 = − 1
(r + 4) r (−1 + r)

Which for the root r = −1 becomes

b3 = −1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+r−2 0

b2
1+r

(r+3)r(−1+r) 0

b3 − 1
(r+4)r(−1+r) −1

6
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For n = 4, using the above recursive equation gives

b4 =
1

r (−1 + r) (r2 + 7r + 10)

Which for the root r = −1 becomes

b4 =
1
8

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+r−2 0

b2
1+r

(r+3)r(−1+r) 0

b3 − 1
(r+4)r(−1+r) −1

6

b4
1

r(−1+r)(r+5)(2+r)
1
8

For n = 5, using the above recursive equation gives

b5 = − 1
r (−1 + r) (2 + r) (r2 + 9r + 18)

Which for the root r = −1 becomes

b5 = − 1
20

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+r−2 0

b2
1+r

(r+3)r(−1+r) 0

b3 − 1
(r+4)r(−1+r) −1

6

b4
1

r(−1+r)(r+5)(2+r)
1
8

b5 − 1
r(−1+r)(2+r)(r+6)(r+3) − 1

20
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Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
=

1− x3

6 + x4

8 − x5

20 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− 3x

4 + 3x2

10 − x3

12 +
x4

56 −
x5

320 +O
(
x6))+

c2
(
1− x3

6 + x4

8 − x5

20 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
2
(
1− 3x

4 + 3x2

10 − x3

12 + x4

56 − x5

320 +O
(
x6))+

c2
(
1− x3

6 + x4

8 − x5

20 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1x
2
(
1− 3x

4 + 3x2

10 − x3

12 + x4

56 − x5

320 +O
(
x6))+

c2
(
1− x3

6 + x4

8 − x5

20 +O(x6)
)

x

Verification of solutions

y = c1x
2
(
1− 3x

4 + 3x2

10 − x3

12 + x4

56 − x5

320 +O
(
x6))+

c2
(
1− x3

6 + x4

8 − x5

20 +O(x6)
)

x

Verified OK.

3.10.1 Maple step by step solution

Let’s solve
x2y′′ + x2y′ + (−2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −y′ − (−2+x)y
x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′ + (−2+x)y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1, P3(x) = −2+x
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x2y′ + (−2 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1
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x2 · y′ =
∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r) + ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+1)

(k+2+r)(k−1+r)

• Recursion relation for r = −1
ak+1 = − akk

(k+1)(k−2)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 2
ak+1 = − akk

(k+1)(k−2)

• Recursion relation for r = 2
ak+1 = − ak(k+3)

(k+4)(k+1)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = − ak(k+3)

(k+4)(k+1)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 43� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1− 3

4x+ 3
10x

2 − 1
12x

3 + 1
56x

4 − 1
320x

5 +O
(
x6))

+
c2
(
12− 2x3 + 3

2x
4 − 3

5x
5 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x^2*y''[x]+x^2*y'[x]+(x-2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x3

8 − x2

6 + 1
x

)
+ c2

(
x6

56 − x5

12 + 3x4

10 − 3x3

4 + x2
)
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3.11 problem 13
3.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 309

Internal problem ID [4706]
Internal file name [OUTPUT/4199_Sunday_June_05_2022_12_40_15_PM_52626658/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x2y′ + (−2 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − x2y′ + (−2 + x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1

q(x) = −2 + x

x2
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Table 50: Table p(x), q(x) singularites.

p(x) = −1
singularity type

q(x) = −2+x
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − x2y′ + (−2 + x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

− x2

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ (−2 + x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−2anxn+r

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r

)
∞∑

n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−2anxn+r

)
+
(

∞∑
n=1

an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 2anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 2a0xr = 0

Or
(xrr(−1 + r)− 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − r − 2

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1)− 2an + an−1 = 0
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Solving for an from recursive equation (4) gives

an = an−1

1 + n+ r
(4)

Which for the root r = 2 becomes

an = an−1

3 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

2 + r

Which for the root r = 2 becomes
a1 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1

1
2+r

1
4

For n = 2, using the above recursive equation gives

a2 =
1

(2 + r) (3 + r)

Which for the root r = 2 becomes
a2 =

1
20

And the table now becomes

n an,r an

a0 1 1
a1

1
2+r

1
4

a2
1

(2+r)(3+r)
1
20
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For n = 3, using the above recursive equation gives

a3 =
1

(2 + r) (3 + r) (4 + r)

Which for the root r = 2 becomes

a3 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1

1
2+r

1
4

a2
1

(2+r)(3+r)
1
20

a3
1

(2+r)(3+r)(4+r)
1

120

For n = 4, using the above recursive equation gives

a4 =
1

(3 + r) (4 + r) (5 + r) (2 + r)

Which for the root r = 2 becomes

a4 =
1
840

And the table now becomes

n an,r an

a0 1 1
a1

1
2+r

1
4

a2
1

(2+r)(3+r)
1
20

a3
1

(2+r)(3+r)(4+r)
1

120

a4
1

(3+r)(4+r)(5+r)(2+r)
1

840

For n = 5, using the above recursive equation gives

a5 =
1

(4 + r) (5 + r) (2 + r) (6 + r) (3 + r)
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Which for the root r = 2 becomes

a5 =
1

6720

And the table now becomes

n an,r an

a0 1 1
a1

1
2+r

1
4

a2
1

(2+r)(3+r)
1
20

a3
1

(2+r)(3+r)(4+r)
1

120

a4
1

(3+r)(4+r)(5+r)(2+r)
1

840

a5
1

(4+r)(5+r)(2+r)(6+r)(3+r)
1

6720

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 1
(2 + r) (3 + r) (4 + r)

Therefore

lim
r→r2

1
(2 + r) (3 + r) (4 + r) = lim

r→−1

1
(2 + r) (3 + r) (4 + r)

= 1
6
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The limit is 1
6 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1)− bn−1(n+ r − 1)− 2bn + bn−1 = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2)− bn−1(n− 2)− 2bn + bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = bn−1

1 + n+ r
(5)

Which for the root r = −1 becomes

bn = bn−1

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
1

2 + r

Which for the root r = −1 becomes

b1 = 1
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And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+r

1

For n = 2, using the above recursive equation gives

b2 =
1

(2 + r) (3 + r)

Which for the root r = −1 becomes

b2 =
1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+r

1

b2
1

(2+r)(3+r)
1
2

For n = 3, using the above recursive equation gives

b3 =
1

(2 + r) (3 + r) (4 + r)

Which for the root r = −1 becomes

b3 =
1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+r

1

b2
1

(2+r)(3+r)
1
2

b3
1

(2+r)(3+r)(4+r)
1
6
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For n = 4, using the above recursive equation gives

b4 =
1

(3 + r) (4 + r) (5 + r) (2 + r)

Which for the root r = −1 becomes

b4 =
1
24

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+r

1

b2
1

(2+r)(3+r)
1
2

b3
1

(2+r)(3+r)(4+r)
1
6

b4
1

(3+r)(4+r)(5+r)(2+r)
1
24

For n = 5, using the above recursive equation gives

b5 =
1

(4 + r) (5 + r) (2 + r) (6 + r) (3 + r)

Which for the root r = −1 becomes

b5 =
1
120

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+r

1

b2
1

(2+r)(3+r)
1
2

b3
1

(2+r)(3+r)(4+r)
1
6

b4
1

(3+r)(4+r)(5+r)(2+r)
1
24

b5
1

(4+r)(5+r)(2+r)(6+r)(3+r)
1

120
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Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
=

1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+
c2
(
1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
2
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+
c2
(
1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+
c2
(
1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
)

x

Verification of solutions

y = c1x
2
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+
c2
(
1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
)

x

Verified OK.
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3.11.1 Maple step by step solution

Let’s solve
x2y′′ − x2y′ + (−2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′ − (−2+x)y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′ + (−2+x)y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −1, P3(x) = −2+x
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − x2y′ + (−2 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 · y′ =
∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2)− ak−1(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k − 1 + r) (ak+1(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+2+r

• Recursion relation for r = −1
ak+1 = ak

k+1

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+4

• Solution for r = 2
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[
y =

∞∑
k=0

akx
k+2, ak+1 = ak

k+4

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+4

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x^2*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1 + 1

4x+ 1
20x

2 + 1
120x

3 + 1
840x

4 + 1
6720x

5 +O
(
x6))

+
c2
(
12 + 12x+ 6x2 + 2x3 + 1

2x
4 + 1

10x
5 +O(x6)

)
x
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3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 66� �
AsymptoticDSolveValue[x^2*y''[x]-x^2*y'[x]+(x-2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x3

24 + x2

6 + x

2 + 1
x
+ 1
)
+ c2

(
x6

840 + x5

120 + x4

20 + x3

4 + x2
)
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3.12 problem 14
3.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 324

Internal problem ID [4707]
Internal file name [OUTPUT/4200_Sunday_June_05_2022_12_40_23_PM_76393033/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− 4x) y′′ +
(
(−n+ 1)x− (6− 4n)x2) y′ + n(−n+ 1)xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−4x3 + x2) y′′ + ((4n− 6)x2 + (−n+ 1)x
)
y′ +

(
−n2 + n

)
xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −4nx− n− 6x+ 1
x (4x− 1)

q(x) = n(n− 1)
x (4x− 1)
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Table 52: Table p(x), q(x) singularites.

p(x) = −4nx−n−6x+1
x(4x−1)

singularity type
x = 0 “regular”
x = 1

4 “regular”

q(x) = n(n−1)
x(4x−1)

singularity type
x = 0 “regular”
x = 1

4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 14 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−x2(4x− 1) y′′ +
(
(4n− 6)x2 + (−n+ 1)x

)
y′ +

(
−n2 + n

)
xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

−x2(4x− 1)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
(4n− 6)x2 + (−n+ 1)x

)( ∞∑
n=0

(n+ r) anxn+r−1

)

+
(
−n2 + n

)
x

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−4x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+r(n+ r)
(
n− 3

2

)
an

)

+
∞∑

n =0

(
−xn+ran(n− 1) (n+ r)

)
+

∞∑
n =0

(−xnxrann(n− 1)x) = 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−4x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−4an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

4x1+n+r(n+ r)
(
n− 3

2

)
an =

∞∑
n=1

4an−1

(
n− 3

2

)
(n+ r − 1)xn+r

∞∑
n =0

(−xnxrann(n− 1)x) =
∞∑
n=1

(
−nan−1(n− 1)xn+r

)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−4an−1(n+ r−1) (n+ r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r−1)
)

+
(

∞∑
n=1

4an−1

(
n− 3

2

)
(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−xn+ran(n− 1) (n+ r)

)
+

∞∑
n =1

(
−nan−1(n− 1)xn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n− 1) (n+ r) = 0
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When n = 0 the above becomes

xra0r(−1 + r)− xra0(n− 1) r = 0

Or
(xrr(−1 + r)− xr(n− 1) r) a0 = 0

Since a0 6= 0 then the above simplifies to

r xr(r − n) = 0

Since the above is true for all x then the indicial equation becomes

r(r − n) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = n

Since a0 6= 0 then the indicial equation becomes

r xr(r − n) = 0

Solving for r gives the roots of the indicial equation as Assuming the roots differ by
non-integer Since r1 − r2 = −n is not an integer, then we can construct two linearly
independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) =
∞∑
n=0

bnx
n+n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−4an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)

+ 4an−1

(
n− 3

2

)
(n+ r − 1)− an(n− 1) (n+ r)− nan−1(n− 1) = 0
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Solving for an from recursive equation (4) gives

an = −an−1(n2 − 4nn− 4nr + 4n2 + 8nr + 4r2 + 3n− 6n− 6r + 2)
nn+ nr − n2 − 2nr − r2

(4)

Which for the root r = 0 becomes

an = −an−1(n− 2n+ 2) (n− 2n+ 1)
n (n− n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −(n− 2r) (n− 2r − 1)
(1 + r) (n− r − 1)

Which for the root r = 0 becomes
a1 = −n

And the table now becomes

n an,r an

a0 1 1
a1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) −n

For n = 2, using the above recursive equation gives

a2 =
(n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)

(1 + r) (n− r − 1) (r + 2) (−r + n− 2)

Which for the root r = 0 becomes

a2 =
(n− 3)n

2

And the table now becomes
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n an,r an

a0 1 1
a1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) −n

a2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n−3)n

2

For n = 3, using the above recursive equation gives

a3 = −(n− 2r − 4) (n− 2r − 5) (n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)
(1 + r) (n− r − 1) (r + 2) (−r + n− 2) (r + 3) (−r + n− 3)

Which for the root r = 0 becomes

a3 = −(n− 4) (n− 5)n
6

And the table now becomes

n an,r an

a0 1 1
a1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) −n

a2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n−3)n

2

a3 − (n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3) − (n−4)(n−5)n

6

For n = 4, using the above recursive equation gives

a4 =
(n− 2r − 6) (n− 2r − 7) (n− 2r − 4) (n− 2r − 5) (n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)

(1 + r) (n− r − 1) (r + 2) (−r + n− 2) (r + 3) (−r + n− 3) (r + 4) (−r + n− 4)
Which for the root r = 0 becomes

a4 =
(n− 6) (n− 7) (n− 5)n

24
And the table now becomes

n an,r an

a0 1 1
a1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) −n

a2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n−3)n

2

a3 − (n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3) − (n−4)(n−5)n

6

a4
(n−2r−6)(n−2r−7)(n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)(r+4)(−r+n−4)
(n−6)(n−7)(n−5)n

24
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For n = 5, using the above recursive equation gives

a5 = −(n− 2r − 8) (n− 2r − 9) (n− 2r − 6) (n− 2r − 7) (n− 2r − 4) (n− 2r − 5) (n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)
(1 + r) (n− r − 1) (r + 2) (−r + n− 2) (r + 3) (−r + n− 3) (r + 4) (−r + n− 4) (r + 5) (−r + n− 5)

Which for the root r = 0 becomes

a5 = −(n− 8) (n− 9) (n− 6) (n− 7)n
120

And the table now becomes

n an,r an

a0 1 1
a1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) −n

a2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n−3)n

2

a3 − (n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3) − (n−4)(n−5)n

6

a4
(n−2r−6)(n−2r−7)(n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)(r+4)(−r+n−4)
(n−6)(n−7)(n−5)n

24

a5 − (n−2r−8)(n−2r−9)(n−2r−6)(n−2r−7)(n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)(r+4)(−r+n−4)(r+5)(−r+n−5) − (n−8)(n−9)(n−6)(n−7)n

120

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− nx+ (n− 3)nx2

2 − (n− 4) (n− 5)nx3

6 + (n− 6) (n− 7) (n− 5)nx4

24 − (n− 8) (n− 9) (n− 6) (n− 7)nx5

120 +O
(
x6)

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)−4bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)

+ 4bn−1

(
n− 3

2

)
(n+ r − 1)− bn(n− 1) (n+ r)− nbn−1(n− 1) = 0

Solving for bn from recursive equation (4) gives

bn = −bn−1(n2 − 4nn− 4nr + 4n2 + 8nr + 4r2 + 3n− 6n− 6r + 2)
nn+ nr − n2 − 2nr − r2

(4)
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Which for the root r = n becomes

bn = bn−1(n+ 2n− 1) (n+ 2n− 2)
n (n+ n) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = n and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −(n− 2r) (n− 2r − 1)
(1 + r) (n− r − 1)

Which for the root r = n becomes
b1 = n

And the table now becomes

n bn,r bn

b0 1 1
b1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) n

For n = 2, using the above recursive equation gives

b2 =
(n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)

(1 + r) (n− r − 1) (r + 2) (−r + n− 2)

Which for the root r = n becomes

b2 =
(n+ 3)n

2
And the table now becomes

n bn,r bn

b0 1 1
b1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) n

b2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n+3)n

2
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For n = 3, using the above recursive equation gives

b3 = −(n− 2r − 4) (n− 2r − 5) (n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)
(1 + r) (n− r − 1) (r + 2) (−r + n− 2) (r + 3) (−r + n− 3)

Which for the root r = n becomes

b3 =
n(n+ 5) (n+ 4)

6
And the table now becomes

n bn,r bn

b0 1 1
b1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) n

b2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n+3)n

2

b3 − (n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)

n(n+5)(n+4)
6

For n = 4, using the above recursive equation gives

b4 =
(n− 2r − 6) (n− 2r − 7) (n− 2r − 4) (n− 2r − 5) (n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)

(1 + r) (n− r − 1) (r + 2) (−r + n− 2) (r + 3) (−r + n− 3) (r + 4) (−r + n− 4)

Which for the root r = n becomes

b4 =
(n+ 6) (n+ 7) (n+ 5)n

24
And the table now becomes

n bn,r bn

b0 1 1
b1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) n

b2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n+3)n

2

b3 − (n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)

n(n+5)(n+4)
6

b4
(n−2r−6)(n−2r−7)(n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)(r+4)(−r+n−4)
(n+6)(n+7)(n+5)n

24

For n = 5, using the above recursive equation gives

b5 = −(n− 2r − 8) (n− 2r − 9) (n− 2r − 6) (n− 2r − 7) (n− 2r − 4) (n− 2r − 5) (n− 2r − 2) (n− 2r − 3) (n− 2r) (n− 2r − 1)
(1 + r) (n− r − 1) (r + 2) (−r + n− 2) (r + 3) (−r + n− 3) (r + 4) (−r + n− 4) (r + 5) (−r + n− 5)
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Which for the root r = n becomes

b5 =
n(n+ 7) (n+ 6) (n+ 9) (n+ 8)

120

And the table now becomes

n bn,r bn

b0 1 1
b1 − (n−2r)(n−2r−1)

(1+r)(n−r−1) n

b2
(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)
(n+3)n

2

b3 − (n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)

n(n+5)(n+4)
6

b4
(n−2r−6)(n−2r−7)(n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)

(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)(r+4)(−r+n−4)
(n+6)(n+7)(n+5)n

24

b5 − (n−2r−8)(n−2r−9)(n−2r−6)(n−2r−7)(n−2r−4)(n−2r−5)(n−2r−2)(n−2r−3)(n−2r)(n−2r−1)
(1+r)(n−r−1)(r+2)(−r+n−2)(r+3)(−r+n−3)(r+4)(−r+n−4)(r+5)(−r+n−5)

n(n+7)(n+6)(n+9)(n+8)
120

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= xn

(
1 + nx+ (n+ 3)nx2

2 + n(n+ 5) (n+ 4)x3

6 + (n+ 6) (n+ 7) (n+ 5)nx4

24 + n(n+ 7) (n+ 6) (n+ 9) (n+ 8)x5

120 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− nx+ (n− 3)nx2

2 − (n− 4) (n− 5)nx3

6 + (n− 6) (n− 7) (n− 5)nx4

24

− (n− 8) (n− 9) (n− 6) (n− 7)nx5

120 +O
(
x6))

+ c2x
n

(
1 + nx+ (n+ 3)nx2

2 + n(n+ 5) (n+ 4)x3

6

+ (n+ 6) (n+ 7) (n+ 5)nx4

24 + n(n+ 7) (n+ 6) (n+ 9) (n+ 8)x5

120 +O
(
x6))

Hence the final solution is

y = yh
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= c1

(
1− nx+ (n− 3)nx2

2 − (n− 4) (n− 5)nx3

6 + (n− 6) (n− 7) (n− 5)nx4

24

− (n− 8) (n− 9) (n− 6) (n− 7)nx5

120 +O
(
x6))

+ c2x
n

(
1 + nx+ (n+ 3)nx2

2 + n(n+ 5) (n+ 4)x3

6 + (n+ 6) (n+ 7) (n+ 5)nx4

24

+ n(n+ 7) (n+ 6) (n+ 9) (n+ 8)x5

120 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
1− nx+ (n− 3)nx2

2 − (n− 4) (n− 5)nx3

6 + (n− 6) (n− 7) (n− 5)nx4

24

− (n− 8) (n− 9) (n− 6) (n− 7)nx5

120 +O
(
x6))

+c2x
n

(
1+nx+ (n+ 3)nx2

2 + n(n+ 5) (n+ 4)x3

6 + (n+ 6) (n+ 7) (n+ 5)nx4

24

+ n(n+ 7) (n+ 6) (n+ 9) (n+ 8)x5

120 +O
(
x6))

Verification of solutions

y = c1

(
1− nx+ (n− 3)nx2

2 − (n− 4) (n− 5)nx3

6 + (n− 6) (n− 7) (n− 5)nx4

24

− (n− 8) (n− 9) (n− 6) (n− 7)nx5

120 +O
(
x6))

+ c2x
n

(
1 + nx+ (n+ 3)nx2

2 + n(n+ 5) (n+ 4)x3

6 + (n+ 6) (n+ 7) (n+ 5)nx4

24

+ n(n+ 7) (n+ 6) (n+ 9) (n+ 8)x5

120 +O
(
x6))

Verified OK.
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3.12.1 Maple step by step solution

Let’s solve
−x2(4x− 1) y′′ + ((4n− 6)x2 + (−n+ 1)x) y′ + (−n2 + n)xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −n(n−1)y
x(4x−1) +

(4nx−n−6x+1)y′
x(4x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (4nx−n−6x+1)y′
x(4x−1) + n(n−1)y

x(4x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −4nx−n−6x+1
x(4x−1) , P3(x) = n(n−1)

x(4x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −n+ 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(4x− 1) + (−4nx+ n+ 6x− 1) y′ + n(n− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(r − n)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k + 1 + r − n) + ak(2r + 1− n+ 2k) (2r − n+ 2k))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(r − n) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, n}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k + 1 + r − n) + 4

(
r − n

2 + k
) (

r + 1
2 −

n
2 + k

)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (2r−n+2k)(2r+1−n+2k)ak

(k+1+r)(k+1+r−n)

• Recursion relation for r = 0
ak+1 = (−n+2k)(1−n+2k)ak

(k+1)(k+1−n)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = (−n+2k)(1−n+2k)ak

(k+1)(k+1−n)

]
• Recursion relation for r = n

ak+1 = (n+2k)(n+1+2k)ak
(k+1+n)(k+1)

• Solution for r = n[
y =

∞∑
k=0

akx
k+n, ak+1 = (n+2k)(n+1+2k)ak

(k+1+n)(k+1)

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+n

)
, ak+1 = (−n+2k)(1−n+2k)ak

(k+1)(k+1−n) , bk+1 = (n+2k)(n+1+2k)bk
(k+1+n)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 471� �
Order:=6;
dsolve(x^2*(1-4*x)*diff(y(x),x$2)+((1-n)*x-(6-4*n)*x^2)*diff(y(x),x)+n*(1-n)*x*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

n

(
1+nx+ 1

2n(n+3)x2+ 1
6(n+5) (n+4)nx3+ 1

24n(n+5) (n+7) (n+6)x4

+ 1
120(n+ 9) (n+ 8) (n+ 7) (n+ 6)nx5 +O

(
x6))+ c2

(
1− nx

+ 1
2n(−3 + n)x2 − 1

6(−4 + n) (−5 + n)nx3 + 1
24n(−5 + n) (−6 + n) (n− 7)x4

− 1
120(−6 + n) (n− 7) (n− 8) (n− 9)nx5 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 2114� �
AsymptoticDSolveValue[x^2*(1-4*x)*y''[x]+((1-n)*x-(6-4*n)*x^2)*y'[x]+n*(1-n)*x*y[x]==0,y[x],{x,0,5}]� �
y(x)

→





512n− 256(n− n2)−
(
n2+n

)(
64
(
n−n2)−128(n+1)

)
(1−n)(n+1)+n(n+1) −

(
16
(
n−n2)−32(n+2)

)(
8n−4

(
n−n2)−(n2+n

)(
−n2+n−2(n+1)

)
(1−n)(n+1)+n(n+1)

)
(1−n)(n+2)+(n+1)(n+2) −

(
4
(
n−n2)−8(n+3)

)
32n−16

(
n−n2)−(n2+n

)(
4
(
n−n2)−8(n+1)

)
(1−n)(n+1)+n(n+1) −

(
−n2+n−2(n+2)

)8n−4
(
n−n2)−

(
n2+n

)(
−n2+n−2(n+1)

)
(1−n)(n+1)+n(n+1)


(1−n)(n+2)+(n+1)(n+2)


(1−n)(n+3)+(n+2)(n+3) −

(
−n2+n−2(n+4)

)


128n−64

(
n−n2)−(n2+n

)(
16
(
n−n2)−32(n+1)

)
(1−n)(n+1)+n(n+1) −

(
4
(
n−n2)−8(n+2)

)8n−4
(
n−n2)−

(
n2+n

)(
−n2+n−2(n+1)

)
(1−n)(n+1)+n(n+1)


(1−n)(n+2)+(n+1)(n+2) −

(
−n2+n−2(n+3)

)
32n−16

(
n−n2)−

(
n2+n

)(
4
(
n−n2)−8(n+1)

)
(1−n)(n+1)+n(n+1) −

(
−n2+n−2(n+2)

)8n−4
(
n−n2)−

(
n2+n

)(
−n2+n−2(n+1)

)
(1−n)(n+1)+n(n+1)


(1−n)(n+2)+(n+1)(n+2)


(1−n)(n+3)+(n+2)(n+3)


(1−n)(n+4)+(n+3)(n+4)



x5

(1− n)(n+ 5) + (n+ 4)(n+ 5)

+

128n− 64(n− n2)−
(
n2+n

)(
16
(
n−n2)−32(n+1)

)
(1−n)(n+1)+n(n+1) −

(
4
(
n−n2)−8(n+2)

)(
8n−4

(
n−n2)−(n2+n

)(
−n2+n−2(n+1)

)
(1−n)(n+1)+n(n+1)

)
(1−n)(n+2)+(n+1)(n+2) −

(
−n2+n−2(n+3)

)
32n−16

(
n−n2)−(n2+n

)(
4
(
n−n2)−8(n+1)

)
(1−n)(n+1)+n(n+1) −

(
−n2+n−2(n+2)

)8n−4
(
n−n2)−

(
n2+n

)(
−n2+n−2(n+1)

)
(1−n)(n+1)+n(n+1)


(1−n)(n+2)+(n+1)(n+2)


(1−n)(n+3)+(n+2)(n+3)

x4

(1− n)(n+ 4) + (n+ 3)(n+ 4)

+

32n− 16(n− n2)−
(
n2+n

)(
4
(
n−n2)−8(n+1)

)
(1−n)(n+1)+n(n+1) −

(
−n2+n−2(n+2)

)(
8n−4

(
n−n2)−(

n2+n
)(

−n2+n−2(n+1)
)

(1−n)(n+1)+n(n+1)

)
(1−n)(n+2)+(n+1)(n+2)

x3

(1− n)(n+ 3) + (n+ 2)(n+ 3)

+

(
8n− 4(n− n2)−

(
n2+n

)(
−n2+n−2(n+1)

)
(1−n)(n+1)+n(n+1)

)
x2

(1− n)(n+ 2) + (n+ 1)(n+ 2) + (n2 + n)x
(1− n)(n+ 1) + n(n+ 1)+1



c1x
n

+





−256(n− n2)−
(
n2−n

)(
64
(
n−n2)−128

)
1−n

−
(
16
(
n−n2)−64

)(
−4
(
n−n2)−(

−n2+n−2
)(

n2−n
)

1−n

)
2(1−n)+2 −

(
4
(
n−n2)−24

)
−16

(
n−n2)−(n2−n

)(
4
(
n−n2)−8

)
1−n

−

(
−n2+n−4

)−4
(
n−n2)−

(
−n2+n−2

)(
n2−n

)
1−n


2(1−n)+2


3(1−n)+6 −

(
−n2+n−8

)


−64

(
n−n2)−(n2−n

)(
16
(
n−n2)−32

)
1−n

−

(
4
(
n−n2)−16

)−4
(
n−n2)−

(
−n2+n−2

)(
n2−n

)
1−n


2(1−n)+2 −

(
−n2+n−6

)
−16

(
n−n2)−

(
n2−n

)(
4
(
n−n2)−8

)
1−n −

(
−n2+n−4

)−4
(
n−n2)−

(
−n2+n−2

)(
n2−n

)
1−n


2(1−n)+2


3(1−n)+6


4(1−n)+12



x5

5(1− n) + 20

+

−64(n− n2)−
(
n2−n

)(
16
(
n−n2)−32

)
1−n

−
(
4
(
n−n2)−16

)(
−4
(
n−n2)−(−n2+n−2

)(
n2−n

)
1−n

)
2(1−n)+2 −

(
−n2+n−6

)
−16

(
n−n2)−(n2−n

)(
4
(
n−n2)−8

)
1−n

−

(
−n2+n−4

)−4
(
n−n2)−

(
−n2+n−2

)(
n2−n

)
1−n


2(1−n)+2


3(1−n)+6

x4

4(1− n) + 12

+

−16(n− n2)−
(
n2−n

)(
4
(
n−n2)−8

)
1−n

−
(
−n2+n−4

)(
−4
(
n−n2)−(−n2+n−2

)(
n2−n

)
1−n

)
2(1−n)+2

x3

3(1− n) + 6

+

(
−4(n− n2)−

(
−n2+n−2

)(
n2−n

)
1−n

)
x2

2(1− n) + 2 + (n2 − n)x
1− n

+ 1



c2
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3.13 problem 15
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Internal problem ID [4708]
Internal file name [OUTPUT/4201_Sunday_June_05_2022_12_40_31_PM_19405499/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ +
(
x2 + x

)
y′ + (x− 9) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x2 + x

)
y′ + (x− 9) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 1
x

q(x) = x− 9
x2
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Table 54: Table p(x), q(x) singularites.

p(x) = x+1
x

singularity type
x = 0 “regular”

q(x) = x−9
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x2 + x

)
y′ + (x− 9) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (x− 9)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+

∞∑
n =0

(
−9anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+

∞∑
n =0

(
−9anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 9anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 9a0xr = 0

Or
(xrr(−1 + r) + xrr − 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 9

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 9 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = −3

Since a0 6= 0 then the indicial equation becomes(
r2 − 9

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x3

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−3

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + an(n+ r) + an−1 − 9an = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n+ r)
n2 + 2nr + r2 − 9 (4)

Which for the root r = 3 becomes

an = −an−1(n+ 3)
n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− r

r2 + 2r − 8
Which for the root r = 3 becomes

a1 = −4
7

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+2r−8 −4

7

For n = 2, using the above recursive equation gives

a2 =
(2 + r) (1 + r)

r4 + 6r3 − 5r2 − 42r + 40
Which for the root r = 3 becomes

a2 =
5
28

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+2r−8 −4

7

a2
(2+r)(1+r)

r4+6r3−5r2−42r+40
5
28
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For n = 3, using the above recursive equation gives

a3 = − (2 + r) (1 + r) (3 + r)
(r4 + 6r3 − 5r2 − 42r + 40) r (r + 6)

Which for the root r = 3 becomes

a3 = − 5
126

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+2r−8 −4

7

a2
(2+r)(1+r)

r4+6r3−5r2−42r+40
5
28

a3 − (2+r)(1+r)(3+r)
(r4+6r3−5r2−42r+40)r(r+6) − 5

126

For n = 4, using the above recursive equation gives

a4 =
(2 + r) (3 + r)

(r + 7) (r + 6) r (r + 5) (−1 + r) (r − 2)

