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1.1 problem Ex. 5, page 256
1.1.1 Maple step by step solution . . . ... ... ... ........ 14

Internal problem ID [5471]
Internal file name [OUTPUT/4719_Sunday_June_05_2022_03_03_59_PM_3813674/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. 1td. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 5, page 256.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

z(—2*+2)y" — (2 +42+2) (1-2)y +y) =0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

(—2®+2z)y" + (2°+32> — 22— 2) ¢y + (-2 —42—2)y =0
The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(x)y =0

Where
(z) = 23+ 322 -2z —2
P = (2 —2)z
B 2 +4x+2

q(.’E) - (.’52 _ 2)5!3



Table 1: Table p(z), ¢(z) singularites.

p(z) = —=He=? a(z) = Tplat?
singularity type singularity type
=0 “regular” =0 “regular”
z =12 “regular” z =12 “regular”
z = —/2 | “regular” z = —/2 | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [O, V2, —\/ﬁ]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

—y' (2 —2)z+ (z*+ 322 — 20— 2)y/ + (—2> -4z —2)y =0

Let the solution be represented as Frobenius power series of the form

o0
y= g a,x"t"
n=0

Then

(n+r) az"tr!

e 17

(n+r)(n+r—1)a,z" 2

<
Il

3
I
o

Substituting the above back into the ode gives

— (Z (m+r)(n+r—1) anx””_z) (2 —2)z

n=0

1)
+ (2° + 32 — 2z — 2) (Z (n+r) ana:"JrT_l)

n=0



Which simplifies to

Z g, (n 1) (n4 7 — 1)) + (Z 22" g, (n+1) (n+r— 1))
n =0 n=0
n+1‘+2 14+n+r
+<nz::x n+r>+ 2 3z “n("”)) (2A)

n
Mg

(=22 an(n+ 1)) + Z (=2(n+7)az™ 1)

3
I
<)

[o.9] [e.o]

(—2z™"*a,) + Z (42"t 7q,) + Z (—2a,2™") =0

Mg

+

Il
=)

n

The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"+"~!
adjusting the power and the corresponding index gives

and

Z e, (n+r)(n+r—1)) =

(_an—2(n +r— 2) (TL 4r— 3) :I:n+T_1)

Z " 2a,(n + 1) an_s(n+r—3) "1
n =0 n=3
Z3x1+"+’" (n+r) ZBanzn—l-r— 2) g™t
n =0 n=2
Z (—2z"*"ap(n+1)) = Z (—2an-1(n+7r—1)z"" )
n =0 n=1
Z (_xn+r+2 — Z <_an— xn+r—1)
n =0 n=3
i 1+n+r — i (_4an— n+r 1)



Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n +r — 1.

o0

Z (=@n-2(n+r—2)(n+r—3)z"" 1)

n =2
2mn+r 1 n—|—7") (’l’L-{-T’— 1)) + (Z an_g(n+r—3) xn-i-r—l)

> 3 2B
(Z 3an 2 ’I'L +7r— 2T 1> Z 2an_ n+r— 1) $n+r_ ) ( )
i ( 2(n+71)a,z"" 1 Z an g 1)
0 2
i —dano2™ ) + io: (—2an_12"""7) =0
—2 —

The indicial equation is obtained from n = 0. From Eq (2B) this gives
22" g, (n+r)(n+r—1)=2(n+71)axz"T =0
When n = 0 the above becomes
22 " agr(—1 + 1) — 2rapz " =0

Or
(2z7 (=14 7r) —2rz ") ap =0

Since ag # 0 then the above simplifies to
2rz " (=247) =0
Since the above is true for all x then the indicial equation becomes
2r(=2+7r)=0
Solving for r gives the roots of the indicial equation as

r =

To = 0
Since ag # 0 then the indicial equation becomes

2rz (=24 7) =0



Solving for r gives the roots of the indicial equation as Since r; — ro = 2 is an integer,
then we can construct two linearly independent solutions

y1(z) = =™ (Z anz”>

1:(2) = Cy(2) In (2) + 27 (Z "”wn>

Or

(@) = a* (z )

Ya(z) = Cyi(z) In (z) + (Z bnx”>
Or

yl(x) — Z anx”+2

n=0

Yo(z) = Cyi(z) In (z) + (Z bna:">

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. aq is arbitrary and taken as ag = 1. Substituting n = 1 in Eq.

(2B) gives
1

T 147

ax
Substituting n = 2 in Eq. (2B) gives

r2 —5r+10
2(=1+7)(2+7)

a9 =

For 3 < n the recursive equation is

—apo(n+r—2)(n+r—-3)+2a,(n+r)(n+r—1)+a,—3s(n+7r—3) (3)
+3ap2(n+1r—2)—2a,_1(n+r—1)—2a,(n+7)—a,—3—4a,—2 — 20,1 =0
Solving for a,, from recursive equation (4) gives

_ N2ap_g + 200PQp_o + T2Qn_9 — NAp_3 — SNAp_g + 2NAp_1 — TQp—3 — STAp_o + 27,1 + 4a,_3 + 16a
- o2n2 4+ 4dnr + 2r2 — 4dn — 4r
(4)

Qn



Which for the root r = 2 becomes

. n2an_o + (—Gn_3 — 4ap_2 + 2an_1) N + 2a,_3 + 4a,_o + 4a,_1 (5)
B 2n(n+2)

Qn

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n | Gny Qn,
Qo 1 1
1
a1 —1+4r 1
a r2—5r+10 1
2 | 2(=1+n)(2+7) | 2

For n = 3, using the above recursive equation gives

r?2 —5r 4+ 10
2r3 +4r2 —2r — 4

as =

Which for the root r = 2 becomes

1
as = -
And the table now becomes
n | any a,
Qo 1 1
1
a; T~I—7‘ 1
a r2—5r4+10 1
2 | 2(=1+n)(2+7) | 2
a r2—5r+10 1
3 | 2r3%4r2—2r—4 | 6

For n = 4, using the above recursive equation gives

s = rt —6r3 4+ 17r2 — 32r + 40
7 44 £ 92473 4 9872 — 241 — 32

Which for the root r = 2 becomes

ay = —

And the table now becomes



’)’L aln,r an
Qo 1 1
1
ax —1+4r 1
a r2—5r+10 1
2 | 2(=14n)(247) 2
a r2—5r+10 1
3 | 2r3F4rz—2r—4 6
a r4—6r34+17r2—32r4+40 1
4 | 491324731 28r2—24r—32 | 24

For n = 5, using the above recursive equation gives

_ r* —6r3 + 17r2 — 32r + 40
475 4+ 3674 + 10073 + 6072 — 104r — 96

Which for the root r = 2 becomes

as

1
as = ——
120
And the table now becomes
n | QGupr an
Qo 1 1
1
ax —1+r 1
a r2—5r+10 1
2 | 2(=14r)(247) 2
a r2—5r+10 1
3 | 2733 4rZ—2r—4 6
a r4—6r3+17r2—32r+40 1
4 | 4913 24r3128r2—24r—32 24
a r4—6r3+17r2—32r+40 1
5 | 4r53+36r%+100r3+60r2—1047—96 | 120

Using the above table, then the solution y () is

yi(z) = ° (ao + a1z + asx® + asx® + agx* + asx® + agzb. .. )

2 3 4 5
— 2 rirr,r 6
=z (1+x+ 5% +24+120+O(33)>

Now the second solution ys(z) is found. Let

7‘1—’]"2=N



Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding lim, ., as(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = as
_ r?=5r+10
T 2(=1+7)(2+7)
Therefore
fim r2 —5r 4+ 10 — lim r2 —5r 4+ 10
ror 2(=1+71)(247) —02(=147)(2+7)
5
T2

The limit is —g. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

() = 3 b
n=0

o0
= g b,z"
n=0

Eq (3) derived above is used to find all b, coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. by is arbitrary and taken as by = 1.
Substituting n = 1 in Eq(3) gives

1

b =
! —1+r

Substituting n = 2 in Eq(3) gives

_ r?—5r+10
C2(=1+7)(2+7)

For 3 < n the recursive equation is

by

—bpa(n+r—2)(n+r—-3)+2b,(n+7)(n+7r—1)+bp_3(n+7r—3) (4)
+3bn_2(n +7r— 2) — 2bn_1(n+7‘ - 1) — 2(n +7’) bn — bn_g — 4bn_2 — 2bn_1 =0

Which for for the root r = 0 becomes

—bp—2(n —2) (n —3) + 2b,n(n — 1) + by—3(n — 3) + 3bp—a(n — 2) (4A)
— 2bn_1(n - 1) - 2nbn - bn_3 - 4bn_2 - 2bn_1 =0

10



Solving for b, from the recursive equation (4) gives

B n2b,_g + 2n1by_o + 72b,_9 — Nby_3 — 8Nbp_o + 2nby_1 — Tby_3 — 8rby_o + 27b,_1 + 4by_3 + 16b,_-
N 2n? + 4nr + 2r% — 4n — 4r
(5)

bn

Which for the root r = 0 becomes

- n2bn_2 — nbn_3 — 8nbn_2 + 2nbn_1 =+ 4bn_3 + 16bn_2 (6)
N 2n2 — 4n

At this point, it is a good idea to keep track of b, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

br

n bn,r bn
by | 1 1
b | 50 -1
b r2—5r+10 _5
2 | 2(=1+4r)(2+7) 2
For n = 3, using the above recursive equation gives
r?2 —5r + 10

bs

T2+ (—l+n)2+7)
Which for the root r = 0 becomes

5
by = 5
And the table now becomes
n bn,r bn
bo | 1 1
b | o4y -1
b r2—5r+10 _5
2 | 2(=14+n)(2+7) 2
b r2—5r+10 _5
3 | 2733 4r2—2r—4 2

For n = 4, using the above recursive equation gives

r* —6r + 17r2 — 32r + 40
4(1+7r)(=1+7)(r2+6r+28)

Which for the root r = 0 becomes

4:
by = —

>
4

11



And the table now becomes

n bn,r bn
bo | 1 1
1
b r2—5r+10 _5
2 | 2(=1+n)(2+r) 2
b r2—5r4+10 5
3 | 2r3F4rz—2r—4 2
b r4—6r3+17r2—32r+40 _5
4 | 4ri124r3128r2—24r—32 4

For n = 5, using the above recursive equation gives

_ rt —6r3 4+ 17r2 — 32r + 40
_4(r+3)(1+r)(—1+7")(r2+6r+8)

Which for the root r = 0 becomes

bs

by = ——
° 12

And the table now becomes

n | by, b,
by | 1 1
1
by | == 1
b r2—5r+10 _5
2 | 2(=1+n)(2+7) 2
b r2—5r+10 _5
3 | 2r3tarz—2r—4 2
b r4—6r3+17r2—32r+40 _5
4 | 4 124r3428r2—24r—32 1
b r%—6r3+17r2—32r+40 _ 5
5 | 2r54+36r2+100r3+60r2—104r—96 12

Using the above table, then the solution y,(z) is

Ya2(z) = by + b1z + box® + bax® + byz* + bsx® + be®. ..
502 5z 5x* 5a°

I T el 6
—lor- Sy T T tOW)

12



Therefore the homogeneous solution is

Yn(r) = ey () + coya()

2 3 4 5 2 3 4 5
9 ¢ 0 z 6 oz  dxz° dx* O
= 1 T l—gp—— = = ==
clx( +x+2+6+24+120+0(x)>+02< T

Hence the final solution is
Y=1Yn

2 g3 ot 5 5z2 5x3 5x' 5z°
=2l 1 .. r . T 6 12 = = 2
ax ( tr+ o+ +24+120+O(3c) + ¢ T- = 5 13

+ O(xﬁ))

Summary
The solution(s) found are the following

Verified OK.

