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1.1 problem 1. Using series method
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Internal problem ID [6544]
Internal file name [OUTPUT/5792_Sunday_June_05_2022_03_54_44_PM_12664182/index.tex]

Book: A course in Ordinary Differential Equations. by Stephen A. Wirkus, Randall J. Swift.
CRC Press NY. 2015. 2nd Edition
Section: Chapter 8. Series Methods. section 8.2. The Power Series Method. Problems Page
603
Problem number: 1. Using series method.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first order ode series
method. Taylor series method"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′ − y2 = −x

With initial conditions

[y(0) = 1]

With the expansion point for the power series method at x = 0.

1.1.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= y2 − x

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y2 − x

)
= 2y

The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.1.2 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0
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But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f
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Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)

Hence

F0 = −x+ y2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

= 2y3 − 2xy − 1

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

= 6y4 − 8xy2 + 2x2 − 2y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

= 24y5 − 40y3x+ 16yx2 − 10y2 + 6x

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

= 120y6 − 240xy4 + 136y2x2 − 60y3 − 16x3 + 52xy + 6

F5 =
dF4

dx

= ∂F4

∂x
+ ∂F4

∂y
F4

= 720y7 − 1680y5x− 420y4 + 1232y3x2 + 504xy2 +
(
−272x3 + 52

)
y − 100x2

F6 =
dF5

dx

= ∂F5

∂x
+ ∂F5

∂y
F5

= 5040y8 − 13440xy6 − 3360y5 + 12096y4x2 + 5152y3x+
(
−3968x3 + 556

)
y2 − 1824yx2 + 272x4 − 252x
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And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = 1 gives

F0 = 1
F1 = 1
F2 = 4
F3 = 14
F4 = 66
F5 = 352
F6 = 2236

Substituting all the above in (6) and simplifying gives the solution as

y = 1 + x+ x2

2 + 2x3

3 + 7x4

12 + 11x5

20 + 22x6

45 + 559x7

1260 +O
(
x8)

Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = y(0)

Therefore the solution becomes

y = 1 + x+ 1
2x

2 + 2
3x

3 + 7
12x

4 + 11
20x

5 + 22
45x

6 + 559
1260x
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Hence the solution can be written as

y = 1 + x+ x2

2 + 2x3

3 + 7x4

12 + 11x5

20 + 22x6

45 + 559x7

1260 +O
(
x8)

which simplifies to

y = 1 + x+ x2

2 + 2x3

3 + 7x4

12 + 11x5

20 + 22x6

45 + 559x7

1260 +O
(
x8)

Unable to also solve using normal power series since not linear ode. Not currently sup-

ported.

Summary
The solution(s) found are the following

(1)y = 1 + x+ x2

2 + 2x3

3 + 7x4

12 + 11x5

20 + 22x6

45 + 559x7

1260 +O
(
x8)

Verification of solutions

y = 1 + x+ x2

2 + 2x3

3 + 7x4

12 + 11x5

20 + 22x6

45 + 559x7

1260 +O
(
x8)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=8;
dsolve([diff(y(x),x)=y(x)^2-x,y(0) = 1],y(x),type='series',x=0);� �

y(x) = 1 + x+ 1
2x

2 + 2
3x

3 + 7
12x

4 + 11
20x

5 + 22
45x

6 + 559
1260x

7 +O
(
x8)

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 48� �
AsymptoticDSolveValue[{y'[x]==y[x]^2-x,{y[0]==1}},y[x],{x,0,7}]� �

y(x) → 559x7

1260 + 22x6

45 + 11x5

20 + 7x4

12 + 2x3

3 + x2

2 + x+ 1
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1.2 problem 1. direct method
1.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 9
1.2.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 10

Internal problem ID [6545]
Internal file name [OUTPUT/5793_Sunday_June_05_2022_03_54_47_PM_50830833/index.tex]

Book: A course in Ordinary Differential Equations. by Stephen A. Wirkus, Randall J. Swift.
CRC Press NY. 2015. 2nd Edition
Section: Chapter 8. Series Methods. section 8.2. The Power Series Method. Problems Page
603
Problem number: 1. direct method.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′ − y2 = −x

With initial conditions

[y(0) = 1]

1.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= y2 − x

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}
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And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y2 − x