Which for the root r = 3 becomes

a4 =
1
144

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+2r−8 −4

7

a2
(2+r)(1+r)

r4+6r3−5r2−42r+40
5
28

a3 − (2+r)(1+r)(3+r)
(r4+6r3−5r2−42r+40)r(r+6) − 5

126

a4
(2+r)(3+r)

(r+7)(r+6)r(r+5)(−1+r)(r−2)
1

144

For n = 5, using the above recursive equation gives

a5 =
−r − 3

(r + 8) (r − 2) (−1 + r) r (r + 6) (r + 7)
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Which for the root r = 3 becomes

a5 = − 1
990

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+2r−8 −4

7

a2
(2+r)(1+r)

r4+6r3−5r2−42r+40
5
28

a3 − (2+r)(1+r)(3+r)
(r4+6r3−5r2−42r+40)r(r+6) − 5

126

a4
(2+r)(3+r)

(r+7)(r+6)r(r+5)(−1+r)(r−2)
1

144

a5
−r−3

(r+8)(r−2)(−1+r)r(r+6)(r+7) − 1
990

For n = 6, using the above recursive equation gives

a6 =
1

(r + 9) (r + 7) r (−1 + r) (r − 2) (r + 8)

Which for the root r = 3 becomes

a6 =
1

7920

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r2+2r−8 −4

7

a2
(2+r)(1+r)

r4+6r3−5r2−42r+40
5
28

a3 − (2+r)(1+r)(3+r)
(r4+6r3−5r2−42r+40)r(r+6) − 5

126

a4
(2+r)(3+r)

(r+7)(r+6)r(r+5)(−1+r)(r−2)
1

144

a5
−r−3

(r+8)(r−2)(−1+r)r(r+6)(r+7) − 1
990

a6
1

(r+9)(r+7)r(−1+r)(r−2)(r+8)
1

7920
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Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7. . .
)

= x3
(
1− 4x

7 + 5x2

28 − 5x3

126 + x4

144 − x5

990 + x6

7920 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= 1
(r + 9) (r + 7) r (−1 + r) (r − 2) (r + 8)

Therefore

lim
r→r2

1
(r + 9) (r + 7) r (−1 + r) (r − 2) (r + 8) = lim

r→−3

1
(r + 9) (r + 7) r (−1 + r) (r − 2) (r + 8)

= − 1
7200

The limit is − 1
7200 . Since the limit exists then the log term is not needed and we can

set C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−3

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1) + bn(n+ r) + bn−1 − 9bn = 0

Which for for the root r = −3 becomes

(4A)bn(n− 3) (n− 4) + bn−1(n− 4) + bn(n− 3) + bn−1 − 9bn = 0
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Solving for bn from the recursive equation (4) gives

bn = − bn−1(n+ r)
n2 + 2nr + r2 − 9 (5)

Which for the root r = −3 becomes

bn = −bn−1(n− 3)
n2 − 6n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 1 + r

r2 + 2r − 8

Which for the root r = −3 becomes

b1 = −2
5

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+2r−8 −2

5

For n = 2, using the above recursive equation gives

b2 =
(2 + r) (1 + r)

(r2 + 2r − 8) (r2 + 4r − 5)

Which for the root r = −3 becomes

b2 =
1
20

And the table now becomes
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n bn,r bn

b0 1 1
b1

−1−r
r2+2r−8 −2

5

b2
(2+r)(1+r)

r4+6r3−5r2−42r+40
1
20

For n = 3, using the above recursive equation gives

b3 = − (2 + r) (1 + r) (3 + r)
(r2 + 2r − 8) (r2 + 4r − 5) r (r + 6)

Which for the root r = −3 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+2r−8 −2

5

b2
(2+r)(1+r)

r4+6r3−5r2−42r+40
1
20

b3 − (2+r)(1+r)(3+r)
r6+12r5+31r4−72r3−212r2+240r 0

For n = 4, using the above recursive equation gives

b4 =
(2 + r) (3 + r)

(r + 7) (r + 6) r (r2 + 4r − 5) (r − 2)
Which for the root r = −3 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+2r−8 −2

5

b2
(2+r)(1+r)

r4+6r3−5r2−42r+40
1
20

b3 − (2+r)(1+r)(3+r)
r6+12r5+31r4−72r3−212r2+240r 0

b4
(2+r)(3+r)

(r+7)(r+6)r(r+5)(−1+r)(r−2) 0
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For n = 5, using the above recursive equation gives

b5 = − 3 + r

(r + 8) (r − 2) (−1 + r) r (r + 6) (r + 7)

Which for the root r = −3 becomes

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+2r−8 −2

5

b2
(2+r)(1+r)

r4+6r3−5r2−42r+40
1
20

b3 − (2+r)(1+r)(3+r)
r6+12r5+31r4−72r3−212r2+240r 0

b4
(2+r)(3+r)

(r+7)(r+6)r(r+5)(−1+r)(r−2) 0

b5
−r−3

(r+8)(r−2)(−1+r)r(r+6)(r+7) 0

For n = 6, using the above recursive equation gives

b6 =
1

(r + 9) (r + 7) r (−1 + r) (r − 2) (r + 8)

Which for the root r = −3 becomes

b6 = − 1
7200

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r2+2r−8 −2

5

b2
(2+r)(1+r)

r4+6r3−5r2−42r+40
1
20

b3 − (2+r)(1+r)(3+r)
r6+12r5+31r4−72r3−212r2+240r 0

b4
(2+r)(3+r)

(r+7)(r+6)r(r+5)(−1+r)(r−2) 0

b5
−r−3

(r+8)(r−2)(−1+r)r(r+6)(r+7) 0

b6
1

(r+9)(r+7)r(−1+r)(r−2)(r+8) − 1
7200
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Using the above table, then the solution y2(x) is

y2(x) = x3(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7. . .
)

=
1− 2x

5 + x2

20 −
x6

7200 +O(x7)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− 4x

7 + 5x2

28 − 5x3

126 + x4

144 − x5

990 + x6

7920 +O
(
x7))

+
c2
(
1− 2x

5 + x2

20 −
x6

7200 +O(x7)
)

x3

Hence the final solution is

y = yh

= c1x
3
(
1− 4x

7 + 5x2

28 − 5x3

126 + x4

144 − x5

990 + x6

7920 +O
(
x7))

+
c2
(
1− 2x

5 + x2

20 −
x6

7200 +O(x7)
)

x3

Summary
The solution(s) found are the following

(1)
y = c1x

3
(
1− 4x

7 + 5x2

28 − 5x3

126 + x4

144 − x5

990 + x6

7920 +O
(
x7))

+
c2
(
1− 2x

5 + x2

20 −
x6

7200 +O(x7)
)

x3

Verification of solutions

y = c1x
3
(
1− 4x

7 + 5x2

28 − 5x3

126 + x4

144 − x5

990 + x6

7920 +O
(
x7))

+
c2
(
1− 2x

5 + x2

20 −
x6

7200 +O(x7)
)

x3

Verified OK.
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3.13.1 Maple step by step solution

Let’s solve
x2y′′ + (x2 + x) y′ + (x− 9) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x−9)y
x2 − (x+1)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
x

+ (x−9)y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x
, P3(x) = x−9

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x+ 1) y′ + (x− 9) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−3 + r)xr +
(

∞∑
k=1

(ak(k + r + 3) (k + r − 3) + ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 3}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r − 3) + ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + 4 + r) (k − 2 + r) + ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+1)

(k+4+r)(k−2+r)

• Recursion relation for r = −3 ; series terminates at k = 2
ak+1 = − ak(k−2)

(k+1)(k−5)

• Apply recursion relation for k = 0
a1 = −2a0

5

• Apply recursion relation for k = 1
a2 = −a1

8

• Express in terms of a0
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a2 = a0
20

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1− 2

5x+ 1
20x

2)
• Recursion relation for r = 3

ak+1 = − ak(k+4)
(k+7)(k+1)

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+1 = − ak(k+4)

(k+7)(k+1)

]
• Combine solutions and rename parameters[

y = a0 ·
(
1− 2

5x+ 1
20x

2)+ ( ∞∑
k=0

bkx
k+3
)
, bk+1 = − bk(k+4)

(k+7)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 41� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+(x+x^2)*diff(y(x),x)+(x-9)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
(
1− 4

7x+ 5
28x

2 − 5
126x

3 + 1
144x

4 − 1
990x

5 +O
(
x6))

+ c2(−86400 + 34560x− 4320x2 +O(x6))
x3

342



3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x^2*y''[x]+(x+x^2)*y'[x]+(x-9)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x3 − 2

5x2 + 1
20x

)
+ c2

(
x7

144 − 5x6

126 + 5x5

28 − 4x4

7 + x3
)
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3.14 problem 16
Internal problem ID [4709]
Internal file name [OUTPUT/4202_Sunday_June_05_2022_12_40_39_PM_13480000/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second order se-
ries method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

(
a2 + x2) y′′ + xy′ − yn2 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (67)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (68)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
−xy′ + yn2

a2 + x2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= ((n2 + 2)x2 + a2(n2 − 1)) y′ − 3n2xy

(a2 + x2)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 3(2(−n2 − 1)x3 + a2(−2n2 + 3)x) y′ + yn2((n2 + 11)x2 + n2a2 − 4a2)
(a2 + x2)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
(n4 + 35n2 + 24)x4 + 2

(
n4 + 25

2 n
2 − 36

)
a2x2 + a4n4 − 10a4n2 + 9a4

)
y′ − 10xyn2((n2 + 5)x2 + a2

(
n2 − 11

2

))
(a2 + x2)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
−15x((n4 + 15n2 + 8)x4 + 2a2(n4 + n2 − 20)x2 + a4(n4 − 13n2 + 15)) y′ + yn2((n4 + 85n2 + 274)x4 + 2

(
n4 + 65

2 n
2 − 607

2

)
a2x2 + a4n4 − 20a4n2 + 64a4

)
(a2 + x2)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 =
y(0)n2

a2

F1 =
y′(0)n2 − y′(0)

a2

F2 =
y(0)n4 − 4y(0)n2

a4

F3 =
y′(0)n4 − 10y′(0)n2 + 9y′(0)

a4

F4 =
y(0)n6 − 20y(0)n4 + 64y(0)n2

a6
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + n2x2

2a2 + x4n4

24a4 − x4n2

6a4 + x6n6

720a6 − x6n4

36a6 + 4x6n2

45a6

)
y(0)

+
(
x+ x3n2

6a2 − x3

6a2 + x5n4

120a4 − x5n2

12a4 + 3x5

40a4

)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

a2 + x2) y′′ + xy′ − yn2 = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
a2 + x2)( ∞∑

n=2

n(n− 1) anxn−2

)
+ x

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
n2 = 0 (1)

Which simplifies to(
∞∑
n=2

xnann(n− 1)
)
+
(

∞∑
n=2

nxn−2a2an(n− 1)
)
+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(
−n2anx

n
)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−2a2an(n− 1) =
∞∑
n=0

(n+ 2) an+2a
2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2a
2(n+ 1)xn

)

+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(
−n2anx

n
)
= 0

n = 0 gives
2a2a2 − a0n

2 = 0

a2 =
a0n

2

2a2

n = 1 gives
6a3a2 − a1n

2 + a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a1(n2 − 1)

6a2

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2a
2(n+ 1) + nan − ann

2 = 0

Solving for an+2, gives

(5)an+2 =
an(n2 − n2)

(n+ 2) a2 (n+ 1)

For n = 2 the recurrence equation gives

12a4a2 − a2n
2 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0n

2(n2 − 4)
24a4
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For n = 3 the recurrence equation gives

20a5a2 − a3n
2 + 9a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1(n2 − 1) (n2 − 9)

120a4

For n = 4 the recurrence equation gives

30a6a2 − a4n
2 + 16a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0n

2(n2 − 4) (n2 − 16)
720a6

For n = 5 the recurrence equation gives

42a7a2 − a5n
2 + 25a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1(n2 − 1) (n2 − 9) (n2 − 25)

5040a6

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
a0n

2x2

2a2 + a1(n2 − 1)x3

6a2 + a0n
2(n2 − 4)x4

24a4 + a1(n2 − 1) (n2 − 9)x5

120a4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + n2x2

2a2 + n2(n2 − 4)x4

24a4

)
a0

+
(
x+ (n2 − 1)x3

6a2 + (n2 − 1) (n2 − 9)x5

120a4

)
a1 +O

(
x6)
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At x = 0 the solution above becomes

y=
(
1+ n2x2

2a2 + n2(n2 − 4)x4

24a4

)
c1+

(
x+ (n2 − 1)x3

6a2 + (n2 − 1) (n2 − 9)x5

120a4

)
c2+O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + n2x2

2a2 + x4n4

24a4 − x4n2

6a4 + x6n6

720a6 − x6n4

36a6 + 4x6n2

45a6

)
y(0)

+
(
x+ x3n2

6a2 − x3

6a2 + x5n4

120a4 − x5n2

12a4 + 3x5

40a4

)
y′(0) +O

(
x6)

(2)
y =

(
1 + n2x2

2a2 + n2(n2 − 4)x4

24a4

)
c1

+
(
x+ (n2 − 1)x3

6a2 + (n2 − 1) (n2 − 9)x5

120a4

)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + n2x2

2a2 + x4n4

24a4 − x4n2

6a4 + x6n6

720a6 − x6n4

36a6 + 4x6n2

45a6

)
y(0)

+
(
x+ x3n2

6a2 − x3

6a2 + x5n4

120a4 − x5n2

12a4 + 3x5

40a4

)
y′(0) +O

(
x6)

Verified OK.

y=
(
1+ n2x2

2a2 + n2(n2 − 4)x4

24a4

)
c1+

(
x+ (n2 − 1)x3

6a2 + (n2 − 1) (n2 − 9)x5

120a4

)
c2+O

(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 72� �
Order:=6;
dsolve((a^2+x^2)*diff(y(x),x$2)+x*diff(y(x),x)-n^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + n2x2

2a2 + n2(n2 − 4)x4

24a4

)
y(0)

+
(
x+ (n2 − 1)x3

6a2 + (n4 − 10n2 + 9)x5

120a4

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 112� �
AsymptoticDSolveValue[(a^2+x^2)*y''[x]+x*y'[x]-n^2*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
n4x5

120a4 − n2x5

12a4 + 3x5

40a4 + n2x3

6a2 − x3

6a2 + x

)
+ c1

(
n4x4

24a4 − n2x4

6a4 + n2x2

2a2 + 1
)
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3.15 problem 18
3.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 361

Internal problem ID [4710]
Internal file name [OUTPUT/4203_Sunday_June_05_2022_12_40_46_PM_57402417/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XIV. page 177
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second order se-
ries method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer , [_2nd_order , _linear , `_with_symmetry_ [0,F(x)]`]]

(
−x2 + 1

)
y′′ − xy′ + ya2 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (70)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (71)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
ya2 − xy′

x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= ((a2 + 2)x2 − a2 + 1) y′ − 3ya2x
(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−6a2x3 + 6a2x− 6x3 − 9x) y′ + y((a2 + 11)x2 − a2 + 4) a2

(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
((a4 + 35a2 + 24)x4 + (−2a4 − 25a2 + 72)x2 + a4 − 10a2 + 9) y′ − 10y

(
(a2 + 5)x2 − a2 + 11

2

)
x a2

(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (x+ 1) (−15x((a4 + 15a2 + 8)x4 + (−2a4 − 2a2 + 40)x2 + a4 − 13a2 + 15) y′ + y((a4 + 85a2 + 274)x4 + (−2a4 − 65a2 + 607)x2 + a4 − 20a2 + 64) a2) (x− 1)
(x2 − 1)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0) a2

F1 = −y′(0) a2 + y′(0)
F2 = y(0) a4 − 4y(0) a2

F3 = y′(0) a4 − 10y′(0) a2 + 9y′(0)
F4 = −y(0) a6 + 20y(0) a4 − 64y(0) a2
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2a
2x2 + 1

24a
4x4 − 1

6a
2x4 − 1

720x
6a6 + 1

36x
6a4 − 4

45a
2x6
)
y(0)

+
(
x− 1

6a
2x3 + 1

6x
3 + 1

120a
4x5 − 1

12a
2x5 + 3

40x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x2 + 1
)
y′′ − xy′ + ya2 = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
−x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− x

(
∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
a2 = 0 (1)

Which simplifies to

(2)
∞∑

n =2

(−xnann(n−1))+
(

∞∑
n=2

n(n−1) anxn−2

)
+

∞∑
n =1

(−nanx
n)+

(
∞∑
n=0

a2anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−nanx
n) +

(
∞∑
n=0

a2anx
n

)
= 0

n = 0 gives
a0a

2 + 2a2 = 0

a2 = −a0a
2

2

n = 1 gives
a1a

2 − a1 + 6a3 = 0

Which after substituting earlier equations, simplifies to

a3 = −1
6a1a

2 + 1
6a1

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− nan + ana
2 = 0

Solving for an+2, gives

(5)an+2 = − an(a2 − n2)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

a2a
2 − 4a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
1
24a

4a0 −
1
6a0a

2
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For n = 3 the recurrence equation gives

a3a
2 − 9a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
1
120a

4a1 −
1
12a1a

2 + 3
40a1

For n = 4 the recurrence equation gives

a4a
2 − 16a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 1
720a

6a0 +
1
36a

4a0 −
4
45a0a

2

For n = 5 the recurrence equation gives

a5a
2 − 25a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = − 1
5040a

6a1 +
1
144a

4a1 −
37
720a1a

2 + 5
112a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0a
2x2

2 +
(
−1
6a1a

2 + 1
6a1
)
x3

+
(

1
24a

4a0 −
1
6a0a

2
)
x4 +

(
1
120a

4a1 −
1
12a1a

2 + 3
40a1

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− a2x2

2 +
(

1
24a

4 − 1
6a

2
)
x4
)
a0

+
(
x+

(
−a2

6 + 1
6

)
x3 +

(
1
120a

4 − 1
12a

2 + 3
40

)
x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− a2x2

2 +
(

1
24a

4 − 1
6a

2
)
x4
)
c1

+
(
x+

(
−a2

6 + 1
6

)
x3 +

(
1
120a

4 − 1
12a

2 + 3
40

)
x5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

2a
2x2 + 1

24a
4x4 − 1

6a
2x4 − 1

720x
6a6 + 1

36x
6a4 − 4

45a
2x6
)
y(0)

+
(
x− 1

6a
2x3 + 1

6x
3 + 1

120a
4x5 − 1

12a
2x5 + 3

40x
5
)
y′(0) +O

(
x6)

(2)
y =

(
1− a2x2

2 +
(

1
24a

4 − 1
6a

2
)
x4
)
c1

+
(
x+

(
−a2

6 + 1
6

)
x3 +

(
1
120a

4 − 1
12a

2 + 3
40

)
x5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

2a
2x2 + 1

24a
4x4 − 1

6a
2x4 − 1

720x
6a6 + 1

36x
6a4 − 4

45a
2x6
)
y(0)

+
(
x− 1

6a
2x3 + 1

6x
3 + 1

120a
4x5 − 1

12a
2x5 + 3

40x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− a2x2

2 +
(

1
24a

4 − 1
6a

2
)
x4
)
c1

+
(
x+

(
−a2

6 + 1
6

)
x3 +

(
1
120a

4 − 1
12a

2 + 3
40

)
x5
)
c2 +O

(
x6)

Verified OK.

360



3.15.1 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − xy′ + ya2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − xy′

x2−1 +
a2y
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + xy′

x2−1 −
a2y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x
x2−1 , P3(x) = − a2

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
y′′(x2 − 1) + xy′ − ya2 = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
− a2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(−a1+k(1 + k + r) (1 + 2k + 2r)− ak(a+ k + r) (a− k − r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2
(1
2 + k + r

)
(1 + k + r) a1+k − ak(a+ k + r) (a− k − r) = 0

• Recursion relation that defines series solution to ODE
a1+k = −ak(a+k+r)(a−k−r)

(1+2k+2r)(1+k+r)

• Recursion relation for r = 0
a1+k = −ak(a+k)(a−k)

(1+2k)(1+k)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, a1+k = −ak(a+k)(a−k)

(1+2k)(1+k)

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , a1+k = −ak(a+k)(a−k)
(1+2k)(1+k)

]
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• Recursion relation for r = 1
2

a1+k = −ak
(
a+k+ 1

2
)(
a−k− 1

2
)

(2+2k)
( 3
2+k

)
• Solution for r = 1

2[
y(u) =

∞∑
k=0

aku
k+ 1

2 , a1+k = −ak
(
a+k+ 1

2
)(
a−k− 1

2
)

(2+2k)
( 3
2+k

)
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k+
1
2 , a1+k = −ak

(
a+k+ 1

2
)(
a−k− 1

2
)

(2+2k)
( 3
2+k

)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

bk(x+ 1)k
)
+
(

∞∑
k=0

ck(x+ 1)k+
1
2

)
, bk+1 = − bk(a+k)(a−k)

(1+2k)(k+1) , ck+1 = − ck
(
a+k+ 1

2
)(
a−k− 1

2
)

(2+2k)
( 3
2+k

)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 71� �
Order:=6;
dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+a^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x2a2

2 + a2(a2 − 4)x4

24

)
y(0)

+
(
x− (a2 − 1)x3

6 + (a4 − 10a2 + 9)x5

120

)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 88� �
AsymptoticDSolveValue[(1-x^2)*y''[x]-x*y'[x]+a^2*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
a4x5

120 − a2x5

12 − a2x3

6 + 3x5

40 + x3

6 + x

)
+ c1

(
a4x4

24 − a2x4

6 − a2x2

2 + 1
)
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4 Chapter VII, Solutions in series. Examples XV.
page 194

4.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
4.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
4.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
4.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
4.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
4.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
4.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
4.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
4.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
4.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
4.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
4.13 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
4.14 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
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4.1 problem 1
4.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 374

Internal problem ID [4711]
Internal file name [OUTPUT/4204_Sunday_June_05_2022_12_40_52_PM_93659287/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1
x
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Table 57: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
(

∞∑
n=0

(n+r) (n+r−1) anxn+r−2

)
x+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
(1 + r)2
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Which for the root r = 0 becomes
a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)2 −1

For n = 2, using the above recursive equation gives

a2 =
1

(1 + r)2 (r + 2)2

Which for the root r = 0 becomes
a2 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)2 −1

a2
1

(1+r)2(r+2)2
1
4

For n = 3, using the above recursive equation gives

a3 = − 1
(1 + r)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes

a3 = − 1
36

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)2 −1

a2
1

(1+r)2(r+2)2
1
4

a3 − 1
(1+r)2(r+2)2(r+3)2 − 1

36
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For n = 4, using the above recursive equation gives

a4 =
1

(1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2

Which for the root r = 0 becomes

a4 =
1
576

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)2 −1

a2
1

(1+r)2(r+2)2
1
4

a3 − 1
(1+r)2(r+2)2(r+3)2 − 1

36

a4
1

(1+r)2(r+2)2(r+3)2(r+4)2
1

576

For n = 5, using the above recursive equation gives

a5 = − 1
(1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2

Which for the root r = 0 becomes

a5 = − 1
14400

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)2 −1

a2
1

(1+r)2(r+2)2
1
4

a3 − 1
(1+r)2(r+2)2(r+3)2 − 1

36

a4
1

(1+r)2(r+2)2(r+3)2(r+4)2
1

576

a5 − 1
(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2 − 1

14400
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 − 1

(1+r)2 −1 2
(1+r)3 2

b2
1

(1+r)2(r+2)2
1
4

−4r−6
(1+r)3(r+2)3 −3

4

b3 − 1
(1+r)2(r+2)2(r+3)2 − 1

36
6r2+24r+22

(1+r)3(r+2)3(r+3)3
11
108

b4
1

(1+r)2(r+2)2(r+3)2(r+4)2
1

576
−8r3−60r2−140r−100

(1+r)3(r+2)3(r+3)3(r+4)3 − 25
3456

b5 − 1
(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2 − 1

14400
10r4+120r3+510r2+900r+548

(1+r)3(r+2)3(r+3)3(r+4)3(r+5)3
137

432000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x)

+ 2x− 3x2

4 + 11x3

108 − 25x4

3456 + 137x5

432000 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Verification of solutions

y = c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Verified OK.
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4.1.1 Maple step by step solution

Let’s solve
y′′x+ y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x
− y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+1)2

• Recursion relation for r = 0
ak+1 = − ak

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 − 1

14400x
5 +O

(
x6))

+
(
2x− 3

4x
2 + 11

108x
3 − 25

3456x
4 + 137

432000x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 111� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
− x5

14400 + x4

576 − x3

36 + x2

4 − x+ 1
)
+ c2

(
137x5

432000 − 25x4

3456 + 11x3

108 − 3x2

4

+
(
− x5

14400 + x4

576 − x3

36 + x2

4 − x+ 1
)
log(x) + 2x

)
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4.2 problem 2
4.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 384

Internal problem ID [4712]
Internal file name [OUTPUT/4205_Sunday_June_05_2022_12_41_00_PM_56004095/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + y′ + pxy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + pxy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = p
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Table 59: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = p

singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + pxy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ px

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

p x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

p x1+n+ran =
∞∑
n=2

pan−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

pan−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + pan−2 = 0

Solving for an from recursive equation (4) gives

an = − pan−2

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −pan−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
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For n = 2, using the above recursive equation gives

a2 = − p

(r + 2)2

Which for the root r = 0 becomes
a2 = −p

4
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − p

(r+2)2 −p
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − p

(r+2)2 −p
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
p2

(r + 2)2 (r + 4)2

Which for the root r = 0 becomes
a4 =

p2

64
And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − p

(r+2)2 −p
4

a3 0 0

a4
p2

(r+2)2(r+4)2
p2

64

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − p

(r+2)2 −p
4

a3 0 0

a4
p2

(r+2)2(r+4)2
p2

64

a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− p x2

4 + p2x4

64 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r
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And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − p

(r+2)2 −p
4

2p
(r+2)3

p
4

b3 0 0 0 0

b4
p2

(r+2)2(r+4)2
p2

64 − 4p2(3+r)
(r+2)3(r+4)3 −3p2

128

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− p x2

4 + p2x4

64 +O
(
x6)) ln (x) + p x2

4 − 3p2x4

128 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− p x2

4 + p2x4

64 +O
(
x6))

+ c2

((
1− p x2

4 + p2x4

64 +O
(
x6)) ln (x) + p x2

4 − 3p2x4

128 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− p x2

4 + p2x4

64 +O
(
x6))

+ c2

((
1− p x2

4 + p2x4

64 +O
(
x6)) ln (x) + p x2

4 − 3p2x4

128 +O
(
x6))

383



Summary
The solution(s) found are the following

(1)
y = c1

(
1− p x2

4 + p2x4

64 +O
(
x6))

+ c2

((
1− p x2

4 + p2x4

64 +O
(
x6)) ln (x) + p x2

4 − 3p2x4

128 +O
(
x6))

Verification of solutions

y = c1

(
1− p x2

4 + p2x4

64 +O
(
x6))

+ c2

((
1− p x2

4 + p2x4

64 +O
(
x6)) ln (x) + p x2

4 − 3p2x4

128 +O
(
x6))

Verified OK.

4.2.1 Maple step by step solution

Let’s solve
y′′x+ y′ + pxy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
− py

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ py = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = p

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
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Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + pxy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + pak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0
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• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + pak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + pak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − pak

(k+2)2

• Recursion relation for r = 0
ak+2 = − pak

(k+2)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − pak

(k+2)2 , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+p*x*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− 1

4p x
2 + 1

64p
2x4 +O

(
x6))+

(
p

4x
2 − 3

128p
2x4 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 72� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+p*x*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
p2x4

64 − px2

4 + 1
)
+ c2

(
− 3
128p

2x4 +
(
p2x4

64 − px2

4 + 1
)
log(x) + px2

4

)
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4.3 problem 3
4.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 399

Internal problem ID [4713]
Internal file name [OUTPUT/4206_Sunday_June_05_2022_12_41_08_PM_96597171/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x
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Table 61: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = − an−1

(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
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For n = 1, using the above recursive equation gives

a1 = − 1
(1 + r) r

Which for the root r = 1 becomes
a1 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

For n = 2, using the above recursive equation gives

a2 =
1

(1 + r)2 r (2 + r)

Which for the root r = 1 becomes
a2 =

1
12

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

For n = 3, using the above recursive equation gives

a3 = − 1
(1 + r)2 r (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = − 1
144

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

For n = 4, using the above recursive equation gives

a4 =
1

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 =
1

2880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

For n = 5, using the above recursive equation gives

a5 = − 1
(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 1
86400

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

a5 − 1
(1+r)2r(2+r)2(3+r)2(4+r)2(5+r) − 1

86400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
(1 + r) r

Therefore

lim
r→r2

− 1
(1 + r) r = lim

r→0
− 1
(1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2 +

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

(
2y′1(x)

x
− y1(x)

x2

)
xC +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(

∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x−

(
∞∑
n=0

anx
n+r1

))
C

x

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x−

(
∞∑
n=0

anx
n+1
))

C

x

+
(

∞∑
n=0

x−2+nbnn(n− 1)
)
x+

(
∞∑
n=0

bnx
n

)
= 0

Which simplifies to(
∞∑
n=0

2C xnan(n+ 1)
)

+
∞∑

n =0

(−C xnan) +
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0

(2A)

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(−C xnan) =
∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

bnx
n =

∞∑
n=1

bn−1x
n−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

5Ca2 + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 −
7
6 = 0

Solving the above for b3 gives
b3 =

7
36

For n = 4, Eq (2B) gives
7Ca3 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 +
35
144 = 0
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Solving the above for b4 gives
b4 = − 35

1728
For n = 5, Eq (2B) gives

9Ca4 + b4 + 20b5 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 −
101
4320 = 0

Solving the above for b5 gives
b5 =

101
86400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Hence the final solution is
y = yh

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Verification of solutions

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))

Verified OK.