13



1.1.1 Maple step by step solution

Let’s solve
—y' (2 —2)z+ (®+ 322 — 22— 2)y + (-2 — 4z —2)y =0
° Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative

(2% +4z+2)y (z3+322—23—2)y’
y” T @222 + (z2—2)z

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

(x3+322—2z—2)y’ (22 +4z+2)y
y” - (z2-2)z (z2—-2)z =0

OJ Check to see if xq is a regular singular point

o Define functions

|Pale) = — 243522 Py(o) = 422

o x-Py(x)is analyticatx =0

(z-Py(z))| =-1

=0

o z?. P3(z)is analytic at z =0

=0

z=0

(«* - Py(z))

o z = (is a regular singular point

Check to see if z is a regular singular point

zo=0
. Multiply by denominators
V' (2 —2)z+ (-2 - 322+ 22+ 2)y + (2 + 42+ 2)y =0
° Assume series solution for y
Y= i T
k=0
U Rewrite ODE with series expansions

o Convert ™ - y to series expansion for m = 0..2

00
m . y = Z akxk—l—r—i-m
k=0

14



Shift index using k— >k — m
[e o]
rm . y = Z ak_mwk—i-'r
k=m
Convert ™ - 3 to series expansion for m = 0..3
™. y/ — Z ak(k + 'f') xk:+'r—1+m
k=0

Shift index using k— >k+1—m
"y = Y aprim(k+1—m+7)T
k=—14+m

Convert ™ - y” to series expansion for m = 1..3
-y = > ap(k+71)(k+r—1)gktr-2m
k=0

Shift index using k— >k +2—m
mm-y"= Z ak+2_m(k+2—m+r)(k+1—m+r)xk+’"
k=—2+m

Rewrite ODE with series expansions
—2aor(—24 1)z + (=2a:1(1 +7) (=14 7) + 2a0(1 + 7)) 2" + (—2a2(2+ 1) r + 241 (2 + 1) 4

apcannot be 0 by assumption, giving the indicial equation

—2r(—2+7)=0
Values of r that satisfy the indicial equation
r € {0,2}

The coefficients of each power of x must be 0
[—2a1(147) (=14 7) +2a0(1 +7) =0,—2a2(2+ 1) r + 2a:(2+ ) + ao(—2 + r? = 0]
Solve for the dependent coefficient(s)

2
_ ag _ ao(r —5r+10)
{al = @2 = 2(r24+r—2)

Each term in the series must be 0, giving the recursion relation

ap_1(k —3+ 7‘)2 —2ap11(k+7r+1)(E+7r—1)+ (2ar — ag—2) k + (2ax — ax—2) r + 2ax + 3ax_
Shift index using k— >k + 2

apr1(k+7— 1) = 2a513(k+3+7) (k+7+ 1) + (2042 — ar) (k + 2) + (20512 — ax) T + 2054

Recursion relation that defines series solution to ODE

15



_ k2ak+1+2krak+1+'r2ak+1 —ark—2kag1+2kago—agr—2rag1+2ragotag+ag1+6agio

Ak+3 = 2(k-+3+7) (k+r+1)
° Recursion relation for r =0
a _ k2ak+1—akk—2kak+1+2kak+2+ak+ak+1+6ak+2
k+3 = 2(k+3)(k+1)
° Solution forr =0
_ k k2apt1—agk—2kapt1+2kaktotar+akr1+6ap42 _ ___ bBag
{y = ). apT", k13 = 2(k+3)(k+1) y A1 = —Qp, A2 = — 5
k=0
° Recursion relation for r = 2
a _ k2ak+1—akk+2kak+1+2kak+2—ak+ak+1+10ak+2
k+3 = 2(k+5)(k+3)
° Solution for r = 2
_ k+2 ka1 —apk+2kak114+2kar2—ak+aky1+10ak 42 _ __ag
|:y - Z arx y Q43 = 2(k+5)(k+3) , @1 = Qp, A2 = o
k=0
° Combine solutions and rename parameters
= k e k+2 k2a kar—2kag41+2kagso+tar+ag+1+6a
I -+ k+1— k— k+1 k+2 k k+1 k+2
y=(2 az® )+ (> bxz ) k43 = 2(k+3)(k+1) » 01
- k=0

Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful”

16
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v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 44

‘0rder:=6; ‘
‘dsolve(x*(2—x‘2)*diff(y(x),x$2)—(x‘2+4*x+2)*((1—x)*diff(y(x),x)+y(x))=0,y(x),#ype='series',x

1 1 1 1
y(z) = 12 <1 +z+ §z2 + 6353 + ﬂx‘l + mm‘r’ +0 (xﬁ))

2
+c (—2 + 2z + 422 + 423 + 22 + §x5 +0 (zﬁ))

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 64

LAsymptoticDSolveValue [x* (2-x"2) ¢y ' ' [x] - (x"2+4*x+2) * ((1-x) *y' [x]+y[x])==0,y [x]J, {x,0,5}]

5z* 5z®  bz? 28 oz ot
yz) s a|l-———-——F——-——7F—-z+1) +e ﬂ+€+5+x +z

17



1.2 problem Ex. 6(i), page 257
1.2.1 Maple step by step solution . . . . ... ... ... ... ... 201

Internal problem ID [5472]
Internal file name [OUTPUT/4720_Sunday_June_05_2022_03_04_01_PM_46599014/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. 1td. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 6(i), page 257.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

?(1+2z)y" — (1+2z) (—y+=zy) =0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

(P +2*)y" + (22" —2)y + (1 +22)y =0
The following is summary of singularities for the above ode. Writing the ode as

Y +p@)y +q(z)y =0

Where
1+ 2z
pr)=——7+ i+ o)
142z
W2)= sa i+2)

18



Table 3: Table p(x), g(z) singularites.

plz) = — 2= q(z) = Ft2=
singularity type singularity type
x=-—1 | “regular” x=-—1 | “regular”
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [—1, 0, 0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

?(1+2z)y" + (22> —2)y' + (1+22)y =0

Let the solution be represented as Frobenius power series of the form

00
Yy = E anxn+r
n=0

Then

(n+r) a1

<
I

Me 17

(n+7r)(n+r—1)a,z""?

<
I

3
I
<)

Substituting the above back into the ode gives

(Z (m+r)(n+r—1) anx"+T_2> r*(1 + )

n=0

+ (—2;1;2 _ x) (i (n+r) ana;"+T_1> + (1 +2z) (i anw"+T> -0

1)

19



Which simplifies to

<Zr1+n+’" (n+r) n+r—1> ( x””an(n—l—r)(n—l—r—l))

n=0
+ i 1+n+r ’I’L 4 ’I" f: 'I’L + 7")) (2A)

n =0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

Y et a ) (ntr—1)= aua(n+r—1)(n+r—2)z""
n =0 n=1
> (-2 ag(n 1)) = 3 (<2anaa(ntr— 1))
n =0 n=1
Z Intry Z 20, 12"
n =0

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n + 7.

n=1

(Zan_l(n+r—1)(n+'r "J”") (Zx”” (n+r (n+r—1)>
+i —2a,_1(n+7—1)z""") i an(n+r))

The indicial equation is obtained from n = 0. From Eq (2B) this gives

" a,(n+r)(n+r—1)—2""a,(n+7) +a, 2"t =0

20



When n = 0 the above becomes
z aor(—1+71) — 2 aer + apz” =0

Or
("r(=14+7r)—2"r+2")ay=0

Since ag # 0 then the above simplifies to
(-14+7)22" =0
Since the above is true for all x then the indicial equation becomes
(-14+7r)*=0
Solving for r gives the roots of the indicial equation as

r=1

To = 1
Since ag # 0 then the indicial equation becomes
(=1+7)2z"=0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y(z) = Z an ™" (1A)

Now the second solution y, is found using

Yo(z) = y1(z) In (z) + (Z bna:"”) (1B)
n=1
Then the general solution will be

y = c1y1(z) + coya(z)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), ay is never zero, and is
arbitrary and is typically taken as ap = 1, and {c;, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

oo
yl(il:) — Z anx1+n
n=0

yo(z) = y1(x) In (x) + <Z bnx1+”>

We start by finding the first solution y;(z). Eq (2B) derived above is now used to find
all a,, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. ag is arbitrary and taken as ag = 1. For 1 < n the recursive equation
is
an1(n+r—1)(n+r—2)4+a,(n+r)(n+r—1) (3)
—2a,1(n+r—-1)—a,(n+r)+a,+2a,.1=0

Solving for a,, from recursive equation (4) gives

_an_l(n2+2nr+r2—5n—5r+6)
n24+2nr+r2—2n—2r+1

(4)

a, =

Which for the root r = 1 becomes

an_1(n? — 3n +2)
_ -

(5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

Ap =

n | Gpy | Gy

Qo 1 1

For n =1, using the above recursive equation gives

—r?+3r—2
G =35
T
Which for the root r = 1 becomes
a; = 0

And the table now becomes
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Qo 1 1

—pr2 —
aq r<4+3r—2 0

For n = 2, using the above recursive equation gives

(r—2)(-1+ r)2

a fry

? r(r+ 1)2

Which for the root r = 1 becomes
Qg = 0

And the table now becomes

n | Gn, an

ap 1 1

aq —7"2—7{‘—;37'—2 O

(r—2)(=14r)*
i T

For n = 3, using the above recursive equation gives

(r—2)(=1+7)’
(r+2)>%(r+1)

as = —

Which for the root r = 1 becomes

az = 0
And the table now becomes
n | Gny an
Qo 1 1
a —7‘2—7}"-2?%—2 0
o BB o
_ (7'—2)(—1-|—7')2
a3 2%+ | 0

For n = 4, using the above recursive equation gives

(r—2) (1 +7)
(r+3)°(r+2)
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Which for the root r = 1 becomes

ag = 0
And the table now becomes

no | Gny an

Qo 1 1

a —r2+§r—2 0
(r—2)(—1+47)2

as W 0
_ (r—2)(—1+7‘)2

as 127+ | 0
(r—2)(—1+7)2

@4 | rr3)(r+2) 0

For n = 5, using the above recursive equation gives

(r—2)(-1+ 7‘)2

(r+ 4)2 (r+3)
Which for the root r = 1 becomes
a5 = 0
And the table now becomes
n | Gpy an
Qo 1 1
a _TQ-::ST_Q 0
(r=2)(=14r)?
az r(r+1) 0
_ (7‘—2)(—1—1—7‘)2
as 127+ | 0
(r—2)(—1+7)2
@4 | r3)2(r+2) 0
_ (7‘—2)(—1—{—7‘)2
a5 (r+4)2(r+3) 0

Using the above table, then the first solution y; () is

yi(z) = x(ao + a1z + asx® + asx® + agzt + a5z’ + agxb. .. )

—2(1+0(a%))
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Now the second solution is found. The second solution is given by

y2(z) = y1(z) In (z) + (Z mw)

Where b, is found using

And the above is then evaluated at r = 1. The above table for a,, is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = di,nan,'r bn(r = 1)

by | 1 1 | N/A since b, starts from 1 | N/A

bl —r21—237'—2 0 —37”7:9’-{-4 1

—2)(=14r)? —147)(r2=Lr—

bs _% 0 |- (lT:z))g(TJrif 2 0
(r=2)(=1+r)* 1278 —4r2—52r444

b Trre |0 | e 0
_ (r=2)(=1+r)? —15r3—10r24+105r—80

bs 073 | (r+4)%(r+3)? 0

The above table gives all values of b, needed. Hence the second solution is
y2(z) = y1(z) In () + by + b1z + box® + b3x® + byz* + bsz® + be2®. ..
=1z(14 0(2°)) In(z) + z(z + O(z°))
Therefore the homogeneous solution is

yn(z) = ay(z) + caya(z)
=az(l1+0(z°%) + e (z(1+0(2°)) In(z) + z(z + O(2°)))

Hence the final solution is

Y=1UYn
= cw(1+0(2%)) + e (z(1+ O(2%)) In (z) + 2 (z + O(%)))
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Summary
The solution(s) found are the following

y=cz(l+0(2%)) + 2 (z(14+ O(2°%)) In(z) + z(z + O(z°))) (1)
Verification of solutions

y=az(l+0(c%) + e (2(1+0(*)) In (z) + z(z + O(29)))

Verified OK.

