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1.1 problem 15 (x=0)
1.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 10

Internal problem ID [5533]
Internal file name [OUTPUT/4781_Sunday_June_05_2022_03_05_45_PM_99056137/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 15 (x=0).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 25

)
y′′ + 2xy′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (2)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2xy′ + y

x2 − 25

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 5x2y′ + 4xy + 75y′

(x2 − 25)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −16y′x3 − 17yx2 − 800xy′ − 175y
(x2 − 25)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (63x4 + 7050x2 + 24375) y′ + (84x3 + 2700x) y
(x2 − 25)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−294x5 − 62100x3 − 663750x) y′ + (−483x4 − 32250x2 − 91875) y
(x2 − 25)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 =
y(0)
25

F1 =
3y′(0)
25

F2 =
7y(0)
625

F3 =
39y′(0)
625

F4 =
147y(0)
15625
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

50x
2 + 7

15000x
4 + 49

3750000x
6
)
y(0) +

(
x+ 1

50x
3 + 13

25000x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 − 25
)
y′′ + 2xy′ + y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 − 25

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 2x

(
∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =2

(
−25n(n− 1) anxn−2)+( ∞∑

n=1

2nanxn

)
+
(

∞∑
n=0

anx
n

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−25n(n− 1) anxn−2) = ∞∑

n=0

(−25(n+ 2) an+2(n+ 1)xn)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =0

(−25(n+ 2) an+2(n+ 1)xn)

+
(

∞∑
n=1

2nanxn

)
+
(

∞∑
n=0

anx
n

)
= 0

n = 0 gives
−50a2 + a0 = 0

a2 =
a0
50

n = 1 gives
−150a3 + 3a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a1
50

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− 25(n+ 2) an+2(n+ 1) + 2nan + an = 0

Solving for an+2, gives

(5)an+2 =
an(n2 + n+ 1)

25 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

7a2 − 300a4 = 0

Which after substituting the earlier terms found becomes

a4 =
7a0

15000
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For n = 3 the recurrence equation gives

13a3 − 500a5 = 0

Which after substituting the earlier terms found becomes

a5 =
13a1
25000

For n = 4 the recurrence equation gives

21a4 − 750a6 = 0

Which after substituting the earlier terms found becomes

a6 =
49a0

3750000

For n = 5 the recurrence equation gives

31a5 − 1050a7 = 0

Which after substituting the earlier terms found becomes

a7 =
403a1

26250000

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
50a0x

2 + 1
50a1x

3 + 7
15000a0x

4 + 13
25000a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

50x
2 + 7

15000x
4
)
a0 +

(
x+ 1

50x
3 + 13

25000x
5
)
a1 +O

(
x6)
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At x = 0 the solution above becomes

y =
(
1 + 1

50x
2 + 7

15000x
4
)
c1 +

(
x+ 1

50x
3 + 13

25000x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

y =
(
1 + 1

50x
2 + 7

15000x
4 + 49

3750000x
6
)
y(0) +

(
x+ 1

50x
3 + 13

25000x
5
)
y′(0) +O

(
x6)
(1)

(2)y =
(
1 + 1

50x
2 + 7

15000x
4
)
c1 +

(
x+ 1

50x
3 + 13

25000x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

50x
2 + 7

15000x
4 + 49

3750000x
6
)
y(0) +

(
x+ 1

50x
3 + 13

25000x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

50x
2 + 7

15000x
4
)
c1 +

(
x+ 1

50x
3 + 13

25000x
5
)
c2 +O

(
x6)

Verified OK.

1.1.1 Maple step by step solution

Let’s solve
(x2 − 25) y′′ + 2xy′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2xy′

x2−25 −
y

x2−25

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2xy′

x2−25 +
y

x2−25 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−25 , P3(x) = 1

x2−25

]
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◦ (5 + x) · P2(x) is analytic at x = −5

((5 + x) · P2(x))
∣∣∣∣
x=−5

= 1

◦ (5 + x)2 · P3(x) is analytic at x = −5(
(5 + x)2 · P3(x)

) ∣∣∣∣
x=−5

= 0

◦ x = −5is a regular singular point
Check to see if x0 is a regular singular point
x0 = −5

• Multiply by denominators
(x2 − 25) y′′ + 2xy′ + y = 0

• Change variables using x = u− 5 so that the regular singular point is at u = 0

(u2 − 10u)
(

d2

du2y(u)
)
+ (2u− 10)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−10a0r2u−1+r +
(

∞∑
k=0

(
−10ak+1(k + 1 + r)2 + ak(k2 + 2kr + r2 + k + r + 1)

)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
−10r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−10ak+1(k + 1)2 + ak(k2 + k + 1) = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak
(
k2+k+1

)
10(k+1)2

• Recursion relation for r = 0

ak+1 = ak
(
k2+k+1

)
10(k+1)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

(
k2+k+1

)
10(k+1)2

]
• Revert the change of variables u = 5 + x[

y =
∞∑
k=0

ak(5 + x)k , ak+1 = ak
(
k2+k+1

)
10(k+1)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((x^2-25)*diff(y(x),x$2)+2*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

50x
2 + 7

15000x
4
)
y(0) +

(
x+ 1

50x
3 + 13

25000x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[(x^2-25)*y''[x]+2*x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
13x5

25000 + x3

50 + x

)
+ c1

(
7x4

15000 + x2

50 + 1
)
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1.2 problem 15 (x=1)
1.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 22

Internal problem ID [5534]
Internal file name [OUTPUT/4782_Sunday_June_05_2022_03_05_46_PM_87687443/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 15 (x=1).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 25

)
y′′ + 2xy′ + y = 0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
(t+ 1)2 − 25

)( d2

dt2
y(t)

)
+ 2(t+ 1)

(
d

dt
y(t)

)
+ y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (4)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2t
(

d
dt
y(t)

)
+ 2 d

dt
y(t) + y(t)

t2 + 2t− 24

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
5(t2 + 2t+ 16)

(
d
dt
y(t)

)
+ 4(t+ 1) y(t)

(t2 + 2t− 24)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−16t3 − 48t2 − 848t− 816)

(
d
dt
y(t)

)
− 17y(t)

(
t2 + 2t+ 192

17

)
(t2 + 2t− 24)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(63t4 + 252t3 + 7428t2 + 14352t+ 31488)

(
d
dt
y(t)

)
+ 84(t+ 1) y(t)

(
t2 + 2t+ 232

7

)
(t2 + 2t− 24)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−294t5 − 1470t4 − 65040t3 − 189240t2 − 851520t− 726144)

(
d
dt
y(t)

)
− 483y(t)

(
t4 + 4t3 + 11716

161 t2 + 22144
161 t+ 41536

161

)
(t2 + 2t− 24)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
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y′(0) = y′(0) gives

F0 =
y(0)
24 + y′(0)

12

F1 =
y(0)
144 + 5y′(0)

36

F2 =
y(0)
72 + 17y′(0)

288

F3 =
29y(0)
3456 + 41y′(0)

432

F4 =
649y(0)
41472 + 1891y′(0)

20736

Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 1

48t
2 + 1

864t
3 + 1

1728t
4 + 29

414720t
5 + 649

29859840t
6
)
y(0)

+
(
t+ 1

24t
2 + 5

216t
3 + 17

6912t
4 + 41

51840t
5 + 1891

14929920t
6
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
t2 + 2t− 24

)
+ (2t+ 2)

(
d

dt
y(t)

)
+ y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
t2 + 2t− 24

)
+ (2t+ 2)

(
∞∑
n=1

nant
n−1

)
+
(

∞∑
n=0

ant
n

)
= 0

(1)
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Which simplifies to

(2)

(
∞∑
n=2

tnann(n− 1)
)

+
(

∞∑
n=2

2n tn−1an(n− 1)
)

+
∞∑

n =2

(
−24n(n− 1) antn−2)

+
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=1

2nantn−1

)
+
(

∞∑
n=0

ant
n

)
= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n tn−1an(n− 1) =
∞∑
n=1

2(n+ 1) an+1n tn

∞∑
n =2

(
−24n(n− 1) antn−2) = ∞∑

n=0

(−24(n+ 2) an+2(n+ 1) tn)

∞∑
n =1

2nantn−1 =
∞∑
n=0

2(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

tnann(n− 1)
)

+
(

∞∑
n=1

2(n+ 1) an+1n tn

)

+
∞∑

n =0

(−24(n+ 2) an+2(n+ 1) tn) +
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=0

2(n+ 1) an+1t
n

)
+
(

∞∑
n=0

ant
n

)
= 0

n = 0 gives
−48a2 + 2a1 + a0 = 0

a2 =
a0
48 + a1

24
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n = 1 gives
8a2 − 144a3 + 3a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
864 + 5a1

216

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)+2(n+1) an+1n− 24(n+2) an+2(n+1)+2nan+2(n+1) an+1+an = 0

Solving for an+2, gives

(5)

an+2 =
n2an + 2n2an+1 + nan + 4nan+1 + an + 2an+1

24 (n+ 2) (n+ 1)

= (n2 + n+ 1) an
24 (n+ 2) (n+ 1) +

(2n2 + 4n+ 2) an+1

24 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

7a2 + 18a3 − 288a4 = 0

Which after substituting the earlier terms found becomes

a4 =
a0

1728 + 17a1
6912

For n = 3 the recurrence equation gives

13a3 + 32a4 − 480a5 = 0

Which after substituting the earlier terms found becomes

a5 =
29a0

414720 + 41a1
51840

For n = 4 the recurrence equation gives

21a4 + 50a5 − 720a6 = 0
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Which after substituting the earlier terms found becomes

a6 =
649a0

29859840 + 1891a1
14929920

For n = 5 the recurrence equation gives

31a5 + 72a6 − 1008a7 = 0

Which after substituting the earlier terms found becomes

a7 =
43a0

11612160 + 155a1
4644864

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(a0
48 + a1

24

)
t2 +

(
a0
864 + 5a1

216

)
t3

+
(

a0
1728 + 17a1

6912

)
t4 +

(
29a0

414720 + 41a1
51840

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 1

48t
2 + 1

864t
3 + 1

1728t
4 + 29

414720t
5
)
a0

+
(
t+ 1

24t
2 + 5

216t
3 + 17

6912t
4 + 41

51840t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 1

48t
2 + 1

864t
3 + 1

1728t
4 + 29

414720t
5
)
c1

+
(
t+ 1

24t
2 + 5

216t
3 + 17

6912t
4 + 41

51840t
5
)
c2 +O

(
t6
)
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Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =
(
1 + (x− 1)2

48 + (x− 1)3

864 + (x− 1)4

1728 + 29(x− 1)5

414720 + 649(x− 1)6

29859840

)
y(1)

+
(
x− 1+ (x− 1)2

24 + 5(x− 1)3

216 + 17(x− 1)4

6912 + 41(x− 1)5

51840 + 1891(x− 1)6

14929920

)
y′(1)

+O
(
(x− 1)6

)
Summary
The solution(s) found are the following

(1)

y =
(
1 + (x− 1)2

48 + (x− 1)3

864 + (x− 1)4

1728 + 29(x− 1)5

414720 + 649(x− 1)6

29859840

)
y(1)

+
(
x− 1 + (x− 1)2

24 + 5(x− 1)3

216 + 17(x− 1)4

6912 + 41(x− 1)5

51840

+ 1891(x− 1)6

14929920

)
y′(1) +O

(
(x− 1)6

)
Verification of solutions

y =
(
1 + (x− 1)2

48 + (x− 1)3

864 + (x− 1)4

1728 + 29(x− 1)5

414720 + 649(x− 1)6

29859840

)
y(1)

+
(
x− 1+ (x− 1)2

24 + 5(x− 1)3

216 + 17(x− 1)4

6912 + 41(x− 1)5

51840 + 1891(x− 1)6

14929920

)
y′(1)

+O
(
(x− 1)6

)
Verified OK.

1.2.1 Maple step by step solution

Let’s solve
(x2 − 25) y′′ + 2xy′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − 2xy′
x2−25 −

y
x2−25

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2xy′

x2−25 +
y

x2−25 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−25 , P3(x) = 1

x2−25

]
◦ (5 + x) · P2(x) is analytic at x = −5

((5 + x) · P2(x))
∣∣∣∣
x=−5

= 1

◦ (5 + x)2 · P3(x) is analytic at x = −5(
(5 + x)2 · P3(x)

) ∣∣∣∣
x=−5

= 0

◦ x = −5is a regular singular point
Check to see if x0 is a regular singular point
x0 = −5

• Multiply by denominators
(x2 − 25) y′′ + 2xy′ + y = 0

• Change variables using x = u− 5 so that the regular singular point is at u = 0

(u2 − 10u)
(

d2

du2y(u)
)
+ (2u− 10)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−10a0r2u−1+r +
(

∞∑
k=0

(
−10ak+1(k + 1 + r)2 + ak(k2 + 2kr + r2 + k + r + 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−10r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−10ak+1(k + 1)2 + ak(k2 + k + 1) = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak
(
k2+k+1

)
10(k+1)2

• Recursion relation for r = 0

ak+1 = ak
(
k2+k+1

)
10(k+1)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

(
k2+k+1

)
10(k+1)2

]
• Revert the change of variables u = 5 + x[

y =
∞∑
k=0

ak(5 + x)k , ak+1 = ak
(
k2+k+1

)
10(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve((x^2-25)*diff(y(x),x$2)+2*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=1);� �
y(x) =

(
1 + (x− 1)2

48 + (x− 1)3

864 + (x− 1)4

1728 + 29(x− 1)5

414720

)
y(1)

+
(
x− 1+ (x− 1)2

24 + 5(x− 1)3

216 + 17(x− 1)4

6912 + 41(x− 1)5

51840

)
D(y) (1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 87� �
AsymptoticDSolveValue[(x^2-25)*y''[x]+2*x*y'[x]+y[x]==0,y[x],{x,1,5}]� �

y(x) → c1

(
29(x− 1)5
414720 + (x− 1)4

1728 + 1
864(x− 1)3 + 1

48(x− 1)2 + 1
)

+ c2

(
41(x− 1)5
51840 + 17(x− 1)4

6912 + 5
216(x− 1)3 + 1

24(x− 1)2 + x− 1
)
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1.3 problem 16 (x=0)
Internal problem ID [5535]
Internal file name [OUTPUT/4783_Sunday_June_05_2022_03_05_47_PM_36303290/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 16 (x=0).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (7)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (8)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − xy′ − 4y
x2 − 2x+ 10

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (6x2 − 8x+ 30) y′ + (−12x+ 8) y
(x2 − 2x+ 10)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −
30
((
x2 − 4

3x+ 5
)
y′ − 2

(
x− 2

3

)
y
) (

x− 4
5

)
(x2 − 2x+ 10)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
180
(
x2 − 8

5x− 13
15

) ((
x2 − 4

3x+ 5
)
y′ − 2

(
x− 2

3

)
y
)

(x2 − 2x+ 10)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −
1260

(
x3 − 12

5 x
2 − 13

5 x+ 344
105

) ((
x2 − 4

3x+ 5
)
y′ − 2

(
x− 2

3

)
y
)

(x2 − 2x+ 10)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 =
2y(0)
5

F1 =
2y(0)
25 + 3y′(0)

10

F2 =
4y(0)
125 + 3y′(0)

25

F3 = −13y(0)
625 − 39y′(0)

500

F4 = −172y(0)
3125 − 129y′(0)

625

29



Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

5x
2 + 1

75x
3 + 1

750x
4 − 13

75000x
5 − 43

562500x
6
)
y(0)

+
(
x+ 1

20x
3 + 1

200x
4 − 13

20000x
5 − 43

150000x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 − 2x+ 10
)
y′′ + xy′ − 4y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 − 2x+ 10

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ x

(
∞∑
n=1

nanx
n−1

)
− 4
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =2

(
−2nxn−1an(n− 1)

)
+
(

∞∑
n=2

10n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(−4anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

(
−2nxn−1an(n− 1)

)
=

∞∑
n=1

(−2(n+ 1) an+1nxn)

∞∑
n =2

10n(n− 1) anxn−2 =
∞∑
n=0

10(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =1

(−2(n+ 1) an+1nxn)

+
(

∞∑
n=0

10(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(−4anxn) = 0

n = 0 gives
20a2 − 4a0 = 0

a2 =
a0
5

n = 1 gives
−4a2 + 60a3 − 3a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
75 + a1

20

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− 2(n+ 1) an+1n+ 10(n+ 2) an+2(n+ 1) + nan − 4an = 0

Solving for an+2, gives

(5)

an+2 = −n2an − 2n2an+1 − 2nan+1 − 4an
10 (n+ 2) (n+ 1)

= − (n2 − 4) an
10 (n+ 2) (n+ 1) −

(−2n2 − 2n) an+1

10 (n+ 2) (n+ 1)
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For n = 2 the recurrence equation gives

−12a3 + 120a4 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
750 + a1

200

For n = 3 the recurrence equation gives

5a3 − 24a4 + 200a5 = 0

Which after substituting the earlier terms found becomes

a5 = − 13a0
75000 − 13a1

20000

For n = 4 the recurrence equation gives

12a4 − 40a5 + 300a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 43a0
562500 − 43a1

150000

For n = 5 the recurrence equation gives

21a5 − 60a6 + 420a7 = 0

Which after substituting the earlier terms found becomes

a7 = − 71a0
31500000 − 71a1

8400000

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a0x
2

5 +
(a0
75 + a1

20

)
x3 +

( a0
750 + a1

200

)
x4 +

(
− 13a0
75000 − 13a1

20000

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

5x
2 + 1

75x
3 + 1

750x
4 − 13

75000x
5
)
a0

+
(
x+ 1

20x
3 + 1

200x
4 − 13

20000x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y=
(
1+ 1

5x
2+ 1

75x
3+ 1

750x
4− 13

75000x
5
)
c1+

(
x+ 1

20x
3+ 1

200x
4− 13

20000x
5
)
c2+O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + 1

5x
2 + 1

75x
3 + 1

750x
4 − 13

75000x
5 − 43

562500x
6
)
y(0)

+
(
x+ 1

20x
3 + 1

200x
4 − 13

20000x
5 − 43

150000x
6
)
y′(0) +O

(
x6)

(2)
y =

(
1 + 1

5x
2 + 1

75x
3 + 1

750x
4 − 13

75000x
5
)
c1

+
(
x+ 1

20x
3 + 1

200x
4 − 13

20000x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

5x
2 + 1

75x
3 + 1

750x
4 − 13

75000x
5 − 43

562500x
6
)
y(0)

+
(
x+ 1

20x
3 + 1

200x
4 − 13

20000x
5 − 43

150000x
6
)
y′(0) +O

(
x6)

Verified OK.

y=
(
1+ 1

5x
2+ 1

75x
3+ 1

750x
4− 13

75000x
5
)
c1+

(
x+ 1

20x
3+ 1

200x
4− 13

20000x
5
)
c2+O

(
x6)

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve((x^2-2*x+10)*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

5x
2 + 1

75x
3 + 1

750x
4 − 13

75000x
5
)
y(0)

+
(
x+ 1

20x
3 + 1

200x
4 − 13

20000x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[(x^2-2*x+10)*y''[x]+x*y'[x]-4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
− 13x5

20000 + x4

200 + x3

20 + x

)
+ c1

(
− 13x5

75000 + x4

750 + x3

75 + x2

5 + 1
)

34



1.4 problem 16 (x=1)
Internal problem ID [5536]
Internal file name [OUTPUT/4784_Sunday_June_05_2022_03_05_49_PM_50528159/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 16 (x=1).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
(t+ 1)2 − 2t+ 8

)( d2

dt2
y(t)

)
+ (t+ 1)

(
d

dt
y(t)

)
− 4y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (10)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (11)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
t
(

d
dt
y(t)

)
+ d

dt
y(t)− 4y(t)

t2 + 9

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(6t2 + 4t+ 28)

(
d
dt
y(t)

)
+ (−12t− 4) y(t)

(t2 + 9)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

= −
30
((
t2 + 2

3t+
14
3

) (
d
dt
y(t)

)
− 2y(t)

(
t+ 1

3

)) (1
5 + t

)
(t2 + 9)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
180
((
t2 + 2

3t+
14
3

) (
d
dt
y(t)

)
− 2y(t)

(
t+ 1

3

)) (
t2 + 2

5t−
22
15

)
(t2 + 9)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

= −
1260

((
t2 + 2

3t+
14
3

) (
d
dt
y(t)

)
− 2y(t)

(
t+ 1

3

)) (
t3 + 3

5t
2 − 22

5 t−
76
105

)
(t2 + 9)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
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y′(0) = y′(0) gives

F0 =
4y(0)
9 − y′(0)

9

F1 = −4y(0)
81 + 28y′(0)

81

F2 =
4y(0)
729 − 28y′(0)

729

F3 =
176y(0)
6561 − 1232y′(0)

6561

F4 = −608y(0)
59049 + 4256y′(0)

59049

Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 2

9t
2 − 2

243t
3 + 1

4374t
4 + 22

98415t
5 − 38

2657205t
6
)
y(0)

+
(
t− 1

18t
2 + 14

243t
3 − 7

4374t
4 − 154

98415t
5 + 266

2657205t
6
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
t2 + 9

)
+ (t+ 1)

(
d

dt
y(t)

)
− 4y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
t2 + 9

)
+ (t+ 1)

(
∞∑
n=1

nant
n−1

)
− 4
(

∞∑
n=0

ant
n

)
= 0 (1)
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Which simplifies to

(2)

(
∞∑
n=2

tnann(n− 1)
)

+
(

∞∑
n=2

9n(n− 1) antn−2

)

+
(

∞∑
n=1

nant
n

)
+
(

∞∑
n=1

nant
n−1

)
+

∞∑
n =0

(−4antn) = 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

9n(n− 1) antn−2 =
∞∑
n=0

9(n+ 2) an+2(n+ 1) tn

∞∑
n =1

nant
n−1 =

∞∑
n=0

(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

tnann(n− 1)
)

+
(

∞∑
n=0

9(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=1

nant
n

)
+
(

∞∑
n=0

(n+ 1) an+1t
n

)
+

∞∑
n =0

(−4antn) = 0

n = 0 gives
18a2 + a1 − 4a0 = 0

a2 =
2a0
9 − a1

18

n = 1 gives
54a3 − 3a1 + 2a2 = 0

Which after substituting earlier equations, simplifies to

a3 = −2a0
243 + 14a1

243
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For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + 9(n+ 2) an+2(n+ 1) + nan + (n+ 1) an+1 − 4an = 0

Solving for an+2, gives

(5)

an+2 = −n2an + nan+1 − 4an + an+1

9 (n+ 2) (n+ 1)

= − (n2 − 4) an
9 (n+ 2) (n+ 1) −

an+1

9 (n+ 2)

For n = 2 the recurrence equation gives

108a4 + 3a3 = 0

Which after substituting the earlier terms found becomes

a4 =
a0

4374 − 7a1
4374

For n = 3 the recurrence equation gives

5a3 + 180a5 + 4a4 = 0

Which after substituting the earlier terms found becomes

a5 =
22a0
98415 − 154a1

98415

For n = 4 the recurrence equation gives

12a4 + 270a6 + 5a5 = 0

Which after substituting the earlier terms found becomes

a6 = − 38a0
2657205 + 266a1

2657205

For n = 5 the recurrence equation gives

21a5 + 378a7 + 6a6 = 0
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Which after substituting the earlier terms found becomes

a7 = − 2041a0
167403915 + 2041a1

23914845

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
2a0
9 − a1

18

)
t2 +

(
−2a0
243 + 14a1

243

)
t3

+
(

a0
4374 − 7a1

4374

)
t4 +

(
22a0
98415 − 154a1

98415

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 2

9t
2 − 2

243t
3 + 1

4374t
4 + 22

98415t
5
)
a0

+
(
t− 1

18t
2 + 14

243t
3 − 7

4374t
4 − 154

98415t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 2

9t
2 − 2

243t
3 + 1

4374t
4 + 22

98415t
5
)
c1

+
(
t− 1

18t
2 + 14

243t
3 − 7

4374t
4 − 154

98415t
5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =
(
1 + 2(x− 1)2

9 − 2(x− 1)3

243 + (x− 1)4

4374 + 22(x− 1)5

98415 − 38(x− 1)6

2657205

)
y(1)

+
(
x− 1− (x− 1)2

18 + 14(x− 1)3

243 − 7(x− 1)4

4374 − 154(x− 1)5

98415 + 266(x− 1)6

2657205

)
y′(1)

+O
(
(x− 1)6

)
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Summary
The solution(s) found are the following

(1)

y =
(
1 + 2(x− 1)2

9 − 2(x− 1)3

243 + (x− 1)4

4374 + 22(x− 1)5

98415 − 38(x− 1)6

2657205

)
y(1)

+
(
x− 1− (x− 1)2

18 + 14(x− 1)3

243 − 7(x− 1)4

4374 − 154(x− 1)5

98415

+ 266(x− 1)6

2657205

)
y′(1) +O

(
(x− 1)6

)
Verification of solutions

y =
(
1 + 2(x− 1)2

9 − 2(x− 1)3

243 + (x− 1)4

4374 + 22(x− 1)5

98415 − 38(x− 1)6

2657205

)
y(1)

+
(
x− 1− (x− 1)2

18 + 14(x− 1)3

243 − 7(x− 1)4

4374 − 154(x− 1)5

98415 + 266(x− 1)6

2657205

)
y′(1)

+O
(
(x− 1)6

)
Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve((x^2-2*x+10)*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=1);� �
y(x) =

(
1 + 2(x− 1)2

9 − 2(x− 1)3

243 + (x− 1)4

4374 + 22(x− 1)5

98415

)
y(1)

+
(
x−1− (x− 1)2

18 + 14(x− 1)3

243 − 7(x− 1)4

4374 − 154(x− 1)5

98415

)
D(y) (1)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 87� �
AsymptoticDSolveValue[(x^2-2*x+10)*y''[x]+x*y'[x]-4*y[x]==0,y[x],{x,1,5}]� �

y(x) → c1

(
22(x− 1)5
98415 + (x− 1)4

4374 − 2
243(x− 1)3 + 2

9(x− 1)2 + 1
)

+ c2

(
−154(x− 1)5

98415 − 7(x− 1)4
4374 + 14

243(x− 1)3 − 1
18(x− 1)2 + x− 1

)
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1.5 problem 17
1.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 52

Internal problem ID [5537]
Internal file name [OUTPUT/4785_Sunday_June_05_2022_03_05_50_PM_79571363/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_or-
der_bessel_ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ − xy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (13)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (14)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= xy′ + y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= yx2 + 2y′

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= x(xy′ + 4y)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= yx3 + 6xy′ + 4y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = y(0)
F2 = 2y′(0)
F3 = 0
F4 = 4y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

6x
3 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = x

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =0

(
−x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+

∞∑
n =1

(−an−1x
n) = 0

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n)− an−1 = 0
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Solving for an+2, gives

(5)an+2 =
an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 − a0 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6

For n = 2 the recurrence equation gives

12a4 − a1 = 0

Which after substituting the earlier terms found becomes

a4 =
a1
12

For n = 3 the recurrence equation gives

20a5 − a2 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

30a6 − a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
180

For n = 5 the recurrence equation gives

42a7 − a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
a1
504

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
6a0x

3 + 1
12a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x3

6

)
a0 +

(
x+ 1

12x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x3

6

)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 1

6x
3 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4
)
y′(0) +O

(
x6)

(2)y =
(
1 + x3

6

)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

6x
3 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + x3

6

)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Verified OK.
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1.5.1 Maple step by step solution

Let’s solve
y′′ = xy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−1 = 0

• Shift index using k− >k + 1
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(
(k + 1)2 + 3k + 5

)
ak+3 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = ak

k2+5k+6 , 2a2 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)-x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + x3

6

)
y(0) +

(
x+ 1

12x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4

12 + x

)
+ c1

(
x3

6 + 1
)
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1.6 problem 18
1.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 60

Internal problem ID [5538]
Internal file name [OUTPUT/4786_Sunday_June_05_2022_03_05_51_PM_99063011/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + yx2 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (16)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (17)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −yx2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −x(xy′ + 2y)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= yx4 − 4xy′ − 2y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′x4 + 8yx3 − 6y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 12y′x3 − x2y
(
x4 − 30

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = −2y(0)
F3 = −6y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=0

anx
n

)
x2 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

xn+2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

xn+2an =
∞∑
n=2

an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=2

an−2x
n

)
= 0

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an−2 = 0

58



Solving for an+2, gives

(5)an+2 = − an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + a0 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
12

For n = 3 the recurrence equation gives

20a5 + a1 = 0

Which after substituting the earlier terms found becomes

a5 = −a1
20

For n = 4 the recurrence equation gives

30a6 + a2 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

42a7 + a3 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
12a0x

4 − 1
20a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x4

12

)
a0 +

(
x− 1

20x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Verified OK.

1.6.1 Maple step by step solution

Let’s solve
y′′ = −yx2

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ + yx2 = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3x+ 2a2 +
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = − ak

k2+7k+12 , a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)+x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]+x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x5

20

)
+ c1

(
1− x4

12

)
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1.7 problem 19
1.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 70

Internal problem ID [5539]
Internal file name [OUTPUT/4787_Sunday_June_05_2022_03_05_52_PM_25384544/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Lienard]

y′′ − 2xy′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (19)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (20)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = 2xy′ − y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4x2y′ − 2xy + y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 8y′x3 − 4yx2 + 8xy′ − 3y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
16x4 + 36x2 + 5

)
y′ − 8yx

(
x2 + 2

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
32x5 + 128x3 + 66x

)
y′ +

(
−16x4 − 60x2 − 21

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = y′(0)
F2 = −3y(0)
F3 = 5y′(0)
F4 = −21y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 − 1

8x
4 − 7

240x
6
)
y(0) +

(
x+ 1

6x
3 + 1

24x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = 2x
(

∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

anx
n

)
= 0

n = 0 gives
2a2 + a0 = 0

a2 = −a0
2
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 2nan + an = 0

Solving for an+2, gives

(5)an+2 =
an(2n− 1)

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 − a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
6

For n = 2 the recurrence equation gives

12a4 − 3a2 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
8

For n = 3 the recurrence equation gives

20a5 − 5a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
24

For n = 4 the recurrence equation gives

30a6 − 7a4 = 0

Which after substituting the earlier terms found becomes

a6 = −7a0
240
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For n = 5 the recurrence equation gives

42a7 − 9a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
112

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 + 1
6a1x

3 − 1
8a0x

4 + 1
24a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 − 1

8x
4
)
a0 +

(
x+ 1

6x
3 + 1

24x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 − 1

8x
4
)
c1 +

(
x+ 1

6x
3 + 1

24x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 − 1

8x
4 − 7

240x
6
)
y(0) +

(
x+ 1

6x
3 + 1

24x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 − 1

8x
4
)
c1 +

(
x+ 1

6x
3 + 1

24x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

2x
2 − 1

8x
4 − 7

240x
6
)
y(0) +

(
x+ 1

6x
3 + 1

24x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 − 1

8x
4
)
c1 +

(
x+ 1

6x
3 + 1

24x
5
)
c2 +O

(
x6)

Verified OK.
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1.7.1 Maple step by step solution

Let’s solve
y′′ = 2xy′ − y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2xy′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(2k − 1))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 2akk + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = ak(2k−1)

k2+3k+2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)-2*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 − 1

8x
4
)
y(0) +

(
x+ 1

6x
3 + 1

24x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]-2*x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

24 + x3

6 + x

)
+ c1

(
−x4

8 − x2

2 + 1
)
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1.8 problem 20
1.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 79

Internal problem ID [5540]
Internal file name [OUTPUT/4788_Sunday_June_05_2022_03_05_53_PM_82539984/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Hermite]

y′′ − xy′ + 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (22)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (23)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = xy′ − 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x2y′ − 2xy − y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
x3 − x

)
y′ − 2yx2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′x4 − 2yx3 − 2xy − y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= x
(
x2 + 3

) ((
x2 − 1

)
y′ − 2xy

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
F1 = −y′(0)
F2 = 0
F3 = −y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
−x2 + 1

)
y(0) +

(
x− 1

6x
3 − 1

120x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = x

(
∞∑
n=1

nanx
n−1

)
− 2
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−nxnan) +
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−nxnan) +
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + 2a0 = 0

a2 = −a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− nan + 2an = 0

Solving for an+2, gives

(5)an+2 =
an(n− 2)

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
6

For n = 2 the recurrence equation gives

12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 0

For n = 3 the recurrence equation gives

20a5 − a3 = 0

Which after substituting the earlier terms found becomes

a5 = − a1
120

For n = 4 the recurrence equation gives

30a6 − 2a4 = 0

Which after substituting the earlier terms found becomes

a6 = 0
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For n = 5 the recurrence equation gives

42a7 − 3a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a1
1680

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 1

6a1x
3 − 1

120a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
−x2 + 1

)
a0 +

(
x− 1

6x
3 − 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
−x2 + 1

)
c1 +

(
x− 1

6x
3 − 1

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
−x2 + 1

)
y(0) +

(
x− 1

6x
3 − 1

120x
5
)
y′(0) +O

(
x6)

(2)y =
(
−x2 + 1

)
c1 +

(
x− 1

6x
3 − 1

120x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
−x2 + 1

)
y(0) +

(
x− 1

6x
3 − 1

120x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
−x2 + 1

)
c1 +

(
x− 1

6x
3 − 1

120x
5
)
c2 +O

(
x6)

Verified OK.
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1.8.1 Maple step by step solution

Let’s solve
y′′ = xy′ − 2y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k − 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak(k − 2) = 0

• Recursion relation; series terminates at k = 2
ak+2 = ak(k−2)

k2+3k+2

• Apply recursion relation for k = 0
a2 = −a0

• Terminating series solution of the ODE. Use reduction of order to find the second linearly independent solution
y = A2x

2 + A1x− a0
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
Order:=6;
dsolve(diff(y(x),x$2)-x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
−x2 + 1

)
y(0) +

(
x− 1

6x
3 − 1

120x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 33� �
AsymptoticDSolveValue[y''[x]-x*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
1− x2)+ c2

(
− x5

120 − x3

6 + x

)
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1.9 problem 21
1.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 88

Internal problem ID [5541]
Internal file name [OUTPUT/4789_Sunday_June_05_2022_03_05_54_PM_2370240/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + x2y′ + xy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (25)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (26)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

82



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −x2y′ − xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(
x4 − 3x

)
y′ + y

(
x3 − 1

)
F2 =

dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−x6 + 8x3 − 4

)
y′ − yx2(x3 − 6

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= x
((
x7 − 15x4 + 34x

)
y′ + y

(
x6 − 13x3 + 16

))
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−x10 + 24x7 − 122x4 + 84x

)
y′ − y

(
x9 − 22x6 + 86x3 − 16

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −y(0)
F2 = −4y′(0)
F3 = 0
F4 = 16y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
3 + 1

45x
6
)
y(0) +

(
x− 1

6x
4
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −x2

(
∞∑
n=1

nanx
n−1

)
− x

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nx1+nan

)
+
(

∞∑
n=0

x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

nx1+nan =
∞∑
n=2

(n− 1) an−1x
n

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=2

(n− 1) an−1x
n

)
+
(

∞∑
n=1

an−1x
n

)
= 0
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n = 1 gives
6a3 + a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + (n− 1) an−1 + an−1 = 0

Solving for an+2, gives

(5)an+2 = − an−1n

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

12a4 + 2a1 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
6

For n = 3 the recurrence equation gives

20a5 + 3a2 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

30a6 + 4a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
45
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For n = 5 the recurrence equation gives

42a7 + 5a4 = 0

Which after substituting the earlier terms found becomes

a7 =
5a1
252

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
6a0x

3 − 1
6a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x3

6

)
a0 +

(
x− 1

6x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x3

6

)
c1 +

(
x− 1

6x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

6x
3 + 1

45x
6
)
y(0) +

(
x− 1

6x
4
)
y′(0) +O

(
x6)

(2)y =
(
1− x3

6

)
c1 +

(
x− 1

6x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

6x
3 + 1

45x
6
)
y(0) +

(
x− 1

6x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x3

6

)
c1 +

(
x− 1

6x
4
)
c2 +O

(
x6)

Verified OK.
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1.9.1 Maple step by step solution

Let’s solve
y′′ = −x2y′ − xy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + x2y′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 · y′ =
∞∑
k=1

ak−1(k − 1)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak−1k)xk

)
= 0
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• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak−1k = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 + ak(k + 1) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = − ak(k+1)

k2+5k+6 , 2a2 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)+x^2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x3

6

)
y(0) +

(
x− 1

6x
4
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]+x^2*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x4

6

)
+ c1

(
1− x3

6

)
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1.10 problem 22
1.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 98

Internal problem ID [5542]
Internal file name [OUTPUT/4790_Sunday_June_05_2022_03_05_55_PM_93081706/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′ + 2xy′ + 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (28)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (29)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2xy′ − 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4x2y′ + 4xy − 4y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −8y′x3 − 8yx2 + 20xy′ + 12y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
16x4 − 72x2 + 32

)
y′ +

(
16x3 − 56x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−32x5 + 224x3 − 264x

)
y′ − 32

(
x4 − 6x2 + 15

4

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
F1 = −4y′(0)
F2 = 12y(0)
F3 = 32y′(0)
F4 = −120y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x2 + 1

2x
4 − 1

6x
6
)
y(0) +

(
x− 2

3x
3 + 4

15x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −2x
(

∞∑
n=1

nanx
n−1

)
− 2
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

2nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

2nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + 2a0 = 0

a2 = −a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 2nan + 2an = 0

Solving for an+2, gives

(5)an+2 = − 2an
n+ 2

For n = 1 the recurrence equation gives

6a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a3 = −2a1
3

For n = 2 the recurrence equation gives

12a4 + 6a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2

For n = 3 the recurrence equation gives

20a5 + 8a3 = 0

Which after substituting the earlier terms found becomes

a5 =
4a1
15

For n = 4 the recurrence equation gives

30a6 + 10a4 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
6
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For n = 5 the recurrence equation gives

42a7 + 12a5 = 0

Which after substituting the earlier terms found becomes

a7 = −8a1
105

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 2

3a1x
3 + 1

2a0x
4 + 4

15a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

2x
4
)
a0 +

(
x− 2

3x
3 + 4

15x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

2x
4
)
c1 +

(
x− 2

3x
3 + 4

15x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x2 + 1

2x
4 − 1

6x
6
)
y(0) +

(
x− 2

3x
3 + 4

15x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− x2 + 1

2x
4
)
c1 +

(
x− 2

3x
3 + 4

15x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− x2 + 1

2x
4 − 1

6x
6
)
y(0) +

(
x− 2

3x
3 + 4

15x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x2 + 1

2x
4
)
c1 +

(
x− 2

3x
3 + 4

15x
5
)
c2 +O

(
x6)

Verified OK.

97



1.10.1 Maple step by step solution

Let’s solve
y′′ = −2xy′ − 2y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2xy′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + 2ak(k + 1))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (ak+2(k + 2) + 2ak) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = − 2ak

k+2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x2 + 1

2x
4
)
y(0) +

(
x− 2

3x
3 + 4

15x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[y''[x]+2*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
4x5

15 − 2x3

3 + x

)
+ c1

(
x4

2 − x2 + 1
)
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1.11 problem 23
1.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 107

Internal problem ID [5543]
Internal file name [OUTPUT/4791_Sunday_June_05_2022_03_05_56_PM_13245501/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second_order_ode_missing_y", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method", "second_order_ode_non_constant_coeff_transfor-
mation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

(x− 1) y′′ + y′ = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (31)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (32)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − y′

x− 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 2y′

(x− 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= − 6y′

(x− 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 24y′

(x− 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= − 120y′

(x− 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y′(0)
F1 = 2y′(0)
F2 = 6y′(0)
F3 = 24y′(0)
F4 = 120y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y = y(0) +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5 + 1

6x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x− 1) y′′ + y′ = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x− 1)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n−1

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

nxn−1an(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) anxn−2)+( ∞∑

n=1

nanx
n−1

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

(
−n(n− 1) anxn−2) = ∞∑

n=0

(−(n+ 2) an+2(n+ 1)xn)

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(n+ 1) an+1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=1

(n+1) an+1nxn

)
+

∞∑
n =0

(−(n+2) an+2(n+1)xn)+
(

∞∑
n=0

(n+1) an+1x
n

)
= 0

n = 0 gives
−2a2 + a1 = 0

a2 =
a1
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n− (n+ 2) an+2(n+ 1) + (n+ 1) an+1 = 0

Solving for an+2, gives

(5)an+2 =
(n+ 1) an+1

n+ 2

For n = 1 the recurrence equation gives

4a2 − 6a3 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
3

For n = 2 the recurrence equation gives

9a3 − 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
a1
4

For n = 3 the recurrence equation gives

16a4 − 20a5 = 0
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Which after substituting the earlier terms found becomes

a5 =
a1
5

For n = 4 the recurrence equation gives

25a5 − 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
a1
6

For n = 5 the recurrence equation gives

36a6 − 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
7

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
2a1x

2 + 1
3a1x

3 + 1
4a1x

4 + 1
5a1x

5 + . . .

