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1.1 problem Ex. 5, page 256
1.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 14

Internal problem ID [5471]
Internal file name [OUTPUT/4719_Sunday_June_05_2022_03_03_59_PM_3813674/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 5, page 256.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x
(
−x2 + 2

)
y′′ −

(
x2 + 4x+ 2

)
((1− x) y′ + y) = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−x3 + 2x
)
y′′ +

(
x3 + 3x2 − 2x− 2

)
y′ +

(
−x2 − 4x− 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x3 + 3x2 − 2x− 2
(x2 − 2)x

q(x) = x2 + 4x+ 2
(x2 − 2)x
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Table 1: Table p(x), q(x) singularites.

p(x) = −x3+3x2−2x−2
(x2−2)x

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

q(x) = x2+4x+2
(x2−2)x

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,
√
2,−

√
2
]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′
(
x2 − 2

)
x+

(
x3 + 3x2 − 2x− 2

)
y′ +

(
−x2 − 4x− 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)(
x2 − 2

)
x

+
(
x3 + 3x2 − 2x− 2

)( ∞∑
n=0

(n+ r) anxn+r−1

)

+
(
−x2 − 4x− 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r− 1)

)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

)
+

∞∑
n =0

(
−2(n+ r) anxn+r−1)

+
∞∑

n =0

(
−xn+r+2an

)
+

∞∑
n =0

(
−4x1+n+ran

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n+ r − 3)xn+r−1)

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=3

an−3(n+ r − 3)xn+r−1

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r−1

∞∑
n =0

(
−2xn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−xn+r+2an

)
=

∞∑
n=3

(
−an−3x

n+r−1)
∞∑

n =0

(
−4x1+n+ran

)
=

∞∑
n=2

(
−4an−2x

n+r−1)
∞∑

n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =2

(
−an−2(n+ r − 2) (n+ r − 3)xn+r−1)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=3

an−3(n+ r− 3)xn+r−1

)

+
(

∞∑
n=2

3an−2(n+ r − 2)xn+r−1

)
+

∞∑
n =1

(
−2an−1(n+ r − 1)xn+r−1)

+
∞∑

n =0

(
−2(n+ r) anxn+r−1)+ ∞∑

n =3

(
−an−3x

n+r−1)
+

∞∑
n =2

(
−4an−2x

n+r−1)+ ∞∑
n =1

(
−2an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1)− 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r)− 2ra0x−1+r = 0

Or (
2x−1+rr(−1 + r)− 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

2r x−1+r(−2 + r) = 0

Since the above is true for all x then the indicial equation becomes

2r(−2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 0

Since a0 6= 0 then the indicial equation becomes

2r x−1+r(−2 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
1

−1 + r

Substituting n = 2 in Eq. (2B) gives

a2 =
r2 − 5r + 10

2 (−1 + r) (2 + r)
For 3 ≤ n the recursive equation is

(3)−an−2(n+ r − 2) (n+ r − 3) + 2an(n+ r) (n+ r − 1) + an−3(n+ r − 3)
+ 3an−2(n+ r− 2)− 2an−1(n+ r− 1)− 2an(n+ r)− an−3− 4an−2− 2an−1 = 0

Solving for an from recursive equation (4) gives

an = n2an−2 + 2nran−2 + r2an−2 − nan−3 − 8nan−2 + 2nan−1 − ran−3 − 8ran−2 + 2ran−1 + 4an−3 + 16an−2

2n2 + 4nr + 2r2 − 4n− 4r
(4)
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Which for the root r = 2 becomes

an = n2an−2 + (−an−3 − 4an−2 + 2an−1)n+ 2an−3 + 4an−2 + 4an−1

2n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

1
−1+r

1

a2
r2−5r+10

2(−1+r)(2+r)
1
2

For n = 3, using the above recursive equation gives

a3 =
r2 − 5r + 10

2r3 + 4r2 − 2r − 4

Which for the root r = 2 becomes
a3 =

1
6

And the table now becomes

n an,r an

a0 1 1
a1

1
−1+r

1

a2
r2−5r+10

2(−1+r)(2+r)
1
2

a3
r2−5r+10

2r3+4r2−2r−4
1
6

For n = 4, using the above recursive equation gives

a4 =
r4 − 6r3 + 17r2 − 32r + 40
4r4 + 24r3 + 28r2 − 24r − 32

Which for the root r = 2 becomes
a4 =

1
24

And the table now becomes
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n an,r an

a0 1 1
a1

1
−1+r

1

a2
r2−5r+10

2(−1+r)(2+r)
1
2

a3
r2−5r+10

2r3+4r2−2r−4
1
6

a4
r4−6r3+17r2−32r+40

4r4+24r3+28r2−24r−32
1
24

For n = 5, using the above recursive equation gives

a5 =
r4 − 6r3 + 17r2 − 32r + 40

4r5 + 36r4 + 100r3 + 60r2 − 104r − 96

Which for the root r = 2 becomes

a5 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1

1
−1+r

1

a2
r2−5r+10

2(−1+r)(2+r)
1
2

a3
r2−5r+10

2r3+4r2−2r−4
1
6

a4
r4−6r3+17r2−32r+40

4r4+24r3+28r2−24r−32
1
24

a5
r4−6r3+17r2−32r+40

4r5+36r4+100r3+60r2−104r−96
1

120

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= r2 − 5r + 10
2 (−1 + r) (2 + r)

Therefore

lim
r→r2

r2 − 5r + 10
2 (−1 + r) (2 + r) = lim

r→0

r2 − 5r + 10
2 (−1 + r) (2 + r)

= −5
2

The limit is −5
2 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 =
1

−1 + r

Substituting n = 2 in Eq(3) gives

b2 =
r2 − 5r + 10

2 (−1 + r) (2 + r)

For 3 ≤ n the recursive equation is

(4)−bn−2(n+ r − 2) (n+ r − 3) + 2bn(n+ r) (n+ r − 1) + bn−3(n+ r − 3)
+ 3bn−2(n+ r− 2)− 2bn−1(n+ r− 1)− 2(n+ r) bn − bn−3 − 4bn−2 − 2bn−1 = 0

Which for for the root r = 0 becomes

(4A)−bn−2(n− 2) (n− 3) + 2bnn(n− 1) + bn−3(n− 3) + 3bn−2(n− 2)
− 2bn−1(n− 1)− 2nbn − bn−3 − 4bn−2 − 2bn−1 = 0
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Solving for bn from the recursive equation (4) gives

bn = n2bn−2 + 2nrbn−2 + r2bn−2 − nbn−3 − 8nbn−2 + 2nbn−1 − rbn−3 − 8rbn−2 + 2rbn−1 + 4bn−3 + 16bn−2

2n2 + 4nr + 2r2 − 4n− 4r
(5)

Which for the root r = 0 becomes

bn = n2bn−2 − nbn−3 − 8nbn−2 + 2nbn−1 + 4bn−3 + 16bn−2

2n2 − 4n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

1
−1+r

−1

b2
r2−5r+10

2(−1+r)(2+r) −5
2

For n = 3, using the above recursive equation gives

b3 =
r2 − 5r + 10

2 (1 + r) (−1 + r) (2 + r)

Which for the root r = 0 becomes
b3 = −5

2
And the table now becomes

n bn,r bn

b0 1 1
b1

1
−1+r

−1

b2
r2−5r+10

2(−1+r)(2+r) −5
2

b3
r2−5r+10

2r3+4r2−2r−4 −5
2

For n = 4, using the above recursive equation gives

b4 =
r4 − 6r3 + 17r2 − 32r + 40

4 (1 + r) (−1 + r) (r2 + 6r + 8)

Which for the root r = 0 becomes
b4 = −5

4
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And the table now becomes

n bn,r bn

b0 1 1
b1

1
−1+r

−1

b2
r2−5r+10

2(−1+r)(2+r) −5
2

b3
r2−5r+10

2r3+4r2−2r−4 −5
2

b4
r4−6r3+17r2−32r+40

4r4+24r3+28r2−24r−32 −5
4

For n = 5, using the above recursive equation gives

b5 =
r4 − 6r3 + 17r2 − 32r + 40

4 (r + 3) (1 + r) (−1 + r) (r2 + 6r + 8)

Which for the root r = 0 becomes

b5 = − 5
12

And the table now becomes

n bn,r bn

b0 1 1
b1

1
−1+r

−1

b2
r2−5r+10

2(−1+r)(2+r) −5
2

b3
r2−5r+10

2r3+4r2−2r−4 −5
2

b4
r4−6r3+17r2−32r+40

4r4+24r3+28r2−24r−32 −5
4

b5
r4−6r3+17r2−32r+40

4r5+36r4+100r3+60r2−104r−96 − 5
12

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x− 5x2

2 − 5x3

2 − 5x4

4 − 5x5

12 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1+x+ x2

2 + x3

6 + x4

24 +
x5

120 +O
(
x6))+ c2

(
1−x− 5x2

2 − 5x3

2 − 5x4

4 − 5x5

12

+O
(
x6))