1.2.1 Maple step by step solution

Let’s solve

v 2?2 (1+2)+ (=222 —2)y + (1+22)y =0

° Highest derivative means the order of the ODE is 2
yll

° Isolate 2nd derivative

n _ _ (+2x)y + (1+2z)y’

— z2(14x) z(14+x)
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
(1+2z)y’ (1+2z)y

" - z(1+x) + z2(14+z) — 0

O Check to see if ¢ is a regular singular point

o Define functions

[Pa(z) = — 222, Py(a) = 22

o (14 z)- Py(x)is analytic at z = —1

=1

z=-1

(1+2) - Pya))

o (14 x)*- Ps(z)is analytic at z = —1

(1+2)*- Py(z)) =0

r=-—1

o 1z = —lis a regular singular point
Check to see if xg is a regular singular point
o= —1
° Multiply by denominators
y'r’(1+z)—z(1+22)y + (1+22)y=0
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Change variables using x = u — 1 so that the regular singular point is at u =0
(ud — 2u? + u) (%y(u)) + (—2u? 4+ 3u—1) (Ly(u)) + (=14 2u) y(u) =0
Assume series solution for y(u)

y(u) = > aput’
k=0

Rewrite ODE with series expansions

Convert u™ - y(u) to series expansion for m = 0..1
[e o]

u™ - y(u) = Y apurtrtm
k=0

Shift index using k— >k —m
u™ - y(u) = Y ap_pubtT
k=m

Convert u™ - (Ly(u)) to series expansion for m = 0..2

(&)

u™ - (%y(u)) — Z ak(k + 7.) uk—i—r—l—i—m
k=0

Shift index using k— >k +1—m

o0

u™ - (Ey(w) = X approm(k+1—m+r)uft
k=—1+m
Convert u™ - (%y(u)) to series expansion form = 1..3
u™ - s = 3 k k -1 k+r—2+m
dqu(u) —Zak( —|—r)( +7r )u
k=0

Shift index using k— >k +2—m

e (Ey@) = 3 et 2= metr) (E 41— mt ) ut
k=—2+m

Rewrite ODE with series expansions

aor(=2+7r)u ™" + (ay(1+7) (=1 +7) —ap(2r? — 5r + 1)) u™ + (Z (app1(E+1+7)(k+7-
k=1

apcannot be 0 by assumption, giving the indicial equation

r(=24r)=0

Values of r that satisfy the indicial equation

r € {0,2}

Each term must be 0
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ar(l1+7)(=147)—ag(2r*=5r+1) =0

Each term in the series must be 0, giving the recursion relation

(—2ax + ap_1 + agy1) k% + ((—4ag + 2ap_1 + 2ax41) 7 + 5ar, — 5ax_1) k + (—2ax, + ar_1 + axy1)
Shift index using k— >k + 1

(—2ak11 + g + axr2) (k4 1) + (—4ars1 + 20, + 20512) 7 + Bagys — 5ag) (K + 1) + (—2a541 +

Recursion relation that defines series solution to ODE

a _ k2ak—2k2ak+1+2krak—4krak+1+'r2ak—2r2ak+1—3Icak+kak+1—3rak+rak+1+2ak+2ak+1
k+2 — k242kr+124+-2k+2r

Recursion relation forr =0

. k2ak—2k2ak+1 —3kar+kag+1+2ar+2a541
Ar+2 = — k2 +2k

Series not valid for r = 0, division by 0 in the recursion relation at k = 0

_ k2ak—2k2ak+1 —3kar+kag+1+2ax+2a541
Ak+2 = — k2 +2k

Recursion relation for r = 2

_ k2ak—2k2ak+1+kak—7kak+1 —4ag41
Ak+2 = k2 +6k+8

Solution for r = 2

o0
_ k+2 __ Klap—2k2apq1+kar—Tkary1—4ak41 _
y(U) - Z arpu * y Q42 = — +k2+6k+8 + + ,30/1 + a0 = 0
L k=0

Revert the change of variablesu =1+«

k2+6k+8

o0
k+2 kQak—Zkzak 1+kar—Tkag 1 —4agy1
y=2ak(1—|—x) y Ay = — = = +,3a1+a0=O
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

‘0rder:=6; ‘
‘dsolve(x‘2*(1+x)*diff(y(x),x$2)-(1+2*x)*(x*diff(y(x),x)-y(x))=0,y(x),type=‘se#ies',x=0);

y(z) =z((c2In(z) + ¢1) (1 4+ 0 (2°%) + (z+ O (2°)) ¢2)

v/ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 2760

e

tAsymptoticDSolveValue[x‘2*(1+x)*y"[x]-(1+2*x)*(x*y'[X]+y[x])==0,y[X],{X,O,S}?

Too large to display
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1.3 problem Ex. 6(ii), page 257

Internal problem ID [5473]
Internal file name [OUTPUT/4721_Sunday_June_05_2022_03_04_02_PM_75632679/index.tex|

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 6(ii), page 257.

ODE order: 3.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

Unable to parse ODE.

Maple trace

"Methods for third order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying high order exact linear fully integrable

trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
Louvillian solutions for 3rd order ODEs, imprimitive case: input is reducible, switching to
checking if the LODE is of Euler type

expon. solutions partially successful. Result(s) =", [x72]

& J
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 79

‘Order:=6; ‘
‘dsolve(x“3*(1+x)*diff(y(x),x$3)—(2+4*x)*x‘2*diff(y(x),x$2)+(4+10*x)*x*diff(y(#),x)—(4+12*x)*

y(z) =z((22+0 (2°)) In (z)’ cz +1n (2) (240 (2°)) 2z +2((—4) 2+ O (2°) ) In () c3
+ (540 (2°) oz + c1z(1+ 0 (2°)) + (2 + 4z + 22° + O (2°) ) c3)

v/ Solution by Mathematica
Time used: 0.514 (sec). Leaf size: 49

e N
LAsymptoticDSolveValue[x‘3*(1+x)*y'"[x]—(2+4*x)*x“2*y"[x]+(4+10*x)*x*y'[x]—§?+12*x)*y[x]==

y(z) = c27® + 1 (2(2? + 11z + 1) z + 22° log*(z) — 142° log(z)) + c32° log(z)
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1.4 problem Ex. 6(iii), page 257

Internal problem ID [5474]
Internal file name [OUTPUT/4722_Sunday_June_05_2022_03_04_03_PM_37151700/index.tex|

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 6(iii), page 257.

ODE order: 3.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

Unable to parse ODE.

Maple trace

"Methods for third order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying high order exact linear fully integrable

trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
Louvillian solutions for 3rd order ODEs, imprimitive case: input is reducible, switching to
checking if the LODE is of Euler type

expon. solutions partially successful. Result(s) =", [x72, x"3+x]

& J
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 52

‘0rder:=6; ‘
|dsolve (x"3# (1+x"2) *diff (y (x) ,x$3) - (2+44x"2) #x"2+diff (y (x) ,x$2) +(4+10%x"2) *x*diff (y (x) %)~ (4

y(z) = (cs(2+ 22"+ 0 (%))
+((14+0(2°%)c1+e2(ln(z) (240 (2°) + (5+0(2°)))) z) =

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 30

LAsymptoticDSolveValue[X“3*(1+X“2)*y"‘[x]-(2+4*x“2)*x“2*y"[x]+(4+10*x“2)*x*yf[x]-(4+12*x“2)

y(z) = c1(22° + 22) + 2% + c32° log(z)
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1.5 problem Ex. 6(iv), page 257
1.5.1 Maple step by step solution . . . . . ... ... ... ...... 45

Internal problem ID [5475]
Internal file name [OUTPUT/4723_Sunday_June_05_2022_03_04_04_PM_81533320/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. 1td. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 6(iv), page 257.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

22 -z)2’y" —(4—-z)ay + (- +3)y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

(—22°+42*) " + (2 —42) Y + (—2+3)y =0
The following is summary of singularities for the above ode. Writing the ode as

Y +p@)y +q(z)y =0

Where
(z) = — —4+zx
P 2z (-2 +x)
(z) = z—3
N = o2 (—2+2)
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Table 5: Table p(x), g(z) singularites.

p(x) = — 5t 4(@) = 5=
singularity type singularity type

=0 “regular” =0 “regular”

=2 “regular” =2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 2, 0o]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

—2y"1* (=24 z) + (z° —42) Y + (—z+3)y =0

Let the solution be represented as Frobenius power series of the form

o)
y — E anxn+r
n=0

Then

(n+r) a1

<
I

Me 17

(n+7r)(n+r—1)a,z""?

<
I

3
I
<)

Substituting the above back into the ode gives

-2 ( 3 (mn+r)(n+r—1) anz"+T_2> (-2 + )

n

+ (2? — 4z) <Z (n+7) anx”+T_1) + (—z + 3) (Z anx"”) =0
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Which simplifies to

o0

Z (=22 a,(n+7r)(n+r—1)) + (Z 4" a,(n+ 1) (n+1— 1))

n =0 n=0

( xl"'”'” (n+r ) Z " a,(n+r))
+ i (—$1+"+’" (Z 3a,z"" ) =0

(24)

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

Z (=22 a,(n+r)(n+r—1)) = Z (—2ap_1(n+r—1)(n+7r—2)z""")
n =0 n=1
Z xl—i—n-{—ran(,n + T') — Zan—l(n +r— 1) 2T
n =0 n=1
Z g ) = Z (_an lwn—}-?")

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + r.

Z —2a,_1(n+71—1)(n+7r—2)z""")

n =1

+ Z (=42 a,(n+r)) + i (—@n_13™) + (i 3anx”+r) -

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4" a,(n+71)(n+7r—1) — 42" a,(n + 1) + 3a,z"" =0
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When n = 0 the above becomes
4z aor(—1 4+ r) — 4x"apr + 3agx” =0

Or
(4z"r(—=14+7r) —4z"r +3z")ap =0

Since ag # 0 then the above simplifies to
(4r* —8r+3)z" =0

Since the above is true for all x then the indicial equation becomes

4r* —8r+3=0
Solving for r gives the roots of the indicial equation as
3
r = 5
1
To = 5

Since ag # 0 then the indicial equation becomes
(47> —8r+3)2" =0

Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

yl(w =z’ (Zanx )
() = Con(z) I (2) + 0 (Z ” )

Or

n(z) = z? <Z anx”>

va(x) = Cyp(2)In (z) + Va (i w)
Or

yl(x) = Z anxn+2
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Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. For 1 < n the recursive
equation is

—2a,_1(n+r—1)(n+r—2)+4a,(n+r)(n+r—1) (3)
+ap1(n+r—1)—4da,(n+r)—ap-1+3a,=0

Solving for a, from recursive equation (4) gives

(n+r—2)a,—
n — 4
2n+2r—1 ( )
Which for the root r = % becomes
. (21’1, — 1) Ap—1
I = T T (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r= % and after as more terms are found using the above recursive equation.

n | Gny | Gy

ap 1 1

For n = 1, using the above recursive equation gives

—1+r
14 2r

a; =

Which for the root r = % becomes

a; =

|

And the table now becomes

ap 1

—14r
1+2r

a1

0Ol | b=t

For n = 2, using the above recursive equation gives

0 — r(—=1+r)
T 424 8 +3
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Which for the root r = 2 becomes

1
2= 39
And the table now becomes
n | Gn, an,
ag 1 1
=147 1
a1 | 15 8
r(—=1+4r) 1
@2 | 1278r+3 | 32

For n = 3, using the above recursive equation gives

3

o —7r
as =
8r3 4+ 3672 + 46r + 15
Which for the root r = % becomes
5
a3 = ——
512
And the table now becomes
n | Gn, an,
ag 1 1
—14r 1
a1 | 15 8
r(—1+r) 1
@2 | 1258r+3 32
a —,,.3_,,. i
3 | 8r3+36r2+46r+15 | 512

For n = 4, using the above recursive equation gives

r(rr—1)(2+r)
(412 4+ 8r +3) (5 + 2r) (7 + 2r)

ag =
Which for the root r = % becomes

%= 5048

And the table now becomes
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n | Gn, an,
Qo 1 1
—14r 1
01 | 15 8
r(—1+r) 1
@2 | Z2i8r13 32
a —7_3_,’, i
3 | 8r3+36r2+46r+15 512
r(r2—1) (2+r) 7
A4 | (@r238r+3)(5+2r)(7+2r) | 2048

For n = 5, using the above recursive equation gives

_ r(rP=1)(2+r)(3+r)
(4r2+8r+3)(5+2r) (7+2r) (9+ 2r)

as

Which for the root r = 2 becomes

21
as = ———
16384
And the table now becomes
n | Gpr an
Qo 1 1
—14r 1
a1 | 1o 8
r(—=1+4r) 1
@2 | L2383 32
a —TS_T i
3 | 8r3+36r2+46r+15 512
r(rz—l) (2+r) 7
Q4 | @r28r+3)(5+2r)(7+2r) 2048
a r(r2—1)(2+r)(3+r) 21
5 | (4r2+8r+3)(5+2r)(7+2r)(9+2r) | 16384

Using the above table, then the solution y; (z) is

N

y(z) =2z (ao + a1z + asx? + asz® + asx* + a5z’ + agzb. .. )

( x> 5rd 7zt 21z°

Nl

T
1+ 4+ -+ + -

6
v st 327512 T o0as T 163sa T O ))

Now the second solution y(z) is found. Let

7‘1—’]"2=N
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Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim,_,,, a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

anN = ap
e
142r

Therefore
—1+r I —1+r

i -
ora 1+2r el 1+2r
1
4

The limit is —i. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2($) _ Z bnxn+r
n=0
0
ST
n=0