Collecting terms, the solution becomes

(3)y = a0 +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y = c1 +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)y = y(0) +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5 + 1

6x
6
)
y′(0) +O

(
x6)

(2)y = c1 +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5
)
c2 +O

(
x6)

Verification of solutions

y = y(0) +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5 + 1

6x
6
)
y′(0) +O

(
x6)

Verified OK.

y = c1 +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5
)
c2 +O

(
x6)

Verified OK.

1.11.1 Maple step by step solution

Let’s solve
(x− 1) y′′ + y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y′

x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = 1
x−1 , P3(x) = 0

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= 1

◦ (x− 1)2 · P3(x) is analytic at x = 1
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(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators
(x− 1) y′′ + y′ = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ d

du
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite DE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite DE with series expansions
∞∑

k=−1
ak+1(k + 1 + r)2 uk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
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ak+1(k + 1)2 = 0
• Recursion relation that defines series solution to ODE

ak+1 = 0
• Recursion relation for r = 0

ak+1 = 0
• Solution for r = 0[

y(u) =
∞∑
k=0

aku
k, ak+1 = 0

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k , ak+1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((x-1)*diff(y(x),x$2)+diff(y(x),x)=0,y(x),type='series',x=0);� �

y(x) = y(0) +
(
x+ 1

2x
2 + 1

3x
3 + 1

4x
4 + 1

5x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 39� �
AsymptoticDSolveValue[(x-1)*y''[x]+y'[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

5 + x4

4 + x3

3 + x2

2 + x

)
+ c1
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1.12 problem 24
1.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 118

Internal problem ID [5544]
Internal file name [OUTPUT/4792_Sunday_June_05_2022_03_05_57_PM_61031580/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_2", "sec-
ond order series method. Taylor series method", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x+ 2) y′′ + xy′ − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (34)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (35)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −−y + xy′

x+ 2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (1 + x) (−y + xy′)
(x+ 2)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −x(−y + xy′)
(x+ 2)2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (−y + xy′) (x− 1)
(x+ 2)2

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −(−2 + x) (−y + xy′)
(x+ 2)2

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 =
y(0)
2

F1 = −y(0)
4

F2 = 0

F3 =
y(0)
4

F4 = −y(0)
2
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5 − 1

1440x
6
)
y(0) + xy′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x+ 2) y′′ + xy′ − y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x+ 2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+ x

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(−anx
n) = 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1nxn

)
+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(−anx
n) = 0

n = 0 gives
4a2 − a0 = 0

a2 =
a0
4

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ 2(n+ 2) an+2(n+ 1) + nan − an = 0

Solving for an+2, gives

(5)

an+2 = −n2an+1 + nan + nan+1 − an
2 (n+ 2) (n+ 1)

= − (n− 1) an
2 (n+ 2) (n+ 1) −

(n2 + n) an+1

2 (n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2a2 + 12a3 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
24

For n = 2 the recurrence equation gives

6a3 + 24a4 + a2 = 0
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Which after substituting the earlier terms found becomes

a4 = 0

For n = 3 the recurrence equation gives

12a4 + 40a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
480

For n = 4 the recurrence equation gives

20a5 + 60a6 + 3a4 = 0

Which after substituting the earlier terms found becomes

a6 = − a0
1440

For n = 5 the recurrence equation gives

30a6 + 84a7 + 4a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a0

6720

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
4a0x

2 − 1
24a0x

3 + 1
480a0x

5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5
)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5
)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5 − 1

1440x
6
)
y(0) + xy′(0) +O

(
x6)

(2)y =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5
)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5 − 1

1440x
6
)
y(0) + xy′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5
)
c1 + c2x+O

(
x6)

Verified OK.

1.12.1 Maple step by step solution

Let’s solve
(x+ 2) y′′ + xy′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

x+2 −
xy′

x+2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′

x+2 −
y

x+2 = 0

118



� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x
x+2 , P3(x) = − 1

x+2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators
(x+ 2) y′′ + xy′ − y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1
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u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−1)

(k+1+r)(k−2+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = − ak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = −a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

2

)
• Revert the change of variables u = x+ 2[

y = −a0x
2

]
• Recursion relation for r = 3

ak+1 = − ak(k+2)
(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+2)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 2[

y =
∞∑
k=0

ak(x+ 2)k+3 , ak+1 = − ak(k+2)
(k+4)(k+1)

]
• Combine solutions and rename parameters
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[
y = −a0x

2 +
(

∞∑
k=0

bk(x+ 2)k+3
)
, bk+1 = − bk(k+2)

(k+4)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
Order:=6;
dsolve((x+2)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

4x
2 − 1

24x
3 + 1

480x
5
)
y(0) +D(y) (0)x+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[(x+2)*y''[x]+x*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x5

480 − x3

24 + x2

4 + 1
)
+ c2x
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1.13 problem 25
1.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 129

Internal problem ID [5545]
Internal file name [OUTPUT/4793_Sunday_June_05_2022_03_05_58_PM_40041956/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′ − (1 + x) y′ − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (37)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (38)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

123



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = xy′ + y′ + y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(
x2 + 2x+ 3

)
y′ + (1 + x) y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
x3 + 3x2 + 8x+ 6

)
y′ + y

(
x2 + 2x+ 4

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x4 + 4x3 + 15x2 + 22x+ 18

)
y′ + y(1 + x)

(
x2 + 2x+ 8

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
x5 + 5x4 + 24x3 + 52x2 + 80x+ 48

)
y′ + y

(
x4 + 4x3 + 18x2 + 28x+ 28

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0) + y′(0)
F1 = 3y′(0) + y(0)
F2 = 6y′(0) + 4y(0)
F3 = 18y′(0) + 8y(0)
F4 = 48y′(0) + 28y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

6x
4 + 1

15x
5 + 7

180x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

2x
3 + 1

4x
4 + 3

20x
5 + 1

15x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = x

(
∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(
−nanx

n−1)+ ∞∑
n =1

(−nanx
n) +

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

(
−nanx

n−1) = ∞∑
n=0

(−(n+ 1) an+1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+2) an+2(n+1)xn

)
+

∞∑
n =0

(−(n+1) an+1x
n)+

∞∑
n =1

(−nanx
n)+

∞∑
n =0

(−anx
n) = 0

(3)
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n = 0 gives
2a2 − a1 − a0 = 0

a2 =
a0
2 + a1

2

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− (n+ 1) an+1 − nan − an = 0

Solving for an+2, gives

(5)

an+2 =
an + an+1

n+ 2

= an
n+ 2 + an+1

n+ 2

For n = 1 the recurrence equation gives

6a3 − 2a2 − 2a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6 + a1

2

For n = 2 the recurrence equation gives

12a4 − 3a3 − 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
6 + a1

4

For n = 3 the recurrence equation gives

20a5 − 4a4 − 4a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
15 + 3a1

20
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For n = 4 the recurrence equation gives

30a6 − 5a5 − 5a4 = 0

Which after substituting the earlier terms found becomes

a6 =
7a0
180 + a1

15

For n = 5 the recurrence equation gives

42a7 − 6a6 − 6a5 = 0

Which after substituting the earlier terms found becomes

a7 =
19a0
1260 + 13a1

420

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(a0
2 + a1

2

)
x2 +

(a0
6 + a1

2

)
x3 +

(a0
6 + a1

4

)
x4 +

(
a0
15 + 3a1

20

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1+ 1

2x
2+ 1

6x
3+ 1

6x
4+ 1

15x
5
)
a0+

(
x+ 1

2x
2+ 1

2x
3+ 1

4x
4+ 3

20x
5
)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

6x
4 + 1

15x
5
)
c1 +

(
x+ 1

2x
2 + 1

2x
3 + 1

4x
4 + 3

20x
5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)
y =

(
1 + 1

2x
2 + 1

6x
3 + 1

6x
4 + 1

15x
5 + 7

180x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

2x
3 + 1

4x
4 + 3

20x
5 + 1

15x
6
)
y′(0) +O

(
x6)

(2)y =
(
1+ 1

2x
2 + 1

6x
3 + 1

6x
4 + 1

15x
5
)
c1 +

(
x+ 1

2x
2 + 1

2x
3 + 1

4x
4 + 3

20x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

6x
4 + 1

15x
5 + 7

180x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

2x
3 + 1

4x
4 + 3

20x
5 + 1

15x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

6x
4 + 1

15x
5
)
c1 +

(
x+ 1

2x
2 + 1

2x
3 + 1

4x
4 + 3

20x
5
)
c2 +O

(
x6)

Verified OK.

1.13.1 Maple step by step solution

Let’s solve
y′′ = xy′ + y′ + y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (−1− x) y′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑

k=max(0,1−m)
akk x

k−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=max(0,1−m)+m−1
ak+1−m(k + 1−m)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak+1(k + 1)− ak(k + 1))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (ak+2(k + 2)− ak+1 − ak) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = ak+1+ak

k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve(diff(y(x),x$2)-(x+1)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 + 1

6x
3 + 1

6x
4 + 1

15x
5
)
y(0)

+
(
x+ 1

2x
2 + 1

2x
3 + 1

4x
4 + 3

20x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 70� �
AsymptoticDSolveValue[y''[x]-(x+1)*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x5

15 + x4

6 + x3

6 + x2

2 + 1
)
+ c2

(
3x5

20 + x4

4 + x3

2 + x2

2 + x

)
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1.14 problem 26
Internal problem ID [5546]
Internal file name [OUTPUT/4794_Sunday_June_05_2022_03_05_59_PM_14832022/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(
x2 + 1

)
y′′ − 6y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (40)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (41)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
6y

x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 6x2y′ − 12xy + 6y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −24y′x3 + 72yx2 − 24xy′ + 24y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 144((x3 + x) y′ + (−3x2 − 1) y)x
(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −
1008((x3 + x) y′ + (−3x2 − 1) y)

(
x2 − 1

7

)
(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 6y(0)
F1 = 6y′(0)
F2 = 24y(0)
F3 = 0
F4 = −144y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 3x2 + x4 − 1

5x
6
)
y(0) +

(
x3 + x

)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ − 6y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 6
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =0

(−6anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =0

(−6anxn) = 0
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n = 0 gives
2a2 − 6a0 = 0

a2 = 3a0

n = 1 gives
6a3 − 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1)− 6an = 0

Solving for an+2, gives

(5)an+2 = −(n− 3) an
n+ 1

For n = 2 the recurrence equation gives

−4a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = a0

For n = 3 the recurrence equation gives

20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

6a4 + 30a6 = 0
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Which after substituting the earlier terms found becomes

a6 = −a0
5

For n = 5 the recurrence equation gives

14a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0x
4 + a1x

3 + 3a0x2 + a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y =
(
x4 + 3x2 + 1

)
a0 +

(
x3 + x

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
x4 + 3x2 + 1

)
c1 +

(
x3 + x

)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 3x2 + x4 − 1

5x
6
)
y(0) +

(
x3 + x

)
y′(0) +O

(
x6)

(2)y =
(
x4 + 3x2 + 1

)
c1 +

(
x3 + x

)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + 3x2 + x4 − 1

5x
6
)
y(0) +

(
x3 + x

)
y′(0) +O

(
x6)

Verified OK.

y =
(
x4 + 3x2 + 1

)
c1 +

(
x3 + x

)
c2 +O

(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 25� �
Order:=6;
dsolve((x^2+1)*diff(y(x),x$2)-6*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
x4 + 3x2 + 1

)
y(0) +

(
x3 + x

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 25� �
AsymptoticDSolveValue[(x^2+1)*y''[x]-6*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
(
x3 + x

)
+ c1

(
x4 + 3x2 + 1

)
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1.15 problem 27
Internal problem ID [5547]
Internal file name [OUTPUT/4795_Sunday_June_05_2022_03_06_00_PM_34013847/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 2

)
y′′ + 3xy′ − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (43)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (44)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −3xy′ − y

x2 + 2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 13x2y′ − 5xy − 4y′

(x2 + 2)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −70y′x3 + 28yx2 + 70xy′ − 14y
(x2 + 2)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (448x4 − 938x2 + 112) y′ + (−182x3 + 266x) y
(x2 + 2)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−3318x5 + 11928x3 − 4452x) y′ + (1358x4 − 3892x2 + 644) y
(x2 + 2)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 =
y(0)
2

F1 = −y′(0)

F2 = −7y(0)
4

F3 = 7y′(0)

F4 =
161y(0)

8
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

4x
2 − 7

96x
4 + 161

5760x
6
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 2
)
y′′ + 3xy′ − y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 2

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 3x

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n−1)
)
+
(

∞∑
n=2

2n(n−1) anxn−2

)
+
(

∞∑
n=1

3nanxn

)
+

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

3nanxn

)
+

∞∑
n =0

(−anx
n) = 0

n = 0 gives
4a2 − a0 = 0

a2 =
a0
4

n = 1 gives
12a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
6

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + 2(n+ 2) an+2(n+ 1) + 3nan − an = 0

Solving for an+2, gives

(5)an+2 = − an(n2 + 2n− 1)
2 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

7a2 + 24a4 = 0

Which after substituting the earlier terms found becomes

a4 = −7a0
96
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For n = 3 the recurrence equation gives

14a3 + 40a5 = 0

Which after substituting the earlier terms found becomes

a5 =
7a1
120

For n = 4 the recurrence equation gives

23a4 + 60a6 = 0

Which after substituting the earlier terms found becomes

a6 =
161a0
5760

For n = 5 the recurrence equation gives

34a5 + 84a7 = 0

Which after substituting the earlier terms found becomes

a7 = −17a1
720

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
4a0x

2 − 1
6a1x

3 − 7
96a0x

4 + 7
120a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

4x
2 − 7

96x
4
)
a0 +

(
x− 1

6x
3 + 7

120x
5
)
a1 +O

(
x6)
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At x = 0 the solution above becomes

y =
(
1 + 1

4x
2 − 7

96x
4
)
c1 +

(
x− 1

6x
3 + 7

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 1

4x
2 − 7

96x
4 + 161

5760x
6
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
y′(0) +O

(
x6)

(2)y =
(
1 + 1

4x
2 − 7

96x
4
)
c1 +

(
x− 1

6x
3 + 7

120x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

4x
2 − 7

96x
4 + 161

5760x
6
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

4x
2 − 7

96x
4
)
c1 +

(
x− 1

6x
3 + 7

120x
5
)
c2 +O

(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((x^2+2)*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

4x
2 − 7

96x
4
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[(x^2+2)*y''[x]+3*x*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
7x5

120 − x3

6 + x

)
+ c1

(
−7x4

96 + x2

4 + 1
)
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1.16 problem 28
1.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 156

Internal problem ID [5548]
Internal file name [OUTPUT/4796_Sunday_June_05_2022_03_06_02_PM_21756012/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2", "second order series method. Taylor series method",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 − 1

)
y′′ + xy′ − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (46)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (47)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −−y + xy′

x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 3(−y + xy′)x
(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −3(−y + xy′) (4x2 + 1)
(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
60(−y + xy′)

(
x2 + 3

4

)
x

(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −45(−y + xy′) (8x4 + 12x2 + 1)
(x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = 0
F2 = −3y(0)
F3 = 0
F4 = −45y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 − 1

8x
4 − 1

16x
6
)
y(0) + xy′(0) +O

(
x6)

152



Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 − 1
)
y′′ + xy′ − y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 − 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ x

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n− 1)
)
+

∞∑
n =2

(
−n(n− 1) anxn−2)+( ∞∑

n=1

nanx
n

)
+

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−n(n− 1) anxn−2) = ∞∑

n=0

(−(n+ 2) an+2(n+ 1)xn)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=2

xnann(n−1)
)
+

∞∑
n =0

(−(n+2) an+2(n+1)xn)+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(−anx
n) = 0

(3)
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n = 0 gives
−2a2 − a0 = 0

a2 = −a0
2

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− (n+ 2) an+2(n+ 1) + nan − an = 0

Solving for an+2, gives

(5)an+2 =
(n− 1) an
n+ 2

For n = 2 the recurrence equation gives

3a2 − 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
8

For n = 3 the recurrence equation gives

8a3 − 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

15a4 − 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
16
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For n = 5 the recurrence equation gives

24a5 − 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
8a0x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 − 1

8x
4
)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 − 1

8x
4
)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 − 1

8x
4 − 1

16x
6
)
y(0) + xy′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 − 1

8x
4
)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1− 1

2x
2 − 1

8x
4 − 1

16x
6
)
y(0) + xy′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 − 1

8x
4
)
c1 + c2x+O

(
x6)

Verified OK.
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1.16.1 Maple step by step solution

Let’s solve
(x2 − 1) y′′ + xy′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − xy′

x2−1 +
y

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′

x2−1 −
y

x2−1 = 0

• Multiply by denominators of ODE
(−x2 + 1) y′′ − xy′ + y = 0

• Make a change of variables
θ = arccos (x)

• Calculate y′ with change of variables
y′ =

(
d
dθ
y(θ)

)
θ′(x)

• Compute 1st derivative y′

y′ = −
d
dθ

y(θ)√
−x2+1

• Calculate y′′ with change of variables

y′′ =
(

d2

dθ2
y(θ)

)
θ′(x)2 + θ′′(x)

(
d
dθ
y(θ)

)
• Compute 2nd derivative y′′

y′′ =
d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

• Apply the change of variables to the ODE

(−x2 + 1)
(

d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

)
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y = 0

• Multiply through

−
(

d2
dθ2 y(θ)

)
x2

−x2+1 +
d2
dθ2 y(θ)
−x2+1 +

x3
(

d
dθ

y(θ)
)

(−x2+1)
3
2
−

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y = 0

• Simplify ODE
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y + d2

dθ2
y(θ) = 0

• ODE is that of a harmonic oscillator with given general solution
y(θ) = c1 sin (θ) + c2 cos (θ)

• Revert back to x
y = c1 sin (arccos (x)) + c2 cos (arccos (x))

• Use trig identity to simplify sin (arccos (x))
sin (arccos (x)) =

√
−x2 + 1

• Simplify solution to the ODE
y = c1

√
−x2 + 1 + c2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve((x^2-1)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 − 1

8x
4
)
y(0) +D(y) (0)x+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 27� �
AsymptoticDSolveValue[(x^2-1)*y''[x]+x*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x4

8 − x2

2 + 1
)
+ c2x
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1.17 problem 29
1.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 158
1.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 166

Internal problem ID [5549]
Internal file name [OUTPUT/4797_Sunday_June_05_2022_03_06_03_PM_6727615/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_2", "sec-
ond order series method. Taylor series method", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x− 1) y′′ − xy′ + y = 0

With initial conditions

[y(0) = −2, y′(0) = 6]

With the expansion point for the power series method at x = 0.

1.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F
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Where here

p(x) = − x

x− 1
q(x) = 1

x− 1
F = 0

Hence the ode is

y′′ − xy′

x− 1 + y

x− 1 = 0

The domain of p(x) = − x
x−1 is

{x < 1∨ 1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1
x−1 is

{x < 1∨ 1 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (49)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (50)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
−y + xy′

x− 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y + xy′

x− 1

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −y + xy′

x− 1

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= −y + xy′

x− 1

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −y + xy′

x− 1

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = −2 and
y′(0) = 6 gives

F0 = −2
F1 = −2
F2 = −2
F3 = −2
F4 = −2

Substituting all the above in (7) and simplifying gives the solution as

y = −x2 + 6x− 2− x3

3 − x4

12 − x5

60 − x6

360 +O
(
x6)
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y = −x2 + 6x− 2− x3

3 − x4

12 − x5

60 − x6

360 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x− 1) y′′ − xy′ + y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x− 1)
(

∞∑
n=2

n(n− 1) anxn−2

)
− x

(
∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

nxn−1an(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) anxn−2)+ ∞∑

n =1

(−nanx
n) +

(
∞∑
n=0

anx
n

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

(
−n(n− 1) anxn−2) = ∞∑

n=0

(−(n+ 2) an+2(n+ 1)xn)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1nxn

)
+

∞∑
n =0

(−(n+ 2) an+2(n+ 1)xn)

+
∞∑

n =1

(−nanx
n) +

(
∞∑
n=0

anx
n

)
= 0

n = 0 gives
−2a2 + a0 = 0

a2 =
a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n− (n+ 2) an+2(n+ 1)− nan + an = 0

Solving for an+2, gives

(5)

an+2 =
n2an+1 − nan + nan+1 + an

(n+ 2) (n+ 1)

= (−n+ 1) an
(n+ 2) (n+ 1) +

(n2 + n) an+1

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2a2 − 6a3 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6

For n = 2 the recurrence equation gives

6a3 − 12a4 − a2 = 0
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Which after substituting the earlier terms found becomes

a4 =
a0
24

For n = 3 the recurrence equation gives

12a4 − 20a5 − 2a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
120

For n = 4 the recurrence equation gives

20a5 − 30a6 − 3a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
720

For n = 5 the recurrence equation gives

30a6 − 42a7 − 4a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a0

5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
2a0x

2 + 1
6a0x

3 + 1
24a0x

4 + 1
120a0x

5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
c1 + c2x+O

(
x6)

y = −2− x2 − x3

3 − x4

12 − x5

60 + 6x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = −x2 + 6x− 2− x3

3 − x4

12 − x5

60 − x6

360 +O
(
x6)

(2)y = −2− x2 − x3

3 − x4

12 − x5

60 + 6x+O
(
x6)

Verification of solutions

y = −x2 + 6x− 2− x3

3 − x4

12 − x5

60 − x6

360 +O
(
x6)

Verified OK.

y = −2− x2 − x3

3 − x4

12 − x5

60 + 6x+O
(
x6)

Verified OK.

1.17.2 Maple step by step solution

Let’s solve[
(x− 1) y′′ − xy′ + y = 0, y(0) = −2, y′

∣∣∣{x=0}
= 6
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − y
x−1 +

xy′

x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′

x−1 +
y

x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators
(x− 1) y′′ − xy′ + y = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion
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u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
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• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([(x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(0) = -2, D(y)(0) = 6],y(x),type='series',x=0);� �

y(x) = −2 + 6x− x2 − 1
3x

3 − 1
12x

4 − 1
60x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{(x-1)*y''[x]-x*y'[x]+y[x]==0,{y[0]==-2,y'[0]==6}},y[x],{x,0,5}]� �

y(x) → −x5

60 − x4

12 − x3

3 − x2 + 6x− 2
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1.18 problem 30
1.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 170
1.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 178

Internal problem ID [5550]
Internal file name [OUTPUT/4798_Sunday_June_05_2022_03_06_04_PM_70677692/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(1 + x) y′′ − (2− x) y′ + y = 0

With initial conditions

[y(0) = 2, y′(0) = −1]

With the expansion point for the power series method at x = 0.

1.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2 + x

1 + x

q(x) = 1
1 + x

F = 0
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Hence the ode is

y′′ + (−2 + x) y′
1 + x

+ y

1 + x
= 0

The domain of p(x) = −2+x
1+x

is

{x < −1∨−1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1
1+x

is

{x < −1∨−1 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (52)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (53)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −xy′ − 2y′ + y

1 + x

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x2 − 5x) y′ + (x− 1) y
(1 + x)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−x3 + 8x2 − 3x− 6) y′ − y(x2 − 4x− 3)
(1 + x)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x3 − 12x2 + 23x+ 6) y′ + y(x2 − 8x+ 1)
(1 + x)3

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−x3 + 16x2 − 55x+ 18) y′ − y(x2 − 12x+ 17)
(1 + x)3

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = −1 gives

F0 = −4
F1 = −2
F2 = 12
F3 = −4
F4 = −52

Substituting all the above in (7) and simplifying gives the solution as

y = −2x2 − x+ 2− x3

3 + x4

2 − x5

30 − 13x6

180 +O
(
x6)
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y = −2x2 − x+ 2− x3

3 + x4

2 − x5

30 − 13x6

180 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(1 + x) y′′ + (−2 + x) y′ + y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(1 + x)
(

∞∑
n=2

n(n− 1) anxn−2

)
+ (−2 + x)

(
∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
∞∑

n =1

(
−2nanxn−1)+( ∞∑

n=1

nanx
n

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

(
−2nanxn−1) = ∞∑

n=0

(−2(n+ 1) an+1x
n)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1nxn

)
+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =0

(−2(n+ 1) an+1x
n) +

(
∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

anx
n

)
= 0

n = 0 gives
2a2 − 2a1 + a0 = 0

a2 = −a0
2 + a1

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ (n+ 2) an+2(n+ 1)− 2(n+ 1) an+1 + nan + an = 0

Solving for an+2, gives

(5)

an+2 = −nan+1 + an − 2an+1

n+ 2

= − an
n+ 2 − (n− 2) an+1

n+ 2

For n = 1 the recurrence equation gives

−2a2 + 6a3 + 2a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
6

For n = 2 the recurrence equation gives

12a4 + 3a2 = 0

176



Which after substituting the earlier terms found becomes

a4 =
a0
8 − a1

4

For n = 3 the recurrence equation gives

4a4 + 20a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
120 + a1

20

For n = 4 the recurrence equation gives

10a5 + 30a6 + 5a4 = 0

Which after substituting the earlier terms found becomes

a6 = −17a0
720 + a1

40

For n = 5 the recurrence equation gives

18a6 + 42a7 + 6a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a0
112 − a1

56

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
−a0

2 + a1
)
x2 − a0x

3

6 +
(a0
8 − a1

4

)
x4 +

( a0
120 + a1

20

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 − 1

6x
3 + 1

8x
4 + 1

120x
5
)
a0 +

(
x+ x2 − 1

4x
4 + 1

20x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 − 1

6x
3 + 1

8x
4 + 1

120x
5
)
c1 +

(
x+ x2 − 1

4x
4 + 1

20x
5
)
c2 +O

(
x6)

y = 2− 2x2 − x3

3 + x4

2 − x5

30 − x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = −2x2 − x+ 2− x3

3 + x4

2 − x5

30 − 13x6

180 +O
(
x6)

(2)y = 2− 2x2 − x3

3 + x4

2 − x5

30 − x+O
(
x6)

Verification of solutions

y = −2x2 − x+ 2− x3

3 + x4

2 − x5

30 − 13x6

180 +O
(
x6)

Verified OK.

y = 2− 2x2 − x3

3 + x4

2 − x5

30 − x+O
(
x6)

Verified OK.

1.18.2 Maple step by step solution

Let’s solve[
(1 + x) y′′ + (−2 + x) y′ + y = 0, y(0) = 2, y′

∣∣∣{x=0}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
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y′′ = − y
1+x

− (−2+x)y′
1+x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (−2+x)y′
1+x

+ y
1+x

= 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = −2+x
1+x

, P3(x) = 1
1+x

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= −3

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators
(1 + x) y′′ + (−2 + x) y′ + y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−3 + u)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

179



u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−4 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 3 + r) + ak(k + 1 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 4}

• Each term in the series must be 0, giving the recursion relation
(k + 1 + r) (ak+1(k − 3 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k−3+r

• Recursion relation for r = 0
ak+1 = − ak

k−3

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 3
ak+1 = − ak

k−3

• Recursion relation for r = 4
ak+1 = − ak

k+1

• Solution for r = 4[
y(u) =

∞∑
k=0

aku
k+4, ak+1 = − ak

k+1

]
• Revert the change of variables u = 1 + x[

y =
∞∑
k=0

ak(1 + x)k+4 , ak+1 = − ak
k+1

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(x+1)*diff(y(x),x$2)-(2-x)*diff(y(x),x)+y(x)=0,y(0) = 2, D(y)(0) = -1],y(x),type='series',x=0);� �

y(x) = 2− x− 2x2 − 1
3x

3 + 1
2x

4 − 1
30x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{(x+1)*y''[x]-(2-x)*y'[x]+y[x]==0,{y[0]==2,y'[0]==-1}},y[x],{x,0,5}]� �

y(x) → −x5

30 + x4

2 − x3

3 − 2x2 − x+ 2
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1.19 problem 31
1.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 182

Internal problem ID [5551]
Internal file name [OUTPUT/4799_Sunday_June_05_2022_03_06_06_PM_93892179/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 2xy′ + 8y = 0

With initial conditions

[y(0) = 3, y′(0) = 0]

With the expansion point for the power series method at x = 0.

1.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2x
q(x) = 8

F = 0
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Hence the ode is

y′′ − 2xy′ + 8y = 0

The domain of p(x) = −2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 8 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (55)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (56)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

184



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = 2xy′ − 8y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4x2y′ − 16xy − 6y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 8y′x3 − 32yx2 − 20xy′ + 32y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
16x4 − 48x2 + 12

)
y′ +

(
−64x3 + 96x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 32x
((

x4 − 3x2 + 3
4

)
y′ +

(
−4x3 + 6x

)
y

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 3 and
y′(0) = 0 gives

F0 = −24
F1 = 0
F2 = 96
F3 = 0
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = 4x4 − 12x2 + 3 +O
(
x6)

y = 4x4 − 12x2 + 3 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = 2x
(

∞∑
n=1

nanx
n−1

)
− 8
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

8anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

8anxn

)
= 0

n = 0 gives
2a2 + 8a0 = 0

a2 = −4a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 2nan + 8an = 0

Solving for an+2, gives

(5)an+2 =
2an(n− 4)

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + 6a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1

For n = 2 the recurrence equation gives

12a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
4a0
3

For n = 3 the recurrence equation gives

20a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
10

For n = 4 the recurrence equation gives

30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0
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For n = 5 the recurrence equation gives

42a7 − 2a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
210

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 4a0x2 − a1x
3 + 4

3a0x
4 + 1

10a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 4x2 + 4

3x
4
)
a0 +

(
x− x3 + 1

10x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 4x2 + 4

3x
4
)
c1 +

(
x− x3 + 1

10x
5
)
c2 +O

(
x6)

y = 4x4 − 12x2 + 3 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = 4x4 − 12x2 + 3 +O
(
x6)

(2)y = 4x4 − 12x2 + 3 +O
(
x6)
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Verification of solutions

y = 4x4 − 12x2 + 3 +O
(
x6)

Verified OK.

y = 4x4 − 12x2 + 3 +O
(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve([diff(y(x),x$2)-2*x*diff(y(x),x)+8*y(x)=0,y(0) = 3, D(y)(0) = 0],y(x),type='series',x=0);� �

y(x) = 3− 12x2 + 4x4 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 22� �
AsymptoticDSolveValue[{y''[x]-2*x*y''[x]+8*y[x]==0,{y[0]==3,y'[0]==0}},y[x],{x,0,5}]� �

y(x) → 16x5

5 − 8x3 − 12x2 + 3
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1.20 problem 32
1.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 192

Internal problem ID [5552]
Internal file name [OUTPUT/4800_Sunday_June_05_2022_03_06_08_PM_59237499/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second_order_ode_missing_y", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

(
x2 + 1

)
y′′ + 2xy′ = 0

With initial conditions

[y(0) = 0, y′(0) = 1]

With the expansion point for the power series method at x = 0.

1.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2x
x2 + 1

q(x) = 0
F = 0
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Hence the ode is

y′′ + 2xy′
x2 + 1 = 0

The domain of p(x) = 2x
x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (58)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (59)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 2xy′
x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (6x2 − 2) y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−24x3 + 24x) y′

(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
120
(
x4 − 2x2 + 1

5

)
y′

(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−720x5 + 2400x3 − 720x) y′

(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 1 gives

F0 = 0
F1 = −2
F2 = 0
F3 = 24
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = x− x3

3 + x5

5 +O
(
x6)
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y = x− x3

3 + x5

5 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + 2xy′ = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 2x

(
∞∑
n=1

nanx
n−1

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

2nanxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

2nanxn

)
= 0
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n = 1 gives
6a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
3

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + 2nan = 0

Solving for an+2, gives

(5)an+2 = − nan
n+ 2

For n = 2 the recurrence equation gives

6a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 0

For n = 3 the recurrence equation gives

12a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
5

For n = 4 the recurrence equation gives

20a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0
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For n = 5 the recurrence equation gives

30a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
7

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
3a1x

3 + 1
5a1x

5 + . . .

Collecting terms, the solution becomes

(3)y = a0 +
(
x− 1

3x
3 + 1

5x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y = c1 +
(
x− 1

3x
3 + 1

5x
5
)
c2 +O

(
x6)

y = x− x3

3 + x5

5 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = x− x3

3 + x5

5 +O
(
x6)

(2)y = x− x3

3 + x5

5 +O
(
x6)
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Verification of solutions

y = x− x3

3 + x5

5 +O
(
x6)

Verified OK.

y = x− x3

3 + x5

5 +O
(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve([(x^2+1)*diff(y(x),x$2)+2*x*diff(y(x),x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);� �

y(x) = x− 1
3x

3 + 1
5x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19� �
AsymptoticDSolveValue[{(x^2+1)*y''[x]+2*x*y'[x]==0,{y[0]==0,y'[0]==1}},y[x],{x,0,5}]� �

y(x) → x5

5 − x3

3 + x
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1.21 problem 33
Internal problem ID [5553]
Internal file name [OUTPUT/4801_Sunday_June_05_2022_03_06_09_PM_91351806/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + sin (x) y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (61)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (62)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − sin (x) y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y cos (x)− sin (x) y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −2 cos (x) y′ + y sin (x) (1 + sin (x))

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
sin (x)2 + 3 sin (x)

)
y′ + 4 cos (x) y

(
sin (x) + 1

4

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (6 sin (x) + 4) cos (x) y′ + y
(
(sin (x) + 11) cos (x)2 − 2 sin (x)− 7

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −y(0)
F2 = −2y′(0)
F3 = y(0)
F4 = 4y(0) + 4y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
3 + 1

120x
5 + 1

180x
6
)
y(0) +

(
x− 1

12x
4 + 1

180x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = − sin (x)
(

∞∑
n=0

anx
n

)
(1)

Expanding sin (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

sin (x) = x− 1
6x

3 + 1
120x

5 − 1
5040x

7 + . . .

= x− 1
6x

3 + 1
120x

5 − 1
5040x

7

Hence the ODE in Eq (1) becomes(
∞∑
n=2

n(n− 1) anxn−2

)
+
(
x− 1

6x
3 + 1

120x
5 − 1

5040x
7
)( ∞∑

n=0

anx
n

)
= 0

Expanding the second term in (1) gives(
∞∑
n=2

n(n− 1) anxn−2

)
+ x ·

(
∞∑
n=0

anx
n

)
− x3

6 ·

(
∞∑
n=0

anx
n

)

+ x5

120 ·

(
∞∑
n=0

anx
n

)
− x7

5040 ·

(
∞∑
n=0

anx
n

)
= 0

Which simplifies to

(2)

(
∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

x1+nan

)
+

∞∑
n =0

(
−xn+3an

6

)
+
(

∞∑
n=0

xn+5an
120

)
+

∞∑
n =0

(
−xn+7an

5040

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

∞∑
n =0

(
−xn+3an

6

)
=

∞∑
n=3

(
−an−3x

n

6

)
∞∑

n =0

xn+5an
120 =

∞∑
n=5

an−5x
n

120

∞∑
n =0

(
−xn+7an

5040

)
=

∞∑
n=7

(
−an−7x

n

5040

)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=1

an−1x
n

)

+
∞∑

n =3

(
−an−3x

n

6

)
+
(

∞∑
n=5

an−5x
n

120

)
+

∞∑
n =7

(
−an−7x

n

5040

)
= 0

n = 1 gives
6a3 + a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6

n = 2 gives
12a4 + a1 = 0
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Which after substituting earlier equations, simplifies to

a4 = −a1
12

n = 3 gives

20a5 + a2 −
a0
6 = 0

Which after substituting earlier equations, simplifies to

a5 =
a0
120

n = 4 gives

30a6 + a3 −
a1
6 = 0

Which after substituting earlier equations, simplifies to

a6 =
a0
180 + a1

180

n = 5 gives

42a7 + a4 −
a2
6 + a0

120 = 0

Which after substituting earlier equations, simplifies to

a7 = − a0
5040 + a1

504

For 7 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + an−1 −
an−3

6 + an−5

120 − an−7

5040 = 0

Solving for an+2, gives

(5)

an+2 =
−5040an−1 + 840an−3 − 42an−5 + an−7

5040 (n+ 2) (1 + n)

= an−7

5040 (n+ 2) (1 + n) −
an−5

120 (n+ 2) (1 + n) +
an−3

6 (n+ 2) (1 + n) −
an−1

(n+ 2) (1 + n)
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
6a0x

3 − 1
12a1x

4 + 1
120a0x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6x
3 + 1

120x
5
)
a0 +

(
x− 1

12x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

6x
3 + 1

120x
5
)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

6x
3 + 1

120x
5 + 1

180x
6
)
y(0) +

(
x− 1

12x
4 + 1

180x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

6x
3 + 1

120x
5
)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

6x
3 + 1

120x
5 + 1

180x
6
)
y(0) +

(
x− 1

12x
4 + 1

180x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

6x
3 + 1

120x
5
)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
Equivalence transformation and function parameters: {t = 1/2*t+1/2}, {kappa = -20, mu = -32}
<- Equivalence to the rational form of Mathieu ODE successful

<- Mathieu successful
<- special function solution successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

(-t^2+1)^(1/2)*u(t)-t*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
Order:=6;
dsolve(diff(y(x),x$2)+sin(x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

6x
3 + 1

120x
5
)
y(0) +

(
x− 1

12x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35� �
AsymptoticDSolveValue[y''[x]+Sin[x]*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x4

12

)
+ c1

(
x5

120 − x3

6 + 1
)
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1.22 problem 34
Internal problem ID [5554]
Internal file name [OUTPUT/4802_Sunday_June_05_2022_03_06_11_PM_16163762/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y′ex − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (64)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (65)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)

213



To find y(x) series solution around x = 0. Hence

F0 = −y′ex + y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= y′e2x − y′ex − exy + y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (y + 3y′) e2x − y′e3x − 3y′ex + (−2 ex + 1) y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 5(y + 2y′) e2x + (−y − 6y′) e3x + y′e4x + (−5 ex + 1) y′ − 5 exy

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (20y + 30y′) e2x + (−9y − 29y′) e3x + (y + 10y′) e4x − y′e5x − 11y′ex + (−10 ex + 1) y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)− y′(0)
F1 = −y(0) + y′(0)
F2 = −y′(0)
F3 = −y(0) + y′(0)
F4 = 3y(0)− y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

2x
2 − 1

6x
3 − 1

120x
5 + 1

240x
6
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5 − 1

720x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=1

nanx
n−1

)
ex +

(
∞∑
n=0

anx
n

)
(1)

Expanding ex as Taylor series around x = 0 and keeping only the first 6 terms gives

ex = 1 + x+ 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5 + 1
720x

6 + . . .

= 1 + x+ 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5 + 1
720x

6

Hence the ODE in Eq (1) becomes(
∞∑
n=2

n(n− 1) anxn−2

)

+
(
1+x+ 1

2x
2+ 1

6x
3+ 1

24x
4+ 1

120x
5+ 1

720x
6
)( ∞∑

n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0

Expanding the second term in (1) gives(
∞∑
n=2

n(n− 1) anxn−2

)
+ 1 ·

(
∞∑
n=1

nanx
n−1

)
+ x ·

(
∞∑
n=1

nanx
n−1

)

+ x2

2 ·

(
∞∑
n=1

nanx
n−1

)
+ x3

6 ·

(
∞∑
n=1

nanx
n−1

)
+ x4

24 ·

(
∞∑
n=1

nanx
n−1

)

+ x5

120 ·

(
∞∑
n=1

nanx
n−1

)
+ x6

720 ·

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0
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Which simplifies to

(2)

(
∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=1

nanx
n

)

+
(

∞∑
n=1

nx1+nan
2

)
+
(

∞∑
n=1

nxn+2an
6

)
+
(

∞∑
n=1

nxn+3an
24

)

+
(

∞∑
n=1

nxn+4an
120

)
+
(

∞∑
n=1

nxn+5an
720

)
+

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(1 + n) a1+nx
n

∞∑
n =1

nx1+nan
2 =

∞∑
n=2

(n− 1) an−1x
n

2

∞∑
n =1

nxn+2an
6 =

∞∑
n=3

(n− 2) an−2x
n

6

∞∑
n =1

nxn+3an
24 =

∞∑
n=4

(n− 3) an−3x
n

24

∞∑
n =1

nxn+4an
120 =

∞∑
n=5

(n− 4) an−4x
n

120

∞∑
n =1

nxn+5an
720 =

∞∑
n=6

(n− 5) an−5x
n

720

Substituting all the above in Eq (2) gives the following equation where now all powers
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of x are the same and equal to n.