4.3.1 Maple step by step solution

Let’s solve
y′′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = − ak

(k+1)k
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak
(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − ak

(k+1)k , bk+1 = − bk
(k+2)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 − 1
144x

3 + 1
2880x

4 − 1
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 + 1

144x
4 − 1

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 7

36x
3 − 35

1728x
4 + 101

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
144x

(
x3 − 12x2 + 72x− 144

)
log(x)

+ −47x4 + 480x3 − 2160x2 + 1728x+ 1728
1728

)
+ c2

(
x5

2880 −
x4

144 +
x3

12 −
x2

2 +x

)
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4.4 problem 4
4.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 404

Internal problem ID [4714]
Internal file name [OUTPUT/4207_Sunday_June_05_2022_12_41_17_PM_88905230/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

x3y′′ − (2x− 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x3y′′ + (1− 2x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = −2x− 1
x3
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Table 63: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = −2x−1
x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

4.4.1 Maple step by step solution

Let’s solve
y′′x3 + (1− 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (2x−1)y

x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − (2x−1)y

x3 = 0

• Multiply by denominators of the ODE
y′′x3 − (2x− 1) y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)
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◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE(
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
x3 − (2x− 1) y(t) = 0

• Simplify

x
(

d2

dt2
y(t)− d

dt
y(t)

)
+ (1− 2x) y(t) = 0

• Isolate 2nd derivative
d2

dt2
y(t) = (2x−1)y(t)

x
+ d

dt
y(t)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)− d

dt
y(t)− (2x−1)y(t)

x
= 0

• Characteristic polynomial of ODE
r2 − r − 2x−1

x
= 0

• Factor the characteristic polynomial
r2x−rx−2x+1

x
= 0

• Roots of the characteristic polynomial

r =
(

x+
√
9x2−4x
2x ,−−x+

√
9x2−4x
2x

)
• 1st solution of the ODE

y1(t) = e
(
x+
√

9x2−4x
)
t

2x

• 2nd solution of the ODE

y2(t) = e−
(
−x+

√
9x2−4x

)
t

2x

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
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y(t) = c1e
(
x+
√

9x2−4x
)
t

2x + c2e−
(
−x+

√
9x2−4x

)
t

2x

• Change variables back using t = ln (x)

y = c1e
(
x+
√

9x2−4x
)
ln(x)

2x + c2e−
(
−x+

√
9x2−4x

)
ln(x)

2x

• Simplify

y = c1x
x+
√

9x2−4x
2x + c2x

−−x+
√

9x2−4x
2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^3*diff(y(x),x$2)-(2*x-1)*y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 222� �
AsymptoticDSolveValue[x^3*y''[x]-(2*x-1)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1e

− 2i√
xx3/4

(
−1159525191825ix9/2

8796093022208 + 218243025ix7/2

4294967296 − 405405ix5/2

8388608 + 3465ix3/2

8192

+ 75369137468625x5

281474976710656 − 41247931725x4

549755813888 + 11486475x3

268435456 − 45045x2

524288 − 945x
512 − 35i

√
x

16

+1
)
+c2e

2i√
xx3/4

(
1159525191825ix9/2

8796093022208 − 218243025ix7/2

4294967296 +405405ix5/2

8388608 − 3465ix3/2

8192 +75369137468625x5

281474976710656 − 41247931725x4

549755813888 +11486475x3

268435456 − 45045x2

524288 − 945x
512 +35i

√
x

16 +1
)
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4.5 problem 5
4.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 421

Internal problem ID [4715]
Internal file name [OUTPUT/4208_Sunday_June_05_2022_12_41_22_PM_94141571/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x(x+ 1) y′ + (3x− 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x2 + x

)
y′ + (3x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 1
x

q(x) = 3x− 1
x2
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Table 65: Table p(x), q(x) singularites.

p(x) = x+1
x

singularity type
x = 0 “regular”

q(x) = 3x−1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x2 + x

)
y′ + (3x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (3x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=1

3an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − a0x
r = 0

Or
(xrr(−1 + r) + xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + an(n+ r) + 3an−1 − an = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n+ r + 2)
n2 + 2nr + r2 − 1 (4)

Which for the root r = 1 becomes

an = −an−1(n+ 3)
n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−3− r

r (r + 2)
Which for the root r = 1 becomes

a1 = −4
3

And the table now becomes

n an,r an

a0 1 1
a1

−3−r
r(r+2) −4

3

For n = 2, using the above recursive equation gives

a2 =
4 + r

(r + 1) r (r + 2)
Which for the root r = 1 becomes

a2 =
5
6

And the table now becomes

n an,r an

a0 1 1
a1

−3−r
r(r+2) −4

3

a2
4+r

(r+1)r(r+2)
5
6
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For n = 3, using the above recursive equation gives

a3 =
−5− r

(r + 2)2 (r + 1) r

Which for the root r = 1 becomes
a3 = −1

3
And the table now becomes

n an,r an

a0 1 1
a1

−3−r
r(r+2) −4

3

a2
4+r

(r+1)r(r+2)
5
6

a3
−5−r

(r+2)2(r+1)r −1
3

For n = 4, using the above recursive equation gives

a4 =
6 + r

(3 + r) (r + 2)2 (r + 1) r

Which for the root r = 1 becomes
a4 =

7
72

And the table now becomes

n an,r an

a0 1 1
a1

−3−r
r(r+2) −4

3

a2
4+r

(r+1)r(r+2)
5
6

a3
−5−r

(r+2)2(r+1)r −1
3

a4
6+r

(3+r)(r+2)2(r+1)r
7
72

For n = 5, using the above recursive equation gives

a5 =
−7− r

(4 + r) (3 + r) (r + 2)2 (r + 1) r
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Which for the root r = 1 becomes

a5 = − 1
45

And the table now becomes

n an,r an

a0 1 1
a1

−3−r
r(r+2) −4

3

a2
4+r

(r+1)r(r+2)
5
6

a3
−5−r

(r+2)2(r+1)r −1
3

a4
6+r

(3+r)(r+2)2(r+1)r
7
72

a5
−7−r

(4+r)(3+r)(r+2)2(r+1)r − 1
45

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 4 + r

(r + 1) r (r + 2)

Therefore

lim
r→r2

4 + r

(r + 1) r (r + 2) = lim
r→−1

4 + r

(r + 1) r (r + 2)
= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ + (x2 + x) y′ + (3x− 1) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (3x− 1)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0
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Which can be written as

(7)

((
x2y′′1(x) +

(
x2 + x

)
y′1(x) + (3x− 1) y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (x2 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (3x− 1)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
x2 + x

)
y′1(x) + (3x− 1) y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (x2 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (3x− 1)

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+

(
∞∑
n=0

anx
n+r1

)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
x2 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (3x− 1)
(

∞∑
n=0

bnx
n+r2

)
= 0
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Since r1 = 1 and r2 = −1 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(1 + n)
)
x+

(
∞∑
n=0

anx
1+n

)
x

)
C

+
(

∞∑
n=0

x−3+nbn(n− 1) (−2 + n)
)
x2

+
(
x2 + x

)( ∞∑
n=0

x−2+nbn(n− 1)
)

+ (3x− 1)
(

∞∑
n=0

bnx
n−1

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C x1+nan(1 + n)
)

+
(

∞∑
n=0

C xn+2an

)

+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))
+
(

∞∑
n=0

xnbn(n− 1)
)

+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
(

∞∑
n=0

3bnxn

)
+

∞∑
n =0

(
−bnx

n−1) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x1+nan(1 + n) =
∞∑
n=2

2Ca−2+n(n− 1)xn−1

∞∑
n =0

C xn+2an =
∞∑
n=3

Ca−3+nx
n−1

∞∑
n =0

xnbn(n− 1) =
∞∑
n=1

bn−1(−2 + n)xn−1

∞∑
n =0

3bnxn =
∞∑
n=1

3bn−1x
n−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=2

2Ca−2+n(n− 1)xn−1

)
+
(

∞∑
n=3

Ca−3+nx
n−1

)

+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))
+
(

∞∑
n=1

bn−1(−2 + n)xn−1

)

+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
(

∞∑
n=1

3bn−1x
n−1

)
+

∞∑
n =0

(
−bnx

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

2b0 − b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2− b1 = 0

Solving the above for b1 gives
b1 = 2

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 6 = 0

Which is solved for C. Solving for C gives

C = −3

For n = 3, Eq (2B) gives

(a0 + 4a1)C + 4b2 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

13 + 3b3 = 0

Solving the above for b3 gives
b3 = −13

3
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For n = 4, Eq (2B) gives

(a1 + 6a2)C + 5b3 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−98
3 + 8b4 = 0

Solving the above for b4 gives
b4 =

49
12

For n = 5, Eq (2B) gives

(a2 + 8a3)C + 6b4 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

30 + 15b5 = 0

Solving the above for b5 gives
b5 = −2

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −3 and all bn, then the second solution becomes

y2(x) = (−3)
(
x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6))) ln (x)

+
1 + 2x− 13x3

3 + 49x4

12 − 2x5 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6))

+ c2

(
(−3)

(
x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6))) ln (x)

+
1 + 2x− 13x3

3 + 49x4

12 − 2x5 +O(x6)
x

)
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Hence the final solution is

y = yh

= c1x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6))

+ c2

(
−3x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6)) ln (x)

+
1 + 2x− 13x3

3 + 49x4

12 − 2x5 +O(x6)
x

)

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6))

+ c2

(
−3x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6)) ln (x)

+
1 + 2x− 13x3

3 + 49x4

12 − 2x5 +O(x6)
x

)
Verification of solutions

y = c1x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6))

+ c2

(
−3x

(
1− 4x

3 + 5x2

6 − x3

3 + 7x4

72 − x5

45 +O
(
x6)) ln (x)

+
1 + 2x− 13x3

3 + 49x4

12 − 2x5 +O(x6)
x

)

Verified OK.
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4.5.1 Maple step by step solution

Let’s solve
x2y′′ + (x2 + x) y′ + (3x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (3x−1)y
x2 − (x+1)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
x

+ (3x−1)y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x
, P3(x) = 3x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x+ 1) y′ + (3x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

421



xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1) + ak−1(k + 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 1) + ak−1(k + 2 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k + r) + ak(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+3)

(k+2+r)(k+r)

• Recursion relation for r = −1
ak+1 = − ak(k+2)

(k+1)(k−1)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 1
ak+1 = − ak(k+2)

(k+1)(k−1)

• Recursion relation for r = 1
ak+1 = − ak(k+4)

(k+3)(k+1)

• Solution for r = 1
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[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak(k+4)

(k+3)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 65� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(x+1)*diff(y(x),x)+(3*x-1)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

2(1− 4
3x+ 5

6x
2 − 1

3x
3 + 7

72x
4 − 1

45x
5 +O(x6)

)
+ c2

(
ln (x) (6x2 − 8x3 + 5x4 − 2x5 +O(x6)) +

(
−2− 4x+ 5x2 + 2x3 − 4x4 + 7

3x
5 +O(x6)

))
x

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x^2*y''[x]+x*(x+1)*y'[x]+(3*x-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
13x4 − 12x3 − 4x2 + 8x+ 4

4x − 1
2x
(
5x2 − 8x+ 6

)
log(x)

)
+ c2

(
7x5

72 − x4

3 + 5x3

6 − 4x2

3 + x

)
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4.6 problem 6
4.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 436

Internal problem ID [4716]
Internal file name [OUTPUT/4209_Sunday_June_05_2022_12_41_32_PM_77856753/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
−x2 + x

)
y′′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x (x− 1)
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Table 67: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x(x− 1)− y = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)−

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0
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Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)− an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(n2 + 2nr + r2 − 3n− 3r + 3)
(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = an−1(n2 − n+ 1)
(n+ 1)n (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
r2 − r + 1
(1 + r) r

Which for the root r = 1 becomes
a1 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1

r2−r+1
(1+r)r

1
2

For n = 2, using the above recursive equation gives

a2 =
r4 + r2 + 1

(1 + r)2 r (2 + r)

Which for the root r = 1 becomes
a2 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1

r2−r+1
(1+r)r

1
2

a2
r4+r2+1

(1+r)2r(2+r)
1
4

For n = 3, using the above recursive equation gives

a3 =
r6 + 3r5 + 4r4 + 3r3 + 4r2 + 3r + 3

(1 + r)2 r (2 + r)2 (3 + r)
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Which for the root r = 1 becomes
a3 =

7
48

And the table now becomes

n an,r an

a0 1 1
a1

r2−r+1
(1+r)r

1
2

a2
r4+r2+1

(1+r)2r(2+r)
1
4

a3
r6+3r5+4r4+3r3+4r2+3r+3

(1+r)2r(2+r)2(3+r)
7
48

For n = 4, using the above recursive equation gives

a4 =
r8 + 8r7 + 26r6 + 44r5 + 47r4 + 44r3 + 46r2 + 36r + 21

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 =
91
960

And the table now becomes

n an,r an

a0 1 1
a1

r2−r+1
(1+r)r

1
2

a2
r4+r2+1

(1+r)2r(2+r)
1
4

a3
r6+3r5+4r4+3r3+4r2+3r+3

(1+r)2r(2+r)2(3+r)
7
48

a4
r8+8r7+26r6+44r5+47r4+44r3+46r2+36r+21

(1+r)2r(2+r)2(3+r)2(4+r)
91
960

For n = 5, using the above recursive equation gives

a5 =
(r2 + r + 1) (r2 − r + 1) (r2 + 3r + 3) (r2 + 5r + 7) (r2 + 7r + 13)

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 =
637
9600
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And the table now becomes

n an,r an

a0 1 1
a1

r2−r+1
(1+r)r

1
2

a2
r4+r2+1

(1+r)2r(2+r)
1
4

a3
r6+3r5+4r4+3r3+4r2+3r+3

(1+r)2r(2+r)2(3+r)
7
48

a4
r8+8r7+26r6+44r5+47r4+44r3+46r2+36r+21

(1+r)2r(2+r)2(3+r)2(4+r)
91
960

a5
(
r2+r+1

)(
r2−r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)
(1+r)2r(2+r)2(3+r)2(4+r)2(5+r)

637
9600

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= r2 − r + 1
(1 + r) r

Therefore

lim
r→r2

r2 − r + 1
(1 + r) r = lim

r→0

r2 − r + 1
(1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode −y′′x(x− 1)− y = 0 gives

−

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

− Cy1(x) ln (x)−
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(−y′′1(x)x(x− 1)− y1(x)) ln (x)−

(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)

)
C

−

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x−1)−

(
∞∑
n=0

bnx
n+r2

)
=0

But since y1(x) is a solution to the ode, then

−y′′1(x)x(x− 1)− y1(x) = 0
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Eq (7) simplifes to

(8)
−
(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)C

−

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x−1)−

(
∞∑
n=0

bnx
n+r2

)
=0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−2x(x− 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
+ (x− 1)

(
∞∑
n=0

anx
n+r1

))
C

x

+
(−x3 + x2)

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
−
(

∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
−2x(x− 1)

(
∞∑
n=0

xnan(n+ 1)
)
+ (x− 1)

(
∞∑
n=0

anx
n+1
))

C

x

+
(−x3 + x2)

(
∞∑
n=0

x−2+nbnn(n− 1)
)
−
(

∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−2C xn+1an(n+ 1)

)
+
(

∞∑
n=0

2C xnan(n+ 1)
)

+
(

∞∑
n=0

C xn+1an

)
+

∞∑
n =0

(−Canx
n) +

∞∑
n =0

(−xnbnn(n− 1))

+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
∞∑

n =0

(−bnx
n) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(
−2C xn+1an(n+ 1)

)
=

∞∑
n=2

(
−2Ca−2+n(n− 1)xn−1)

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

C xn+1an =
∞∑
n=2

Ca−2+nx
n−1

∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

(−xnbnn(n− 1)) =
∞∑
n=1

(
−(n− 1) bn−1(−2 + n)xn−1)

∞∑
n =0

(−bnx
n) =

∞∑
n=1

(
−bn−1x

n−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

∞∑
n =2

(
−2Ca−2+n(n−1)xn−1)+( ∞∑

n=1

2Can−1nxn−1

)
+
(

∞∑
n=2

Ca−2+nx
n−1

)

+
∞∑

n =1

(
−Can−1x

n−1)+ ∞∑
n =1

(
−(n− 1) bn−1(−2 + n)xn−1)

+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
∞∑

n =1

(
−bn−1x

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C − 1 = 0

Which is solved for C. Solving for C gives

C = 1
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For n = 2, Eq (2B) gives

(−a0 + 3a1)C − b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
2 + 2b2 = 0

Solving the above for b2 gives
b2 = −1

4
For n = 3, Eq (2B) gives

(−3a1 + 5a2)C − 3b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
2 + 6b3 = 0

Solving the above for b3 gives
b3 = − 1

12
For n = 4, Eq (2B) gives

(−5a2 + 7a3)C − 7b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

17
48 + 12b4 = 0

Solving the above for b4 gives
b4 = − 17

576
For n = 5, Eq (2B) gives

(−7a3 + 9a4)C − 13b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

311
1440 + 20b5 = 0

Solving the above for b5 gives
b5 = − 311

28800
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Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(
x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6))) ln (x)

+ 1− x2

4 − x3

12 − 17x4

576 − 311x5

28800 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6))

+ c2

(
1
(
x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6))) ln (x) + 1− x2

4

− x3

12 − 17x4

576 − 311x5

28800 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6))

+ c2

(
x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6)) ln (x) + 1− x2

4 − x3

12 − 17x4

576

− 311x5

28800 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6))

+ c2

(
x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6)) ln (x) + 1− x2

4 − x3

12

− 17x4

576 − 311x5

28800 +O
(
x6))
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Verification of solutions

y = c1x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6))

+ c2

(
x

(
1 + x

2 + x2

4 + 7x3

48 + 91x4

960 + 637x5

9600 +O
(
x6)) ln (x) + 1− x2

4 − x3

12

− 17x4

576 − 311x5

28800 +O
(
x6))

Verified OK.

4.6.1 Maple step by step solution

Let’s solve
−y′′x(x− 1)− y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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y′′x(x− 1) + y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k + r) + ak(k2 + 2kr + r2 − k − r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
(k2 + (2r − 1) k + r2 − r + 1) ak − ak+1(k + 1 + r) (k + r) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2−k−r+1

)
ak

(k+1+r)(k+r)

• Recursion relation for r = 0

ak+1 =
(
k2−k+1

)
ak

(k+1)k

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 =

(
k2−k+1

)
ak

(k+1)k

]
• Recursion relation for r = 1

ak+1 =
(
k2+k+1

)
ak

(k+2)(k+1)

• Solution for r = 1
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[
y =

∞∑
k=0

akx
k+1, ak+1 =

(
k2+k+1

)
ak

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 =

(
k2−k+1

)
ak

(k+1)k , bk+1 =
(
k2+k+1

)
bk

(k+2)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve((x-x^2)*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1 + 1

2x+ 1
4x

2 + 7
48x

3 + 91
960x

4 + 637
9600x

5 +O
(
x6))

+ c2

(
ln (x)

(
x+ 1

2x
2 + 1

4x
3 + 7

48x
4 + 91

960x
5 +O

(
x6))

+
(
1− 1

4x
2 − 1

12x
3 − 17

576x
4 − 311

28800x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 87� �
AsymptoticDSolveValue[(x-x^2)*y''[x]-y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
48x

(
7x3 + 12x2 + 24x+ 48

)
log(x)

+ 1
576
(
−185x4−336x3−720x2−1152x+576

))
+c2

(
91x5

960 + 7x4

48 + x3

4 + x2

2 +x

)
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4.7 problem 7
4.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 448

Internal problem ID [4717]
Internal file name [OUTPUT/4210_Sunday_June_05_2022_12_41_42_PM_96059987/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_elliptic , _class_I ]]

x
(
−x2 + 1

)
y′′ +

(
−3x2 + 1

)
y′ − xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x3 + x
)
y′′ +

(
−3x2 + 1

)
y′ − xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x2 − 1
x (x2 − 1)

q(x) = 1
x2 − 1
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Table 69: Table p(x), q(x) singularites.

p(x) = 3x2−1
x(x2−1)

singularity type
x = −1 “regular”
x = 0 “regular”
x = 1 “regular”

q(x) = 1
x2−1

singularity type
x = −1 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x
(
x2 − 1

)
+
(
−3x2 + 1

)
y′ − xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x
(
x2 − 1

)
+
(
−3x2 + 1

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− x

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3x1+n+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1)

∞∑
n =0

(
−3x1+n+ran(n+ r)

)
=

∞∑
n=2

(
−3an−2(n+ r − 2)xn+r−1)

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=2

(
−an−2x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =2

(
−3an−2(n+ r− 2)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =2

(
−an−2x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0
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When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
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n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)−an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
− 3an−2(n+ r − 2) + an(n+ r)− an−2 = 0

Solving for an from recursive equation (4) gives

an = an−2(n2 + 2nr + r2 − 2n− 2r + 1)
n2 + 2nr + r2

(4)

Which for the root r = 0 becomes

an = an−2(n− 1)2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
(1 + r)2

(r + 2)2

Which for the root r = 0 becomes
a2 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0

a2
(1+r)2

(r+2)2
1
4
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0

a2
(1+r)2

(r+2)2
1
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
(1 + r)2 (r + 3)2

(r + 2)2 (r + 4)2

Which for the root r = 0 becomes
a4 =

9
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0

a2
(1+r)2

(r+2)2
1
4

a3 0 0

a4
(1+r)2(r+3)2

(r+2)2(r+4)2
9
64

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0

a2
(1+r)2

(r+2)2
1
4

a3 0 0

a4
(1+r)2(r+3)2

(r+2)2(r+4)2
9
64

a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x2

4 + 9x4

64 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0

b2
(1+r)2

(r+2)2
1
4

2+2r
(r+2)3

1
4

b3 0 0 0 0

b4
(1+r)2(r+3)2

(r+2)2(r+4)2
9
64

4(1+r)(r+3)
(
r2+5r+7

)
(r+2)3(r+4)3

21
128

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1 + x2

4 + 9x4

64 +O
(
x6)) ln (x) + x2

4 + 21x4

128 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x2

4 + 9x4

64 +O
(
x6))+ c2

((
1 + x2

4 + 9x4

64 +O
(
x6)) ln (x) + x2

4 + 21x4

128

+O
(
x6))

Hence the final solution is

y = yh

= c1

(
1+ x2

4 + 9x4

64 +O
(
x6))+c2

((
1+ x2

4 + 9x4

64 +O
(
x6)) ln (x)+ x2

4 + 21x4

128 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1 + x2

4 + 9x4

64 +O
(
x6))

+ c2

((
1 + x2

4 + 9x4

64 +O
(
x6)) ln (x) + x2

4 + 21x4

128 +O
(
x6))

Verification of solutions

y= c1

(
1+x2

4 +9x4

64 +O
(
x6))+c2

((
1+x2

4 +9x4

64 +O
(
x6)) ln (x)+x2

4 +21x4

128 +O
(
x6))

Verified OK.
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4.7.1 Maple step by step solution

Let’s solve
−y′′x(x2 − 1) + (−3x2 + 1) y′ − xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x2−1 −

(
3x2−1

)
y′

x(x2−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
3x2−1

)
y′

x(x2−1) + y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x2−1
x(x2−1) , P3(x) = 1

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
y′′x(x2 − 1) + (3x2 − 1) y′ + xy = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 3u2 + 2u)
(

d2

du2y(u)
)
+ (3u2 − 6u+ 2)

(
d
du
y(u)

)
+ (u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r2u−1+r +
(
2a1(1 + r)2 − a0(3r2 + 3r + 1)

)
ur +

(
∞∑
k=1

(
2ak+1(k + r + 1)2 − ak(3k2 + 6kr + 3r2 + 3k + 3r + 1) + ak−1(k + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
2a1(1 + r)2 − a0(3r2 + 3r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−3ak + ak−1 + 2ak+1) k2 + (−3ak + 4ak+1) k − ak + 2ak+1 = 0

• Shift index using k− >k + 1
(−3ak+1 + ak + 2ak+2) (k + 1)2 + (−3ak+1 + 4ak+2) (k + 1)− ak+1 + 2ak+2 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −k2ak−3k2ak+1+2kak−9kak+1+ak−7ak+1
2(k2+4k+4)

• Recursion relation for r = 0

ak+2 = −k2ak−3k2ak+1+2kak−9kak+1+ak−7ak+1
2(k2+4k+4)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−3k2ak+1+2kak−9kak+1+ak−7ak+1

2(k2+4k+4) , 2a1 − a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−3k2ak+1+2kak−9kak+1+ak−7ak+1
2(k2+4k+4) , 2a1 − a0 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
<- elliptic successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 41� �
Order:=6;
dsolve(x*(1-x^2)*diff(y(x),x$2)+(1-3*x^2)*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1 + 1

4x
2 + 9

64x
4 +O

(
x6))+

(
1
4x

2 + 21
128x

4 +O
(
x6)) c2
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x*(1-x^2)*y''[x]+(1-3*x^2)*y'[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
9x4

64 + x2

4 + 1
)
+ c2

(
21x4

128 + x2

4 +
(
9x4

64 + x2

4 + 1
)
log(x)

)
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4.8 problem 8
Internal problem ID [4718]
Internal file name [OUTPUT/4211_Sunday_June_05_2022_12_41_52_PM_98307444/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

Unable to solve or complete the solution.

y′′ + ay

x
3
2
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′ + ay

x
3
2
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = a

x
3
2
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Table 71: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = a

x
3
2

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : []

Irregular singular points : [0,∞]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(diff(y(x),x$2)+a/x^(3/2)*y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 576� �
AsymptoticDSolveValue[y''[x]+a/x^(3/2)*y[x]==0,y[x],{x,0,5}]� �
y(x) →

−16x5(126a10c2 log(x)− 252πa10c1 + 504γa10c2 − 1423a10c2 + 252a10c2 log(a) + 504a10c2 log(2))
281302875π

+32x9/2(1260a9c2 log(x)− 2520πa9c1 + 5040γa9c2 − 13663a9c2 + 2520a9c2 log(a) + 5040a9c2 log(2))
281302875π

− 8x4(140a8c2 log(x)− 280πa8c1 + 560γa8c2 − 1447a8c2 + 280a8c2 log(a) + 560a8c2 log(2))
496125π

+128x7/2(105a7c2 log(x)− 210πa7c1 + 420γa7c2 − 1024a7c2 + 210a7c2 log(a) + 420a7c2 log(2))
496125π

− 32x3(15a6c2 log(x)− 30πa6c1 + 60γa6c2 − 136a6c2 + 30a6c2 log(a) + 60a6c2 log(2))
2025π

+32x5/2(30a5c2 log(x)− 60πa5c1 + 120γa5c2 − 247a5c2 + 60a5c2 log(a) + 120a5c2 log(2))
675π

− 8x2(6a4c2 log(x)− 12πa4c1 + 24γa4c2 − 43a4c2 + 12a4c2 log(a) + 24a4c2 log(2))
9π

+ 32x3/2(3a3c2 log(x)− 6πa3c1 + 12γa3c2 − 17a3c2 + 6a3c2 log(a) + 12a3c2 log(2))
9π

− 8x(a2c2 log(x)− 2πa2c1 + 4γa2c2 − 3a2c2 + 2a2c2 log(a) + 4a2c2 log(2))
π

+ 8ac2
√
x

π
+ 2c2

π
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4.9 problem 9
4.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 467

Internal problem ID [4719]
Internal file name [OUTPUT/4212_Sunday_June_05_2022_12_41_57_PM_92909546/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ −
(
x2 + 4x

)
y′ + 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
−x2 − 4x

)
y′ + 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x+ 4
x

q(x) = 4
x2
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Table 72: Table p(x), q(x) singularites.

p(x) = −x+4
x

singularity type
x = 0 “regular”

q(x) = 4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
−x2 − 4x

)
y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 − 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 4
(

∞∑
n=0

anx
n+r

)
= 0

456



Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r

)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 4xra0r + 4a0xr = 0

Or
(xrr(−1 + r)− 4xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 5r + 4

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 5r + 4 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 4
r2 = 1

Since a0 6= 0 then the indicial equation becomes(
r2 − 5r + 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x4

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+4

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
1+n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1)− 4an(n+ r) + 4an = 0

Solving for an from recursive equation (4) gives

an = an−1

n+ r − 4 (4)
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Which for the root r = 4 becomes

an = an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

−3 + r

Which for the root r = 4 becomes
a1 = 1

And the table now becomes

n an,r an

a0 1 1
a1

1
−3+r

1

For n = 2, using the above recursive equation gives

a2 =
1

(−3 + r) (−2 + r)

Which for the root r = 4 becomes
a2 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1

1
−3+r

1

a2
1

(−3+r)(−2+r)
1
2
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For n = 3, using the above recursive equation gives

a3 =
1

(−3 + r) (−2 + r) (−1 + r)

Which for the root r = 4 becomes
a3 =

1
6

And the table now becomes

n an,r an

a0 1 1
a1

1
−3+r

1

a2
1

(−3+r)(−2+r)
1
2

a3
1

(−3+r)(−2+r)(−1+r)
1
6

For n = 4, using the above recursive equation gives

a4 =
1

(−3 + r) (−2 + r) (−1 + r) r

Which for the root r = 4 becomes
a4 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1

1
−3+r

1

a2
1

(−3+r)(−2+r)
1
2

a3
1

(−3+r)(−2+r)(−1+r)
1
6

a4
1

(−3+r)(−2+r)(−1+r)r
1
24

For n = 5, using the above recursive equation gives

a5 =
1

r5 − 5r4 + 5r3 + 5r2 − 6r
Which for the root r = 4 becomes

a5 =
1
120
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And the table now becomes

n an,r an

a0 1 1
a1

1
−3+r

1

a2
1

(−3+r)(−2+r)
1
2

a3
1

(−3+r)(−2+r)(−1+r)
1
6

a4
1

(−3+r)(−2+r)(−1+r)r
1
24

a5
1

r5−5r4+5r3+5r2−6r
1

120

Using the above table, then the solution y1(x) is

y1(x) = x4(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x4

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 1
(−3 + r) (−2 + r) (−1 + r)

Therefore

lim
r→r2

1
(−3 + r) (−2 + r) (−1 + r) = lim

r→1

1
(−3 + r) (−2 + r) (−1 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

461



Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ + (−x2 − 4x) y′ + 4y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x2 − 4x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ 4Cy1(x) ln (x) + 4
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
−x2 − 4x

)
y′1(x) + 4y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (−x2 − 4x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x2 − 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 4
(

∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
−x2 − 4x

)
y′1(x) + 4y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−x2 − 4x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x2 − 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 4
(

∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− (5 + x)

(
∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
−x2 − 4x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 4
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 4 and r2 = 1 then the above becomes

(10)

(
2
(

∞∑
n=0

x3+nan(n+ 4)
)
x− (5 + x)

(
∞∑
n=0

anx
n+4

))
C

+
(

∞∑
n=0

xn−1bn(1 + n)n
)
x2

+
(
−x2 − 4x

)( ∞∑
n=0

xnbn(1 + n)
)

+ 4
(

∞∑
n=0

bnx
1+n

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C xn+4an(n+ 4)
)

+
∞∑

n =0

(
−5C xn+4an

)
+

∞∑
n =0

(
−C xn+5an

)
+
(

∞∑
n=0

nx1+nbn(1 + n)
)

+
∞∑

n =0

(
−xn+2bn(1 + n)

)
+

∞∑
n =0

(
−4x1+nbn(1 + n)

)
+
(

∞∑
n=0

4bnx1+n

)
= 0

The next step is to make all powers of x be 1 + n in each summation term. Going
over each summation term above with power of x in it which is not already x1+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+4an(n+ 4) =
∞∑
n=3

2Ca−3+n(1 + n)x1+n

∞∑
n =0

(
−5C xn+4an

)
=

∞∑
n=3

(
−5Ca−3+nx

1+n
)

∞∑
n =0

(
−C xn+5an

)
=

∞∑
n=4

(
−Ca−4+nx

1+n
)

∞∑
n =0

(
−xn+2bn(1 + n)

)
=

∞∑
n=1

(
−bn−1nx1+n

)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to 1 + n.