Hence the final solution is

y = yh

= c1x
2
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))+ c2

(
1− x− 5x2

2 − 5x3

2 − 5x4

4 − 5x5

12

+O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

(
1− x− 5x2

2 − 5x3

2 − 5x4

4 − 5x5

12 +O
(
x6))

Verification of solutions

y = c1x
2
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

(
1− x− 5x2

2 − 5x3

2 − 5x4

4 − 5x5

12 +O
(
x6))

Verified OK.
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1.1.1 Maple step by step solution

Let’s solve
−y′′(x2 − 2)x+ (x3 + 3x2 − 2x− 2) y′ + (−x2 − 4x− 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+4x+2

)
y

(x2−2)x +
(
x3+3x2−2x−2

)
y′

(x2−2)x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x3+3x2−2x−2

)
y′

(x2−2)x +
(
x2+4x+2

)
y

(x2−2)x = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −x3+3x2−2x−2
(x2−2)x , P3(x) = x2+4x+2

(x2−2)x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′(x2 − 2)x+ (−x3 − 3x2 + 2x+ 2) y′ + (x2 + 4x+ 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + 2a0(1 + r))xr +
(
−2a2(2 + r) r + 2a1(2 + r) + a0(−2 + r)2

)
x1+r +

(
∞∑
k=2

(
−2ak+1(k + r + 1) (k + r − 1) + 2ak(k + r + 1) + ak−1(k − 3 + r)2 − ak−2(k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• The coefficients of each power of x must be 0[
−2a1(1 + r) (−1 + r) + 2a0(1 + r) = 0,−2a2(2 + r) r + 2a1(2 + r) + a0(−2 + r)2 = 0

]
• Solve for the dependent coefficient(s){

a1 = a0
−1+r

, a2 = a0
(
r2−5r+10

)
2(r2+r−2)

}
• Each term in the series must be 0, giving the recursion relation

ak−1(k − 3 + r)2 − 2ak+1(k + r + 1) (k + r − 1) + (2ak − ak−2) k + (2ak − ak−2) r + 2ak + 3ak−2 = 0
• Shift index using k− >k + 2

ak+1(k + r − 1)2 − 2ak+3(k + 3 + r) (k + r + 1) + (2ak+2 − ak) (k + 2) + (2ak+2 − ak) r + 2ak+2 + 3ak = 0
• Recursion relation that defines series solution to ODE
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ak+3 = k2ak+1+2krak+1+r2ak+1−akk−2kak+1+2kak+2−akr−2rak+1+2rak+2+ak+ak+1+6ak+2
2(k+3+r)(k+r+1)

• Recursion relation for r = 0

ak+3 = k2ak+1−akk−2kak+1+2kak+2+ak+ak+1+6ak+2
2(k+3)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+3 = k2ak+1−akk−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1) , a1 = −a0, a2 = −5a0
2

]
• Recursion relation for r = 2

ak+3 = k2ak+1−akk+2kak+1+2kak+2−ak+ak+1+10ak+2
2(k+5)(k+3)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+3 = k2ak+1−akk+2kak+1+2kak+2−ak+ak+1+10ak+2

2(k+5)(k+3) , a1 = a0, a2 = a0
2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+3 = k2ak+1−kak−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1) , a1 = −a0, a2 = −5a0
2 , bk+3 = k2bk+1−kbk+2kbk+1+2kbk+2−bk+bk+1+10bk+2

2(k+5)(k+3) , b1 = b0, b2 = b0
2

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 44� �
Order:=6;
dsolve(x*(2-x^2)*diff(y(x),x$2)-(x^2+4*x+2)*((1-x)*diff(y(x),x)+y(x))=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 +O

(
x6))

+ c2

(
−2 + 2x+ 4x2 + 4x3 + 2x4 + 2

3x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 64� �
AsymptoticDSolveValue[x*(2-x^2)*y''[x]-(x^2+4*x+2)*((1-x)*y'[x]+y[x])==0,y[x],{x,0,5}]� �

y(x) → c1

(
−5x4

4 − 5x3

2 − 5x2

2 − x+ 1
)
+ c2

(
x6

24 + x5

6 + x4

2 + x3 + x2
)

17



1.2 problem Ex. 6(i), page 257
1.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 26

Internal problem ID [5472]
Internal file name [OUTPUT/4720_Sunday_June_05_2022_03_04_01_PM_46599014/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 6(i), page 257.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1 + x) y′′ − (1 + 2x) (−y + xy′) = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + (−2x2 − x
)
y′ + (1 + 2x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1 + 2x
x (1 + x)

q(x) = 1 + 2x
x2 (1 + x)
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Table 3: Table p(x), q(x) singularites.

p(x) = − 1+2x
x(1+x)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 1+2x
x2(1+x)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + x) y′′ +
(
−2x2 − x

)
y′ + (1 + 2x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(1 + x)

+
(
−2x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (1 + 2x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=0

2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−2x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r

)
∞∑

n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=1

2an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
1+n

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 2an−1(n+ r − 1)− an(n+ r) + an + 2an−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 5n− 5r + 6)
n2 + 2nr + r2 − 2n− 2r + 1 (4)

Which for the root r = 1 becomes

an = −an−1(n2 − 3n+ 2)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 + 3r − 2

r2

Which for the root r = 1 becomes
a1 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+3r−2
r2

0

For n = 2, using the above recursive equation gives

a2 =
(r − 2) (−1 + r)2

r (r + 1)2

Which for the root r = 1 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+3r−2
r2

0

a2
(r−2)(−1+r)2

r(r+1)2 0

For n = 3, using the above recursive equation gives

a3 = −(r − 2) (−1 + r)2

(r + 2)2 (r + 1)
Which for the root r = 1 becomes

a3 = 0
And the table now becomes

n an,r an

a0 1 1
a1

−r2+3r−2
r2

0

a2
(r−2)(−1+r)2

r(r+1)2 0

a3 − (r−2)(−1+r)2

(r+2)2(r+1) 0

For n = 4, using the above recursive equation gives

a4 =
(r − 2) (−1 + r)2

(r + 3)2 (r + 2)
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Which for the root r = 1 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+3r−2
r2

0

a2
(r−2)(−1+r)2

r(r+1)2 0

a3 − (r−2)(−1+r)2

(r+2)2(r+1) 0

a4
(r−2)(−1+r)2

(r+3)2(r+2) 0

For n = 5, using the above recursive equation gives

a5 = −(r − 2) (−1 + r)2

(r + 4)2 (r + 3)

Which for the root r = 1 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+3r−2
r2

0

a2
(r−2)(−1+r)2

r(r+1)2 0

a3 − (r−2)(−1+r)2

(r+2)2(r+1) 0

a4
(r−2)(−1+r)2

(r+3)2(r+2) 0

a5 − (r−2)(−1+r)2

(r+4)2(r+3) 0

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1 +O

(
x6))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1

−r2+3r−2
r2

0 −3r+4
r3

1

b2
(r−2)(−1+r)2

r(r+1)2 0 6r3−14r2+6r+2
r2(r+1)3 0

b3 − (r−2)(−1+r)2

(r+2)2(r+1) 0 −9(−1+r)
(
r2− 1

3 r−2
)

(r+2)3(r+1)2 0

b4
(r−2)(−1+r)2

(r+3)2(r+2) 0 12r3−4r2−52r+44
(r+3)3(r+2)2 0

b5 − (r−2)(−1+r)2

(r+4)2(r+3) 0 −15r3−10r2+105r−80
(r+4)3(r+3)2 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
(
1 +O

(
x6)) ln (x) + x

(
x+O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + x

(
x+O

(
x6)))

Hence the final solution is

y = yh

= c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + x

(
x+O

(
x6)))
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Summary
The solution(s) found are the following

(1)y = c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + x

(
x+O

(
x6)))

Verification of solutions

y = c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + x

(
x+O

(
x6)))

Verified OK.