(3)

(
∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=0

(1 + n) a1+nx
n

)
+
(

∞∑
n=1

nanx
n

)

+
(

∞∑
n=2

(n− 1) an−1x
n

2

)
+
(

∞∑
n=3

(n− 2) an−2x
n

6

)
+
(

∞∑
n=4

(n− 3) an−3x
n

24

)

+
(

∞∑
n=5

(n− 4) an−4x
n

120

)
+
(

∞∑
n=6

(n− 5) an−5x
n

720

)
+

∞∑
n =0

(−anx
n) = 0

n = 0 gives
2a2 + a1 − a0 = 0

a2 =
a0
2 − a1

2

n = 1 gives
6a3 + 2a2 = 0

Which after substituting earlier equations, simplifies to

6a3 + a0 − a1 = 0

Or
a3 = −a0

6 + a1
6

n = 2 gives

12a4 + 3a3 + a2 +
a1
2 = 0

Which after substituting earlier equations, simplifies to

a4 = −a1
24

n = 3 gives

20a5 + 4a4 + 2a3 + a2 +
a1
6 = 0
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Which after substituting earlier equations, simplifies to

a5 = − a0
120 + a1

120

n = 4 gives

30a6 + 5a5 + 3a4 +
3a3
2 + a2

3 + a1
24 = 0

Which after substituting earlier equations, simplifies to

a6 =
a0
240 − a1

720

n = 5 gives

42a7 + 6a6 + 4a5 + 2a4 +
a3
2 + a2

12 + a1
120 = 0

Which after substituting earlier equations, simplifies to

a7 =
a0
840 + a1

5040

For 6 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + (1 + n) a1+n + nan +
(n− 1) an−1

2 + (n− 2) an−2

6
+ (n− 3) an−3

24 + (n− 4) an−4

120 + (n− 5) an−5

720 − an = 0

Solving for an+2, gives

(5)
an+2 =

−720nan + 720na1+n + nan−5 + 6nan−4 + 30nan−3 + 120nan−2 + 360nan−1 − 720an + 720a1+n − 5an−5 − 24an−4 − 90an−3 − 240an−2 − 360an−1

720 (n+ 2) (1 + n)

= − (720n− 720) an
720 (n+ 2) (1 + n) −

(720n+ 720) a1+n

720 (n+ 2) (1 + n) −
(n− 5) an−5

720 (n+ 2) (1 + n)

− (6n− 24) an−4

720 (n+ 2) (1 + n) −
(30n− 90) an−3

720 (n+ 2) (1 + n)

− (120n− 240) an−2

720 (n+ 2) (1 + n) −
(360n− 360) an−1

720 (n+ 2) (1 + n)
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(a0
2 − a1

2

)
x2 +

(
−a0

6 + a1
6

)
x3 − a1x

4

24 +
(
− a0
120 + a1

120

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1+ 1

2x
2 − 1

6x
3 − 1

120x
5
)
a0 +

(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

2x
2 − 1

6x
3 − 1

120x
5
)
c1 +

(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + 1

2x
2 − 1

6x
3 − 1

120x
5 + 1

240x
6
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5 − 1

720x
6
)
y′(0) +O

(
x6)

(2)y =
(
1 + 1

2x
2 − 1

6x
3 − 1

120x
5
)
c1 +

(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

2x
2 − 1

6x
3 − 1

120x
5 + 1

240x
6
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5 − 1

720x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

2x
2 − 1

6x
3 − 1

120x
5
)
c1 +

(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5
)
c2 +O

(
x6)

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
Change of variables used:

[x = ln(t)]
Linear ODE actually solved:

-u(t)+(t^2+t)*diff(u(t),t)+t^2*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve(diff(y(x),x$2)+exp(x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 − 1

6x
3 − 1

120x
5
)
y(0)

+
(
x− 1

2x
2 + 1

6x
3 − 1

24x
4 + 1

120x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[y''[x]+Exp[x]*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
− x5

120 − x3

6 + x2

2 + 1
)
+ c2

(
x5

120 − x4

24 + x3

6 − x2

2 + x

)
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1.23 problem 39
1.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 229

Internal problem ID [5555]
Internal file name [OUTPUT/4803_Sunday_June_05_2022_03_06_12_PM_86216556/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2
page 230
Problem number: 39.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′ + xy′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using

222



Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (67)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (68)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y − xy′

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x2y′ + xy − 2y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −y′x3 − yx2 + 5xy′ + 3y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x4 − 9x2 + 8

)
y′ + yx

(
x2 − 7

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−x5 + 14x3 − 33x

)
y′ − y

(
x4 − 12x2 + 15

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −2y′(0)
F2 = 3y(0)
F3 = 8y′(0)
F4 = −15y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 + 1

8x
4 − 1

48x
6
)
y(0) +

(
x− 1

3x
3 + 1

15x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=0

anx
n

)
− x

(
∞∑
n=1

nanx
n−1

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nxnan

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nxnan

)
+
(

∞∑
n=0

anx
n

)
= 0

n = 0 gives
2a2 + a0 = 0

a2 = −a0
2
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + nan + an = 0

Solving for an+2, gives

(5)an+2 = − an
n+ 2

For n = 1 the recurrence equation gives

6a3 + 2a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
3

For n = 2 the recurrence equation gives

12a4 + 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
8

For n = 3 the recurrence equation gives

20a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
15

For n = 4 the recurrence equation gives

30a6 + 5a4 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
48
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For n = 5 the recurrence equation gives

42a7 + 6a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a1
105

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
3a1x

3 + 1
8a0x

4 + 1
15a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

8x
4
)
a0 +

(
x− 1

3x
3 + 1

15x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

8x
4
)
c1 +

(
x− 1

3x
3 + 1

15x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 + 1

8x
4 − 1

48x
6
)
y(0) +

(
x− 1

3x
3 + 1

15x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 + 1

8x
4
)
c1 +

(
x− 1

3x
3 + 1

15x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

2x
2 + 1

8x
4 − 1

48x
6
)
y(0) +

(
x− 1

3x
3 + 1

15x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 + 1

8x
4
)
c1 +

(
x− 1

3x
3 + 1

15x
5
)
c2 +O

(
x6)

Verified OK.
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1.23.1 Maple step by step solution

Let’s solve
y′′ = −y − xy′

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 1))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (ak+2(k + 2) + ak) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = − ak

k+2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 + 1

8x
4
)
y(0) +

(
x− 1

3x
3 + 1

15x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]+x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

15 − x3

3 + x

)
+ c1

(
x4

8 − x2

2 + 1
)
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2 Chapter 6. SERIES SOLUTIONS OF LINEAR
EQUATIONS. Exercises. 6.2 page 239

2.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
2.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
2.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
2.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
2.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
2.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
2.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
2.13 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
2.14 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
2.15 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
2.16 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
2.17 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
2.18 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
2.19 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
2.20 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
2.21 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
2.22 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
2.23 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
2.24 problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
2.25 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
2.26 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
2.27 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
2.28 problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
2.29 problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
2.30 problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
2.31 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
2.32 problem 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
2.33 problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
2.34 problem 36 (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
2.35 problem 36 (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
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2.1 problem 1
Internal problem ID [5556]
Internal file name [OUTPUT/4804_Sunday_June_05_2022_03_06_13_PM_44411204/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

Unable to solve or complete the solution.

x3y′′ + 4x2y′ + 3y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x3y′′ + 4x2y′ + 3y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4
x

q(x) = 3
x3
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Table 16: Table p(x), q(x) singularites.

p(x) = 4
x

singularity type
x = 0 “regular”

q(x) = 3
x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^3*diff(y(x),x$2)+4*x^2*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 282� �
AsymptoticDSolveValue[x^3*y''[x]+4*x^2*y'[x]+3*y[x]==0,y[x],{x,0,5}]� �
y(x)

→
c1e

− 2i
√
3√

x

(
− 14315125825ix9/2

8796093022208
√
3 +

8083075ix7/2

4294967296
√
3 −

15015i
√
3x5/2

8388608 + 385i
√
3x3/2

8192 + 930483178625x5

844424930131968 −
509233725x4

549755813888 +
425425x3

268435456 −
5005x2

524288 −
315x
512 − 35i

√
x

16
√
3 + 1

)
x5/4

+
c2e

2i
√
3√

x

(
14315125825ix9/2

8796093022208
√
3 −

8083075ix7/2

4294967296
√
3 +

15015i
√
3x5/2

8388608 − 385i
√
3x3/2

8192 + 930483178625x5

844424930131968 −
509233725x4

549755813888 +
425425x3

268435456 −
5005x2

524288 −
315x
512 + 35i

√
x

16
√
3 + 1

)
x5/4
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2.2 problem 2
2.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 248

Internal problem ID [5557]
Internal file name [OUTPUT/4805_Sunday_June_05_2022_03_06_14_PM_43330679/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x(x+ 3)2 y′′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 6x2 + 9x
)
y′′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = − 1
(x+ 3)2 x

235



Table 17: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = − 1
(x+3)2x

singularity type
x = −3 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−3, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x
(
x2 + 6x+ 9

)
y′′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x
(
x2 + 6x+ 9

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
−

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

6xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

6an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

)

+
(

∞∑
n=1

6an−1(n+ r − 1) (n+ r − 2)xn+r−1

)

+
(

∞∑
n=0

9xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

9x−1+ra0r(−1 + r) = 0

Or
9x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

9x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

9r(−1 + r) = 0

237



Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

9x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
−6r2 + 6r + 1
9r (1 + r)

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + 6an−1(n+ r − 1) (n+ r − 2)
+ 9an(n+ r) (n+ r − 1)− an−1 = 0
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Solving for an from recursive equation (4) gives

an = −n2an−2 + 6n2an−1 + 2nran−2 + 12nran−1 + r2an−2 + 6r2an−1 − 5nan−2 − 18nan−1 − 5ran−2 − 18ran−1 + 6an−2 + 11an−1

9 (n+ r) (n+ r − 1)
(4)

Which for the root r = 1 becomes

an = (−an−2 − 6an−1)n2 + (3an−2 + 6an−1)n− 2an−2 + an−1

9n (1 + n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−6r2+6r+1
9r(1+r)

1
18

For n = 2, using the above recursive equation gives

a2 =
27r4 − 39r2 + 1

81r (1 + r)2 (2 + r)

Which for the root r = 1 becomes

a2 = − 11
972

And the table now becomes

n an,r an

a0 1 1
a1

−6r2+6r+1
9r(1+r)

1
18

a2
27r4−39r2+1

81r(1+r)2(2+r) − 11
972

For n = 3, using the above recursive equation gives

a3 =
−108r6 − 324r5 − 18r4 + 504r3 + 270r2 − 36r − 11

729r (1 + r)2 (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 =
277

104976
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And the table now becomes

n an,r an

a0 1 1
a1

−6r2+6r+1
9r(1+r)

1
18

a2
27r4−39r2+1

81r(1+r)2(2+r) − 11
972

a3
−108r6−324r5−18r4+504r3+270r2−36r−11

729r(1+r)2(2+r)2(3+r)
277

104976

For n = 4, using the above recursive equation gives

a4 =
405r8 + 3240r7 + 8370r6 + 4860r5 − 10962r4 − 15768r3 − 4299r2 + 1338r + 277

6561r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 = − 12539
18895680

And the table now becomes

n an,r an

a0 1 1
a1

−6r2+6r+1
9r(1+r)

1
18

a2
27r4−39r2+1

81r(1+r)2(2+r) − 11
972

a3
−108r6−324r5−18r4+504r3+270r2−36r−11

729r(1+r)2(2+r)2(3+r)
277

104976

a4
405r8+3240r7+8370r6+4860r5−10962r4−15768r3−4299r2+1338r+277

6561r(1+r)2(2+r)2(3+r)2(4+r) − 12539
18895680

For n = 5, using the above recursive equation gives

a5 =
−1458r10 − 21870r9 − 128385r8 − 359640r7 − 413478r6 + 167184r5 + 890541r4 + 735966r3 + 110706r2 − 73206r − 12539

59049r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 =
893821

5101833600

And the table now becomes
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n an,r an

a0 1 1
a1

−6r2+6r+1
9r(1+r)

1
18

a2
27r4−39r2+1

81r(1+r)2(2+r) − 11
972

a3
−108r6−324r5−18r4+504r3+270r2−36r−11

729r(1+r)2(2+r)2(3+r)
277

104976

a4
405r8+3240r7+8370r6+4860r5−10962r4−15768r3−4299r2+1338r+277

6561r(1+r)2(2+r)2(3+r)2(4+r) − 12539
18895680

a5
−1458r10−21870r9−128385r8−359640r7−413478r6+167184r5+890541r4+735966r3+110706r2−73206r−12539

59049r(1+r)2(2+r)2(3+r)2(4+r)2(5+r)
893821

5101833600

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x

18 − 11x2

972 + 277x3

104976 − 12539x4

18895680 + 893821x5

5101833600 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −6r2 + 6r + 1
9r (1 + r)

Therefore

lim
r→r2

−6r2 + 6r + 1
9r (1 + r) = lim

r→0

−6r2 + 6r + 1
9r (1 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x(x2 + 6x+ 9) y′′ − y = 0 gives

x
(
x2 + 6x+ 9

)(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
−Cy1(x) ln (x)−

(
∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
x
(
x2+6x+9

)
y′′1(x)− y1(x)

)
ln (x)+x

(
x2+6x+9

)(2y′1(x)
x

− y1(x)
x2

))
C

+ x
(
x2 + 6x+ 9

)( ∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

−

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x
(
x2 + 6x+ 9

)
y′′1(x)− y1(x) = 0
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Eq (7) simplifes to

(8)

x
(
x2 + 6x+ 9

)(2y′1(x)
x

− y1(x)
x2

)
C

+ x
(
x2 + 6x+ 9

)( ∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

−

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x+ 3)2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
− (x+ 3)2

(
∞∑
n=0

anx
n+r1

))
C

x

+
x2(x+ 3)2

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
−
(

∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2x(x+ 3)2

(
∞∑
n=0

xnan(1 + n)
)
− (x+ 3)2

(
∞∑
n=0

anx
1+n

))
C

x

+
x2(x+ 3)2

(
∞∑
n=0

xn−2bnn(n− 1)
)
−
(

∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+2an(1 + n)
)

+
(

∞∑
n=0

12C x1+nan(1 + n)
)

+
(

∞∑
n=0

18C xnan(1 + n)
)

+
∞∑

n =0

(
−C xn+2an

)
+

∞∑
n =0

(
−6C x1+nan

)
+

∞∑
n =0

(−9Canx
n) +

(
∞∑
n=0

nx1+nbn(n− 1)
)

+
(

∞∑
n=0

6xnbnn(n− 1)
)

+
(

∞∑
n=0

9nxn−1bn(n− 1)
)

+
∞∑

n =0

(−bnx
n) = 0
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The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+2an(1 + n) =
∞∑
n=3

2Can−3(n− 2)xn−1

∞∑
n =0

12C x1+nan(1 + n) =
∞∑
n=2

12Can−2(n− 1)xn−1

∞∑
n =0

18C xnan(1 + n) =
∞∑
n=1

18Can−1nxn−1

∞∑
n =0

(
−C xn+2an

)
=

∞∑
n=3

(
−Can−3x

n−1)
∞∑

n =0

(
−6C x1+nan

)
=

∞∑
n=2

(
−6Can−2x

n−1)
∞∑

n =0

(−9Canx
n) =

∞∑
n=1

(
−9Can−1x

n−1)
∞∑

n =0

nx1+nbn(n− 1) =
∞∑
n=2

(n− 2) bn−2(n− 3)xn−1

∞∑
n =0

6xnbnn(n− 1) =
∞∑
n=1

6(n− 1) bn−1(n− 2)xn−1

∞∑
n =0

(−bnx
n) =

∞∑
n=1

(
−bn−1x

n−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n− 1.

(2B)

(
∞∑
n=3

2Can−3(n− 2)xn−1

)
+
(

∞∑
n=2

12Can−2(n− 1)xn−1

)

+
(

∞∑
n=1

18Can−1nxn−1

)
+

∞∑
n =3

(
−Can−3x

n−1)
+

∞∑
n =2

(
−6Can−2x

n−1)+ ∞∑
n =1

(
−9Can−1x

n−1)
+
(

∞∑
n=2

(n− 2) bn−2(n− 3)xn−1

)
+
(

∞∑
n=1

6(n− 1) bn−1(n− 2)xn−1

)

+
(

∞∑
n=0

9nxn−1bn(n− 1)
)

+
∞∑

n =1

(
−bn−1x

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

9C − 1 = 0

Which is solved for C. Solving for C gives

C = 1
9

For n = 2, Eq (2B) gives

(6a0 + 27a1)C − b1 + 18b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5
6 + 18b2 = 0

Solving the above for b2 gives
b2 = − 5

108
For n = 3, Eq (2B) gives

(a0 + 18a1 + 45a2)C + 11b2 + 54b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−167
486 + 54b3 = 0
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Solving the above for b3 gives
b3 =

167
26244

For n = 4, Eq (2B) gives

(3a1 + 30a2 + 63a3)C + 2b2 + 35b3 + 108b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

13583
104976 + 108b4 = 0

Solving the above for b4 gives
b4 = − 13583

11337408
For n = 5, Eq (2B) gives

(5a2 + 42a3 + 81a4)C + 6b3 + 71b4 + 180b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

− 1327279
28343520 + 180b5 = 0

Solving the above for b5 gives
b5 =

1327279
5101833600

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 1

9 and all bn, then the second solution becomes

y2(x) =
1
9

(
x

(
1 + x

18 − 11x2

972 + 277x3

104976 − 12539x4

18895680 + 893821x5

5101833600 +O
(
x6))) ln (x)

+ 1− 5x2

108 + 167x3

26244 − 13583x4

11337408 + 1327279x5

5101833600 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x

18 − 11x2

972 + 277x3

104976 − 12539x4

18895680 + 893821x5

5101833600 +O
(
x6))

+c2

(
1
9

(
x

(
1+ x

18−
11x2

972 + 277x3

104976−
12539x4

18895680 +
893821x5

5101833600 +O
(
x6))) ln (x)

+ 1− 5x2

108 + 167x3

26244 − 13583x4

11337408 + 1327279x5

5101833600 +O
(
x6))
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Hence the final solution is

y = yh

= c1x

(
1 + x

18 − 11x2

972 + 277x3

104976 − 12539x4

18895680 + 893821x5

5101833600 +O
(
x6))

+ c2

x
(
1 + x

18 −
11x2

972 + 277x3

104976 −
12539x4

18895680 +
893821x5

5101833600 +O(x6)
)
ln (x)

9 + 1− 5x2

108

+ 167x3

26244 − 13583x4

11337408 + 1327279x5

5101833600 +O
(
x6)

Summary
The solution(s) found are the following

(1)

y = c1x

(
1 + x

18 − 11x2

972 + 277x3

104976 − 12539x4

18895680 + 893821x5

5101833600 +O
(
x6))

+ c2

x
(
1 + x

18 −
11x2

972 + 277x3

104976 −
12539x4

18895680 +
893821x5

5101833600 +O(x6)
)
ln (x)

9 + 1

− 5x2

108 + 167x3

26244 − 13583x4

11337408 + 1327279x5

5101833600 +O
(
x6)

Verification of solutions

y = c1x

(
1 + x

18 − 11x2

972 + 277x3

104976 − 12539x4

18895680 + 893821x5

5101833600 +O
(
x6))

+ c2

x
(
1 + x

18 −
11x2

972 + 277x3

104976 −
12539x4

18895680 +
893821x5

5101833600 +O(x6)
)
ln (x)

9 + 1− 5x2

108

+ 167x3

26244 − 13583x4

11337408 + 1327279x5

5101833600 +O
(
x6)

Verified OK.
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2.2.1 Maple step by step solution

Let’s solve
x(x2 + 6x+ 9) y′′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

x(x2+6x+9)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y

x(x2+6x+9) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − 1
x(x2+6x+9)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 0

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 1
3

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
x(x2 + 6x+ 9) y′′ − y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(u3 − 3u2)
(

d2

du2y(u)
)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0(3r2 − 3r + 1)ur +
(

∞∑
k=1

(−ak(3k2 + 6kr + 3r2 − 3k − 3r + 1) + ak−1(k + r − 1) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−3r2 + 3r − 1 = 0

• Values of r that satisfy the indicial equation

r ∈
{

1
2 −

I
√
3

6 , 12 +
I
√
3

6

}
• Each term in the series must be 0, giving the recursion relation

ak−1(k + r − 1) (k − 2 + r)− 3
(
k2 + (2r − 1) k + r2 − r + 1

3

)
ak = 0

• Shift index using k− >k + 1
ak(k + r) (k + r − 1)− 3

(
(k + 1)2 + (2r − 1) (k + 1) + r2 − r + 1

3

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)(k+r−1)

3k2+6kr+3r2+3k+3r+1

• Recursion relation for r = 1
2 −

I
√
3

6

ak+1 =
ak

(
k+ 1

2−
I
√
3

6

)(
k− 1

2−
I
√

3
6

)
3k2+6k

(
1
2−

I
√
3

6

)
+3

(
1
2−

I
√
3

6

)2
+3k+ 5

2−
I
√
3

2

• Solution for r = 1
2 −

I
√
3

6[
y(u) =

∞∑
k=0

aku
k+ 1

2−
I
√
3

6 , ak+1 =
ak

(
k+ 1

2−
I
√
3

6

)(
k− 1

2−
I
√
3

6

)
3k2+6k

(
1
2−

I
√
3

6

)
+3

(
1
2−

I
√
3

6

)2
+3k+ 5

2−
I
√
3

2

]
• Revert the change of variables u = x+ 3[

y =
∞∑
k=0

ak(x+ 3)k+
1
2−

I
√
3

6 , ak+1 =
ak

(
k+ 1

2−
I
√
3

6

)(
k− 1

2−
I
√
3

6

)
3k2+6k

(
1
2−

I
√
3

6

)
+3

(
1
2−

I
√
3

6

)2
+3k+ 5

2−
I
√
3

2

]
• Recursion relation for r = 1

2 +
I
√
3

6
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ak+1 =
ak

(
k+ 1

2+
I
√
3

6

)(
k− 1

2+
I
√
3

6

)
3k2+6k

(
1
2+

I
√
3

6

)
+3

(
1
2+

I
√
3

6

)2
+3k+ 5

2+
I
√
3

2

• Solution for r = 1
2 +

I
√
3

6[
y(u) =

∞∑
k=0

aku
k+ 1

2+
I
√
3

6 , ak+1 =
ak

(
k+ 1

2+
I
√
3

6

)(
k− 1

2+
I
√
3

6

)
3k2+6k

(
1
2+

I
√
3

6

)
+3

(
1
2+

I
√
3

6

)2
+3k+ 5

2+
I
√
3

2

]
• Revert the change of variables u = x+ 3[

y =
∞∑
k=0

ak(x+ 3)k+
1
2+

I
√
3

6 , ak+1 =
ak

(
k+ 1

2+
I
√
3

6

)(
k− 1

2+
I
√
3

6

)
3k2+6k

(
1
2+

I
√
3

6

)
+3

(
1
2+

I
√
3

6

)2
+3k+ 5

2+
I
√
3

2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 3)k+
1
2−

I
√
3

6

)
+
(

∞∑
k=0

bk(x+ 3)k+
1
2+

I
√
3

6

)
, ak+1 =

ak

(
k+ 1

2−
I
√

3
6

)(
k− 1

2−
I
√
3

6

)
3k2+6k

(
1
2−

I
√
3

6

)
+3

(
1
2−

I
√
3

6

)2
+3k+ 5

2−
I
√
3

2

, bk+1 =
bk

(
k+ 1

2+
I
√
3

6

)(
k− 1

2+
I
√
3

6

)
3k2+6k

(
1
2+

I
√
3

6

)
+3

(
1
2+

I
√
3

6

)2
+3k+ 5

2+
I
√
3

2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*(x+3)^2*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

(
1 + 1

18x− 11
972x

2 + 277
104976x

3 − 12539
18895680x

4 + 893821
5101833600x

5 +O
(
x6))

+ c2

(
ln (x)

(
1
9x+ 1

162x
2 − 11

8748x
3 + 277

944784x
4 − 12539

170061120x
5 +O

(
x6))

+
(
1− 5

108x
2 + 167

26244x
3 − 13583

11337408x
4 + 1327279

5101833600x
5 +O

(
x6)))
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3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 87� �
AsymptoticDSolveValue[x*(x+3)^2*y''[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x(277x3 − 1188x2 + 5832x+ 104976) log(x)

944784

+ 3037x4 + 864x3 − 174960x2 + 6298560x+ 11337408
11337408

)
+ c2

(
− 12539x5

18895680 + 277x4

104976 − 11x3

972 + x2

18 + x

)
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2.3 problem 3
2.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 261

Internal problem ID [5558]
Internal file name [OUTPUT/4806_Sunday_June_05_2022_03_06_16_PM_27990159/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 9

)2
y′′ + (x+ 3) y′ + 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (71)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (72)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)

255



To find y(x) series solution around x = 0. Hence

F0 = − xy′ + 3y′ + 2y
x4 − 18x2 + 81

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(x3 + 9x2 − 8x− 78) y′ + 8y

(
x2 − 3x+ 1

4

)
(x+ 3)3 (x− 3)4

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(4x5 − 84x4 + 139x3 + 843x2 − 1576x− 786) y′ − 40y

(
x4 − 6x3 + 56

5 x
2 − 57

5 x+ 289
20

)
(x− 3)6 (x+ 3)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(−60x7 + 900x6 − 2901x5 − 3963x4 + 27462x3 − 29286x2 + 31564x− 71520) y′ + 240

(
x6 − 9x5 + 329

10 x
4 − 769

10 x
3 + 5657

40 x2 − 2757
20 x+ 152

15

)
y

(x+ 3)5 (x− 3)8

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(600x9 − 9720x8 + 48444x7 − 60612x6 − 185109x5 + 791229x4 − 2239204x3 + 4979016x2 − 4105612x− 941628) y′ − 1680y

(
x8 − 12x7 + 2288

35 x6 − 8381
35 x5 + 1323

2 x4 − 84811
70 x3 + 1041253

840 x2 − 21223
28 x+ 194981

420

)
(x− 3)10 (x+ 3)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
81 − y′(0)

27

F1 =
2y(0)
2187 − 26y′(0)

729

F2 = −578y(0)
59049 − 262y′(0)

19683

F3 =
2432y(0)
1594323 − 23840y′(0)

531441

F4 = −779924y(0)
43046721 − 313876y′(0)

14348907
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5 − 194981

7748409780x
6
)
y(0)

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5 − 78469

2582803260x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

y′′
(
x4 − 18x2 + 81

)
+ (x+ 3) y′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) anxn−2

)(
x4 − 18x2 + 81

)
+ (x+ 3)

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

nxn+2an(n− 1)
)
+

∞∑
n =2

(−18xnann(n− 1)) +
(

∞∑
n=2

81n(n− 1) anxn−2

)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=1

3nanxn−1

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

nxn+2an(n− 1) =
∞∑
n=4

(n− 2) an−2(n− 3)xn

∞∑
n =2

81n(n− 1) anxn−2 =
∞∑
n=0

81(n+ 2) an+2(n+ 1)xn

∞∑
n =1

3nanxn−1 =
∞∑
n=0

3(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=4

(n− 2) an−2(n− 3)xn

)
+

∞∑
n =2

(−18xnann(n− 1))

+
(

∞∑
n=0

81(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nanx
n

)

+
(

∞∑
n=0

3(n+ 1) an+1x
n

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
162a2 + 3a1 + 2a0 = 0

a2 = −a0
81 − a1

54

n = 1 gives
486a3 + 3a1 + 6a2 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0

6561 − 13a1
2187

n = 2 gives
−32a2 + 972a4 + 9a3 = 0
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Which after substituting earlier equations, simplifies to

289a0
729 + 131a1

243 + 972a4 = 0

Or

a4 = − 289a0
708588 − 131a1

236196

n = 3 gives
−103a3 + 1620a5 + 12a4 = 0

Which after substituting earlier equations, simplifies to

−1216a0
59049 + 11920a1

19683 + 1620a5 = 0

Or

a5 =
304a0

23914845 − 596a1
1594323

For 4 ≤ n, the recurrence equation is

(4)(n− 2) an−2(n− 3)− 18nan(n− 1) + 81(n+ 2) an+2(n+ 1)
+ nan + 3(n+ 1) an+1 + 2an = 0

Solving for an+2, gives

(5)

an+2 =
18n2an − n2an−2 − 19nan + 5nan−2 − 3nan+1 − 2an − 6an−2 − 3an+1

81 (n+ 2) (n+ 1)

= (18n2 − 19n− 2) an
81 (n+ 2) (n+ 1) + (−n2 + 5n− 6) an−2

81 (n+ 2) (n+ 1) + (−3n− 3) an+1

81 (n+ 2) (n+ 1)

For n = 4 the recurrence equation gives

2a2 − 210a4 + 2430a6 + 15a5 = 0

Which after substituting the earlier terms found becomes

a6 = − 194981a0
7748409780 − 78469a1

2582803260
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For n = 5 the recurrence equation gives

6a3 − 353a5 + 3402a7 + 18a6 = 0

Which after substituting the earlier terms found becomes

a7 =
1732937a0

1464449448420 − 13738871a1
488149816140

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
−a0
81 − a1

54

)
x2 +

(
a0

6561 − 13a1
2187

)
x3

+
(
− 289a0
708588 − 131a1

236196

)
x4 +

(
304a0

23914845 − 596a1
1594323

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5
)
a0

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5
)
c1

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

y =
(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5 − 194981

7748409780x
6
)
y(0)

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5 − 78469

2582803260x
6
)
y′(0) +O

(
x6)
(1)

(2)
y =

(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5
)
c1

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5 − 194981

7748409780x
6
)
y(0)

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5 − 78469

2582803260x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5
)
c1

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5
)
c2 +O

(
x6)

Verified OK.

2.3.1 Maple step by step solution

Let’s solve
y′′(x4 − 18x2 + 81) + (x+ 3) y′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2y

x4−18x2+81 −
y′

x3−3x2−9x+27

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x3−3x2−9x+27 +
2y

x4−18x2+81 = 0
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� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
x3−3x2−9x+27 , P3(x) = 2

x4−18x2+81

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 1
36

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 1
18

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
y′′(x3 − 3x2 − 9x+ 27) (x4 − 18x2 + 81) + y′(x4 − 18x2 + 81) + (2x3 − 6x2 − 18x+ 54) y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(u7 − 24u6 + 216u5 − 864u4 + 1296u3)
(

d2

du2y(u)
)
+ (u4 − 12u3 + 36u2)

(
d
du
y(u)

)
+ (2u3 − 24u2 + 72u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 1..3

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 2..4

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

262



◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 3..7

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

36a0(36r2 − 35r + 2)u1+r + (36a1(36r2 + 37r + 3)− 12a0(72r2 − 71r + 2))u2+r + (36a2(36r2 + 109r + 76)− 12a1(72r2 + 73r + 3) + a0(216r2 − 215r + 2))u3+r + (36a3(36r2 + 181r + 221)− 12a2(72r2 + 217r + 148) + a1(216r2 + 217r + 3)− 24a0r(−1 + r))u4+r +
(

∞∑
k=5

(
36ak−1

(
36(k − 1)2 + 72(k − 1) r + 36r2 − 35k + 37− 35r

)
− 12ak−2

(
72(k − 2)2 + 144(k − 2) r + 72r2 − 71k + 144− 71r

)
+ ak−3

(
216(k − 3)2 + 432(k − 3) r + 216r2 − 215k + 647− 215r

)
− 24ak−4(k − 4 + r) (k − 5 + r) + ak−5(k − 5 + r) (k − 6 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
1296r2 − 1260r + 72 = 0

• Values of r that satisfy the indicial equation

r ∈
{

35
72 −

√
937
72 , 3572 +

√
937
72

}
• The coefficients of each power of u must be 0

[36a1(36r2 + 37r + 3)− 12a0(72r2 − 71r + 2) = 0, 36a2(36r2 + 109r + 76)− 12a1(72r2 + 73r + 3) + a0(216r2 − 215r + 2) = 0, 36a3(36r2 + 181r + 221)− 12a2(72r2 + 217r + 148) + a1(216r2 + 217r + 3)− 24a0r(−1 + r) = 0]
• Solve for the dependent coefficient(s){

a1 = a0
(
72r2−71r+2

)
3(36r2+37r+3) , a2 =

a0
(
4320r4+108r3−4019r2+101r+6

)
12(1296r4+5256r3+6877r2+3139r+228) , a3 =

a0
(
233280r6+707616r5+277488r4−618425r3−414801r2+7442r+1104

)
54(46656r6+423792r5+1485324r4+2519317r3+2096184r2+734987r+50388)

}
• Each term in the series must be 0, giving the recursion relation

(ak−5 − 24ak−4 + 216ak−3 − 864ak−2 + 1296ak−1) k2 + (2(ak−5 − 24ak−4 + 216ak−3 − 864ak−2 + 1296ak−1) r − 11ak−5 + 216ak−4 − 1511ak−3 + 4308ak−2 − 3852ak−1) k + (ak−5 − 24ak−4 + 216ak−3 − 864ak−2 + 1296ak−1) r2 + (−11ak−5 + 216ak−4 − 1511ak−3 + 4308ak−2 − 3852ak−1) r + 30ak−5 − 480ak−4 + 2591ak−3 − 5184ak−2 + 2628ak−1 = 0
• Shift index using k− >k + 5

(ak − 24ak+1 + 216ak+2 − 864ak+3 + 1296ak+4) (k + 5)2 + (2(ak − 24ak+1 + 216ak+2 − 864ak+3 + 1296ak+4) r − 11ak + 216ak+1 − 1511ak+2 + 4308ak+3 − 3852ak+4) (k + 5) + (ak − 24ak+1 + 216ak+2 − 864ak+3 + 1296ak+4) r2 + (−11ak + 216ak+1 − 1511ak+2 + 4308ak+3 − 3852ak+4) r + 30ak − 480ak+1 + 2591ak+2 − 5184ak+3 + 2628ak+4 = 0
• Recursion relation that defines series solution to ODE

ak+4 = −k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2krak−48krak+1+432krak+2−1728krak+3+r2ak−24r2ak+1+216r2ak+2−864r2ak+3−kak−24kak+1+649kak+2−4332kak+3−rak−24rak+1+649rak+2−4332rak+3+436ak+2−5244ak+3
36(36k2+72kr+36r2+253k+253r+438)

• Recursion relation for r = 35
72 −

√
937
72

ak+4 = −
k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2k

(
35
72−

√
937
72

)
ak−48k

(
35
72−

√
937
72

)
ak+1+432k

(
35
72−

√
937
72

)
ak+2−1728k

(
35
72−

√
937
72

)
ak+3+

(
35
72−

√
937
72

)2
ak−24

(
35
72−

√
937
72

)2
ak+1+216

(
35
72−

√
937
72

)2
ak+2−864

(
35
72−

√
937
72

)2
ak+3−kak−24kak+1+649kak+2−4332kak+3−

(
35
72−

√
937
72

)
ak−24

(
35
72−

√
937
72

)
ak+1+649

(
35
72−

√
937
72

)
ak+2−4332

(
35
72−

√
937
72

)
ak+3+436ak+2−5244ak+3

36
(
36k2+72k

(
35
72−

√
937
72

)
+36

(
35
72−

√
937
72

)2
+253k+ 40391

72 − 253
√
937

72

)
• Solution for r = 35

72 −
√
937
72[

y(u) =
∞∑
k=0

aku
k+ 35

72−
√

937
72 , ak+4 = −

k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2k
(

35
72−

√
937
72

)
ak−48k

(
35
72−

√
937
72

)
ak+1+432k

(
35
72−

√
937
72

)
ak+2−1728k

(
35
72−

√
937
72

)
ak+3+

(
35
72−

√
937
72

)2
ak−24

(
35
72−

√
937
72

)2
ak+1+216

(
35
72−

√
937
72

)2
ak+2−864

(
35
72−

√
937
72

)2
ak+3−kak−24kak+1+649kak+2−4332kak+3−

(
35
72−

√
937
72

)
ak−24

(
35
72−

√
937
72

)
ak+1+649

(
35
72−

√
937
72

)
ak+2−4332

(
35
72−

√
937
72

)
ak+3+436ak+2−5244ak+3

36
(
36k2+72k

(
35
72−

√
937
72

)
+36

(
35
72−

√
937
72

)2
+253k+ 40391

72 − 253
√
937

72

) , a1 =
a0

(
72

(
35
72−

√
937
72

)2
− 2341

72 + 71
√

937
72

)
3
(
36

(
35
72−

√
937
72

)2
+ 1511

72 − 37
√
937

72

) , a2 =
a0

(
4320

(
35
72−

√
937
72

)4
+108

(
35
72−

√
937
72

)3
−4019

(
35
72−

√
937
72

)2
+ 3967

72 − 101
√

937
72

)
12

(
1296

(
35
72−

√
937
72

)4
+5256

(
35
72−

√
937
72

)3
+6877

(
35
72−

√
937
72

)2
+ 126281

72 − 3139
√

937
72

) , a3 = a0

(
233280

(
35
72−

√
937
72

)6
+707616

(
35
72−

√
937
72

)5
+277488

(
35
72−

√
937
72

)4
−618425

(
35
72−

√
937
72

)3
−414801

(
35
72−

√
937
72

)2
+ 169979

36 − 3721
√

937
36

)
54

(
46656

(
35
72−

√
937
72

)6
+423792

(
35
72−

√
937
72

)5
+1485324

(
35
72−

√
937
72

)4
+2519317

(
35
72−

√
937
72

)3
+2096184

(
35
72−

√
937
72

)2
+ 29352481

72 − 734987
√

937
72

)
]
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• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k+
35
72−

√
937
72 , ak+4 = −

k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2k
(

35
72−

√
937
72

)
ak−48k

(
35
72−

√
937
72

)
ak+1+432k

(
35
72−

√
937
72

)
ak+2−1728k

(
35
72−

√
937
72

)
ak+3+

(
35
72−

√
937
72

)2
ak−24

(
35
72−

√
937
72

)2
ak+1+216

(
35
72−

√
937
72

)2
ak+2−864

(
35
72−

√
937
72

)2
ak+3−kak−24kak+1+649kak+2−4332kak+3−

(
35
72−

√
937
72

)
ak−24

(
35
72−

√
937
72

)
ak+1+649

(
35
72−

√
937
72

)
ak+2−4332

(
35
72−

√
937
72

)
ak+3+436ak+2−5244ak+3

36
(
36k2+72k

(
35
72−

√
937
72

)
+36

(
35
72−

√
937
72

)2
+253k+ 40391

72 − 253
√
937

72

) , a1 =
a0

(
72

(
35
72−

√
937
72

)2
− 2341

72 + 71
√

937
72

)
3
(
36

(
35
72−

√
937
72

)2
+ 1511

72 − 37
√
937

72

) , a2 =
a0

(
4320

(
35
72−

√
937
72

)4
+108

(
35
72−

√
937
72

)3
−4019

(
35
72−

√
937
72

)2
+ 3967

72 − 101
√

937
72

)
12

(
1296

(
35
72−

√
937
72

)4
+5256

(
35
72−

√
937
72

)3
+6877

(
35
72−

√
937
72

)2
+ 126281

72 − 3139
√

937
72

) , a3 = a0

(
233280

(
35
72−

√
937
72

)6
+707616

(
35
72−

√
937
72

)5
+277488

(
35
72−

√
937
72

)4
−618425

(
35
72−

√
937
72

)3
−414801

(
35
72−

√
937
72

)2
+ 169979

36 − 3721
√
937

36

)
54

(
46656

(
35
72−

√
937
72

)6
+423792

(
35
72−

√
937
72

)5
+1485324

(
35
72−

√
937
72

)4
+2519317

(
35
72−

√
937
72

)3
+2096184

(
35
72−

√
937
72

)2
+ 29352481

72 − 734987
√

937
72

)
]