)
= 2y

The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.2.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y2 − x

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2 − x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −x, f1(x) = 0 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = −x
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Substituting the above terms back in equation (2) gives

u′′(x)− xu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi (x) + c2AiryBi (x)

The above shows that

u′(x) = c1AiryAi (1, x) + c2AiryBi (1, x)

Using the above in (1) gives the solution

y = −c1AiryAi (1, x) + c2AiryBi (1, x)
c1AiryAi (x) + c2AiryBi (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −c3AiryAi (1, x)− AiryBi (1, x)
c3AiryAi (x) + AiryBi (x)

Initial conditions are used to solve for c3. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 =
−3Γ

(2
3

)2 3 2
3 + 3Γ

(2
3

)2
c33

1
6

2 3 5
6π + 2πc33

1
3

c3 =
23 5

6π + 3Γ
(2
3

)2 3 2
3

3Γ
(2
3

)2 3 1
6 − 2π3 1

3

Substituting c3 found above in the general solution gives

y =
−2AiryAi (1, x) π3 5

6 − 3AiryAi (1, x) Γ
(2
3

)2 3 2
3 − 3AiryBi (1, x) Γ

(2
3

)2 3 1
6 + 2AiryBi (1, x) π3 1

3

2AiryAi (x) π3 5
6 + 3AiryAi (x) Γ

(2
3

)2 3 2
3 + 3AiryBi (x) Γ

(2
3

)2 3 1
6 − 2AiryBi (x) π3 1

3

Summary
The solution(s) found are the following

(1)y

=
−2AiryAi (1, x) π3 5

6 − 3AiryAi (1, x) Γ
(2
3

)2 3 2
3 − 3AiryBi (1, x) Γ

(2
3

)2 3 1
6 + 2AiryBi (1, x) π3 1

3

2AiryAi (x) π3 5
6 + 3AiryAi (x) Γ

(2
3

)2 3 2
3 + 3AiryBi (x) Γ

(2
3

)2 3 1
6 − 2AiryBi (x) π3 1

3
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(a) Solution plot (b) Slope field plot

Verification of solutions
y

=
−2AiryAi (1, x) π3 5

6 − 3AiryAi (1, x) Γ
(2
3

)2 3 2
3 − 3AiryBi (1, x) Γ

(2
3

)2 3 1
6 + 2AiryBi (1, x) π3 1

3

2AiryAi (x) π3 5
6 + 3AiryAi (x) Γ

(2
3

)2 3 2
3 + 3AiryBi (x) Γ

(2
3

)2 3 1
6 − 2AiryBi (x) π3 1

3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.219 (sec). Leaf size: 90� �
dsolve([diff(y(x),x)=y(x)^2-x,y(0) = 1],y(x), singsol=all)� �
y(x)

=
−2AiryAi (1, x) 3 5

6π − 3AiryAi (1, x) Γ
(2
3

)2 3 2
3 − 3AiryBi (1, x) 3 1

6Γ
(2
3

)2 + 2AiryBi (1, x) 3 1
3π

2AiryAi (x) 3 5
6π + 3AiryAi (x) Γ

(2
3

)2 3 2
3 + 3AiryBi (x) 3 1

6Γ
(2
3

)2 − 2AiryBi (x) 3 1
3π

3 Solution by Mathematica
Time used: 7.282 (sec). Leaf size: 164� �
DSolve[{y'[x]==y[x]^2-x,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
3
√
−3Gamma

(2
3

) (
ix3/2 BesselJ

(
−4

3 ,
2
3ix

3/2)− ix3/2 BesselJ
(2
3 ,

2
3ix

3/2)+ BesselJ
(
−1

3 ,
2
3ix

3/2))− 2ix3/2Gamma
(1
3

)
BesselJ

(
−2

3 ,
2
3ix

3/2)
2x
(
Gamma

(1
3

)
BesselJ

(1
3 ,

2
3ix

3/2
)
− 3

√
−3Gamma

(2
3

)
BesselJ

(
−1

3 ,
2
3ix

3/2
))
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Internal problem ID [6546]
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Book: A course in Ordinary Differential Equations. by Stephen A. Wirkus, Randall J. Swift.
CRC Press NY. 2015. 2nd Edition
Section: Chapter 8. Series Methods. section 8.2. The Power Series Method. Problems Page
603
Problem number: 2. Using series method.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − 2y = x2

With initial conditions

[y(1) = 1]

With the expansion point for the power series method at x = 1.