1.2.1 Maple step by step solution

Let’s solve
y′′x2(1 + x) + (−2x2 − x) y′ + (1 + 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (1+2x)y
x2(1+x) +

(1+2x)y′
x(1+x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (1+2x)y′
x(1+x) + (1+2x)y

x2(1+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 1+2x
x(1+x) , P3(x) = 1+2x

x2(1+x)

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= −1

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
y′′x2(1 + x)− x(1 + 2x) y′ + (1 + 2x) y = 0
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• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−2u2 + 3u− 1)

(
d
du
y(u)

)
+ (−1 + 2u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r + (a1(1 + r) (−1 + r)− a0(2r2 − 5r + 1))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− ak(2k2 + 4kr + 2r2 − 5k − 5r + 1) + ak−1(k + r − 2) (k − 3 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
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a1(1 + r) (−1 + r)− a0(2r2 − 5r + 1) = 0
• Each term in the series must be 0, giving the recursion relation

(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 5ak − 5ak−1) k + (−2ak + ak−1 + ak+1) r2 + (5ak − 5ak−1) r − ak + 6ak−1 − ak+1 = 0
• Shift index using k− >k + 1

(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 5ak+1 − 5ak) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (5ak+1 − 5ak) r − ak+1 + 6ak − ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−3kak+kak+1−3rak+rak+1+2ak+2ak+1
k2+2kr+r2+2k+2r

• Recursion relation for r = 0

ak+2 = −k2ak−2k2ak+1−3kak+kak+1+2ak+2ak+1
k2+2k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = −k2ak−2k2ak+1−3kak+kak+1+2ak+2ak+1
k2+2k

• Recursion relation for r = 2

ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1
k2+6k+8

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1

k2+6k+8 , 3a1 + a0 = 0
]

• Revert the change of variables u = 1 + x[
y =

∞∑
k=0

ak(1 + x)k+2 , ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1
k2+6k+8 , 3a1 + a0 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)-(1+2*x)*(x*diff(y(x),x)-y(x))=0,y(x),type='series',x=0);� �

y(x) = x
(
(c2 ln (x) + c1)

(
1 + O

(
x6))+ (x+O

(
x6)) c2)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 2760� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]-(1+2*x)*(x*y'[x]+y[x])==0,y[x],{x,0,5}]� �
Too large to display
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1.3 problem Ex. 6(ii), page 257
Internal problem ID [5473]
Internal file name [OUTPUT/4721_Sunday_June_05_2022_03_04_02_PM_75632679/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 6(ii), page 257.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

Unable to parse ODE.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
Louvillian solutions for 3rd order ODEs, imprimitive case: input is reducible, switching to DFactorsols
checking if the LODE is of Euler type
expon. solutions partially successful. Result(s) =`, [x^2]� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 79� �
Order:=6;
dsolve(x^3*(1+x)*diff(y(x),x$3)-(2+4*x)*x^2*diff(y(x),x$2)+(4+10*x)*x*diff(y(x),x)-(4+12*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = x

((
2x+O

(
x6)) ln (x)2 c3 + ln (x)

(
2+O

(
x6)) c2x+2

(
(−4)x+O

(
x6)) ln (x) c3

+
(
5 + O

(
x6)) c2x+ c1x

(
1 + O

(
x6))+ (2 + 4x+ 2x2 +O

(
x6)) c3)

3 Solution by Mathematica
Time used: 0.514 (sec). Leaf size: 49� �
AsymptoticDSolveValue[x^3*(1+x)*y'''[x]-(2+4*x)*x^2*y''[x]+(4+10*x)*x*y'[x]-(4+12*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x
2 + c1

(
2
(
x2 + 11x+ 1

)
x+ 2x2 log2(x)− 14x2 log(x)

)
+ c3x

2 log(x)
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1.4 problem Ex. 6(iii), page 257
Internal problem ID [5474]
Internal file name [OUTPUT/4722_Sunday_June_05_2022_03_04_03_PM_37151700/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 6(iii), page 257.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

Unable to parse ODE.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
Louvillian solutions for 3rd order ODEs, imprimitive case: input is reducible, switching to DFactorsols
checking if the LODE is of Euler type
expon. solutions partially successful. Result(s) =`, [x^2, x^3+x]� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 52� �
Order:=6;
dsolve(x^3*(1+x^2)*diff(y(x),x$3)-(2+4*x^2)*x^2*diff(y(x),x$2)+(4+10*x^2)*x*diff(y(x),x)-(4+12*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
c3
(
2 + 2x2 +O

(
x6))

+
((
1 + O

(
x6)) c1 + c2

(
ln (x)

(
2 + O

(
x6))+ (5 + O

(
x6))))x)x

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 30� �
AsymptoticDSolveValue[x^3*(1+x^2)*y'''[x]-(2+4*x^2)*x^2*y''[x]+(4+10*x^2)*x*y'[x]-(4+12*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
2x3 + 2x

)
+ c2x

2 + c3x
2 log(x)
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1.5 problem Ex. 6(iv), page 257
1.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 45

Internal problem ID [5475]
Internal file name [OUTPUT/4723_Sunday_June_05_2022_03_04_04_PM_81533320/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 6(iv), page 257.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2(2− x)x2y′′ − (4− x)xy′ + (−x+ 3) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x3 + 4x2) y′′ + (x2 − 4x
)
y′ + (−x+ 3) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − −4 + x

2x (−2 + x)

q(x) = x− 3
2x2 (−2 + x)
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Table 5: Table p(x), q(x) singularites.

p(x) = − −4+x
2x(−2+x)

singularity type
x = 0 “regular”
x = 2 “regular”

q(x) = x−3
2x2(−2+x)

singularity type
x = 0 “regular”
x = 2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 2,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−2y′′x2(−2 + x) +
(
x2 − 4x

)
y′ + (−x+ 3) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(−2 + x)

+
(
x2 − 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−x+ 3)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+

∞∑
n =0

(
−x1+n+ran

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+

∞∑
n =1

(
−an−1x

n+r
)
+
(

∞∑
n=0

3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r) + 3anxn+r = 0

36



When n = 0 the above becomes

4xra0r(−1 + r)− 4xra0r + 3a0xr = 0

Or
(4xrr(−1 + r)− 4xrr + 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 8r + 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 8r + 3 = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 8r + 3

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
3
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
√
x

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+ 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−2an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ an−1(n+ r − 1)− 4an(n+ r)− an−1 + 3an = 0

Solving for an from recursive equation (4) gives

an = (n+ r − 2) an−1

2n+ 2r − 1 (4)

Which for the root r = 3
2 becomes

an = (2n− 1) an−1

4 + 4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1 + r

1 + 2r

Which for the root r = 3
2 becomes

a1 =
1
8

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
1+2r

1
8

For n = 2, using the above recursive equation gives

a2 =
r(−1 + r)

4r2 + 8r + 3
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Which for the root r = 3
2 becomes

a2 =
1
32

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
1+2r

1
8

a2
r(−1+r)
4r2+8r+3

1
32

For n = 3, using the above recursive equation gives

a3 =
r3 − r

8r3 + 36r2 + 46r + 15

Which for the root r = 3
2 becomes

a3 =
5
512

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
1+2r

1
8

a2
r(−1+r)
4r2+8r+3

1
32

a3
r3−r

8r3+36r2+46r+15
5

512

For n = 4, using the above recursive equation gives

a4 =
r(r2 − 1) (2 + r)

(4r2 + 8r + 3) (5 + 2r) (7 + 2r)

Which for the root r = 3
2 becomes

a4 =
7

2048

And the table now becomes
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n an,r an

a0 1 1
a1

−1+r
1+2r

1
8

a2
r(−1+r)
4r2+8r+3

1
32

a3
r3−r

8r3+36r2+46r+15
5

512

a4
r
(
r2−1

)
(2+r)

(4r2+8r+3)(5+2r)(7+2r)
7

2048

For n = 5, using the above recursive equation gives

a5 =
r(r2 − 1) (2 + r) (3 + r)

(4r2 + 8r + 3) (5 + 2r) (7 + 2r) (9 + 2r)

Which for the root r = 3
2 becomes

a5 =
21

16384
And the table now becomes

n an,r an

a0 1 1
a1

−1+r
1+2r

1
8

a2
r(−1+r)
4r2+8r+3

1
32

a3
r3−r

8r3+36r2+46r+15
5

512

a4
r
(
r2−1

)
(2+r)

(4r2+8r+3)(5+2r)(7+2r)
7

2048

a5
r
(
r2−1

)
(2+r)(3+r)

(4r2+8r+3)(5+2r)(7+2r)(9+2r)
21

16384

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1 + x

8 + x2

32 + 5x3

512 + 7x4

2048 + 21x5

16384 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −1 + r

1 + 2r

Therefore

lim
r→r2

−1 + r

1 + 2r = lim
r→ 1

2

−1 + r

1 + 2r

= −1
4

The limit is −1
4 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n+ 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)−2bn−1(n+ r − 1) (n+ r − 2) + 4bn(n+ r) (n+ r − 1)
+ bn−1(n+ r − 1)− 4bn(n+ r)− bn−1 + 3bn = 0