• Recursion relation for r = 35
72 +

√
937
72

ak+4 = −
k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2k

(
35
72+

√
937
72

)
ak−48k

(
35
72+

√
937
72

)
ak+1+432k

(
35
72+

√
937
72

)
ak+2−1728k

(
35
72+

√
937
72

)
ak+3+

(
35
72+

√
937
72

)2
ak−24

(
35
72+

√
937
72

)2
ak+1+216

(
35
72+

√
937
72

)2
ak+2−864

(
35
72+

√
937
72

)2
ak+3−kak−24kak+1+649kak+2−4332kak+3−

(
35
72+

√
937
72

)
ak−24

(
35
72+

√
937
72

)
ak+1+649

(
35
72+

√
937
72

)
ak+2−4332

(
35
72+

√
937
72

)
ak+3+436ak+2−5244ak+3

36
(
36k2+72k

(
35
72+

√
937
72

)
+36

(
35
72+

√
937
72

)2
+253k+ 40391

72 + 253
√

937
72

)
• Solution for r = 35

72 +
√
937
72[

y(u) =
∞∑
k=0

aku
k+ 35

72+
√

937
72 , ak+4 = −

k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2k
(

35
72+

√
937
72

)
ak−48k

(
35
72+

√
937
72

)
ak+1+432k

(
35
72+

√
937
72

)
ak+2−1728k

(
35
72+

√
937
72

)
ak+3+

(
35
72+

√
937
72

)2
ak−24

(
35
72+

√
937
72

)2
ak+1+216

(
35
72+

√
937
72

)2
ak+2−864

(
35
72+

√
937
72

)2
ak+3−kak−24kak+1+649kak+2−4332kak+3−

(
35
72+

√
937
72

)
ak−24

(
35
72+

√
937
72

)
ak+1+649

(
35
72+

√
937
72

)
ak+2−4332

(
35
72+

√
937
72

)
ak+3+436ak+2−5244ak+3

36
(
36k2+72k

(
35
72+

√
937
72

)
+36

(
35
72+

√
937
72

)2
+253k+ 40391

72 + 253
√
937

72

) , a1 =
a0

(
72

(
35
72+

√
937
72

)2
− 2341

72 − 71
√

937
72

)
3
(
36

(
35
72+

√
937
72

)2
+ 1511

72 + 37
√
937

72

) , a2 =
a0

(
4320

(
35
72+

√
937
72

)4
+108

(
35
72+

√
937
72

)3
−4019

(
35
72+

√
937
72

)2
+ 3967

72 + 101
√
937

72

)
12

(
1296

(
35
72+

√
937
72

)4
+5256

(
35
72+

√
937
72

)3
+6877

(
35
72+

√
937
72

)2
+ 126281

72 + 3139
√
937

72

) , a3 = a0

(
233280

(
35
72+

√
937
72

)6
+707616

(
35
72+

√
937
72

)5
+277488

(
35
72+

√
937
72

)4
−618425

(
35
72+

√
937
72

)3
−414801

(
35
72+

√
937
72

)2
+ 169979

36 + 3721
√
937

36

)
54

(
46656

(
35
72+

√
937
72

)6
+423792

(
35
72+

√
937
72

)5
+1485324

(
35
72+

√
937
72

)4
+2519317

(
35
72+

√
937
72

)3
+2096184

(
35
72+

√
937
72

)2
+ 29352481

72 + 734987
√
937

72

)
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k+
35
72+

√
937
72 , ak+4 = −

k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2k
(

35
72+

√
937
72

)
ak−48k

(
35
72+

√
937
72

)
ak+1+432k

(
35
72+

√
937
72

)
ak+2−1728k

(
35
72+

√
937
72

)
ak+3+

(
35
72+

√
937
72

)2
ak−24

(
35
72+

√
937
72

)2
ak+1+216

(
35
72+

√
937
72

)2
ak+2−864

(
35
72+

√
937
72

)2
ak+3−kak−24kak+1+649kak+2−4332kak+3−

(
35
72+

√
937
72

)
ak−24

(
35
72+

√
937
72

)
ak+1+649

(
35
72+

√
937
72

)
ak+2−4332

(
35
72+

√
937
72

)
ak+3+436ak+2−5244ak+3

36
(
36k2+72k

(
35
72+

√
937
72

)
+36

(
35
72+

√
937
72

)2
+253k+ 40391

72 + 253
√
937

72

) , a1 =
a0

(
72

(
35
72+

√
937
72

)2
− 2341

72 − 71
√

937
72

)
3
(
36

(
35
72+

√
937
72

)2
+ 1511

72 + 37
√
937

72

) , a2 =
a0

(
4320

(
35
72+

√
937
72

)4
+108

(
35
72+

√
937
72

)3
−4019

(
35
72+

√
937
72

)2
+ 3967

72 + 101
√
937

72

)
12

(
1296

(
35
72+

√
937
72

)4
+5256

(
35
72+

√
937
72

)3
+6877

(
35
72+

√
937
72

)2
+ 126281

72 + 3139
√
937

72

) , a3 = a0

(
233280

(
35
72+

√
937
72

)6
+707616

(
35
72+

√
937
72

)5
+277488

(
35
72+

√
937
72

)4
−618425

(
35
72+

√
937
72

)3
−414801

(
35
72+

√
937
72

)2
+ 169979

36 + 3721
√

937
36

)
54

(
46656

(
35
72+

√
937
72

)6
+423792

(
35
72+

√
937
72

)5
+1485324

(
35
72+

√
937
72

)4
+2519317

(
35
72+

√
937
72

)3
+2096184

(
35
72+

√
937
72

)2
+ 29352481

72 + 734987
√

937
72

)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x+ 3)k+
35
72−

√
937
72

)
+
(

∞∑
k=0

bk(x+ 3)k+
35
72+

√
937
72

)
, ak+4 = −

k2ak−24k2ak+1+216k2ak+2−864k2ak+3+2k
(

35
72−

√
937
72

)
ak−48k

(
35
72−

√
937
72

)
ak+1+432k

(
35
72−

√
937
72

)
ak+2−1728k

(
35
72−

√
937
72

)
ak+3+

(
35
72−

√
937
72

)2
ak−24

(
35
72−

√
937
72

)2
ak+1+216

(
35
72−

√
937
72

)2
ak+2−864

(
35
72−

√
937
72

)2
ak+3−kak−24kak+1+649kak+2−4332kak+3−

(
35
72−

√
937
72

)
ak−24

(
35
72−

√
937
72

)
ak+1+649

(
35
72−

√
937
72

)
ak+2−4332

(
35
72−

√
937
72

)
ak+3+436ak+2−5244ak+3

36
(
36k2+72k

(
35
72−

√
937
72

)
+36

(
35
72−

√
937
72

)2
+253k+ 40391

72 − 253
√

937
72

) , a1 =
a0

(
72

(
35
72−

√
937
72

)2
− 2341

72 + 71
√
937

72

)
3
(
36

(
35
72−

√
937
72

)2
+ 1511

72 − 37
√

937
72

) , a2 =
a0

(
4320

(
35
72−

√
937
72

)4
+108

(
35
72−

√
937
72

)3
−4019

(
35
72−

√
937
72

)2
+ 3967

72 − 101
√
937

72

)
12

(
1296

(
35
72−

√
937
72

)4
+5256

(
35
72−

√
937
72

)3
+6877

(
35
72−

√
937
72

)2
+ 126281

72 − 3139
√
937

72

) , a3 = a0

(
233280

(
35
72−

√
937
72

)6
+707616

(
35
72−

√
937
72

)5
+277488

(
35
72−

√
937
72

)4
−618425

(
35
72−

√
937
72

)3
−414801

(
35
72−

√
937
72

)2
+ 169979

36 − 3721
√
937

36

)
54

(
46656

(
35
72−

√
937
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)6
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(
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√
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)5
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(
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√
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)4
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(
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√
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)3
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(
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√
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)2
+ 29352481

72 − 734987
√
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) , bk+4 = −
k2bk−24k2bk+1+216k2bk+2−864k2bk+3+2k

(
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√
937
72

)
bk−48k

(
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72+

√
937
72

)
bk+1+432k

(
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72+

√
937
72

)
bk+2−1728k

(
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√
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72

)
bk+3+

(
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√
937
72

)2
bk−24

(
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√
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72

)2
bk+1+216

(
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√
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)2
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(
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√
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)2
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(
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√
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)
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(
35
72+

√
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)
bk+1+649

(
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√
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)
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(
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√
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)
bk+3+436bk+2−5244bk+3

36
(
36k2+72k

(
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√
937
72

)
+36

(
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72+

√
937
72

)2
+253k+ 40391

72 + 253
√

937
72

) , b1 =
b0

(
72

(
35
72+

√
937
72

)2
− 2341

72 − 71
√
937

72

)
3
(
36

(
35
72+

√
937
72

)2
+ 1511

72 + 37
√
937

72

) , b2 =
b0

(
4320

(
35
72+

√
937
72

)4
+108

(
35
72+

√
937
72

)3
−4019

(
35
72+

√
937
72

)2
+ 3967

72 + 101
√
937

72

)
12

(
1296

(
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72+

√
937
72

)4
+5256

(
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72+

√
937
72

)3
+6877

(
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72+

√
937
72

)2
+ 126281

72 + 3139
√

937
72

) , b3 = b0

(
233280

(
35
72+

√
937
72

)6
+707616

(
35
72+

√
937
72

)5
+277488

(
35
72+

√
937
72

)4
−618425

(
35
72+

√
937
72

)3
−414801

(
35
72+

√
937
72

)2
+ 169979

36 + 3721
√

937
36

)
54

(
46656

(
35
72+

√
937
72

)6
+423792

(
35
72+

√
937
72

)5
+1485324

(
35
72+

√
937
72

)4
+2519317

(
35
72+

√
937
72

)3
+2096184

(
35
72+

√
937
72

)2
+ 29352481

72 + 734987
√

937
72

)
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve((x^2-9)^2*diff(y(x),x$2)+(x+3)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

81x
2 + 1

6561x
3 − 289

708588x
4 + 304

23914845x
5
)
y(0)

+
(
x− 1

54x
2 − 13

2187x
3 − 131

236196x
4 − 596

1594323x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 70� �
AsymptoticDSolveValue[(x^2-9)^2*y''[x]+(x+3)*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
304x5

23914845 − 289x4

708588 + x3

6561 − x2

81 + 1
)

+ c2

(
− 596x5

1594323 − 131x4

236196 − 13x3

2187 − x2

54 + x

)
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2.4 problem 4
Internal problem ID [5559]
Internal file name [OUTPUT/4807_Sunday_June_05_2022_03_06_18_PM_7339101/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′

x
+ y

(x− 1)3
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′ − y′

x
+ y

(x− 1)3
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1
x

q(x) = 1
(x− 1)3
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Table 20: Table p(x), q(x) singularites.

p(x) = − 1
x

singularity type
x = 0 “regular”

q(x) = 1
(x−1)3

singularity type
x = 1 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : [1]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

y′′x(x− 1)3 − y′(x− 1)3 + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)3

−

(
∞∑
n=0

(n+ r) anxn+r−1

)
(x− 1)3 + x

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r−1)
)
+

∞∑
n =0

(
−3x1+n+ran(n+ r) (n+ r−1)

)
+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+r−1an(n+ r) (n+ r − 1)

)
+

∞∑
n =0

(
−xn+r+2an(n+ r)

)
+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=3

an−3(n+ r − 3) (n− 4 + r)xn+r−1

∞∑
n =0

(
−3x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−3an−2(n+ r − 2) (n+ r − 3)xn+r−1)

∞∑
n =0

3xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

(
−xn+r+2an(n+ r)

)
=

∞∑
n=3

(
−an−3(n+ r − 3)xn+r−1)

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r−1

∞∑
n =0

(
−3xn+ran(n+ r)

)
=

∞∑
n=1

(
−3an−1(n+ r − 1)xn+r−1)

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=3

an−3(n+ r − 3) (n− 4 + r)xn+r−1

)

+
∞∑

n =2

(
−3an−2(n+ r − 2) (n+ r − 3)xn+r−1)

+
(

∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r−1

)

+
∞∑

n =0

(
−xn+r−1an(n+ r) (n+ r− 1)

)
+

∞∑
n =3

(
−an−3(n+ r− 3)xn+r−1)

+
(

∞∑
n=2

3an−2(n+ r − 2)xn+r−1

)
+

∞∑
n =1

(
−3an−1(n+ r − 1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

−xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

−x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
−x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2− r) = 0

Since the above is true for all x then the indicial equation becomes

−r(−2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 0
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Since a0 6= 0 then the indicial equation becomes

r x−1+r(2− r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
3r(−2 + r)

r2 − 1
Substituting n = 2 in Eq. (2B) gives

a2 =
6r2 − 12r + 1

r (2 + r)

For 3 ≤ n the recursive equation is

(3)an−3(n+ r − 3) (n− 4 + r)− 3an−2(n+ r − 2) (n+ r − 3)
+ 3an−1(n+ r − 1) (n+ r − 2)− an(n+ r) (n+ r − 1)− an−3(n+ r − 3)
+ 3an−2(n+ r − 2)− 3an−1(n+ r − 1) + an(n+ r) + an−2 = 0

271



Solving for an from recursive equation (4) gives

an = n2an−3 − 3n2an−2 + 3n2an−1 + 2nran−3 − 6nran−2 + 6nran−1 + r2an−3 − 3r2an−2 + 3r2an−1 − 8nan−3 + 18nan−2 − 12nan−1 − 8ran−3 + 18ran−2 − 12ran−1 + 15an−3 − 23an−2 + 9an−1

n2 + 2nr + r2 − 2n− 2r
(4)

Which for the root r = 2 becomes

an = (an−3 − 3an−2 + 3an−1)n2 + (−4an−3 + 6an−2)n+ 3an−3 + an−2 − 3an−1

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

3r(−2+r)
r2−1 0

a2
6r2−12r+1

r(2+r)
1
8

For n = 3, using the above recursive equation gives

a3 =
10r4 − 20r3 − 4r2 + 14r − 3
(r + 3) (1 + r)2 (−1 + r)

Which for the root r = 2 becomes
a3 =

1
5

And the table now becomes

n an,r an

a0 1 1
a1

3r(−2+r)
r2−1 0

a2
6r2−12r+1

r(2+r)
1
8

a3
10r4−20r3−4r2+14r−3
(r+3)(1+r)2(−1+r)

1
5

For n = 4, using the above recursive equation gives

a4 =
15r6 − 54r4 + 13r2 − 1

(4 + r) (2 + r)2 r (−1 + r) (1 + r)
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Which for the root r = 2 becomes

a4 =
49
192

And the table now becomes

n an,r an

a0 1 1
a1

3r(−2+r)
r2−1 0

a2
6r2−12r+1

r(2+r)
1
8

a3
10r4−20r3−4r2+14r−3
(r+3)(1+r)2(−1+r)

1
5

a4
15r6−54r4+13r2−1

(4+r)(2+r)2r(−1+r)(1+r)
49
192

For n = 5, using the above recursive equation gives

a5 =
21r8 + 84r7 + 14r6 − 252r5 − 298r4 − 78r3 + 47r2 + 30r − 9

(5 + r) (r + 3)2 r (−1 + r) (1 + r)2 (2 + r)
Which for the root r = 2 becomes

a5 =
423
1400

And the table now becomes

n an,r an

a0 1 1
a1

3r(−2+r)
r2−1 0

a2
6r2−12r+1

r(2+r)
1
8

a3
10r4−20r3−4r2+14r−3
(r+3)(1+r)2(−1+r)

1
5

a4
15r6−54r4+13r2−1

(4+r)(2+r)2r(−1+r)(1+r)
49
192

a5
21r8+84r7+14r6−252r5−298r4−78r3+47r2+30r−9

(5+r)(r+3)2r(−1+r)(1+r)2(2+r)
423
1400

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 6r2 − 12r + 1
r (2 + r)

Therefore

lim
r→r2

6r2 − 12r + 1
r (2 + r) = lim

r→0

6r2 − 12r + 1
r (2 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode y′′x(x− 1)3 − y′(x− 1)3 + xy = 0 gives

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)3

−

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
(x− 1)3

+ x

(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
y′′1(x)x(x− 1)3 − y′1(x) (x− 1)3 + y1(x)x

)
ln (x)

+
(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)3 − y1(x) (x− 1)3

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)3

−

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
(x− 1)3 + x

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x(x− 1)3 − y′1(x) (x− 1)3 + y1(x)x = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)3 − y1(x) (x− 1)3

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)3

−

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
(x− 1)3 + x

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x− 1)3

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
− 2
(

∞∑
n=0

anx
n+r1

)
(x− 1)3

)
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2(x− 1)3 −

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
(x− 1)3 x+ x2

(
∞∑
n=0

bnx
n+r2

)
x

= 0

Since r1 = 2 and r2 = 0 then the above becomes(
2x(x− 1)3

(
∞∑
n=0

x1+nan(n+ 2)
)
− 2
(

∞∑
n=0

anx
n+2
)
(x− 1)3

)
C

x

+

(
∞∑
n=0

xn−2bnn(n− 1)
)
x2(x− 1)3 −

(
∞∑
n=0

xn−1bnn

)
(x− 1)3 x+ x2

(
∞∑
n=0

bnx
n

)
x

= 0
(10)

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+4an(n+ 2)
)

+
∞∑

n =0

(
−6C xn+3an(n+ 2)

)
+
(

∞∑
n=0

6C xn+2an(n+ 2)
)

+
∞∑

n =0

(
−2C x1+nan(n+ 2)

)
+

∞∑
n =0

(
−2C xn+4an

)
+
(

∞∑
n=0

6C xn+3an

)
+

∞∑
n =0

(
−6C xn+2an

)
+
(

∞∑
n=0

2C x1+nan

)
+
(

∞∑
n=0

nxn+2bn(n− 1)
)

+
∞∑

n =0

(
−3nx1+nbn(n− 1)

)
+
(

∞∑
n=0

3xnbnn(n− 1)
)

+
∞∑

n =0

(
−nxn−1bn(n− 1)

)
+

∞∑
n =0

(
−nxn+2bn

)
+
(

∞∑
n=0

3nx1+nbn

)

+
∞∑

n =0

(−3xnbnn) +
(

∞∑
n=0

xn−1bnn

)
+
(

∞∑
n=0

x1+nbn

)
= 0
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The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+4an(n+ 2) =
∞∑
n=5

2Can−5(n− 3)xn−1

∞∑
n =0

(
−6C xn+3an(n+ 2)

)
=

∞∑
n=4

(
−6Can−4(n− 2)xn−1)

∞∑
n =0

6C xn+2an(n+ 2) =
∞∑
n=3

6Can−3(n− 1)xn−1

∞∑
n =0

(
−2C x1+nan(n+ 2)

)
=

∞∑
n=2

(
−2Can−2nxn−1)

∞∑
n =0

(
−2C xn+4an

)
=

∞∑
n=5

(
−2Can−5x

n−1)
∞∑

n =0

6C xn+3an =
∞∑
n=4

6Can−4x
n−1

∞∑
n =0

(
−6C xn+2an

)
=

∞∑
n=3

(
−6Can−3x

n−1)
∞∑

n =0

2C x1+nan =
∞∑
n=2

2Can−2x
n−1

∞∑
n =0

nxn+2bn(n− 1) =
∞∑
n=3

(n− 3) bn−3(n− 4)xn−1

∞∑
n =0

(
−3nx1+nbn(n− 1)

)
=

∞∑
n=2

(
−3(n− 2) bn−2(n− 3)xn−1)

∞∑
n =0

3xnbnn(n− 1) =
∞∑
n=1

3(n− 1) bn−1(n− 2)xn−1

∞∑
n =0

(
−nxn+2bn

)
=

∞∑
n=3

(
−(n− 3) bn−3x

n−1)
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∞∑
n =0

3nx1+nbn =
∞∑
n=2

3(n− 2) bn−2x
n−1

∞∑
n =0

(−3xnbnn) =
∞∑
n=1

(
−3(n− 1) bn−1x

n−1)
∞∑

n =0

x1+nbn =
∞∑
n=2

bn−2x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=5

2Can−5(n− 3)xn−1

)
+

∞∑
n =4

(
−6Can−4(n− 2)xn−1)

+
(

∞∑
n=3

6Can−3(n− 1)xn−1

)
+

∞∑
n =2

(
−2Can−2nxn−1)

+
∞∑

n =5

(
−2Can−5x

n−1)+( ∞∑
n=4

6Can−4x
n−1

)
+

∞∑
n =3

(
−6Can−3x

n−1)
+
(

∞∑
n=2

2Can−2x
n−1

)
+
(

∞∑
n=3

(n− 3) bn−3(n− 4)xn−1

)

+
∞∑

n =2

(
−3(n− 2) bn−2(n− 3)xn−1)

+
(

∞∑
n=1

3(n− 1) bn−1(n− 2)xn−1

)
+

∞∑
n =0

(
−nxn−1bn(n− 1)

)
+

∞∑
n =3

(
−(n− 3) bn−3x

n−1)+( ∞∑
n=2

3(n− 2) bn−2x
n−1

)

+
∞∑

n =1

(
−3(n−1) bn−1x

n−1)+( ∞∑
n=0

xn−1bnn

)
+
(

∞∑
n=2

bn−2x
n−1

)
=0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

b1 = 0
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Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

−2C + 1 = 0

Which is solved for C. Solving for C gives

C = 1
2

For n = 3, Eq (2B) gives

(6a0 − 4a1)C + 4b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3− 3b3 = 0

Solving the above for b3 gives
b3 = 1

For n = 4, Eq (2B) gives

(−6a0 + 12a1 − 6a2)C − b1 + b2 + 9b3 − 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

45
8 − 8b4 = 0

Solving the above for b4 gives
b4 =

45
64

For n = 5, Eq (2B) gives

2(a0 − 6a1 + 9a2 − 4a3)C − 8b3 + 24b4 − 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

51
5 − 15b5 = 0

Solving the above for b5 gives
b5 =

17
25
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Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 1
2 and all bn, then the second solution becomes

y2(x) =
1
2

(
x2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O
(
x6))) ln (x)

+ 1 + x3 + 45x4

64 + 17x5

25 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O
(
x6))

+ c2

(
1
2

(
x2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O
(
x6))) ln (x) + 1 + x3 + 45x4

64

+ 17x5

25 +O
(
x6))

Hence the final solution is

y = yh

= c1x
2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O
(
x6))

+ c2

x2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O(x6)
)
ln (x)

2 + 1 + x3 + 45x4

64 + 17x5

25

+O
(
x6)

280



Summary
The solution(s) found are the following

(1)

y = c1x
2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O
(
x6))

+ c2

x2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O(x6)
)
ln (x)

2 + 1 + x3 + 45x4

64 + 17x5

25

+O
(
x6)

Verification of solutions

y = c1x
2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O
(
x6))

+ c2

x2
(
1 + x2

8 + x3

5 + 49x4

192 + 423x5

1400 +O(x6)
)
ln (x)

2 + 1 + x3 + 45x4

64 + 17x5

25

+O
(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a = 0, e <> 0, c <> 0 `� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 52� �
Order:=6;
dsolve(diff(y(x),x$2)-1/x*diff(y(x),x)+1/(x-1)^3*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

2
(
1 + 1

8x
2 + 1

5x
3 + 49

192x
4 + 423

1400x
5 +O

(
x6))

+c2

(
ln (x)

(
−x2− 1

8x
4− 1

5x
5+O

(
x6))+

(
−2−2x3− 45

32x
4− 34

25x
5+O

(
x6)))
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3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 71� �
AsymptoticDSolveValue[y''[x]-1/x*y'[x]+1/(x-1)^3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
16
(
x2 + 8

)
x2 log(x) + 1

64
(
−5x4 + 64x3 − 400x2 + 64

))
+ c2

(
49x6

192 + x5

5 + x4

8 + x2
)
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2.5 problem 5
2.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 297

Internal problem ID [5560]
Internal file name [OUTPUT/4808_Sunday_June_05_2022_03_06_21_PM_37861751/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x3 + 4x

)
y′′ − 2xy′ + 6y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 4x
)
y′′ − 2xy′ + 6y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 2
x2 + 4

q(x) = 6
x (x2 + 4)
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Table 21: Table p(x), q(x) singularites.

p(x) = − 2
x2+4

singularity type
x = −2i “regular”
x = 2i “regular”

q(x) = 6
x(x2+4)

singularity type
x = 0 “regular”

x = −2i “regular”
x = 2i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−2i, 2i, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

y′′
(
x2 + 4

)
x− 2xy′ + 6y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)(
x2 + 4

)
x

− 2x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ 6
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

)
+
(

∞∑
n=0

6anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

(
−2xn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1)

∞∑
n =0

6anxn+r =
∞∑
n=1

6an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=2

an−2(n+r−2) (n−3+r)xn+r−1

)
+
(

∞∑
n=0

4xn+r−1an(n+r) (n+r−1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1)xn+r−1)+( ∞∑

n=1

6an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

4x−1+ra0r(−1 + r) = 0

Or
4x−1+ra0r(−1 + r) = 0
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Since a0 6= 0 then the above simplifies to

4x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

4r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

4x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
r − 3

2r (1 + r)
For 2 ≤ n the recursive equation is

(3)an−2(n+ r− 2) (n− 3+ r) + 4an(n+ r) (n+ r− 1)− 2an−1(n+ r− 1) + 6an−1 = 0

Solving for an from recursive equation (4) gives

an = −n2an−2 + 2nran−2 + r2an−2 − 5nan−2 − 2nan−1 − 5ran−2 − 2ran−1 + 6an−2 + 8an−1

4 (n+ r) (n+ r − 1)
(4)

Which for the root r = 1 becomes

an = −n2an−2 + (3an−2 + 2an−1)n− 2an−2 − 6an−1

4n (1 + n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

r−3
2r(1+r) −1

2

For n = 2, using the above recursive equation gives

a2 =
−r4 + 2r2 − 5r + 6
4r (1 + r)2 (2 + r)

Which for the root r = 1 becomes
a2 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1

r−3
2r(1+r) −1

2

a2
−r4+2r2−5r+6
4r(1+r)2(2+r)

1
24
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For n = 3, using the above recursive equation gives

a3 =
−2r5 + 9r3 + 6r2 + 17r − 6
8r (1 + r)2 (2 + r)2 (3 + r)

Which for the root r = 1 becomes
a3 =

1
48

And the table now becomes

n an,r an

a0 1 1
a1

r−3
2r(1+r) −1

2

a2
−r4+2r2−5r+6
4r(1+r)2(2+r)

1
24

a3
−2r5+9r3+6r2+17r−6
8r(1+r)2(2+r)2(3+r)

1
48

For n = 4, using the above recursive equation gives

a4 =
r8 + 8r7 + 19r6 + 17r5 + 9r4 + 17r3 − 5r2 − 114r − 72

16r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 = − 1
384

And the table now becomes

n an,r an

a0 1 1
a1

r−3
2r(1+r) −1

2

a2
−r4+2r2−5r+6
4r(1+r)2(2+r)

1
24

a3
−2r5+9r3+6r2+17r−6
8r(1+r)2(2+r)2(3+r)

1
48

a4
r8+8r7+19r6+17r5+9r4+17r3−5r2−114r−72

16r(1+r)2(2+r)2(3+r)2(4+r) − 1
384

For n = 5, using the above recursive equation gives

a5 =
3r9 + 33r8 + 124r7 + 126r6 − 396r5 − 1408r4 − 2077r3 − 1967r2 − 798r + 360

32r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)
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Which for the root r = 1 becomes

a5 = − 5
2304

And the table now becomes

n an,r an

a0 1 1
a1

r−3
2r(1+r) −1

2

a2
−r4+2r2−5r+6
4r(1+r)2(2+r)

1
24

a3
−2r5+9r3+6r2+17r−6
8r(1+r)2(2+r)2(3+r)

1
48

a4
r8+8r7+19r6+17r5+9r4+17r3−5r2−114r−72

16r(1+r)2(2+r)2(3+r)2(4+r) − 1
384

a5
3r9+33r8+124r7+126r6−396r5−1408r4−2077r3−1967r2−798r+360

32r(1+r)2(2+r)2(3+r)2(4+r)2(5+r) − 5
2304

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

24 + x3

48 − x4

384 − 5x5

2304 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= r − 3
2r (1 + r)

Therefore

lim
r→r2

r − 3
2r (1 + r) = lim

r→0

r − 3
2r (1 + r)

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode y′′(x2 + 4)x− 2xy′ + 6y = 0 gives

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))(
x2 + 4

)
x

− 2x
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ 6Cy1(x) ln (x) + 6
(

∞∑
n=0

bnx
n+r2

)
= 0
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Which can be written as

(7)

((
y′′1(x)

(
x2+4

)
x−2y′1(x)x+6y1(x)

)
ln (x)+

(
2y′1(x)

x
− y1(x)

x2

)(
x2+4

)
x

− 2y1(x)
)
C +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))(
x2 + 4

)
x

− 2x
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 6
(

∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)
(
x2 + 4

)
x− 2y′1(x)x+ 6y1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)(
x2 + 4

)
x− 2y1(x)

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))(
x2 + 4

)
x

− 2x
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 6
(

∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x2 + 4)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
− (x2 + 2x+ 4)

(
∞∑
n=0

anx
n+r1

))
C

x

+
(x4 + 4x2)

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
− 2
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x2 + 6

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0
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Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2x(x2 + 4)

(
∞∑
n=0

xnan(1 + n)
)
− (x2 + 2x+ 4)

(
∞∑
n=0

anx
1+n

))
C

x

+
(x4 + 4x2)

(
∞∑
n=0

xn−2bnn(n− 1)
)
− 2
(

∞∑
n=0

xn−1bnn

)
x2 + 6

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+2an(1 + n)
)

+
(

∞∑
n=0

8C xnan(1 + n)
)

+
∞∑

n =0

(
−C xn+2an

)
+

∞∑
n =0

(
−2C x1+nan

)
+

∞∑
n =0

(−4Canx
n) +

(
∞∑
n=0

nx1+nbn(n− 1)
)

+
(

∞∑
n=0

4nxn−1bn(n− 1)
)

+
∞∑

n =0

(−2xnbnn) +
(

∞∑
n=0

6bnxn

)
= 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+2an(1 + n) =
∞∑
n=3

2Can−3(n− 2)xn−1

∞∑
n =0

8C xnan(1 + n) =
∞∑
n=1

8Can−1nxn−1

∞∑
n =0

(
−C xn+2an

)
=

∞∑
n=3

(
−Can−3x

n−1)
∞∑

n =0

(
−2C x1+nan

)
=

∞∑
n=2

(
−2Can−2x

n−1)
∞∑

n =0

(−4Canx
n) =

∞∑
n=1

(
−4Can−1x

n−1)
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∞∑
n =0

nx1+nbn(n− 1) =
∞∑
n=2

(n− 2) bn−2(n− 3)xn−1

∞∑
n =0

(−2xnbnn) =
∞∑
n=1

(
−2(n− 1) bn−1x

n−1)
∞∑

n =0

6bnxn =
∞∑
n=1

6bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=3

2Can−3(n− 2)xn−1

)
+
(

∞∑
n=1

8Can−1nxn−1

)

+
∞∑

n =3

(
−Can−3x

n−1)+ ∞∑
n =2

(
−2Can−2x

n−1)+ ∞∑
n =1

(
−4Can−1x

n−1)
+
(

∞∑
n=2

(n− 2) bn−2(n− 3)xn−1

)
+
(

∞∑
n=0

4nxn−1bn(n− 1)
)

+
∞∑

n =1

(
−2(n− 1) bn−1x

n−1)+( ∞∑
n=1

6bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

4C + 6 = 0

Which is solved for C. Solving for C gives

C = −3
2

For n = 2, Eq (2B) gives

(−2a0 + 12a1)C + 4b1 + 8b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12 + 8b2 = 0

294



Solving the above for b2 gives
b2 = −3

2
For n = 3, Eq (2B) gives

(a0 − 2a1 + 20a2)C + 2b2 + 24b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−29
4 + 24b3 = 0

Solving the above for b3 gives
b3 =

29
96

For n = 4, Eq (2B) gives

(3a1 − 2a2 + 28a3)C + 2b2 + 48b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3
2 + 48b4 = 0

Solving the above for b4 gives
b4 =

1
32

For n = 5, Eq (2B) gives

(5a2 − 2a3 + 36a4)C + 6b3 − 2b4 + 80b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

105
64 + 80b5 = 0

Solving the above for b5 gives
b5 = − 21

1024
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = −3
2 and all bn, then the second solution becomes

y2(x) = −3
2

(
x

(
1− x

2 + x2

24 + x3

48 − x4

384 − 5x5

2304 +O
(
x6))) ln (x)

+ 1− 3x2

2 + 29x3

96 + x4

32 − 21x5

1024 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

24 + x3

48 − x4

384 − 5x5

2304 +O
(
x6))

+ c2

(
−3
2

(
x

(
1− x

2 + x2

24 + x3

48 − x4

384 − 5x5

2304 +O
(
x6))) ln (x) + 1− 3x2

2

+ 29x3

96 + x4

32 − 21x5

1024 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− x

2 + x2

24 + x3

48 − x4

384 − 5x5

2304 +O
(
x6))

+ c2

−
3x
(
1− x

2 +
x2

24 +
x3

48 −
x4

384 −
5x5

2304 +O(x6)
)
ln (x)

2 + 1− 3x2

2 + 29x3

96 + x4

32

− 21x5

1024 +O
(
x6)

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

24 + x3

48 − x4

384 − 5x5

2304 +O
(
x6))

+ c2

−
3x
(
1− x

2 +
x2

24 +
x3

48 −
x4

384 −
5x5

2304 +O(x6)
)
ln (x)

2 + 1− 3x2

2 + 29x3

96

+ x4

32 − 21x5

1024 +O
(
x6)

296



Verification of solutions

y = c1x

(
1− x

2 + x2

24 + x3

48 − x4

384 − 5x5

2304 +O
(
x6))

+ c2

−
3x
(
1− x

2 +
x2

24 +
x3

48 −
x4

384 −
5x5

2304 +O(x6)
)
ln (x)

2 + 1− 3x2

2 + 29x3

96 + x4

32

− 21x5

1024 +O
(
x6)

Verified OK.

2.5.1 Maple step by step solution

Let’s solve
y′′(x2 + 4)x− 2xy′ + 6y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 6y

(x2+4)x + 2y′
x2+4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′

x2+4 +
6y

(x2+4)x = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2
x2+4 , P3(x) = 6

x(x2+4)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

297



• Multiply by denominators
y′′(x2 + 4)x− 2xy′ + 6y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

4a0r(−1 + r)x−1+r + (4a1(1 + r) r − 2a0(−3 + r))xr +
(

∞∑
k=1

(4ak+1(k + 1 + r) (k + r)− 2ak(k + r − 3) + ak−1(k + r − 1) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
4a1(1 + r) r − 2a0(−3 + r) = 0

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1 + r) (k + r)− 2ak(k + r − 3) + ak−1(k + r − 1) (k − 2 + r) = 0

• Shift index using k− >k + 1
4ak+2(k + 2 + r) (k + 1 + r)− 2ak+1(k − 2 + r) + ak(k + r) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak+2krak+r2ak−akk−2kak+1−akr−2rak+1+4ak+1
4(k+2+r)(k+1+r)

• Recursion relation for r = 0
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ak+2 = −k2ak−akk−2kak+1+4ak+1
4(k+2)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −k2ak−akk−2kak+1+4ak+1

4(k+2)(k+1) , 6a0 = 0
]

• Recursion relation for r = 1

ak+2 = −k2ak+akk−2kak+1+2ak+1
4(k+3)(k+2)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −k2ak+akk−2kak+1+2ak+1

4(k+3)(k+2) , 8a1 + 4a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = −k2ak−kak−2kak+1+4ak+1

4(k+2)(k+1) , 6a0 = 0, bk+2 = −k2bk+kbk−2kbk+1+2bk+1
4(k+3)(k+2) , 8b1 + 4b0 = 0

]

299



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 60� �
Order:=6;
dsolve((x^3+4*x)*diff(y(x),x$2)-2*x*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
24x

2 + 1
48x

3 − 1
384x

4 − 5
2304x

5 +O
(
x6))

+ c2

(
ln (x)

(
−3
2x+ 3

4x
2 − 1

16x
3 − 1

32x
4 + 1

256x
5 +O

(
x6))

+
(
1 + 1

2x− 7
4x

2 + 31
96x

3 + 1
24x

4 − 67
3072x

5 +O
(
x6)))
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3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 85� �
AsymptoticDSolveValue[(x^3+4*x)*y''[x]-2*x*y'[x]+6*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
96
(
7x4 + 37x3 − 240x2 + 192x+ 96

)
− 1

32x
(
x3 + 2x2 − 24x+ 48

)
log(x)

)
+ c2

(
− x5

384 + x4

48 + x3

24 − x2

2 + x

)
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2.6 problem 6
2.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 315

Internal problem ID [5561]
Internal file name [OUTPUT/4809_Sunday_June_05_2022_03_06_24_PM_93524911/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x− 5)2 y′′ + 4xy′ +
(
x2 − 25

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 − 10x3 + 25x2) y′′ + 4xy′ +
(
x2 − 25

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4
x (x− 5)2

q(x) = 5 + x

(x− 5)x2
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Table 23: Table p(x), q(x) singularites.

p(x) = 4
x(x−5)2

singularity type
x = 0 “regular”
x = 5 “irregular”

q(x) = 5+x
(x−5)x2

singularity type
x = 0 “regular”
x = 5 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : [5]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 − 10x+ 25
)
y′′ + 4xy′ +

(
x2 − 25

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 − 10x+ 25

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 4x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 25

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−10x1+n+ran(n+ r) (n+ r− 1)

)
+
(

∞∑
n=0

25xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−25anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

(
−10x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−10an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
∞∑

n =1

(
−10an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

25xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−25anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

25xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− 25anxn+r = 0
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When n = 0 the above becomes

25xra0r(−1 + r) + 4xra0r − 25a0xr = 0

Or
(25xrr(−1 + r) + 4xrr − 25xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
25r2 − 21r − 25

)
xr = 0

Since the above is true for all x then the indicial equation becomes

25r2 − 21r − 25 = 0

Solving for r gives the roots of the indicial equation as

r1 =
21
50 +

√
2941
50

r2 =
21
50 −

√
2941
50

Since a0 6= 0 then the indicial equation becomes(
25r2 − 21r − 25

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 =
√
2941
25 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 21

50+
√
2941
50

y2(x) =
∞∑
n=0

bnx
n+ 21

50−
√
2941
50

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
10r(−1 + r)

25r2 + 29r − 21
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For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r)− 10an−1(n+ r − 1) (n+ r − 2)
+ 25an(n+ r) (n+ r − 1) + 4an(n+ r) + an−2 − 25an = 0

Solving for an from recursive equation (4) gives

an = −n2an−2 − 10n2an−1 + 2nran−2 − 20nran−1 + r2an−2 − 10r2an−1 − 5nan−2 + 30nan−1 − 5ran−2 + 30ran−1 + 7an−2 − 20an−1

25n2 + 50nr + 25r2 − 21n− 21r − 25
(4)

Which for the root r = 21
50 +

√
2941
50 becomes

an = ((−25an−2 + 250an−1)n+ 52an−2 − 270an−1)
√
2941 + (−625an−2 + 6250an−1)n2 + (2600an−2 − 13500an−1)n− 3908an−2 + 13080an−1

625n
(√

2941 + 25n
)
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 21

50 +
√
2941
50 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

a1
10r(−1+r)

25r2+29r−21

(
21+

√
2941

)(
−29+

√
2941

)
6250+250

√
2941

For n = 2, using the above recursive equation gives

a2 =
75r4 − 4r3 − 75r2 − 50r + 21

(25r2 + 29r − 21) (25r2 + 79r + 33)

Which for the root r = 21
50 +

√
2941
50 becomes

a2 =
717381
15625 + 7911

√
2941

15625(
25 +

√
2941

) (
50 +

√
2941

)
And the table now becomes

n an,r an

a0 1 1

a1
10r(−1+r)

25r2+29r−21

(
21+

√
2941

)(
−29+

√
2941

)
6250+250

√
2941

a2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 + 7911

√
2941

15625(
25+

√
2941

)(
50+

√
2941

)
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For n = 3, using the above recursive equation gives

a3 =
500r6 + 1420r5 + 300r4 − 2580r3 − 2000r2 − 40r + 420
(25r2 + 29r − 21) (25r2 + 79r + 33) (25r2 + 129r + 137)

Which for the root r = 21
50 +

√
2941
50 becomes

a3 =
906742764
1953125 + 15291084

√
2941

1953125(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

)
And the table now becomes

n an,r an

a0 1 1

a1
10r(−1+r)

25r2+29r−21

(
21+

√
2941

)(
−29+

√
2941

)
6250+250

√
2941

a2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 + 7911

√
2941

15625(
25+

√
2941

)(
50+

√
2941

)
a3

500r6+1420r5+300r4−2580r3−2000r2−40r+420
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)

906742764
1953125 + 15291084

√
2941

1953125(
25+

√
2941

)(
50+

√
2941

)(
75+

√
2941

)

For n = 4, using the above recursive equation gives

a4 =
3125r8 + 24000r7 + 61766r6 + 33496r5 − 104033r4 − 168040r3 − 59654r2 + 22392r + 16569

(25r2 + 29r − 21) (25r2 + 79r + 33) (25r2 + 129r + 137) (25r2 + 179r + 291)

Which for the root r = 21
50 +

√
2941
50 becomes

a4 =
1473770634612

244140625 + 26407796172
√
2941

244140625(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

)
And the table now becomes

n an,r an

a0 1 1

a1
10r(−1+r)

25r2+29r−21

(
21+

√
2941

)(
−29+

√
2941

)
6250+250

√
2941

a2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 + 7911

√
2941

15625(
25+

√
2941

)(
50+

√
2941

)
a3

500r6+1420r5+300r4−2580r3−2000r2−40r+420
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)

906742764
1953125 + 15291084

√
2941

1953125(
25+

√
2941

)(
50+

√
2941

)(
75+

√
2941

)
a4

3125r8+24000r7+61766r6+33496r5−104033r4−168040r3−59654r2+22392r+16569
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)(25r2+179r+291)

1473770634612
244140625 + 26407796172

√
2941

244140625(
25+

√
2941

)(
50+

√
2941

)(
75+

√
2941

)(
100+

√
2941

)
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For n = 5, using the above recursive equation gives

a5 =
18750r10 + 271250r9 + 1552980r8 + 4225260r7 + 4278470r6 − 4527750r5 − 15744100r4 − 13518440r3 − 1814650r2 + 2790990r + 1132740

(25r2 + 29r − 21) (25r2 + 79r + 33) (25r2 + 129r + 137) (25r2 + 179r + 291) (25r2 + 229r + 495)

Which for the root r = 21
50 +

√
2941
50 becomes

a5 =
10008934775328384

152587890625 + 181292058002304
√
2941

152587890625(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

) (
125 +

√
2941

)
And the table now becomes

n an,r an

a0 1 1

a1
10r(−1+r)

25r2+29r−21

(
21+

√
2941

)(
−29+

√
2941

)
6250+250

√
2941

a2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 + 7911

√
2941

15625(
25+

√
2941

)(
50+

√
2941

)
a3

500r6+1420r5+300r4−2580r3−2000r2−40r+420
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)