Eq (3) derived above is used to find all b,, coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. by is arbitrary and taken as by = 1.
For 1 < n the recursive equation is

—2b,_1(n+r—1)(n+r—2)+4b,(n+7)(n+7r—1) (4)
+b,i(n+r—1)—4by(n+7) —bp_1+3b, =0

Which for for the root 7 = 3 becomes

—Q@kl(n——%) (n-g)-+4bn(n4—%) (n-—%) (48)

(o) (0 2) <o

Solving for b, from the recursive equation (4) gives

(’I’L‘l‘?" - 2) bn—l

b= o —1 (5)
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Which for the root r = 7 becomes

bn — (’I’L _ %) bn—l

o (6)

At this point, it is a good idea to keep track of b, in a table both before substituting

r= % and after as more terms are found using the above recursive equation.

n bn T bn

)

bo | 1 1

For n =1, using the above recursive equation gives

b — 14+
Y 1yor
Which for the root r = % becomes
b — 1
17y
And the table now becomes
n bn,r bn
bo | 1 1
—147r 1
by 1+J2rr 1

For n = 2, using the above recursive equation gives

r(—=14r)

b= T Bt 20

Which for the root r = 7 becomes

1
by = ——
27 32
And the table now becomes

n | by, b,
bo | 1 1

—1+4r 1
by 1+J2rr !
b r(—1+4r) _ 1
2 | 4r238r+3 32
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For n = 3, using the above recursive equation gives

(=14+7r)r(l+r)

5=t Bren G+

Which for the root r = % becomes

b 1
3= ———
128
And the table now becomes
n | by, by,
bo | 1 1
b =147 _1
1| 1¥or 4
b r(—1+4r) 1
2 | 2r238r+3 32
ba | —0r—r | _ 1
3 | 8r3+36r2+46r+15 128

For n = 4, using the above recursive equation gives

_ (=14+r)r(l+r)(2+71)
T @+2r)B+2r)(5+2r) (7T +2r)

Which for the root r = 7 becomes

5
by = ——
2048
And the table now becomes
n bn,r bn
bo | 1 1
—14r 1
by 14+2r 4
b r(=1+r) _1
2 | 4218r+3 32
ba | T 1
3 | 8r3+36r2+46r+15 128
b r442r3—r2_2r 5
4 | 16rf+128r3+344r2+352r+105 2048

For n = 5, using the above recursive equation gives

(—1+r)r(l+r)2+r)(3+1)
(14+2r)3+2r)(5+2r)(7T4+2r)(9+2r)

bs =
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Which for the root r = 7 becomes

7
by = ———
8192
And the table now becomes
n bn,,« bn
by | 1 1
b =1+r _1
1] T32r 1
b r(—1+r) 1
2 | 248r+3 32
b r—r 1
3 | 8r3+36r2+46r+15 128
b rd42r3 —r2_92p __5
4 | 16r +128r3+34472+352r+105 2048
b 75 4+5rt4+5r3—5r2—6r _ T
5 | 32r5+400r%+1840r3+38007r2+3378r+945 8192

Using the above table, then the solution y,(x) is

yo(z) = 2 (bo + by + box® + b3x® + bax* + bsx® + bgxb. .. )
x 2 28 5z Txd
= 1---= - = = _ 6
v ( 1732 128 2048 8102 O ))

Therefore the homogeneous solution is

Yn(z) = c1y1() + coya()
x2  5r® 7t 21z°

— g T T | 9T 6
- ar’ (H st 32512 " 2008 T 16381 T O )>

2 3 4 5
+C2\/5(1—f—$——x oot _ Tz +O(x6))

4 32 128 2048 8192

Hence the final solution is

Y="Yn

c1z? 1+£+x_2+5_x3+ 7o +Lx5+0(x6)
' 8 32 512 2048 16384

T z 5zt Tx° 6
tove (1_1_5_58_ 2043 5192 T O )>
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Summary
The solution(s) found are the following

= c12? 1+£+x_2+5x3+ 7o’ + 21" +O(x6)
v=a 8 32 512 2048 16384

(1)
z 22 2 b5zt Tx®
1z = == _ = 6
tove ( 1732 128 208 s192 O )>
Verification of solutions
5 r z* bxd 7xt  21a°
—cri (14242 O(°
v Clm( +5 33t 512 " 2048 16382 T O )>
z =z 23 bzt T 6
tove (1_1_5 ~ 125 2068 8192 O )>
Verified OK.
1.5.1 Maple step by step solution
Let’s solve
=2y (-2+z)+ (22 —42)y + (-2 +3)y =0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
n_ (A+o)y’  (z-3)y
T 2z(—2+x) 2x2(—2+z)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
(—4+a)y’ (z=3)y  _
y' - 2x(—2+z) + 2x2(—2-i:l:lx) =0
O Check to see if xg is a regular singular point

o Define functions

[P2(x): —Ats  p(p) = o3

- 2z(—2+x)? 2z2(—2+x)

o x-Py(x)is analytic at x =0

(@ B@)| =-1

z=0

o z?. P3(x)is analytic at z =0

@ R@)|

Y
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o z = (is a regular singular point
Check to see if xg is a regular singular point
To = 0
Multiply by denominators
2y'2* (-2 +12) —z(~4+2)y + (2 -3)y=0
Assume series solution for y
o0
y = Z akxk+r
k=0
Rewrite ODE with series expansions

o Convert ™ - y to series expansion for m = 0..1
m . Y= i akzk-l—r—i-m
k=0
o Shift index using k— >k —m
[e.e]
gy = 3 Aot
k=m
o Convert ™ - 3/ to series expansion for m = 1..2
™. y/ = Z ak(k + T‘) xk—l—r—l—l—m
k=0
o Shift index using k— >k +1—m

™y = > app1-m(k+1—m+r)xktT
k=—1+m

o Convert ™ - y” to series expansion for m = 2..3
o0
-y = ap(k+7r) (k+r—1)ghtr—2m
k=0

o Shift index using k— >k +2—m

eyt = ) ak+2_m(k+2—m+r) (k;-|—1_m_|_,r.)xk+r
k=—24+m

Rewrite ODE with series expansions

—ag(—1+2r) (=34 2r)z" + (Z (—ar(2k+2r — 1) (2k +2r — 3) + ax—1(2k +2r — 3) (k — 2
k=1

apcannot be 0 by assumption, giving the indicial equation

—(=142r)(-3+2r)=0

Values of r that satisfy the indicial equation
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ref{ynsl

Each term in the series must be 0, giving the recursion relation
(-5 =54 Do+ an(k b= 1) (kb= ) =0

Shift index using k— >k + 1

(-5 h =5t aua b+ ) (= 3) =0

Recursion relation that defines series solution to ODE

_ (k+r—1)ay
Ok+1 = pritor

Recursion relation for r = %
_ (k=3)ak
Ok+1 = “3512
Solution for r = 1
o0 1
_ k41 _ (k=3)ak
Yy = ;;_0 AT 2,041 = 2k+2

Recursion relation for r = 3

_ (k+3)ax
S e Tw

Solution for r = g

_ o 1
— k2 _ (k+3)a
y= kzjoakm 2, Qi1 = “oprg

Combine solutions and rename parameters

B 00 00 1 1
_ k+1 k+2 _ (k—3)ak _ (k+3)be
Y= <Z axx +2) + (Z brx +2) y Ak+1 = gki.Q 7bk+1 = 2k-2i-4
L k=0 k=0
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

‘0rder:=6; ‘
| dsolve (2% (2-x)#x~2+diff (y(x) ,x$2) - (4-x) *x*diff (y(x) ,%)+(3-x)*y (x)=0,y (x) ,type='series',x=0) ;

1 1 5 7 21
y(z) =V (1’<1 +iz+ '+ -+ ——z'+

5 6
8" 327 Tr12" T 2048” T 16384” +O(m)> “

1 1 1 5 7
1 - 2 - Y 4 0 6
+< +!w+mx+j%x+dmgv+8wf:+0@)>@)

v/ Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 94

LAsymptoticDSolveValue[2*(2-x)*x“2*y"[x]-(4-x)*x*y'[x]+(3-x)*y[x]==0,yEX],{X, ,5}]

5292 LT/2 52 23/2 /3 7p11/2  B5p9/2  4T/2 45/ 32
y(“)_*cl<_'2o48"128'_ 32 4 T $>'+02( 2048 " h12 T32 " 8 17 )
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1.6 problem Ex. 6(v), page 257

Internal problem ID [5476]
Internal file name [OUTPUT/4724_Sunday_June_05_2022_03_04_06_PM_73340437/index.tex|

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 6(v), page 257.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

(1—z)z*y + 5z —4) 2y + (6 —9z)y =0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

(—2®+2*)y" + (52® —4z) y + (6 —9z)y =0
The following is summary of singularities for the above ode. Writing the ode as

Y +p@)y +q(x)y =0

Where
S5r — 4
p() x6(x ; 1)
_ —6+09z
a(w) (x —1)z2
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Table 7: Table p(x), g(z) singularites.

ple) = — =% @) = i
singularity type singularity type
=0 “regular” =0 “regular”
r=1 “regular” rx=1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1, o0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

—y'(z—1)2z* + (52° —4z) y' + (6 — 9z) y = 0

Let the solution be represented as Frobenius power series of the form

o)
y — E anxn+r
n=0

Then

(n+r) a1

<
I

Me 17

(n+7r)(n+r—1)a,z""?

<
I

3
I
<)

Substituting the above back into the ode gives

—(Z(n-l—r)(n—l—r—l)anz" T‘)(w—l)x 0

n=0

5:c —45(3 (i anz"+T_1> + (6 — 9x) (Zanm ):

n=0
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Which simplifies to

Z (—x1+n+mn(n +r)(n+r— 1)) + (Z xn+ran(n +r)(n+r— 1)>

n =0 n=0
+ Z 52" a,(n+71) | + Z (=42 a,(n + 1))
n=0 n =0
+ (Z 6anxn+7‘> + Z ( 9x1+n+7‘an) =0
n=0 n =0

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

Z (=" a,(n+71)(n+r—1)) = Z (=an-1(n+r—1)(n+r—2)z™")

n =0 n=1
> 5t a,(n+r) = bap_i(n+r—1)z™t
n =0 n=1
00 00
Z 1+n+7‘ — Z (—9an_1x"+r)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + r.

Z —ap_1(n+r—1)(n+r—2)z""") <an+’"an(n—|—r (n—l—r—l))

n =1 n=0

(Z S5an_1(n+1r—1) ""'T) Z 4z" " a,(n + 1))

+ <i Ganx"'”) i 9an_1x"+r =0
n=0 =1

8

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

" a,(n+r)(n+r—1)—4z""a,(n+ 1) + 6a,2"" =0
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When n = 0 the above becomes
z"agr(—1+ 1) — 4z"apr + 6agz” =0
Or
(@"r(—147r)—4x"r+62")ag =0
Since ag # 0 then the above simplifies to
(r*—5r+6)z" =0
Since the above is true for all  then the indicial equation becomes
™ —5r+6=0
Solving for r gives the roots of the indicial equation as

7‘1=3

9 = 2
Since ag # 0 then the indicial equation becomes
(r*—5r+6)z" =0

Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

y1(z) = =™ (Z anx">

1:(2) = Cy(2) In (@) + 27 (Z b)

Or
(@) = a* (z )
Or
yl(a;) — Z anxn+3
yo(z) = Cyr(x) In (z) + <Z bnx"+2)
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Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. For 1 < n the recursive
equation is

—ap_1(n+r—1(n+r—2)+a,(n+r)(n+r—1) (3)
+5a,-1(n+7r—1)—4a,(n+7r) +6a, —9a,—1 =0

Solving for a,, from recursive equation (4) gives

_ ap_1(n®+2nr + 12 — 8n — 8r + 16)

@n n2+2nr+12—50—5+6

(4)
Which for the root r = 3 becomes

n_1(n —1)
p = ————
n(l+mn)

(5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

| Gnyr | Gn

)

Qo 1 1

For n = 1, using the above recursive equation gives

W (=3
YT 3r 42
Which for the root r = 3 becomes
a; = 0

And the table now becomes

n | any an

ap 1 1

_a2\2
a1 rg7;3i)—FQ 0

For n = 2, using the above recursive equation gives

_(r=2)(r—3)’
(=1+7)%r
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Which for the root r = 3 becomes

a; =0
And the table now becomes
n | Gnr an,
ag | 1 1
a1 rgi_:siiz 0
o | S [

For n = 3, using the above recursive equation gives

(=2 -3)
T (r+1)r2
Which for the root r = 3 becomes
as = 0
And the table now becomes
n | Gpy an
Qo 1 1
_ 2
a1 rgr—3i)+2 0
(7"—2)(7'—3)2
a2 (—1+r)%r 0
r—2)(r—3)2
as ( (r-?—(l)ﬂ) 0