1.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −2
q(x) = x2
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Hence the ode is

y′ − 2y = x2

The domain of p(x) = −2 is
{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = x2 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

1.3.2 Solving as series ode

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

d

dt
y(t)− 2y(t) = (t+ 1)2

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1

The transformed ODE is now solved.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)
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Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0

But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

16



Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f

Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)

17



Hence

F0 = t2 + 2t+ 2y(t) + 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y
F0

= 6t+ 4 + 2t2 + 4y(t)

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y
F1

= 10 + 12t+ 4t2 + 8y(t)

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y
F2

= 20 + 24t+ 8t2 + 16y(t)

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y
F3

= 40 + 48t+ 16t2 + 32y(t)

F5 =
dF4

dt

= ∂F4

∂t
+ ∂F4

∂y
F4

= 80 + 96t+ 32t2 + 64y(t)

F6 =
dF5

dt

= ∂F5

∂t
+ ∂F5

∂y
F5

= 160 + 192t+ 64t2 + 128y(t)

18



And so on. Evaluating all the above at initial conditions t(0) = 0 and y(0) = 1 gives

F0 = 3
F1 = 8
F2 = 18
F3 = 36
F4 = 72
F5 = 144
F6 = 288

Substituting all the above in (6) and simplifying gives the solution as

y(t) = 3t3 + 4t2 + 3t+ 1 + 3t4
2 + 3t5

5 + t6

5 + 2t7
35 +O

(
t8
)

Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = y(0)

Therefore the solution becomes

y(t) = 3t3 + 4t2 + 3t+ 1 + 3
2t

4 + 3
5t

5 + 1
5t

6 + 2
35t

7

Hence the solution can be written as

y(t) = 3t3 + 4t2 + 3t+ 1 + 3t4
2 + 3t5

5 + t6

5 + 2t7
35 +O

(
t8
)

which simplifies to

y(t) = 3t3 + 4t2 + 3t+ 1 + 3t4
2 + 3t5

5 + t6

5 + 2t7
35 +O

(
t8
)

Since t = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

d

dt
y(t) + q(t)y(t) = p(t)
d

dt
y(t)− 2y(t) = (t+ 1)2

Where

q(t) = −2
p(t) = (t+ 1)2

19



Next, the type of the expansion point t = 0 is determined. This point can be an ordinary
point, a regular singular point (also called removable singularity), or irregular singular
point (also called non-removable singularity or essential singularity). When t = 0 is an
ordinary point, then the standard power series is used. If the point is a regular singular
point, Frobenius series is used instead. Irregular singular point requires more advanced
methods (asymptotic methods) and is not supported now. Hopefully this will be added
in the future. t = 0 is called an ordinary point q(t) has a Taylor series expansion around
the point t = 0. t = 0 is called a regular singular point if q(t) is not not analytic at
t = 0 but tq(t) has Taylor series expansion. And finally, t = 0 is an irregular singular
point if the point is not ordinary and not regular singular. This is the most complicated
case. Now the expansion point t = 0 is checked to see if it is an ordinary point or not.
Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

Substituting the above back into the ode gives(
∞∑
n=1

nant
n−1

)
− 2
(

∞∑
n=0

ant
n

)
= (t+ 1)2 (1)

Expanding (t+ 1)2 as Taylor series around t = 0 and keeping only the first 8 terms
gives

(t+ 1)2 = t2 + 2t+ 1 + . . .