(2B)

(
∞∑
n=3

2Ca−3+n(1 + n)x1+n

)
+

∞∑
n =3

(
−5Ca−3+nx

1+n
)

+
∞∑

n =4

(
−Ca−4+nx

1+n
)
+
(

∞∑
n=0

nx1+nbn(1 + n)
)

+
∞∑

n =1

(
−bn−1nx1+n

)
+

∞∑
n =0

(
−4x1+nbn(1 + n)

)
+
(

∞∑
n=0

4bnx1+n

)
= 0
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For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−2b1 − b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2b1 − 1 = 0

Solving the above for b1 gives
b1 = −1

2
For n = 2, Eq (2B) gives

−2b2 − 2b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2b2 + 1 = 0

Solving the above for b2 gives
b2 =

1
2

For n = N , where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives

3C − 3
2 = 0

Which is solved for C. Solving for C gives

C = 1
2

For n = 4, Eq (2B) gives

(−a0 + 5a1)C − 4b3 + 4b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2 + 4b4 = 0

Solving the above for b4 gives
b4 = −1

2
For n = 5, Eq (2B) gives

(−a1 + 7a2)C − 5b4 + 10b5 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15
4 + 10b5 = 0

Solving the above for b5 gives
b5 = −3

8
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 1
2 and all bn, then the second solution becomes

y2(x) =
1
2

(
x4
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))) ln (x)

+ x

(
1− x

2 + x2

2 − x4

2 − 3x5

8 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
4
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

(
1
2

(
x4
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))) ln (x)

+ x

(
1− x

2 + x2

2 − x4

2 − 3x5

8 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
4
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

x4
(
1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
)
ln (x)

2

+ x

(
1− x

2 + x2

2 − x4

2 − 3x5

8 +O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1x
4
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

x4
(
1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
)
ln (x)

2

+ x

(
1− x

2 + x2

2 − x4

2 − 3x5

8 +O
(
x6))

Verification of solutions

y = c1x
4
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

x4
(
1 + x+ x2

2 + x3

6 + x4

24 +
x5

120 +O(x6)
)
ln (x)

2

+ x

(
1− x

2 + x2

2 − x4

2 − 3x5

8 +O
(
x6))

Verified OK.

4.9.1 Maple step by step solution

Let’s solve
x2y′′ + (−x2 − 4x) y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
x2 + (x+4)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x+4)y′
x

+ 4y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+4
x
, P3(x) = 4

x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − x(x+ 4) y′ + 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−4 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 4)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 4}

• Each term in the series must be 0, giving the recursion relation
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(k + r − 1) (ak(k + r − 4)− ak−1) = 0
• Shift index using k− >k + 1

(k + r) (ak+1(k − 3 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k−3+r

• Recursion relation for r = 1
ak+1 = ak

k−2

• Series not valid for r = 1 , division by 0 in the recursion relation at k = 2
ak+1 = ak

k−2

• Recursion relation for r = 4
ak+1 = ak

k+1

• Solution for r = 4[
y =

∞∑
k=0

akx
k+4, ak+1 = ak

k+1

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 61� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-(x^2+4*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
c1x

3
(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 +O

(
x6))

+ c2
(
ln (x)

(
6x3 + 6x4 + 3x5 +O

(
x6))

+
(
12− 6x+ 6x2 + 11x3 + 5x4 + x5 +O

(
x6))))x

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 74� �
AsymptoticDSolveValue[x^2*y''[x]-(x^2+4*x)*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
1
2(x+1)x4 log(x)+ 1

4
(
x4+3x3+2x2−2x+4

)
x

)
+c2

(
x8

24+
x7

6 +x6

2 +x5+x4
)
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4.10 problem 10
4.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 479

Internal problem ID [4720]
Internal file name [OUTPUT/4213_Sunday_June_05_2022_12_42_07_PM_46948170/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_elliptic , _class_II ]]

x
(
−x2 + 1

)
y′′ +

(
−x2 + 1

)
y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x3 + x
)
y′′ +

(
−x2 + 1

)
y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = − 1
x2 − 1
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Table 74: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = − 1
x2−1

singularity type
x = −1 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−1, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x
(
x2 − 1

)
+
(
−x2 + 1

)
y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x
(
x2 − 1

)
+
(
−x2 + 1

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r

− 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+
(

∞∑
n=0

(n

+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1)

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=2

(
−an−2(n+ r − 2)xn+r−1)

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−an−2(n+ r − 2)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0
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When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
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n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)−an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
− an−2(n+ r − 2) + an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = an−2(n2 + 2nr + r2 − 4n− 4r + 3)
n2 + 2nr + r2

(4)

Which for the root r = 0 becomes

an = an−2(n2 − 4n+ 3)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
r2 − 1
(r + 2)2

Which for the root r = 0 becomes
a2 = −1

4
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

r2−1
(r+2)2 −1

4
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

r2−1
(r+2)2 −1

4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
(r + 3) (−1 + r) (1 + r)2

(r + 2)2 (r + 4)2

Which for the root r = 0 becomes

a4 = − 3
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

r2−1
(r+2)2 −1

4

a3 0 0

a4
(r+3)(−1+r)(1+r)2

(r+2)2(r+4)2 − 3
64

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

r2−1
(r+2)2 −1

4

a3 0 0

a4
(r+3)(−1+r)(1+r)2

(r+2)2(r+4)2 − 3
64

a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

4 − 3x4

64 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

r2−1
(r+2)2 −1

4
4r+2
(r+2)3

1
4

b3 0 0 0 0

b4
(r+3)(−1+r)(1+r)2

(r+2)2(r+4)2 − 3
64

8r4+52r3+108r2+68r+4
(r+2)3(r+4)3

1
128

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x2

4 − 3x4

64 +O
(
x6)) ln (x) + x2

4 + x4

128 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1−x2

4 − 3x4

64 +O
(
x6))+c2

((
1−x2

4 − 3x4

64 +O
(
x6)) ln (x)+x2

4 + x4

128+O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− x2

4 − 3x4

64 +O
(
x6))+c2

((
1− x2

4 − 3x4

64 +O
(
x6)) ln (x)+ x2

4 + x4

128 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1− x2

4 − 3x4

64 +O
(
x6))

+ c2

((
1− x2

4 − 3x4

64 +O
(
x6)) ln (x) + x2

4 + x4

128 +O
(
x6))

Verification of solutions

y= c1

(
1− x2

4 − 3x4

64 +O
(
x6))+c2

((
1− x2

4 − 3x4

64 +O
(
x6)) ln (x)+ x2

4 + x4

128+O
(
x6))

Verified OK.
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4.10.1 Maple step by step solution

Let’s solve
−y′′x(x2 − 1) + (−x2 + 1) y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

x2−1 −
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− y

x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = − 1

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
y′′x(x2 − 1) + (x2 − 1) y′ − xy = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 3u2 + 2u)
(

d2

du2y(u)
)
+ (u2 − 2u)

(
d
du
y(u)

)
+ (−u+ 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1
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um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 1..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r(−1 + r)u−1+r + (2a1(1 + r) r − a0(3r2 − r − 1))ur +
(

∞∑
k=1

(2ak+1(k + r + 1) (k + r)− ak(3k2 + 6kr + 3r2 − k − r − 1) + ak−1(k + r) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
2a1(1 + r) r − a0(3r2 − r − 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−3ak + ak−1 + 2ak+1) k2 + ((−6ak + 2ak−1 + 4ak+1) r + ak − 2ak−1 + 2ak+1) k + (−3ak + ak−1 + 2ak+1) r2 + (ak − 2ak−1 + 2ak+1) r + ak = 0

• Shift index using k− >k + 1
(−3ak+1 + ak + 2ak+2) (k + 1)2 + ((−6ak+1 + 2ak + 4ak+2) r + ak+1 − 2ak + 2ak+2) (k + 1) + (−3ak+1 + ak + 2ak+2) r2 + (ak+1 − 2ak + 2ak+2) r + ak+1 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−3k2ak+1+2krak−6krak+1+r2ak−3r2ak+1−5kak+1−5rak+1−ak−ak+1
2(k2+2kr+r2+3k+3r+2)
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• Recursion relation for r = 0

ak+2 = −k2ak−3k2ak+1−5kak+1−ak−ak+1
2(k2+3k+2)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−3k2ak+1−5kak+1−ak−ak+1

2(k2+3k+2) , a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−3k2ak+1−5kak+1−ak−ak+1
2(k2+3k+2) , a0 = 0

]
• Recursion relation for r = 1

ak+2 = −k2ak−3k2ak+1+2kak−11kak+1−9ak+1
2(k2+5k+6)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+2 = −k2ak−3k2ak+1+2kak−11kak+1−9ak+1

2(k2+5k+6) , 4a1 − a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k+1 , ak+2 = −k2ak−3k2ak+1+2kak−11kak+1−9ak+1
2(k2+5k+6) , 4a1 − a0 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+1
)
, ak+2 = −k2ak−3k2ak+1−5kak+1−ak−ak+1

2(k2+3k+2) , a0 = 0, bk+2 = −k2bk−3k2bk+1+2kbk−11kbk+1−9bk+1
2(k2+5k+6) , 4b1 − b0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
<- elliptic successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
Order:=6;
dsolve(x*(1-x^2)*diff(y(x),x$2)+(1-x^2)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− 1

4x
2 − 3

64x
4 +O

(
x6))+

(
1
4x

2 + 1
128x

4 +O
(
x6)) c2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x*(1-x^2)*y''[x]+(1-x^2)*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−3x4

64 − x2

4 + 1
)
+ c2

(
x4

128 + x2

4 +
(
−3x4

64 − x2

4 + 1
)
log(x)

)
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4.11 problem 11
4.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 496

Internal problem ID [4721]
Internal file name [OUTPUT/4214_Sunday_June_05_2022_12_42_14_PM_60822516/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Jacobi]

4x(1− x) y′′ − 4y′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−4x2 + 4x
)
y′′ − 4y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x (x− 1)

q(x) = 1
4x (x− 1)
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Table 76: Table p(x), q(x) singularites.

p(x) = 1
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 1
4x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−4y′′x(x− 1)− 4y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−4
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

− 4
(

∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−4xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4(n+ r) anxn+r−1)+ ∞∑

n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−4xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−4an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−4an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4(n+ r) anxn+r−1)+ ∞∑

n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+r−1an(n+ r) (n+ r − 1)− 4(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

4x−1+ra0r(−1 + r)− 4ra0x−1+r = 0

Or (
4x−1+rr(−1 + r)− 4r x−1+r

)
a0 = 0

485



Since a0 6= 0 then the above simplifies to

4r x−1+r(−2 + r) = 0

Since the above is true for all x then the indicial equation becomes

4r(−2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 0

Since a0 6= 0 then the indicial equation becomes

4r x−1+r(−2 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−4an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)− 4an(n+ r)− an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(4n2 + 8nr + 4r2 − 12n− 12r + 9)
4n2 + 8nr + 4r2 − 8n− 8r (4)

Which for the root r = 2 becomes

an =
(
n+ 1

2

)2
an−1

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
(2r − 1)2

4r2 − 4
Which for the root r = 2 becomes

a1 =
3
4

And the table now becomes

n an,r an

a0 1 1

a1
(2r−1)2
4r2−4

3
4

For n = 2, using the above recursive equation gives

a2 =
16r4 − 8r2 + 1

16r4 + 32r3 − 16r2 − 32r
Which for the root r = 2 becomes

a2 =
75
128
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And the table now becomes

n an,r an

a0 1 1

a1
(2r−1)2
4r2−4

3
4

a2
16r4−8r2+1

16r4+32r3−16r2−32r
75
128

For n = 3, using the above recursive equation gives

a3 =
(2r + 1)2 (2r + 3)2 (2r − 1)2

64r (−1 + r) (r + 2) (1 + r)2 (r + 3)

Which for the root r = 2 becomes

a3 =
245
512

And the table now becomes

n an,r an

a0 1 1

a1
(2r−1)2
4r2−4

3
4

a2
16r4−8r2+1

16r4+32r3−16r2−32r
75
128

a3
(2r+1)2(2r+3)2(2r−1)2

64r(−1+r)(r+2)(1+r)2(r+3)
245
512

For n = 4, using the above recursive equation gives

a4 =
(2r + 1)2 (2r + 3)2 (2r − 1)2 (4r2 + 20r + 25)
256r (−1 + r) (r + 2)2 (1 + r)2 (r + 3) (r + 4)

Which for the root r = 2 becomes

a4 =
6615
16384

And the table now becomes
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n an,r an

a0 1 1

a1
(2r−1)2
4r2−4

3
4

a2
16r4−8r2+1

16r4+32r3−16r2−32r
75
128

a3
(2r+1)2(2r+3)2(2r−1)2

64r(−1+r)(r+2)(1+r)2(r+3)
245
512

a4
(2r+1)2(2r+3)2(2r−1)2

(
4r2+20r+25

)
256r(−1+r)(r+2)2(1+r)2(r+3)(r+4)

6615
16384

For n = 5, using the above recursive equation gives

a5 =
(2r + 7)2 (2r + 1)2 (2r + 3)2 (2r − 1)2 (2r + 5)2

1024r (−1 + r) (r + 2)2 (1 + r)2 (r + 3)2 (r + 4) (r + 5)

Which for the root r = 2 becomes

a5 =
22869
65536

And the table now becomes

n an,r an

a0 1 1

a1
(2r−1)2
4r2−4

3
4

a2
16r4−8r2+1

16r4+32r3−16r2−32r
75
128

a3
(2r+1)2(2r+3)2(2r−1)2

64r(−1+r)(r+2)(1+r)2(r+3)
245
512

a4
(2r+1)2(2r+3)2(2r−1)2

(
4r2+20r+25

)
256r(−1+r)(r+2)2(1+r)2(r+3)(r+4)

6615
16384

a5
(2r+7)2(2r+1)2(2r+3)2(2r−1)2(2r+5)2

1024r(−1+r)(r+2)2(1+r)2(r+3)2(r+4)(r+5)
22869
65536

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 16r4 − 8r2 + 1
16r4 + 32r3 − 16r2 − 32r

Therefore

lim
r→r2

16r4 − 8r2 + 1
16r4 + 32r3 − 16r2 − 32r = lim

r→0

16r4 − 8r2 + 1
16r4 + 32r3 − 16r2 − 32r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode −4y′′x(x− 1)− 4y′ − y = 0 gives

−4
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)− 4Cy′1(x) ln (x)

− 4Cy1(x)
x

− 4
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
− Cy1(x) ln (x)−

(
∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(−4y′′1(x)x(x− 1)− 4y′1(x)− y1(x)) ln (x)− 4

(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)

− 4y1(x)
x

)
C − 4

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

− 4
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
−

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

−4y′′1(x)x(x− 1)− 4y′1(x)− y1(x) = 0

Eq (7) simplifes to

(8)

(
−4
(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)− 4y1(x)

x

)
C

− 4
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

− 4
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
−

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−8x(x− 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
+ 4(−2 + x)

(
∞∑
n=0

anx
n+r1

))
C

x

+
(−4x3 + 4x2)

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
− 4
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x−

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 2 and r2 = 0 then the above becomes

(10)

(
−8x(x− 1)

(
∞∑
n=0

x1+nan(n+ 2)
)
+ 4(−2 + x)

(
∞∑
n=0

anx
n+2
))

C

x

+
(−4x3 + 4x2)

(
∞∑
n=0

x−2+nbnn(n− 1)
)
− 4
(

∞∑
n=0

xn−1bnn

)
x−

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−8C xn+2an(n+ 2)

)
+
(

∞∑
n=0

8C x1+nan(n+ 2)
)

+
∞∑

n =0

(
−8C x1+nan

)
+
(

∞∑
n=0

4C xn+2an

)
+

∞∑
n =0

(−4xnbnn(n− 1))

+
(

∞∑
n=0

4nxn−1bn(n− 1)
)

+
∞∑

n =0

(
−4xn−1bnn

)
+

∞∑
n =0

(−bnx
n) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−8C xn+2an(n+ 2)

)
=

∞∑
n=3

(
−8Can−3(n− 1)xn−1)

∞∑
n =0

8C x1+nan(n+ 2) =
∞∑
n=2

8Ca−2+nnxn−1
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∞∑
n =0

(
−8C x1+nan

)
=

∞∑
n=2

(
−8Ca−2+nx

n−1)
∞∑

n =0

4C xn+2an =
∞∑
n=3

4Can−3x
n−1

∞∑
n =0

(−4xnbnn(n− 1)) =
∞∑
n=1

(
−4(n− 1) bn−1(−2 + n)xn−1)

∞∑
n =0

(−bnx
n) =

∞∑
n=1

(
−bn−1x

n−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

∞∑
n =3

(
−8Can−3(n− 1)xn−1)+( ∞∑

n=2

8Ca−2+nnxn−1

)

+
∞∑

n =2

(
−8Ca−2+nx

n−1)+( ∞∑
n=3

4Can−3x
n−1

)

+
∞∑

n =1

(
−4(n− 1) bn−1(−2 + n)xn−1)+( ∞∑

n=0

4nxn−1bn(n− 1)
)

+
∞∑

n =0

(
−4xn−1bnn

)
+

∞∑
n =1

(
−bn−1x

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−4b1 − b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b1 − 1 = 0

Solving the above for b1 gives
b1 = −1

4
For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

8C + 1
4 = 0
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Which is solved for C. Solving for C gives

C = − 1
32

For n = 3, Eq (2B) gives

(−12a0 + 16a1)C − 9b2 + 12b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives

(−20a1 + 24a2)C − 25b3 + 32b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15
512 + 32b4 = 0

Solving the above for b4 gives
b4 = − 15

16384
For n = 5, Eq (2B) gives

(−28a2 + 32a3)C − 49b4 + 60b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1295
16384 + 60b5 = 0

Solving the above for b5 gives
b5 = − 259

196608
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = − 1
32 and all bn, then the second solution becomes

y2(x) = − 1
32

(
x2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O
(
x6))) ln (x)

+ 1− x

4 − 15x4

16384 − 259x5

196608 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O
(
x6))

+ c2

(
− 1
32

(
x2
(
1+ 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O
(
x6))) ln (x)

+ 1− x

4 − 15x4

16384 − 259x5

196608 +O
(
x6))

Hence the final solution is

y = yh

= c1x
2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O
(
x6))

+ c2

−
x2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O(x6)
)
ln (x)

32 + 1− x

4

− 15x4

16384 − 259x5

196608 +O
(
x6)

Summary
The solution(s) found are the following

(1)

y = c1x
2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O
(
x6))

+ c2

−
x2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O(x6)
)
ln (x)

32 + 1− x

4

− 15x4

16384 − 259x5

196608 +O
(
x6)
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Verification of solutions

y = c1x
2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O
(
x6))

+ c2

−
x2
(
1 + 3x

4 + 75x2

128 + 245x3

512 + 6615x4

16384 + 22869x5

65536 +O(x6)
)
ln (x)

32 + 1− x

4

− 15x4

16384 − 259x5

196608 +O
(
x6)

Verified OK.

4.11.1 Maple step by step solution

Let’s solve
−4y′′x(x− 1)− 4y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

4x(x−1) −
y′

x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x(x−1) +
y

4x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
x(x−1) , P3(x) = 1

4x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators
4y′′x(x− 1) + 4y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−4a0r(−2 + r)x−1+r +
(

∞∑
k=0

(
−4ak+1(k + 1 + r) (k + r − 1) + ak(2k + 2r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−4r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
−4ak+1(k + 1 + r) (k + r − 1) + ak(2k + 2r − 1)2 = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak(2k+2r−1)2
4(k+1+r)(k+r−1)

• Recursion relation for r = 0

ak+1 = ak(2k−1)2
4(k+1)(k−1)
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• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1

ak+1 = ak(2k−1)2
4(k+1)(k−1)

• Recursion relation for r = 2

ak+1 = ak(2k+3)2
4(k+3)(k+1)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = ak(2k+3)2

4(k+3)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 60� �
Order:=6;
dsolve(4*x*(1-x)*diff(y(x),x$2)-4*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1 + 3

4x+ 75
128x

2 + 245
512x

3 + 6615
16384x

4 + 22869
65536x

5 +O
(
x6))

+ c2

(
ln (x)

(
1
16x

2 + 3
64x

3 + 75
2048x

4 + 245
8192x

5 +O
(
x6))

+
(
−2 + 1

2x+ 1
2x

2 + 3
8x

3 + 2415
8192x

4 + 23779
98304x

5 +O
(
x6)))

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 86� �
AsymptoticDSolveValue[4*x*(1-x)*y''[x]-4*y'[x]-y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
135x4 + 192x3 + 256x2 − 4096x+ 16384

16384 − x2(75x2 + 96x+ 128) log(x)
4096

)
+ c2

(
6615x6

16384 + 245x5

512 + 75x4

128 + 3x3

4 + x2
)
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4.12 problem 12
Internal problem ID [4722]
Internal file name [OUTPUT/4215_Sunday_June_05_2022_12_42_24_PM_92371578/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

x3y′′ + y = x
3
2

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x3y′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x3
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Table 78: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
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7 Solution by Maple� �
Order:=6;
dsolve(x^3*diff(y(x),x$2)+y(x)=x^(3/2),y(x),type='series',x=0);� �

No solution found

3 Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 688� �
AsymptoticDSolveValue[x^3*y''[x]+y[x]==x^(3/2),y[x],{x,0,5}]� �
y(x)

→
e

2i√
xx3/4

(
468131288625ix9/2

8796093022208 − 66891825ix7/2

4294967296 + 72765ix5/2

8388608 − 105ix3/2

8192 + 33424574007825x5

281474976710656 − 14783093325x4

549755813888 + 2837835x3

268435456 −
4725x2

524288 +
15x
512 +

3i
√
x

16 + 1
)(

e
− 2i√

x 4
√
x
(
−2540267624594700x11/2 + 14482858554964800x9/2 − 6169315551759360x7/2 + 4596814259896320x5/2 − 9826098960138240x3/2 − 14606538841419525ix6 + 20856934180882800ix5 − 9106700860857600ix4 + 4828156832378880ix3 − 5650801088593920ix2 + 28971502421409792ix+ 263808651263737856

√
x+ 2547645096841445376i

)
− (2547645096841445376− 2547645096841445376i)

√
πerf

(
1+i
4
√
x

))
1801439850948198400

+
e
− 2i√

xx3/4
(
−468131288625ix9/2

8796093022208 + 66891825ix7/2

4294967296 − 72765ix5/2

8388608 + 105ix3/2

8192 + 33424574007825x5

281474976710656 − 14783093325x4

549755813888 + 2837835x3

268435456 −
4725x2

524288 +
15x
512 −

3i
√
x

16 + 1
)(

e
2i√
x 4
√
x
(
−2540267624594700x11/2 + 14482858554964800x9/2 − 6169315551759360x7/2 + 4596814259896320x5/2 − 9826098960138240x3/2 + 14606538841419525ix6 − 20856934180882800ix5 + 9106700860857600ix4 − 4828156832378880ix3 + 5650801088593920ix2 − 28971502421409792ix+ 263808651263737856

√
x− 2547645096841445376i

)
− (2547645096841445376− 2547645096841445376i)

√
πerfi

(
1+i
4
√
x

))
1801439850948198400

+c1e
− 2i√

xx3/4
(
−468131288625ix9/2

8796093022208 +66891825ix7/2

4294967296 − 72765ix5/2

8388608 +105ix3/2

8192 +33424574007825x5

281474976710656 − 14783093325x4

549755813888 + 2837835x3

268435456−
4725x2

524288+
15x
512−

3i
√
x

16 +1
)
+c2e

2i√
xx3/4

(
468131288625ix9/2

8796093022208 − 66891825ix7/2

4294967296 +72765ix5/2

8388608 − 105ix3/2

8192 +33424574007825x5

281474976710656 − 14783093325x4

549755813888 + 2837835x3

268435456−
4725x2

524288+
15x
512 +

3i
√
x

16 +1
)
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4.13 problem 13
Internal problem ID [4723]
Internal file name [OUTPUT/4216_Sunday_June_05_2022_12_42_30_PM_62461942/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

2x2y′′ − (2 + 3x) y′ + (2x− 1) y
x

=
√
x

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ + (−3x− 2) y′ +
(
2− 1

x

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2 + 3x
2x2

q(x) = 2x− 1
2x3
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Table 79: Table p(x), q(x) singularites.

p(x) = −2+3x
2x2

singularity type
x = 0 “irregular”

q(x) = 2x−1
2x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)-(3*x+2)*diff(y(x),x)+(2*x-1)/x*y(x)=x^(1/2),y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.158 (sec). Leaf size: 222� �
AsymptoticDSolveValue[2*x^2*y''[x]-(3*x+2)*y'[x]+(2*x-1)/x*y[x]==x^(1/2),y[x],{x,0,5}]� �
y(x) → 1

256e
−1/x

(
−405405x5

16 + 45045x4

16 − 693x3

2 + 189x2

4 − 7x

+1
)
x4

(
2e 1

x (15663375x7 + 20072325x6 + 10329540x5 + 4131816x4 + 2754544x3 + 5509088x2 − 64x− 64)
x3/2

− 11018112
√
πerfi

(
1√
x

))

+c2e
−1/x

(
−405405x5

16 +45045x4

16 − 693x3

2 +189x2

4 −7x+1
)
x4+

(5x
2 + 1

) (
−15015x6

64 + 693x5

20 − 189x4

32 + 7x3

6 − x2

4

)
√
x

+
c1
(5x

2 + 1
)

√
x
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4.14 problem 14
Internal problem ID [4724]
Internal file name [OUTPUT/4217_Sunday_June_05_2022_12_42_35_PM_77828568/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XV. page 194
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

(
−x2 + x

)
y′′ + 3y′ + 2y = 3x2

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ + 3y′ + 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 3
x (x− 1)

q(x) = − 2
x (x− 1)
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Table 80: Table p(x), q(x) singularites.

p(x) = − 3
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = − 2
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x(x− 1) + 3y′ + 2y = 3x2

Since this is an inhomogeneous, then let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ode −y′′x(x− 1) + 3y′ + 2y = 0, and
yp is a particular solution to the inhomogeneous ode.which is found using the balance
equation generated from indicial equation

First, we solve for yh Let the solution be represented as Frobenius power series of the
form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ 2
(

∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=0

2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

2anxn+r =
∞∑
n=1

2an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+r−1) (n+r−2)xn+r−1)+( ∞∑

n=0

xn+r−1an(n+r) (n+r−1)
)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=1

2an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0
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When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −2

The corresponding balance equation is found by replacing r by m and a by c to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is (

x−1+mm(−1 +m) + 3mx−1+m
)
c0 = 3x2

This equation will used later to find the particular solution.

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2
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Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1) + 3an(n+ r) + 2an−1 = 0

Solving for an from recursive equation (4) gives

an = (n+ r − 3) an−1

n+ 2 + r
(4)

Which for the root r = 0 becomes

an = (n− 3) an−1

n+ 2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2 + r

3 + r

Which for the root r = 0 becomes
a1 = −2

3
And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3
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For n = 2, using the above recursive equation gives

a2 =
r2 − 3r + 2

(3 + r) (4 + r)

Which for the root r = 0 becomes
a2 =

1
6

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6

For n = 3, using the above recursive equation gives

a3 =
(r2 − 3r + 2) r

(4 + r) (5 + r) (3 + r)

Which for the root r = 0 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6

a3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) 0

For n = 4, using the above recursive equation gives

a4 =
(−1 + r) (−2 + r) r(1 + r)

(3 + r) (4 + r) (5 + r) (6 + r)

Which for the root r = 0 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6

a3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) 0

a4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 0

For n = 5, using the above recursive equation gives

a5 =
r5 − 5r3 + 4r

(3 + r) (4 + r) (5 + r) (6 + r) (7 + r)

Which for the root r = 0 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
3+r

−2
3

a2
r2−3r+2

(3+r)(4+r)
1
6

a3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) 0

a4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 0

a5
r5−5r3+4r

(3+r)(4+r)(5+r)(6+r)(7+r) 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 2x
3 + x2

6 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= r2 − 3r + 2
(3 + r) (4 + r)

Therefore

lim
r→r2

r2 − 3r + 2
(3 + r) (4 + r) = lim

r→−2

r2 − 3r + 2
(3 + r) (4 + r)

= 6

The limit is 6. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)−bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1) + 3(n+ r) bn + 2bn−1 = 0

Which for for the root r = −2 becomes

(4A)−bn−1(n− 3) (n− 4) + bn(n− 2) (n− 3) + 3(n− 2) bn + 2bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = (n+ r − 3) bn−1

n+ 2 + r
(5)

Which for the root r = −2 becomes

bn = (n− 5) bn−1

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−2 + r

3 + r

Which for the root r = −2 becomes

b1 = −4

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

For n = 2, using the above recursive equation gives

b2 =
r2 − 3r + 2

(3 + r) (4 + r)

Which for the root r = −2 becomes

b2 = 6

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

For n = 3, using the above recursive equation gives

b3 =
(r2 − 3r + 2) r

(4 + r) (5 + r) (3 + r)
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Which for the root r = −2 becomes

b3 = −4

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

b3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) −4

For n = 4, using the above recursive equation gives

b4 =
(r2 − 3r + 2) r(1 + r)

(5 + r) (3 + r) (4 + r) (6 + r)

Which for the root r = −2 becomes

b4 = 1

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

b3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) −4

b4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 1

For n = 5, using the above recursive equation gives

b5 =
(r2 − 3r + 2) r(1 + r) (2 + r)

(6 + r) (3 + r) (4 + r) (7 + r) (5 + r)

Which for the root r = −2 becomes

b5 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
3+r

−4

b2
r2−3r+2

(3+r)(4+r) 6

b3
(
r2−3r+2

)
r

(4+r)(5+r)(3+r) −4

b4
(−1+r)(−2+r)r(1+r)
(3+r)(4+r)(5+r)(6+r) 1

b5
(−2+r)(−1+r)r(1+r)(2+r)
(6+r)(3+r)(4+r)(7+r)(5+r) 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1− 4x+ 6x2 − 4x3 + x4 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 2x

3 + x2

6 +O
(
x6))+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))

x2

The particular solution is found by solving for c,m the balance equation(
x−1+mm(−1 +m) + 3mx−1+m

)
c0 = F

Where F (x) is the RHS of the ode. If F (x) has more than one term, then this is done for
each term one at a time and then all the particular solutions are added. The function
F (x) will be converted to series if needed. in order to solve for cn,m for each term, the
same recursive relation used to find yh(x) is used to find cn,m which is used to find
the particular solution

∑
n=0 cnx

n+m by replacing an by cn and r by m.

The following are the values of an found in terms of the indicial root r.
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a1 = (−2+r)a0
3+r

a2 = (−1+r)(−2+r)a0
(3+r)(4+r)

a3 = r(−1+r)(−2+r)a0
(3+r)(4+r)(5+r)

a4 = r(−2+r)a0
(
r2−1

)
(3+r)(4+r)(5+r)(6+r)

a5 = a0
(
r5−5r3+4r

)
(3+r)(4+r)(5+r)(6+r)(7+r)

Now we determine the particular solution yp associated with F = 3x2 by solving the
balance equation (

x−1+mm(−1 +m) + 3mx−1+m
)
c0 = 3x2

For c0 and x. This results in

c0 =
1
5

m = 3

The particular solution is therefore

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n+3

Where in the above c0 = 1
5 .