For n = 4, using the above recursive equation gives
_(r=2)(r—3)?
! (r+1)>%(r+2)
Which for the root r = 3 becomes

a4=0

And the table now becomes
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n | Gny an,
Qo 1 1
Y
a rgr—3i)+2 0
(r—2)(r—3)*
a2 (—1+r)%r 0
— r— 2
as - (13—(1)7"23) 0
(r—2)(r—3)2
Q1 | r)2(rr2) 0

For n = 5, using the above recursive equation gives

. (r—2)(r—3)*
5 =
(r+3)(r+ 2)2
Which for the root r = 3 becomes
a5 = 0
And the table now becomes
no| Gy an
Qo 1 1
a2
a1 rgr—3?~)+2 0
(7"—2)(7'—3)2
% | Curpr | O
(r—2)(r—3)*
as W 0
(7"—2)(7'—3)2
a4 (r+1)2(r+2) 0
(r—2)(r—3)2
@5 | (rra)(rt2)? 0

Using the above table, then the solution y;(z) is

3 2 3 4 5 6
(ao—l—alx—l—agx + asx” + aux” + asx” + agx )

(1+0(«")

Y1 ()

T
T
Now the second solution ys(z) is found. Let

7'1—7"2:N
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Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim,_,,, a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

anN = a1
(r—3)°
2 —3r+2
Therefore
. (r—3) . (r—3)?
lim ——— = _
rora 12 —3r 2 rs2r2— 3r 42
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

Ya(z) = Cy1(z) In (z) + (Z bnm""'”)
n=0
Therefore

2 @) = Oyi(a)m (a) + T4 (Z W"*”’)

= Cyi(z) In(z) + C’y1 (Z gmimtr2g (4 m))

n=0
d? , 20y (z) Cuyi(z
& 10(o) = COyla) n (2) + 22 _ Onnlo)

x2 2
n=0

N i (bnxn-i-rz (’I’L + 7.2)2 B bnxn—i-m(n + ,,-2))

= Cyi(z) 1n(x)+20y1( z) Cyl( ) (Zw 24n472h (n413) (—1+n+7‘2)>

xT x2
n=0

Substituting these back into the given ode —y"(z — 1) %+ (5z* — 4z) ¥+ (6 — 9z)y = 0
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gives

- <0y1'<x> In (z) + 200 _ C(@)

N Z ( nzn-i-rz n + 7‘2) bnxn+rl(2n + 7‘2))) (.’E _ 1) $2
+ (50— 4r) (0@,1( i s+ ) (z "ot >>>
+ (6 — 97) (Cyl <i ”J’”)

=0

Which can be written as

(@) (@ = D"+ (52~ 42) (@) + (6~ 92) () I 0
(2?/1(90) _ yl(x)) Cqy 2, (527 —4x) y1($)>
- (x—1)z*+ C

X

_ (Z (bn$"+r2£72% +r2)” bnﬂU””;(zn + ?“2))) (x —1)2°

n=0

+ (5332 _ 4:L‘) (i bn.’ﬂ"‘*‘Tz:I(:n + 7"2)) + (6 — 97) (i bnl.n+r2> =0

n=0 n=0

But since y;(z) is a solution to the ode, then

—y(z) (z — 1) 2* + (52° — 4=) yi(z) + (6 — 92) y1(z) = 0
Eq (7) simplifes to

(- () ) (o et

T 2 T

B <Z (bnx"“?x(? +r2)° bnx””’;(;z + Tg))) (o —1)a? (8)

n=0

+ (51,2 . 437) (i bn$"+T23En + 7"2)) + (6 . 91,) <§: anL'n+T2> =0

n=0 n=0
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Substituting y; = Z a,z"*" into the above gives
n=0

( 2z(z — 1) (Z g, (n 4 7"1)) + (6z — (Z anx"+’"1>>
0

+ (—=z° + 2?) (f: z722h (4 1) (=1 +n+ r2)> (©)
(i bnx’””)

n=0 n=0

+ (52” — 4z) (Zx Lntrap, (n+rz)> +3(2 — 3x)

Since r; = 3 and r, = 2 then the above becomes

+ (—2* +2?) E?i 2, (n 1 2) (1t n)) - (10)
n=0
+ (52% — 4x) <i b, (n + 2)) +3(2 — 3z) <i bnxn+2> —0
n=0 n=0
Which simplifies to
i —2C " a,, n+3 ( 2an+3 n+3> (ZGCQJ”H )
n =0 n=
+ i: —5C " 3a, i: (=" b, (n + 2) (1 +n)) o)

+ ( > 22, (n +3n+2)) + (Z 52" b, (n + 2))

n=0

i( 42" b, (n + 2)) + (i 6bnx"+2> i 9z"*3b,) =0
=0 n=0 =0

The next step is to make all powers of x be n + 2 in each summation term. Going

over each summation term above with power of z in it which is not already =" and
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adjusting the power and the corresponding index gives

Z (=20 2" a,(n+3)) = Z —2Cay_(1 + n) z"*?)
n =0 n=
Z2Cx”+3 (n+3)= Z2Can 1(n +2) z"*2
n=1
Z 6C " a,, = Z 6Ca,_oxz"?
n =0 n=2
Z (=5C z""%a,) = Z (=5Can_12"*?)
n =0 n=1
Z (—2"3b(n+2) (1 +n)) = Z (=bp—1n(1 +n) z™?)
n =0 n=1

8

> 52" b (n+2) =) Bby(1+n) 2"t

o0

Z 2 t3 b

=0 n=1

Mg

<—9bn_1$n+2)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + 2.

o0

Z (—2Can—2(1 + n) z"*?) (Z 2Ca,_1(n+2) "+2>
n =2 =1
(Z 6Ca,,_ox" ) Z: (=5Can—12"+?) (2B)
+Z bp_1n(1l +n) 2"?) + (Zx"+2bn(n2+3n+2)>
=1 n=0

+ (i 5b _— 1 + n n+2) + Z n+2bn(n + 2))
=1 n =0
(i 6bn, ) i —9b, 12"+?) =0
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For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C—-1=0

Which is solved for C. Solving for C' gives
Cc=1
For n = 2, Eq (2B) gives
30&1 + 2b2 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
20, =0

Solving the above for by gives
by =0

For n = 3, Eq (2B) gives
(—2(11 + 5a2) C — b2 + 6b3 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
6bs =0

Solving the above for b3 gives
bs =0

For n = 4, Eq (2B) gives
(—4(1,2 + 7(13) C — 4b3 + 12b4 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
126, =0

Solving the above for b, gives
by =0

For n =5, Eq (2B) gives

(—6as + 9a4) C — 9b; + 20bs5 = 0
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Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives
2005 =0

Solving the above for b5 gives
bs =0

Now that we found all b, and C, we can calculate the second solution from

y2(z) = Cys(x) In (z (Z bnw"+r2>

n=0

Using the above value found for C = 1 and all b,,, then the second solution becomes
y2(z) = 1(z*(1+ O(2%))) In (z) + z*(1 + O(z%))
Therefore the homogeneous solution is

Yn(z) = 191 () + c2y2()
=z’ (14 0(z%) + c2(1(z*(1 4+ O(2°%))) In (z) + 2*(1 + O(=?)))

Hence the final solution is
Y=1UYn
=2’ (14 0(2%)) + c2(2*(1 + O(2°)) In () + 2*(1 + O(z%)))

Summary
The solution(s) found are the following

y=oc2’(140(2°%)) +e2(2’(1+ O0(2°)) In(z) + 2°(1+ O(2°))) (1)
Verification of solutions

= e (1+0(a")) + ex(a*(1+ O(e)) In () + (1 + O(a"))

Verified OK.
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 43

‘0rder:=6; ‘
|dsolve ((1-x)*x~2*diff (y(x) ,x$2)+(5*x-4)*x*diff (y(x),x)+(6-9%x)*y (x)=0,y(x) ,type='series' ,x=C

y(z) =2*(In(z) (z+ 0 (2°) o+ c1z(1+ O (2°)) + (1 — 24+ O (2°)) ¢»)

v/ Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 30

e

tAsymptoticDSolveValue[(1-x)*x‘2*y"[x]+(5*x—4)*x*y'[x]+(6—9*x)*y[x]==0,y[x],{%,0,5}]

y(z) = 22’ + 1 (2* log(z) — 2*(3z — 1))

62



1.7 problem Ex. 6(vi), page 257
1.7.1 Maple step by step solution . . . . ... ... ... ... ... 69]

Internal problem ID [5477]
Internal file name [OUTPUT/4725_Sunday_June_05_2022_03_04_08_PM_84588508/index . tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. 1td. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 6(vi), page 257.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

zy’ + (42° + 1)y +4zy(z* + 1) =0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
zy’+ (42 + 1)y + (42° + 42) y =0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(x)y =0

Where
472 + 1
p(z) = —
q(z) = 42° + 4

63



Table 8: Table p(x), g(z) singularites.

241
p(z) = 5
q(z) = 4z> + 4
singularity type - -
0 - e singularity type
T = regular — - "
T = 00 “regular” x_— > “reguiar”
r = —o00 | “regular” S et

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 0o, —o0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
ry’ 4+ (42*+ 1)y + (42° + 42) y =0

Let the solution be represented as Frobenius power series of the form

00
y = E anxn+r
n=0

Then

(n+r) a,z"tr!

<
I

Me 1M

(n+7r)(n+r—1)a,z""?

<
I

3
I
<)

Substituting the above back into the ode gives

(nzzo(n—l—r)(n—l—r—l)anx" T‘)m )

+ (4352 + 1) (i (n+r) anx’“”‘—l) 4x + 4z <Z Q" ) =

n=0
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Which simplifies to

(Zw"“ Ya,(n+71)(n+r—1) ) (Z4x1+n+’" n-l—r))
+ (f: (n+r) anx"”_l) + (Z 4x"+”+3an> + (Z 4x1+"+"an> =0

(24)

n=0

The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"+"~!

and
adjusting the power and the corresponding index gives

o)
Z4x1+n+r n+7" Z4an2n+r_2) n+r—1
n =0

)

Z n+7‘+3 Z4an 4xn+r 1

n =0

9]

Z 1+n+7‘ Z4an— n+r—1

n =0

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

(Z 2"t1, 1’L+?") (n—|—’l" — ]_ ) + (i 4an_2(n+r _ 2) xn-l—r—l)

n=2
(S ) o (St ) o S ) <
n=0 n=4 n=2

The indicial equation is obtained from n = 0. From Eq (2B) this gives

(2B)

" a,(n+r)(n+r—1)+(n+r)az" =0

When n = 0 the above becomes

T agr(=1471) + ragr " =0

(z7r(=14+7)+rz ") ag =0
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Since ag # 0 then the above simplifies to
T2
Since the above is true for all  then the indicial equation becomes
r’=0
Solving for r gives the roots of the indicial equation as

7"1:0

o = 0
Since ag # 0 then the indicial equation becomes
2 =0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

yi(z) = Z anx™t" (1A)

Now the second solution y, is found using

yo(z) = y1(z) In (z) + (Z bna:"”) (1B)
n=1
Then the general solution will be

y = cay1(z) + coya(z)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), ao is never zero, and is
arbitrary and is typically taken as ay = 1, and {ci, co} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y;(z). Eq (2B) derived above is now used to find all a,, coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ap = 1. Substituting n = 1 in Eq. (2B) gives

a1=0

Substituting n = 2 in Eq. (2B) gives
—4 —4r

g = ——
2 (2—|—7")2
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Substituting n = 3 in Eq. (2B) gives
as = 0
For 4 < n the recursive equation is

an(n+r)(n+r—1)+4a,o(n+7r—2)+a,(n+7r)+4a,-4+4a,-2=0

Solving for a, from recursive equation (4) gives

4(nay—2 +ran_2 + Gp_g — an_2)

an = —
" n2 + 2nr + 12

Which for the root r = 0 becomes
_(4n+4)anr—4an 4
= 5

n

(4)

()

At this point, it is a good idea to keep track of a, in a table both before substituting

r = 0 and after as more terms are found using the above recursive equation.

n | Gy | Gy

ao 1

ay 0 0
—4—-4r

% | Gye | 1

as 0 0

For n = 4, using the above recursive equation gives

B 1272 + 487 + 32
(2+ r)2 (r+ 4)2
Which for the root r = 0 becomes 1
a4 = —
And the table now becomes
n | any an
ap 1
aiq 0 0
—4—4r
2 | otr)? -1
as 0 0
a 12724487432 | 1
4 @rn)2(r+a)? | 2
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For n = 5, using the above recursive equation gives

as = 0
And the table now becomes
n | any an
ap 1
(45} 0 0
—4—4r

%2 | tr)? -1
as 0 0
a 12724487432 | 1

4 ern)2(r+a)? | 2
Qas 0 0

Using the above table, then the first solution y; (z) becomes

2 3 4 5 6
y1(z) = ap + a1 + agz” + azz” + a4z + a5z’ + agx”. ..
4

=—x2+1+%+0(x6)

Now the second solution is found. The second solution is given by

y2(z) = y1(x) In (z) + (Z bn$n+r>

Where b, is found using
d

bn = 7 0nyr
dr

And the above is then evaluated at »r = 0. The above table for a,, is used for this
purpose. Computing the derivatives gives the following table

n | bpy ap | bpyr = %anﬂa b, (r = 0)
bo | 1 1 | N/A since b, starts from 1 | N/A

by | 0 0 0 0

—4—4r 4r

b2 | Gy 1 @y 0

bs | O 0 0 0

b 12r24+48r432 | 1 —247r3 14472 2247 0

4 @r)ir+e)? | 2 2+ (r+4)°
bs | O 0 0 0
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The above table gives all values of b,, needed. Hence the second solution is
y2(z) = y1(z) In () + by + byx + box® + bsx® + byx* + bsx® + bez®. ..