906742764
1953125 + 15291084

√
2941

1953125(
25+

√
2941

)(
50+

√
2941

)(
75+

√
2941

)
a4

3125r8+24000r7+61766r6+33496r5−104033r4−168040r3−59654r2+22392r+16569
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)(25r2+179r+291)

1473770634612
244140625 + 26407796172

√
2941

244140625(
25+

√
2941

)(
50+

√
2941

)(
75+

√
2941

)(
100+

√
2941

)
a5

18750r10+271250r9+1552980r8+4225260r7+4278470r6−4527750r5−15744100r4−13518440r3−1814650r2+2790990r+1132740
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)(25r2+179r+291)(25r2+229r+495)

10008934775328384
152587890625 + 181292058002304

√
2941

152587890625(
25+

√
2941

)(
50+

√
2941

)(
75+

√
2941

)(
100+

√
2941

)(
125+

√
2941

)

Using the above table, then the solution y1(x) is

y1(x) = x
21
50+

√
2941
50
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
21
50+

√
2941
50

(
1 +

(
21 +

√
2941

) (
−29 +

√
2941

)
x

6250 + 250
√
2941

+
9
(
79709 + 879

√
2941

)
x2

15625
(
25 +

√
2941

) (
50 +

√
2941

) + 12
(
75561897 + 1274257

√
2941

)
x3

1953125
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) + 12
(
122814219551 + 2200649681

√
2941

)
x4

244140625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

) + 1152
(
8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

) (
125 +

√
2941

) +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
10r(−1 + r)

25r2 + 29r − 21
For 2 ≤ n the recursive equation is

(3)bn−2(n+ r − 2) (n− 3 + r)− 10bn−1(n+ r − 1) (n+ r − 2)
+ 25bn(n+ r) (n+ r − 1) + 4bn(n+ r) + bn−2 − 25bn = 0
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Solving for bn from recursive equation (4) gives

bn = −n2bn−2 − 10n2bn−1 + 2nrbn−2 − 20nrbn−1 + r2bn−2 − 10r2bn−1 − 5nbn−2 + 30nbn−1 − 5rbn−2 + 30rbn−1 + 7bn−2 − 20bn−1

25n2 + 50nr + 25r2 − 21n− 21r − 25
(4)

Which for the root r = 21
50 −

√
2941
50 becomes

bn = ((25bn−2 − 250bn−1)n− 52bn−2 + 270bn−1)
√
2941 + (−625bn−2 + 6250bn−1)n2 + (2600bn−2 − 13500bn−1)n− 3908bn−2 + 13080bn−1

625n
(
−
√
2941 + 25n

)
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 21

50 −
√
2941
50 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

b1
10r(−1+r)

25r2+29r−21 −
(
−21+

√
2941

)(
29+

√
2941

)
−6250+250

√
2941

For n = 2, using the above recursive equation gives

b2 =
75r4 − 4r3 − 75r2 − 50r + 21

(25r2 + 29r − 21) (25r2 + 79r + 33)

Which for the root r = 21
50 −

√
2941
50 becomes

b2 =
717381
15625 − 7911

√
2941

15625(
−25 +

√
2941

) (
−50 +

√
2941

)
And the table now becomes

n bn,r bn

b0 1 1

b1
10r(−1+r)

25r2+29r−21 −
(
−21+

√
2941

)(
29+

√
2941

)
−6250+250

√
2941

b2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 − 7911

√
2941

15625(
−25+

√
2941

)(
−50+

√
2941

)

For n = 3, using the above recursive equation gives

b3 =
500r6 + 1420r5 + 300r4 − 2580r3 − 2000r2 − 40r + 420
(25r2 + 29r − 21) (25r2 + 79r + 33) (25r2 + 129r + 137)
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Which for the root r = 21
50 −

√
2941
50 becomes

b3 =
−906742764

1953125 + 15291084
√
2941

1953125(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

)
And the table now becomes

n bn,r bn

b0 1 1

b1
10r(−1+r)

25r2+29r−21 −
(
−21+

√
2941

)(
29+

√
2941

)
−6250+250

√
2941

b2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 − 7911

√
2941

15625(
−25+

√
2941

)(
−50+

√
2941

)
b3

500r6+1420r5+300r4−2580r3−2000r2−40r+420
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)

− 906742764
1953125 + 15291084

√
2941

1953125(
−25+

√
2941

)(
−50+

√
2941

)(
−75+

√
2941

)

For n = 4, using the above recursive equation gives

b4 =
3125r8 + 24000r7 + 61766r6 + 33496r5 − 104033r4 − 168040r3 − 59654r2 + 22392r + 16569

(25r2 + 29r − 21) (25r2 + 79r + 33) (25r2 + 129r + 137) (25r2 + 179r + 291)

Which for the root r = 21
50 −

√
2941
50 becomes

b4 =
1473770634612

244140625 − 26407796172
√
2941

244140625(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

)
And the table now becomes

n bn,r bn

b0 1 1

b1
10r(−1+r)

25r2+29r−21 −
(
−21+

√
2941

)(
29+

√
2941

)
−6250+250

√
2941

b2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 − 7911

√
2941

15625(
−25+

√
2941

)(
−50+

√
2941

)
b3

500r6+1420r5+300r4−2580r3−2000r2−40r+420
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)

− 906742764
1953125 + 15291084

√
2941

1953125(
−25+

√
2941

)(
−50+

√
2941

)(
−75+

√
2941

)
b4

3125r8+24000r7+61766r6+33496r5−104033r4−168040r3−59654r2+22392r+16569
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)(25r2+179r+291)

1473770634612
244140625 − 26407796172

√
2941

244140625(
−25+

√
2941

)(
−50+

√
2941

)(
−75+

√
2941

)(
−100+

√
2941

)
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For n = 5, using the above recursive equation gives

b5 =
18750r10 + 271250r9 + 1552980r8 + 4225260r7 + 4278470r6 − 4527750r5 − 15744100r4 − 13518440r3 − 1814650r2 + 2790990r + 1132740

(25r2 + 29r − 21) (25r2 + 79r + 33) (25r2 + 129r + 137) (25r2 + 179r + 291) (25r2 + 229r + 495)

Which for the root r = 21
50 −

√
2941
50 becomes

b5 =
−10008934775328384

152587890625 + 181292058002304
√
2941

152587890625(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) (
−125 +

√
2941

)
And the table now becomes

n bn,r bn

b0 1 1

b1
10r(−1+r)

25r2+29r−21 −
(
−21+

√
2941

)(
29+

√
2941

)
−6250+250

√
2941

b2
75r4−4r3−75r2−50r+21

(25r2+29r−21)(25r2+79r+33)

717381
15625 − 7911

√
2941

15625(
−25+

√
2941

)(
−50+

√
2941

)
b3

500r6+1420r5+300r4−2580r3−2000r2−40r+420
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)

− 906742764
1953125 + 15291084

√
2941

1953125(
−25+

√
2941

)(
−50+

√
2941

)(
−75+

√
2941

)
b4

3125r8+24000r7+61766r6+33496r5−104033r4−168040r3−59654r2+22392r+16569
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)(25r2+179r+291)

1473770634612
244140625 − 26407796172

√
2941

244140625(
−25+

√
2941

)(
−50+

√
2941

)(
−75+

√
2941

)(
−100+

√
2941

)
b5

18750r10+271250r9+1552980r8+4225260r7+4278470r6−4527750r5−15744100r4−13518440r3−1814650r2+2790990r+1132740
(25r2+29r−21)(25r2+79r+33)(25r2+129r+137)(25r2+179r+291)(25r2+229r+495)

− 10008934775328384
152587890625 + 181292058002304

√
2941

152587890625(
−25+

√
2941

)(
−50+

√
2941

)(
−75+

√
2941

)(
−100+

√
2941

)(
−125+

√
2941

)

Using the above table, then the solution y2(x) is

y2(x) = x
21
50+

√
2941
50
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
21
50−

√
2941
50

(
1−

(
−21 +

√
2941

) (
29 +

√
2941

)
x

−6250 + 250
√
2941

+
9
(
79709− 879

√
2941

)
x2

15625
(
−25 +

√
2941

) (
−50 +

√
2941

) + 12
(
−75561897 + 1274257

√
2941

)
x3

1953125
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) + 12
(
122814219551− 2200649681

√
2941

)
x4

244140625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) + 1152
(
−8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) (
−125 +

√
2941

) +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)
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= c1x
21
50+

√
2941
50

(
1 +

(
21 +

√
2941

) (
−29 +

√
2941

)
x

6250 + 250
√
2941

+
9
(
79709 + 879

√
2941

)
x2

15625
(
25 +

√
2941

) (
50 +

√
2941

)
+

12
(
75561897 + 1274257

√
2941

)
x3

1953125
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

)
+

12
(
122814219551 + 2200649681

√
2941

)
x4

244140625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

)
+

1152
(
8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

) (
125 +

√
2941

)
+O

(
x6))+ c2x

21
50−

√
2941
50

(
1−

(
−21 +

√
2941

) (
29 +

√
2941

)
x

−6250 + 250
√
2941

+
9
(
79709− 879

√
2941

)
x2

15625
(
−25 +

√
2941

) (
−50 +

√
2941

)
+

12
(
−75561897 + 1274257

√
2941

)
x3

1953125
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

)
+

12
(
122814219551− 2200649681

√
2941

)
x4

244140625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

)
+

1152
(
−8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) (
−125 +

√
2941

)
+O

(
x6))

Hence the final solution is

y = yh

312



= c1x
21
50+

√
2941
50

(
1 +

(
21 +

√
2941

) (
−29 +

√
2941

)
x

6250 + 250
√
2941

+
9
(
79709 + 879

√
2941

)
x2

15625
(
25 +

√
2941

) (
50 +

√
2941

)
+

12
(
75561897 + 1274257

√
2941

)
x3

1953125
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

)
+

12
(
122814219551 + 2200649681

√
2941

)
x4

244140625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

)
+

1152
(
8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

) (
125 +

√
2941

)
+O

(
x6))+ c2x

21
50−

√
2941
50

(
1−

(
−21 +

√
2941

) (
29 +

√
2941

)
x

−6250 + 250
√
2941

+
9
(
79709− 879

√
2941

)
x2

15625
(
−25 +

√
2941

) (
−50 +

√
2941

)
+

12
(
−75561897 + 1274257

√
2941

)
x3

1953125
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

)
+

12
(
122814219551− 2200649681

√
2941

)
x4

244140625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

)
+

1152
(
−8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) (
−125 +

√
2941

)
+O

(
x6))
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Summary
The solution(s) found are the following

(1)y = c1x
21
50+

√
2941
50

(
1 +

(
21 +

√
2941

) (
−29 +

√
2941

)
x

6250 + 250
√
2941

+
9
(
79709 + 879

√
2941

)
x2

15625
(
25 +

√
2941

) (
50 +

√
2941

)
+

12
(
75561897 + 1274257

√
2941

)
x3

1953125
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

)
+

12
(
122814219551 + 2200649681

√
2941

)
x4

244140625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

)
+

1152
(
8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

) (
125 +

√
2941

)
+O

(
x6))+ c2x

21
50−

√
2941
50

(
1−

(
−21 +

√
2941

) (
29 +

√
2941

)
x

−6250 + 250
√
2941

+
9
(
79709− 879

√
2941

)
x2

15625
(
−25 +

√
2941

) (
−50 +

√
2941

)
+

12
(
−75561897 + 1274257

√
2941

)
x3

1953125
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

)
+

12
(
122814219551− 2200649681

√
2941

)
x4

244140625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

)
+

1152
(
−8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) (
−125 +

√
2941

)
+O

(
x6))
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Verification of solutions

y = c1x
21
50+

√
2941
50

(
1 +

(
21 +

√
2941

) (
−29 +

√
2941

)
x

6250 + 250
√
2941

+
9
(
79709 + 879

√
2941

)
x2

15625
(
25 +

√
2941

) (
50 +

√
2941

)
+

12
(
75561897 + 1274257

√
2941

)
x3

1953125
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

)
+

12
(
122814219551 + 2200649681

√
2941

)
x4

244140625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

)
+

1152
(
8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
25 +

√
2941

) (
50 +

√
2941

) (
75 +

√
2941

) (
100 +

√
2941

) (
125 +

√
2941

)
+O

(
x6))+ c2x

21
50−

√
2941
50

(
1−

(
−21 +

√
2941

) (
29 +

√
2941

)
x

−6250 + 250
√
2941

+
9
(
79709− 879

√
2941

)
x2

15625
(
−25 +

√
2941

) (
−50 +

√
2941

)
+

12
(
−75561897 + 1274257

√
2941

)
x3

1953125
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

)
+

12
(
122814219551− 2200649681

√
2941

)
x4

244140625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

)
+

1152
(
−8688311436917 + 157371578127

√
2941

)
x5

152587890625
(
−25 +

√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) (
−125 +

√
2941

)
+O

(
x6))

Verified OK.

2.6.1 Maple step by step solution

Let’s solve
x2(x2 − 10x+ 25) y′′ + 4xy′ + (x2 − 25) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − (5+x)y

(x−5)x2 − 4y′
x(x2−10x+25)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4y′

x(x2−10x+25) +
(5+x)y
(x−5)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4
x(x2−10x+25) , P3(x) = 5+x

(x−5)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4
25

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(x2 − 10x+ 25) (x− 5) + 4y′x(x− 5) + (x2 − 10x+ 25) (5 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..3

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r
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◦ Convert xm · y′′ to series expansion form = 2..5

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−5a0(25r2 − 21r − 25)xr + (−5a1(25r2 + 29r − 21) + a0(75r2 − 71r − 25))x1+r + (−5a2(25r2 + 79r + 33) + a1(75r2 + 79r − 21)− 5a0(3r2 − 3r + 1))x2+r +
(

∞∑
k=3

(
−5ak(25k2 + 50kr + 25r2 − 21k − 21r − 25) + ak−1

(
75(k − 1)2 + 150(k − 1) r + 75r2 − 71k + 46− 71r

)
− 5ak−2

(
3(k − 2)2 + 6(k − 2) r + 3r2 − 3k + 7− 3r

)
+ ak−3

(
(k − 3)2 + 2(k − 3) r + r2 − k + 4− r

))
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−125r2 + 105r + 125 = 0

• Values of r that satisfy the indicial equation

r ∈
{

21
50 −

√
2941
50 , 2150 +

√
2941
50

}
• The coefficients of each power of x must be 0

[−5a1(25r2 + 29r − 21) + a0(75r2 − 71r − 25) = 0,−5a2(25r2 + 79r + 33) + a1(75r2 + 79r − 21)− 5a0(3r2 − 3r + 1) = 0]
• Solve for the dependent coefficient(s){

a1 = a0
(
75r2−71r−25

)
5(25r2+29r−21) , a2 =

6a0
(
625r4+50r3−989r2−464r+175

)
25(625r4+2700r3+2591r2−702r−693)

}
• Each term in the series must be 0, giving the recursion relation

(−125ak + ak−3 − 15ak−2 + 75ak−1) k2 + (2(−125ak + ak−3 − 15ak−2 + 75ak−1) r + 105ak − 7ak−3 + 75ak−2 − 221ak−1) k + (−125ak + ak−3 − 15ak−2 + 75ak−1) r2 + (105ak − 7ak−3 + 75ak−2 − 221ak−1) r + 125ak + 13ak−3 − 95ak−2 + 121ak−1 = 0
• Shift index using k− >k + 3

(−125ak+3 + ak − 15ak+1 + 75ak+2) (k + 3)2 + (2(−125ak+3 + ak − 15ak+1 + 75ak+2) r + 105ak+3 − 7ak + 75ak+1 − 221ak+2) (k + 3) + (−125ak+3 + ak − 15ak+1 + 75ak+2) r2 + (105ak+3 − 7ak + 75ak+1 − 221ak+2) r + 125ak+3 + 13ak − 95ak+1 + 121ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+3 = k2ak−15k2ak+1+75k2ak+2+2krak−30krak+1+150krak+2+r2ak−15r2ak+1+75r2ak+2−kak−15kak+1+229kak+2−rak−15rak+1+229rak+2+ak−5ak+1+133ak+2
5(25k2+50kr+25r2+129k+129r+137)

• Recursion relation for r = 21
50 −

√
2941
50

ak+3 =
k2ak−15k2ak+1+75k2ak+2+2k

(
21
50−

√
2941
50

)
ak−30k

(
21
50−

√
2941
50

)
ak+1+150k

(
21
50−

√
2941
50

)
ak+2+

(
21
50−

√
2941
50

)2
ak−15

(
21
50−

√
2941
50

)2
ak+1+75

(
21
50−

√
2941
50

)2
ak+2−kak−15kak+1+229kak+2−

(
21
50−

√
2941
50

)
ak−15

(
21
50−

√
2941
50

)
ak+1+229

(
21
50−

√
2941
50

)
ak+2+ak−5ak+1+133ak+2

5
(
25k2+50k

(
21
50−

√
2941
50

)
+25

(
21
50−

√
2941
50

)2
+129k+ 9559

50 − 129
√

2941
50

)
• Solution for r = 21

50 −
√
2941
50[

y =
∞∑
k=0

akx
k+ 21

50−
√
2941
50 , ak+3 =

k2ak−15k2ak+1+75k2ak+2+2k
(

21
50−

√
2941
50

)
ak−30k

(
21
50−

√
2941
50

)
ak+1+150k

(
21
50−

√
2941
50

)
ak+2+

(
21
50−

√
2941
50

)2
ak−15

(
21
50−

√
2941
50

)2
ak+1+75

(
21
50−

√
2941
50

)2
ak+2−kak−15kak+1+229kak+2−

(
21
50−

√
2941
50

)
ak−15

(
21
50−

√
2941
50

)
ak+1+229

(
21
50−

√
2941
50

)
ak+2+ak−5ak+1+133ak+2

5
(
25k2+50k

(
21
50−

√
2941
50

)
+25

(
21
50−

√
2941
50

)2
+129k+ 9559

50 − 129
√
2941

50

) , a1 =
a0

(
75

(
21
50−

√
2941
50

)2
− 2741

50 + 71
√
2941

50

)
5
(
25

(
21
50−

√
2941
50

)2
− 441

50 − 29
√
2941
50

) , a2 =
6a0

(
625

(
21
50−

√
2941
50

)4
+50

(
21
50−

√
2941
50

)3
−989

(
21
50−

√
2941
50

)2
− 497

25 + 232
√

2941
25

)
25

(
625

(
21
50−

√
2941
50

)4
+2700

(
21
50−

√
2941
50

)3
+2591

(
21
50−

√
2941
50

)2
− 24696

25 + 351
√
2941

25

)
]
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• Recursion relation for r = 21
50 +

√
2941
50

ak+3 =
k2ak−15k2ak+1+75k2ak+2+2k

(
21
50+

√
2941
50

)
ak−30k

(
21
50+

√
2941
50

)
ak+1+150k

(
21
50+

√
2941
50

)
ak+2+

(
21
50+

√
2941
50

)2
ak−15

(
21
50+

√
2941
50

)2
ak+1+75

(
21
50+

√
2941
50

)2
ak+2−kak−15kak+1+229kak+2−

(
21
50+

√
2941
50

)
ak−15

(
21
50+

√
2941
50

)
ak+1+229

(
21
50+

√
2941
50

)
ak+2+ak−5ak+1+133ak+2

5
(
25k2+50k

(
21
50+

√
2941
50

)
+25

(
21
50+

√
2941
50

)2
+129k+ 9559

50 + 129
√
2941

50

)
• Solution for r = 21

50 +
√
2941
50[

y =
∞∑
k=0

akx
k+ 21

50+
√
2941
50 , ak+3 =

k2ak−15k2ak+1+75k2ak+2+2k
(

21
50+

√
2941
50

)
ak−30k

(
21
50+

√
2941
50

)
ak+1+150k

(
21
50+

√
2941
50

)
ak+2+

(
21
50+

√
2941
50

)2
ak−15

(
21
50+

√
2941
50

)2
ak+1+75

(
21
50+

√
2941
50

)2
ak+2−kak−15kak+1+229kak+2−

(
21
50+

√
2941
50

)
ak−15

(
21
50+

√
2941
50

)
ak+1+229

(
21
50+

√
2941
50

)
ak+2+ak−5ak+1+133ak+2

5
(
25k2+50k

(
21
50+

√
2941
50

)
+25

(
21
50+

√
2941
50

)2
+129k+ 9559

50 + 129
√

2941
50

) , a1 =
a0

(
75

(
21
50+

√
2941
50

)2
− 2741

50 − 71
√
2941

50

)
5
(
25

(
21
50+

√
2941
50

)2
− 441

50 + 29
√
2941

50

) , a2 =
6a0

(
625

(
21
50+

√
2941
50

)4
+50

(
21
50+

√
2941
50

)3
−989

(
21
50+

√
2941
50

)2
− 497

25 − 232
√
2941

25

)
25

(
625

(
21
50+

√
2941
50

)4
+2700

(
21
50+

√
2941
50

)3
+2591

(
21
50+

√
2941
50

)2
− 24696

25 − 351
√
2941

25

)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+ 21

50−
√
2941
50

)
+
(

∞∑
k=0

bkx
k+ 21

50+
√
2941
50

)
, ak+3 =

k2ak−15k2ak+1+75k2ak+2+2k
(

21
50−

√
2941
50

)
ak−30k

(
21
50−

√
2941
50

)
ak+1+150k

(
21
50−

√
2941
50

)
ak+2+

(
21
50−

√
2941
50

)2
ak−15

(
21
50−

√
2941
50

)2
ak+1+75

(
21
50−

√
2941
50

)2
ak+2−kak−15kak+1+229kak+2−

(
21
50−

√
2941
50

)
ak−15

(
21
50−

√
2941
50

)
ak+1+229

(
21
50−

√
2941
50

)
ak+2+ak−5ak+1+133ak+2

5
(
25k2+50k

(
21
50−

√
2941
50

)
+25

(
21
50−

√
2941
50

)2
+129k+ 9559

50 − 129
√
2941

50

) , a1 =
a0

(
75

(
21
50−

√
2941
50

)2
− 2741

50 + 71
√

2941
50

)
5
(
25

(
21
50−

√
2941
50

)2
− 441

50 − 29
√

2941
50

) , a2 =
6a0

(
625

(
21
50−

√
2941
50

)4
+50

(
21
50−

√
2941
50

)3
−989

(
21
50−

√
2941
50

)2
− 497

25 + 232
√
2941

25

)
25

(
625

(
21
50−

√
2941
50

)4
+2700

(
21
50−

√
2941
50

)3
+2591

(
21
50−

√
2941
50

)2
− 24696

25 + 351
√

2941
25

) , bk+3 =
k2bk−15k2bk+1+75k2bk+2+2k

(
21
50+

√
2941
50

)
bk−30k

(
21
50+

√
2941
50

)
bk+1+150k

(
21
50+

√
2941
50

)
bk+2+

(
21
50+

√
2941
50

)2
bk−15

(
21
50+

√
2941
50

)2
bk+1+75

(
21
50+

√
2941
50

)2
bk+2−kbk−15kbk+1+229kbk+2−

(
21
50+

√
2941
50

)
bk−15

(
21
50+

√
2941
50

)
bk+1+229

(
21
50+

√
2941
50

)
bk+2+bk−5bk+1+133bk+2

5
(
25k2+50k

(
21
50+

√
2941
50

)
+25

(
21
50+

√
2941
50

)2
+129k+ 9559

50 + 129
√
2941

50

) , b1 =
b0

(
75

(
21
50+

√
2941
50

)2
− 2741

50 − 71
√

2941
50

)
5
(
25

(
21
50+

√
2941
50

)2
− 441

50 + 29
√
2941
50

) , b2 =
6b0

(
625

(
21
50+

√
2941
50

)4
+50

(
21
50+

√
2941
50

)3
−989

(
21
50+

√
2941
50

)2
− 497

25 − 232
√
2941

25

)
25

(
625

(
21
50+

√
2941
50

)4
+2700

(
21
50+

√
2941
50

)3
+2591

(
21
50+

√
2941
50

)2
− 24696

25 − 351
√
2941

25

)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a = 0, e <> 0, c <> 0 `� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 1179� �
Order:=6;
dsolve(x^2*(x-5)^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(x^2-25)*y(x)=0,y(x),type='series',x=0);� �
y(x)

= x
21
50

(
c1x

−
√
2941
50

(
1+ −1166− 4

√
2941

−3125 + 125
√
2941

x− 9
15625

879
√
2941− 79709(

−25 +
√
2941

) (
−50 +

√
2941

)x2

+
15291084

√
2941

1953125 − 906742764
1953125(

−25 +
√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

)x3

− 12
244140625

2200649681
√
2941− 122814219551(

−25 +
√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

)x4

+
181292058002304

√
2941

152587890625 − 10008934775328384
152587890625(

−25 +
√
2941

) (
−50 +

√
2941

) (
−75 +

√
2941

) (
−100 +

√
2941

) (
−125 +

√
2941

)x5

+O
(
x6))+ c2x

√
2941
50

(
1 + 1166− 4

√
2941

125
√
2941 + 3125

x+
7911

√
2941

15625 + 717381
15625(√

2941 + 25
) (

50 +
√
2941

)x2

+
15291084

√
2941

1953125 + 906742764
1953125(√

2941 + 25
) (

50 +
√
2941

) (√
2941 + 75

)x3

+
26407796172

√
2941

244140625 + 1473770634612
244140625(√

2941 + 25
) (

50 +
√
2941

) (√
2941 + 75

) (
100 +

√
2941

)x4

+
181292058002304

√
2941

152587890625 + 10008934775328384
152587890625(√

2941 + 25
) (

50 +
√
2941

) (√
2941 + 75

) (
100 +

√
2941

) (
125 +

√
2941

)x5

+O
(
x6)))

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 5384� �
AsymptoticDSolveValue[x^2*(x-5)^2*y''[x]+4*x*y'[x]+(x^2-25)*y[x]==0,y[x],{x,0,5}]� �
Too large to display
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2.7 problem 7
2.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 328

Internal problem ID [5562]
Internal file name [OUTPUT/4810_Sunday_June_05_2022_03_06_27_PM_7600750/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + x− 6

)
y′′ + (x+ 3) y′ + (−2 + x) y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (77)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (78)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −xy + xy′ − 2y + 3y′
x2 + x− 6

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−x3 + 3x2 + 20x+ 6) y′ + y(2x2 − 3x− 2)
(x2 + x− 6)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (4x4 − 8x3 − 88x2 − 130x− 138) y′ + y(−2 + x) (x3 − 7x2 − 19x− 17)
(x2 + x− 6)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(x+ 3) (x5 − 23x4 + 73x3 + 219x2 + 704x+ 468) y′ − 6

(
x4 − 16

3 x
3 − 22x2 − 140

3 x− 42
)
y(−2 + x)

(x2 + x− 6)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−9x7 + 117x6 + 132x5 − 2220x4 − 12075x3 − 36237x2 − 43104x− 22284) y′ − y(−2 + x) (x6 − 38x5 + 150x4 + 890x3 + 3485x2 + 5928x+ 3336)
(x2 + x− 6)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
3 + y′(0)

2

F1 = −y(0)
18 + y′(0)

6

F2 = −17y(0)
108 + 23y′(0)

36

F3 = −7y(0)
18 + 13y′(0)

12

F4 = −139y(0)
162 + 619y′(0)

216
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5 − 139

116640x
6
)
y(0)

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5 + 619

155520x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + x− 6
)
y′′ + (x+ 3) y′ + (−2 + x) y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + x− 6

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (x+ 3)

(
∞∑
n=1

nanx
n−1

)
+ (−2 + x)

(
∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

nxn−1an(n− 1)
)

+
∞∑

n =2

(
−6n(n− 1) anxn−2)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=1

3nanxn−1

)
+

∞∑
n =0

(−2anxn) +
(

∞∑
n=0

x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the

324



power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nnxn

∞∑
n =2

(
−6n(n− 1) anxn−2) = ∞∑

n=0

(−6(n+ 2) an+2(1 + n)xn)

∞∑
n =1

3nanxn−1 =
∞∑
n=0

3(1 + n) a1+nx
n

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=1

(1 + n) a1+nnxn

)

+
∞∑

n =0

(−6(n+ 2) an+2(1 + n)xn) +
(

∞∑
n=1

nanx
n

)

+
(

∞∑
n=0

3(1 + n) a1+nx
n

)
+

∞∑
n =0

(−2anxn) +
(

∞∑
n=1

an−1x
n

)
= 0

n = 0 gives
−12a2 + 3a1 − 2a0 = 0

a2 = −a0
6 + a1

4

n = 1 gives
8a2 − 36a3 − a1 + a0 = 0

Which after substituting earlier equations, simplifies to

a3 = − a0
108 + a1

36
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For 2 ≤ n, the recurrence equation is

nan(n− 1)+ (1+n) a1+nn− 6(n+2) an+2(1+n)+nan+3(1+n) a1+n− 2an+an−1 = 0
(4)

Solving for an+2, gives

(5)

an+2 =
n2an + n2a1+n + 4na1+n − 2an + 3a1+n + an−1

6 (n+ 2) (1 + n)

= (n2 − 2) an
6 (n+ 2) (1 + n) +

(n2 + 4n+ 3) a1+n

6 (n+ 2) (1 + n) + an−1

6 (n+ 2) (1 + n)

For n = 2 the recurrence equation gives

2a2 + 15a3 − 72a4 + a1 = 0

Which after substituting the earlier terms found becomes

a4 = −17a0
2592 + 23a1

864

For n = 3 the recurrence equation gives

7a3 + 24a4 − 120a5 + a2 = 0

Which after substituting the earlier terms found becomes

a5 = − 7a0
2160 + 13a1

1440

For n = 4 the recurrence equation gives

14a4 + 35a5 − 180a6 + a3 = 0

Which after substituting the earlier terms found becomes

a6 = − 139a0
116640 + 619a1

155520

For n = 5 the recurrence equation gives

23a5 + 48a6 − 252a7 + a4 = 0
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Which after substituting the earlier terms found becomes

a7 = − 5377a0
9797760 + 689a1

408240

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
−a0

6 + a1
4

)
x2 +

(
− a0
108 + a1

36

)
x3

+
(
−17a0
2592 + 23a1

864

)
x4 +

(
− 7a0
2160 + 13a1

1440

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5
)
a0

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5
)
c1

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5 − 139

116640x
6
)
y(0)

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5 + 619

155520x
6
)
y′(0) +O

(
x6)

(2)
y =

(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5
)
c1

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5 − 139

116640x
6
)
y(0)

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5 + 619

155520x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5
)
c1

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5
)
c2 +O

(
x6)

Verified OK.

2.7.1 Maple step by step solution

Let’s solve
(x2 + x− 6) y′′ + (x+ 3) y′ + (−2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x+3 −
y′

−2+x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

−2+x
+ y

x+3 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
−2+x

, P3(x) = 1
x+3

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 0

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
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Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
y′′(−2 + x) (x+ 3) + (x+ 3) y′ + (−2 + x) y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(u2 − 5u)
(

d2

du2y(u)
)
+ u
(

d
du
y(u)

)
+ (−5 + u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u ·
(

d
du
y(u)

)
to series expansion

u ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−5a0r(−1 + r)u−1+r + (−5a1(1 + r) r + a0(r2 − 5))ur +
(

∞∑
k=1

(−5ak+1(k + 1 + r) (k + r) + ak(k2 + 2kr + r2 − 5) + ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−5r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}
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• Each term must be 0
−5a1(1 + r) r + a0(r2 − 5) = 0

• Each term in the series must be 0, giving the recursion relation
−5ak+1(k + 1 + r) (k + r) + k2ak + 2krak + r2ak − 5ak + ak−1 = 0

• Shift index using k− >k + 1
−5ak+2(k + 2 + r) (k + 1 + r) + (k + 1)2 ak+1 + 2(k + 1) rak+1 + r2ak+1 − 5ak+1 + ak = 0

• Recursion relation that defines series solution to ODE

ak+2 = k2ak+1+2krak+1+r2ak+1+2kak+1+2rak+1+ak−4ak+1
5(k+2+r)(k+1+r)

• Recursion relation for r = 0

ak+2 = k2ak+1+2kak+1+ak−4ak+1
5(k+2)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = k2ak+1+2kak+1+ak−4ak+1

5(k+2)(k+1) ,−5a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k , ak+2 = k2ak+1+2kak+1+ak−4ak+1
5(k+2)(k+1) ,−5a0 = 0

]
• Recursion relation for r = 1

ak+2 = k2ak+1+4kak+1+ak−ak+1
5(k+3)(k+2)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+2 = k2ak+1+4kak+1+ak−ak+1

5(k+3)(k+2) ,−10a1 − 4a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k+1 , ak+2 = k2ak+1+4kak+1+ak−ak+1
5(k+3)(k+2) ,−10a1 − 4a0 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k+1
)
, ak+2 = k2ak+1+2kak+1+ak−4ak+1

5(k+2)(k+1) ,−5a0 = 0, bk+2 = k2bk+1+4kbk+1+bk−bk+1
5(k+3)(k+2) ,−10b1 − 4b0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve((x^2+x-6)*diff(y(x),x$2)+(x+3)*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

6x
2 − 1

108x
3 − 17

2592x
4 − 7

2160x
5
)
y(0)

+
(
x+ 1

4x
2 + 1

36x
3 + 23

864x
4 + 13

1440x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 70� �
AsymptoticDSolveValue[(x^2+x-6)*y''[x]+(x+3)*y'[x]+(x-2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
− 7x5

2160 − 17x4

2592 − x3

108 − x2

6 + 1
)
+ c2

(
13x5

1440 + 23x4

864 + x3

36 + x2

4 + x

)
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2.8 problem 8
Internal problem ID [5563]
Internal file name [OUTPUT/4811_Sunday_June_05_2022_03_06_28_PM_79720233/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x
(
x2 + 1

)2
y′′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x5 + 2x3 + x
)
y′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x (x2 + 1)2
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Table 26: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x(x2+1)2

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x
(
x4 + 2x2 + 1

)
y′′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x
(
x4 + 2x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+3an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+3an(n+ r) (n+ r − 1) =
∞∑
n=4

an−4(n+ r − 4) (n− 5 + r)xn+r−1

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=4

an−4(n+ r − 4) (n− 5 + r)xn+r−1

)

+
(

∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r−1

)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0
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Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

336



Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = − 1
r (1 + r)

Substituting n = 2 in Eq. (2B) gives

a2 =
−2r4 + 2r2 + 1
r (1 + r)2 (2 + r)

Substituting n = 3 in Eq. (2B) gives

a3 =
4r4 + 8r3 + 8r2 + 4r − 1
r (1 + r)2 (2 + r)2 (3 + r)

For 4 ≤ n the recursive equation is

(3)an−4(n+ r − 4) (n− 5 + r) + 2an−2(n+ r − 2) (n− 3 + r)
+ an(n+ r) (n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = −n2an−4 + 2n2an−2 + 2nran−4 + 4nran−2 + r2an−4 + 2r2an−2 − 9nan−4 − 10nan−2 − 9ran−4 − 10ran−2 + 20an−4 + 12an−2 + an−1

(n+ r) (n+ r − 1)
(4)

Which for the root r = 1 becomes

an = (−an−4 − 2an−2)n2 + (7an−4 + 6an−2)n− 12an−4 − 4an−2 − an−1

n (1 + n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
−2r4+2r2+1
r(1+r)2(2+r)

1
12

a3
4r4+8r3+8r2+4r−1
r(1+r)2(2+r)2(3+r)

23
144
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For n = 4, using the above recursive equation gives

a4 =
3r8 + 24r7 + 66r6 + 60r5 − 39r4 − 108r3 − 90r2 − 60r − 23

r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 = − 167
2880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
−2r4+2r2+1
r(1+r)2(2+r)

1
12

a3
4r4+8r3+8r2+4r−1
r(1+r)2(2+r)2(3+r)

23
144

a4
3r8+24r7+66r6+60r5−39r4−108r3−90r2−60r−23

r(1+r)2(2+r)2(3+r)2(4+r) − 167
2880

For n = 5, using the above recursive equation gives

a5 =
−10r8 − 120r7 − 592r6 − 1548r5 − 2342r4 − 2172r3 − 1208r2 − 168r + 167

r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 7993
86400

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
−2r4+2r2+1
r(1+r)2(2+r)

1
12

a3
4r4+8r3+8r2+4r−1
r(1+r)2(2+r)2(3+r)

23
144

a4
3r8+24r7+66r6+60r5−39r4−108r3−90r2−60r−23

r(1+r)2(2+r)2(3+r)2(4+r) − 167
2880

a5
−10r8−120r7−592r6−1548r5−2342r4−2172r3−1208r2−168r+167

r(1+r)2(2+r)2(3+r)2(4+r)2(5+r) − 7993
86400

338



Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
r (1 + r)

Therefore

lim
r→r2

− 1
r (1 + r) = lim

r→0
− 1
r (1 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x(x4 + 2x2 + 1) y′′ + y = 0 gives

x
(
x4 + 2x2 + 1

)(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
+Cy1(x) ln (x)+

(
∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
x
(
x4 + 2x2 + 1

)
y′′1(x) + y1(x)

)
ln (x)

+ x
(
x4 + 2x2 + 1

)(2y′1(x)
x

− y1(x)
x2

))
C

+ x
(
x4 + 2x2 + 1

)( ∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(

∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x
(
x4 + 2x2 + 1

)
y′′1(x) + y1(x) = 0

Eq (7) simplifes to

(8)

x
(
x4 + 2x2 + 1

)(2y′1(x)
x

− y1(x)
x2

)
C

+ x
(
x4 + 2x2 + 1

)( ∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(

∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x2 + 1)2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
− (x2 + 1)2

(
∞∑
n=0

anx
n+r1

))
C

x

+
x2(x2 + 1)2

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
+
(

∞∑
n=0

bnx
n+r2

)
x

x
= 0
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Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2x(x2 + 1)2

(
∞∑
n=0

xnan(1 + n)
)
− (x2 + 1)2

(
∞∑
n=0

anx
1+n

))
C

x

+
x2(x2 + 1)2

(
∞∑
n=0

xn−2bnn(n− 1)
)
+
(

∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+4an(1 + n)
)

+
(

∞∑
n=0

4C xn+2an(1 + n)
)

+
(

∞∑
n=0

2C xnan(1 + n)
)

+
∞∑

n =0

(
−C xn+4an

)
+

∞∑
n =0

(
−2C xn+2an

)
+

∞∑
n =0

(−Canx
n) +

(
∞∑
n=0

nxn+3bn(n− 1)
)

+
(

∞∑
n=0

2nx1+nbn(n− 1)
)

+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+4an(1 + n) =
∞∑
n=5

2Can−5(n− 4)xn−1

∞∑
n =0

4C xn+2an(1 + n) =
∞∑
n=3

4Ca−3+n(n− 2)xn−1

∞∑
n =0

2C xnan(1 + n) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(
−C xn+4an

)
=

∞∑
n=5

(
−Can−5x

n−1)
∞∑

n =0

(
−2C xn+2an

)
=

∞∑
n=3

(
−2Ca−3+nx

n−1)
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∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

nxn+3bn(n− 1) =
∞∑
n=4

(n− 4) bn−4(n− 5)xn−1

∞∑
n =0

2nx1+nbn(n− 1) =
∞∑
n=2

2(n− 2) bn−2(−3 + n)xn−1

∞∑
n =0

bnx
n =

∞∑
n=1

bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=5

2Can−5(n− 4)xn−1

)
+
(

∞∑
n=3

4Ca−3+n(n− 2)xn−1

)

+
(

∞∑
n=1

2Can−1nxn−1

)
+

∞∑
n =5

(
−Can−5x

n−1)+ ∞∑
n =3

(
−2Ca−3+nx

n−1)
+

∞∑
n =1

(
−Can−1x

n−1)+( ∞∑
n=4

(n− 4) bn−4(n− 5)xn−1

)

+
(

∞∑
n=2

2(n− 2) bn−2(−3 + n)xn−1

)

+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

(2a0 + 5a2)C + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−19
6 + 6b3 = 0

Solving the above for b3 gives
b3 =

19
36

For n = 4, Eq (2B) gives

(6a1 + 7a3)C + 4b2 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

− 85
144 + 12b4 = 0

Solving the above for b4 gives
b4 =

85
1728

For n = 5, Eq (2B) gives

(a0 + 10a2 + 9a4)C + 12b3 + b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

21907
4320 + 20b5 = 0

Solving the above for b5 gives
b5 = −21907

86400
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 19x3

36 + 85x4

1728 − 21907x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 19x3

36 + 85x4

1728 − 21907x5

86400 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 19x3

36 + 85x4

1728 − 21907x5

86400 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 19x3

36 + 85x4

1728 − 21907x5

86400 +O
(
x6))
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Verification of solutions

y = c1x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 + 23x3

144 − 167x4

2880 − 7993x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 19x3

36 + 85x4

1728 − 21907x5

86400 +O
(
x6))

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*(x^2+1)^2*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 + 23
144x

3 − 167
2880x

4 − 7993
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 − 23

144x
4 + 167

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 19

36x
3 + 85

1728x
4 − 21907

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 87� �
AsymptoticDSolveValue[x*(x^2+1)^2*y''[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
361x4 + 1056x3 − 2160x2 + 1728x+ 1728