The remaining cn values are found using the same recurrence relation given in the earlier
table which was used to find the homogeneous solution but using c0 in place of a0 and
using m = 3 in place of the root of the indicial equation used to find the homogeneous
solution. By letting a0 = c0 or a0 = 1

5 and r = m or r = 3. The following table gives
the resulting cn values. These values will be used to find the particular solution. Values
of cn found not defined when doing the substitution will be discarded and not used

c0 = 1
5

c1 = 1
30

c2 = 1
105

c3 = 1
280

c4 = 1
630

c5 = 1
1260
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The particular solution is now found using

yp = xm
∞∑
n=0

cnx
n

= x3
∞∑
n=0

cnx
n

Using the values found above for cn into the above sum gives

yp = x3
(
1
5 + 1

30x+ 1
105x

2 + 1
280x

3 + 1
630x

4 + 1
1260x

5
)

= 1
5x

3 + 1
30x

4 + 1
105x

5 + 1
280x

6 + 1
630x

7 + 1
1260x

8

Adding all the above particular solution(s) gives

yp =
x3

5 + x4

30 + x5

105 + x6

280 + x7

630 + x8

1260 +O
(
x6)

Truncating the particular solution to the order of series requested gives

yp =
x3

5 + x4

30 + x5

105 +O
(
x6)

Hence the final solution is

y = yh + yp

= x3

5 + x4

30 + x5

105 +O
(
x6)+ c1

(
1− 2x

3 + x2

6 +O
(
x6))

+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))
x2

Summary
The solution(s) found are the following

(1)
y = x3

5 + x4

30 + x5

105 +O
(
x6)+ c1

(
1− 2x

3 + x2

6 +O
(
x6))

+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))
x2
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Verification of solutions

y = x3

5 + x4

30 + x5

105 +O
(
x6)+ c1

(
1− 2x

3 + x2

6 +O
(
x6))

+ c2(1− 4x+ 6x2 − 4x3 + x4 +O(x6))
x2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
Order:=6;
dsolve((x-x^2)*diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=3*x^2,y(x),type='series',x=0);� �

y(x) = c1

(
1− 2

3x+ 1
6x

2 +O
(
x6))+ c2(−2 + 8x− 12x2 + 8x3 − 2x4 +O(x6))

x2

+ x3
(
1
5 + 1

30x+ 1
105x

2 +O
(
x3))

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 91� �
AsymptoticDSolveValue[(x-x^2)*y''[x]+3*y'[x]+2*y[x]==3*x^2,y[x],{x,0,5}]� �

y(x) → c1

(
x2

6 − 2x
3 + 1

)
+ c2(1− 4x)

x2 +
(1− 4x)

(
−5x6

6 − 3x5

10

)
x2

+
(
x2

6 − 2x
3 + 1

)(
−5x6 − 9x5

5 + x3

2

)
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5.1 problem 5
5.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 532

Internal problem ID [4725]
Internal file name [OUTPUT/4218_Sunday_June_05_2022_12_42_42_PM_72682560/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XVI. page 220
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Jacobi]

x(1− x) y′′ +
(
3
2 − 2x

)
y′ − y

4 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ +

(
3
2 − 2x

)
y′ − y

4 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −3 + 4x
2x (x− 1)

q(x) = 1
4x (x− 1)
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Table 81: Table p(x), q(x) singularites.

p(x) = −3+4x
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 1
4x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x(x− 1) +
(
3
2 − 2x

)
y′ − y

4 = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+
(
3
2 − 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
4 = 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

)
+
(

∞∑
n=0

3(n+ r) anxn+r−1

2

)
+

∞∑
n =0

(
−anx

n+r

4

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−2xn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−anx

n+r

4

)
=

∞∑
n=1

(
−an−1x

n+r−1

4

)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =1

(
−2an−1(n+ r− 1)xn+r−1)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

2

)
+

∞∑
n =1

(
−an−1x

n+r−1

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1

2 = 0
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When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r

2 = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

2

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r

(
1
2 + r

)
= 0

Since the above is true for all x then the indicial equation becomes

r2 + 1
2r = 0

Solving for r gives the roots of the indicial equation as

r1 = 0

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes

r x−1+r

(
1
2 + r

)
= 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) =
∞∑
n=0

bnx
n− 1

2
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We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)

− 2an−1(n+ r − 1) + 3an(n+ r)
2 − an−1

4 = 0

Solving for an from recursive equation (4) gives

an = an−1(4n2 + 8nr + 4r2 − 4n− 4r + 1)
4n2 + 8nr + 4r2 + 2n+ 2r (4)

Which for the root r = 0 becomes

an = (2n− 1)2 an−1

4n2 + 2n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
(1 + 2r)2

4r2 + 10r + 6
Which for the root r = 0 becomes

a1 =
1
6

And the table now becomes

n an,r an

a0 1 1

a1
(1+2r)2

4r2+10r+6
1
6

For n = 2, using the above recursive equation gives

a2 =
(1 + 2r)2 (2r + 3)

8r3 + 44r2 + 76r + 40
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Which for the root r = 0 becomes
a2 =

3
40

And the table now becomes

n an,r an

a0 1 1

a1
(1+2r)2

4r2+10r+6
1
6

a2
(1+2r)2(2r+3)

8r3+44r2+76r+40
3
40

For n = 3, using the above recursive equation gives

a3 =
(1 + 2r)2 (2r + 3) (2r + 5)

8 (2r2 + 13r + 21) (r2 + 3r + 2)

Which for the root r = 0 becomes

a3 =
5
112

And the table now becomes

n an,r an

a0 1 1

a1
(1+2r)2

4r2+10r+6
1
6

a2
(1+2r)2(2r+3)

8r3+44r2+76r+40
3
40

a3
(1+2r)2(2r+3)(2r+5)

8(2r2+13r+21)(r2+3r+2)
5

112

For n = 4, using the above recursive equation gives

a4 =
(1 + 2r)2 (2r + 3) (2r + 5) (2r + 7)

32r5 + 464r4 + 2560r3 + 6640r2 + 7968r + 3456

Which for the root r = 0 becomes

a4 =
35
1152

And the table now becomes
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n an,r an

a0 1 1

a1
(1+2r)2

4r2+10r+6
1
6

a2
(1+2r)2(2r+3)

8r3+44r2+76r+40
3
40

a3
(1+2r)2(2r+3)(2r+5)

8(2r2+13r+21)(r2+3r+2)
5

112

a4
(1+2r)2(2r+3)(2r+5)(2r+7)

32r5+464r4+2560r3+6640r2+7968r+3456
35

1152

For n = 5, using the above recursive equation gives

a5 =
(1 + 2r)2 (2r + 3) (2r + 5) (2r + 7) (2r + 9)

32 (2r2 + 21r + 55) (r4 + 10r3 + 35r2 + 50r + 24)

Which for the root r = 0 becomes

a5 =
63
2816

And the table now becomes

n an,r an

a0 1 1

a1
(1+2r)2

4r2+10r+6
1
6

a2
(1+2r)2(2r+3)

8r3+44r2+76r+40
3
40

a3
(1+2r)2(2r+3)(2r+5)

8(2r2+13r+21)(r2+3r+2)
5

112

a4
(1+2r)2(2r+3)(2r+5)(2r+7)

32r5+464r4+2560r3+6640r2+7968r+3456
35

1152

a5
(1+2r)2(2r+3)(2r+5)(2r+7)(2r+9)

32(2r2+21r+55)(r4+10r3+35r2+50r+24)
63

2816

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x

6 + 3x2

40 + 5x3

112 + 35x4

1152 + 63x5

2816 +O
(
x6)

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)−bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)

− 2bn−1(n+ r − 1) + 3(n+ r) bn
2 − bn−1

4 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1(4n2 + 8nr + 4r2 − 4n− 4r + 1)
4n2 + 8nr + 4r2 + 2n+ 2r (4)

Which for the root r = −1
2 becomes

bn = 2bn−1(n− 1)2

2n2 − n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
(1 + 2r)2

4r2 + 10r + 6

Which for the root r = −1
2 becomes

b1 = 0

And the table now becomes

n bn,r bn

b0 1 1

b1
(1+2r)2

4r2+10r+6 0

For n = 2, using the above recursive equation gives

b2 =
(1 + 2r)2 (2r + 3)

8r3 + 44r2 + 76r + 40
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Which for the root r = −1
2 becomes

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1

b1
(1+2r)2

4r2+10r+6 0

b2
(1+2r)2(2r+3)

8r3+44r2+76r+40 0

For n = 3, using the above recursive equation gives

b3 =
(1 + 2r)2 (2r + 3) (2r + 5)

8 (2r2 + 13r + 21) (r2 + 3r + 2)

Which for the root r = −1
2 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1

b1
(1+2r)2

4r2+10r+6 0

b2
(1+2r)2(2r+3)

8r3+44r2+76r+40 0

b3
(1+2r)2(2r+3)(2r+5)

8(2r2+13r+21)(r2+3r+2) 0

For n = 4, using the above recursive equation gives

b4 =
(1 + 2r)2 (2r + 3) (2r + 5) (2r + 7)

32r5 + 464r4 + 2560r3 + 6640r2 + 7968r + 3456

Which for the root r = −1
2 becomes

b4 = 0

And the table now becomes
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n bn,r bn

b0 1 1

b1
(1+2r)2

4r2+10r+6 0

b2
(1+2r)2(2r+3)

8r3+44r2+76r+40 0

b3
(1+2r)2(2r+3)(2r+5)

8(2r2+13r+21)(r2+3r+2) 0

b4
(1+2r)2(2r+3)(2r+5)(2r+7)

32r5+464r4+2560r3+6640r2+7968r+3456 0

For n = 5, using the above recursive equation gives

b5 =
(1 + 2r)2 (2r + 3) (2r + 5) (2r + 7) (2r + 9)

32 (2r2 + 21r + 55) (r4 + 10r3 + 35r2 + 50r + 24)
Which for the root r = −1

2 becomes

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1

b1
(1+2r)2

4r2+10r+6 0

b2
(1+2r)2(2r+3)

8r3+44r2+76r+40 0

b3
(1+2r)2(2r+3)(2r+5)

8(2r2+13r+21)(r2+3r+2) 0

b4
(1+2r)2(2r+3)(2r+5)(2r+7)

32r5+464r4+2560r3+6640r2+7968r+3456 0

b5
(1+2r)2(2r+3)(2r+5)(2r+7)(2r+9)

32(2r2+21r+55)(r4+10r3+35r2+50r+24) 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1 +O(x6)√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x

6 + 3x2

40 + 5x3

112 + 35x4

1152 + 63x5

2816 +O
(
x6))+ c2(1 +O(x6))√

x
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Hence the final solution is

y = yh

= c1

(
1 + x

6 + 3x2

40 + 5x3

112 + 35x4

1152 + 63x5

2816 +O
(
x6))+ c2(1 +O(x6))√

x

Summary
The solution(s) found are the following

(1)y = c1

(
1 + x

6 + 3x2

40 + 5x3

112 + 35x4

1152 + 63x5

2816 +O
(
x6))+ c2(1 +O(x6))√

x

Verification of solutions

y = c1

(
1 + x

6 + 3x2

40 + 5x3

112 + 35x4

1152 + 63x5

2816 +O
(
x6))+ c2(1 +O(x6))√

x

Verified OK.

5.1.1 Maple step by step solution

Let’s solve
−y′′x(x− 1) +

(3
2 − 2x

)
y′ − y

4 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (−3+4x)y′
2x(x−1) − y

4x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (−3+4x)y′
2x(x−1) + y

4x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −3+4x
2x(x−1) , P3(x) = 1

4x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x(x− 1) + (8x− 6) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0r(1 + 2r)x−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 3 + 2r) + ak(2k + 2r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

ak(2k + 2r + 1)2 − 4ak+1(k + 1 + r)
(
k + 3

2 + r
)
= 0
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• Recursion relation that defines series solution to ODE

ak+1 = ak(2k+2r+1)2
2(k+1+r)(2k+3+2r)

• Recursion relation for r = 0

ak+1 = ak(2k+1)2
2(k+1)(2k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(2k+1)2

2(k+1)(2k+3)

]
• Recursion relation for r = −1

2

ak+1 = 2akk2(
k+ 1

2
)
(2k+2)

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+1 = 2akk2(
k+ 1

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+1 = ak(2k+1)2

2(k+1)(2k+3) , bk+1 = 2bkk2(
k+ 1

2
)
(2k+2)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 34� �
Order:=6;
dsolve(x*(1-x)*diff(y(x),x$2)+(3/2-2*x)*diff(y(x),x)-1/4*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1(1 + O (x6))√

x
+ c2

(
1 + 1

6x+ 3
40x

2 + 5
112x

3 + 35
1152x

4 + 63
2816x

5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 50� �
AsymptoticDSolveValue[x*(1-x)*y''[x]+(3/2-2*x)*y'[x]-1/4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
63x5

2816 + 35x4

1152 + 5x3

112 + 3x2

40 + x

6 + 1
)
+ c2√

x
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5.2 problem 6
Internal problem ID [4726]
Internal file name [OUTPUT/4219_Sunday_June_05_2022_12_42_52_PM_2605663/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XVI. page 220
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x(1− x) y′′ + xy′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x2 + 2x
)
y′′ + xy′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1
2 (x− 1)

q(x) = 1
2x (x− 1)
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Table 83: Table p(x), q(x) singularites.

p(x) = − 1
2(x−1)

singularity type
x = 1 “regular”

q(x) = 1
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−2y′′x(x− 1) + xy′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)
+

∞∑
n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) = 0
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Or
2x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

2x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

2r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

2x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−2an−1(n+ r− 1) (n+ r− 2)+ 2an(n+ r) (n+ r− 1)+ an−1(n+ r− 1)− an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(2n2 + 4nr + 2r2 − 7n− 7r + 6)
2 (n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = an−1(2n2 − 3n+ 1)
2 (n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2r2 − 3r + 1
2 (1 + r) r

Which for the root r = 1 becomes
a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2(1+r)r 0

For n = 2, using the above recursive equation gives

a2 =
4r3 − 4r2 − r + 1
4 (1 + r)2 (2 + r)

540



Which for the root r = 1 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2(1+r)r 0

a2
4r3−4r2−r+1
4(1+r)2(2+r) 0

For n = 3, using the above recursive equation gives

a3 =
8r4 + 4r3 − 14r2 − r + 3
8 (3 + r) (2 + r)2 (1 + r)

Which for the root r = 1 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2(1+r)r 0

a2
4r3−4r2−r+1
4(1+r)2(2+r) 0

a3
8r4+4r3−14r2−r+3
8(3+r)(2+r)2(1+r) 0

For n = 4, using the above recursive equation gives

a4 =
16r5 + 48r4 − 8r3 − 72r2 + r + 15
16 (4 + r) (1 + r) (2 + r) (3 + r)2

Which for the root r = 1 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

2r2−3r+1
2(1+r)r 0

a2
4r3−4r2−r+1
4(1+r)2(2+r) 0

a3
8r4+4r3−14r2−r+3
8(3+r)(2+r)2(1+r) 0

a4
16r5+48r4−8r3−72r2+r+15
16(4+r)(1+r)(2+r)(3+r)2 0

For n = 5, using the above recursive equation gives

a5 =
32r6 + 208r5 + 320r4 − 200r3 − 502r2 + 37r + 105

32 (5 + r) (3 + r) (2 + r) (1 + r) (4 + r)2

Which for the root r = 1 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2(1+r)r 0

a2
4r3−4r2−r+1
4(1+r)2(2+r) 0

a3
8r4+4r3−14r2−r+3
8(3+r)(2+r)2(1+r) 0

a4
16r5+48r4−8r3−72r2+r+15
16(4+r)(1+r)(2+r)(3+r)2 0

a5
32r6+208r5+320r4−200r3−502r2+37r+105

32(5+r)(3+r)(2+r)(1+r)(4+r)2 0

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 2r2 − 3r + 1
2 (1 + r) r

Therefore

lim
r→r2

2r2 − 3r + 1
2 (1 + r) r = lim

r→0

2r2 − 3r + 1
2 (1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode −2y′′x(x− 1) + xy′ − y = 0 gives

−2
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

+ x

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

− Cy1(x) ln (x)−
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(−2y′′1(x)x(x− 1) + y′1(x)x− y1(x)) ln (x)− 2

(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)

+ y1(x)
)
C − 2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
−

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

−2y′′1(x)x(x− 1) + y′1(x)x− y1(x) = 0

Eq (7) simplifes to

(8)

(
−2
(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1) + y1(x)

)
C

− 2
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
−

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−4x(x− 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
+ (3x− 2)

(
∞∑
n=0

anx
n+r1

))
C

x

+
2(−x3 + x2)

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x2 −

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
−4x(x− 1)

(
∞∑
n=0

xnan(n+ 1)
)
+ (3x− 2)

(
∞∑
n=0

anx
n+1
))

C

x

+
2(−x3 + x2)

(
∞∑
n=0

x−2+nbnn(n− 1)
)
+
(

∞∑
n=0

xn−1bnn

)
x2 −

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−4C xn+1an(n+ 1)

)
+
(

∞∑
n=0

4C xnan(n+ 1)
)

+
(

∞∑
n=0

3C xn+1an

)
+

∞∑
n =0

(−2Canx
n) +

∞∑
n =0

(−2xnbnn(n− 1))

+
(

∞∑
n=0

2nxn−1bn(n− 1)
)

+
(

∞∑
n=0

xnbnn

)
+

∞∑
n =0

(−bnx
n) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−4C xn+1an(n+ 1)

)
=

∞∑
n=2

(
−4Ca−2+n(n− 1)xn−1)

∞∑
n =0

4C xnan(n+ 1) =
∞∑
n=1

4Can−1nxn−1
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∞∑
n =0

3C xn+1an =
∞∑
n=2

3Ca−2+nx
n−1

∞∑
n =0

(−2Canx
n) =

∞∑
n=1

(
−2Can−1x

n−1)
∞∑

n =0

(−2xnbnn(n− 1)) =
∞∑
n=1

(
−2(n− 1) bn−1(−2 + n)xn−1)

∞∑
n =0

xnbnn =
∞∑
n=1

(n− 1) bn−1x
n−1

∞∑
n =0

(−bnx
n) =

∞∑
n=1

(
−bn−1x

n−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

∞∑
n =2

(
−4Ca−2+n(n− 1)xn−1)+( ∞∑

n=1

4Can−1nxn−1

)

+
(

∞∑
n=2

3Ca−2+nx
n−1

)
+

∞∑
n =1

(
−2Can−1x

n−1)
+

∞∑
n =1

(
−2(n− 1) bn−1(−2 + n)xn−1)+( ∞∑

n=0

2nxn−1bn(n− 1)
)

+
(

∞∑
n=1

(n− 1) bn−1x
n−1

)
+

∞∑
n =1

(
−bn−1x

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

2C − 1 = 0

Which is solved for C. Solving for C gives

C = 1
2

For n = 2, Eq (2B) gives
(−a0 + 6a1)C + 4b2 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−1
2 + 4b2 = 0

Solving the above for b2 gives
b2 =

1
8

For n = 3, Eq (2B) gives

(−5a1 + 10a2)C − 3b2 + 12b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3
8 + 12b3 = 0

Solving the above for b3 gives
b3 =

1
32

For n = 4, Eq (2B) gives

(−9a2 + 14a3)C − 10b3 + 24b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

− 5
16 + 24b4 = 0

Solving the above for b4 gives
b4 =

5
384

For n = 5, Eq (2B) gives

(−13a3 + 18a4)C − 21b4 + 40b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

− 35
128 + 40b5 = 0

Solving the above for b5 gives
b5 =

7
1024

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = 1
2 and all bn, then the second solution becomes

y2(x) =
1
2
(
x
(
1 +O

(
x6))) ln (x) + 1 + x2

8 + x3

32 + 5x4

384 + 7x5

1024 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1+O

(
x6))+c2

(
1
2
(
x
(
1+O

(
x6))) ln (x)+1+ x2

8 + x3

32+
5x4

384+
7x5

1024+O
(
x6))

Hence the final solution is

y = yh

= c1x
(
1 +O

(
x6))+ c2

(
x(1 +O(x6)) ln (x)

2 + 1 + x2

8 + x3

32 + 5x4

384 + 7x5

1024 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
(
1+O

(
x6))+ c2

(
x(1 +O(x6)) ln (x)

2 + 1+ x2

8 + x3

32 + 5x4

384 + 7x5

1024 +O
(
x6))

Verification of solutions

y = c1x
(
1 +O

(
x6))+ c2

(
x(1 +O(x6)) ln (x)

2 + 1 + x2

8 + x3

32 + 5x4

384 + 7x5

1024 +O
(
x6))

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 42� �
Order:=6;
dsolve(2*x*(1-x)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1
2x+O

(
x6)) ln (x) c2 + c1x

(
1 + O

(
x6))

+
(
1− 1

2x+ 1
8x

2 + 1
32x

3 + 5
384x

4 + 7
1024x

5 +O
(
x6)) c2

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 43� �
AsymptoticDSolveValue[2*x*(1-x)*y''[x]+x*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
384
(
5x4 + 12x3 + 48x2 − 768x+ 384

)
+ 1

2x log(x)
)
+ c2x
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5.3 problem 8
5.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 560

Internal problem ID [4727]
Internal file name [OUTPUT/4220_Sunday_June_05_2022_12_43_02_PM_64376133/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XVI. page 220
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Jacobi]

2x(1− x) y′′ + (1− 11x) y′ − 10y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x2 + 2x
)
y′′ + (1− 11x) y′ − 10y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1 + 11x
2x (x− 1)

q(x) = 5
x (x− 1)
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Table 84: Table p(x), q(x) singularites.

p(x) = −1+11x
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 5
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−2y′′x(x− 1) + (1− 11x) y′ − 10y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ (1− 11x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 10

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r

− 1)
)

+
∞∑

n =0

(
−11xn+ran(n+ r)

)
+
(

∞∑
n=0

(n

+ r) anxn+r−1

)
+

∞∑
n =0

(
−10anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−11xn+ran(n+ r)

)
=

∞∑
n=1

(
−11an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−10anxn+r

)
=

∞∑
n=1

(
−10an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

2xn+r−1an(n+r) (n+r−1)
)
+

∞∑
n =1

(
−11an−1(n+r−1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−10an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0
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When n = 0 the above becomes

2x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
2x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2r − 1) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2r − 1) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−2an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1)
− 11an−1(n+ r − 1) + an(n+ r)− 10an−1 = 0
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Solving for an from recursive equation (4) gives

an = an−1(2n2 + 4nr + 2r2 + 5n+ 5r + 3)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 1
2 becomes

an = an−1(2n2 + 7n+ 6)
2n2 + n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2r2 + 9r + 10
2r2 + 3r + 1

Which for the root r = 1
2 becomes

a1 = 5
And the table now becomes

n an,r an

a0 1 1
a1

2r2+9r+10
2r2+3r+1 5

For n = 2, using the above recursive equation gives

a2 =
4r3 + 36r2 + 107r + 105
4r3 + 12r2 + 11r + 3

Which for the root r = 1
2 becomes

a2 = 14
And the table now becomes

n an,r an

a0 1 1
a1

2r2+9r+10
2r2+3r+1 5

a2
4r3+36r2+107r+105
4r3+12r2+11r+3 14
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For n = 3, using the above recursive equation gives

a3 =
4r3 + 48r2 + 191r + 252
4r3 + 12r2 + 11r + 3

Which for the root r = 1
2 becomes

a3 = 30

And the table now becomes

n an,r an

a0 1 1
a1

2r2+9r+10
2r2+3r+1 5

a2
4r3+36r2+107r+105
4r3+12r2+11r+3 14

a3
4r3+48r2+191r+252
4r3+12r2+11r+3 30

For n = 4, using the above recursive equation gives

a4 =
4r3 + 60r2 + 299r + 495
4r3 + 12r2 + 11r + 3

Which for the root r = 1
2 becomes

a4 = 55

And the table now becomes

n an,r an

a0 1 1
a1

2r2+9r+10
2r2+3r+1 5

a2
4r3+36r2+107r+105
4r3+12r2+11r+3 14

a3
4r3+48r2+191r+252
4r3+12r2+11r+3 30

a4
4r3+60r2+299r+495
4r3+12r2+11r+3 55

For n = 5, using the above recursive equation gives

a5 =
4r3 + 72r2 + 431r + 858
4r3 + 12r2 + 11r + 3

Which for the root r = 1
2 becomes

a5 = 91
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And the table now becomes

n an,r an

a0 1 1
a1

2r2+9r+10
2r2+3r+1 5

a2
4r3+36r2+107r+105
4r3+12r2+11r+3 14

a3
4r3+48r2+191r+252
4r3+12r2+11r+3 30

a4
4r3+60r2+299r+495
4r3+12r2+11r+3 55

a5
4r3+72r2+431r+858
4r3+12r2+11r+3 91

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1 + 5x+ 14x2 + 30x3 + 55x4 + 91x5 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)−2bn−1(n+ r − 1) (n+ r − 2) + 2bn(n+ r) (n+ r − 1)
− 11bn−1(n+ r − 1) + (n+ r) bn − 10bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1(2n2 + 4nr + 2r2 + 5n+ 5r + 3)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 0 becomes

bn = bn−1(2n2 + 5n+ 3)
2n2 − n

(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
2r2 + 9r + 10
2r2 + 3r + 1

Which for the root r = 0 becomes
b1 = 10

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+9r+10
2r2+3r+1 10

For n = 2, using the above recursive equation gives

b2 =
4r3 + 36r2 + 107r + 105
4r3 + 12r2 + 11r + 3

Which for the root r = 0 becomes
b2 = 35

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+9r+10
2r2+3r+1 10

b2
4r3+36r2+107r+105
4r3+12r2+11r+3 35

For n = 3, using the above recursive equation gives

b3 =
4r3 + 48r2 + 191r + 252
4r3 + 12r2 + 11r + 3

Which for the root r = 0 becomes
b3 = 84

And the table now becomes
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n bn,r bn

b0 1 1
b1

2r2+9r+10
2r2+3r+1 10

b2
4r3+36r2+107r+105
4r3+12r2+11r+3 35

b3
4r3+48r2+191r+252
4r3+12r2+11r+3 84

For n = 4, using the above recursive equation gives

b4 =
4r3 + 60r2 + 299r + 495
4r3 + 12r2 + 11r + 3

Which for the root r = 0 becomes
b4 = 165

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+9r+10
2r2+3r+1 10

b2
4r3+36r2+107r+105
4r3+12r2+11r+3 35

b3
4r3+48r2+191r+252
4r3+12r2+11r+3 84

b4
4r3+60r2+299r+495
4r3+12r2+11r+3 165

For n = 5, using the above recursive equation gives

b5 =
4r3 + 72r2 + 431r + 858
4r3 + 12r2 + 11r + 3

Which for the root r = 0 becomes
b5 = 286

And the table now becomes
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n bn,r bn

b0 1 1
b1

2r2+9r+10
2r2+3r+1 10

b2
4r3+36r2+107r+105
4r3+12r2+11r+3 35

b3
4r3+48r2+191r+252
4r3+12r2+11r+3 84

b4
4r3+60r2+299r+495
4r3+12r2+11r+3 165

b5
4r3+72r2+431r+858
4r3+12r2+11r+3 286

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + 10x+ 35x2 + 84x3 + 165x4 + 286x5 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1 + 5x+ 14x2 + 30x3 + 55x4 + 91x5 +O

(
x6))

+ c2
(
1 + 10x+ 35x2 + 84x3 + 165x4 + 286x5 +O

(
x6))

Hence the final solution is

y = yh

= c1
√
x
(
1 + 5x+ 14x2 + 30x3 + 55x4 + 91x5 +O

(
x6))

+ c2
(
1 + 10x+ 35x2 + 84x3 + 165x4 + 286x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x
(
1 + 5x+ 14x2 + 30x3 + 55x4 + 91x5 +O

(
x6))

+ c2
(
1 + 10x+ 35x2 + 84x3 + 165x4 + 286x5 +O

(
x6))

Verification of solutions

y = c1
√
x
(
1 + 5x+ 14x2 + 30x3 + 55x4 + 91x5 +O

(
x6))

+ c2
(
1 + 10x+ 35x2 + 84x3 + 165x4 + 286x5 +O

(
x6))

Verified OK.
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5.3.1 Maple step by step solution

Let’s solve
−2y′′x(x− 1) + (1− 11x) y′ − 10y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (−1+11x)y′
2x(x−1) − 5y

x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (−1+11x)y′
2x(x−1) + 5y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −1+11x
2x(x−1) , P3(x) = 5

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x(x− 1) + (−1 + 11x) y′ + 10y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r + 5) (k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 2ak

(
k + r + 5

2

)
(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(2k+2r+5)(k+r+2)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0
ak+1 = ak(2k+5)(k+2)

(k+1)(2k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(2k+5)(k+2)

(k+1)(2k+1)

]
• Recursion relation for r = 1

2

ak+1 =
ak(2k+6)

(
k+ 5

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
ak(2k+6)

(
k+ 5

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = ak(2k+5)(k+2)

(k+1)(2k+1) , bk+1 =
bk(2k+6)

(
k+ 5

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
Order:=6;
dsolve(2*x*(1-x)*diff(y(x),x$2)+(1-11*x)*diff(y(x),x)-10*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x
(
1 + 5x+ 14x2 + 30x3 + 55x4 + 91x5 +O

(
x6))

+ c2
(
1 + 10x+ 35x2 + 84x3 + 165x4 + 286x5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 65� �
AsymptoticDSolveValue[2*x*(1-x)*y''[x]+(1-11*x)*y'[x]-10*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x
(
91x5 + 55x4 + 30x3 + 14x2 + 5x+ 1

)
+ c2

(
286x5 + 165x4 + 84x3 + 35x2 + 10x+ 1

)
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5.4 problem 9
5.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 573

Internal problem ID [4728]
Internal file name [OUTPUT/4221_Sunday_June_05_2022_12_43_11_PM_13817898/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XVI. page 220
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Jacobi]

x(1− x) y′′ + (1− 2x) y′
3 + 20y

9 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ +

(
−2x

3 + 1
3

)
y′ + 20y

9 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x− 1
3x (x− 1)

q(x) = − 20
9x (x− 1)
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Table 86: Table p(x), q(x) singularites.

p(x) = 2x−1
3x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = − 20
9x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x(x− 1) +
(
−2x

3 + 1
3

)
y′ + 20y

9 = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+
(
−2x

3 + 1
3

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+

20
(

∞∑
n=0

anx
n+r

)
9 = 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

3

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

3

)
+
(

∞∑
n=0

20anxn+r

9

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−2xn+ran(n+ r)

3

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1

3

)
∞∑

n =0

20anxn+r

9 =
∞∑
n=1

20an−1x
n+r−1

9

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+

∞∑
n =1

(
−2an−1(n+ r − 1)xn+r−1

3

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

3

)
+
(

∞∑
n=1

20an−1x
n+r−1

9

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1

3 = 0
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When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r

3 = 0

Or (
x−1+rr(−1 + r) + r x−1+r

3

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r

(
−2
3 + r

)
= 0

Since the above is true for all x then the indicial equation becomes

r2 − 2
3r = 0

Solving for r gives the roots of the indicial equation as

r1 =
2
3

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r

(
−2
3 + r

)
= 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 2

3

y2(x) =
∞∑
n=0

bnx
n
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We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)

− 2an−1(n+ r − 1)
3 + an(n+ r)

3 + 20an−1

9 = 0

Solving for an from recursive equation (4) gives

an = an−1(9n2 + 18nr + 9r2 − 21n− 21r − 8)
9n2 + 18nr + 9r2 − 6n− 6r (4)