_ (_x2 F14 %4 +0(3c6)) In (z) + O(z°)

Therefore the homogeneous solution is
Yr(z) = a1yi(z) + cay2(x)

- cl(—x2 +1+ %4 +O(x6)) +c2(<—m2 +1+ %4 - O(x6)> In (z) + 0(966))

Hence the final solution is

Y=Yn

_ 2 33_4 6 .2 x_4 6 6

=al -2’ +1+5 +0(°) | + e (—2"+1+4 5 +0(2°) | In(2) + O(z°)
Summary

The solution(s) found are the following

4

y=oa <—x2 +1+ %4 + O(xﬁ)) +02((—x2 +1+ % +O(x6)) In (z) +0(x6))(1)

Verification of solutions

y=a <‘m2 +1+ %4 T 0(906)) +02((—:r2 +1+ %4 +O(x6)) In (z) +O(m6))

Verified OK.

1.7.1 Maple step by step solution

Let’s solve
yv'z+ (42> + 1)y + (42® + 4z)y =0

° Highest derivative means the order of the ODE is 2
yll

° Isolate 2nd derivative
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Y = (—da? — 4)y — B

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y' + WY 4 (422 4 4)y =0

Check to see if xg = 0 is a regular singular point

Define functions

[PQ(x) — 4241 P (7) = 422 + 4]

T

x - P»(z)is analytic at z = 0

(z-Pyx))| =1

z=0

z? - P3(z) is analytic at z = 0

(@ Py(@)| =0

=0

x = Ois a regular singular point
Check to see if xg = 0 is a regular singular point
Tog = 0
Multiply by denominators
vz + (42> + 1)y + dzy(z? +1) =0
Assume series solution for y
o0
y = Z akmk—i—r
k=0
Rewrite ODE with series expansions

Convert ™ - y to series expansion for m = 1..3
m . Y= Z ak$k+r+m

k=0
Shift index using k— >k —m

o0
gy = 3 apmat
k=m
Convert ™ - ¢’ to series expansion for m = 0..2
[e o]
m . yl — Z ak(k + ,,,) mk—l—'r—l—}-m
k=0

Shift index using k— >k +1—m
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"y = > app1m(k+1—m+r)xktT
k=—1+m

Convert x - y” to series expansion

z-y' = ap(k+r)(k+r—1)zktr!
k=0

Shift index using k— >k + 1

-y = 3 ap(k+1+7)(k+r)zt"
k=-1

Rewrite ODE with series expansions
agr?z " +ay(1+7)2 2" + (a2(2 +7)° + dag(1 + 1)) 27 + (az(3 +1)* +4as (2 + 1)) 2> + (

apcannot be 0 by assumption, giving the indicial equation

r2=0

Values of r that satisfy the indicial equation

r=20

The coefficients of each power of x must be 0

[a1(1 +7) = 0,a5(2 +7)% + dag(1 +7) = 0,a3(3 +7)* + 4a,(2 + ) = 0]
Solve for the dependent coefficient(s)

_ _ 4ao(1+4r) _
{al - 0,&2 = T 2 4ry40 as = 0

Each term in the series must be 0, giving the recursion relation
a1 (k+ 1) + dap_1k 4+ 4ap_3 =0

Shift index using k— >k + 3

aepa(k +4)? 4+ dago(k+3) +4a, =0

Recursion relation that defines series solution to ODE

_ 4(kak+2+ak+3ak+2)
Fhta = = (k+4)?

Recursion relation forr =0

_ 4(kak+2+ak+3ak+2)
Ok+s = — (k+4)?

Solution forr =0

e o]
_ k _ _ A(kapy2tap+3aky2) — — —
Y= arT°,0pts = — e ,a1 =0,a3 = —ag,a3 =0

k=0
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

‘0rder:=6; ‘
| dsolve (x*diff (y(x),x$2)+(4*x"2+1)*diff (y(x) ,x) +4kx* (x~2+1)*y (x)=0,y (x) , type='series',x=0) ;

m@:<1—ﬁ+%ﬁ)@ﬂmﬂ+mg+o@%

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 40

LAsymptoticDSolveValue[x*y"[x]+(4*x“2+1)*y'[x]+4*x*(x“2+1)*y[x]==0,Y[X],{X,O,f}]

zt zt
y(x) = a1 (E -zt 4 1) + ¢ (? —z’ + 1) log(x)
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1.8 problem Ex. 8(i), page 258
1.8.1 Maple step by step solution . . . . ... ... ... ... ... 80l

Internal problem ID [5478]
Internal file name [OUTPUT/4726_Sunday_June_05_2022_03_04_10_PM_91628320/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. 1td. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 8(i), page 258.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

2’y +4(a+x)y =0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

" + (4a +4z)y =0
The following is summary of singularities for the above ode. Writing the ode as
¥ +p(@@)y +4q(z)y=0

Where
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Table 10: Table p(x), g(z) singularites.

Q(l') — 411:;1-242:

singularity type

p(z) =0
singularity | type

=0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
" + (4a +4z)y =0

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

z? (Z (n+r)(n+r—1) anxn+’"_2> + (4a + 4z) (Z anx"”) =0 (1)

Which simplifies to

(i " a,(n+r)(n+71— 1)) + <i 4a x””an> + (i 4x1+"+7an> =0 (24)
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

o0

o0
g Agitntrg, = E 4a,_1x"t"

n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n + 7.

(i " a,(n+71)(n+r— 1)) - (i 4a z"“""an) + (i 4an_1z"+T> =0 (2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" a,(n+r)(n+r—1)+4az""a, =0
When n = 0 the above becomes
z agr(—1+7) +4az"ap =0

Or
("r(—147r)+4az")ap=0

Since ag # 0 then the above simplifies to
(r"+4a—r)z" =0
Since the above is true for all x then the indicial equation becomes
r’+4a—r=0

Solving for r gives the roots of the indicial equation as

1 /1—16a
r=s 4
2 2

1 /1—16a
T T T

Since ag # 0 then the indicial equation becomes

(r2+4a—r)ac’"=0
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Solving for r gives the roots of the indicial equation as Assuming the roots differ by
non-integer Since 11 — 19 = /1 — 16a is not an integer, then we can construct two
linearly independent solutions

yi(z) = 2" (Zanz>
yo(z) = 2" (Zm)

(e}
(@) = 3 a7

n=0
V1—=16a
g bx"t2a=" 2

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ag is arbitrary and taken as ag = 1. For 1 < n the recursive equation is

ap(n+7)(n+r—1)+4aa, +4a,-1 =0 (3)

Solving for a,, from recursive equation (4) gives

4an—1
n2+2nr+r2+4a—n—r

ap = —

(4)

Which for the root r = % + ¥ 1;16“ becomes

4an—1
n (v1—16a + n)

At this point, it is a good idea to keep track of a,, in a table both before substituting
p—1, Vi-T6a
2 2

ap, = —

()

and after as more terms are found using the above recursive equation.

n | Gpy | Gy

ao 1 1

For n =1, using the above recursive equation gives

4

a1=_1'2—|—4a—|—r
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Which for the root r = % + —V1_216a becomes

4
M Ty V/T-16a
And the table now becomes
n | Gpy an
ag |1 1
ay _r2+j11a+r _1+\/f—16a

For n = 2, using the above recursive equation gives

16

2= (r2+4a+r)(r? +4a+3r +2)

Which for the root r = % + —”1_216‘1 becomes

8
Ao =
*" (1++vI—16a) (2++/1— 16a)
And the table now becomes

n | apyr an
ao 1 1

4 _ 4
01 | ~Taarr T+v1-T6a

16 8

42 | (PF4atr)(r2+4a+3r+2) | (1++/1-16a)(2+/1-16a)

For n = 3, using the above recursive equation gives

64

CL3:_(7“2—i—4a+1")(7"2+4a+3'r+2)(7*2—|—4a-|—5r+6)

Which for the root r = % + —V1_216a becomes

32
"3(1++1—16a) (2+v1—16a) (3++/1— 16a)

And the table now becomes

as =
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n | Gn,r an
ag 1 1
ay | ———24 -4
1 r2+da+r 1+v/1-16a
a 16 8
2 | (r>+4a+r)(r2+4a+3r+2) (1++/1-16a) (2++/1—16a)
as | — 64 _ 32
3 (r?+4a+r)(r2+4a+3r+2)(r2+4a+5r46) 3(1++/1-16a) (2++/1—16a) (3++/1—16a)

For n = 4, using the above recursive equation gives

256
(r24+4a+r)(r2+4a+3r+2)(r2+4a+5r +6) (r2 + 4a + 7r + 12)

aqg =

Which for the root r = % + Y 1_216“ becomes

32
T 3(1+V1—16a) (2+1—16a) (3+ /I —16a) (4+ /I 16a)

And the table now becomes

n | Qny an
ao 1 1
a | ———4 -4
1 r2+datr 1++v/1-16a
a 16 8
2 | +4at+r) (P2 +4a+3r+2) (1++/1-16a) (2++/1—16a)
as | — 64 _ 32
3 (r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) 3(1++/1-16a) (2++/1—16a) (3++/1—16a)
a 256 32
4| (rZ+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) (r2+4a+7r+12) | 3(1++/1—16a)(2++/1—16a) (3++/1—16a) (4++/1—16a)

For n = 5, using the above recursive equation gives

1024
(r24+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) (r2 + 4a + 7r + 12) (r2 + 4a + 9r + 20)

as = —

Which for the root r = % + Y 1;16“ becomes

128
15 (1++/I1—16a) (2+ v/1— 16a) (3+ v1— 16a) (4 + v1 — 16a) (5 + vI — 16a)

And the table now becomes

as =
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n | Qny Qn,
ap 1 1
ar | ——4 4
1 r2+da+r 14++/1-16a
16 8
a2 (r?2+4a+r)(r2+4a+3r+2) (1++/1-16a) (2++/1-16a)
64 32
43 |~ r2datr)(rP+4a+3r+2)(r2+4a+57+6) "~ 3(1++/1-16a) (2++/1-16a) (3++v/1—16a)
256 32
a4 (r?+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) (r2+4a+7r+12) 3(1++/1-16a) (2++/1—16a) (3++/1—16a) (4++/1—16a
1024 128
@5 | — 23 datr)(r2+4at3r+2) (12 +dat 5r+6) (r2+dat Tr+12)(r2+4a+9r120) | 15(1++/1—16a) (2+v/1—16a) (3++1—16a) (4+v1—
Using the above table, then the solution y;(z) is
v () = it (a0 + a1z + asz® + azz® + asz + azz° + agz®...)
=y 4x 4 8x? 3223
1+v1-16a (1++/1—-16a) (2++v/1—-16a) 3(1++/1—16a)(2+/1-

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 1 < n the recursive equation
is

bo(n+71)(n+r—1)+4ab, +4b,_1 =0 (3)

Solving for b, from recursive equation (4) gives

b, — 4bn 1 @)