Which for for the root r = 1
2 becomes

(4A)−2bn−1

(
n− 1

2

)(
n− 3

2

)
+ 4bn

(
n+ 1

2

)(
n− 1

2

)
+ bn−1

(
n− 1

2

)
− 4bn

(
n+ 1

2

)
− bn−1 + 3bn = 0

Solving for bn from the recursive equation (4) gives

bn = (n+ r − 2) bn−1

2n+ 2r − 1 (5)
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Which for the root r = 1
2 becomes

bn =
(
n− 3

2

)
bn−1

2n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−1 + r

1 + 2r

Which for the root r = 1
2 becomes

b1 = −1
4

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+r
1+2r −1

4

For n = 2, using the above recursive equation gives

b2 =
r(−1 + r)

(1 + 2r) (3 + 2r)

Which for the root r = 1
2 becomes

b2 = − 1
32

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+r
1+2r −1

4

b2
r(−1+r)
4r2+8r+3 − 1

32
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For n = 3, using the above recursive equation gives

b3 =
(−1 + r) r(1 + r)

(1 + 2r) (3 + 2r) (5 + 2r)

Which for the root r = 1
2 becomes

b3 = − 1
128

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+r
1+2r −1

4

b2
r(−1+r)
4r2+8r+3 − 1

32

b3
r3−r

8r3+36r2+46r+15 − 1
128

For n = 4, using the above recursive equation gives

b4 =
(−1 + r) r(1 + r) (2 + r)

(1 + 2r) (3 + 2r) (5 + 2r) (7 + 2r)

Which for the root r = 1
2 becomes

b4 = − 5
2048

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+r
1+2r −1

4

b2
r(−1+r)
4r2+8r+3 − 1

32

b3
r3−r

8r3+36r2+46r+15 − 1
128

b4
r4+2r3−r2−2r

16r4+128r3+344r2+352r+105 − 5
2048

For n = 5, using the above recursive equation gives

b5 =
(−1 + r) r(1 + r) (2 + r) (3 + r)

(1 + 2r) (3 + 2r) (5 + 2r) (7 + 2r) (9 + 2r)
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Which for the root r = 1
2 becomes

b5 = − 7
8192

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+r
1+2r −1

4

b2
r(−1+r)
4r2+8r+3 − 1

32

b3
r3−r

8r3+36r2+46r+15 − 1
128

b4
r4+2r3−r2−2r

16r4+128r3+344r2+352r+105 − 5
2048

b5
r5+5r4+5r3−5r2−6r

32r5+400r4+1840r3+3800r2+3378r+945 − 7
8192

Using the above table, then the solution y2(x) is

y2(x) = x
3
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x

(
1− x

4 − x2

32 − x3

128 − 5x4

2048 − 7x5

8192 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1 + x

8 + x2

32 + 5x3

512 + 7x4

2048 + 21x5

16384 +O
(
x6))

+ c2
√
x

(
1− x

4 − x2

32 − x3

128 − 5x4

2048 − 7x5

8192 +O
(
x6))

Hence the final solution is

y = yh

= c1x
3
2

(
1 + x

8 + x2

32 + 5x3

512 + 7x4

2048 + 21x5

16384 +O
(
x6))

+ c2
√
x

(
1− x

4 − x2

32 − x3

128 − 5x4

2048 − 7x5

8192 +O
(
x6))

44



Summary
The solution(s) found are the following

(1)
y = c1x

3
2

(
1 + x

8 + x2

32 + 5x3

512 + 7x4

2048 + 21x5

16384 +O
(
x6))

+ c2
√
x

(
1− x

4 − x2

32 − x3

128 − 5x4

2048 − 7x5

8192 +O
(
x6))

Verification of solutions

y = c1x
3
2

(
1 + x

8 + x2

32 + 5x3

512 + 7x4

2048 + 21x5

16384 +O
(
x6))

+ c2
√
x

(
1− x

4 − x2

32 − x3

128 − 5x4

2048 − 7x5

8192 +O
(
x6))

Verified OK.

1.5.1 Maple step by step solution

Let’s solve
−2y′′x2(−2 + x) + (x2 − 4x) y′ + (−x+ 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (−4+x)y′
2x(−2+x) −

(x−3)y
2x2(−2+x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (−4+x)y′
2x(−2+x) +

(x−3)y
2x2(−2+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − −4+x
2x(−2+x) , P3(x) = x−3

2x2(−2+x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4
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◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x2(−2 + x)− x(−4 + x) y′ + (x− 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(−ak(2k + 2r − 1) (2k + 2r − 3) + ak−1(2k + 2r − 3) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{1

2 ,
3
2

}
• Each term in the series must be 0, giving the recursion relation

−4
((
−k

2 −
r
2 + 1

)
ak−1 + ak

(
k + r − 1

2

)) (
k + r − 3

2

)
= 0

• Shift index using k− >k + 1
−4
((
−k

2 +
1
2 −

r
2

)
ak + ak+1

(
k + 1

2 + r
)) (

k + r − 1
2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r−1)ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 =
(
k− 1

2
)
ak

2k+2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
(
k− 1

2
)
ak

2k+2

]
• Recursion relation for r = 3

2

ak+1 =
(
k+ 1

2
)
ak

2k+4

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+1 =
(
k+ 1

2
)
ak

2k+4

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 =

(
k− 1

2
)
ak

2k+2 , bk+1 =
(
k+ 1

2
)
bk

2k+4

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(2*(2-x)*x^2*diff(y(x),x$2)-(4-x)*x*diff(y(x),x)+(3-x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x

(
x

(
1 + 1

8x+ 1
32x

2 + 5
512x

3 + 7
2048x

4 + 21
16384x

5 +O
(
x6)) c1

+
(
1 + 1

4x+ 1
32x

2 + 1
128x

3 + 5
2048x

4 + 7
8192x

5 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 94� �
AsymptoticDSolveValue[2*(2-x)*x^2*y''[x]-(4-x)*x*y'[x]+(3-x)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
−5x9/2

2048 − x7/2

128 − x5/2

32 − x3/2

4 +
√
x

)
+c2

(
7x11/2

2048 + 5x9/2

512 + x7/2

32 + x5/2

8 +x3/2
)
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1.6 problem Ex. 6(v), page 257
Internal problem ID [5476]
Internal file name [OUTPUT/4724_Sunday_June_05_2022_03_04_06_PM_73340437/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 6(v), page 257.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(1− x)x2y′′ + (5x− 4)xy′ + (6− 9x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x3 + x2) y′′ + (5x2 − 4x
)
y′ + (6− 9x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 5x− 4
x (x− 1)

q(x) = −6 + 9x
(x− 1)x2
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Table 7: Table p(x), q(x) singularites.

p(x) = − 5x−4
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = −6+9x
(x−1)x2

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′(x− 1)x2 +
(
5x2 − 4x

)
y′ + (6− 9x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
(x− 1)x2

+
(
5x2 − 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (6− 9x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

6anxn+r

)
+

∞∑
n =0

(
−9x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

5x1+n+ran(n+ r) =
∞∑
n=1

5an−1(n+ r − 1)xn+r

∞∑
n =0

(
−9x1+n+ran

)
=

∞∑
n=1

(
−9an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

5an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

6anxn+r

)
+

∞∑
n =1

(
−9an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r) + 6anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− 4xra0r + 6a0xr = 0

Or
(xrr(−1 + r)− 4xrr + 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 5r + 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 5r + 6 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 2

Since a0 6= 0 then the indicial equation becomes(
r2 − 5r + 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+2

)

52



Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 5an−1(n+ r − 1)− 4an(n+ r) + 6an − 9an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(n2 + 2nr + r2 − 8n− 8r + 16)
n2 + 2nr + r2 − 5n− 5r + 6 (4)

Which for the root r = 3 becomes

an = an−1(n− 1)2

n (1 + n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
(r − 3)2

r2 − 3r + 2

Which for the root r = 3 becomes
a1 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(r−3)2

r2−3r+2 0

For n = 2, using the above recursive equation gives

a2 =
(r − 2) (r − 3)2

(−1 + r)2 r
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Which for the root r = 3 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(r−3)2

r2−3r+2 0

a2
(r−2)(r−3)2

(−1+r)2r 0

For n = 3, using the above recursive equation gives

a3 =
(r − 2) (r − 3)2

(r + 1) r2

Which for the root r = 3 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(r−3)2

r2−3r+2 0

a2
(r−2)(r−3)2

(−1+r)2r 0

a3
(r−2)(r−3)2

(r+1)r2 0

For n = 4, using the above recursive equation gives

a4 =
(r − 2) (r − 3)2

(r + 1)2 (r + 2)