Which for the root r = 2
3 becomes

an = 3an−1(n2 − n− 2)
n (3n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
9r2 − 3r − 20
9r2 + 12r + 3

Which for the root r = 2
3 becomes

a1 = −6
5

And the table now becomes

n an,r an

a0 1 1
a1

9r2−3r−20
9r2+12r+3 −6

5

For n = 2, using the above recursive equation gives

a2 =
27r3 − 117r + 70

27r3 + 90r2 + 81r + 18
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Which for the root r = 2
3 becomes

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

9r2−3r−20
9r2+12r+3 −6

5

a2
27r3−117r+70

27r3+90r2+81r+18 0

For n = 3, using the above recursive equation gives

a3 =
27r3 + 27r2 − 180r + 100
27 (r + 3) (r + 2) (1 + r)

Which for the root r = 2
3 becomes

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

9r2−3r−20
9r2+12r+3 −6

5

a2
27r3−117r+70

27r3+90r2+81r+18 0

a3
27r3+27r2−180r+100
27(r+3)(r+2)(1+r) 0

For n = 4, using the above recursive equation gives

a4 =
81r4 + 270r3 − 513r2 − 582r + 520
81 (1 + r) (r + 2) (r + 3) (r + 4)

Which for the root r = 2
3 becomes

a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

9r2−3r−20
9r2+12r+3 −6

5

a2
27r3−117r+70

27r3+90r2+81r+18 0

a3
27r3+27r2−180r+100
27(r+3)(r+2)(1+r) 0

a4
81r4+270r3−513r2−582r+520

81(1+r)(r+2)(r+3)(r+4) 0

For n = 5, using the above recursive equation gives

a5 =
243r5 + 1620r4 + 675r3 − 6390r2 − 3288r + 4480

243 (r + 5) (1 + r) (r + 2) (r + 3) (r + 4)

Which for the root r = 2
3 becomes

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

9r2−3r−20
9r2+12r+3 −6

5

a2
27r3−117r+70

27r3+90r2+81r+18 0

a3
27r3+27r2−180r+100
27(r+3)(r+2)(1+r) 0

a4
81r4+270r3−513r2−582r+520

81(1+r)(r+2)(r+3)(r+4) 0

a5
243r5+1620r4+675r3−6390r2−3288r+4480

243(r+5)(1+r)(r+2)(r+3)(r+4) 0

Using the above table, then the solution y1(x) is

y1(x) = x
2
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
2
3

(
1− 6x

5 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
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is

(3)−bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)

− 2bn−1(n+ r − 1)
3 + (n+ r) bn

3 + 20bn−1

9 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1(9n2 + 18nr + 9r2 − 21n− 21r − 8)
9n2 + 18nr + 9r2 − 6n− 6r (4)

Which for the root r = 0 becomes

bn = bn−1(9n2 − 21n− 8)
9n2 − 6n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
9r2 − 3r − 20
9r2 + 12r + 3

Which for the root r = 0 becomes

b1 = −20
3

And the table now becomes

n bn,r bn

b0 1 1
b1

9r2−3r−20
9r2+12r+3 −20

3

For n = 2, using the above recursive equation gives

b2 =
27r3 − 117r + 70

27r3 + 90r2 + 81r + 18
Which for the root r = 0 becomes

b2 =
35
9
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And the table now becomes

n bn,r bn

b0 1 1
b1

9r2−3r−20
9r2+12r+3 −20

3

b2
27r3−117r+70

27r3+90r2+81r+18
35
9

For n = 3, using the above recursive equation gives

b3 =
27r3 + 27r2 − 180r + 100
27 (r + 3) (r + 2) (1 + r)

Which for the root r = 0 becomes
b3 =

50
81

And the table now becomes

n bn,r bn

b0 1 1
b1

9r2−3r−20
9r2+12r+3 −20

3

b2
27r3−117r+70

27r3+90r2+81r+18
35
9

b3
27r3+27r2−180r+100
27(r+3)(r+2)(1+r)

50
81

For n = 4, using the above recursive equation gives

b4 =
81r4 + 270r3 − 513r2 − 582r + 520
81 (1 + r) (r + 2) (r + 3) (r + 4)

Which for the root r = 0 becomes
b4 =

65
243

And the table now becomes

n bn,r bn

b0 1 1
b1

9r2−3r−20
9r2+12r+3 −20

3

b2
27r3−117r+70

27r3+90r2+81r+18
35
9

b3
27r3+27r2−180r+100
27(r+3)(r+2)(1+r)

50
81

b4
81r4+270r3−513r2−582r+520

81(1+r)(r+2)(r+3)(r+4)
65
243
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For n = 5, using the above recursive equation gives

b5 =
243r5 + 1620r4 + 675r3 − 6390r2 − 3288r + 4480

243 (r + 5) (1 + r) (r + 2) (r + 3) (r + 4)
Which for the root r = 0 becomes

b5 =
112
729

And the table now becomes

n bn,r bn

b0 1 1
b1

9r2−3r−20
9r2+12r+3 −20

3

b2
27r3−117r+70

27r3+90r2+81r+18
35
9

b3
27r3+27r2−180r+100
27(r+3)(r+2)(1+r)

50
81

b4
81r4+270r3−513r2−582r+520

81(1+r)(r+2)(r+3)(r+4)
65
243

b5
243r5+1620r4+675r3−6390r2−3288r+4480

243(r+5)(1+r)(r+2)(r+3)(r+4)
112
729

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− 20x
3 + 35x2

9 + 50x3

81 + 65x4

243 + 112x5

729 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
3

(
1− 6x

5 +O
(
x6))+ c2

(
1− 20x

3 + 35x2

9 + 50x3

81 + 65x4

243 + 112x5

729 +O
(
x6))

Hence the final solution is
y = yh

= c1x
2
3

(
1− 6x

5 +O
(
x6))+ c2

(
1− 20x

3 + 35x2

9 + 50x3

81 + 65x4

243 + 112x5

729 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
2
3

(
1− 6x

5 +O
(
x6))+ c2

(
1− 20x

3 + 35x2

9 + 50x3

81 + 65x4

243 + 112x5

729 +O
(
x6))
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Verification of solutions

y = c1x
2
3

(
1− 6x

5 +O
(
x6))+ c2

(
1− 20x

3 + 35x2

9 + 50x3

81 + 65x4

243 + 112x5

729 +O
(
x6))

Verified OK.

5.4.1 Maple step by step solution

Let’s solve
−y′′x(x− 1) +

(
−2x

3 + 1
3

)
y′ + 20y

9 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (2x−1)y′
3x(x−1) +

20y
9x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2x−1)y′
3x(x−1) −

20y
9x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x−1
3x(x−1) , P3(x) = − 20

9x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
9y′′x(x− 1) + (6x− 3) y′ − 20y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−3a0r(−2 + 3r)x−1+r +
(

∞∑
k=0

(−3ak+1(k + 1 + r) (3k + 1 + 3r) + ak(3k + 3r + 4) (3k + 3r − 5))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−3r(−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 23
}

• Each term in the series must be 0, giving the recursion relation
−9
(
k + 1

3 + r
)
(k + 1 + r) ak+1 + 9ak

(
k + r − 5

3

) (
k + r + 4

3

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(3k+3r−5)(3k+3r+4)

3(3k+1+3r)(k+1+r)

• Recursion relation for r = 0
ak+1 = ak(3k−5)(3k+4)

3(3k+1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(3k−5)(3k+4)

3(3k+1)(k+1)

]
• Recursion relation for r = 2

3 ; series terminates at k = 1
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ak+1 = ak(3k−3)(3k+6)
3(3k+3)

(
k+ 5

3
)

• Apply recursion relation for k = 0
a1 = −6a0

5

• Terminating series solution of the ODE for r = 2
3 . Use reduction of order to find the second linearly independent solution

y = a0 ·
(
1− 6x

5

)
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+ b0 ·

(
1− 6x

5

)
, ak+1 = ak(3k−5)(3k+4)

3(3k+1)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
Order:=6;
dsolve(x*(1-x)*diff(y(x),x$2)+1/3*(1-2*x)*diff(y(x),x)+20/9*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

2
3

(
1− 6

5x+O
(
x6))+c2

(
1− 20

3 x+ 35
9 x2+ 50

81x
3+ 65

243x
4+ 112

729x
5+O

(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 57� �
AsymptoticDSolveValue[x*(1-x)*y''[x]+1/3*(1-2*x)*y'[x]+20/9*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1− 6x

5

)
x2/3 + c2

(
112x5

729 + 65x4

243 + 50x3

81 + 35x2

9 − 20x
3 + 1

)
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5.5 problem 10
5.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 587

Internal problem ID [4729]
Internal file name [OUTPUT/4222_Sunday_June_05_2022_12_43_19_PM_2179187/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XVI. page 220
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

2x(1− x) y′′ + y′ + 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x2 + 2x
)
y′′ + y′ + 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1
2x (x− 1)

q(x) = − 2
x (x− 1)
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Table 88: Table p(x), q(x) singularites.

p(x) = − 1
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = − 2
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−2y′′x(x− 1) + y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

4anxn+r =
∞∑
n=1

4an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=1

4an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
2x−1+rr(−1 + r) + r x−1+r

)
a0 = 0
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Since a0 6= 0 then the above simplifies to

r x−1+r(2r − 1) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2r − 1) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−2an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1) + an(n+ r) + 4an−1 = 0

Solving for an from recursive equation (4) gives

an = 2(n+ r − 3) an−1

2n+ 2r − 1 (4)
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Which for the root r = 1
2 becomes

an =
(
n− 5

2

)
an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−4 + 2r
1 + 2r

Which for the root r = 1
2 becomes

a1 = −3
2

And the table now becomes

n an,r an

a0 1 1
a1

−4+2r
1+2r −3

2

For n = 2, using the above recursive equation gives

a2 =
4r2 − 12r + 8
4r2 + 8r + 3

Which for the root r = 1
2 becomes

a2 =
3
8

And the table now becomes

n an,r an

a0 1 1
a1

−4+2r
1+2r −3

2

a2
4r2−12r+8
4r2+8r+3

3
8
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For n = 3, using the above recursive equation gives

a3 =
8r3 − 24r2 + 16r

8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a3 =
1
16

And the table now becomes

n an,r an

a0 1 1
a1

−4+2r
1+2r −3

2

a2
4r2−12r+8
4r2+8r+3

3
8

a3
8r3−24r2+16r

8r3+36r2+46r+15
1
16

For n = 4, using the above recursive equation gives

a4 =
16(−1 + r) (−2 + r) r(1 + r)

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 1
2 becomes

a4 =
3
128

And the table now becomes

n an,r an

a0 1 1
a1

−4+2r
1+2r −3

2

a2
4r2−12r+8
4r2+8r+3

3
8

a3
8r3−24r2+16r

8r3+36r2+46r+15
1
16

a4
16(−1+r)(−2+r)r(1+r)

16r4+128r3+344r2+352r+105
3

128

For n = 5, using the above recursive equation gives

a5 =
32r5 − 160r3 + 128r

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
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Which for the root r = 1
2 becomes

a5 =
3
256

And the table now becomes

n an,r an

a0 1 1
a1

−4+2r
1+2r −3

2

a2
4r2−12r+8
4r2+8r+3

3
8

a3
8r3−24r2+16r

8r3+36r2+46r+15
1
16

a4
16(−1+r)(−2+r)r(1+r)

16r4+128r3+344r2+352r+105
3

128

a5
32r5−160r3+128r

32r5+400r4+1840r3+3800r2+3378r+945
3

256

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x

2 + 3x2

8 + x3

16 + 3x4

128 + 3x5

256 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)−2bn−1(n+ r − 1) (n+ r − 2) + 2bn(n+ r) (n+ r − 1) + (n+ r) bn + 4bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = 2(n+ r − 3) bn−1

2n+ 2r − 1 (4)

Which for the root r = 0 becomes

bn = 2(n− 3) bn−1

2n− 1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−4 + 2r
1 + 2r

Which for the root r = 0 becomes
b1 = −4

And the table now becomes

n bn,r bn

b0 1 1
b1

−4+2r
1+2r −4

For n = 2, using the above recursive equation gives

b2 =
4r2 − 12r + 8
4r2 + 8r + 3

Which for the root r = 0 becomes
b2 =

8
3

And the table now becomes

n bn,r bn

b0 1 1
b1

−4+2r
1+2r −4

b2
4r2−12r+8
4r2+8r+3

8
3

For n = 3, using the above recursive equation gives

b3 =
8r3 − 24r2 + 16r

8r3 + 36r2 + 46r + 15

Which for the root r = 0 becomes
b3 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

−4+2r
1+2r −4

b2
4r2−12r+8
4r2+8r+3

8
3

b3
8r3−24r2+16r

8r3+36r2+46r+15 0

For n = 4, using the above recursive equation gives

b4 =
16(−1 + r) (−2 + r) r(1 + r)

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 0 becomes
b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−4+2r
1+2r −4

b2
4r2−12r+8
4r2+8r+3

8
3

b3
8r3−24r2+16r

8r3+36r2+46r+15 0

b4
16(−1+r)(−2+r)r(1+r)

16r4+128r3+344r2+352r+105 0

For n = 5, using the above recursive equation gives

b5 =
32r5 − 160r3 + 128r

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

Which for the root r = 0 becomes
b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

−4+2r
1+2r −4

b2
4r2−12r+8
4r2+8r+3

8
3

b3
8r3−24r2+16r

8r3+36r2+46r+15 0

b4
16(−1+r)(−2+r)r(1+r)

16r4+128r3+344r2+352r+105 0

b5
32r5−160r3+128r

32r5+400r4+1840r3+3800r2+3378r+945 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− 4x+ 8x2

3 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x

2 + 3x2

8 + x3

16 + 3x4

128 + 3x5

256 +O
(
x6))+ c2

(
1− 4x+ 8x2

3 +O
(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1− 3x

2 + 3x2

8 + x3

16 + 3x4

128 + 3x5

256 +O
(
x6))+ c2

(
1− 4x+ 8x2

3 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− 3x

2 + 3x2

8 + x3

16 + 3x4

128 + 3x5

256 +O
(
x6))+ c2

(
1− 4x+ 8x2

3 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1− 3x

2 + 3x2

8 + x3

16 + 3x4

128 + 3x5

256 +O
(
x6))+ c2

(
1− 4x+ 8x2

3 +O
(
x6))

Verified OK.
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5.5.1 Maple step by step solution

Let’s solve
−2y′′x(x− 1) + y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y

x(x−1) +
y′

2x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

2x(x−1) −
2y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x(x−1) , P3(x) = − 2

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x(x− 1)− y′ − 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1
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◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(2r − 1)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + 2ak(k + 1 + r) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(2r − 1) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
2
((
−k − r − 1

2

)
ak+1 + ak(k + r − 2)

)
(k + 1 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−2)

2k+1+2r

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = 2ak(k−2)

2k+1

• Apply recursion relation for k = 0
a1 = −4a0

• Apply recursion relation for k = 1
a2 = −2a1

3

• Express in terms of a0
a2 = 8a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1− 4x+ 8

3x
2)

• Recursion relation for r = 1
2
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ak+1 =
2ak
(
k− 3

2
)

2k+2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
2ak
(
k− 3

2
)

2k+2

]
• Combine solutions and rename parameters[

y = a0 ·
(
1− 4x+ 8

3x
2)+ ( ∞∑

k=0
bkx

k+ 1
2

)
, bk+1 =

2bk
(
k− 3

2
)

2k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 38� �
Order:=6;
dsolve(2*x*(1-x)*diff(y(x),x$2)+diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1− 3

2x+ 3
8x

2 + 1
16x

3 + 3
128x

4 + 3
256x

5 +O
(
x6))

+ c2

(
1− 4x+ 8

3x
2 +O

(
x6))

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 62� �
AsymptoticDSolveValue[2*x*(1-x)*y''[x]+y'[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
8x2

3 − 4x+ 1
)
+ c1

√
x

(
3x5

256 + 3x4

128 + x3

16 + 3x2

8 − 3x
2 + 1

)
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5.6 problem 11
5.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 597

Internal problem ID [4730]
Internal file name [OUTPUT/4223_Sunday_June_05_2022_12_43_27_PM_43790928/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter VII, Solutions in series. Examples XVI. page 220
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4y′′ + 3(−x2 + 2) y
(−x2 + 1)2

= 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (88)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (89)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
3(x2 − 2) y
4 (x2 − 1)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (3x4 − 9x2 + 6) y′ − 6xy(x2 − 3)
4 (x2 − 1)3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−48x5 + 192x3 − 144x) y′ + 81y

(
x4 − 4x2 − 4

9

)
16 (x2 − 1)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
45
(
5x6−25x4+16x2+4

)
y′

16 − 45xy
(
x4−5x2−2

)
2

(x2 − 1)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−5040x7 + 30240x5 − 9360x3 − 15840x) y′ + 7875

(
x6 − 6x4 − 948

175x
2 − 8

35

)
y

64 (x2 − 1)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −3y(0)
2

F1 = −3y′(0)
2

F2 = −9y(0)
4

F3 = −45y′(0)
4

F4 = −225y(0)
8
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 3

4x
2 − 3

32x
4 − 5

128x
6
)
y(0) +

(
x− 1

4x
3 − 3

32x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

4y′′
(
x2 − 1

)2 + (−3x2 + 6
)
y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

4
(

∞∑
n=2

n(n− 1) anxn−2

)(
x2 − 1

)2 + (−3x2 + 6
)( ∞∑

n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

4nxn+2an(n− 1)
)

+
∞∑

n =2

(−8xnann(n− 1))

+
(

∞∑
n=2

4n(n− 1) anxn−2

)
+

∞∑
n =0

(
−3xn+2an

)
+
(

∞∑
n=0

6anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

4nxn+2an(n− 1) =
∞∑
n=4

4(n− 2) an−2(n− 3)xn

∞∑
n =2

4n(n− 1) anxn−2 =
∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

∞∑
n =0

(
−3xn+2an

)
=

∞∑
n=2

(−3an−2x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=4

4(n− 2) an−2(n− 3)xn

)
+

∞∑
n =2

(−8xnann(n− 1))

+
(

∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =2

(−3an−2x
n) +

(
∞∑
n=0

6anxn

)
= 0

n = 0 gives
8a2 + 6a0 = 0

a2 = −3a0
4

n = 1 gives
24a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
4

n = 2 gives
−10a2 + 48a4 − 3a0 = 0

Which after substituting earlier equations, simplifies to

a4 = −3a0
32
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n = 3 gives
−42a3 + 80a5 − 3a1 = 0

Which after substituting earlier equations, simplifies to

a5 = −3a1
32

For 4 ≤ n, the recurrence equation is

(4)4(n− 2) an−2(n− 3)− 8nan(n− 1) + 4(n+ 2) an+2(n+ 1)− 3an−2 + 6an = 0

Solving for an+2, gives

(5)

an+2 =
8n2an − 4n2an−2 − 8nan + 20nan−2 − 6an − 21an−2

4 (n+ 2) (n+ 1)

= (8n2 − 8n− 6) an
4 (n+ 2) (n+ 1) + (−4n2 + 20n− 21) an−2

4 (n+ 2) (n+ 1)

For n = 4 the recurrence equation gives

5a2 − 90a4 + 120a6 = 0

Which after substituting the earlier terms found becomes

a6 = −5a0
128

For n = 5 the recurrence equation gives

21a3 − 154a5 + 168a7 = 0

Which after substituting the earlier terms found becomes

a7 = −7a1
128

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3
4a0x

2 − 1
4a1x

3 − 3
32a0x

4 − 3
32a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3

4x
2 − 3

32x
4
)
a0 +

(
x− 1

4x
3 − 3

32x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 3

4x
2 − 3

32x
4
)
c1 +

(
x− 1

4x
3 − 3

32x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 3

4x
2 − 3

32x
4 − 5

128x
6
)
y(0) +

(
x− 1

4x
3 − 3

32x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 3

4x
2 − 3

32x
4
)
c1 +

(
x− 1

4x
3 − 3

32x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 3

4x
2 − 3

32x
4 − 5

128x
6
)
y(0) +

(
x− 1

4x
3 − 3

32x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 3

4x
2 − 3

32x
4
)
c1 +

(
x− 1

4x
3 − 3

32x
5
)
c2 +O

(
x6)

Verified OK.

5.6.1 Maple step by step solution

Let’s solve
4y′′(x2 − 1)2 + (−3x2 + 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = 3
(
x2−2

)
y

4(x2−1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 3
(
x2−2

)
y

4(x2−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − 3
(
x2−2

)
4(x2−1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 3
16

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
4y′′(x2 − 1)2 + (−3x2 + 6) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u4 − 16u3 + 16u2)
(

d2

du2y(u)
)
+ (−3u2 + 6u+ 3) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..4
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)ur + (a1(3 + 4r) (1 + 4r)− 2a0(8r2 − 8r − 3))u1+r +
(

∞∑
k=2

(
ak(4k + 4r − 1) (4k + 4r − 3)− 2ak−1

(
8(k − 1)2 + 16(k − 1) r + 8r2 − 8k + 5− 8r

)
+ ak−2(2k + 2r − 3) (2k − 7 + 2r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term must be 0

a1(3 + 4r) (1 + 4r)− 2a0(8r2 − 8r − 3) = 0
• Solve for the dependent coefficient(s)

a1 = 2a0
(
8r2−8r−3

)
16r2+16r+3

• Each term in the series must be 0, giving the recursion relation
4(4ak + ak−2 − 4ak−1) k2 + 4(2(4ak + ak−2 − 4ak−1) r − 4ak − 5ak−2 + 12ak−1) k + 4(4ak + ak−2 − 4ak−1) r2 + 4(−4ak − 5ak−2 + 12ak−1) r + 3ak + 21ak−2 − 26ak−1 = 0

• Shift index using k− >k + 2
4(4ak+2 + ak − 4ak+1) (k + 2)2 + 4(2(4ak+2 + ak − 4ak+1) r − 4ak+2 − 5ak + 12ak+1) (k + 2) + 4(4ak+2 + ak − 4ak+1) r2 + 4(−4ak+2 − 5ak + 12ak+1) r + 3ak+2 + 21ak − 26ak+1 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −4k2ak−16k2ak+1+8krak−32krak+1+4r2ak−16r2ak+1−4kak−16kak+1−4rak−16rak+1−3ak+6ak+1
16k2+32kr+16r2+48k+48r+35

• Recursion relation for r = 1
4

ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15
4 ak+ak+1

16k2+56k+48

• Solution for r = 1
4[

y(u) =
∞∑
k=0

aku
k+ 1

4 , ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15
4 ak+ak+1

16k2+56k+48 , a1 = −9a0
8

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k+
1
4 , ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15

4 ak+ak+1
16k2+56k+48 , a1 = −9a0

8

]
• Recursion relation for r = 3

4
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ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15
4 ak−15ak+1

16k2+72k+80

• Solution for r = 3
4[

y(u) =
∞∑
k=0

aku
k+ 3

4 , ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15
4 ak−15ak+1

16k2+72k+80 , a1 = −3a0
8

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k+
3
4 , ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15

4 ak−15ak+1
16k2+72k+80 , a1 = −3a0

8

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k+
1
4

)
+
(

∞∑
k=0

bk(x+ 1)k+
3
4

)
, ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15

4 ak+ak+1
16k2+56k+48 , a1 = −9a0

8 , bk+2 = −4k2bk−16k2bk+1+2kbk−40kbk+1− 15
4 bk−15bk+1

16k2+72k+80 , b1 = −3b0
8

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(4*diff(y(x),x$2)+3*(2-x^2)/(1-x^2)^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 3

4x
2 − 3

32x
4
)
y(0) +

(
x− 1

4x
3 − 3

32x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[4*y''[x]+3*(2-x^2)/(1-x^2)^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−3x5

32 − x3

4 + x

)
+ c1

(
−3x4

32 − 3x2

4 + 1
)
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6 Chapter IX, Special forms of differential
equations. Examples XVII. page 247

6.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
6.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
6.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
6.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
6.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
6.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
6.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
6.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
6.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
6.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
6.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
6.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
6.13 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
6.14 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
6.15 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
6.16 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
6.17 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

602



6.1 problem 1
6.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 603
6.1.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 608

Internal problem ID [4731]
Internal file name [OUTPUT/4224_Sunday_June_05_2022_12_43_33_PM_739722/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , _Riccati]

y′ + y2 = a2

x4

6.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y2x4 − a2

x4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2 −
(y2x4 − a2) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x4

− (y2x4 − a2)2 (xa5 + 2ya6 + a3)
x8

−
(
−4y2

x
+ 4y2x4 − 4a2

x5

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
+ 2y

(
x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

−x9y4a5 + 2x8y5a6 + x8y4a3 − 2x10yb4 − 2x9y2a4 − x9y2b5 − x8y3a5 − 2x9yb2 − x8y2a2 − x8y2b3 − 2a2x5y2a5 − 4a2x4y3a6 − 2x9b4 − 2x8yb1 − yb5x
8 − 2a2x4y2a3 − b2x

8 − 2a2x5a4 − a2x5b5 − 3a2x4ya5 − 2a2x4yb6 − 4a2x3y2a6 − 3a2x4a2 − a2x4b3 − 4a2x3ya3 + a4xa5 + 2a4ya6 − 4a2x3a1 + a4a3
x8

= 0

Setting the numerator to zero gives

(6E)
−x9y4a5−2x8y5a6−x8y4a3+2x10yb4+2x9y2a4+x9y2b5+x8y3a5+2x9yb2
+ x8y2a2 + x8y2b3 + 2a2x5y2a5 + 4a2x4y3a6 + 2x9b4 + 2x8yb1 + yb5x

8

+2a2x4y2a3+ b2x
8+2a2x5a4+ a2x5b5+3a2x4ya5+2a2x4yb6+4a2x3y2a6

+ 3a2x4a2 + a2x4b3 + 4a2x3ya3 − a4xa5 − 2a4ya6 + 4a2x3a1 − a4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a5v

9
1v

4
2−2a6v81v52−a3v

8
1v

4
2+2a4v91v22+a5v

8
1v

3
2+2b4v101 v2+b5v

9
1v

2
2+a2v

8
1v

2
2

+ 2b2v91v2 + b3v
8
1v

2
2 + 2a2a5v51v22 + 4a2a6v41v32 + 2b1v81v2 + 2b4v91 + b5v

8
1v2

+2a2a3v41v22 + b2v
8
1 +2a2a4v51 +3a2a5v41v2+4a2a6v31v22 +a2b5v

5
1 +2a2b6v41v2

+ 3a2a2v41 + 4a2a3v31v2 + a2b3v
4
1 − a4a5v1 − 2a4a6v2 + 4a2a1v31 − a4a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

2b4v101 v2 − a5v
9
1v

4
2 + (2a4 + b5) v91v22 + 2b2v91v2 + 2b4v91 − 2a6v81v52

− a3v
8
1v

4
2 + a5v

8
1v

3
2 + (a2 + b3) v81v22 + (2b1 + b5) v81v2 + b2v

8
1

+ 2a2a5v51v22 +
(
2a2a4 + a2b5

)
v51 + 4a2a6v41v32 + 2a2a3v41v22

+
(
3a2a5 + 2a2b6

)
v41v2 +

(
3a2a2 + a2b3

)
v41 + 4a2a6v31v22

+ 4a2a3v31v2 + 4a2a1v31 − a4a5v1 − 2a4a6v2 − a4a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a5 = 0
b2 = 0

−a3 = 0
−a5 = 0
−2a6 = 0
2b2 = 0
2b4 = 0

4a2a1 = 0
2a2a3 = 0
4a2a3 = 0
2a2a5 = 0
4a2a6 = 0
−a4a3 = 0
−a4a5 = 0
−2a4a6 = 0
a2 + b3 = 0
2a4 + b5 = 0
2b1 + b5 = 0

3a2a2 + a2b3 = 0
2a2a4 + a2b5 = 0
3a2a5 + 2a2b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = b1

a5 = 0
a6 = 0
b1 = b1

b2 = 0
b3 = 0
b4 = 0
b5 = −2b1
b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x2

η = −2xy + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2xy + 1−
(
−y2x4 − a2

x4

)(
x2)

= y2x4 − 2y x3 − a2 + x2

x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2x4−2y x3−a2+x2

x2

dy

Which results in

S = ln (y x2 − a− x)
2a − ln (y x2 + a− x)

2a
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2x4 − a2

x4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2xy + 1
(−y x2 + a+ x) (y x2 + a− x)

Sy = − x2

(−y x2 + a+ x) (y x2 + a− x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (yx2 − a− x)− ln (yx2 + a− x)
2a = c1 +

1
x

Which simplifies to

ln (yx2 − a− x)− ln (yx2 + a− x)
2a = c1 +

1
x

Summary
The solution(s) found are the following

(1)ln (yx2 − a− x)− ln (yx2 + a− x)
2a = c1 +

1
x

Verification of solutions

ln (yx2 − a− x)− ln (yx2 + a− x)
2a = c1 +

1
x

Verified OK.