= t2 + 2t+ 1

Hence the ODE in Eq (1) becomes(
∞∑
n=1

nant
n−1

)
− 2
(

∞∑
n=0

ant
n

)
= t2 + 2t+ 1 (1)

Which simplifies to

(2)
(

∞∑
n=1

nant
n−1

)
+

∞∑
n =0

(−2antn) = t2 + 2t+ 1
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =1

nant
n−1 =

∞∑
n=0

(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 1) an+1t
n

)
+

∞∑
n =0

(−2antn) = t2 + 2t+ 1

For 0 ≤ n, the recurrence equation is

(4)((n+ 1) an+1 − 2an) tn = t2 + 2t+ 1

For n = 0 the recurrence equation gives

(a1 − 2a0) 1 = 1
a1 − 2a0 = 1

Which after substituting the earlier terms found becomes

a1 = 1 + 2a0

For n = 1 the recurrence equation gives

(2a2 − 2a1) t = 2t
2a2 − 2a1 = 2

Which after substituting the earlier terms found becomes

a2 = 2 + 2a0

For n = 2 the recurrence equation gives

(3a3 − 2a2) t2 = t2

3a3 − 2a2 = 1
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Which after substituting the earlier terms found becomes

a3 =
5
3 + 4a0

3

For n = 3 the recurrence equation gives

(4a4 − 2a3) t3 = 0
4a4 − 2a3 = 0

Which after substituting the earlier terms found becomes

a4 =
5
6 + 2a0

3

For n = 4 the recurrence equation gives

(5a5 − 2a4) t4 = 0
5a5 − 2a4 = 0

Which after substituting the earlier terms found becomes

a5 =
1
3 + 4a0

15

For n = 5 the recurrence equation gives

(6a6 − 2a5) t5 = 0
6a6 − 2a5 = 0

Which after substituting the earlier terms found becomes

a6 =
1
9 + 4a0

45

For n = 6 the recurrence equation gives

(7a7 − 2a6) t6 = 0
7a7 − 2a6 = 0
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Which after substituting the earlier terms found becomes

a7 =
2
63 + 8a0

315

For n = 7 the recurrence equation gives

(8a8 − 2a7) t7 = 0
8a8 − 2a7 = 0

Which after substituting the earlier terms found becomes

a8 =
1
126 + 2a0

315

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + (1 + 2a0) t+ (2 + 2a0) t2 +
(
5
3 + 4a0

3

)
t3 +

(
5
6 + 2a0

3

)
t4

+
(
1
3 + 4a0

15

)
t5 +

(
1
9 + 4a0

45

)
t6 +

(
2
63 + 8a0

315

)
t7 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 2t+ 2t2 + 4

3t
3 + 2

3t
4 + 4

15t
5 + 4

45t
6 + 8

315t
7
)
a0

+ t+ 2t2 + 5t3
3 + 5t4

6 + t5

3 + t6

9 + 2t7
63 +O

(
t8
)

At t = 0 the solution above becomes

y(0) = a0
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Therefore the solution in Eq(3) now can be written as

y(t) =
(
1 + 2t+ 2t2 + 4

3t
3 + 2

3t
4 + 4

15t
5 + 4

45t
6 + 8

315t
7
)
y(0)

+ t+ 2t2 + 5t3
3 + 5t4

6 + t5

3 + t6

9 + 2t7
63 +O

(
t8
)

Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = 1

Therefore the solution becomes

y(t) = 3t3 + 4t2 + 3t+ 1 + 3
2t

4 + 3
5t

5 + 1
5t

6 + 2
35t

7

Hence the solution can be written as

y(t) = 3t3 + 4t2 + 3t+ 1 + 3t4
2 + 3t5

5 + t6

5 + 2t7
35 +O

(
t8
)

which simplifies to

y(t) = 3t3 + 4t2 + 3t+ 1 + 3t4
2 + 3t5

5 + t6

5 + 2t7
35 +O

(
t8
)

Replacing t in the above with the original independent variable xs using t = x − 1
results in

y = 3(x− 1)3 + 4(x− 1)2 + 3x− 2 + 3(x− 1)4

2 + 3(x− 1)5

5 + (x− 1)6

5 + 2(x− 1)7

35 +O
(
(x− 1)8

)
Summary
The solution(s) found are the following

(1)
y = 3(x− 1)3 + 4(x− 1)2 + 3x− 2 + 3(x− 1)4

2

+ 3(x− 1)5

5 + (x− 1)6

5 + 2(x− 1)7

35 +O
(
(x− 1)8

)
Verification of solutions

y = 3(x− 1)3 + 4(x− 1)2 + 3x− 2 + 3(x− 1)4

2

+ 3(x− 1)5

5 + (x− 1)6

5 + 2(x− 1)7

35 +O
(
(x− 1)8

)
Verified OK.
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1.3.3 Maple step by step solution