Which for the root r = 3 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1

a1
(r−3)2

r2−3r+2 0

a2
(r−2)(r−3)2

(−1+r)2r 0

a3
(r−2)(r−3)2

(r+1)r2 0

a4
(r−2)(r−3)2

(r+1)2(r+2) 0

For n = 5, using the above recursive equation gives

a5 =
(r − 2) (r − 3)2

(r + 3) (r + 2)2

Which for the root r = 3 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(r−3)2

r2−3r+2 0

a2
(r−2)(r−3)2

(−1+r)2r 0

a3
(r−2)(r−3)2

(r+1)r2 0

a4
(r−2)(r−3)2

(r+1)2(r+2) 0

a5
(r−2)(r−3)2

(r+3)(r+2)2 0

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3(1 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= (r − 3)2

r2 − 3r + 2

Therefore

lim
r→r2

(r − 3)2

r2 − 3r + 2 = lim
r→2

(r − 3)2

r2 − 3r + 2
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode −y′′(x− 1)x2+(5x2 − 4x) y′+(6− 9x) y = 0
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gives

−

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
(x− 1)x2

+
(
5x2 − 4x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (6− 9x)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
−y′′1(x) (x− 1)x2 +

(
5x2 − 4x

)
y′1(x) + (6− 9x) y1(x)

)
ln (x)

−
(
2y′1(x)

x
− y1(x)

x2

)
(x− 1)x2 + (5x2 − 4x) y1(x)

x

)
C

−

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
(x− 1)x2

+
(
5x2 − 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (6− 9x)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

−y′′1(x) (x− 1)x2 +
(
5x2 − 4x

)
y′1(x) + (6− 9x) y1(x) = 0

Eq (7) simplifes to

(8)

(
−
(
2y′1(x)

x
− y1(x)

x2

)
(x− 1)x2 + (5x2 − 4x) y1(x)

x

)
C

−

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
(x− 1)x2

+
(
5x2 − 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (6− 9x)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−2x(x− 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+ (6x− 5)
(

∞∑
n=0

anx
n+r1

))
C

+
(
−x3 + x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
5x2 − 4x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 3(2− 3x)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 3 and r2 = 2 then the above becomes

(10)

(
−2x(x− 1)

(
∞∑
n=0

xn+2an(n+ 3)
)

+ (6x− 5)
(

∞∑
n=0

anx
n+3

))
C

+
(
−x3 + x2)( ∞∑

n=0

xnbn(n+ 2) (1 + n)
)

+
(
5x2 − 4x

)( ∞∑
n=0

x1+nbn(n+ 2)
)

+ 3(2− 3x)
(

∞∑
n=0

bnx
n+2

)
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−2C xn+4an(n+3)

)
+
(

∞∑
n=0

2C xn+3an(n+3)
)
+
(

∞∑
n=0

6C xn+4an

)

+
∞∑

n =0

(
−5C xn+3an

)
+

∞∑
n =0

(
−xn+3bn(n+ 2) (1 + n)

)
+
(

∞∑
n=0

xn+2bn
(
n2 + 3n+ 2

))
+
(

∞∑
n=0

5xn+3bn(n+ 2)
)

+
∞∑

n =0

(
−4xn+2bn(n+ 2)

)
+
(

∞∑
n=0

6bnxn+2

)
+

∞∑
n =0

(
−9xn+3bn

)
= 0

The next step is to make all powers of x be n + 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn+2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(
−2C xn+4an(n+ 3)

)
=

∞∑
n=2

(
−2Can−2(1 + n)xn+2)

∞∑
n =0

2C xn+3an(n+ 3) =
∞∑
n=1

2Can−1(n+ 2)xn+2

∞∑
n =0

6C xn+4an =
∞∑
n=2

6Can−2x
n+2

∞∑
n =0

(
−5C xn+3an

)
=

∞∑
n=1

(
−5Can−1x

n+2)
∞∑

n =0

(
−xn+3bn(n+ 2) (1 + n)

)
=

∞∑
n=1

(
−bn−1n(1 + n)xn+2)

∞∑
n =0

5xn+3bn(n+ 2) =
∞∑
n=1

5bn−1(1 + n)xn+2

∞∑
n =0

(
−9xn+3bn

)
=

∞∑
n=1

(
−9bn−1x

n+2)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ 2.

(2B)

∞∑
n =2

(
−2Can−2(1 + n)xn+2)+( ∞∑

n=1

2Can−1(n+ 2)xn+2

)

+
(

∞∑
n=2

6Can−2x
n+2

)
+

∞∑
n =1

(
−5Can−1x

n+2)
+

∞∑
n =1

(
−bn−1n(1 + n)xn+2)+( ∞∑

n=0

xn+2bn
(
n2 + 3n+ 2

))

+
(

∞∑
n=1

5bn−1(1 + n)xn+2

)
+

∞∑
n =0

(
−4xn+2bn(n+ 2)

)
+
(

∞∑
n=0

6bnxn+2

)
+

∞∑
n =1

(
−9bn−1x

n+2) = 0
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For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C − 1 = 0

Which is solved for C. Solving for C gives

C = 1

For n = 2, Eq (2B) gives
3Ca1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 = 0

Solving the above for b2 gives
b2 = 0

For n = 3, Eq (2B) gives

(−2a1 + 5a2)C − b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives

(−4a2 + 7a3)C − 4b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 = 0

Solving the above for b4 gives
b4 = 0

For n = 5, Eq (2B) gives

(−6a3 + 9a4)C − 9b4 + 20b5 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(
x3(1 +O

(
x6))) ln (x) + x2(1 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3(1 +O

(
x6))+ c2

(
1
(
x3(1 +O

(
x6))) ln (x) + x2(1 +O

(
x6)))

Hence the final solution is

y = yh

= c1x
3(1 +O

(
x6))+ c2

(
x3(1 +O

(
x6)) ln (x) + x2(1 +O

(
x6)))

Summary
The solution(s) found are the following

(1)y = c1x
3(1 +O

(
x6))+ c2

(
x3(1 +O

(
x6)) ln (x) + x2(1 +O

(
x6)))

Verification of solutions

y = c1x
3(1 +O

(
x6))+ c2

(
x3(1 +O

(
x6)) ln (x) + x2(1 +O

(
x6)))

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 43� �
Order:=6;
dsolve((1-x)*x^2*diff(y(x),x$2)+(5*x-4)*x*diff(y(x),x)+(6-9*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x2(ln (x) (x+O
(
x6)) c2 + c1x

(
1 + O

(
x6))+ (1− x+O

(
x6)) c2)

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 30� �
AsymptoticDSolveValue[(1-x)*x^2*y''[x]+(5*x-4)*x*y'[x]+(6-9*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x
3 + c1

(
x3 log(x)− x2(3x− 1)

)
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1.7 problem Ex. 6(vi), page 257
1.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 69

Internal problem ID [5477]
Internal file name [OUTPUT/4725_Sunday_June_05_2022_03_04_08_PM_84588508/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 6(vi), page 257.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ +
(
4x2 + 1

)
y′ + 4xy

(
x2 + 1

)
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ +
(
4x2 + 1

)
y′ +

(
4x3 + 4x

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x2 + 1
x

q(x) = 4x2 + 4
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Table 8: Table p(x), q(x) singularites.

p(x) = 4x2+1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 4x2 + 4
singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ +
(
4x2 + 1

)
y′ +

(
4x3 + 4x

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+
(
4x2 + 1

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
4x3 + 4x

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

4xn+r+3an

)
+
(

∞∑
n=0

4x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=2

4an−2(n+ r − 2)xn+r−1

∞∑
n =0

4xn+r+3an =
∞∑
n=4

4an−4x
n+r−1

∞∑
n =0

4x1+n+ran =
∞∑
n=2

4an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

4an−2(n+ r − 2)xn+r−1

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=4

4an−4x
n+r−1

)
+
(

∞∑
n=2

4an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0
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Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 =
−4− 4r
(2 + r)2
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Substituting n = 3 in Eq. (2B) gives

a3 = 0

For 4 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 4an−2(n+ r − 2) + an(n+ r) + 4an−4 + 4an−2 = 0

Solving for an from recursive equation (4) gives

an = −4(nan−2 + ran−2 + an−4 − an−2)
n2 + 2nr + r2

(4)

Which for the root r = 0 becomes

an = (−4n+ 4) an−2 − 4an−4

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2

−4−4r
(2+r)2 −1

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
12r2 + 48r + 32
(2 + r)2 (r + 4)2