6.1.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2x4 − a2

x4

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 + a2

x4

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = a2

x4 , f1(x) = 0 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

a2

x4

Substituting the above terms back in equation (2) gives

−u′′(x) + a2u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x
(
c1 sinh

(a
x

)
+ c2 cosh

(a
x

))
The above shows that

u′(x) = c1 sinh
(a
x

)
+ c2 cosh

(a
x

)
−

a
(
c1 cosh

(
a
x

)
+ c2 sinh

(
a
x

))
x

Using the above in (1) gives the solution

y =
c1 sinh

(
a
x

)
+ c2 cosh

(
a
x

)
− a

(
c1 cosh

(
a
x

)
+c2 sinh

(
a
x

))
x

x
(
c1 sinh

(
a
x

)
+ c2 cosh

(
a
x

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

609



y =
(−ac3 + x) cosh

(
a
x

)
− sinh

(
a
x

)
(−c3x+ a)(

c3 sinh
(
a
x

)
+ cosh

(
a
x

))
x2

Summary
The solution(s) found are the following

(1)y =
(−ac3 + x) cosh

(
a
x

)
− sinh

(
a
x

)
(−c3x+ a)(

c3 sinh
(
a
x

)
+ cosh

(
a
x

))
x2

Verification of solutions

y =
(−ac3 + x) cosh

(
a
x

)
− sinh

(
a
x

)
(−c3x+ a)(

c3 sinh
(
a
x

)
+ cosh

(
a
x

))
x2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(diff(y(x),x)+y(x)^2=a^2/x^4,y(x), singsol=all)� �

y(x) =
−
√
−a2 tan

(√
−a2 (c1x−1)

x

)
+ x

x2
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3 Solution by Mathematica
Time used: 0.384 (sec). Leaf size: 71� �
DSolve[y'[x]+y[x]^2==a^2/x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2a2c1e
2a
x + 2ac1xe

2a
x + a+ x

x2
(
1 + 2ac1e

2a
x

)
y(x) → x− a

x2
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6.2 problem 2
6.2.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 612

Internal problem ID [4732]
Internal file name [OUTPUT/4225_Sunday_June_05_2022_12_43_44_PM_18743969/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

u′′ − a2u

x
2
3

= 0

6.2.1 Solving as second order bessel ode ode

Writing the ode as

x2u′′ − a2x
4
3u = 0 (1)

Bessel ode has the form

x2u′′ + u′x+
(
−n2 + x2)u = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2u′′ + (1− 2α)xu′ +
(
β2γ2x2γ − n2γ2 + α2)u = 0 (3)

With the standard solution

u = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
2

β = 3ia
2

n = 3
4

γ = 2
3

Substituting all the above into (4) gives the solution as

u = c1
√
x BesselJ

(
3
4 ,

3ia x 2
3

2

)
+ c2

√
x BesselY

(
3
4 ,

3ia x 2
3

2

)

Summary
The solution(s) found are the following

(1)u = c1
√
x BesselJ

(
3
4 ,

3ia x 2
3

2

)
+ c2

√
x BesselY

(
3
4 ,

3ia x 2
3

2

)
Verification of solutions

u = c1
√
x BesselJ

(
3
4 ,

3ia x 2
3

2

)
+ c2

√
x BesselY

(
3
4 ,

3ia x 2
3

2

)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(diff(u(x),x$2)-a^2*x^(-2/3)*u(x)=0,u(x), singsol=all)� �

u(x) =
√
x

(
BesselY

(
3
4 ,

3
√
−a2 x

2
3

2

)
c2 + BesselJ

(
3
4 ,

3
√
−a2 x

2
3

2

)
c1

)

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 79� �
DSolve[u''[x]-a^2*x^(-2/3)*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �
u(x)

→
33/4a3/4

√
x
(
16c1Gamma

(5
4

)
BesselI

(
−3

4 ,
3
2ax

2/3)+ 3(−1)3/4c2Gamma
(3
4

)
BesselI

(3
4 ,

3
2ax

2/3))
8
√
2
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6.3 problem 3
6.3.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 615
6.3.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 616
6.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 623

Internal problem ID [4733]
Internal file name [OUTPUT/4226_Sunday_June_05_2022_12_43_50_PM_66870393/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

u′′ − 2u′

x
− a2u = 0

6.3.1 Solving as second order bessel ode ode

Writing the ode as

x2u′′ − 2u′x− a2x2u = 0 (1)

Bessel ode has the form

x2u′′ + u′x+
(
−n2 + x2)u = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2u′′ + (1− 2α)xu′ +
(
β2γ2x2γ − n2γ2 + α2)u = 0 (3)

With the standard solution

u = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
2

β = ia

n = 3
2

γ = 1

Substituting all the above into (4) gives the solution as

u = −c1
√
x
√
2 (cosh (ax) ax− sinh (ax))

√
π
√
iax a

+ ic2
√
x
√
2 (− sinh (ax) ax+ cosh (ax))

√
π
√
iax a

Summary
The solution(s) found are the following

(1)u = −c1
√
x
√
2 (cosh (ax) ax− sinh (ax))

√
π
√
iax a

+ ic2
√
x
√
2 (− sinh (ax) ax+ cosh (ax))

√
π
√
iax a

Verification of solutions

u = −c1
√
x
√
2 (cosh (ax) ax− sinh (ax))

√
π
√
iax a

+ ic2
√
x
√
2 (− sinh (ax) ax+ cosh (ax))

√
π
√
iax a

Verified OK.

6.3.2 Solving using Kovacic algorithm

Writing the ode as

a2ux− u′′x+ 2u′ = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = −x

B = 2 (3)
C = a2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 91: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = a2 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 1

a x2 − 1
2a3x4 + 1

2a5x6 − 5
8a7x8 + 7

8a9x10 − 21
16a11x12 + 33

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= a2x2 + 2
x2

= Q+ R

x2

=
(
a2
)
+
(

2
x2

)
= a2 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0
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Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (a)

= −1
x
− a

= −ax− 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− a

)
(1) +

((
1
x2

)
+
(
−1
x
− a

)2

−
(
a2x2 + 2

x2

))
= 0

2aa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives {

a0 =
1
a

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

a

)
e
∫ (

− 1
x
−a
)
dx

=
(
x+ 1

a

)
e−ax−ln(x)

= (ax+ 1) e−ax

ax
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The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2

−x
dx

= z1e
ln(x)

= z1(x)

Which simplifies to

u1 =
(ax+ 1) e−ax

a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
− 2

−x
dx

(u1)2
dx

= u1

∫
e2 ln(x)

(u1)2
dx

= u1

(
(ax− 1) e2ax
2 (ax+ 1) a

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax+ 1) e−ax

a

)
+ c2

(
(ax+ 1) e−ax

a

(
(ax− 1) e2ax
2 (ax+ 1) a

))
Summary
The solution(s) found are the following

(1)u = c1(ax+ 1) e−ax

a
+ c2(ax− 1) eax

2a2
Verification of solutions

u = c1(ax+ 1) e−ax

a
+ c2(ax− 1) eax

2a2

Verified OK.
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6.3.3 Maple step by step solution

Let’s solve
a2ux− u′′x+ 2u′ = 0

• Highest derivative means the order of the ODE is 2
u′′

• Isolate 2nd derivative
u′′ = 2u′

x
+ a2u

• Group terms with u on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
u′′ − 2u′

x
− a2u = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 2
x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
−a2ux+ u′′x− 2u′ = 0

• Assume series solution for u

u =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u to series expansion

x · u =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · u =
∞∑
k=1

ak−1x
k+r

◦ Convert u′ to series expansion

u′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

u′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · u′′ to series expansion

x · u′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · u′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + a1(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k − 2 + r)− a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1)− a2ak = 0

• Recursion relation that defines series solution to ODE

ak+2 = a2ak
(k+2+r)(k+r−1)

• Recursion relation for r = 0

ak+2 = a2ak
(k+2)(k−1)

• Solution for r = 0
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[
u =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k−1) ,−2a1 = 0
]

• Recursion relation for r = 3

ak+2 = a2ak
(k+5)(k+2)

• Solution for r = 3[
u =

∞∑
k=0

akx
k+3, ak+2 = a2ak

(k+5)(k+2) , 4a1 = 0
]

• Combine solutions and rename parameters[
u =

(
∞∑
k=0

bkx
k

)
+
(

∞∑
k=0

ckx
k+3
)
, bk+2 = a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = a2ck
(k+5)(k+2) , 4c1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(diff(u(x),x$2)-2/x*diff(u(x),x)-a^2*u(x)=0,u(x), singsol=all)� �

u(x) = c1eax(ax− 1) + c2e−ax(ax+ 1)
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3 Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 68� �
DSolve[u''[x]-2/x*u'[x]-a^2*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �

u(x) →

√
2
π

√
x((iac2x+ c1) sinh(ax)− (ac1x+ ic2) cosh(ax))

a
√
−iax
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6.4 problem 4
6.4.1 Solving as second order change of variable on y method 1 ode . 627
6.4.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 630
6.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 631
6.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 634

Internal problem ID [4734]
Internal file name [OUTPUT/4227_Sunday_June_05_2022_12_44_00_PM_95572498/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

u′′ + 2u′

x
− a2u = 0

6.4.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

u′′ + p(x)u′ + q(x)u = 0 (2)

Where

p(x) = 2
x

q(x) = −a2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= −a2 −
( 2
x

)′
2 −

( 2
x

)2
4

= −a2 −
(
− 2

x2

)
2 −

( 4
x2

)
4

= −a2 −
(
− 1
x2

)
− 1

x2

= −a2

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

u = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2

x
2

= 1
x

(5)

Hence (3) becomes

u = v(x)
x

(4)

Applying this change of variable to the original ode results in

−a2v(x) + v′′(x) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −a2. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − a2eλx = 0 (1)
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Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

−a2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −a2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−a2)

= ±
√
a2

Hence
λ1 = +

√
a2

λ2 = −
√
a2

Which simplifies to

λ1 =
√
a2

λ2 = −
√
a2

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e

(√
a2
)
x + c2e

(
−
√
a2
)
x

Or
v(x) = c1ex

√
a2 + c2e−x

√
a2

Now that v(x) is known, then

u = v(x) z(x)

=
(
c1ex

√
a2 + c2e−x

√
a2
)
(z(x)) (7)

But from (5)

z(x) = 1
x
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Hence (7) becomes

u = c1ex
√
a2 + c2e−x

√
a2

x

Summary
The solution(s) found are the following

(1)u = c1ex
√
a2 + c2e−x

√
a2

x

Verification of solutions

u = c1ex
√
a2 + c2e−x

√
a2

x

Verified OK.

6.4.2 Solving as second order bessel ode ode

Writing the ode as

x2u′′ + 2u′x− a2x2u = 0 (1)

Bessel ode has the form

x2u′′ + u′x+
(
−n2 + x2)u = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2u′′ + (1− 2α)xu′ +
(
β2γ2x2γ − n2γ2 + α2)u = 0 (3)

With the standard solution

u = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
2

β = ia

n = 1
2

γ = 1
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Substituting all the above into (4) gives the solution as

u = ic1
√
2 sinh (ax)

√
x
√
π
√
iax

− c2
√
2 cosh (ax)

√
x
√
π
√
iax

Summary
The solution(s) found are the following

(1)u = ic1
√
2 sinh (ax)

√
x
√
π
√
iax

− c2
√
2 cosh (ax)

√
x
√
π
√
iax

Verification of solutions

u = ic1
√
2 sinh (ax)

√
x
√
π
√
iax

− c2
√
2 cosh (ax)

√
x
√
π
√
iax

Verified OK.

6.4.3 Solving using Kovacic algorithm

Writing the ode as

−a2ux+ u′′x+ 2u′ = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = −a2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2

1 (6)

Comparing the above to (5) shows that

s = a2

t = 1

Therefore eq. (4) becomes

z′′(x) =
(
a2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 93: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = a2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = ex
√
a2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

u1 =
ex csgn(a)a

x

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
− 2

x
dx

(u1)2
dx

= u1

∫
e−2 ln(x)

(u1)2
dx

= u1

(
−csgn (a) e−2x csgn(a)a

2a

)
Therefore the solution is
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u = c1u1 + c2u2

= c1

(
ex csgn(a)a

x

)
+ c2

(
ex csgn(a)a

x

(
−csgn (a) e−2x csgn(a)a

2a

))

Simplifying the solution u = c1ex csgn(a)a

x
− c2 csgn(a)e−x csgn(a)a

2ax to u = c1eax
x

− c2e−ax

2ax

Summary
The solution(s) found are the following

(1)u = c1eax
x

− c2e−ax

2ax
Verification of solutions

u = c1eax
x

− c2e−ax

2ax

Verified OK.

6.4.4 Maple step by step solution

Let’s solve
−a2ux+ u′′x+ 2u′ = 0

• Highest derivative means the order of the ODE is 2
u′′

• Isolate 2nd derivative
u′′ = −2u′

x
+ a2u

• Group terms with u on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
u′′ + 2u′

x
− a2u = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
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Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
−a2ux+ u′′x+ 2u′ = 0

• Assume series solution for u

u =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u to series expansion

x · u =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u =
∞∑
k=1

ak−1x
k+r

◦ Convert u′ to series expansion

u′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

u′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · u′′ to series expansion

x · u′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · u′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}
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• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r)− a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− a2ak = 0

• Recursion relation that defines series solution to ODE

ak+2 = a2ak
(k+2+r)(k+3+r)

• Recursion relation for r = −1

ak+2 = a2ak
(k+1)(k+2)

• Solution for r = −1[
u =

∞∑
k=0

akx
k−1, ak+2 = a2ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0

ak+2 = a2ak
(k+2)(k+3)

• Solution for r = 0[
u =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
u =

(
∞∑
k=0

bkx
k−1
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = a2bk

(k+1)(k+2) , 0 = 0, ck+2 = a2ck
(k+2)(k+3) , 2c1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(u(x),x$2)+2/x*diff(u(x),x)-a^2*u(x)=0,u(x), singsol=all)� �

u(x) = c1 sinh (ax) + c2 cosh (ax)
x

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 35� �
DSolve[u''[x]+2/x*u'[x]-a^2*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �

u(x) → 2ac1e−ax + c2e
ax

2ax
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6.5 problem 5
6.5.1 Solving as second order change of variable on y method 1 ode . 638
6.5.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 641
6.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 642
6.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 645

Internal problem ID [4735]
Internal file name [OUTPUT/4228_Sunday_June_05_2022_12_44_08_PM_82211255/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

u′′ + 2u′

x
+ a2u = 0

6.5.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

u′′ + p(x)u′ + q(x)u = 0 (2)

Where

p(x) = 2
x

q(x) = a2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= a2 −
( 2
x

)′
2 −

( 2
x

)2
4

= a2 −
(
− 2

x2

)
2 −

( 4
x2

)
4

= a2 −
(
− 1
x2

)
− 1

x2

= a2

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

u = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2

x
2

= 1
x

(5)

Hence (3) becomes

u = v(x)
x

(4)

Applying this change of variable to the original ode results in

a2v(x) + v′′(x) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = a2. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + a2eλx = 0 (1)
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Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

a2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = a2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (a2)

= ±
√
−a2

Hence
λ1 = +

√
−a2

λ2 = −
√
−a2

Which simplifies to

λ1 =
√
−a2

λ2 = −
√
−a2

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e

(√
−a2

)
x + c2e

(
−
√
−a2

)
x

Or
v(x) = c1e

√
−a2 x + c2e−

√
−a2 x

Now that v(x) is known, then

u = v(x) z(x)

=
(
c1e

√
−a2 x + c2e−

√
−a2 x

)
(z(x)) (7)

But from (5)

z(x) = 1
x
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Hence (7) becomes

u = c1e
√
−a2 x + c2e−

√
−a2 x

x

Summary
The solution(s) found are the following

(1)u = c1e
√
−a2 x + c2e−

√
−a2 x

x

Verification of solutions

u = c1e
√
−a2 x + c2e−

√
−a2 x

x

Verified OK.

6.5.2 Solving as second order bessel ode ode

Writing the ode as

x2u′′ + 2u′x+ a2x2u = 0 (1)

Bessel ode has the form

x2u′′ + u′x+
(
−n2 + x2)u = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2u′′ + (1− 2α)xu′ +
(
β2γ2x2γ − n2γ2 + α2)u = 0 (3)

With the standard solution

u = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
2

β = a

n = 1
2

γ = 1
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Substituting all the above into (4) gives the solution as

u = c1
√
2 sin (ax)√

x
√
π
√
ax

− c2
√
2 cos (ax)√
x
√
π
√
ax

Summary
The solution(s) found are the following

(1)u = c1
√
2 sin (ax)√

x
√
π
√
ax

− c2
√
2 cos (ax)√
x
√
π
√
ax

Verification of solutions

u = c1
√
2 sin (ax)√

x
√
π
√
ax

− c2
√
2 cos (ax)√
x
√
π
√
ax

Verified OK.

6.5.3 Solving using Kovacic algorithm

Writing the ode as

a2ux+ u′′x+ 2u′ = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = a2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −a2

1 (6)

Comparing the above to (5) shows that

s = −a2

t = 1

Therefore eq. (4) becomes

z′′(x) =
(
−a2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 95: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −a2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
−a2 x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

u1 =
e
√
−a2 x

x

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
− 2

x
dx

(u1)2
dx

= u1

∫
e−2 ln(x)

(u1)2
dx

= u1

(√
−a2 e−2

√
−a2 x

2a2

)

Therefore the solution is
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u = c1u1 + c2u2

= c1

(
e
√
−a2 x

x

)
+ c2

(
e
√
−a2 x

x

(√
−a2 e−2

√
−a2 x

2a2

))

Summary
The solution(s) found are the following

(1)u = c1e
√
−a2 x

x
+ c2

√
−a2 e−

√
−a2 x

2a2x
Verification of solutions

u = c1e
√
−a2 x

x
+ c2

√
−a2 e−

√
−a2 x

2a2x

Verified OK.

6.5.4 Maple step by step solution

Let’s solve
a2ux+ u′′x+ 2u′ = 0

• Highest derivative means the order of the ODE is 2
u′′

• Isolate 2nd derivative
u′′ = −2u′

x
− a2u

• Group terms with u on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
u′′ + 2u′

x
+ a2u = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0
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◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
a2ux+ u′′x+ 2u′ = 0

• Assume series solution for u

u =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u to series expansion

x · u =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u =
∞∑
k=1

ak−1x
k+r

◦ Convert u′ to series expansion

u′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

u′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · u′′ to series expansion

x · u′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · u′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−1, 0}
• Each term must be 0

a1(1 + r) (2 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 2 + r) + a2ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 3 + r) + a2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − a2ak
(k+2+r)(k+3+r)

• Recursion relation for r = −1

ak+2 = − a2ak
(k+1)(k+2)

• Solution for r = −1[
u =

∞∑
k=0

akx
k−1, ak+2 = − a2ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0

ak+2 = − a2ak
(k+2)(k+3)

• Solution for r = 0[
u =

∞∑
k=0

akx
k, ak+2 = − a2ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
u =

(
∞∑
k=0

bkx
k−1
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = − a2bk

(k+1)(k+2) , 0 = 0, ck+2 = − a2ck
(k+2)(k+3) , 2c1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(u(x),x$2)+2/x*diff(u(x),x)+a^2*u(x)=0,u(x), singsol=all)� �

u(x) = c1 sin (ax) + c2 cos (ax)
x

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 42� �
DSolve[u''[x]+2/x*u'[x]+a^2*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �

u(x) →
e−iax

(
2c1 − ic2e2iax

a

)
2x
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6.6 problem 6
6.6.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 649
6.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 650
6.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 657

Internal problem ID [4736]
Internal file name [OUTPUT/4229_Sunday_June_05_2022_12_44_16_PM_83559563/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

u′′ + 4u′

x
− a2u = 0

6.6.1 Solving as second order bessel ode ode

Writing the ode as

x2u′′ + 4u′x− a2x2u = 0 (1)

Bessel ode has the form

x2u′′ + u′x+
(
−n2 + x2)u = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2u′′ + (1− 2α)xu′ +
(
β2γ2x2γ − n2γ2 + α2)u = 0 (3)

With the standard solution

u = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = −3
2

β = ia

n = 3
2

γ = 1

Substituting all the above into (4) gives the solution as

u = −c1
√
2 (cosh (ax) ax− sinh (ax))

x
5
2
√
π
√
iax a

+ ic2
√
2 (− sinh (ax) ax+ cosh (ax))

x
5
2
√
π
√
iax a

Summary
The solution(s) found are the following

(1)u = −c1
√
2 (cosh (ax) ax− sinh (ax))

x
5
2
√
π
√
iax a

+ ic2
√
2 (− sinh (ax) ax+ cosh (ax))

x
5
2
√
π
√
iax a

Verification of solutions

u = −c1
√
2 (cosh (ax) ax− sinh (ax))

x
5
2
√
π
√
iax a

+ ic2
√
2 (− sinh (ax) ax+ cosh (ax))

x
5
2
√
π
√
iax a

Verified OK.

6.6.2 Solving using Kovacic algorithm

Writing the ode as

−a2ux+ u′′x+ 4u′ = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 4 (3)
C = −a2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 97: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = a2 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 1

a x2 − 1
2a3x4 + 1

2a5x6 − 5
8a7x8 + 7

8a9x10 − 21
16a11x12 + 33

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= a2x2 + 2
x2

= Q+ R

x2

=
(
a2
)
+
(

2
x2

)
= a2 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0
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Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (a)

= −1
x
− a

= −ax− 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− a

)
(1) +

((
1
x2

)
+
(
−1
x
− a

)2

−
(
a2x2 + 2

x2

))
= 0

2aa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives {

a0 =
1
a

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

a

)
e
∫ (

− 1
x
−a
)
dx

=
(
x+ 1

a

)
e−ax−ln(x)

= (ax+ 1) e−ax

ax
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The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4
x
dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

u1 =
(ax+ 1) e−ax

a x3

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
− 4

x
dx

(u1)2
dx

= u1

∫
e−4 ln(x)

(u1)2
dx

= u1

(
(ax− 1) e2ax
2 (ax+ 1) a

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax+ 1) e−ax

a x3

)
+ c2

(
(ax+ 1) e−ax

a x3

(
(ax− 1) e2ax
2 (ax+ 1) a

))

Summary
The solution(s) found are the following

(1)u = c1(ax+ 1) e−ax

a x3 + c2(ax− 1) eax
2a2x3
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Verification of solutions

u = c1(ax+ 1) e−ax

a x3 + c2(ax− 1) eax
2a2x3

Verified OK.

6.6.3 Maple step by step solution

Let’s solve
−a2ux+ u′′x+ 4u′ = 0

• Highest derivative means the order of the ODE is 2
u′′

• Isolate 2nd derivative
u′′ = −4u′

x
+ a2u

• Group terms with u on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
u′′ + 4u′

x
− a2u = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4
x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
−a2ux+ u′′x+ 4u′ = 0

• Assume series solution for u

u =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert x · u to series expansion

x · u =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u =
∞∑
k=1

ak−1x
k+r

◦ Convert u′ to series expansion

u′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

u′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · u′′ to series expansion

x · u′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · u′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 4 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 4 + r)− a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 5 + r)− a2ak = 0
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• Recursion relation that defines series solution to ODE

ak+2 = a2ak
(k+2+r)(k+5+r)

• Recursion relation for r = −3

ak+2 = a2ak
(k−1)(k+2)

• Solution for r = −3[
u =

∞∑
k=0

akx
k−3, ak+2 = a2ak

(k−1)(k+2) ,−2a1 = 0
]

• Recursion relation for r = 0

ak+2 = a2ak
(k+2)(k+5)

• Solution for r = 0[
u =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k+5) , 4a1 = 0
]

• Combine solutions and rename parameters[
u =

(
∞∑
k=0

bkx
k−3
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = a2ck
(k+5)(k+2) , 4c1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(u(x),x$2)+4/x*diff(u(x),x)-a^2*u(x)=0,u(x), singsol=all)� �

u(x) = c1eax(ax− 1) + c2e−ax(ax+ 1)
x3

3 Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 68� �
DSolve[u''[x]+4/x*u'[x]-a^2*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �

u(x) →

√
2
π
((iac2x+ c1) sinh(ax)− (ac1x+ ic2) cosh(ax))

ax5/2
√
−iax
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6.7 problem 7
6.7.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 661
6.7.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 662
6.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 669

Internal problem ID [4737]
Internal file name [OUTPUT/4230_Sunday_June_05_2022_12_44_29_PM_92144711/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

u′′ + 4u′

x
+ a2u = 0

6.7.1 Solving as second order bessel ode ode

Writing the ode as

x2u′′ + 4u′x+ a2x2u = 0 (1)

Bessel ode has the form

x2u′′ + u′x+
(
−n2 + x2)u = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2u′′ + (1− 2α)xu′ +
(
β2γ2x2γ − n2γ2 + α2)u = 0 (3)

With the standard solution

u = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = −3
2

β = a

n = 3
2

γ = 1

Substituting all the above into (4) gives the solution as

u = −c1
√
2 (cos (ax) ax− sin (ax))

x
5
2
√
π
√
ax a

− c2
√
2 (sin (ax) ax+ cos (ax))

x
5
2
√
π
√
ax a

Summary
The solution(s) found are the following

(1)u = −c1
√
2 (cos (ax) ax− sin (ax))

x
5
2
√
π
√
ax a

− c2
√
2 (sin (ax) ax+ cos (ax))

x
5
2
√
π
√
ax a

Verification of solutions

u = −c1
√
2 (cos (ax) ax− sin (ax))

x
5
2
√
π
√
ax a

− c2
√
2 (sin (ax) ax+ cos (ax))

x
5
2
√
π
√
ax a

Verified OK.

6.7.2 Solving using Kovacic algorithm

Writing the ode as

a2ux+ u′′x+ 4u′ = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 4 (3)
C = a2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = −a2x2 + 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
−a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 99: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −a2 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ ia− i

a x2 − i

2a3x4 − i

2a5x6 − 5i
8a7x8 − 7i

8a9x10 − 21i
16a11x12 − 33i

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = ia

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= ia (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = −a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= −a2x2 + 2
x2

= Q+ R

x2

=
(
−a2

)
+
(

2
x2

)
= −a2 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

665



Hence

[
√
r]∞ = ia

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
ia

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
ia

− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = −a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 ia 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (ia)

= −1
x
− ia

= −1
x
− ia

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− ia

)
(1) +

((
1
x2

)
+
(
−1
x
− ia

)2

−
(
−a2x2 + 2

x2

))
= 0

2iaa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives {

a0 = − i

a

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− i

a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− i

a

)
e
∫ (

− 1
x
−ia

)
dx

=
(
x− i

a

)
e−iax−ln(x)

= (ax− i) e−iax

xa
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The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4
x
dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

u1 =
(ax− i) e−iax

x3a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
− 4

x
dx

(u1)2
dx

= u1

∫
e−4 ln(x)

(u1)2
dx

= u1

(
(iax− 1) e2iax
2a (−ax+ i)

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax− i) e−iax

x3a

)
+ c2

(
(ax− i) e−iax

x3a

(
(iax− 1) e2iax
2a (−ax+ i)

))

Summary
The solution(s) found are the following

(1)u = c1(ax− i) e−iax

x3a
− c2(iax− 1) eiax

2a2x3
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Verification of solutions

u = c1(ax− i) e−iax

x3a
− c2(iax− 1) eiax

2a2x3

Verified OK.

6.7.3 Maple step by step solution

Let’s solve
a2ux+ u′′x+ 4u′ = 0

• Highest derivative means the order of the ODE is 2
u′′

• Isolate 2nd derivative
u′′ = −4u′

x
− a2u

• Group terms with u on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
u′′ + 4u′

x
+ a2u = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4
x
, P3(x) = a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
a2ux+ u′′x+ 4u′ = 0

• Assume series solution for u

u =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert x · u to series expansion

x · u =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u =
∞∑
k=1

ak−1x
k+r

◦ Convert u′ to series expansion

u′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

u′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · u′′ to series expansion

x · u′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · u′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 4 + r) + a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 4 + r) + a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 5 + r) + a2ak = 0
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• Recursion relation that defines series solution to ODE

ak+2 = − a2ak
(k+2+r)(k+5+r)

• Recursion relation for r = −3

ak+2 = − a2ak
(k−1)(k+2)

• Solution for r = −3[
u =

∞∑
k=0

akx
k−3, ak+2 = − a2ak

(k−1)(k+2) ,−2a1 = 0
]

• Recursion relation for r = 0

ak+2 = − a2ak
(k+2)(k+5)

• Solution for r = 0[
u =

∞∑
k=0

akx
k, ak+2 = − a2ak

(k+2)(k+5) , 4a1 = 0
]

• Combine solutions and rename parameters[
u =

(
∞∑
k=0

bkx
k−3
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = − a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = − a2ck
(k+5)(k+2) , 4c1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(diff(u(x),x$2)+4/x*diff(u(x),x)+a^2*u(x)=0,u(x), singsol=all)� �

u(x) = (ac1x+ c2) cos (ax) + sin (ax) (ac2x− c1)
x3

3 Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 57� �
DSolve[u''[x]+4/x*u'[x]+a^2*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �

u(x) → −

√
2
π
((ac1x+ c2) cos(ax) + (ac2x− c1) sin(ax))

x3/2(ax)3/2

672



6.8 problem 8
6.8.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 673
6.8.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 674
6.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 681

Internal problem ID [4738]
Internal file name [OUTPUT/4231_Sunday_June_05_2022_12_44_39_PM_81251389/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − ya2 − 6y
x2 = 0

6.8.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ +
(
−a2x2 − 6

)
y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
2

β = ia

n = −5
2

γ = 1

Substituting all the above into (4) gives the solution as

y = −c1
√
2 (cosh (ax) a2x2 − 3 sinh (ax) ax+ 3 cosh (ax))

x
3
2
√
π
√
iax a2

+ ic2
√
2 (− sinh (ax) a2x2 + 3 cosh (ax) ax− 3 sinh (ax))

x
3
2
√
π
√
iax a2

Summary
The solution(s) found are the following

(1)
y = −c1

√
2 (cosh (ax) a2x2 − 3 sinh (ax) ax+ 3 cosh (ax))

x
3
2
√
π
√
iax a2

+ ic2
√
2 (− sinh (ax) a2x2 + 3 cosh (ax) ax− 3 sinh (ax))

x
3
2
√
π
√
iax a2

Verification of solutions

y = −c1
√
2 (cosh (ax) a2x2 − 3 sinh (ax) ax+ 3 cosh (ax))

x
3
2
√
π
√
iax a2

+ ic2
√
2 (− sinh (ax) a2x2 + 3 cosh (ax) ax− 3 sinh (ax))

x
3
2
√
π
√
iax a2

Verified OK.

6.8.2 Solving using Kovacic algorithm

Writing the ode as

x2y′′ +
(
−a2x2 − 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)
C = −a2x2 − 6
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 6
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 101: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = a2 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 3

a x2 − 9
2a3x4 + 27

2a5x6 − 405
8a7x8 + 1701

8a9x10 − 15309
16a11x12 + 72171

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
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coefficient in t. Doing long division gives

r = s

t

= a2x2 + 6
x2

= Q+ R

x2

=
(
a2
)
+
(

6
x2

)
= a2 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = a2x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (a)

= −2
x
− a

= −ax− 2
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− a

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− a

)2

−
(
a2x2 + 6

x2

))
= 0

2axa1 + 4aa0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives {

a0 =
3
a2

, a1 =
3
a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 3x
a

+ 3
a2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 3x

a
+ 3

a2

)
e
∫ (

− 2
x
−a
)
dx

=
(
x2 + 3x

a
+ 3

a2

)
e−ax−2 ln(x)

= (a2x2 + 3ax+ 3) e−ax

a2x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (a2x2 + 3ax+ 3) e−ax

a2x2

Which simplifies to

y1 =
(a2x2 + 3ax+ 3) e−ax

a2x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (a2x2 + 3ax+ 3) e−ax

a2x2

∫ 1
(a2x2+3ax+3)2e−2ax

a4x4

dx

= (a2x2 + 3ax+ 3) e−ax

a2x2

(
(a2x2 − 3ax+ 3) e2ax
2a (a2x2 + 3ax+ 3)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(a2x2 + 3ax+ 3) e−ax

a2x2

)
+ c2

(
(a2x2 + 3ax+ 3) e−ax

a2x2

(
(a2x2 − 3ax+ 3) e2ax
2a (a2x2 + 3ax+ 3)

))

Summary
The solution(s) found are the following

(1)y = c1(a2x2 + 3ax+ 3) e−ax

a2x2 + c2eax(a2x2 − 3ax+ 3)
2a3x2

Verification of solutions

y = c1(a2x2 + 3ax+ 3) e−ax

a2x2 + c2eax(a2x2 − 3ax+ 3)
2a3x2

Verified OK.