Let’s solve
[y′ − 2y = x2, y(1) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2y + x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y = x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − 2y) = µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − 2y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

• Solve to find the integrating factor
µ(x) = e−2x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = e−2x

y =
∫
x2e−2xdx+c1

e−2x

• Evaluate the integrals on the rhs

y = −
(
2x2+2x+1

)
e−2x

4 +c1
e−2x

• Simplify
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y = c1e2x − x2

2 − x
2 −

1
4

• Use initial condition y(1) = 1
1 = c1e2 − 5

4

• Solve for c1
c1 = 9

4 e2

• Substitute c1 = 9
4e2 into general solution and simplify

y = 9 e2x−2

4 − x2

2 − x
2 −

1
4

• Solution to the IVP
y = 9 e2x−2

4 − x2

2 − x
2 −

1
4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=8;
dsolve([diff(y(x),x)-2*y(x)=x^2,y(1) = 1],y(x),type='series',x=1);� �

y(x) = 1 + 3(x− 1) + 4(x− 1)2 + 3(x− 1)3 + 3
2(x− 1)4

+ 3
5(x− 1)5 + 1

5(x− 1)6 + 2
35(x− 1)7 +O

(
(x− 1)8

)
3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 60� �
AsymptoticDSolveValue[{y'[x]-2*y[x]==x^2,{y[1]==1}},y[x],{x,1,7}]� �
y(x)→ 2

35(x−1)7+ 1
5(x−1)6+ 3

5(x−1)5+ 3
2(x−1)4+3(x−1)3+4(x−1)2+3(x−1)+1
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1.4 problem 2. direct method
1.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 27
1.4.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 30
1.4.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 38

Internal problem ID [6547]
Internal file name [OUTPUT/5795_Sunday_June_05_2022_03_54_54_PM_5663266/index.tex]

Book: A course in Ordinary Differential Equations. by Stephen A. Wirkus, Randall J. Swift.
CRC Press NY. 2015. 2nd Edition
Section: Chapter 8. Series Methods. section 8.2. The Power Series Method. Problems Page
603
Problem number: 2. direct method.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − 2y = x2

With initial conditions

[y(1) = 1]

1.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −2
q(x) = x2
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Hence the ode is

y′ − 2y = x2

The domain of p(x) = −2 is
{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = x2 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

1.4.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
(−2)dx

= e−2x

The ode becomes
d
dx(µy) = (µ)

(
x2)

d
dx
(
y e−2x) = (e−2x) (x2)

d
(
y e−2x) = (x2e−2x) dx

Integrating gives

y e−2x =
∫

x2e−2x dx

y e−2x = −(2x2 + 2x+ 1) e−2x

4 + c1

Dividing both sides by the integrating factor µ = e−2x results in

y = −e2x(2x2 + 2x+ 1) e−2x

4 + c1e2x

which simplifies to

y = c1e2x −
x2

2 − x

2 − 1
4
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1e2 −
5
4

c1 =
9 e−2

4

Substituting c1 found above in the general solution gives

y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

Summary
The solution(s) found are the following

(1)y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

Verified OK.
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1.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + 2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 2: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e2x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2xdy

Which results in

S = y e−2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2y e−2x

Sy = e−2x
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2e−2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2e−2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(2R2 + 2R + 1) e−2R

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−2xy = −(2x2 + 2x+ 1) e−2x

4 + c1

Which simplifies to

e−2xy = −(2x2 + 2x+ 1) e−2x

4 + c1

Which gives

y = −(2x2e−2x + 2x e−2x + e−2x − 4c1) e2x
4
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2 + 2y dS
dR

= R2e−2R

R = x

S = y e−2x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1e2 −
5
4

c1 =
9 e−2

4

Substituting c1 found above in the general solution gives

y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

Summary
The solution(s) found are the following

(1)y = 9 e2x−2

4 − x2

2 − x

2 − 1
4
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

Verified OK.