Which for the root r = 0 becomes
a4 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−4r
(2+r)2 −1

a3 0 0
a4

12r2+48r+32
(2+r)2(r+4)2

1
2
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−4r
(2+r)2 −1

a3 0 0
a4

12r2+48r+32
(2+r)2(r+4)2

1
2

a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= −x2 + 1 + x4

2 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−4−4r
(2+r)2 −1 4r

(2+r)3 0

b3 0 0 0 0
b4

12r2+48r+32
(2+r)2(r+4)2

1
2

−24r3−144r2−224r
(2+r)3(r+4)3 0

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
−x2 + 1 + x4

2 +O
(
x6)) ln (x) +O

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
−x2 + 1 + x4

2 +O
(
x6))+ c2

((
−x2 + 1 + x4

2 +O
(
x6)) ln (x) +O

(
x6))

Hence the final solution is

y = yh

= c1

(
−x2 + 1 + x4

2 +O
(
x6))+ c2

((
−x2 + 1 + x4

2 +O
(
x6)) ln (x) +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1

(
−x2 + 1 + x4

2 +O
(
x6))+ c2

((
−x2 + 1 + x4

2 +O
(
x6)) ln (x) +O

(
x6))

Verification of solutions

y = c1

(
−x2 + 1 + x4

2 +O
(
x6))+ c2

((
−x2 + 1 + x4

2 +O
(
x6)) ln (x) +O

(
x6))

Verified OK.

1.7.1 Maple step by step solution

Let’s solve
y′′x+ (4x2 + 1) y′ + (4x3 + 4x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = (−4x2 − 4) y −
(
4x2+1

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
4x2+1

)
y′

x
+ (4x2 + 4) y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4x2+1
x

, P3(x) = 4x2 + 4
]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (4x2 + 1) y′ + 4xy(x2 + 1) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 1..3

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
a2(2 + r)2 + 4a0(1 + r)

)
x1+r +

(
a3(3 + r)2 + 4a1(2 + r)

)
x2+r +

(
∞∑
k=3

(
ak+1(k + 1 + r)2 + 4ak−1(k + r) + 4ak−3

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• The coefficients of each power of x must be 0[
a1(1 + r)2 = 0, a2(2 + r)2 + 4a0(1 + r) = 0, a3(3 + r)2 + 4a1(2 + r) = 0

]
• Solve for the dependent coefficient(s){

a1 = 0, a2 = −4a0(1+r)
r2+4r+4 , a3 = 0

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 + 4ak−1k + 4ak−3 = 0
• Shift index using k− >k + 3

ak+4(k + 4)2 + 4ak+2(k + 3) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = −4(kak+2+ak+3ak+2)
(k+4)2

• Recursion relation for r = 0

ak+4 = −4(kak+2+ak+3ak+2)
(k+4)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+4 = −4(kak+2+ak+3ak+2)

(k+4)2 , a1 = 0, a2 = −a0, a3 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 31� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(4*x^2+1)*diff(y(x),x)+4*x*(x^2+1)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x2 + 1

2x
4
)
(c2 ln (x) + c1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 40� �
AsymptoticDSolveValue[x*y''[x]+(4*x^2+1)*y'[x]+4*x*(x^2+1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

2 − x2 + 1
)
+ c2

(
x4

2 − x2 + 1
)
log(x)
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1.8 problem Ex. 8(i), page 258
1.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 86

Internal problem ID [5478]
Internal file name [OUTPUT/4726_Sunday_June_05_2022_03_04_10_PM_91628320/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 8(i), page 258.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + 4(a+ x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + (4a+ 4x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 4a+ 4x
x2
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Table 10: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 4a+4x
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + (4a+ 4x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+ (4a+ 4x)

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4a xn+ran

)
+
(

∞∑
n=0

4x1+n+ran

)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4a xn+ran

)
+
(

∞∑
n=1

4an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 4a xn+ran = 0

When n = 0 the above becomes

xra0r(−1 + r) + 4a xra0 = 0

Or
(xrr(−1 + r) + 4a xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 4a− r

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 4a− r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2 +

√
1− 16a
2

r2 =
1
2 −

√
1− 16a
2

Since a0 6= 0 then the indicial equation becomes(
r2 + 4a− r

)
xr = 0
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Solving for r gives the roots of the indicial equation as Assuming the roots differ by
non-integer Since r1 − r2 =

√
1− 16a is not an integer, then we can construct two

linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2+
√
1−16a
2

y2(x) =
∞∑
n=0

bnx
n+ 1

2−
√
1−16a
2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 4aan + 4an−1 = 0

Solving for an from recursive equation (4) gives

an = − 4an−1

n2 + 2nr + r2 + 4a− n− r
(4)

Which for the root r = 1
2 +

√
1−16a
2 becomes

an = − 4an−1

n
(√

1− 16a+ n
) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 +
√
1−16a
2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 4
r2 + 4a+ r
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Which for the root r = 1
2 +

√
1−16a
2 becomes

a1 = − 4
1 +

√
1− 16a

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r2+4a+r
− 4

1+
√
1−16a

For n = 2, using the above recursive equation gives

a2 =
16

(r2 + 4a+ r) (r2 + 4a+ 3r + 2)

Which for the root r = 1
2 +

√
1−16a
2 becomes

a2 =
8(

1 +
√
1− 16a

) (
2 +

√
1− 16a

)
And the table now becomes

n an,r an

a0 1 1
a1 − 4

r2+4a+r
− 4

1+
√
1−16a

a2
16

(r2+4a+r)(r2+4a+3r+2)
8(

1+
√
1−16a

)(
2+

√
1−16a

)

For n = 3, using the above recursive equation gives

a3 = − 64
(r2 + 4a+ r) (r2 + 4a+ 3r + 2) (r2 + 4a+ 5r + 6)

Which for the root r = 1
2 +

√
1−16a
2 becomes

a3 = − 32
3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

)
And the table now becomes

77



n an,r an

a0 1 1
a1 − 4

r2+4a+r
− 4

1+
√
1−16a

a2
16

(r2+4a+r)(r2+4a+3r+2)
8(

1+
√
1−16a

)(
2+

√
1−16a

)
a3 − 64

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) − 32
3
(
1+

√
1−16a

)(
2+

√
1−16a

)(
3+

√
1−16a

)

For n = 4, using the above recursive equation gives

a4 =
256

(r2 + 4a+ r) (r2 + 4a+ 3r + 2) (r2 + 4a+ 5r + 6) (r2 + 4a+ 7r + 12)

Which for the root r = 1
2 +

√
1−16a
2 becomes

a4 =
32

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

)
And the table now becomes

n an,r an

a0 1 1
a1 − 4

r2+4a+r
− 4

1+
√
1−16a

a2
16

(r2+4a+r)(r2+4a+3r+2)
8(

1+
√
1−16a

)(
2+

√
1−16a

)
a3 − 64

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) − 32
3
(
1+

√
1−16a

)(
2+

√
1−16a

)(
3+

√
1−16a

)
a4

256
(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)(r2+4a+7r+12)

32
3
(
1+

√
1−16a

)(
2+

√
1−16a

)(
3+

√
1−16a

)(
4+

√
1−16a

)

For n = 5, using the above recursive equation gives

a5 = − 1024
(r2 + 4a+ r) (r2 + 4a+ 3r + 2) (r2 + 4a+ 5r + 6) (r2 + 4a+ 7r + 12) (r2 + 4a+ 9r + 20)

Which for the root r = 1
2 +

√
1−16a
2 becomes

a5 = − 128
15
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) (
5 +

√
1− 16a

)
And the table now becomes
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n an,r an

a0 1 1
a1 − 4

r2+4a+r
− 4

1+
√
1−16a

a2
16

(r2+4a+r)(r2+4a+3r+2)
8(

1+
√
1−16a

)(
2+

√
1−16a

)
a3 − 64

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6) − 32
3
(
1+

√
1−16a

)(
2+

√
1−16a

)(
3+

√
1−16a

)
a4

256
(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)(r2+4a+7r+12)

32
3
(
1+

√
1−16a

)(
2+

√
1−16a

)(
3+

√
1−16a

)(
4+

√
1−16a

)
a5 − 1024

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)(r2+4a+7r+12)(r2+4a+9r+20) − 128
15

(
1+

√
1−16a

)(
2+

√
1−16a

)(
3+

√
1−16a

)(
4+

√
1−16a

)(
5+

√
1−16a

)