_n2—|—2nr—|—r2—|—4a—n—r

Which for the root r = % — —*’1516“ becomes

4b,,_1
n (VT 16a—n) )

At this point, it is a good idea to keep track of b, in a table both before substituting
L _ Vi-16a 51 after as more terms are found using the above recursive equation.

by =

r=3s— "3

n bn T bn

)

by | 1 1
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For n = 1, using the above recursive equation gives

b — 4
YT 24 4q 47
Which for the root r = % - 1516“ becomes
b — 4
T 14+ /1-16a
And the table now becomes
n bn,r bn
bo | 1 1
b _ 4 4
1 r2+dat+r | —1++/1—16a

For n = 2, using the above recursive equation gives

16

by —
T (r+4a+7)(r2+4a+3r+2)

Which for the root r = % — _\,1—216(1 becomes

8

b= (5 VT=T6a) (24 VI=16a)

And the table now becomes

n | by, b,
by | 1 1
by | —2— 4
r2+4a+r —14++/1—16a
b 16 8
2 | (r2+4a+7)(r2+4a+3r+2) (—1++/1-16a) (—2++/1—16a)

For n = 3, using the above recursive equation gives

64

by = —
s (r24+4a+r)(r*>+4a+3r+2)(r2+4a+ 5r +6)

Which for the root r = % -y 1516“ becomes

32
~ 3(—1+I—16a) (—2+ /I —16a) (=3 + /I — 16a)

bs
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And the table now becomes

n bn,r bn
bo | 1 1
b | ———4 4
1 r24+datr —1++/1—16a
b 16 8
2 | (r?+4a+r)(r2+4a+3r+2) (—1++/1-16a) (—2++/1—16a)
b _ 64 32
3 (r?4-4a+r)(r2+4a+3r42)(r2+4a+5r4+6) | 3(—1++/1—16a)(—2++/1—16a)(—3-++/1—16a)

For n = 4, using the above recursive equation gives

256
b, =
YT (P +4a+71)(r2+4a+3r+2) (r2+4a+5r +6) (r2 + 4a + Tr + 12)

Which for the root r = % — ¥Y1-16a hocomes

32
"= (14 VI=T16a) (—2+ 1 =16a) (<3 + vI—16a) (<4 + v 16a)

And the table now becomes

n bn,r br,
by | 1 1
by | ———4 4
1 T2 datr —14++/1-16a
b 16 8
2 | (r2+4a+7)(r2+4a+3r+2) (—1+v/1-16a) (—2++/1-16a)
b _ 64 32
3 (r2+4a+r)(r?2+4a+3r+2) (r2+4a+5r+6) 3(—1++/1-16a) (—2++/1—16a) (—3++/1—16a)
b 256 32
4 | (r>+da+r)(r2+4a+3r+2)(r2+4a+5r+6) (r2+4a+7r+12) 3(—1++v/1-16a) (—2++v1—-16a) (—3++/1—16a) (—4++/1—16a)

For n = 5, using the above recursive equation gives

1024
bs (r2+4a+7)(r2+4a+3r+2) (r2+4a+ 5r + 6) (r2 + 4a + 7r + 12) (r2 + 4a + 9r + 20)

Which for the root r = % — —V1_216“ becomes

128
15 (=1 + /I — 16a) (—2 + v/ — 16a) (—3 + v/I — 16a) (—4 + /I — 16a) (—5 + v/1 — 16a)

And the table now becomes

b5:
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n bn,r bn
by | 1 1
bi | = 4
1 r2+datr —14++/1—16a
b 16 8
2 | (r?+4a+r)(r2+4a+3r+2) (-1++/1-16a) (—2++/1—16a)
b _ 64 32
3 (r?+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) 3(—1++/1-16a) (—2++/1—-16a) (—3++/1—16a)
b 256 32
4 | (r2+4a+7r)(r2+4a+3r+2)(r2+4a+57+6)(r2+4a+7r+12) 3(—1++v/1-16a) (—2++v1—16a) (—3++/1—16a) (—4+v
be | — 1024 128
5 (r2+4a+r)(r2+4a+3r+2) (r2+4a+5r+6) (r2+4a+7r+12) (r2+4a+9r4+20) | 15(—1++/I—16a) (—2++/1—16a) (—3++v/1—16a) (—4+

Using the above table, then the solution y,(z) is

Y2(T)

l_'_ V1—16a
= 2

1 1—16a 8562
=2 2

2 (b() + b1x + bo? + bgx® + bax + bsz® + ba®.

)

Therefore the homogeneous solution is

Yn(T)

= c1y1(7) + c2y2()
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_/I-T6a 4z
<1+_1+¢m+ (C1+vI—16a) (24 vI—16a) 3(-1+vI—16a) (-



. w%_i_\/l;w 1 4z + 8x2
' 1++v/1—16a (1++/1—16a) (2+ 1 - 16a)
323

 3(1++v/1—16a) (2++/1—16a) (3++/1— 16a)
32z*

T 31+ vI_T6a) 2+ vI_16a) (3+ vI_1T6a) (4 + v 16a)
1282°

_15(1+\/m) (2++/1—16a) (3++/1—16a) (4+ /1 —16a) (5+ /1 — 16a)
+O(m6)>

1_/I-T6a 4z 82
+er2 2 |1+ +
-1++1-16a (-1++/1—16a) (—2++/1—16a)
323
3 (-14+v1—16a) (—2+ v1—16a) (—3+ v/1 — 16a)
32x*

(—1++1—16a) (—2+vI—16a) (-3 + v1— 16a) (—4+ v/ — 16a)
1282°

+
3

+15 (-14+/1—16a) (—2++1—16a) (—3 ++/1—16a) (-4 + /1 —16a) (-5 + /1 — 16a)
+O(ac6)>

Hence the final solution is

Y=1Yn
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1, V/I—16a 4x 8.%2
=CICL'2+ 2 1

TIr VI T6a | (1+vi_16a) (2+ vi_16a)

3273
~ 3(1++vI—16a) (2++1—16a) (3++1— 16a)
32z
T 31+ vI_16a) (2 + vI_16a) (3+ vI_16a) (4 + vI_ I6a)
128z
15 (1+v/1—16a) (2+v1—16a) (3 + v1—16a) (4+ v1— 16a) (5+ v1— 16a)
+0(9U6)> +epi <1+ i + 8z
—1++1-16a (—1++/1—16a) (—2++/1— 16a)
3273
T3 (-1 +vI-T6a) (—2+ vI_16a) (—3+ vI— 16a)
32z*
T3 (-1++/1—16a) (—2+4+1—16a) (—3+ /1 —16a) (—4 + /1 —16a)
128z
15 (“1+ I —T6a) (—2 + v1—16a) (—3+ vI_16a) (—4 + I 16a) (—5 + v1_ 16a)

+ O(w6)>
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Summary
The solution(s) found are the following

1—-16a 2

y = clx%"'\/T 1-— iz + Sz (1)
1++v1—16a (1++/1-16a) (2++1— 16a)
3273

~ 3(1++1—16a) (2++1—16a) (3++/1— 16a)

32z*
T3 (14++1—16a) (2++1—16a) (3 + /1 —16a) (4+ /1 — 16a)

1282°

15 (1+ v1—16a) (2+ v —16a) (3+ v/1—16a) (4+ v/1— 16a) (5+ v1— 16a)

+0(2%) | +eom "2 (14 iz + 82”
’ ~1++/1—16a (~1++/1—16a) (—2++/1— 16a)
3273
T3 (-1++v1—16a) (-2 ++/1—16a) (—3 + /1 — 16a)
3274
- 3(—1++/1—16a) (—2++1—16a) (-3 ++/1— 16a) (—4 + /I — 16a)
128z°
15 (-14+/1—16a) (-2 + /1 —16a) (=3 + /1 —16a) (—4 + /1 — 16a) (-5 + /1 — 16a
) ( ) ( )

+ O(m6)>

85



Verification of solutions

e oy 4z N 82
y=a 1+yI—16a ' (1++1-16a) (2+v1I—16a)
323
~ 3(1++/1—16a) (2++1—16a) (3 + /1 — 16a)
32z*
T3 (1++1—-16a) (2++1—16a) (3+ /1 —16a) (4 + /1 — 16a)
128z

15 (1+ v1—16a) (2+ I —16a) (3+ v/I1— 16a) (4+ v/1— 16a) (5+ v1— 16a)

+O(x6) Yo RS 4+ Az N 822
? ~1++/1—16a (—1++/1—16a) (—2++/1— 16a)
N 323
3(-1++1-16a) (—2+ +1—16a) (—3+ +/1 —16a)
3274
+
3(-14++1-16a) (—2++/1—16a) (—3++/1—16a) (—4 + /1 — 16a)
1282°
+
15 (—14+/1—16a) (—2+v/1—16a) (-3 ++/1—16a) (—4 + +/1 —16a) (-5 + /1 — 16a)
+ O(xG))
Verified OK.
1.8.1 Maple step by step solution
Let’s solve
z2y" + (4a + 4z)y =0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
y// — _4(‘14‘290)?4
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y" + 4(0:290)1/ =0
OJ Check to see if xg = 0 is a regular singular point

o Define functions
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(¢]

[P2($) =0, Ps(z) = M}

2

x - P»(z)is analytic at z = 0

(z - Pa(z)) = 0
z? - P3(z) is analytic at z = 0
(z2 - P3(x)) = 4a

=0

x = Ois a regular singular point
Check to see if xg = 0 is a regular singular point
Tog = 0
Multiply by denominators
z2y" + (4a + 4z2)y =0
Assume series solution for y
o0
y = Z akzk—i—r
k=0
Rewrite ODE with series expansions

Convert ™ - y to series expansion for m = 0..1
oo
m . Y= Z a’kxk+r+m
k=0
Shift index using k— >k —m
o0
rm . y = Z ak_ml.k—i-r
k=m

Convert 2 - 4" to series expansion
[e o]

22y =Y ap(k+7)(k+7r—1)z
k=0

Rewrite ODE with series expansions

o0
ao(r? +4a —r)z" + (Z (ar(k® +2kr + 12 +4a — k — 1) +4ay_;) o
k=1
apcannot be 0 by assumption, giving the indicial equation
r’+4a—r=0
Values of r that satisfy the indicial equation

re {% _ \/1;1&1’ % T \/1;160,}
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Each term in the series must be 0, giving the recursion relation
(K*+@2r—1Dk+7r>+4a—r71)ar +4a;_1 =0

Shift index using k— >k + 1
(k+1)*+@2r—1)(k+1)+ 7> +4a—7) ag1 +4a, =0

Recursion relation that defines series solution to ODE

a — day
k+1 = 7 k24 2krtr2+datktr
Recursion relation for r = 1 — @
Ok4+1 = dag
1= — - —
K242k (3 —A5108 ) 4 (1188 ) "y gqy oy - YISTER
Solution for r = 1 — @
& 1 /I—T6a
y=Zakxk+§_ 2 a,ak+1:_ 1_/1—16a 1 %2 1_v/I—16a
k=0 Kok (3 IgT00 ) 4 (L YATTO0)" g gy L VITTOS
Recursion relation for r = % + @
Q1 = — daj
- p)
K22k (345100 ) 4 (14 YIST80 ) g oy L4 VI TG
Solution for r = 1 + @
o0
1, V/1-16a
y= apgttit YT g = — e —
k=0 K242k (345100 ) 4 (145100 ) gy L /TR

Combine solutions and rename parameters

4by,

&0 1_/I—16a o 1, VI=T6a
Yy = (Z bk$k+2 2 + Z Ck$k+2+ 2 ,bk+1 = — 5
k=0 k=0 k +2k(

1
2
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful
<- special function solution successful”
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 947

‘0rder:=6; ‘
‘dsolve(x“2*diff(y(x),x$2)+4*(x+a)*y(x)=0,y(x),type=‘series',x=0);

y(x)
_ V1-16a 1 1 2
=f<clx 2 (1+4_1+m“8(-1+m) (—2+vi-16a)"
32 1 3
TS (14 VI-16a) (—2+ vI—16a) (—3+ vI_16a)
32 1 4
T8 (C1+vI-_16a) (—2+ vI_16a) (3 + vI—16a) (—4+ vI_16a)

128 1 5
"5 (C1+ VI T6a) (—2+ vI_16a) (-3 + vI_16a) (-4 + vI_16a) (5 + vI_16a)"
—|—O(£L’6) —I—cas\/l_2W 1-4 L x4+ 8 L z?