1728

− 1
144x

(
23x3+12x2−72x+144

)
log(x)

)
+ c2

(
−167x5

2880 + 23x4

144 + x3

12 −
x2

2 +x

)
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2.9 problem 9
2.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 348

Internal problem ID [5564]
Internal file name [OUTPUT/4812_Sunday_June_05_2022_03_06_31_PM_60913564/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

x3(x2 − 25
)
(−2 + x)2 y′′ + 3x(−2 + x) y′ + 7(5 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

x7 − 4x6 − 21x5 + 100x4 − 100x3) y′′ + (3x2 − 6x
)
y′ + (7x+ 35) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x2 (−2 + x) (x− 5) (5 + x)

q(x) = 7
(x− 5) (−2 + x)2 x3

347



Table 27: Table p(x), q(x) singularites.

p(x) = 3
x2(−2+x)(x−5)(5+x)

singularity type
x = −5 “regular”
x = 0 “irregular”
x = 2 “regular”
x = 5 “regular”

q(x) = 7
(x−5)(−2+x)2x3

singularity type
x = 0 “irregular”
x = 2 “regular”
x = 5 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−5, 2, 5,∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

2.9.1 Maple step by step solution

Let’s solve
y′′x3(x− 5) (5 + x) (−2 + x)2 + (3x2 − 6x) y′ + (7x+ 35) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 3y′

x2(−2+x)(x−5)(5+x) −
7y

x3(x−5)(−2+x)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x2(−2+x)(x−5)(5+x) +
7y

x3(x−5)(−2+x)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x2(−2+x)(x−5)(5+x) , P3(x) = 7

(x−5)(−2+x)2x3

]
◦ (5 + x) · P2(x) is analytic at x = −5
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((5 + x) · P2(x))
∣∣∣∣
x=−5

= 3
1750

◦ (5 + x)2 · P3(x) is analytic at x = −5(
(5 + x)2 · P3(x)

) ∣∣∣∣
x=−5

= 0

◦ x = −5is a regular singular point
Check to see if x0 is a regular singular point
x0 = −5

• Multiply by denominators
y′′x3(x− 5) (5 + x) (−2 + x)2 + 3x(−2 + x) y′ + (7x+ 35) y = 0

• Change variables using x = u− 5 so that the regular singular point is at u = 0

(u7 − 39u6 + 624u5 − 5250u4 + 24525u3 − 60375u2 + 61250u)
(

d2

du2y(u)
)
+ (3u2 − 36u+ 105)

(
d
du
y(u)

)
+ 7uy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert u · y(u) to series expansion

u · y(u) =
∞∑
k=0

aku
k+r+1

◦ Shift index using k− >k − 1

u · y(u) =
∞∑
k=1

ak−1u
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..7

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

35a0r(−1747 + 1750r)u−1+r + (35a1(1 + r) (3 + 1750r)− 3a0r(−20113 + 20125r))ur + (35a2(2 + r) (1753 + 1750r)− 3a1(1 + r) (12 + 20125r) + a0(24525r2 − 24522r + 7))u1+r + (35a3(3 + r) (3503 + 1750r)− 3a2(2 + r) (20137 + 20125r) + a1(24525r2 + 24528r + 10)− 5250a0r(−1 + r))u2+r + (35a4(4 + r) (5253 + 1750r)− 3a3(3 + r) (40262 + 20125r) + a2(24525r2 + 73578r + 49063)− 5250a1(1 + r) r + 624a0r(−1 + r))u3+r + (35a5(5 + r) (7003 + 1750r)− 3a4(4 + r) (60387 + 20125r) + a3(24525r2 + 122628r + 147166)− 5250a2(2 + r) (1 + r) + 624a1(1 + r) r − 39a0r(−1 + r))u4+r +
(

∞∑
k=5

(
35ak+1(k + r + 1) (1750k + 3 + 1750r)− 3ak(k + r) (20125k + 20125r − 20113) + ak−1

(
24525(k − 1)2 + 49050(k − 1) r + 24525r2 − 24522k + 24529− 24522r

)
− 5250ak−2(k − 2 + r) (k − 3 + r) + 624ak−3(k − 3 + r) (k − 4 + r)− 39ak−4(k − 4 + r) (k − 5 + r) + ak−5(k − 5 + r) (k − 6 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
35r(−1747 + 1750r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 17471750

}
• The coefficients of each power of u must be 0

[35a1(1 + r) (3 + 1750r)− 3a0r(−20113 + 20125r) = 0, 35a2(2 + r) (1753 + 1750r)− 3a1(1 + r) (12 + 20125r) + a0(24525r2 − 24522r + 7) = 0, 35a3(3 + r) (3503 + 1750r)− 3a2(2 + r) (20137 + 20125r) + a1(24525r2 + 24528r + 10)− 5250a0r(−1 + r) = 0, 35a4(4 + r) (5253 + 1750r)− 3a3(3 + r) (40262 + 20125r) + a2(24525r2 + 73578r + 49063)− 5250a1(1 + r) r + 624a0r(−1 + r) = 0, 35a5(5 + r) (7003 + 1750r)− 3a4(4 + r) (60387 + 20125r) + a3(24525r2 + 122628r + 147166)− 5250a2(2 + r) (1 + r) + 624a1(1 + r) r − 39a0r(−1 + r) = 0]
• Solve for the dependent coefficient(s){

a1 = 3a0r(−20113+20125r)
35(1750r2+1753r+3) , a2 =

a0
(
2142984375r3−2141396250r2−26144r−735

)
1225(3062500r3+9198000r2+6151259r+10518) , a3 =

3a0
(
19461900390625r5+19468538359375r4−19435629227000r3−19441771674383r2+510295602r−14800695

)
42875(5359375000r5+37543187500r4+91274797250r3+91431173777r2+32395455858r+55266831) , a4 = a0

(
1351682693115234375r7+6757468463730468750r6+9459902927605265625r5−1346741085129720000r4−10798918506236535254r3−5396543958863751642r2+1515360202142957r−6305004178095

)
1500625(9378906250000r7+121990093750000r6+629126477875000r5+1644590185189000r4+2295597905419081r3+1621124864443567r2+454376031607134r+774177768648) , a5 = 3a0

(
9334340984771728515625r9+102654645979007568359375r8+429169625497935943359375r7+802090179309157053875000r6+456715295150926645105125r5−568733232395119777617403r4−894216179388590294105623r3−334778918752075306271568r2+229330342344661329417r−515254338972328095

)
52521875(16413085937500000r9+344815488281250000r8+3055507455000000000r7+14891366599108125000r6+43568358836231958750r5+78171579739984526493r4+83781322696910591423r3+48936832887274798713r2+11943323516495557323r+20330875926907290)

}
• Each term in the series must be 0, giving the recursion relation

(−60375ak + ak−5 − 39ak−4 + 624ak−3 − 5250ak−2 + 24525ak−1 + 61250ak+1) k2 + (2(−60375ak + ak−5 − 39ak−4 + 624ak−3 − 5250ak−2 + 24525ak−1 + 61250ak+1) r + 60339ak − 11ak−5 + 351ak−4 − 4368ak−3 + 26250ak−2 − 73572ak−1 + 61355ak+1) k + (−60375ak + ak−5 − 39ak−4 + 624ak−3 − 5250ak−2 + 24525ak−1 + 61250ak+1) r2 + (60339ak − 11ak−5 + 351ak−4 − 4368ak−3 + 26250ak−2 − 73572ak−1 + 61355ak+1) r + 30ak−5 − 780ak−4 + 7488ak−3 − 31500ak−2 + 49054ak−1 + 105ak+1 = 0
• Shift index using k− >k + 5

(−60375ak+5 + ak − 39ak+1 + 624ak+2 − 5250ak+3 + 24525ak+4 + 61250ak+6) (k + 5)2 + (2(−60375ak+5 + ak − 39ak+1 + 624ak+2 − 5250ak+3 + 24525ak+4 + 61250ak+6) r + 60339ak+5 − 11ak + 351ak+1 − 4368ak+2 + 26250ak+3 − 73572ak+4 + 61355ak+6) (k + 5) + (−60375ak+5 + ak − 39ak+1 + 624ak+2 − 5250ak+3 + 24525ak+4 + 61250ak+6) r2 + (60339ak+5 − 11ak + 351ak+1 − 4368ak+2 + 26250ak+3 − 73572ak+4 + 61355ak+6) r + 30ak − 780ak+1 + 7488ak+2 − 31500ak+3 + 49054ak+4 + 105ak+6 = 0
• Recursion relation that defines series solution to ODE

ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5+2krak−78krak+1+1248krak+2−10500krak+3+49050krak+4−120750krak+5+r2ak−39r2ak+1+624r2ak+2−5250r2ak+3+24525r2ak+4−60375r2ak+5−kak−39kak+1+1872kak+2−26250kak+3+171678kak+4−543411kak+5−rak−39rak+1+1872rak+2−26250rak+3+171678rak+4−543411rak+5+1248ak+2−31500ak+3+294319ak+4−1207680ak+5
35(1750k2+3500kr+1750r2+19253k+19253r+52518)

• Recursion relation for r = 0

ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5−kak−39kak+1+1872kak+2−26250kak+3+171678kak+4−543411kak+5+1248ak+2−31500ak+3+294319ak+4−1207680ak+5
35(1750k2+19253k+52518)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5−kak−39kak+1+1872kak+2−26250kak+3+171678kak+4−543411kak+5+1248ak+2−31500ak+3+294319ak+4−1207680ak+5

35(1750k2+19253k+52518) , a1 = 0, a2 = − a0
17530 , a3 = − 20137a0

1074632825 , a4 = − 8578236977a0
1580612944323000 , a5 = − 233675437175659a0

161423389882620381250

]
• Revert the change of variables u = 5 + x[

y =
∞∑
k=0

ak(5 + x)k , ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5−kak−39kak+1+1872kak+2−26250kak+3+171678kak+4−543411kak+5+1248ak+2−31500ak+3+294319ak+4−1207680ak+5
35(1750k2+19253k+52518) , a1 = 0, a2 = − a0

17530 , a3 = − 20137a0
1074632825 , a4 = − 8578236977a0

1580612944323000 , a5 = − 233675437175659a0
161423389882620381250

]
• Recursion relation for r = 1747

1750

ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5+ 872
875kak−

102258
875 kak+1+ 2728128

875 kak+2−36732kak+3+ 7722537
35 kak+4−663954kak+5− 5241

3062500ak−
238261101
3062500 ak+1+ 2862406404

765625 ak+2− 110139777
1750 ak+3+ 60042600949

122500 ak+4− 1267229331
700 ak+5

35(1750k2+22747k+73482)

• Solution for r = 1747
1750
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[
y(u) =

∞∑
k=0

aku
k+ 1747

1750 , ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5+ 872
875kak−

102258
875 kak+1+ 2728128

875 kak+2−36732kak+3+ 7722537
35 kak+4−663954kak+5− 5241

3062500ak−
238261101
3062500 ak+1+ 2862406404

765625 ak+2− 110139777
1750 ak+3+ 60042600949

122500 ak+4− 1267229331
700 ak+5

35(1750k2+22747k+73482) , a1 = − 47169a0
85676500 , a2 = − 589470647a0

6299023500000 , a3 = − 15579008605451309a0
719673903835250000000 , a4 = − 192276184430868189904453a0

35585805046036360500000000000 , a5 = − 214180356689737626731663904173563a0
158618166712498345944341250000000000000

]
• Revert the change of variables u = 5 + x[

y =
∞∑
k=0

ak(5 + x)k+
1747
1750 , ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5+ 872

875kak−
102258
875 kak+1+ 2728128

875 kak+2−36732kak+3+ 7722537
35 kak+4−663954kak+5− 5241

3062500ak−
238261101
3062500 ak+1+ 2862406404

765625 ak+2− 110139777
1750 ak+3+ 60042600949

122500 ak+4− 1267229331
700 ak+5

35(1750k2+22747k+73482) , a1 = − 47169a0
85676500 , a2 = − 589470647a0

6299023500000 , a3 = − 15579008605451309a0
719673903835250000000 , a4 = − 192276184430868189904453a0

35585805046036360500000000000 , a5 = − 214180356689737626731663904173563a0
158618166712498345944341250000000000000

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(5 + x)k
)
+
(

∞∑
k=0

bk(5 + x)k+
1747
1750

)
, ak+6 = −k2ak−39k2ak+1+624k2ak+2−5250k2ak+3+24525k2ak+4−60375k2ak+5−kak−39kak+1+1872kak+2−26250kak+3+171678kak+4−543411kak+5+1248ak+2−31500ak+3+294319ak+4−1207680ak+5

35(1750k2+19253k+52518) , a1 = 0, a2 = − a0
17530 , a3 = − 20137a0

1074632825 , a4 = − 8578236977a0
1580612944323000 , a5 = − 233675437175659a0

161423389882620381250 , bk+6 = −k2bk−39k2bk+1+624k2bk+2−5250k2bk+3+24525k2bk+4−60375k2bk+5+ 872
875kbk−

102258
875 kbk+1+ 2728128

875 kbk+2−36732kbk+3+ 7722537
35 kbk+4−663954kbk+5− 5241

3062500 bk−
238261101
3062500 bk+1+ 2862406404

765625 bk+2− 110139777
1750 bk+3+ 60042600949

122500 bk+4− 1267229331
700 bk+5

35(1750k2+22747k+73482) , b1 = − 47169b0
85676500 , b2 = − 589470647b0

6299023500000 , b3 = − 15579008605451309b0
719673903835250000000 , b4 = − 192276184430868189904453b0

35585805046036360500000000000 , b5 = − 214180356689737626731663904173563b0
158618166712498345944341250000000000000

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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7 Solution by Maple� �
Order:=6;
dsolve(x^3*(x^2-25)*(x-2)^2*diff(y(x),x$2)+3*x*(x-2)*diff(y(x),x)+7*(x+5)*y(x)=0,y(x),type='series',x=0);� �

No solution found

3 Solution by Mathematica
Time used: 0.092 (sec). Leaf size: 99� �
AsymptoticDSolveValue[x^3*(x^2-25)*(x-2)^2*y''[x]+3*x*(x-2)*y'[x]+7*(x+5)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
−1337698720169782190618881x5

352638738432 + 42840301537653264505x4

3265173504

− 344729362309955x3

7558272 + 3590248795x2

23328 − 50309x
108 + 1

)
x35/6

+
c1e

3
50

/
x
(
−37907198008560463448473952765642999x5

5380840125000000000000000000 + 27497874350326089989823180601x4

7971615000000000000000 + 10649898771731482781701x3

14762250000000000 + 975156065160301x2

36450000000 + 41066401x
135000 + 1

)
x1159/300
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2.10 problem 10
2.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 364

Internal problem ID [5565]
Internal file name [OUTPUT/4813_Sunday_June_05_2022_03_06_32_PM_30756957/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x3 − 2x2 + 3x

)2
y′′ + x(x− 3)2 y′ − (1 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

x6 − 4x5 + 10x4 − 12x3 + 9x2) y′′ + (x3 − 6x2 + 9x
)
y′ + (−1− x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = (x− 3)2

x (x2 − 2x+ 3)2

q(x) = − 1 + x

x2 (x2 − 2x+ 3)2
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Table 29: Table p(x), q(x) singularites.

p(x) = (x−3)2

x(x2−2x+3)2

singularity type
x = 0 “regular”

x = −i
√
2 + 1 “irregular”

x = i
√
2 + 1 “irregular”

q(x) = − 1+x
x2(x2−2x+3)2

singularity type
x = 0 “regular”

x = −i
√
2 + 1 “regular”

x = i
√
2 + 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points :
[
−i

√
2 + 1, i

√
2 + 1

]
Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x4 − 4x3 + 10x2 − 12x+ 9
)
y′′ +

(
x3 − 6x2 + 9x

)
y′ + (−1− x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x4 − 4x3 + 10x2 − 12x+ 9

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 − 6x2 + 9x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−1− x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+4an(n+ r) (n+ r−1)
)
+

∞∑
n =0

(
−4xn+r+3an(n+ r) (n+ r−1)

)
+
(

∞∑
n=0

10xn+r+2an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−12x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−6x1+n+ran(n+ r)

)
+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+4an(n+ r) (n+ r − 1) =
∞∑
n=4

an−4(n− 4 + r) (n− 5 + r)xn+r

∞∑
n =0

(
−4xn+r+3an(n+ r) (n+ r − 1)

)
=

∞∑
n=3

(
−4an−3(−3 + n+ r) (n− 4 + r)xn+r

)
∞∑

n =0

10xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

10an−2(n+ r − 2) (−3 + n+ r)xn+r

∞∑
n =0

(
−12x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−12an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

(
−6x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−6an−1(n+ r − 1)xn+r

)
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∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=4

an−4(n− 4 + r) (n− 5 + r)xn+r

)

+
∞∑

n =3

(
−4an−3(−3 + n+ r) (n− 4 + r)xn+r

)
+
(

∞∑
n=2

10an−2(n+ r − 2) (−3 + n+ r)xn+r

)

+
∞∑

n =1

(
−12an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
∞∑

n =1

(
−6an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
+

∞∑
n =1

(
−an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 9xra0r − a0x
r = 0

Or
(9xrr(−1 + r) + 9xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

9r2 − 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
12r2 − 6r + 1
9r2 + 18r + 8

Substituting n = 2 in Eq. (2B) gives

a2 =
54r4 + 45r3 + 70r2 + 48r + 7

(9r2 + 18r + 8) (9r2 + 36r + 35)

Substituting n = 3 in Eq. (2B) gives

a3 =
−108r6 − 540r5 + 528r4 + 3732r3 + 3489r2 + 739r + 224

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80)
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For 4 ≤ n the recursive equation is

(3)
an−4(n− 4 + r) (n− 5 + r)− 4an−3(−3 + n+ r) (n− 4 + r)
+ 10an−2(n+ r − 2) (−3 + n+ r)− 12an−1(n+ r − 1) (n+ r − 2)
+ 9an(n+ r) (n+ r − 1) + an−2(n+ r − 2)
− 6an−1(n+ r − 1) + 9an(n+ r)− an − an−1 = 0

Solving for an from recursive equation (4) gives

an = −n2an−4 − 4n2an−3 + 10n2an−2 − 12n2an−1 + 2nran−4 − 8nran−3 + 20nran−2 − 24nran−1 + r2an−4 − 4r2an−3 + 10r2an−2 − 12r2an−1 − 9nan−4 + 28nan−3 − 49nan−2 + 30nan−1 − 9ran−4 + 28ran−3 − 49ran−2 + 30ran−1 + 20an−4 − 48an−3 + 58an−2 − 19an−1

9n2 + 18nr + 9r2 − 1
(4)

Which for the root r = 1
3 becomes

an = (−9an−4 + 36an−3 − 90an−2 + 108an−1)n2 + (75an−4 − 228an−3 + 381an−2 − 198an−1)n− 154an−4 + 352an−3 − 385an−2 + 93an−1

81n2 + 54n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

12r2−6r+1
9r2+18r+8

1
45

a2
54r4+45r3+70r2+48r+7

(9r2+18r+8)(9r2+36r+35)
149
3240

a3
−108r6−540r5+528r4+3732r3+3489r2+739r+224

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
2701

192456

For n = 4, using the above recursive equation gives

a4 =
−2997r8 − 29079r7 − 99054r6 − 125883r5 + 9826r4 + 138853r3 + 80233r2 + 5477r + 8064

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143)

Which for the root r = 1
3 becomes

a4 =
236933

121247280

And the table now becomes
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n an,r an

a0 1 1
a1

12r2−6r+1
9r2+18r+8

1
45

a2
54r4+45r3+70r2+48r+7

(9r2+18r+8)(9r2+36r+35)
149
3240

a3
−108r6−540r5+528r4+3732r3+3489r2+739r+224

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
2701

192456

a4
−2997r8−29079r7−99054r6−125883r5+9826r4+138853r3+80233r2+5477r+8064

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
236933

121247280

For n = 5, using the above recursive equation gives

a5 =
−17496r10 − 292572r9 − 2032830r8 − 7628094r7 − 16915518r6 − 23128560r5 − 20473273r4 − 12932200r3 − 6220667r2 − 1947462r − 14560

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143) (9r2 + 90r + 224)

Which for the root r = 1
3 becomes

a5 = − 67092967
92754169200

And the table now becomes

n an,r an

a0 1 1
a1

12r2−6r+1
9r2+18r+8

1
45

a2
54r4+45r3+70r2+48r+7

(9r2+18r+8)(9r2+36r+35)
149
3240

a3
−108r6−540r5+528r4+3732r3+3489r2+739r+224

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
2701

192456

a4
−2997r8−29079r7−99054r6−125883r5+9826r4+138853r3+80233r2+5477r+8064

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
236933

121247280

a5
−17496r10−292572r9−2032830r8−7628094r7−16915518r6−23128560r5−20473273r4−12932200r3−6220667r2−1947462r−14560

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)(9r2+90r+224) − 67092967
92754169200

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1 + x

45 + 149x2

3240 + 2701x3

192456 + 236933x4

121247280 − 67092967x5

92754169200 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
12r2 − 6r + 1
9r2 + 18r + 8

Substituting n = 2 in Eq. (2B) gives

b2 =
54r4 + 45r3 + 70r2 + 48r + 7

(9r2 + 18r + 8) (9r2 + 36r + 35)

Substituting n = 3 in Eq. (2B) gives

b3 =
−108r6 − 540r5 + 528r4 + 3732r3 + 3489r2 + 739r + 224

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80)

For 4 ≤ n the recursive equation is

(3)
bn−4(n− 4 + r) (n− 5 + r)− 4bn−3(−3 + n+ r) (n− 4 + r)
+ 10bn−2(n+ r − 2) (−3 + n+ r)− 12bn−1(n+ r − 1) (n+ r − 2)
+ 9bn(n+ r) (n+ r − 1) + bn−2(n+ r − 2)
− 6bn−1(n+ r − 1) + 9bn(n+ r)− bn − bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = −n2bn−4 − 4n2bn−3 + 10n2bn−2 − 12n2bn−1 + 2nrbn−4 − 8nrbn−3 + 20nrbn−2 − 24nrbn−1 + r2bn−4 − 4r2bn−3 + 10r2bn−2 − 12r2bn−1 − 9nbn−4 + 28nbn−3 − 49nbn−2 + 30nbn−1 − 9rbn−4 + 28rbn−3 − 49rbn−2 + 30rbn−1 + 20bn−4 − 48bn−3 + 58bn−2 − 19bn−1

9n2 + 18nr + 9r2 − 1
(4)

Which for the root r = −1
3 becomes

bn = (−9bn−4 + 36bn−3 − 90bn−2 + 108bn−1)n2 + (87bn−4 − 276bn−3 + 501bn−2 − 342bn−1)n− 208bn−4 + 520bn−3 − 679bn−2 + 273bn−1

81n2 − 54n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

12r2−6r+1
9r2+18r+8

13
9

b2
54r4+45r3+70r2+48r+7

(9r2+18r+8)(9r2+36r+35) − 5
162

b3
−108r6−540r5+528r4+3732r3+3489r2+739r+224

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1591
30618
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For n = 4, using the above recursive equation gives

b4 =
−2997r8 − 29079r7 − 99054r6 − 125883r5 + 9826r4 + 138853r3 + 80233r2 + 5477r + 8064

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143)

Which for the root r = −1
3 becomes

b4 =
106583
5511240

And the table now becomes

n bn,r bn

b0 1 1
b1

12r2−6r+1
9r2+18r+8

13
9

b2
54r4+45r3+70r2+48r+7

(9r2+18r+8)(9r2+36r+35) − 5
162

b3
−108r6−540r5+528r4+3732r3+3489r2+739r+224

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1591
30618

b4
−2997r8−29079r7−99054r6−125883r5+9826r4+138853r3+80233r2+5477r+8064

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
106583
5511240

For n = 5, using the above recursive equation gives

b5 =
−17496r10 − 292572r9 − 2032830r8 − 7628094r7 − 16915518r6 − 23128560r5 − 20473273r4 − 12932200r3 − 6220667r2 − 1947462r − 14560

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143) (9r2 + 90r + 224)

Which for the root r = −1
3 becomes

b5 =
7435523

3224075400
And the table now becomes

n bn,r bn

b0 1 1
b1

12r2−6r+1
9r2+18r+8

13
9

b2
54r4+45r3+70r2+48r+7

(9r2+18r+8)(9r2+36r+35) − 5
162

b3
−108r6−540r5+528r4+3732r3+3489r2+739r+224

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1591
30618

b4
−2997r8−29079r7−99054r6−125883r5+9826r4+138853r3+80233r2+5477r+8064

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
106583
5511240

b5
−17496r10−292572r9−2032830r8−7628094r7−16915518r6−23128560r5−20473273r4−12932200r3−6220667r2−1947462r−14560

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)(9r2+90r+224)
7435523

3224075400
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Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 13x

9 − 5x2

162 +
1591x3

30618 + 106583x4

5511240 + 7435523x5

3224075400 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1 + x

45 + 149x2

3240 + 2701x3

192456 + 236933x4

121247280 − 67092967x5

92754169200 +O
(
x6))

+
c2
(
1 + 13x

9 − 5x2

162 +
1591x3

30618 + 106583x4

5511240 + 7435523x5

3224075400 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x
1
3

(
1 + x

45 + 149x2

3240 + 2701x3

192456 + 236933x4

121247280 − 67092967x5

92754169200 +O
(
x6))

+
c2
(
1 + 13x

9 − 5x2

162 +
1591x3

30618 + 106583x4

5511240 + 7435523x5

3224075400 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1 + x

45 + 149x2

3240 + 2701x3

192456 + 236933x4

121247280 − 67092967x5

92754169200 +O
(
x6))

+
c2
(
1 + 13x

9 − 5x2

162 +
1591x3

30618 + 106583x4

5511240 + 7435523x5

3224075400 +O(x6)
)

x
1
3

Verification of solutions

y = c1x
1
3

(
1 + x

45 + 149x2

3240 + 2701x3

192456 + 236933x4

121247280 − 67092967x5

92754169200 +O
(
x6))

+
c2
(
1 + 13x

9 − 5x2

162 +
1591x3

30618 + 106583x4

5511240 + 7435523x5

3224075400 +O(x6)
)

x
1
3

Verified OK.
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2.10.1 Maple step by step solution

Let’s solve
x2(x4 − 4x3 + 10x2 − 12x+ 9) y′′ + (x3 − 6x2 + 9x) y′ + (−1− x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (1+x)y
x2(x4−4x3+10x2−12x+9) −

(
x2−6x+9

)
y′

x(x4−4x3+10x2−12x+9)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−6x+9

)
y′

x(x4−4x3+10x2−12x+9) −
(1+x)y

x2(x4−4x3+10x2−12x+9) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2−6x+9
x(x4−4x3+10x2−12x+9) , P3(x) = − 1+x

x2(x4−4x3+10x2−12x+9)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x4 − 4x3 + 10x2 − 12x+ 9) y′′ + x(x2 − 6x+ 9) y′ + (−1− x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..6

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + (a1(4 + 3r) (2 + 3r)− a0(12r2 − 6r + 1))x1+r + (a2(7 + 3r) (5 + 3r)− a1(12r2 + 18r + 7) + a0r(−9 + 10r))x2+r + (a3(10 + 3r) (8 + 3r)− a2(12r2 + 42r + 37) + a1(1 + r) (1 + 10r)− 4a0r(−1 + r))x3+r +
(

∞∑
k=4

(
ak(3k + 3r + 1) (3k + 3r − 1)− ak−1

(
12(k − 1)2 + 24(k − 1) r + 12r2 − 6k + 7− 6r

)
+ ak−2(k − 2 + r) (10k − 29 + 10r)− 4ak−3(k − 3 + r) (k − 4 + r) + ak−4(k − 4 + r) (k − 5 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• The coefficients of each power of x must be 0

[a1(4 + 3r) (2 + 3r)− a0(12r2 − 6r + 1) = 0, a2(7 + 3r) (5 + 3r)− a1(12r2 + 18r + 7) + a0r(−9 + 10r) = 0, a3(10 + 3r) (8 + 3r)− a2(12r2 + 42r + 37) + a1(1 + r) (1 + 10r)− 4a0r(−1 + r) = 0]
• Solve for the dependent coefficient(s){

a1 = a0
(
12r2−6r+1

)
9r2+18r+8 , a2 = a0

(
54r4+45r3+70r2+48r+7

)
81r4+486r3+1035r2+918r+280 , a3 = − a0

(
108r6+540r5−528r4−3732r3−3489r2−739r−224

)
729r6+8748r5+42039r4+103032r3+134892r2+88560r+22400

}
• Each term in the series must be 0, giving the recursion relation

(9ak + ak−4 − 4ak−3 + 10ak−2 − 12ak−1) k2 + (2(9ak + ak−4 − 4ak−3 + 10ak−2 − 12ak−1) r − 9ak−4 + 28ak−3 − 49ak−2 + 30ak−1) k + (9ak + ak−4 − 4ak−3 + 10ak−2 − 12ak−1) r2 + (−9ak−4 + 28ak−3 − 49ak−2 + 30ak−1) r − ak + 20ak−4 − 48ak−3 + 58ak−2 − 19ak−1 = 0
• Shift index using k− >k + 4

(9ak+4 + ak − 4ak+1 + 10ak+2 − 12ak+3) (k + 4)2 + (2(9ak+4 + ak − 4ak+1 + 10ak+2 − 12ak+3) r − 9ak + 28ak+1 − 49ak+2 + 30ak+3) (k + 4) + (9ak+4 + ak − 4ak+1 + 10ak+2 − 12ak+3) r2 + (−9ak + 28ak+1 − 49ak+2 + 30ak+3) r − ak+4 + 20ak − 48ak+1 + 58ak+2 − 19ak+3 = 0
• Recursion relation that defines series solution to ODE
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ak+4 = −k2ak−4k2ak+1+10k2ak+2−12k2ak+3+2krak−8krak+1+20krak+2−24krak+3+r2ak−4r2ak+1+10r2ak+2−12r2ak+3−kak−4kak+1+31kak+2−66kak+3−rak−4rak+1+31rak+2−66rak+3+22ak+2−91ak+3
9k2+18kr+9r2+72k+72r+143

• Recursion relation for r = −1
3

ak+4 = −k2ak−4k2ak+1+10k2ak+2−12k2ak+3− 5
3kak−

4
3kak+1+ 73

3 kak+2−58kak+3+ 4
9ak+

8
9ak+1+ 115

9 ak+2− 211
3 ak+3

9k2+66k+120

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+4 = −k2ak−4k2ak+1+10k2ak+2−12k2ak+3− 5
3kak−

4
3kak+1+ 73

3 kak+2−58kak+3+ 4
9ak+

8
9ak+1+ 115

9 ak+2− 211
3 ak+3

9k2+66k+120 , a1 = 13a0
9 , a2 = −5a0

162 , a3 =
1591a0
30618

]
• Recursion relation for r = 1

3

ak+4 = −k2ak−4k2ak+1+10k2ak+2−12k2ak+3− 1
3kak−

20
3 kak+1+ 113

3 kak+2−74kak+3− 2
9ak−

16
9 ak+1+ 301

9 ak+2− 343
3 ak+3

9k2+78k+168

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+4 = −k2ak−4k2ak+1+10k2ak+2−12k2ak+3− 1
3kak−

20
3 kak+1+ 113

3 kak+2−74kak+3− 2
9ak−

16
9 ak+1+ 301

9 ak+2− 343
3 ak+3

9k2+78k+168 , a1 = a0
45 , a2 =

149a0
3240 , a3 =

2701a0
192456

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+4 = −k2ak−4k2ak+1+10k2ak+2−12k2ak+3− 5

3kak−
4
3kak+1+ 73

3 kak+2−58kak+3+ 4
9ak+

8
9ak+1+ 115

9 ak+2− 211
3 ak+3

9k2+66k+120 , a1 = 13a0
9 , a2 = −5a0

162 , a3 =
1591a0
30618 , bk+4 = −k2bk−4k2bk+1+10k2bk+2−12k2bk+3− 1

3kbk−
20
3 kbk+1+ 113

3 kbk+2−74kbk+3− 2
9 bk−

16
9 bk+1+ 301

9 bk+2− 343
3 bk+3

9k2+78k+168 , b1 = b0
45 , b2 =

149b0
3240 , b3 =

2701b0
192456

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
Order:=6;
dsolve((x^3-2*x^2+3*x)^2*diff(y(x),x$2)+x*(x-3)^2*diff(y(x),x)-(x+1)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

2
3
(
1 + 1

45x+ 149
3240x

2 + 2701
192456x

3 + 236933
121247280x

4 − 67092967
92754169200x

5 +O(x6)
)
+ c1

(
1 + 13

9 x− 5
162x

2 + 1591
30618x

3 + 106583
5511240x

4 + 7435523
3224075400x

5 +O(x6)
)

x
1
3

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 90� �
AsymptoticDSolveValue[(x^3-2*x^2+3*x)^2*y''[x]+x*(x-3)^2*y'[x]-(x+1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
− 67092967x5

92754169200 + 236933x4

121247280 + 2701x3

192456 + 149x2

3240 + x

45 + 1
)

+
c2
(

7435523x5

3224075400 +
106583x4

5511240 + 1591x3

30618 − 5x2

162 +
13x
9 + 1

)
3
√
x
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2.11 problem 11
Internal problem ID [5566]
Internal file name [OUTPUT/4814_Sunday_June_05_2022_03_06_36_PM_63783283/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 1

)
y′′ + 5(1 + x) y′ +

(
x2 − x

)
y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (82)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (83)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −yx2 − xy + 5xy′ + 5y′
x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(−x4 + x3 + 31x2 + 59x+ 30) y′ + 5y

(
x2 + 4

5x+ 1
5

)
(x− 1)

(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (10x5 − 2x4 − 226x3 − 630x2 − 624x− 208) y′ + y(x− 1) (x5 − x4 − 36x3 − 62x2 − 39x− 3)
(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
(1 + x) (x7 − 3x6 − 93x5 + 33x4 + 1793x3 + 5077x2 + 4971x+ 1661) y′ − 10

(
x6 − 2

5x
5 − 146

5 x4 − 392
5 x3 − 413

5 x2 − 154
5 x− 18

5

)
y(x− 1)

)
(1 + x) (x− 1)

(x2 − 1)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−15x9 + 21x8 + 972x7 + 1452x6 − 15804x5 − 78540x4 − 152496x3 − 149952x2 − 74577x− 14901) y′ − y(x− 1) (x9 − 2x8 − 106x7 − 42x6 + 2638x5 + 9734x4 + 14562x3 + 10006x2 + 3257x+ 272)
(x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 5y′(0)
F1 = −y(0) + 30y′(0)
F2 = −3y(0) + 208y′(0)
F3 = −36y(0) + 1661y′(0)
F4 = −272y(0) + 14901y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
3 − 1

8x
4 − 3

10x
5 − 17

45x
6
)
y(0)

+
(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5 + 4967

240 x6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 − 1
)
y′′ + (5x+ 5) y′ +

(
x2 − x

)
y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 − 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (5x+ 5)

(
∞∑
n=1

nanx
n−1

)
+
(
x2 − x

)( ∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) anxn−2)+( ∞∑

n=1

5nanxn

)

+
(

∞∑
n=1

5nanxn−1

)
+
(

∞∑
n=0

xn+2an

)
+

∞∑
n =0

(
−x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

(
−n(n− 1) anxn−2) = ∞∑

n=0

(−(n+ 2) an+2(1 + n)xn)

∞∑
n =1

5nanxn−1 =
∞∑
n=0

5(1 + n) a1+nx
n

∞∑
n =0

xn+2an =
∞∑
n=2

an−2x
n

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =0

(−(n+ 2) an+2(1 + n)xn) +
(

∞∑
n=1

5nanxn

)

+
(

∞∑
n=0

5(1 + n) a1+nx
n

)
+
(

∞∑
n=2

an−2x
n

)
+

∞∑
n =1

(−an−1x
n) = 0

n = 0 gives
−2a2 + 5a1 = 0

a2 =
5a1
2

n = 1 gives
−6a3 + 5a1 + 10a2 − a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6 + 5a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− (n+ 2) an+2(1 + n) + 5nan + 5(1 + n) a1+n + an−2 − an−1 = 0
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Solving for an+2, gives

(5)

an+2 =
n2an + 4nan + 5na1+n + 5a1+n + an−2 − an−1

(n+ 2) (1 + n)

= (n2 + 4n) an
(n+ 2) (1 + n) +

(5n+ 5) a1+n

(n+ 2) (1 + n) +
an−2

(n+ 2) (1 + n) −
an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

12a2 − 12a4 + 15a3 + a0 − a1 = 0

Which after substituting the earlier terms found becomes

a4 =
26a1
3 − a0

8

For n = 3 the recurrence equation gives

21a3 − 20a5 + 20a4 + a1 − a2 = 0

Which after substituting the earlier terms found becomes

a5 = −3a0
10 + 1661a1

120

For n = 4 the recurrence equation gives

32a4 − 30a6 + 25a5 + a2 − a3 = 0

Which after substituting the earlier terms found becomes

a6 =
4967a1
240 − 17a0

45

For n = 5 the recurrence equation gives

45a5 − 42a7 + 30a6 + a3 − a4 = 0

Which after substituting the earlier terms found becomes

a7 = −199a0
336 + 14881a1

504
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0+a1x+
5a1x2

2 +
(
−a0

6 +5a1
)
x3+

(
26a1
3 − a0

8

)
x4+

(
−3a0

10 + 1661a1
120

)
x5+ . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6x
3 − 1

8x
4 − 3

10x
5
)
a0 +

(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

6x
3 − 1

8x
4 − 3

10x
5
)
c1 +

(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5

)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

6x
3 − 1

8x
4 − 3

10x
5 − 17

45x
6
)
y(0)

+
(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5 + 4967

240 x6
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

6x
3 − 1

8x
4 − 3

10x
5
)
c1 +

(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5

)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

6x
3 − 1

8x
4 − 3

10x
5 − 17

45x
6
)
y(0)

+
(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5 + 4967

240 x6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

6x
3 − 1

8x
4 − 3

10x
5
)
c1 +

(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5

)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve((x^2-1)*diff(y(x),x$2)+5*(x+1)*diff(y(x),x)+(x^2-x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

6x
3 − 1

8x
4 − 3

10x
5
)
y(0)

+
(
x+ 5

2x
2 + 5x3 + 26

3 x4 + 1661
120 x5

)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 61� �
AsymptoticDSolveValue[(x^2-1)*y''[x]+5*(x+1)*y'[x]+(x^2-x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−3x5

10 − x4

8 − x3

6 + 1
)
+ c2

(
1661x5

120 + 26x4

3 + 5x3 + 5x2

2 + x

)
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2.12 problem 12
Internal problem ID [5567]
Internal file name [OUTPUT/4815_Sunday_June_05_2022_03_06_37_PM_64655398/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (x+ 3) y′ + 7yx2 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (x+ 3) y′ + 7yx2 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 3
x

q(x) = 7x
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Table 31: Table p(x), q(x) singularites.

p(x) = x+3
x

singularity type
x = 0 “regular”

q(x) = 7x
singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (x+ 3) y′ + 7yx2 = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (x+ 3)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ 7
(

∞∑
n=0

anx
n+r

)
x2 = 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=0

7x2+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

7x2+n+ran =
∞∑
n=3

7an−3x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=3

7an−3x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2 + r) = 0
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Since the above is true for all x then the indicial equation becomes

r(2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −2

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = − r

r2 + 4r + 3
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Substituting n = 2 in Eq. (2B) gives

a2 =
r

r3 + 9r2 + 26r + 24
For 3 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + 3an(n+ r) + 7an−3 = 0

Solving for an from recursive equation (4) gives

an = −nan−1 + ran−1 + 7an−3 − an−1

n2 + 2nr + r2 + 2n+ 2r (4)

Which for the root r = 0 becomes

an = −nan−1 − 7an−3 + an−1

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − r

r2+4r+3 0

a2
r

r3+9r2+26r+24 0

For n = 3, using the above recursive equation gives

a3 =
−7r2 − 50r − 84

(5 + r) (r + 3)2 (4 + r)

Which for the root r = 0 becomes

a3 = − 7
15

And the table now becomes

n an,r an

a0 1 1
a1 − r

r2+4r+3 0

a2
r

r3+9r2+26r+24 0

a3
−7r2−50r−84

(5+r)(r+3)2(4+r) − 7
15
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For n = 4, using the above recursive equation gives

a4 =
14r3 + 120r2 + 274r + 84

(r + 6) (4 + r)2 (r + 3) (1 + r) (5 + r)

Which for the root r = 0 becomes

a4 =
7
120

And the table now becomes

n an,r an

a0 1 1
a1 − r

r2+4r+3 0

a2
r

r3+9r2+26r+24 0

a3
−7r2−50r−84

(5+r)(r+3)2(4+r) − 7
15

a4
14r3+120r2+274r+84

(r+6)(4+r)2(r+3)(1+r)(5+r)
7

120

For n = 5, using the above recursive equation gives

a5 =
−21r4 − 232r3 − 801r2 − 842r − 168

(r + 7) (5 + r)2 (r + 3) (4 + r) (2 + r) (1 + r) (r + 6)

Which for the root r = 0 becomes

a5 = − 1
150

And the table now becomes

n an,r an

a0 1 1
a1 − r

r2+4r+3 0

a2
r

r3+9r2+26r+24 0

a3
−7r2−50r−84

(5+r)(r+3)2(4+r) − 7
15

a4
14r3+120r2+274r+84

(r+6)(4+r)2(r+3)(1+r)(5+r)
7

120

a5
−21r4−232r3−801r2−842r−168

(r+7)(5+r)2(r+3)(4+r)(2+r)(1+r)(r+6) − 1
150
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Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 7x3

15 + 7x4

120 − x5

150 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= r

r3 + 9r2 + 26r + 24
Therefore

lim
r→r2

r

r3 + 9r2 + 26r + 24 = lim
r→−2

r

r3 + 9r2 + 26r + 24
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

385



Substituting these back into the given ode xy′′ + (x+ 3) y′ + 7yx2 = 0 gives

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ (x+ 3)
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ 7
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
x2 = 0

Which can be written as

(7)

((
y′′1(x)x+ (x+ 3) y′1(x) + 7y1(x)x2) ln (x) + (2y′1(x)

x
− y1(x)

x2

)
x

+ (x+ 3) y1(x)
x

)
C +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ (x+ 3)
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 7
(

∞∑
n=0

bnx
n+r2

)
x2 = 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ (x+ 3) y′1(x) + 7y1(x)x2 = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ (x+ 3) y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ (x+ 3)
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 7
(

∞∑
n=0

bnx
n+r2

)
x2 = 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ (x+ 2)

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 + (x2 + 3x)

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
+ 7
(

∞∑
n=0

bnx
n+r2

)
x3

x
= 0

Since r1 = 0 and r2 = −2 then the above becomes

(10)

(
2
(

∞∑
n=0

xn−1ann

)
x+ (x+ 2)

(
∞∑
n=0

anx
n

))
C

x

+

(
∞∑
n=0

x−4+nbn(n− 2) (n− 3)
)
x2 + (x2 + 3x)

(
∞∑
n=0

xn−3bn(n− 2)
)
+ 7
(

∞∑
n=0

bnx
n−2
)
x3

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn−1ann

)
+
(

∞∑
n=0

Canx
n

)
+
(

∞∑
n=0

2C xn−1an

)

+
(

∞∑
n=0

xn−3bn
(
n2 − 5n+ 6

))
+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
(

∞∑
n=0

3xn−3bn(n− 2)
)

+
(

∞∑
n=0

7bnxn

)
= 0

The next step is to make all powers of x be n − 3 in each summation term. Going
over each summation term above with power of x in it which is not already xn−3 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn−1ann =
∞∑
n=2

2C(n− 2) an−2x
n−3

∞∑
n =0

Canx
n =

∞∑
n=3

Can−3x
n−3
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∞∑
n =0

2C xn−1an =
∞∑
n=2

2Can−2x
n−3

∞∑
n =0

xn−2bn(n− 2) =
∞∑
n=1

bn−1(n− 3)xn−3

∞∑
n =0

7bnxn =
∞∑
n=3

7bn−3x
n−3

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 3.