Using the above table, then the solution y1(x) is

y1(x) = x
1
2+

√
1−16a
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
2+

√
1−16a
2

(
1− 4x

1 +
√
1− 16a

+ 8x2(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) − 32x3

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) + 32x4

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) − 128x5

15
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) (
5 +

√
1− 16a

) +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1) + 4abn + 4bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = − 4bn−1

n2 + 2nr + r2 + 4a− n− r
(4)

Which for the root r = 1
2 −

√
1−16a
2 becomes

bn = 4bn−1

n
(√

1− 16a− n
) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 −
√
1−16a
2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 = − 4
r2 + 4a+ r

Which for the root r = 1
2 −

√
1−16a
2 becomes

b1 =
4

−1 +
√
1− 16a

And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

r2+4a+r
4

−1+
√
1−16a

For n = 2, using the above recursive equation gives

b2 =
16

(r2 + 4a+ r) (r2 + 4a+ 3r + 2)

Which for the root r = 1
2 −

√
1−16a
2 becomes

b2 =
8(

−1 +
√
1− 16a

) (
−2 +

√
1− 16a

)
And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

r2+4a+r
4

−1+
√
1−16a

b2
16

(r2+4a+r)(r2+4a+3r+2)
8(

−1+
√
1−16a

)(
−2+

√
1−16a

)

For n = 3, using the above recursive equation gives

b3 = − 64
(r2 + 4a+ r) (r2 + 4a+ 3r + 2) (r2 + 4a+ 5r + 6)

Which for the root r = 1
2 −

√
1−16a
2 becomes

b3 =
32

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

)
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And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

r2+4a+r
4

−1+
√
1−16a

b2
16

(r2+4a+r)(r2+4a+3r+2)
8(

−1+
√
1−16a

)(
−2+

√
1−16a

)
b3 − 64

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)
32

3
(
−1+

√
1−16a

)(
−2+

√
1−16a

)(
−3+

√
1−16a

)

For n = 4, using the above recursive equation gives

b4 =
256

(r2 + 4a+ r) (r2 + 4a+ 3r + 2) (r2 + 4a+ 5r + 6) (r2 + 4a+ 7r + 12)

Which for the root r = 1
2 −

√
1−16a
2 becomes

b4 =
32

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

)
And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

r2+4a+r
4

−1+
√
1−16a

b2
16

(r2+4a+r)(r2+4a+3r+2)
8(

−1+
√
1−16a

)(
−2+

√
1−16a

)
b3 − 64

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)
32

3
(
−1+

√
1−16a

)(
−2+

√
1−16a

)(
−3+

√
1−16a

)
b4

256
(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)(r2+4a+7r+12)

32
3
(
−1+

√
1−16a

)(
−2+

√
1−16a

)(
−3+

√
1−16a

)(
−4+

√
1−16a

)

For n = 5, using the above recursive equation gives

b5 = − 1024
(r2 + 4a+ r) (r2 + 4a+ 3r + 2) (r2 + 4a+ 5r + 6) (r2 + 4a+ 7r + 12) (r2 + 4a+ 9r + 20)

Which for the root r = 1
2 −

√
1−16a
2 becomes

b5 =
128

15
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) (
−5 +

√
1− 16a

)
And the table now becomes
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n bn,r bn

b0 1 1
b1 − 4

r2+4a+r
4

−1+
√
1−16a

b2
16

(r2+4a+r)(r2+4a+3r+2)
8(

−1+
√
1−16a

)(
−2+

√
1−16a

)
b3 − 64

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)
32

3
(
−1+

√
1−16a

)(
−2+

√
1−16a

)(
−3+

√
1−16a

)
b4

256
(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)(r2+4a+7r+12)

32
3
(
−1+

√
1−16a

)(
−2+

√
1−16a

)(
−3+

√
1−16a

)(
−4+

√
1−16a

)
b5 − 1024

(r2+4a+r)(r2+4a+3r+2)(r2+4a+5r+6)(r2+4a+7r+12)(r2+4a+9r+20)
128

15
(
−1+

√
1−16a

)(
−2+

√
1−16a

)(
−3+

√
1−16a

)(
−4+

√
1−16a

)(
−5+

√
1−16a

)

Using the above table, then the solution y2(x) is

y2(x) = x
1
2+

√
1−16a
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
2−

√
1−16a
2

(
1 + 4x

−1 +
√
1− 16a

+ 8x2(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) + 32x3

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) + 32x4

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) + 128x5

15
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) (
−5 +

√
1− 16a

) +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)
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= c1x
1
2+

√
1−16a
2

(
1− 4x

1 +
√
1− 16a

+ 8x2(
1 +

√
1− 16a

) (
2 +

√
1− 16a

)
− 32x3

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

)
+ 32x4

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

)
− 128x5

15
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) (
5 +

√
1− 16a

)
+O

(
x6))

+ c2x
1
2−

√
1−16a
2

(
1 + 4x

−1 +
√
1− 16a

+ 8x2(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

)
+ 32x3

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

)
+ 32x4

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

)
+ 128x5

15
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) (
−5 +

√
1− 16a

)
+O

(
x6))

Hence the final solution is

y = yh
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= c1x
1
2+

√
1−16a
2

(
1− 4x

1 +
√
1− 16a

+ 8x2(
1 +

√
1− 16a

) (
2 +

√
1− 16a

)
− 32x3

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

)
+ 32x4

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

)
− 128x5

15
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) (
5 +

√
1− 16a

)
+O

(
x6))+c2x

1
2−

√
1−16a
2

(
1+ 4x

−1 +
√
1− 16a

+ 8x2(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

)
+ 32x3

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

)
+ 32x4

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

)
+ 128x5

15
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) (
−5 +

√
1− 16a

)
+O

(
x6))
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Summary
The solution(s) found are the following

(1)y = c1x
1
2+

√
1−16a
2

(
1− 4x

1 +
√
1− 16a

+ 8x2(
1 +

√
1− 16a

) (
2 +

√
1− 16a

)
− 32x3

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

)
+ 32x4

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

)
− 128x5

15
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) (
5 +

√
1− 16a

)
+O

(
x6))+ c2x

1
2−

√
1−16a
2

(
1+ 4x

−1 +
√
1− 16a

+ 8x2(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

)
+ 32x3

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

)
+ 32x4

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

)
+ 128x5

15
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) (
−5 +

√
1− 16a

)
+O

(
x6))
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Verification of solutions

y = c1x
1
2+

√
1−16a
2

(
1− 4x

1 +
√
1− 16a

+ 8x2(
1 +

√
1− 16a

) (
2 +

√
1− 16a

)
− 32x3

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

)
+ 32x4

3
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

)
− 128x5

15
(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) (
5 +

√
1− 16a

)
+O

(
x6))+ c2x

1
2−

√
1−16a
2

(
1+ 4x

−1 +
√
1− 16a

+ 8x2(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

)
+ 32x3

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

)
+ 32x4

3
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

)
+ 128x5

15
(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) (
−5 +

√
1− 16a

)
+O

(
x6))

Verified OK.

1.8.1 Maple step by step solution

Let’s solve
x2y′′ + (4a+ 4x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −4(a+x)y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4(a+x)y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = 0, P3(x) = 4(a+x)

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4a

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + (4a+ 4x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(r2 + 4a− r)xr +
(

∞∑
k=1

(ak(k2 + 2kr + r2 + 4a− k − r) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 + 4a− r = 0

• Values of r that satisfy the indicial equation

r ∈
{

1
2 −

√
1−16a
2 , 12 +

√
1−16a
2

}
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• Each term in the series must be 0, giving the recursion relation
(k2 + (2r − 1) k + r2 + 4a− r) ak + 4ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + (2r − 1) (k + 1) + r2 + 4a− r

)
ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

k2+2kr+r2+4a+k+r

• Recursion relation for r = 1
2 −

√
1−16a
2

ak+1 = − 4ak
k2+2k

(
1
2−

√
1−16a
2

)
+
(

1
2−

√
1−16a
2

)2
+4a+k+ 1

2−
√
1−16a
2

• Solution for r = 1
2 −

√
1−16a
2[

y =
∞∑
k=0

akx
k+ 1

2−
√
1−16a
2 , ak+1 = − 4ak

k2+2k
(

1
2−

√
1−16a
2

)
+
(

1
2−

√
1−16a
2

)2
+4a+k+ 1

2−
√
1−16a
2

]
• Recursion relation for r = 1

2 +
√
1−16a
2

ak+1 = − 4ak
k2+2k

(
1
2+

√
1−16a
2

)
+
(

1
2+

√
1−16a
2

)2
+4a+k+ 1

2+
√
1−16a
2

• Solution for r = 1
2 +

√
1−16a
2[

y =
∞∑
k=0

akx
k+ 1

2+
√
1−16a
2 , ak+1 = − 4ak

k2+2k
(

1
2+

√
1−16a
2

)
+
(

1
2+

√
1−16a
2

)2
+4a+k+ 1

2+
√
1−16a
2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

bkx
k+ 1

2−
√
1−16a
2

)
+
(

∞∑
k=0

ckx
k+ 1

2+
√
1−16a
2

)
, bk+1 = − 4bk

k2+2k
(

1
2−

√
1−16a
2

)
+
(

1
2−

√
1−16a
2

)2
+4a+k+ 1

2−
√

1−16a
2

, ck+1 = − 4ck
k2+2k

(
1
2+

√
1−16a
2

)
+
(

1
2+

√
1−16a
2

)2
+4a+k+ 1

2+
√
1−16a
2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 947� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+4*(x+a)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
√
x