6.8.3 Maple step by step solution

Let’s solve
x2y′′ + (−a2x2 − 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
a2x2+6

)
y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
a2x2+6

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = −a2x2+6
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + (−a2x2 − 6) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−3 + r)xr + a1(3 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 3)− ak−2a
2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 3}

• Each term must be 0
a1(3 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
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ak(k + r + 2) (k + r − 3)− ak−2a
2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + r − 1)− aka

2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = aka
2

(k+4+r)(k+r−1)

• Recursion relation for r = −2

ak+2 = aka
2

(k+2)(k−3)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = aka

2

(k+2)(k−3) , a1 = 0
]

• Recursion relation for r = 3

ak+2 = aka
2

(k+7)(k+2)

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+2 = aka

2

(k+7)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

bkx
k−2
)
+
(

∞∑
k=0

ckx
k+3
)
, bk+2 = bka

2

(k+2)(k−3) , b1 = 0, ck+2 = cka
2

(k+7)(k+2) , c1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 48� �
dsolve(diff(y(x),x$2)-a^2*y(x)=6*y(x)/x^2,y(x), singsol=all)� �

y(x) = c2e−ax(x2a2 + 3ax+ 3) + c1eax(x2a2 − 3ax+ 3)
x2

3 Solution by Mathematica
Time used: 0.138 (sec). Leaf size: 90� �
DSolve[y''[x]-a^2*y[x]==6*y[x]/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
2
π
((a2c2x2 − 3iac1x+ 3c2) cosh(ax) + i(c1(a2x2 + 3) + 3iac2x) sinh(ax))

a2x3/2
√
−iax
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6.9 problem 9
6.9.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 685
6.9.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 686
6.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 693

Internal problem ID [4739]
Internal file name [OUTPUT/4232_Sunday_June_05_2022_12_44_49_PM_20146333/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + yn2 − 6y
x2 = 0

6.9.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ +
(
n2x2 − 6

)
y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
2

β = n

n = −5
2

γ = 1

Substituting all the above into (4) gives the solution as

y = −c1
√
2 (cos (nx)n2x2 − 3 sin (nx)nx− 3 cos (nx))

x
3
2
√
π
√
nxn2

− c2
√
2 (sin (nx)n2x2 + 3 cos (nx)nx− 3 sin (nx))

x
3
2
√
π
√
nxn2

Summary
The solution(s) found are the following

(1)
y = −c1

√
2 (cos (nx)n2x2 − 3 sin (nx)nx− 3 cos (nx))

x
3
2
√
π
√
nxn2

− c2
√
2 (sin (nx)n2x2 + 3 cos (nx)nx− 3 sin (nx))

x
3
2
√
π
√
nxn2

Verification of solutions

y = −c1
√
2 (cos (nx)n2x2 − 3 sin (nx)nx− 3 cos (nx))

x
3
2
√
π
√
nxn2

− c2
√
2 (sin (nx)n2x2 + 3 cos (nx)nx− 3 sin (nx))

x
3
2
√
π
√
nxn2

Verified OK.

6.9.2 Solving using Kovacic algorithm

Writing the ode as

x2y′′ +
(
n2x2 − 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)
C = n2x2 − 6
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −n2x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −n2x2 + 6
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
−n2x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 103: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −n2 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ in− 3i

n x2 − 9i
2n3x4 − 27i

2n5x6 − 405i
8n7x8 − 1701i

8n9x10 − 15309i
16n11x12 − 72171i

16n13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = in

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= in (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = −n2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
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coefficient in t. Doing long division gives

r = s

t

= −n2x2 + 6
x2

= Q+ R

x2

=
(
−n2)+ ( 6

x2

)
= −n2 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = in

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
in

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
in

− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = −n2x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 in 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (in)

= −2
x
− in

= −2
x
− in

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− in

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− in

)2

−
(
−n2x2 + 6

x2

))
= 0

(2ina1 − 6)x+ 4ina0 − 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives {

a0 = − 3
n2 , a1 = −3i

n

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix
n

− 3
n2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix

n
− 3

n2

)
e
∫ (

− 2
x
−in

)
dx

=
(
x2 − 3ix

n
− 3

n2

)
e−inx−2 ln(x)

= (n2x2 − 3inx− 3) e−inx

x2n2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (n2x2 − 3inx− 3) e−inx

x2n2

Which simplifies to

y1 =
(n2x2 − 3inx− 3) e−inx

x2n2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (n2x2 − 3inx− 3) e−inx

x2n2

∫ 1
(n2x2−3inx−3)2e−2inx

x4n4

dx

= (n2x2 − 3inx− 3) e−inx

x2n2

(
(in2x2 − 3nx− 3i) e2inx

6
(
−1

3n
2x2 + inx+ 1

)
n

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(n2x2 − 3inx− 3) e−inx

x2n2

)
+ c2

(
(n2x2 − 3inx− 3) e−inx

x2n2

(
(in2x2 − 3nx− 3i) e2inx

6
(
−1

3n
2x2 + inx+ 1

)
n

))

Summary
The solution(s) found are the following

(1)y = c1(n2x2 − 3inx− 3) e−inx

x2n2 − c2einx(in2x2 − 3nx− 3i)
2n3x2

Verification of solutions

y = c1(n2x2 − 3inx− 3) e−inx

x2n2 − c2einx(in2x2 − 3nx− 3i)
2n3x2

Verified OK.

6.9.3 Maple step by step solution

Let’s solve
x2y′′ + (n2x2 − 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
n2x2−6

)
y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
n2x2−6

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = n2x2−6
x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + (n2x2 − 6) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−3 + r)xr + a1(3 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 3) + ak−2n
2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 3}

• Each term must be 0
a1(3 + r) (−2 + r) = 0

694



• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 3) + ak−2n

2 = 0
• Shift index using k− >k + 2

ak+2(k + 4 + r) (k + r − 1) + akn
2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = − akn
2

(k+4+r)(k+r−1)

• Recursion relation for r = −2

ak+2 = − akn
2

(k+2)(k−3)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = − akn

2

(k+2)(k−3) , a1 = 0
]

• Recursion relation for r = 3

ak+2 = − akn
2

(k+7)(k+2)

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+2 = − akn

2

(k+7)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = − akn

2

(k+2)(k−3) , a1 = 0, bk+2 = − bkn
2

(k+7)(k+2) , b1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 53� �
dsolve(diff(y(x),x$2)+n^2*y(x)=6*y(x)/x^2,y(x), singsol=all)� �

y(x) = (c1n2x2 + 3c2nx− 3c1) cos (nx) + sin (nx) (c2n2x2 − 3c1nx− 3c2)
x2

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 79� �
DSolve[y''[x]+n^2*y[x]==6*y[x]/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x)→−

√
2
π

√
x((c2(−n2)x2 + 3c1nx+ 3c2) cos(nx) + (c1(n2x2 − 3) + 3c2nx) sin(nx))

(nx)5/2

696



6.10 problem 10
6.10.1 Solving as second order change of variable on y method 1 ode . 697
6.10.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 700
6.10.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 701
6.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 704

Internal problem ID [4740]
Internal file name [OUTPUT/4233_Sunday_June_05_2022_12_44_59_PM_85709635/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ −
(
x2 + 1

4

)
y = 0

6.10.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) =
−x2 − 1

4
x2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

=
−x2 − 1

4
x2 −

( 1
x

)′
2 −

( 1
x

)2
4

=
−x2 − 1

4
x2 −

(
− 1

x2

)
2 −

( 1
x2

)
4

=
−x2 − 1

4
x2 −

(
− 1
2x2

)
− 1

4x2

= −1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 1

x
2

= 1√
x

(5)

Hence (3) becomes

y = v(x)√
x

(4)

Applying this change of variable to the original ode results in

x
3
2 (v′′(x)− v(x)) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)
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Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(1)x + c2e

(−1)x

Or
v(x) = c1ex + c2e−x

Now that v(x) is known, then

y = v(x) z(x)
=
(
c1ex + c2e−x

)
(z(x)) (7)

But from (5)

z(x) = 1√
x
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Hence (7) becomes

y = c1ex + c2e−x

√
x

Summary
The solution(s) found are the following

(1)y = c1ex + c2e−x

√
x

Verification of solutions

y = c1ex + c2e−x

√
x

Verified OK.

6.10.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy′ +
(
−x2 − 1

4

)
y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = i

n = −1
2

γ = 1
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Substituting all the above into (4) gives the solution as

y = c1
√
2 cosh (x)
√
π
√
ix

+ ic2
√
2 sinh (x)

√
π
√
ix

Summary
The solution(s) found are the following

(1)y = c1
√
2 cosh (x)
√
π
√
ix

+ ic2
√
2 sinh (x)

√
π
√
ix

Verification of solutions

y = c1
√
2 cosh (x)
√
π
√
ix

+ ic2
√
2 sinh (x)

√
π
√
ix

Verified OK.

6.10.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + xy′ +
(
−x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = −x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 105: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
e−x

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is
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y = c1y1 + c2y2

= c1

(
e−x

√
x

)
+ c2

(
e−x

√
x

(
e2x
2

))

Summary
The solution(s) found are the following

(1)y = c1e−x

√
x

+ c2ex
2
√
x

Verification of solutions

y = c1e−x

√
x

+ c2ex
2
√
x

Verified OK.

6.10.4 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
−x2 − 1

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
4x2+1

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
−
(
4x2+1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = −4x2+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4
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◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (−4x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 1)− 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
− 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4ak
4k2+12k+8

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = 4ak
4k2+20k+24

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4ak

4k2+12k+8 , a1 = 0, bk+2 = 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-(x^2+1/4)*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sinh (x) + c2 cosh (x)√
x

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 32� �
DSolve[x^2*y''[x]+x*y'[x]-(x^2+1/4)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x(c2e2x + 2c1)
2
√
x
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6.11 problem 11
6.11.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 708
6.11.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 709
6.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 716

Internal problem ID [4741]
Internal file name [OUTPUT/4234_Sunday_June_05_2022_12_45_07_PM_19224807/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ + (−9a2 + 4x2) y
4a2 = 0

6.11.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy′ +
(
−9
4 + x2

a2

)
y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0

β = 1
a

n = −3
2

γ = 1

Substituting all the above into (4) gives the solution as

y = −
c1
√
2
(
sin
(
x
a

)
x+ cos

(
x
a

)
a
)

√
π
√

x
a
x

−
c2
√
2
(
sin
(
x
a

)
a− cos

(
x
a

)
x
)

√
π
√

x
a
x

Summary
The solution(s) found are the following

(1)y = −
c1
√
2
(
sin
(
x
a

)
x+ cos

(
x
a

)
a
)

√
π
√

x
a
x

−
c2
√
2
(
sin
(
x
a

)
a− cos

(
x
a

)
x
)

√
π
√

x
a
x

Verification of solutions

y = −
c1
√
2
(
sin
(
x
a

)
x+ cos

(
x
a

)
a
)

√
π
√

x
a
x

−
c2
√
2
(
sin
(
x
a

)
a− cos

(
x
a

)
x
)

√
π
√

x
a
x

Verified OK.

6.11.2 Solving using Kovacic algorithm

Writing the ode as

4x2y′′a2 + 4y′a2x+
(
−9a2 + 4x2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4a2x2

B = 4a2x (3)
C = −9a2 + 4x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

709



Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2a2 − x2

a2x2 (6)

Comparing the above to (5) shows that

s = 2a2 − x2

t = a2x2

Therefore eq. (4) becomes

z′′(x) =
(
2a2 − x2

a2x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 107: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = a2x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
a2

+ 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ −33ia13

16x14 − 21ia11
16x12 − 7ia9

8x10 − 5ia7
8x8 − ia5

2x6 − ia3

2x4 − ia

x2 + i

a
+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i

a
(10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = − 1

a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= 2a2 − x2

a2x2

= Q+ R

a2x2

=
(
− 1
a2

)
+
(

2
x2

)
= − 1

a2
+ 2

x2
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Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
a

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

i
a

− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2a2 − x2

a2x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i
a

0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
i

a

)
= −1

x
− i

a

= −ix+ a

ax

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− i

a

)
(1) +

((
1
x2

)
+
(
−1
x
− i

a

)2

−
(
2a2 − x2

a2x2

))
= 0

2ia0 − 2a
ax

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives

{a0 = −ia}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −ia+ x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−ia+ x) e
∫ (

− 1
x
− i

a

)
dx

= (−ia+ x) e− ix
a
−ln(x)

= (−ia+ x) e− ix
a

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4a2x
4a2x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(−ia+ x) e− ix

a

x
3
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4a2x

4a2x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
a e 2ix

a (ia+ x)
2ix+ 2a

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−ia+ x) e− ix

a

x
3
2

)
+ c2

(
(−ia+ x) e− ix

a

x
3
2

(
a e 2ix

a (ia+ x)
2ix+ 2a

))

Summary
The solution(s) found are the following

(1)y = c1(−ia+ x) e− ix
a

x
3
2

− c2(ix− a) a e ix
a

2x 3
2
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Verification of solutions

y = c1(−ia+ x) e− ix
a

x
3
2

− c2(ix− a) a e ix
a

2x 3
2

Verified OK.

6.11.3 Maple step by step solution

Let’s solve
4x2y′′a2 + 4y′a2x+ (−9a2 + 4x2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
9a2−4x2)y
4a2x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
−
(
9a2−4x2)y
4a2x2 = 0

• Multiply by denominators of the ODE
4x2y′′a2 + 4y′a2x− (9a2 − 4x2) y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE
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4x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
a2 + 4

(
d
dt
y(t)

)
a2 − (9a2 − 4x2) y(t) = 0

• Simplify

4a2
(

d2

dt2
y(t)

)
− 9y(t) a2 + 4y(t)x2 = 0

• Isolate 2nd derivative
d2

dt2
y(t) =

(
9a2−4x2)y(t)

4a2

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)−

(
9a2−4x2)y(t)

4a2 = 0

• Characteristic polynomial of ODE
r2 − 9a2−4x2

4a2 = 0

• Factor the characteristic polynomial
4r2a2−9a2+4x2

4a2 = 0

• Roots of the characteristic polynomial

r =
(√

9a2−4x2

2a ,−
√
9a2−4x2

2a

)
• 1st solution of the ODE

y1(t) = e
√

9a2−4x2 t
2a

• 2nd solution of the ODE

y2(t) = e−
√

9a2−4x2 t
2a

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions

y(t) = c1e
√

9a2−4x2 t
2a + c2e−

√
9a2−4x2 t

2a

• Change variables back using t = ln (x)

y = c1e
√

9a2−4x2 ln(x)
2a + c2e−

√
9a2−4x2 ln(x)

2a

• Simplify

y = c1x
√

9a2−4x2
2a + c2x

−
√

9a2−4x2
2a

717



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 41� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(4*x^2-9*a^2)/(4*a^2)*y(x)=0,y(x), singsol=all)� �

y(x) = (ix+ a) c2e−
ix
a + (−ix+ a) e ix

a c1

x
3
2

3 Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 62� �
DSolve[x^2*y''[x]+x*y'[x]+(4*x^2-9*a^2)/(4*a^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
2
π

(
(ac2 + c1x) cos

(
x
a

)
+ (c2x− ac1) sin

(
x
a

))
x
√

x
a
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6.12 problem 12
6.12.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 719
6.12.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 720
6.12.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 727

Internal problem ID [4742]
Internal file name [OUTPUT/4235_Sunday_June_05_2022_12_45_18_PM_82403323/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0

6.12.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = 1

n = −5
2

γ = 1

Substituting all the above into (4) gives the solution as

y = −c1
√
2 (cos (x)x2 − 3 sin (x)x− 3 cos (x))

√
π x

5
2

− c2
√
2 (x2 sin (x) + 3 cos (x)x− 3 sin (x))

√
π x

5
2

Summary
The solution(s) found are the following

(1)
y = −c1

√
2 (cos (x)x2 − 3 sin (x)x− 3 cos (x))

√
π x

5
2

− c2
√
2 (x2 sin (x) + 3 cos (x)x− 3 sin (x))

√
π x

5
2

Verification of solutions

y=−c1
√
2 (cos (x)x2 − 3 sin (x)x− 3 cos (x))

√
π x

5
2

− c2
√
2 (x2 sin (x) + 3 cos (x)x− 3 sin (x))

√
π x

5
2

Verified OK.

6.12.2 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 25
4
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 6
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 109: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− 3i

x2 − 9i
2x4 − 27i

2x6 − 405i
8x8 − 1701i

8x10 − 15309i
16x12 − 72171i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
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coefficient in t. Doing long division gives

r = s

t

= −x2 + 6
x2

= Q+ R

x2

= (−1) +
(

6
x2

)
= −1 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = −x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (i)

= −2
x
− i

= −2
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− i

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− i

)2

−
(
−x2 + 6

x2

))
= 0

2ixa1 + 4ia0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives

{a0 = −3, a1 = −3i}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix− 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix− 3

)
e
∫ (

− 2
x
−i
)
dx

=
(
x2 − 3ix− 3

)
e−ix−2 ln(x)

= (x2 − 3ix− 3) e−ix

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(x2 − 3ix− 3) e−ix

x
5
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

)
Therefore the solution is
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y = c1y1 + c2y2

= c1

(
(x2 − 3ix− 3) e−ix

x
5
2

)
+ c2

(
(x2 − 3ix− 3) e−ix

x
5
2

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

))

Summary
The solution(s) found are the following

(1)y = c1(x2 − 3ix− 3) e−ix

x
5
2

− c2eix(ix2 − 3x− 3i)
2x 5

2

Verification of solutions

y = c1(x2 − 3ix− 3) e−ix

x
5
2

− c2eix(ix2 − 3x− 3i)
2x 5

2

Verified OK.

6.12.3 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 − 25

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
4x2−25

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+
(
4x2−25

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 4x2−25

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −25
4
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◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (4x2 − 25) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (−5 + 2r)xr + a1(7 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
5
2

}
• Each term must be 0

a1(7 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2(2k + 9 + 2r) (2k − 1 + 2r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(2k+9+2r)(2k−1+2r)

• Recursion relation for r = −5
2

ak+2 = − 4ak
(2k+4)(2k−6)

• Solution for r = −5
2[

y =
∞∑
k=0

akx
k− 5

2 , ak+2 = − 4ak
(2k+4)(2k−6) , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = − 4ak
(2k+14)(2k+4)

• Solution for r = 5
2[

y =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − 4ak
(2k+14)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − 4ak

(2k+4)(2k−6) , a1 = 0, bk+2 = − 4bk
(2k+14)(2k+4) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �

729



3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-25/4)*y(x)=0,y(x), singsol=all)� �

y(x) =
−3
(
ix− 1

3x
2 + 1

)
c2e−ix + 3

(
ix+ 1

3x
2 − 1

)
c1eix

x
5
2

3 Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 59� �
DSolve[x^2*y''[x]+x*y'[x]+(x^2-25/4)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
2
π
((−c2x

2 + 3c1x+ 3c2) cos(x) + (c1(x2 − 3) + 3c2x) sin(x))
x5/2

730



6.13 problem 15
6.13.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 731
6.13.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 738

Internal problem ID [4743]
Internal file name [OUTPUT/4236_Sunday_June_05_2022_12_45_29_PM_49732457/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + qy′ − 2y
x2 = 0

6.13.1 Solving using Kovacic algorithm

Writing the ode as

qy′x2 + x2y′′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = q x2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

731



Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2q2 + 8
4x2 (6)

Comparing the above to (5) shows that

s = x2q2 + 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2q2 + 8

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 111: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = q2

4 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ q

2 + 2
q x2 − 4

q3x4 + 16
q5x6 − 80

q7x8 + 448
q9x10 − 2688

q11x12 + 16896
q13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = q

2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= q

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = q2

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= x2q2 + 8
4x2

= Q+ R

4x2

=
(
q2

4

)
+
(

2
x2

)
= q2

4 + 2
x2
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Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = q

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
q
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

q
2
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x2q2 + 8
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 q
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(q
2

)
= −1

x
− q

2
= −qx+ 2

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− q

2

)
(1) +

((
1
x2

)
+
(
−1
x
− q

2

)2

−
(
x2q2 + 8

4x2

))
= 0

qa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives {

a0 =
2
q

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2
q

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 2

q

)
e
∫ (

− 1
x
− q

2
)
dx

=
(
x+ 2

q

)
e−

qx
2 −ln(x)

= (qx+ 2) e− qx
2

qx
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
q x2

x2 dx

= z1e
− qx

2

= z1
(
e−

qx
2

)
Which simplifies to

y1 =
(qx+ 2) e−qx

qx

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− q x2

x2 dx

(y1)2
dx

= y1

∫
e−qx

(y1)2
dx

= y1

(
(qx− 2) eqx
q (qx+ 2)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(qx+ 2) e−qx

qx

)
+ c2

(
(qx+ 2) e−qx

qx

(
(qx− 2) eqx
q (qx+ 2)

))

Summary
The solution(s) found are the following

(1)y = c1(qx+ 2) e−qx

qx
+ c2(qx− 2)

q2x
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Verification of solutions

y = c1(qx+ 2) e−qx

qx
+ c2(qx− 2)

q2x

Verified OK.

6.13.2 Maple step by step solution

Let’s solve
qy′x2 + x2y′′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −qy′ + 2y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + qy′ − 2y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = q, P3(x) = − 2
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
qy′x2 + x2y′′ − 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 · y′ =
∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + qak−1(k − 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + qak−1(k − 1 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r) + qak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − qak(k+r)

(k+2+r)(k−1+r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = − qak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = − qa0

2

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
− qx

2 + 1
)

• Recursion relation for r = 2
ak+1 = − qak(k+2)

(k+4)(k+1)
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• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = − qak(k+2)

(k+4)(k+1)

]
• Combine solutions and rename parameters[

y = a0 ·
(
− qx

2 + 1
)
+
(

∞∑
k=0

bkx
k+2
)
, bk+1 = − qbk(k+2)

(k+4)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)+q*diff(y(x),x)=2*y(x)/x^2,y(x), singsol=all)� �

y(x) = c2e−qx(qx+ 2) + c1(qx− 2)
x

3 Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 80� �
DSolve[y''[x]+q*y'[x]==2*y[x]/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
qx3/2e−

qx
2
(
2(ic2qx+ 2c1) sinh

(
qx
2

)
− 2(c1qx+ 2ic2) cosh

(
qx
2

))
√
π(−iqx)5/2
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6.14 problem 18
6.14.1 Solving as second order bessel ode form A ode . . . . . . . . . . 741

Internal problem ID [4744]
Internal file name [OUTPUT/4237_Sunday_June_05_2022_12_45_39_PM_285195/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode_form_A"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + e2xy − yn2 = 0

6.14.1 Solving as second order bessel ode form A ode

Writing the ode as

y′′ +
(
−n2 + e2x

)
y = 0 (1)

An ode of the form
ay′′ + by′ + (cerx +m)y = 0 (1)

can be transformed to Bessel ode using the transformation

x = ln (t)
ex = t

Where a, b, c,m are not functions of x and where b and m are allowed to be be zero.
Using this transformation gives

dy

dx
= dy

dt

dt

dx

= dy

dt
ex

= t
dy

dt
(2)
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And

d2y

dx2 = d

dx

(
dy

dx

)
= d

dx

(
t
dy

dt

)
= d

dt

dt

dx

(
t
dy

dt

)
= dt

dx

d

dt

(
t
dy

dt

)
= t

d

dt

(
t
dy

dt

)
= t

(
dy

dt
+ t

d2y

dt2

)
(3)

Substituting (2,3) into (1) gives

at

(
dy

dt
+ t

d2y

dt2

)
+ bt

dy

dt
+ (cerx +m)y = 0(

aty′ + at2y′′
)
+ bty′ + (ctr +m)y = 0

at2y′′ + (b+ a) ty′ + (ctr +m)y = 0

t2y′′ + b+ a

a
ty′ +

( c
a
tr + m

a

)
y = 0 (4)

Which is Bessel ODE. Comparing the above to the general known Bowman form of
Bessel ode which is

t2y′′ + (1− 2α) ty′ +
(
β2γ2t2γ −

(
n2γ2 − α2)) y = 0 (C)

And now comparing (4) and (C) shows that

(1− 2α) = b+ a

a
(5)

β2γ2 = c

a
(6)

2γ = r (7)(
n2γ2 − α2) = −m

a
(8)

(5) gives α = 1
2 −

b+a
2a . (7) gives γ = r

2 . (8) now becomes
(
n2( r

2

)2 − (12 − b+a
2a

)2) = −m
a

or n2 =
−m

a
+
(

1
2−

b+a
2a

)2
(
r
2
)2 . Hence n = 2

r

√
−m

a
+
(1
2 −

b+a
2a

)2 by taking the positive root.
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And finally (6) gives β2 = c
aγ2 or β =

√
c
a
1
γ
=
√

c
a
2
r
(also taking the positive root).

Hence

α = 1
2 − b+ a

2a

n = 2
r

√
−m

a
+
(
1
2 − b+ a

2a

)2

β =
√

c

a

2
r

γ = r

2
But the solution to (C) which is general form of Bessel ode is known and given by

y(t) = tα(c1Jn(βtγ) + c2Yn(βtγ))

Substituting the above values found into this solution gives

y(t) = t
1
2−

b+a
2a

(
c1J 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
t
r
2

)
+ c2Y 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
t
r
2

))
Since ex = t then the above becomes

y(x) = e
x
(

1
2−

b+a
2a

)(
c1J 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
ex

r
2

))

= e
x
(

−b
2a

)(
c1J 2

r

√
−m

a
+
(

−b
2a

)2
(√

c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+
(

−b
2a

)2
(√

c

a

2
r
ex

r
2

))

= e
x
(

−b
2a

)(
c1J 2

r

√
−m

a
+ b2

4a2

(√
c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+ b2

4a2

(√
c

a

2
r
ex

r
2

))
= e

x
(

−b
2a

)(
c1J 2

r

√
− 4ma+b2

4a2

(√
c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
− 4ma+b2

4a2

(√
c

a

2
r
ex

r
2

))
= e

x
(

−b
2a

)(
c1J 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

)
+ c2Y 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

))
(9)

Equation (9) above is the solution to ay′′ + by′ + (cerx +m)y = 0. Therefore we just
need now to compare this form to the ode given and use (9) to obtain the final solution.

Comparing form (1) to the ode we are solving shows that

a = 1
b = 0
c = 1
r = 2
m = −n2
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Substituting these in (9) gives the solution as

y = c1 BesselJ (n, ex) + c2 BesselY (n, ex)

Summary
The solution(s) found are the following

(1)y = c1 BesselJ (n, ex) + c2 BesselY (n, ex)
Verification of solutions

y = c1 BesselJ (n, ex) + c2 BesselY (n, ex)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
Change of variables used:

[x = ln(t)]
Linear ODE actually solved:

(-n^2+t^2)*u(t)+t*diff(u(t),t)+t^2*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)+exp(2*x)*y(x)=n^2*y(x),y(x), singsol=all)� �

y(x) = c1 BesselJ (n, ex) + c2 BesselY (n, ex)

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 46� �
DSolve[y''[x]+Exp[2*x]*y[x]==n^2*y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → c1Gamma(1− n) BesselJ

(
−n,

√
e2x
)
+ c2Gamma(n+ 1)BesselJ

(
n,

√
e2x
)
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6.15 problem 19
6.15.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 746
6.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 747

Internal problem ID [4745]
Internal file name [OUTPUT/4238_Sunday_June_05_2022_12_45_45_PM_12574817/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + y

4x = 0

6.15.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy

4 = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
2

β = 1
n = 1

γ = 1
2

Substituting all the above into (4) gives the solution as

y = c1
√
x BesselJ

(
1,
√
x
)
+ c2

√
x BesselY

(
1,
√
x
)

Summary
The solution(s) found are the following

(1)y = c1
√
x BesselJ

(
1,
√
x
)
+ c2

√
x BesselY

(
1,
√
x
)

Verification of solutions

y = c1
√
x BesselJ

(
1,
√
x
)
+ c2

√
x BesselY

(
1,
√
x
)

Verified OK.

6.15.2 Maple step by step solution

Let’s solve
4y′′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

4x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
4x

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

4a0r(−1 + r)x−1+r +
(

∞∑
k=0

(4ak+1(k + 1 + r) (k + r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

4(k+1+r)(k+r)

• Recursion relation for r = 0
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ak+1 = − ak
4(k+1)k

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

4(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak
4(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

4(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − ak

4(k+1)k , bk+1 = − bk
4(k+2)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+y(x)/(4*x)=0,y(x), singsol=all)� �

y(x) =
(
BesselY

(
1,
√
x
)
c2 + BesselJ

(
1,
√
x
)
c1
)√

x

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 38� �
DSolve[y''[x]+y[x]/(4*x)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
√
x
(
c1 BesselJ

(
1,
√
x
)
+ 2ic2 BesselY

(
1,
√
x
))
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6.16 problem 20
6.16.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 751
6.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 752

Internal problem ID [4746]
Internal file name [OUTPUT/4239_Sunday_June_05_2022_12_45_52_PM_51741631/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′x+ y′ + y = 0

6.16.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy′ + xy = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = 2
n = 0

γ = 1
2

Substituting all the above into (4) gives the solution as

y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

Summary
The solution(s) found are the following

(1)y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

Verification of solutions

y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

Verified OK.

6.16.2 Maple step by step solution

Let’s solve
y′′x+ y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x
− y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
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r = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 + ak = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak
(k+1)2

• Recursion relation for r = 0
ak+1 = − ak

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 31� �
DSolve[x*y''[x]+y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 BesselJ
(
0, 2

√
x
)
+ 2c2 BesselY

(
0, 2

√
x
)
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6.17 problem 21
6.17.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 756
6.17.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 757
6.17.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 764

Internal problem ID [4747]
Internal file name [OUTPUT/4240_Sunday_June_05_2022_12_45_59_PM_64848712/index.tex]

Book: A treatise on ordinary and partial differential equations by William Woolsey Johnson.
1913
Section: Chapter IX, Special forms of differential equations. Examples XVII. page 247
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′x+ 3y′ + 4yx3 = 0

6.17.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + 3xy′ + 4yx4 = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
β = 1

n = 1
2

γ = 2

Substituting all the above into (4) gives the solution as

y = c1
√
2 sin (x2)

x
√
π
√
x2

− c2
√
2 cos (x2)

x
√
π
√
x2

Summary
The solution(s) found are the following

(1)y = c1
√
2 sin (x2)

x
√
π
√
x2

− c2
√
2 cos (x2)

x
√
π
√
x2

Verification of solutions

y = c1
√
2 sin (x2)

x
√
π
√
x2

− c2
√
2 cos (x2)

x
√
π
√
x2

Verified OK.

6.17.2 Solving using Kovacic algorithm

Writing the ode as

y′′x+ 3y′ + 4yx3 = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 3 (3)
C = 4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 115: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is −2 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

760



Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
x
dx

= z1e
− 3 ln(x)

2

= z1

(
1
x

3
2

)
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Which simplifies to

y1 =
e−ix2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

x
dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−ix2

x2

)
+ c2

(
e−ix2

x2

(
−ie2ix2

4

))

Summary
The solution(s) found are the following

(1)y = c1e−ix2

x2 − ic2eix
2

4x2

Verification of solutions

y = c1e−ix2

x2 − ic2eix
2

4x2

Verified OK.
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6.17.3 Maple step by step solution

Let’s solve
y′′x+ 3y′ + 4yx3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −3y′

x
− 4yx2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x
+ 4yx2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 3y′ + 4yx3 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y to series expansion

x3 · y =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3
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x3 · y =
∞∑
k=3

ak−3x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 4ak

(k+4+r)(k+6+r)

• Recursion relation for r = −2
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ak+4 = − 4ak
(k+2)(k+4)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0, bk+4 = − 4bk
(k+4)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(x*diff(y(x),x$2)+3*diff(y(x),x)+4*x^3*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (x2) + c2 cos (x2)
x2
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3 Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 41� �
DSolve[x*y''[x]+3*y'[x]+4*x^3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4c1e−ix2 − ic2e
ix2

4x2
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