(2B)

(
∞∑
n=2

2C(n− 2) an−2x
n−3

)
+
(

∞∑
n=3

Can−3x
n−3

)
+
(

∞∑
n=2

2Can−2x
n−3

)

+
(

∞∑
n=0

xn−3bn
(
n2 − 5n+ 6

))
+
(

∞∑
n=1

bn−1(n− 3)xn−3

)

+
(

∞∑
n=0

3xn−3bn(n− 2)
)

+
(

∞∑
n=3

7bn−3x
n−3

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 − 2b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 − 2 = 0

Solving the above for b1 gives
b1 = −2

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 2 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 3, Eq (2B) gives

(a0 + 4a1)C + 7b0 + 3b3 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6 + 3b3 = 0

Solving the above for b3 gives
b3 = −2

For n = 4, Eq (2B) gives

(a1 + 6a2)C + 7b1 + b3 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−16 + 8b4 = 0

Solving the above for b4 gives
b4 = 2

For n = 5, Eq (2B) gives

(a2 + 8a3)C + 7b2 + 2b4 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

116
15 + 15b5 = 0

Solving the above for b5 gives
b5 = −116

225
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x)= (−1)
(
1− 7x3

15 + 7x4

120−
x5

150+O
(
x6)) ln (x)+

1− 2x− 2x3 + 2x4 − 116x5

225 +O(x6)
x2
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 7x3

15 + 7x4

120 − x5

150 +O
(
x6))

+ c2

(
(−1)

(
1− 7x3

15 + 7x4

120 − x5

150 +O
(
x6)) ln (x)

+
1− 2x− 2x3 + 2x4 − 116x5

225 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1

(
1− 7x3

15 + 7x4

120 − x5

150 +O
(
x6))+ c2

((
−1 + 7x3

15 − 7x4

120 + x5

150 −O
(
x6)) ln (x)

+
1− 2x− 2x3 + 2x4 − 116x5

225 +O(x6)
x2

)

Summary
The solution(s) found are the following

y = c1

(
1− 7x3

15 + 7x4

120 − x5

150 +O
(
x6))+ c2

((
−1+ 7x3

15 − 7x4

120 + x5

150 −O
(
x6)) ln (x)

+
1− 2x− 2x3 + 2x4 − 116x5

225 +O(x6)
x2

)
(1)

Verification of solutions

y = c1

(
1− 7x3

15 + 7x4

120 − x5

150 +O
(
x6))+ c2

((
−1+ 7x3

15 − 7x4

120 + x5

150 −O
(
x6)) ln (x)

+
1− 2x− 2x3 + 2x4 − 116x5

225 +O(x6)
x2

)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 56� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(x+3)*diff(y(x),x)+7*x^2*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1

(
1− 7

15x
3 + 7

120x
4 − 1

150x
5 +O

(
x6))

+
c2
(
ln (x)

(
2x2 − 14

15x
5 +O(x6)

)
+
(
−2 + 4x− 3x2 + 4x3 − 4x4 + 547

225x
5 +O(x6)

))
x2

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 55� �
AsymptoticDSolveValue[x*y''[x]+(x+3)*y'[x]+7*x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
7x4

120 − 7x3

15 + 1
)
+ c1

(
2x4 − 2x3 + 2x2 − 2x+ 1

x2 − log(x)
)
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2.13 problem 13
2.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 403

Internal problem ID [5568]
Internal file name [OUTPUT/4816_Sunday_June_05_2022_03_06_40_PM_69573029/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ +
(
5
3x+ x2

)
y′ − y

3 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
5
3x+ x2

)
y′ − y

3 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x+ 5
3x

q(x) = − 1
3x2
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Table 32: Table p(x), q(x) singularites.

p(x) = 3x+5
3x

singularity type
x = 0 “regular”

q(x) = − 1
3x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
5
3x+ x2

)
y′ − y

3 = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
5
3x+ x2

)( ∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
3 = 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
3

)
+

∞∑
n =0

(
−anx

n+r

3

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
3

)
+

∞∑
n =0

(
−anx

n+r

3

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)
3 − anx

n+r

3 = 0

When n = 0 the above becomes

xra0r(−1 + r) + 5xra0r

3 − a0x
r

3 = 0

Or (
xrr(−1 + r) + 5xrr

3 − xr

3

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(3r2 + 2r − 1)xr

3 = 0
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Since the above is true for all x then the indicial equation becomes

r2 + 2
3r −

1
3 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1

Since a0 6= 0 then the indicial equation becomes

(3r2 + 2r − 1)xr

3 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + 5an(n+ r)
3 − an

3 = 0

Solving for an from recursive equation (4) gives

an = − 3an−1(n+ r − 1)
3n2 + 6nr + 3r2 + 2n+ 2r − 1 (4)

Which for the root r = 1
3 becomes

an = an−1(2− 3n)
3n2 + 4n (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 3r
3r2 + 8r + 4

Which for the root r = 1
3 becomes

a1 = −1
7

And the table now becomes

n an,r an

a0 1 1
a1 − 3r

3r2+8r+4 −1
7

For n = 2, using the above recursive equation gives

a2 =
9r(1 + r)

(3r2 + 8r + 4) (3r2 + 14r + 15)

Which for the root r = 1
3 becomes

a2 =
1
35

And the table now becomes

n an,r an

a0 1 1
a1 − 3r

3r2+8r+4 −1
7

a2
9r(1+r)

(3r2+8r+4)(3r2+14r+15)
1
35

For n = 3, using the above recursive equation gives

a3 = − 27r(1 + r)
(3r2 + 20r + 32) (3r2 + 14r + 15) (3r + 2)
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Which for the root r = 1
3 becomes

a3 = − 1
195

And the table now becomes

n an,r an

a0 1 1
a1 − 3r

3r2+8r+4 −1
7

a2
9r(1+r)

(3r2+8r+4)(3r2+14r+15)
1
35

a3 − 27r(1+r)
(3r2+20r+32)(3r2+14r+15)(3r+2) − 1

195

For n = 4, using the above recursive equation gives

a4 =
81r(1 + r)

(3r2 + 26r + 55) (3r + 2) (3r + 5) (3r2 + 20r + 32)

Which for the root r = 1
3 becomes

a4 =
1

1248
And the table now becomes

n an,r an

a0 1 1
a1 − 3r

3r2+8r+4 −1
7

a2
9r(1+r)

(3r2+8r+4)(3r2+14r+15)
1
35

a3 − 27r(1+r)
(3r2+20r+32)(3r2+14r+15)(3r+2) − 1

195

a4
81r(1+r)

(3r2+26r+55)(3r+2)(3r+5)(3r2+20r+32)
1

1248

For n = 5, using the above recursive equation gives

a5 = − 243r(1 + r)
(3r2 + 32r + 84) (3r + 8) (3r + 5) (3r + 2) (3r2 + 26r + 55)

Which for the root r = 1
3 becomes

a5 = − 1
9120
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And the table now becomes

n an,r an

a0 1 1
a1 − 3r

3r2+8r+4 −1
7

a2
9r(1+r)

(3r2+8r+4)(3r2+14r+15)
1
35

a3 − 27r(1+r)
(3r2+20r+32)(3r2+14r+15)(3r+2) − 1

195

a4
81r(1+r)

(3r2+26r+55)(3r+2)(3r+5)(3r2+20r+32)
1

1248

a5 − 243r(1+r)
(3r2+32r+84)(3r+8)(3r+5)(3r+2)(3r2+26r+55) − 1

9120

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− x

7 + x2

35 − x3

195 + x4

1248 − x5

9120 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1) + 5bn(n+ r)
3 − bn

3 = 0

Solving for bn from recursive equation (4) gives

bn = − 3bn−1(n+ r − 1)
3n2 + 6nr + 3r2 + 2n+ 2r − 1 (4)

Which for the root r = −1 becomes

bn = −3bn−1(n− 2)
n (3n− 4) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 = − 3r
3r2 + 8r + 4

Which for the root r = −1 becomes

b1 = −3

And the table now becomes

n bn,r bn

b0 1 1
b1 − 3r

3r2+8r+4 −3

For n = 2, using the above recursive equation gives

b2 =
9r(1 + r)

(3r2 + 8r + 4) (3r2 + 14r + 15)

Which for the root r = −1 becomes

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 − 3r

3r2+8r+4 −3

b2
9r(1+r)

(3r2+8r+4)(3r2+14r+15) 0

For n = 3, using the above recursive equation gives

b3 = − 27r(1 + r)
(3r2 + 20r + 32) (3r2 + 14r + 15) (3r + 2)

Which for the root r = −1 becomes

b3 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 3r

3r2+8r+4 −3

b2
9r(1+r)

(3r2+8r+4)(3r2+14r+15) 0

b3 − 27r(1+r)
(3r2+20r+32)(3r2+14r+15)(3r+2) 0

For n = 4, using the above recursive equation gives

b4 =
81r(1 + r)

(3r2 + 26r + 55) (3r + 2) (3r + 5) (3r2 + 20r + 32)

Which for the root r = −1 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 − 3r

3r2+8r+4 −3

b2
9r(1+r)

(3r2+8r+4)(3r2+14r+15) 0

b3 − 27r(1+r)
(3r2+20r+32)(3r2+14r+15)(3r+2) 0

b4
81r(1+r)

(3r2+26r+55)(3r+2)(3r+5)(3r2+20r+32) 0

For n = 5, using the above recursive equation gives

b5 = − 243r(1 + r)
(3r2 + 32r + 84) (3r + 8) (3r + 5) (3r + 2) (3r2 + 26r + 55)

Which for the root r = −1 becomes

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 3r

3r2+8r+4 −3

b2
9r(1+r)

(3r2+8r+4)(3r2+14r+15) 0

b3 − 27r(1+r)
(3r2+20r+32)(3r2+14r+15)(3r+2) 0

b4
81r(1+r)

(3r2+26r+55)(3r+2)(3r+5)(3r2+20r+32) 0

b5 − 243r(1+r)
(3r2+32r+84)(3r+8)(3r+5)(3r+2)(3r2+26r+55) 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1− 3x+O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− x

7 + x2

35 − x3

195 + x4

1248 − x5

9120 +O
(
x6))+ c2(1− 3x+O(x6))

x

Hence the final solution is

y = yh

= c1x
1
3

(
1− x

7 + x2

35 − x3

195 + x4

1248 − x5

9120 +O
(
x6))+ c2(1− 3x+O(x6))

x

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1− x

7 + x2

35 − x3

195 + x4

1248 − x5

9120 +O
(
x6))+ c2(1− 3x+O(x6))

x

Verification of solutions

y = c1x
1
3

(
1− x

7 + x2

35 − x3

195 + x4

1248 − x5

9120 +O
(
x6))+ c2(1− 3x+O(x6))

x

Verified OK.
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2.13.1 Maple step by step solution

Let’s solve
x2y′′ +

(5
3x+ x2) y′ − y

3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
3x2 − (3x+5)y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3x+5)y′
3x − y

3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3x+5
3x , P3(x) = − 1

3x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
3x2y′′ + x(3x+ 5) y′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

403



xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(k + r + 1) (3k + 3r − 1) + 3ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 13

}
• Each term in the series must be 0, giving the recursion relation

3(k + r + 1)
(
k + r − 1

3

)
ak + 3ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
3(k + 2 + r)

(
k + 2

3 + r
)
ak+1 + 3ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak(k+r)

(k+2+r)(3k+2+3r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = − 3ak(k−1)

(k+1)(3k−1)

• Apply recursion relation for k = 0
a1 = −3a0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y = a0 · (1− 3x)

• Recursion relation for r = 1
3

ak+1 = − 3ak
(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = − 3ak
(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

]
• Combine solutions and rename parameters
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[
y = a0 · (1− 3x) +

(
∞∑
k=0

bkx
k+ 1

3

)
, bk+1 = − 3bk

(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+(5/3*x+x^2)*diff(y(x),x)-1/3*y(x)=0,y(x),type='series',x=0);� �
y(x) =

c2x
4
3
(
1− 1

7x+ 1
35x

2 − 1
195x

3 + 1
1248x

4 − 1
9120x

5 +O(x6)
)
+ c1(1− 3x+O(x6))

x
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 58� �
AsymptoticDSolveValue[x^2*y''[x]+(5/3*x+x^2)*y'[x]-1/3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
− x5

9120 + x4

1248 − x3

195 + x2

35 − x

7 + 1
)
+ c2(1− 3x)

x
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2.14 problem 14
2.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 415

Internal problem ID [5569]
Internal file name [OUTPUT/4817_Sunday_June_05_2022_03_06_42_PM_44446926/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y′ + 10y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + 10y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 10
x
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Table 34: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 10
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + 10y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
+10

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

10anxn+r

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

10anxn+r =
∞∑
n=1

10an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=1

10an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + 10an−1 = 0

Solving for an from recursive equation (4) gives

an = − 10an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −10an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 10
(r + 1)2
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Which for the root r = 0 becomes

a1 = −10

And the table now becomes

n an,r an

a0 1 1
a1 − 10

(r+1)2 −10

For n = 2, using the above recursive equation gives

a2 =
100

(r + 1)2 (r + 2)2

Which for the root r = 0 becomes
a2 = 25

And the table now becomes

n an,r an

a0 1 1
a1 − 10

(r+1)2 −10

a2
100

(r+1)2(r+2)2 25

For n = 3, using the above recursive equation gives

a3 = − 1000
(r + 1)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes

a3 = −250
9

And the table now becomes

n an,r an

a0 1 1
a1 − 10

(r+1)2 −10

a2
100

(r+1)2(r+2)2 25

a3 − 1000
(r+1)2(r+2)2(r+3)2 −250

9
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For n = 4, using the above recursive equation gives

a4 =
10000

(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes

a4 =
625
36

And the table now becomes

n an,r an

a0 1 1
a1 − 10

(r+1)2 −10

a2
100

(r+1)2(r+2)2 25

a3 − 1000
(r+1)2(r+2)2(r+3)2 −250

9

a4
10000

(r+1)2(r+2)2(r+3)2(4+r)2
625
36

For n = 5, using the above recursive equation gives

a5 = − 100000
(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2 (5 + r)2

Which for the root r = 0 becomes

a5 = −125
18

And the table now becomes

n an,r an

a0 1 1
a1 − 10

(r+1)2 −10

a2
100

(r+1)2(r+2)2 25

a3 − 1000
(r+1)2(r+2)2(r+3)2 −250

9

a4
10000

(r+1)2(r+2)2(r+3)2(4+r)2
625
36

a5 − 100000
(r+1)2(r+2)2(r+3)2(4+r)2(5+r)2 −125

18
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 − 10

(r+1)2 −10 20
(r+1)3 20

b2
100

(r+1)2(r+2)2 25 −400r−600
(r+1)3(r+2)3 −75

b3 − 1000
(r+1)2(r+2)2(r+3)2 −250

9
6000r2+24000r+22000
(r+1)3(r+2)3(r+3)3

2750
27

b4
10000

(r+1)2(r+2)2(r+3)2(4+r)2
625
36 − 80000

(
r+ 5

2
)(
r2+5r+5

)
(r+1)3(r+2)3(r+3)3(4+r)3 −15625

216

b5 − 100000
(r+1)2(r+2)2(r+3)2(4+r)2(5+r)2 −125

18
1000000r4+12000000r3+51000000r2+90000000r+54800000

(r+1)3(r+2)3(r+3)3(4+r)3(5+r)3
3425
108

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6)) ln (x)

− 75x2 + 20x+ 2750x3

27 − 15625x4

216 + 3425x5

108 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6))

+ c2

((
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6)) ln (x)− 75x2

+ 20x+ 2750x3

27 − 15625x4

216 + 3425x5

108 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6))

+ c2

((
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6)) ln (x)− 75x2 + 20x

+ 2750x3

27 − 15625x4

216 + 3425x5

108 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6))

+ c2

((
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6)) ln (x)− 75x2

+ 20x+ 2750x3

27 − 15625x4

216 + 3425x5

108 +O
(
x6))

Verification of solutions

y = c1

(
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6))

+ c2

((
25x2 − 10x+ 1− 250x3

9 + 625x4

36 − 125x5

18 +O
(
x6)) ln (x)− 75x2 + 20x

+ 2750x3

27 − 15625x4

216 + 3425x5

108 +O
(
x6))

Verified OK.
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2.14.1 Maple step by step solution

Let’s solve
y′′x+ y′ + 10y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −10y

x
− y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ 10y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 10

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + 10y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + 10ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + 10ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 10ak

(k+1)2

• Recursion relation for r = 0
ak+1 = − 10ak

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 10ak

(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+10*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1− 10x+ 25x2 − 250

9 x3 + 625
36 x4 − 125

18 x5 +O
(
x6))

+
(
20x− 75x2 + 2750

27 x3 − 15625
216 x4 + 3425

108 x5 +O
(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 105� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+10*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
−125x5

18 + 625x4

36 − 250x3

9 +25x2−10x+1
)
+c2

(
3425x5

108 − 15625x4

216 + 2750x3

27

− 75x2 +
(
−125x5

18 + 625x4

36 − 250x3

9 + 25x2 − 10x+ 1
)
log(x) + 20x

)
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2.15 problem 15
2.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 427

Internal problem ID [5570]
Internal file name [OUTPUT/4818_Sunday_June_05_2022_03_06_43_PM_77920638/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

2xy′′ − y′ + 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2xy′′ − y′ + 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1
2x

q(x) = 1
x
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Table 36: Table p(x), q(x) singularites.

p(x) = − 1
2x

singularity type
x = 0 “regular”

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2xy′′ − y′ + 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

2
(

∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x−

(
∞∑
n=0

(n+ r) anxn+r−1

)
+2
(

∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=0

2anxn+r

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2anxn+r =
∞∑
n=1

2an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

2xn+r−1an(n+r) (n+r−1)
)
+

∞∑
n =0

(
−(n+r) anxn+r−1)+( ∞∑

n=1

2an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1)− (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r)− ra0x
−1+r = 0

Or (
2x−1+rr(−1 + r)− r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−3 + 2r) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − 3r = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−3 + 2r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1)− an(n+ r) + 2an−1 = 0

Solving for an from recursive equation (4) gives

an = − 2an−1

2n2 + 4nr + 2r2 − 3n− 3r (4)

Which for the root r = 3
2 becomes

an = − 2an−1

n (2n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 2
2r2 + r − 1
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Which for the root r = 3
2 becomes

a1 = −2
5

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+r−1 −2
5

For n = 2, using the above recursive equation gives

a2 =
4

4r4 + 12r3 + 7r2 − 3r − 2
Which for the root r = 3

2 becomes
a2 =

2
35

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+r−1 −2
5

a2
4

4r4+12r3+7r2−3r−2
2
35

For n = 3, using the above recursive equation gives

a3 = − 8
8r6 + 60r5 + 158r4 + 165r3 + 32r2 − 45r − 18

Which for the root r = 3
2 becomes

a3 = − 4
945

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+r−1 −2
5

a2
4

4r4+12r3+7r2−3r−2
2
35

a3 − 8
8r6+60r5+158r4+165r3+32r2−45r−18 − 4

945
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For n = 4, using the above recursive equation gives

a4 =
16

16r8 + 224r7 + 1256r6 + 3584r5 + 5369r4 + 3626r3 + 19r2 − 1134r − 360

Which for the root r = 3
2 becomes

a4 =
2

10395

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+r−1 −2
5

a2
4

4r4+12r3+7r2−3r−2
2
35

a3 − 8
8r6+60r5+158r4+165r3+32r2−45r−18 − 4

945

a4
16

16r8+224r7+1256r6+3584r5+5369r4+3626r3+19r2−1134r−360
2

10395

For n = 5, using the above recursive equation gives

a5 = − 32
32r10 + 720r9 + 6880r8 + 36360r7 + 115626r6 + 223965r5 + 249595r4 + 124965r3 − 19333r2 − 45810r − 12600

Which for the root r = 3
2 becomes

a5 = − 4
675675

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+r−1 −2
5

a2
4

4r4+12r3+7r2−3r−2
2
35

a3 − 8
8r6+60r5+158r4+165r3+32r2−45r−18 − 4

945

a4
16

16r8+224r7+1256r6+3584r5+5369r4+3626r3+19r2−1134r−360
2

10395

a5 − 32
32r10+720r9+6880r8+36360r7+115626r6+223965r5+249595r4+124965r3−19333r2−45810r−12600 − 4

675675
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Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1)− (n+ r) bn + 2bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = − 2bn−1

2n2 + 4nr + 2r2 − 3n− 3r (4)

Which for the root r = 0 becomes

bn = − 2bn−1

n (2n− 3) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 2
2r2 + r − 1

Which for the root r = 0 becomes
b1 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+r−1 2
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For n = 2, using the above recursive equation gives

b2 =
4

4r4 + 12r3 + 7r2 − 3r − 2

Which for the root r = 0 becomes
b2 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+r−1 2

b2
4

4r4+12r3+7r2−3r−2 −2

For n = 3, using the above recursive equation gives

b3 = − 8
8r6 + 60r5 + 158r4 + 165r3 + 32r2 − 45r − 18

Which for the root r = 0 becomes
b3 =

4
9

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+r−1 2

b2
4

4r4+12r3+7r2−3r−2 −2

b3 − 8
8r6+60r5+158r4+165r3+32r2−45r−18

4
9

For n = 4, using the above recursive equation gives

b4 =
16

16r8 + 224r7 + 1256r6 + 3584r5 + 5369r4 + 3626r3 + 19r2 − 1134r − 360

Which for the root r = 0 becomes

b4 = − 2
45

And the table now becomes

425



n bn,r bn

b0 1 1
b1 − 2

2r2+r−1 2

b2
4

4r4+12r3+7r2−3r−2 −2

b3 − 8
8r6+60r5+158r4+165r3+32r2−45r−18

4
9

b4
16

16r8+224r7+1256r6+3584r5+5369r4+3626r3+19r2−1134r−360 − 2
45

For n = 5, using the above recursive equation gives

b5 = − 32
32r10 + 720r9 + 6880r8 + 36360r7 + 115626r6 + 223965r5 + 249595r4 + 124965r3 − 19333r2 − 45810r − 12600

Which for the root r = 0 becomes

b5 =
4

1575
And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+r−1 2

b2
4

4r4+12r3+7r2−3r−2 −2

b3 − 8
8r6+60r5+158r4+165r3+32r2−45r−18

4
9

b4
16

16r8+224r7+1256r6+3584r5+5369r4+3626r3+19r2−1134r−360 − 2
45

b5 − 32
32r10+720r9+6880r8+36360r7+115626r6+223965r5+249595r4+124965r3−19333r2−45810r−12600

4
1575

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+ c2

(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O
(
x6))
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Hence the final solution is

y = yh

= c1x
3
2

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+ c2

(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

3
2

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+ c2

(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O
(
x6))

Verification of solutions

y = c1x
3
2

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+ c2

(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O
(
x6))

Verified OK.

2.15.1 Maple step by step solution

Let’s solve
2y′′x− y′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

2x − y
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

2x + y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = 1

x

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x− y′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0
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• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k − 1

2 + r
)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 44� �
Order:=6;
dsolve(2*x*diff(y(x),x$2)-diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
2

(
1− 2

5x+ 2
35x

2 − 4
945x

3 + 2
10395x

4 − 4
675675x

5 +O
(
x6))

+ c2

(
1 + 2x− 2x2 + 4

9x
3 − 2

45x
4 + 4

1575x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 81� �
AsymptoticDSolveValue[2*x*y''[x]-y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
4x5

1575 − 2x4

45 + 4x3

9 − 2x2 + 2x+ 1
)

+ c1

(
− 4x5

675675 + 2x4

10395 − 4x3

945 + 2x2

35 − 2x
5 + 1

)
x3/2
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2.16 problem 16
2.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 439

Internal problem ID [5571]
Internal file name [OUTPUT/4819_Sunday_June_05_2022_03_06_45_PM_43329254/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2xy′′ + 5y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2xy′′ + 5y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5
2x

q(x) = 1
2

431



Table 38: Table p(x), q(x) singularites.

p(x) = 5
2x

singularity type
x = 0 “regular”

q(x) = 1
2

singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2xy′′ + 5y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

2
(

∞∑
n=0

(n+ r) (n+ r−1) anxn+r−2

)
x+5

(
∞∑
n=0

(n+ r) anxn+r−1

)
+x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

5(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

2xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

5(n+r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + 5(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) + 5ra0x−1+r = 0

Or (
2x−1+rr(−1 + r) + 5r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(3 + 2r) = 0

Since the above is true for all x then the indicial equation becomes

2r2 + 3r = 0

Solving for r gives the roots of the indicial equation as

r1 = 0

r2 = −3
2

Since a0 6= 0 then the indicial equation becomes

r x−1+r(3 + 2r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) =
∞∑
n=0

bnx
n− 3

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + 5an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

2n2 + 4nr + 2r2 + 3n+ 3r (4)

Which for the root r = 0 becomes

an = − an−2

n (2n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
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For n = 2, using the above recursive equation gives

a2 = − 1
2r2 + 11r + 14

Which for the root r = 0 becomes

a2 = − 1
14

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+11r+14 − 1
14

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+11r+14 − 1
14

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

4r4 + 60r3 + 325r2 + 750r + 616

Which for the root r = 0 becomes

a4 =
1
616

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+11r+14 − 1
14

a3 0 0
a4

1
4r4+60r3+325r2+750r+616

1
616

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+11r+14 − 1
14

a3 0 0
a4

1
4r4+60r3+325r2+750r+616

1
616

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

14 + x4

616 +O
(
x6)

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)2bn(n+ r) (n+ r − 1) + 5(n+ r) bn + bn−2 = 0
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Solving for bn from recursive equation (4) gives

bn = − bn−2

2n2 + 4nr + 2r2 + 3n+ 3r (4)

Which for the root r = −3
2 becomes

bn = − bn−2

n (2n− 3) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
2r2 + 11r + 14

Which for the root r = −3
2 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+11r+14 −1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+11r+14 −1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

4r4 + 60r3 + 325r2 + 750r + 616
Which for the root r = −3

2 becomes

b4 =
1
40

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+11r+14 −1
2

b3 0 0
b4

1
4r4+60r3+325r2+750r+616

1
40

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+11r+14 −1
2

b3 0 0
b4

1
4r4+60r3+325r2+750r+616

1
40

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

2 + x4

40 +O(x6)
x

3
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x2

14 + x4

616 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x
3
2

Hence the final solution is

y = yh

= c1

(
1− x2

14 + x4

616 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x
3
2

Summary
The solution(s) found are the following

(1)y = c1

(
1− x2

14 + x4

616 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x
3
2

Verification of solutions

y = c1

(
1− x2

14 + x4

616 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x
3
2

Verified OK.

2.16.1 Maple step by step solution

Let’s solve
2y′′x+ 5y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −5y′
2x − y

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 5y′

2x + y
2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 5
2x , P3(x) = 1

2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x+ 5y′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + 2r)x−1+r + a1(1 + r) (5 + 2r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (2k + 5 + 2r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term must be 0

a1(1 + r) (5 + 2r) = 0
• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
(
k + 5

2 + r
)
ak+1 + ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 7

2 + r
)
ak+2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(2k+7+2r)

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(2k+7)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(2k+7) , 5a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = − ak(
k+ 1

2
)
(2k+4)

• Solution for r = −3
2
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[
y =

∞∑
k=0

akx
k− 3

2 , ak+2 = − ak(
k+ 1

2
)
(2k+4) ,−a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = − ak

(k+2)(2k+7) , 5a1 = 0, bk+2 = − bk(
k+ 1

2
)
(2k+4) ,−b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve(2*x*diff(y(x),x$2)+5*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− 1

2x
2 + 1

40x
4 +O(x6)

)
x

3
2

+ c2

(
1− 1

14x
2 + 1

616x
4 +O

(
x6))

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 47� �
AsymptoticDSolveValue[2*x*y''[x]+5*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

616 − x2

14 + 1
)
+

c2
(

x4

40 −
x2

2 + 1
)

x3/2
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2.17 problem 17
2.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 453

Internal problem ID [5572]
Internal file name [OUTPUT/4820_Sunday_June_05_2022_03_06_47_PM_44334659/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

4xy′′ + y′

2 + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4xy′′ + y′

2 + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
8x

q(x) = 1
4x
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Table 40: Table p(x), q(x) singularites.

p(x) = 1
8x

singularity type
x = 0 “regular”

q(x) = 1
4x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4xy′′ + y′

2 + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

4
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1
)

2 +
(

∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

2

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

4xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

2

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1

2 = 0

When n = 0 the above becomes

4x−1+ra0r(−1 + r) + ra0x
−1+r

2 = 0

Or (
4x−1+rr(−1 + r) + r x−1+r

2

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r

(
−7
2 + 4r

)
= 0

Since the above is true for all x then the indicial equation becomes

4r2 − 7
2r = 0

Solving for r gives the roots of the indicial equation as

r1 =
7
8

r2 = 0
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Since a0 6= 0 then the indicial equation becomes

r x−1+r

(
−7
2 + 4r

)
= 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 7
8 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 7

8

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + an(n+ r)
2 + an−1 = 0

Solving for an from recursive equation (4) gives

an = − 2an−1

8n2 + 16nr + 8r2 − 7n− 7r (4)

Which for the root r = 7
8 becomes

an = − 2an−1

n (8n+ 7) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 7

8 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
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For n = 1, using the above recursive equation gives

a1 = − 2
8r2 + 9r + 1

Which for the root r = 7
8 becomes

a1 = − 2
15

And the table now becomes

n an,r an

a0 1 1
a1 − 2

8r2+9r+1 − 2
15

For n = 2, using the above recursive equation gives

a2 =
4

(8r2 + 9r + 1) (8r2 + 25r + 18)

Which for the root r = 7
8 becomes

a2 =
2
345

And the table now becomes

n an,r an

a0 1 1
a1 − 2

8r2+9r+1 − 2
15

a2
4

(8r2+9r+1)(8r2+25r+18)
2

345

For n = 3, using the above recursive equation gives

a3 = − 8
(8r2 + 9r + 1) (8r2 + 25r + 18) (8r2 + 41r + 51)

Which for the root r = 7
8 becomes

a3 = − 4
32085
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And the table now becomes

n an,r an

a0 1 1
a1 − 2

8r2+9r+1 − 2
15

a2
4

(8r2+9r+1)(8r2+25r+18)
2

345

a3 − 8
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51) − 4

32085

For n = 4, using the above recursive equation gives

a4 =
16

(8r2 + 9r + 1) (8r2 + 25r + 18) (8r2 + 41r + 51) (8r2 + 57r + 100)

Which for the root r = 7
8 becomes

a4 =
2

1251315

And the table now becomes

n an,r an

a0 1 1
a1 − 2

8r2+9r+1 − 2
15

a2
4

(8r2+9r+1)(8r2+25r+18)
2

345

a3 − 8
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51) − 4

32085

a4
16

(8r2+9r+1)(8r2+25r+18)(8r2+41r+51)(8r2+57r+100)
2

1251315

For n = 5, using the above recursive equation gives

a5 = − 32
(8r2 + 9r + 1) (8r2 + 25r + 18) (8r2 + 41r + 51) (8r2 + 57r + 100) (8r2 + 73r + 165)

Which for the root r = 7
8 becomes

a5 = − 4
294059025

And the table now becomes

448



n an,r an

a0 1 1
a1 − 2

8r2+9r+1 − 2
15

a2
4

(8r2+9r+1)(8r2+25r+18)
2

345

a3 − 8
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51) − 4

32085

a4
16

(8r2+9r+1)(8r2+25r+18)(8r2+41r+51)(8r2+57r+100)
2

1251315

a5 − 32
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51)(8r2+57r+100)(8r2+73r+165) − 4

294059025

Using the above table, then the solution y1(x) is

y1(x) = x
7
8
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
7
8

(
1− 2x

15 + 2x2

345 − 4x3

32085 + 2x4

1251315 − 4x5

294059025 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)4bn(n+ r) (n+ r − 1) + (n+ r) bn
2 + bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = − 2bn−1

8n2 + 16nr + 8r2 − 7n− 7r (4)

Which for the root r = 0 becomes

bn = − 2bn−1

n (8n− 7) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 2
8r2 + 9r + 1
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Which for the root r = 0 becomes
b1 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

8r2+9r+1 −2

For n = 2, using the above recursive equation gives

b2 =
4

(8r2 + 9r + 1) (8r2 + 25r + 18)

Which for the root r = 0 becomes
b2 =

2
9

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

8r2+9r+1 −2

b2
4

(8r2+9r+1)(8r2+25r+18)
2
9

For n = 3, using the above recursive equation gives

b3 = − 8
(8r2 + 9r + 1) (8r2 + 25r + 18) (8r2 + 41r + 51)

Which for the root r = 0 becomes

b3 = − 4
459

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

8r2+9r+1 −2

b2
4

(8r2+9r+1)(8r2+25r+18)
2
9

b3 − 8
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51) − 4

459
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For n = 4, using the above recursive equation gives

b4 =
16

(8r2 + 9r + 1) (8r2 + 25r + 18) (8r2 + 41r + 51) (8r2 + 57r + 100)

Which for the root r = 0 becomes

b4 =
2

11475

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

8r2+9r+1 −2

b2
4

(8r2+9r+1)(8r2+25r+18)
2
9

b3 − 8
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51) − 4

459

b4
16

(8r2+9r+1)(8r2+25r+18)(8r2+41r+51)(8r2+57r+100)
2

11475

For n = 5, using the above recursive equation gives

b5 = − 32
(8r2 + 9r + 1) (8r2 + 25r + 18) (8r2 + 41r + 51) (8r2 + 57r + 100) (8r2 + 73r + 165)

Which for the root r = 0 becomes

b5 = − 4
1893375

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

8r2+9r+1 −2

b2
4

(8r2+9r+1)(8r2+25r+18)
2
9

b3 − 8
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51) − 4

459

b4
16

(8r2+9r+1)(8r2+25r+18)(8r2+41r+51)(8r2+57r+100)
2

11475

b5 − 32
(8r2+9r+1)(8r2+25r+18)(8r2+41r+51)(8r2+57r+100)(8r2+73r+165) − 4

1893375

451



Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− 2x+ 2x2

9 − 4x3

459 + 2x4

11475 − 4x5

1893375 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
7
8

(
1− 2x

15 + 2x2

345 − 4x3

32085 + 2x4

1251315 − 4x5

294059025 +O
(
x6))

+ c2

(
1− 2x+ 2x2

9 − 4x3

459 + 2x4

11475 − 4x5

1893375 +O
(
x6))

Hence the final solution is

y = yh

= c1x
7
8

(
1− 2x

15 + 2x2

345 − 4x3

32085 + 2x4

1251315 − 4x5

294059025 +O
(
x6))

+ c2

(
1− 2x+ 2x2

9 − 4x3

459 + 2x4

11475 − 4x5

1893375 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

7
8

(
1− 2x

15 + 2x2

345 − 4x3

32085 + 2x4

1251315 − 4x5

294059025 +O
(
x6))

+ c2

(
1− 2x+ 2x2

9 − 4x3

459 + 2x4

11475 − 4x5

1893375 +O
(
x6))

Verification of solutions

y = c1x
7
8

(
1− 2x

15 + 2x2

345 − 4x3

32085 + 2x4

1251315 − 4x5

294059025 +O
(
x6))

+ c2

(
1− 2x+ 2x2

9 − 4x3

459 + 2x4

11475 − 4x5

1893375 +O
(
x6))

Verified OK.
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2.17.1 Maple step by step solution

Let’s solve
4y′′x+ y′

2 + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

4x − y′

8x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

8x + y
4x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
8x , P3(x) = 1

4x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
8

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
8y′′x+ 2y + y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−7 + 8r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (8k + 1 + 8r) + 2ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−7 + 8r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 78
}

• Each term in the series must be 0, giving the recursion relation
8
(
k + 1

8 + r
)
(k + 1 + r) ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(8k+1+8r)(k+1+r)

• Recursion relation for r = 0
ak+1 = − 2ak

(8k+1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 2ak

(8k+1)(k+1)

]
• Recursion relation for r = 7

8

ak+1 = − 2ak
(8k+8)

(
k+ 15

8
)

• Solution for r = 7
8[

y =
∞∑
k=0

akx
k+ 7

8 , ak+1 = − 2ak
(8k+8)

(
k+ 15

8
)
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 7

8

)
, ak+1 = − 2ak

(8k+1)(k+1) , bk+1 = − 2bk
(8k+8)

(
k+ 15

8
)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
Order:=6;
dsolve(4*x*diff(y(x),x$2)+1/2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

7
8

(
1− 2

15x+ 2
345x

2 − 4
32085x

3 + 2
1251315x

4 − 4
294059025x

5 +O
(
x6))

+ c2

(
1− 2x+ 2

9x
2 − 4

459x
3 + 2

11475x
4 − 4

1893375x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 83� �
AsymptoticDSolveValue[4*x*y''[x]+1/2*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
− 4x5

1893375 + 2x4

11475 − 4x3

459 + 2x2

9 − 2x+ 1
)

+ c1x
7/8
(
− 4x5

294059025 + 2x4

1251315 − 4x3

32085 + 2x2

345 − 2x
15 + 1

)
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2.18 problem 18
2.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 464

Internal problem ID [5573]
Internal file name [OUTPUT/4821_Sunday_June_05_2022_03_06_50_PM_9834430/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2y′′ − xy′ +
(
x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ − xy′ +
(
x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1
2x

q(x) = x2 + 1
2x2
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Table 42: Table p(x), q(x) singularites.

p(x) = − 1
2x

singularity type
x = 0 “regular”

q(x) = x2+1
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2y′′ − xy′ +
(
x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

− x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(2xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 − 3r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 − 3r + 1 = 0

458



Solving for r gives the roots of the indicial equation as

r1 = 1

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
2r2 − 3r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) =
∞∑
n=0

bnx
n+ 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1)− an(n+ r) + an−2 + an = 0

Solving for an from recursive equation (4) gives

an = − an−2

2n2 + 4nr + 2r2 − 3n− 3r + 1 (4)

Which for the root r = 1 becomes

an = − an−2

2n2 + n
(5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
2r2 + 5r + 3

Which for the root r = 1 becomes

a2 = − 1
10

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+5r+3 − 1
10

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+5r+3 − 1
10

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

4r4 + 36r3 + 113r2 + 144r + 63
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Which for the root r = 1 becomes

a4 =
1
360

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+5r+3 − 1
10

a3 0 0
a4

1
4r4+36r3+113r2+144r+63

1
360

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

2r2+5r+3 − 1
10

a3 0 0
a4

1
4r4+36r3+113r2+144r+63

1
360

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x2

10 + x4

360 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0
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For 2 ≤ n the recursive equation is

(3)2bn(n+ r) (n+ r − 1)− bn(n+ r) + bn−2 + bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−2

2n2 + 4nr + 2r2 − 3n− 3r + 1 (4)

Which for the root r = 1
2 becomes

bn = − bn−2

n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
2r2 + 5r + 3

Which for the root r = 1
2 becomes

b2 = −1
6

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+5r+3 −1
6

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+5r+3 −1
6

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

4r4 + 36r3 + 113r2 + 144r + 63
Which for the root r = 1

2 becomes

b4 =
1
168

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+5r+3 −1
6

b3 0 0
b4

1
4r4+36r3+113r2+144r+63

1
168

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

2r2+5r+3 −1
6

b3 0 0
b4

1
4r4+36r3+113r2+144r+63

1
168

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x

(
1− x2

6 + x4

168 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x2

10 + x4

360 +O
(
x6))+ c2

√
x

(
1− x2

6 + x4

168 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− x2

10 + x4

360 +O
(
x6))+ c2

√
x

(
1− x2

6 + x4

168 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x

(
1− x2

10 + x4

360 +O
(
x6))+ c2

√
x

(
1− x2

6 + x4

168 +O
(
x6))

Verification of solutions

y = c1x

(
1− x2

10 + x4

360 +O
(
x6))+ c2

√
x

(
1− x2

6 + x4

168 +O
(
x6))

Verified OK.