? 1+v1—16a  (1++1-16a) (2++1— 16a)
32 1 3
T3 (1++/I-16a) (2++1—16a) (3+vI—16a)

32 1
] (1++/1—16a) (2++/I—16a) (3++1—16a) (4 + 1 — 16a
128 1

" 15 (1++/1-16a) (2+ /1 —16a) (3+ v1—16a) (4 + vI — 16a) (5 + v/1 — 16a)

+O(z6)>>

7

1;5
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v/ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 1356

kAsymptoticDSolveValue [x~2xy' ' [x]+4*(x+a)*y[x]==0,y[x],{x,0,5}] J

y(z)

%(‘«;u—mm) (21— VI 16a) +2) +4a) (5(L—vI-Tow) +2) (1 (1~ VI~ 16

= Vi—16a)+1) (1 (1— vi—16a) +2) +4a) (3 (1— vI_T6a) +2) (& (1 — vI_ I6a)

643
_((% (1-v1-16a) +1) (3 (1 —+v1—16a) +2) +4a) ((5 (1 — v1—16a) +2) (3 (1 — v/1 — 16a)
1622
+((%(l—m)+1) (3 (1—+1—-16a)+2) +4a) (5 (5 (1 —v1—16a) +1) (1 — /1 —16a) -
B 4z +1> sz%@—\/m)
1(3(1-v1-16a) +1) (1— /1 —16a) +4a

+<‘((; (VI—16a+1)+1) (5 (VI—16a+1) +2) +4a) (3 (VI—16a+1) +2) (3 (vI— 16a-

T WVI—T6a+ 1) +1) (L (VI—T6a+ 1) +2) +4a) (1 (VI—16a+1) +2) (1 (vI—16a+1)

64z3
(A (WVT-16a+1)+1) (L (VI—16a+1)+2) +4a) ((3 (VI—16a+1)+2) (L (vI—16a+1)
1622
* (G(V1I—=16a+1)+1) (3 (V1—16a+1)+2)+4a) (3 (3 (VI—16a+1) +1) (vV1I—16a+1) -
B 4z n 1) Clz%(\/mﬂ)
5(3(V1-16a+1)+1) (VI—16a+1) +4a
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1.9 problem Ex. 8(ii), page 258
1.9.1 Maple step by step solution . . . . ... ... ... .. ... .. 99

Internal problem ID [5479]
Internal file name [OUTPUT/4727_Sunday_June_05_2022_03_04_11_PM_94591782/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. 1td. New York, reprinted 1956

Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243

Problem number: Ex. 8(ii), page 258.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

zy’' + (22 + 1)y + by =0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
zy’'+ (2 + 1)y + by =0

The following is summary of singularities for the above ode. Writing the ode as
¥ +p(@)y +q(@)y=0

Where
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Table 12: Table p(z), ¢(z) singularites.

p(z) = =
singularity type o(z) = b
z=0 “regular” . .
- " singularity | type
T = 00 regular
r = —o00 | “regular”

Combining everything together gives the following summary of singularities for the ode

as
Regular singular points : [0, 0o, —o0]

Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
zy’+ (z*+ 1)y + by =0

Let the solution be represented as Frobenius power series of the form

00
y = E anxn+r
n=0

Then

(n+r) a,z"tr!

<
I

Me 1M

(n+7r)(n+r—1)a,z""?

<
|

I

o

n

Substituting the above back into the ode gives

n=0

<Z (n+r)y(n+r—1) anx"+r‘2> T

+ (z* + 1) (i (n+7) anx"”_l) + bz (i anz™"
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Which simplifies to

<Z " la,(n+r)(n+r— 1)> + (Z " 2q, (n + r)) (24)

n=0

+ <Z (n+r) anx”+r_1> + (Z bw1+"+’"an> =0
n=0

n=0

The next step is to make all powers of £ be n + r — 1 in each summation term. Going
over each summation term above with power of  in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

0o
Z mn+r+2 n + ’I" Zan s(n+r— 3) xn-l—r—l
n =0
(o ]
Z 1+n-|—7' Z ba,_ox ntr—1
n =0

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

(Z " a,(n+r)(n+r— 1)) + (; an_3(n+r—23) a:””_l) (2B)
+ (i (n+r) anx””_l) + (i ban_zsc”+’"_1) =0

n=0
The indicial equation is obtained from n = 0. From Eq (2B) this gives
" o, (n+r)(n+r—1)+m+r) a2 =0
When n = 0 the above becomes
T agr(=1471) + ragz " =0

Or
(7 r(—1+7r)+r2 ") ap =0
Since ag # 0 then the above simplifies to

A |
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Since the above is true for all x then the indicial equation becomes
r’=0
Solving for r gives the roots of the indicial equation as

r=20

To = 0
Since ag # 0 then the indicial equation becomes
2 =0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

yi(z) = Z anx™t" (1A)

Now the second solution g, is found using

y2(x) = y1(z) In () + (Z bnw””) (1B)
n=1
Then the general solution will be

y = iy (z) + coy2()

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), ag is never zero, and is
arbitrary and is typically taken as ap = 1, and {ci, co} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y;(z). Eq (2B) derived above is now used to find all a,, coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ay = 1. Substituting n = 1 in Eq. (2B) gives

a; =0
Substituting n = 2 in Eq. (2B) gives
o — b
2T (247r)°
For 3 < n the recursive equation is
an(n+r)(n+r—1)+ap_s(n+7r—3)+a,(n+7)+ba,—2=0 (3)
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Solving for a,, from recursive equation (4) gives

ban_z +nan—3 +rap—3 — 3an_3
n? + 2nr + r2

Ap = —

Which for the root r = 0 becomes
(—n + 3) QAp—3 — ban_g

Ap = (5)

n2

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n | anr O,

Qo 1 1

ay 0 0

ay | — 2o | =2
) 4

For n = 3, using the above recursive equation gives

r
as = —
’ (r+ 3)2
Which for the root » = 0 becomes
as = 0
And the table now becomes
n | Gn, an
ao 1 1
ai 0 0
b b
% | Gy | T
as —W 0

For n = 4, using the above recursive equation gives

b2

M e @)
Which for the root 7 = 0 becomes .
a = ¢
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And the table now becomes

n | Gpy an
QAo 1 1
ay 0 0

b b
%2 | T2 1

T
as (r+3)? 0

b2 b?
@4 | a2 | o

For n = 5, using the above recursive equation gives

b(2r? + 8r +9)

as = 2 2
2+7r)(r+3)°(B+r)
Which for the root r = 0 becomes b
a5 = —
> 50
And the table now becomes
n | Gy an,
Qo 1 1
ai 0 0
b b
2 | ~ @y ~i
as —w 0
b2 b2
| @)’ 61
b(2r2+8r+9) b
@ | @rr)er3)2(G+r)? | 50

Using the above table, then the first solution y;(z) becomes

2 3 4 5 6
y1(z) = ap + a1z + asz” + azz” + a4z + asx’ + agx”. ..

bx? bz* bxb
=1- 6
Yol ol + =0 + O(z°)

Now the second solution is found. The second solution is given by

yz(ﬂ:) =4 (ac) In (g;) + (Z bnac’””")
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Where b, is found using

dr
And the above is then evaluated at r = 0. The above table for a,, is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = diran,r bn(r = O)
bo 1 | N/A since b, starts from 1 | N/A
by | 0 0 0 0
by | — b _b | _2» b
27 (24n)? 4| (2+r)° 4
-3 1
bs | ~Grar 0 | wwp 9
by | — 2 B2 | __4(r48) _3?
4| (24r)2(@+r)? 64 (2+r)3(4+r)3 128
b b(2r’+8r+9) b | _ b(6r'+56r3+191r24296r4183) _ 61b
5 | @+n)(r+3)2(5+r)° | 50 (5+7)2(2+7)2(r+3)° 4500

The above table gives all values of b, needed. Hence the second solution is

y2(2) = y1(z) In () + by + by + box® + bsx® + byx* + bsx® + bea®. . .

bz b*z* bz bz? 23 3b%z* 61b2°
=(1-— 6) )1 e _
( : Ter TR0 +O(“)) () + =5 " 18~ w00

+ O(xﬁ)

Therefore the homogeneous solution is
Yn(z) = a1y () + c2y2()

2 p2.4 5 2 p2.4 5
=cl(1—biC +b6z +b5w0 +O(x6)>+02((1—bw +ba: +bx +O(x6)>1n(x)

Hence the final solution is

4 64 50
2 2.4 5 2 3 2.4 5
reo (1= + 54 22 0(0) o)+ 1 - T S S o)

2 2.4 5
:c1<1—bx L e +O(a:6)>
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Summary
The solution(s) found are the following

2 2.4 5 2 2.4 5
y:Cl(l—bx +bx +bx +O(x6))+c2<(1—bx +bx b‘g +O(x6))ln(x)

4 64 50 4 64 + )
% _2® 3Pzt 61ba® 0(a* )

9 128 4500

Verification of solutions

5

bz? bzt bz 6
y_cl(l_ Tt TOL )>

2 P24 5 2 .3 204 61h 25
+02<<1—bi +bGZ +b5a(c) +O(x6))ln(x)+bi—x———3bx _Gtbz +O(m6))

Verified OK.

1.9.1 Maple step by step solution

Let’s solve
y'z+ (x> + 1)y +bry =0
° Highest derivative means the order of the ODE is 2
Y
° Isolate 2nd derivative
y' = -0 gy
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y' + @ +by=0
O Check to see if o = 0 is a regular singular point

o Define functions

[P2(x) — 2+l Py(g) = b]

T

o - Py(z)is analytic at z =0

@ Pe)| =1
o z?- Py(z)is analytic at z =0
(z? - P3(z)) =0
=0
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o z = (is a regular singular point
Check to see if xg = 0 is a regular singular point
To = 0
Multiply by denominators
vV'z+ (23 +1)y +bzy=0
Assume series solution for y
o k
y= ) az"’
k=0
Rewrite ODE with series expansions

o Convert x - y to series expansion

(e o]
T-y= Z akxk+r+1
k=0
o Shift index using k— >k — 1
(e e]
T-y= Z ak_lxk+r
k=1

o Convert ™ - 3/ to series expansion for m = 0..3

-y = > ap(k +r) ghtr-1Am

k=0
o Shift index using k— >k +1—m
™y = > app1-m(k+1—m+r)xktT
k=—1+m

o Convert z - y” to series expansion

-y = ki)ak(k +7)(k+r—1)gktr1
o Shift index using k— >k + 1

z-y' = kilakJrl(k +r+1)(k+71)z*r

Rewrite ODE with series expansions

agr?z " +ay(1+7)% 2" + (a2(2 +7)° + agh) 2+ + (Z (aps1(k + 7 +1)* + bay_1 + ap_a(k
k=2

apcannot be 0 by assumption, giving the indicial equation

r2=0

Values of r that satisfy the indicial equation
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r=20

The coefficients of each power of x must be 0
[a1 (14 r? =0,a5(2+7)% + agh = 0]

Solve for the dependent coefficient(s)

____agb
r2+4r+4

{a1=0,a, =

Each term in the series must be 0, giving the recursion relation

apy1(k + 1)2 +bax_1 +ap_o(k—2)=0

Shift index using k— >k + 2

arg3(k +3)> 4 bagys +agk =0

Recursion relation that defines series solution to ODE
_bagyitagk

ag43 = (k+3)§

Recursion relation forr =0
_ bagy1+ark

i3 = _W

Solution forr =0

0o
_ k ___ bagtitark _ _ __agh
y= Z A", Ag43 = — (k+3)2 , a1 = O,Clz - _%
k=0

101



Maple trace

s N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
=-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functionms
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power| @ Moebius
-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear OP with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type

~ & s . =+ . e g W o w~ e g e



v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 73

‘0rder:=6; ‘
‘dsolve(x*diff(y(x),x$2)+(1+x*x“2)*diff(y(x),x)+b*x*y(x)=0,y(x),type='series',#=0);

y(z) = (c2In () + 1) (1 - 1b r? + ib29:4 + ibac5 +0 (x6)>

4 64 50
+ (Z:ﬁ — %z?’ - %Sb%‘l - %bf +0 (xﬁ)) )
v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 103
LAsymptoticDSolveValue [x*y' ' [x]+(1+x*x"2) *y ' [x] +b*x*y [x]==0,y[x],{x,0,5}] J

(z) = b2zt N bx®  bx? 41
c R —_— — —
YE =\ T6a T50 T 4

N 3b2z4 N b2zt N bx® b_x2 +1) log(z) — 61bx® N @ B x_3
“\ 7128 64 ' 50 4 & 4500 4 9
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