(
c1x

−
√
1−16a
2

(
1 + 4 1

−1 +
√
1− 16a

x+ 8 1(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

)x2

+ 32
3

1(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

)x3

+ 32
3

1(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

)x4

+128
15

1(
−1 +

√
1− 16a

) (
−2 +

√
1− 16a

) (
−3 +

√
1− 16a

) (
−4 +

√
1− 16a

) (
−5 +

√
1− 16a

)x5

+O
(
x6))+ c2x

√
1−16a
2

(
1− 4 1

1 +
√
1− 16a

x+ 8 1(
1 +

√
1− 16a

) (
2 +

√
1− 16a

)x2

− 32
3

1(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

)x3

+ 32
3

1(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

)x4

− 128
15

1(
1 +

√
1− 16a

) (
2 +

√
1− 16a

) (
3 +

√
1− 16a

) (
4 +

√
1− 16a

) (
5 +

√
1− 16a

)x5

+O
(
x6)))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 1356� �
AsymptoticDSolveValue[x^2*y''[x]+4*(x+a)*y[x]==0,y[x],{x,0,5}]� �
y(x)

→

(
− 1024x5((1

2

(
1−

√
1− 16a

)
+ 1
) (1

2

(
1−

√
1− 16a

)
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)
+ 4a

) ((1
2

(
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√
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)
+ 2
) (1

2

(
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√
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)
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)
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) ((1
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√
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)
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) (1

2

(
1−

√
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√
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)
+ 4
) (1
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√
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)
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)
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) (1
2

(1
2

(
1−

√
1− 16a

)
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)
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)
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2
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√
1− 16a

)
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1− 16a

)
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− 64x3((1

2
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√
1− 16a

)
+ 1
) (1

2

(
1−

√
1− 16a

)
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)
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2
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√
1− 16a

)
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2

(
1−

√
1− 16a

)
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)
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√
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√
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)
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√
1− 16a

)
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√
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)
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√
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)
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)
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)
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1.9 problem Ex. 8(ii), page 258
1.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 99

Internal problem ID [5479]
Internal file name [OUTPUT/4727_Sunday_June_05_2022_03_04_11_PM_94591782/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan
Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of
Frobenius. page 243
Problem number: Ex. 8(ii), page 258.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ +
(
x3 + 1

)
y′ + bxy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ +
(
x3 + 1

)
y′ + bxy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x3 + 1
x

q(x) = b
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Table 12: Table p(x), q(x) singularites.

p(x) = x3+1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = b

singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ +
(
x3 + 1

)
y′ + bxy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+
(
x3 + 1

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ bx

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

b x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=3

an−3(n+ r − 3)xn+r−1

∞∑
n =0

b x1+n+ran =
∞∑
n=2

ban−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=3

an−3(n+ r − 3)xn+r−1

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

ban−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0
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Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = − b

(2 + r)2

For 3 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−3(n+ r − 3) + an(n+ r) + ban−2 = 0
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Solving for an from recursive equation (4) gives

an = −ban−2 + nan−3 + ran−3 − 3an−3

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = (−n+ 3) an−3 − ban−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 − b

(2+r)2 − b
4

For n = 3, using the above recursive equation gives

a3 = − r

(r + 3)2

Which for the root r = 0 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − b

(2+r)2 − b
4

a3 − r
(r+3)2 0

For n = 4, using the above recursive equation gives

a4 =
b2

(2 + r)2 (4 + r)2

Which for the root r = 0 becomes
a4 =

b2

64
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − b

(2+r)2 − b
4

a3 − r
(r+3)2 0

a4
b2

(2+r)2(4+r)2
b2

64

For n = 5, using the above recursive equation gives

a5 =
b(2r2 + 8r + 9)

(2 + r) (r + 3)2 (5 + r)2

Which for the root r = 0 becomes
a5 =

b

50
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − b

(2+r)2 − b
4

a3 − r
(r+3)2 0

a4
b2

(2+r)2(4+r)2
b2

64

a5
b
(
2r2+8r+9

)
(2+r)(r+3)2(5+r)2

b
50

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − b

(2+r)2 − b
4

2b
(2+r)3

b
4

b3 − r
(r+3)2 0 r−3

(r+3)3 −1
9

b4
b2

(2+r)2(4+r)2
b2

64 − 4b2(r+3)
(2+r)3(4+r)3 − 3b2

128

b5
b
(
2r2+8r+9

)
(2+r)(r+3)2(5+r)2

b
50 − b

(
6r4+56r3+191r2+296r+183

)
(5+r)3(2+r)2(r+3)3 − 61b

4500

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6)) ln (x) + b x2

4 − x3

9 − 3b2x4

128 − 61b x5

4500 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6))+c2

((
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6)) ln (x)

+ b x2

4 − x3

9 − 3b2x4

128 − 61b x5

4500 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6))

+c2

((
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6)) ln (x)+ b x2

4 − x3

9 − 3b2x4

128 − 61b x5

4500 +O
(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1

(
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6))+c2

((
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6)) ln (x)

+ b x2

4 − x3

9 − 3b2x4

128 − 61b x5

4500 +O
(
x6))

Verification of solutions

y = c1

(
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6))

+c2

((
1− b x2

4 + b2x4

64 + b x5

50 +O
(
x6)) ln (x)+ b x2

4 − x3

9 − 3b2x4

128 − 61b x5

4500 +O
(
x6))

Verified OK.

1.9.1 Maple step by step solution

Let’s solve
y′′x+ (x3 + 1) y′ + bxy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x3+1

)
y′

x
− by

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x3+1

)
y′

x
+ by = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x3+1
x

, P3(x) = b
]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0
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◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (x3 + 1) y′ + bxy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert xm · y′ to series expansion form = 0..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
a2(2 + r)2 + a0b

)
x1+r +

(
∞∑
k=2

(
ak+1(k + r + 1)2 + bak−1 + ak−2(k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
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r = 0
• The coefficients of each power of x must be 0[

a1(1 + r)2 = 0, a2(2 + r)2 + a0b = 0
]

• Solve for the dependent coefficient(s){
a1 = 0, a2 = − a0b

r2+4r+4

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 + bak−1 + ak−2(k − 2) = 0
• Shift index using k− >k + 2

ak+3(k + 3)2 + bak+1 + akk = 0
• Recursion relation that defines series solution to ODE

ak+3 = − bak+1+akk

(k+3)2

• Recursion relation for r = 0
ak+3 = − bak+1+akk

(k+3)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+3 = − bak+1+akk

(k+3)2 , a1 = 0, a2 = −a0b
4

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 73� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(1+x*x^2)*diff(y(x),x)+b*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1− 1

4b x
2 + 1

64b
2x4 + 1

50b x
5 +O

(
x6))

+
(
b

4x
2 − 1

9x
3 − 3

128b
2x4 − 61

4500b x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 103� �
AsymptoticDSolveValue[x*y''[x]+(1+x*x^2)*y'[x]+b*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
b2x4

64 + bx5

50 − bx2

4 + 1
)

+ c2

(
−3b2x4

128 +
(
b2x4

64 + bx5

50 − bx2

4 + 1
)
log(x)− 61bx5

4500 + bx2

4 − x3

9

)

103


	Chapter VI. Note I. Integration of linear equations in series by the method of Frobenius. page 243
	problem Ex. 5, page 256
	Maple step by step solution

	problem Ex. 6(i), page 257
	Maple step by step solution

	problem Ex. 6(ii), page 257
	problem Ex. 6(iii), page 257
	problem Ex. 6(iv), page 257
	Maple step by step solution

	problem Ex. 6(v), page 257
	problem Ex. 6(vi), page 257
	Maple step by step solution

	problem Ex. 8(i), page 258
	Maple step by step solution

	problem Ex. 8(ii), page 258
	Maple step by step solution