1.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

34



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
x2 + 2y

)
dx(

−x2 − 2y
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − 2y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 − 2y

)
= −2

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−2)− (0))
= −2
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2 dx

The result of integrating gives

µ = e−2x

= e−2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−2x(−x2 − 2y
)

= −e−2x(x2 + 2y
)

And

N = µN

= e−2x(1)
= e−2x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−2x(x2 + 2y
))

+
(
e−2x) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−2x(x2 + 2y

)
dx

(3)φ = (2x2 + 2x+ 4y + 1) e−2x

4 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−2x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−2x. Therefore equation (4) becomes

(5)e−2x = e−2x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2x2 + 2x+ 4y + 1) e−2x

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2x2 + 2x+ 4y + 1) e−2x

4

The solution becomes

y = −(2x2e−2x + 2x e−2x + e−2x − 4c1) e2x
4

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1e2 −
5
4

c1 =
9 e−2

4
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Substituting c1 found above in the general solution gives

y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

Summary
The solution(s) found are the following

(1)y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 9 e2x−2

4 − x2

2 − x

2 − 1
4

Verified OK.

1.4.5 Maple step by step solution

Let’s solve
[y′ − 2y = x2, y(1) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = 2y + x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y = x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − 2y) = µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − 2y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

• Solve to find the integrating factor
µ(x) = e−2x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = e−2x

y =
∫
x2e−2xdx+c1

e−2x

• Evaluate the integrals on the rhs

y = −
(
2x2+2x+1

)
e−2x

4 +c1
e−2x

• Simplify
y = c1e2x − x2

2 − x
2 −

1
4

• Use initial condition y(1) = 1
1 = c1e2 − 5

4

• Solve for c1
c1 = 9

4 e2

• Substitute c1 = 9
4e2 into general solution and simplify

y = 9 e2x−2

4 − x2

2 − x
2 −

1
4
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• Solution to the IVP
y = 9 e2x−2

4 − x2

2 − x
2 −

1
4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 22� �
dsolve([diff(y(x),x)-2*y(x)=x^2,y(1) = 1],y(x), singsol=all)� �

y(x) = −x2

2 − x

2 − 1
4 + 9 e2x−2

4

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 28� �
DSolve[{y'[x]-2*y[x]==x^2,{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
−2x2 − 2x+ 9e2x−2 − 1

)
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1.5 problem 3. series method
1.5.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 41

Internal problem ID [6548]
Internal file name [OUTPUT/5796_Sunday_June_05_2022_03_54_56_PM_99488822/index.tex]

Book: A course in Ordinary Differential Equations. by Stephen A. Wirkus, Randall J. Swift.
CRC Press NY. 2015. 2nd Edition
Section: Chapter 8. Series Methods. section 8.2. The Power Series Method. Problems Page
603
Problem number: 3. series method.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Taylor series method"

Maple gives the following as the ode type
[`y=_G(x,y') `]

y′ − y − x ey = 0

With initial conditions

[y(0) = 0]

With the expansion point for the power series method at x = 0.

1.5.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
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series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0

But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f
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Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f

Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)
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Hence

F0 = y + x ey

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

= e2yx2 + (xy + x+ 1) ey + y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

=
(
3yx2 + 2x2 + 3x

)
e2y + 2x3e3y +

(
xy2 + (2 + 2x) y + x+ 1

)
ey + y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

=
(
7y2x2 +

(
11x2 + 14x

)
y + 3x2 + 7x+ 3

)
e2y +

(
12yx3 + 7x3 + 12x2) e3y + 6x4e4y +

(
y3x+ (4x+ 3) y2 + (3x+ 5) y + x+ 1

)
ey + y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

=
(
15y3x2 +

(
43x2 + 45x

)
y2 +

(
28x2 + 61x+ 20

)
y + 4x2 + 12x+ 7

)
e2y +

(
50x3y2 +

(
69x3 + 100x2) y + 17x3 + 49x2 + 30x

)
e3y +

(
60yx4 + 33x4 + 60x3) e4y + 24x5e5y +

(
xy4 + (7x+ 4) y3 + (11x+ 15) y2 + (4x+ 9) y + x+ 1

)
ey + y

F5 =
dF4

dx

= ∂F4

∂x
+ ∂F4

∂y
F4

=
(
31y4x2 +

(
142x2 + 124x

)
y3 +

(
174x2 + 325x+ 85

)
y2 +

(
62x2 + 180x+ 95

)
y + 5x2 + 18x+ 12

)
e2y +

(
180x3y3 +

(
438x3 + 540x2) y2 + (262x3 + 666x2 + 330x

)
y + 36x3 + 136x2 + 132x+ 30

)
e3y +

(
390y2x4 +

(
499x4 + 780x3) y + 120x4 + 379x3 + 270x2) e4y + (360yx5 + 192x5 + 360x4) e5y + 120x6e6y +

(
y5x+ (11x+ 5) y4 + (32x+ 34) y3 + (26x+ 50) y2 + (5x+ 14) y + x+ 1

)
ey + y

F6 =
dF5

dx

= ∂F5

∂x
+ ∂F5

∂y
F5

=
(
63y5x2 +

(
424x2 + 315x

)
y4 +

(
850x2 + 1360x+ 294

)
y3 +

(
594x2 + 1510x+ 685

)
y2 +

(
129x2 + 454x+ 299

)
y + 6x2 + 25x+ 18

)
e2y +

(
602y4x3 +

(
2262x3 + 2408x2) y3 + (2436x3 + 5414x2 + 2240x

)
y2 +

(
842x3 + 2870x2 + 2418x+ 420

)
y + 72x3 + 324x2 + 391x+ 132

)
e3y +

(
2100y3x4 +

(
4630x4 + 6300x3) y2 + (2641x4 + 7370x3 + 4410x2) y + 370x4 + 1554x3 + 1863x2 + 630x

)
e4y +

(
3360y2x5 +

(
4096x5 + 6720x4) y + 979x5 + 3256x4 + 2520x3) e5y + 2520

(
xy + 11x

21 + 1
)
x5e6y + 720x7e7y +

(
xy6 + (16x+ 6) y5 + (76x+ 65) y4 + (122x+ 184) y3 + (57x+ 140) y2 + (6x+ 20) y + x+ 1

)
ey + y
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And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = 0 gives

F0 = 0
F1 = 1
F2 = 1
F3 = 4
F4 = 8
F5 = 43
F6 = 151

Substituting all the above in (6) and simplifying gives the solution as

y = x2

2 + x3

6 + x4

6 + x5

15 + 43x6

720 + 151x7

5040 +O
(
x8)

Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = y(0)

Therefore the solution becomes

y = 1
2x

2 + 1
6x

3 + 1
6x

4 + 1
15x

5 + 43
720x

6 + 151
5040x

7

Hence the solution can be written as

y = x2

2 + x3

6 + x4

6 + x5

15 + 43x6

720 + 151x7

5040 +O
(
x8)

which simplifies to

y = x2

2 + x3

6 + x4

6 + x5

15 + 43x6

720 + 151x7

5040 +O
(
x8)

Unable to also solve using normal power series since not linear ode. Not currently sup-

ported.

Summary
The solution(s) found are the following

(1)y = x2

2 + x3

6 + x4

6 + x5

15 + 43x6

720 + 151x7

5040 +O
(
x8)

Verification of solutions

y = x2

2 + x3

6 + x4

6 + x5

15 + 43x6

720 + 151x7

5040 +O
(
x8)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
Order:=8;
dsolve([diff(y(x),x)=y(x)+x*exp(y(x)),y(0) = 0],y(x),type='series',x=0);� �

y(x) = 1
2x

2 + 1
6x

3 + 1
6x

4 + 1
15x

5 + 43
720x

6 + 151
5040x

7 +O
(
x8)

3 Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{y'[x]==y[x]+x*Exp[y[x]],{y[0]==0}},y[x],{x,0,7}]� �

y(x) → 151x7

5040 + 43x6

720 + x5

15 + x4

6 + x3

6 + x2

2
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1.6 problem 3. direct method
Internal problem ID [6549]
Internal file name [OUTPUT/5797_Sunday_June_05_2022_03_54_59_PM_50844051/index.tex]

Book: A course in Ordinary Differential Equations. by Stephen A. Wirkus, Randall J. Swift.
CRC Press NY. 2015. 2nd Edition
Section: Chapter 8. Series Methods. section 8.2. The Power Series Method. Problems Page
603
Problem number: 3. direct method.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ − y − x ey = 0

With initial conditions

[y(0) = 0]

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve([diff(y(x),x)=y(x)+x*exp(y(x)),y(0) = 0],y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{y'[x]==y[x]+x*Exp[y[x]],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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