2.18.1 Maple step by step solution

Let’s solve
2x2y′′ − xy′ + (x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+1

)
y

2x2 + y′

2x
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − y′

2x +
(
x2+1

)
y

2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = x2+1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2y′′ − xy′ + (x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r
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Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r)xr + a1(1 + 2r) r x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (k + r − 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term must be 0
a1(1 + 2r) r = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
2(k + r − 1)

(
k − 1

2 + r
)
ak + ak−2 = 0

• Shift index using k− >k + 2
2(k + 1 + r)

(
k + 3

2 + r
)
ak+2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(2k+3+2r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(2k+5)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(2k+5) , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 = − ak(
k+ 3

2
)
(2k+4)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak(
k+ 3

2
)
(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − ak

(k+2)(2k+5) , a1 = 0, bk+2 = − bk(
k+ 3

2
)
(2k+4) , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 33� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2+1)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1− 1

6x
2 + 1

168x
4 +O

(
x6))+ c2x

(
1− 1

10x
2 + 1

360x
4 +O

(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 48� �
AsymptoticDSolveValue[2*x^2*y''[x]-x*y'[x]+(x^2+1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
x4

360 − x2

10 + 1
)
+ c2

√
x

(
x4

168 − x2

6 + 1
)
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2.19 problem 19
2.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 478

Internal problem ID [5574]
Internal file name [OUTPUT/4822_Sunday_June_05_2022_03_06_52_PM_61396382/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

3xy′′ + (2− x) y′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

3xy′′ + (2− x) y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −−2 + x

3x
q(x) = − 1

3x
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Table 44: Table p(x), q(x) singularites.

p(x) = −−2+x
3x

singularity type
x = 0 “regular”

q(x) = − 1
3x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3xy′′ + (2− x) y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (2− x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

3xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r−1)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

3x−1+ra0r(−1 + r) + 2ra0x−1+r = 0

Or (
3x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−1 + 3r) = 0
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Since the above is true for all x then the indicial equation becomes

3r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−1 + 3r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)3an(n+ r) (n+ r − 1)− an−1(n+ r − 1) + 2an(n+ r)− an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1

3n− 1 + 3r (4)

Which for the root r = 1
3 becomes

an = an−1

3n (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

2 + 3r

Which for the root r = 1
3 becomes

a1 =
1
3

And the table now becomes

n an,r an

a0 1 1
a1

1
2+3r

1
3

For n = 2, using the above recursive equation gives

a2 =
1

9r2 + 21r + 10

Which for the root r = 1
3 becomes

a2 =
1
18

And the table now becomes

n an,r an

a0 1 1
a1

1
2+3r

1
3

a2
1

9r2+21r+10
1
18

For n = 3, using the above recursive equation gives

a3 =
1

27r3 + 135r2 + 198r + 80
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Which for the root r = 1
3 becomes

a3 =
1
162

And the table now becomes

n an,r an

a0 1 1
a1

1
2+3r

1
3

a2
1

9r2+21r+10
1
18

a3
1

27r3+135r2+198r+80
1

162

For n = 4, using the above recursive equation gives

a4 =
1

81r4 + 702r3 + 2079r2 + 2418r + 880

Which for the root r = 1
3 becomes

a4 =
1

1944
And the table now becomes

n an,r an

a0 1 1
a1

1
2+3r

1
3

a2
1

9r2+21r+10
1
18

a3
1

27r3+135r2+198r+80
1

162

a4
1

81r4+702r3+2079r2+2418r+880
1

1944

For n = 5, using the above recursive equation gives

a5 =
1

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = 1
3 becomes

a5 =
1

29160
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And the table now becomes

n an,r an

a0 1 1
a1

1
2+3r

1
3

a2
1

9r2+21r+10
1
18

a3
1

27r3+135r2+198r+80
1

162

a4
1

81r4+702r3+2079r2+2418r+880
1

1944

a5
1

243r5+3240r4+16065r3+36360r2+36492r+12320
1

29160

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1 + x

3 + x2

18 + x3

162 + x4

1944 + x5

29160 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)3bn(n+ r) (n+ r − 1)− bn−1(n+ r − 1) + 2(n+ r) bn − bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1

3n− 1 + 3r (4)

Which for the root r = 0 becomes

bn = bn−1

3n− 1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
1

2 + 3r
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Which for the root r = 0 becomes
b1 =

1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+3r

1
2

For n = 2, using the above recursive equation gives

b2 =
1

9r2 + 21r + 10

Which for the root r = 0 becomes
b2 =

1
10

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+3r

1
2

b2
1

9r2+21r+10
1
10

For n = 3, using the above recursive equation gives

b3 =
1

27r3 + 135r2 + 198r + 80

Which for the root r = 0 becomes
b3 =

1
80

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+3r

1
2

b2
1

9r2+21r+10
1
10

b3
1

27r3+135r2+198r+80
1
80
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For n = 4, using the above recursive equation gives

b4 =
1

81r4 + 702r3 + 2079r2 + 2418r + 880
Which for the root r = 0 becomes

b4 =
1
880

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+3r

1
2

b2
1

9r2+21r+10
1
10

b3
1

27r3+135r2+198r+80
1
80

b4
1

81r4+702r3+2079r2+2418r+880
1

880

For n = 5, using the above recursive equation gives

b5 =
1

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320
Which for the root r = 0 becomes

b5 =
1

12320
And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+3r

1
2

b2
1

9r2+21r+10
1
10

b3
1

27r3+135r2+198r+80
1
80

b4
1

81r4+702r3+2079r2+2418r+880
1

880

b5
1

243r5+3240r4+16065r3+36360r2+36492r+12320
1

12320

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + x

2 + x2

10 + x3

80 + x4

880 + x5

12320 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1 + x

3 + x2

18 + x3

162 + x4

1944 + x5

29160 +O
(
x6))

+ c2

(
1 + x

2 + x2

10 + x3

80 + x4

880 + x5

12320 +O
(
x6))

Hence the final solution is

y = yh

= c1x
1
3

(
1 + x

3 + x2

18 + x3

162 + x4

1944 + x5

29160 +O
(
x6))

+ c2

(
1 + x

2 + x2

10 + x3

80 + x4

880 + x5

12320 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1 + x

3 + x2

18 + x3

162 + x4

1944 + x5

29160 +O
(
x6))

+ c2

(
1 + x

2 + x2

10 + x3

80 + x4

880 + x5

12320 +O
(
x6))

Verification of solutions

y = c1x
1
3

(
1 + x

3 + x2

18 + x3

162 + x4

1944 + x5

29160 +O
(
x6))

+ c2

(
1 + x

2 + x2

10 + x3

80 + x4

880 + x5

12320 +O
(
x6))

Verified OK.
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2.19.1 Maple step by step solution

Let’s solve
3y′′x+ (2− x) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
3x + (−2+x)y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (−2+x)y′
3x − y

3x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −−2+x
3x , P3(x) = − 1

3x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
3y′′x+ (2− x) y′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 3r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (3k + 2 + 3r)− ak(k + 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term in the series must be 0, giving the recursion relation
3(k + 1 + r)

((
k + r + 2

3

)
ak+1 − ak

3

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

3k+2+3r

• Recursion relation for r = 0
ak+1 = ak

3k+2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak

3k+2

]
• Recursion relation for r = 1

3

ak+1 = ak
3k+3

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = ak
3k+3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+1 = ak

3k+2 , bk+1 = bk
3k+3

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

One independent solution has integrals. Trying a hypergeometric solution free of integrals...
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning hypergeometric solution free of uncomputed integrals

<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
Order:=6;
dsolve(3*x*diff(y(x),x$2)+(2-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1 + 1

3x+ 1
18x

2 + 1
162x

3 + 1
1944x

4 + 1
29160x

5 +O
(
x6))

+ c2

(
1 + 1

2x+ 1
10x

2 + 1
80x

3 + 1
880x

4 + 1
12320x

5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 85� �
AsymptoticDSolveValue[3*x*y''[x]+(2-x)*y'[x]-y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

3
√
x

(
x5

29160 +
x4

1944 +
x3

162 +
x2

18 +
x

3 +1
)
+c2

(
x5

12320 +
x4

880 +
x3

80 +
x2

10 +
x

2 +1
)
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2.20 problem 20
2.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 491

Internal problem ID [5575]
Internal file name [OUTPUT/4823_Sunday_June_05_2022_03_06_55_PM_58278675/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ −
(
x− 2

9

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
−x+ 2

9

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = −9x− 2
9x2
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Table 46: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = −9x−2
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
−x+ 2

9

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+
(
−x+ 2

9

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran

)
+
(

∞∑
n=0

2anxn+r

9

)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1x

n+r
)
+
(

∞∑
n=0

2anxn+r

9

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 2anxn+r

9 = 0

When n = 0 the above becomes

xra0r(−1 + r) + 2a0xr

9 = 0

Or (
xrr(−1 + r) + 2xr

9

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(9r2 − 9r + 2)xr

9 = 0

Since the above is true for all x then the indicial equation becomes

r2 − r + 2
9 = 0

Solving for r gives the roots of the indicial equation as

r1 =
2
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes

(9r2 − 9r + 2)xr

9 = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 2

3

y2(x) =
∞∑
n=0

bnx
n+ 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an−1 +
2an
9 = 0

Solving for an from recursive equation (4) gives

an = 9an−1

9n2 + 18nr + 9r2 − 9n− 9r + 2 (4)

Which for the root r = 2
3 becomes

an = 3an−1

3n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
9

9r2 + 9r + 2
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Which for the root r = 2
3 becomes

a1 =
3
4

And the table now becomes

n an,r an

a0 1 1
a1

9
9r2+9r+2

3
4

For n = 2, using the above recursive equation gives

a2 =
81

(9r2 + 9r + 2) (9r2 + 27r + 20)

Which for the root r = 2
3 becomes

a2 =
9
56

And the table now becomes

n an,r an

a0 1 1
a1

9
9r2+9r+2

3
4

a2
81

(9r2+9r+2)(9r2+27r+20)
9
56

For n = 3, using the above recursive equation gives

a3 =
729

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56)

Which for the root r = 2
3 becomes

a3 =
9
560

And the table now becomes

n an,r an

a0 1 1
a1

9
9r2+9r+2

3
4

a2
81

(9r2+9r+2)(9r2+27r+20)
9
56

a3
729

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)
9

560
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For n = 4, using the above recursive equation gives

a4 =
6561

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110)

Which for the root r = 2
3 becomes

a4 =
27

29120

And the table now becomes

n an,r an

a0 1 1
a1

9
9r2+9r+2

3
4

a2
81

(9r2+9r+2)(9r2+27r+20)
9
56

a3
729

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)
9

560

a4
6561

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
27

29120

For n = 5, using the above recursive equation gives

a5 =
59049

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110) (9r2 + 81r + 182)

Which for the root r = 2
3 becomes

a5 =
81

2329600

And the table now becomes

n an,r an

a0 1 1
a1

9
9r2+9r+2

3
4

a2
81

(9r2+9r+2)(9r2+27r+20)
9
56

a3
729

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)
9

560

a4
6561

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
27

29120

a5
59049

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)(9r2+81r+182)
81

2329600
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Using the above table, then the solution y1(x) is

y1(x) = x
2
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
2
3

(
1 + 3x

4 + 9x2

56 + 9x3

560 + 27x4

29120 + 81x5

2329600 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1)− bn−1 +
2bn
9 = 0

Solving for bn from recursive equation (4) gives

bn = 9bn−1

9n2 + 18nr + 9r2 − 9n− 9r + 2 (4)

Which for the root r = 1
3 becomes

bn = 3bn−1

n (3n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
9

9r2 + 9r + 2

Which for the root r = 1
3 becomes

b1 =
3
2

And the table now becomes

n bn,r bn

b0 1 1
b1

9
9r2+9r+2

3
2
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For n = 2, using the above recursive equation gives

b2 =
81

(9r2 + 9r + 2) (9r2 + 27r + 20)

Which for the root r = 1
3 becomes

b2 =
9
20

And the table now becomes

n bn,r bn

b0 1 1
b1

9
9r2+9r+2

3
2

b2
81

(9r2+9r+2)(9r2+27r+20)
9
20

For n = 3, using the above recursive equation gives

b3 =
729

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56)

Which for the root r = 1
3 becomes

b3 =
9
160

And the table now becomes

n bn,r bn

b0 1 1
b1

9
9r2+9r+2

3
2

b2
81

(9r2+9r+2)(9r2+27r+20)
9
20

b3
729

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)
9

160

For n = 4, using the above recursive equation gives

b4 =
6561

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110)

Which for the root r = 1
3 becomes

b4 =
27
7040
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And the table now becomes

n bn,r bn

b0 1 1
b1

9
9r2+9r+2

3
2

b2
81

(9r2+9r+2)(9r2+27r+20)
9
20

b3
729

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)
9

160

b4
6561

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
27

7040

For n = 5, using the above recursive equation gives

b5 =
59049

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110) (9r2 + 81r + 182)

Which for the root r = 1
3 becomes

b5 =
81

492800

And the table now becomes

n bn,r bn

b0 1 1
b1

9
9r2+9r+2

3
2

b2
81

(9r2+9r+2)(9r2+27r+20)
9
20

b3
729

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)
9

160

b4
6561

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
27

7040

b5
59049

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)(9r2+81r+182)
81

492800

Using the above table, then the solution y2(x) is

y2(x) = x
2
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
3

(
1 + 3x

2 + 9x2

20 + 9x3

160 + 27x4

7040 + 81x5

492800 +O
(
x6))

489



Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
3

(
1 + 3x

4 + 9x2

56 + 9x3

560 + 27x4

29120 + 81x5

2329600 +O
(
x6))

+ c2x
1
3

(
1 + 3x

2 + 9x2

20 + 9x3

160 + 27x4

7040 + 81x5

492800 +O
(
x6))

Hence the final solution is

y = yh

= c1x
2
3

(
1 + 3x

4 + 9x2

56 + 9x3

560 + 27x4

29120 + 81x5

2329600 +O
(
x6))

+ c2x
1
3

(
1 + 3x

2 + 9x2

20 + 9x3

160 + 27x4

7040 + 81x5

492800 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

2
3

(
1 + 3x

4 + 9x2

56 + 9x3

560 + 27x4

29120 + 81x5

2329600 +O
(
x6))

+ c2x
1
3

(
1 + 3x

2 + 9x2

20 + 9x3

160 + 27x4

7040 + 81x5

492800 +O
(
x6))

Verification of solutions

y = c1x
2
3

(
1 + 3x

4 + 9x2

56 + 9x3

560 + 27x4

29120 + 81x5

2329600 +O
(
x6))

+ c2x
1
3

(
1 + 3x

2 + 9x2

20 + 9x3

160 + 27x4

7040 + 81x5

492800 +O
(
x6))

Verified OK.
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2.20.1 Maple step by step solution

Let’s solve
x2y′′ +

(
−x+ 2

9

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (9x−2)y

9x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − (9x−2)y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = −9x−2
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + (−9x+ 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−2 + 3r)xr +
(

∞∑
k=1

(ak(3k + 3r − 1) (3k + 3r − 2)− 9ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
3 ,

2
3

}
• Each term in the series must be 0, giving the recursion relation

9
(
k + r − 2

3

) (
k + r − 1

3

)
ak − 9ak−1 = 0

• Shift index using k− >k + 1
9
(
k + 1

3 + r
) (

k + 2
3 + r

)
ak+1 − 9ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = 9ak

(3k+1+3r)(3k+2+3r)

• Recursion relation for r = 1
3

ak+1 = 9ak
(3k+2)(3k+3)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = 9ak
(3k+2)(3k+3)

]
• Recursion relation for r = 2

3

ak+1 = 9ak
(3k+3)(3k+4)

• Solution for r = 2
3[

y =
∞∑
k=0

akx
k+ 2

3 , ak+1 = 9ak
(3k+3)(3k+4)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

3

)
+
(

∞∑
k=0

bkx
k+ 2

3

)
, ak+1 = 9ak

(3k+2)(3k+3) , bk+1 = 9bk
(3k+3)(3k+4)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-(x-2/9)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1 + 3

2x+ 9
20x

2 + 9
160x

3 + 27
7040x

4 + 81
492800x

5 +O
(
x6))

+ c2x
2
3

(
1 + 3

4x+ 9
56x

2 + 9
560x

3 + 27
29120x

4 + 81
2329600x

5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 90� �
AsymptoticDSolveValue[x^2*y''[x]-(x-2/9)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
3
√
x

(
81x5

492800 + 27x4

7040 + 9x3

160 + 9x2

20 + 3x
2 + 1

)
+ c1x

2/3
(

81x5

2329600 + 27x4

29120 + 9x3

560 + 9x2

56 + 3x
4 + 1

)
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2.21 problem 21
2.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 504

Internal problem ID [5576]
Internal file name [OUTPUT/4824_Sunday_June_05_2022_03_06_57_PM_24876484/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Laguerre]

2xy′′ − (2x+ 3) y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2xy′′ + (−2x− 3) y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x+ 3
2x

q(x) = 1
2x
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Table 48: Table p(x), q(x) singularites.

p(x) = −2x+3
2x

singularity type
x = 0 “regular”

q(x) = 1
2x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2xy′′ + (−2x− 3) y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (−2x− 3)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

)
+

∞∑
n =0

(
−3(n+ r) anxn+r−1)+( ∞∑

n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1)

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1)xn+r−1)

+
∞∑

n =0

(
−3(n+ r) anxn+r−1)+( ∞∑

n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1)− 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r)− 3ra0x−1+r = 0

Or (
2x−1+rr(−1 + r)− 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−5 + 2r) = 0
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Since the above is true for all x then the indicial equation becomes

2r2 − 5r = 0

Solving for r gives the roots of the indicial equation as

r1 =
5
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−5 + 2r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 5

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1)− 2an−1(n+ r − 1)− 3an(n+ r) + an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(2n+ 2r − 3)
2n2 + 4nr + 2r2 − 5n− 5r (4)

Which for the root r = 5
2 becomes

an = 2an−1(n+ 1)
n (2n+ 5) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 5

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1 + 2r

2r2 − r − 3

Which for the root r = 5
2 becomes

a1 =
4
7

And the table now becomes

n an,r an

a0 1 1
a1

−1+2r
2r2−r−3

4
7

For n = 2, using the above recursive equation gives

a2 =
1 + 2r

2r3 + 3r2 − 5r − 6

Which for the root r = 5
2 becomes

a2 =
4
21

And the table now becomes

n an,r an

a0 1 1
a1

−1+2r
2r2−r−3

4
7

a2
1+2r

2r3+3r2−5r−6
4
21

For n = 3, using the above recursive equation gives

a3 =
3 + 2r

2r4 + 9r3 + 4r2 − 21r − 18
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Which for the root r = 5
2 becomes

a3 =
32
693

And the table now becomes

n an,r an

a0 1 1
a1

−1+2r
2r2−r−3

4
7

a2
1+2r

2r3+3r2−5r−6
4
21

a3
3+2r

2r4+9r3+4r2−21r−18
32
693

For n = 4, using the above recursive equation gives

a4 =
5 + 2r

2r5 + 17r4 + 40r3 − 5r2 − 102r − 72

Which for the root r = 5
2 becomes

a4 =
80
9009

And the table now becomes

n an,r an

a0 1 1
a1

−1+2r
2r2−r−3

4
7

a2
1+2r

2r3+3r2−5r−6
4
21

a3
3+2r

2r4+9r3+4r2−21r−18
32
693

a4
5+2r

2r5+17r4+40r3−5r2−102r−72
80

9009

For n = 5, using the above recursive equation gives

a5 =
7 + 2r

(r + 5) (2r5 + 17r4 + 40r3 − 5r2 − 102r − 72)

Which for the root r = 5
2 becomes

a5 =
64

45045
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And the table now becomes

n an,r an

a0 1 1
a1

−1+2r
2r2−r−3

4
7

a2
1+2r

2r3+3r2−5r−6
4
21

a3
3+2r

2r4+9r3+4r2−21r−18
32
693

a4
5+2r

2r5+17r4+40r3−5r2−102r−72
80

9009

a5
7+2r

(r+5)(2r5+17r4+40r3−5r2−102r−72)
64

45045

Using the above table, then the solution y1(x) is

y1(x) = x
5
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
5
2

(
1 + 4x

7 + 4x2

21 + 32x3

693 + 80x4

9009 + 64x5

45045 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1)− 2bn−1(n+ r − 1)− 3(n+ r) bn + bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1(2n+ 2r − 3)
2n2 + 4nr + 2r2 − 5n− 5r (4)

Which for the root r = 0 becomes

bn = bn−1(2n− 3)
n (2n− 5) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
−1 + 2r

2r2 − r − 3
Which for the root r = 0 becomes

b1 =
1
3

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+2r
2r2−r−3

1
3

For n = 2, using the above recursive equation gives

b2 =
1 + 2r

2r3 + 3r2 − 5r − 6
Which for the root r = 0 becomes

b2 = −1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+2r
2r2−r−3

1
3

b2
1+2r

2r3+3r2−5r−6 −1
6

For n = 3, using the above recursive equation gives

b3 =
3 + 2r

2r4 + 9r3 + 4r2 − 21r − 18
Which for the root r = 0 becomes

b3 = −1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+2r
2r2−r−3

1
3

b2
1+2r

2r3+3r2−5r−6 −1
6

b3
3+2r

2r4+9r3+4r2−21r−18 −1
6
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For n = 4, using the above recursive equation gives

b4 =
5 + 2r

2r5 + 17r4 + 40r3 − 5r2 − 102r − 72

Which for the root r = 0 becomes

b4 = − 5
72

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+2r
2r2−r−3

1
3

b2
1+2r

2r3+3r2−5r−6 −1
6

b3
3+2r

2r4+9r3+4r2−21r−18 −1
6

b4
5+2r

2r5+17r4+40r3−5r2−102r−72 − 5
72

For n = 5, using the above recursive equation gives

b5 =
7 + 2r

(r + 5) (2r5 + 17r4 + 40r3 − 5r2 − 102r − 72)

Which for the root r = 0 becomes

b5 = − 7
360

And the table now becomes

n bn,r bn

b0 1 1
b1

−1+2r
2r2−r−3

1
3

b2
1+2r

2r3+3r2−5r−6 −1
6

b3
3+2r

2r4+9r3+4r2−21r−18 −1
6

b4
5+2r

2r5+17r4+40r3−5r2−102r−72 − 5
72

b5
7+2r

(r+5)(2r5+17r4+40r3−5r2−102r−72) − 7
360
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Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + x

3 − x2

6 − x3

6 − 5x4

72 − 7x5

360 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5
2

(
1 + 4x

7 + 4x2

21 + 32x3

693 + 80x4

9009 + 64x5

45045 +O
(
x6))

+ c2

(
1 + x

3 − x2

6 − x3

6 − 5x4

72 − 7x5

360 +O
(
x6))

Hence the final solution is

y = yh

= c1x
5
2

(
1 + 4x

7 + 4x2

21 + 32x3

693 + 80x4

9009 + 64x5

45045 +O
(
x6))

+ c2

(
1 + x

3 − x2

6 − x3

6 − 5x4

72 − 7x5

360 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

5
2

(
1 + 4x

7 + 4x2

21 + 32x3

693 + 80x4

9009 + 64x5

45045 +O
(
x6))

+ c2

(
1 + x

3 − x2

6 − x3

6 − 5x4

72 − 7x5

360 +O
(
x6))

Verification of solutions

y = c1x
5
2

(
1 + 4x

7 + 4x2

21 + 32x3

693 + 80x4

9009 + 64x5

45045 +O
(
x6))

+ c2

(
1 + x

3 − x2

6 − x3

6 − 5x4

72 − 7x5

360 +O
(
x6))

Verified OK.
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2.21.1 Maple step by step solution

Let’s solve
2y′′x+ (−2x− 3) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
2x + (2x+3)y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (2x+3)y′
2x + y

2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x+3
2x , P3(x) = 1

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x+ (−2x− 3) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−5 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 3 + 2r)− ak(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 52
}

• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k − 3

2 + r
)
ak+1 − 2ak

(
k − 1

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(2k+2r−1)

(k+1+r)(2k−3+2r)

• Recursion relation for r = 0
ak+1 = ak(2k−1)

(k+1)(2k−3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(2k−1)

(k+1)(2k−3)

]
• Recursion relation for r = 5

2

ak+1 = ak(2k+4)(
k+ 7

2
)
(2k+2)

• Solution for r = 5
2[

y =
∞∑
k=0

akx
k+ 5

2 , ak+1 = ak(2k+4)(
k+ 7

2
)
(2k+2)

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+1 = ak(2k−1)

(k+1)(2k−3) , bk+1 = bk(2k+4)(
k+ 7

2
)
(2k+2)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
Order:=6;
dsolve(2*x*diff(y(x),x$2)-(3+2*x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
5
2

(
1 + 4

7x+ 4
21x

2 + 32
693x

3 + 80
9009x

4 + 64
45045x

5 +O
(
x6))

+ c2

(
1 + 1

3x− 1
6x

2 − 1
6x

3 − 5
72x

4 − 7
360x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 85� �
AsymptoticDSolveValue[2*x*y''[x]-(3+2*x)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−7x5

360 − 5x4

72 − x3

6 − x2

6 + x

3 + 1
)

+ c1

(
64x5

45045 + 80x4

9009 + 32x3

693 + 4x2

21 + 4x
7 + 1

)
x5/2
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2.22 problem 22
2.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 517

Internal problem ID [5577]
Internal file name [OUTPUT/4825_Sunday_June_05_2022_03_07_00_PM_24081568/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 − 4

9

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 4

9

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 9x2 − 4
9x2
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Table 50: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 9x2−4
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 4

9

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 4

9

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

9

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−4anxn+r

9

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r

9 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r −
4a0xr

9 = 0

Or (
xrr(−1 + r) + xrr − 4xr

9

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(9r2 − 4)xr

9 = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 4
9 = 0

Solving for r gives the roots of the indicial equation as

r1 =
2
3

r2 = −2
3

Since a0 6= 0 then the indicial equation becomes

(9r2 − 4)xr

9 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 2

3

y2(x) =
∞∑
n=0

bnx
n− 2

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 −
4an
9 = 0

Solving for an from recursive equation (4) gives

an = − 9an−2

9n2 + 18nr + 9r2 − 4 (4)
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Which for the root r = 2
3 becomes

an = − 3an−2

n (3n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 9
9r2 + 36r + 32

Which for the root r = 2
3 becomes

a2 = − 3
20

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+32 − 3
20

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+32 − 3
20

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
81

(9r2 + 36r + 32) (9r2 + 72r + 140)

Which for the root r = 2
3 becomes

a4 =
9

1280
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+32 − 3
20

a3 0 0
a4

81
(9r2+36r+32)(9r2+72r+140)

9
1280

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+32 − 3
20

a3 0 0
a4

81
(9r2+36r+32)(9r2+72r+140)

9
1280

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
2
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
2
3

(
1− 3x2

20 + 9x4

1280 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2 −
4bn
9 = 0

Solving for bn from recursive equation (4) gives

bn = − 9bn−2

9n2 + 18nr + 9r2 − 4 (4)

Which for the root r = −2
3 becomes

bn = − 3bn−2

n (3n− 4) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 9
9r2 + 36r + 32

Which for the root r = −2
3 becomes

b2 = −3
4

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+32 −3
4
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+32 −3
4

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
81

(9r2 + 36r + 32) (9r2 + 72r + 140)

Which for the root r = −2
3 becomes

b4 =
9
128

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+32 −3
4

b3 0 0
b4

81
(9r2+36r+32)(9r2+72r+140)

9
128

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+32 −3
4

b3 0 0
b4

81
(9r2+36r+32)(9r2+72r+140)

9
128

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
2
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 3x2

4 + 9x4

128 +O(x6)
x

2
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
3

(
1− 3x2

20 + 9x4

1280 +O
(
x6))+

c2
(
1− 3x2

4 + 9x4

128 +O(x6)
)

x
2
3

Hence the final solution is

y = yh

= c1x
2
3

(
1− 3x2

20 + 9x4

1280 +O
(
x6))+

c2
(
1− 3x2

4 + 9x4

128 +O(x6)
)

x
2
3

Summary
The solution(s) found are the following

(1)y = c1x
2
3

(
1− 3x2

20 + 9x4

1280 +O
(
x6))+

c2
(
1− 3x2

4 + 9x4

128 +O(x6)
)

x
2
3

Verification of solutions

y = c1x
2
3

(
1− 3x2

20 + 9x4

1280 +O
(
x6))+

c2
(
1− 3x2

4 + 9x4

128 +O(x6)
)

x
2
3

Verified OK.
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2.22.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 − 4

9

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2−4

)
y

9x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
9x2−4

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 9x2−4

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + 9xy′ + (9x2 − 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + 3r) (−2 + 3r)xr + a1(5 + 3r) (1 + 3r)x1+r +
(

∞∑
k=2

(ak(3k + 3r + 2) (3k + 3r − 2) + 9ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + 3r) (−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2

3 ,
2
3

}
• Each term must be 0

a1(5 + 3r) (1 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(3k + 3r + 2) (3k + 3r − 2) + 9ak−2 = 0
• Shift index using k− >k + 2

ak+2(3k + 8 + 3r) (3k + 4 + 3r) + 9ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 9ak
(3k+8+3r)(3k+4+3r)

• Recursion relation for r = −2
3

ak+2 = − 9ak
(3k+6)(3k+2)

• Solution for r = −2
3[

y =
∞∑
k=0

akx
k− 2

3 , ak+2 = − 9ak
(3k+6)(3k+2) , a1 = 0

]

518



• Recursion relation for r = 2
3

ak+2 = − 9ak
(3k+10)(3k+6)

• Solution for r = 2
3[

y =
∞∑
k=0

akx
k+ 2

3 , ak+2 = − 9ak
(3k+10)(3k+6) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 2

3

)
+
(

∞∑
k=0

bkx
k+ 2

3

)
, ak+2 = − 9ak

(3k+6)(3k+2) , a1 = 0, bk+2 = − 9bk
(3k+10)(3k+6) , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-4/9)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

4
3
(
1− 3

20x
2 + 9

1280x
4 +O(x6)

)
+ c1

(
1− 3

4x
2 + 9

128x
4 +O(x6)

)
x

2
3
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-4/9)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
2/3
(

9x4

1280 − 3x2

20 + 1
)
+

c2
(

9x4

128 −
3x2

4 + 1
)

x2/3

520



2.23 problem 23
2.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 531

Internal problem ID [5578]
Internal file name [OUTPUT/4826_Sunday_June_05_2022_03_07_03_PM_7002621/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ + 9x2y′ + 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ + 9x2y′ + 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1

q(x) = 2
9x2
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Table 52: Table p(x), q(x) singularites.

p(x) = 1
singularity type

q(x) = 2
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ + 9x2y′ + 2y = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 9x2

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ 2
(

∞∑
n=0

anx
n+r

)
= 0

Which simplifies to(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9x1+n+ran(n+ r)
)

+
(

∞∑
n=0

2anxn+r

)
= 0

(2A)
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

9x1+n+ran(n+ r) =
∞∑
n=1

9an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.(

∞∑
n=0

9xn+ran(n+ r) (n+ r− 1)
)
+
(

∞∑
n=1

9an−1(n+ r− 1)xn+r

)
+
(

∞∑
n=0

2anxn+r

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 2anxn+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 2a0xr = 0

Or
(9xrr(−1 + r) + 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 9r + 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

9r2 − 9r + 2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
2
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 9r + 2

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 2

3

y2(x) =
∞∑
n=0

bnx
n+ 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1) + 9an−1(n+ r − 1) + 2an = 0

Solving for an from recursive equation (4) gives

an = − 9an−1(n+ r − 1)
9n2 + 18nr + 9r2 − 9n− 9r + 2 (4)

Which for the root r = 2
3 becomes

an = an−1(1− 3n)
3n2 + n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 9r
9r2 + 9r + 2
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Which for the root r = 2
3 becomes

a1 = −1
2

And the table now becomes

n an,r an

a0 1 1
a1 − 9r

9r2+9r+2 −1
2

For n = 2, using the above recursive equation gives

a2 =
81r(1 + r)

(9r2 + 9r + 2) (9r2 + 27r + 20)
Which for the root r = 2

3 becomes
a2 =

5
28

And the table now becomes

n an,r an

a0 1 1
a1 − 9r

9r2+9r+2 −1
2

a2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
5
28

For n = 3, using the above recursive equation gives

a3 = − 729r(1 + r) (2 + r)
(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56)

Which for the root r = 2
3 becomes

a3 = − 1
21

And the table now becomes

n an,r an

a0 1 1
a1 − 9r

9r2+9r+2 −1
2

a2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
5
28

a3 − 729r(1+r)(2+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56) − 1

21
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For n = 4, using the above recursive equation gives

a4 =
6561r(1 + r) (2 + r) (3 + r)

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110)

Which for the root r = 2
3 becomes

a4 =
11
1092

And the table now becomes

n an,r an

a0 1 1
a1 − 9r

9r2+9r+2 −1
2

a2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
5
28

a3 − 729r(1+r)(2+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56) − 1

21

a4
6561r(1+r)(2+r)(3+r)

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
11

1092

For n = 5, using the above recursive equation gives

a5 = − 59049r(1 + r) (2 + r) (3 + r) (4 + r)
(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110) (9r2 + 81r + 182)

Which for the root r = 2
3 becomes

a5 = − 11
6240

And the table now becomes

n an,r an

a0 1 1
a1 − 9r

9r2+9r+2 −1
2

a2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
5
28

a3 − 729r(1+r)(2+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56) − 1

21

a4
6561r(1+r)(2+r)(3+r)

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
11

1092

a5 − 59049r(1+r)(2+r)(3+r)(4+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)(9r2+81r+182) − 11

6240
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Using the above table, then the solution y1(x) is

y1(x) = x
2
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
2
3

(
1− x

2 + 5x2

28 − x3

21 + 11x4

1092 − 11x5

6240 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)9bn(n+ r) (n+ r − 1) + 9bn−1(n+ r − 1) + 2bn = 0

Solving for bn from recursive equation (4) gives

bn = − 9bn−1(n+ r − 1)
9n2 + 18nr + 9r2 − 9n− 9r + 2 (4)

Which for the root r = 1
3 becomes

bn = bn−1(2− 3n)
3n2 − n

(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 9r
9r2 + 9r + 2

Which for the root r = 1
3 becomes

b1 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 9r

9r2+9r+2 −1
2
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For n = 2, using the above recursive equation gives

b2 =
81r(1 + r)

(9r2 + 9r + 2) (9r2 + 27r + 20)

Which for the root r = 1
3 becomes

b2 =
1
5

And the table now becomes

n bn,r bn

b0 1 1
b1 − 9r

9r2+9r+2 −1
2

b2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
1
5

For n = 3, using the above recursive equation gives

b3 = − 729r(1 + r) (2 + r)
(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56)

Which for the root r = 1
3 becomes

b3 = − 7
120

And the table now becomes

n bn,r bn

b0 1 1
b1 − 9r

9r2+9r+2 −1
2

b2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
1
5

b3 − 729r(1+r)(2+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56) − 7

120

For n = 4, using the above recursive equation gives

b4 =
6561r(1 + r) (2 + r) (3 + r)

(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110)

Which for the root r = 1
3 becomes

b4 =
7
528
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And the table now becomes

n bn,r bn

b0 1 1
b1 − 9r

9r2+9r+2 −1
2

b2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
1
5

b3 − 729r(1+r)(2+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56) − 7

120

b4
6561r(1+r)(2+r)(3+r)

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
7

528

For n = 5, using the above recursive equation gives

b5 = − 59049r(1 + r) (2 + r) (3 + r) (4 + r)
(9r2 + 9r + 2) (9r2 + 27r + 20) (9r2 + 45r + 56) (9r2 + 63r + 110) (9r2 + 81r + 182)

Which for the root r = 1
3 becomes

b5 = − 13
5280

And the table now becomes

n bn,r bn

b0 1 1
b1 − 9r

9r2+9r+2 −1
2

b2
81r(1+r)

(9r2+9r+2)(9r2+27r+20)
1
5

b3 − 729r(1+r)(2+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56) − 7

120

b4
6561r(1+r)(2+r)(3+r)

(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)
7

528

b5 − 59049r(1+r)(2+r)(3+r)(4+r)
(9r2+9r+2)(9r2+27r+20)(9r2+45r+56)(9r2+63r+110)(9r2+81r+182) − 13

5280

Using the above table, then the solution y2(x) is

y2(x) = x
2
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
3

(
1− x

2 + x2

5 − 7x3

120 + 7x4

528 − 13x5

5280 +O
(
x6))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
3

(
1− x

2 + 5x2

28 − x3

21 + 11x4

1092 − 11x5

6240 +O
(
x6))

+ c2x
1
3

(
1− x

2 + x2

5 − 7x3

120 + 7x4

528 − 13x5

5280 +O
(
x6))

Hence the final solution is

y = yh

= c1x
2
3

(
1− x

2 + 5x2

28 − x3

21 + 11x4

1092 − 11x5

6240 +O
(
x6))

+ c2x
1
3

(
1− x

2 + x2

5 − 7x3

120 + 7x4

528 − 13x5

5280 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

2
3

(
1− x

2 + 5x2

28 − x3

21 + 11x4

1092 − 11x5

6240 +O
(
x6))

+ c2x
1
3

(
1− x

2 + x2

5 − 7x3

120 + 7x4

528 − 13x5

5280 +O
(
x6))

Verification of solutions

y = c1x
2
3

(
1− x

2 + 5x2

28 − x3

21 + 11x4

1092 − 11x5

6240 +O
(
x6))

+ c2x
1
3

(
1− x

2 + x2

5 − 7x3

120 + 7x4

528 − 13x5

5280 +O
(
x6))

Verified OK.
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2.23.1 Maple step by step solution

Let’s solve
9x2y′′ + 9x2y′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′ − 2y

9x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′ + 2y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1, P3(x) = 2
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + 9x2y′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1
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x2 · y′ =
∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−2 + 3r)xr +
(

∞∑
k=1

(ak(3k + 3r − 1) (3k + 3r − 2) + 9ak−1(k − 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
3 ,

2
3

}
• Each term in the series must be 0, giving the recursion relation

9
(
k + r − 2

3

) (
k + r − 1

3

)
ak + 9ak−1(k − 1 + r) = 0

• Shift index using k− >k + 1
9
(
k + 1

3 + r
) (

k + 2
3 + r

)
ak+1 + 9ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 9ak(k+r)

(3k+1+3r)(3k+2+3r)

• Recursion relation for r = 1
3

ak+1 = − 9ak
(
k+ 1

3
)

(3k+2)(3k+3)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = − 9ak
(
k+ 1

3
)

(3k+2)(3k+3)

]
• Recursion relation for r = 2

3

ak+1 = − 9ak
(
k+ 2

3
)

(3k+3)(3k+4)

• Solution for r = 2
3[

y =
∞∑
k=0

akx
k+ 2

3 , ak+1 = − 9ak
(
k+ 2

3
)

(3k+3)(3k+4)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

3

)
+
(

∞∑
k=0

bkx
k+ 2

3

)
, ak+1 = − 9ak

(
k+ 1

3
)

(3k+2)(3k+3) , bk+1 = − 9bk
(
k+ 2

3
)

(3k+3)(3k+4)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)+9*x^2*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1− 1

2x+ 1
5x

2 − 7
120x

3 + 7
528x

4 − 13
5280x

5 +O
(
x6))

+ c2x
2
3

(
1− 1

2x+ 5
28x

2 − 1
21x

3 + 11
1092x

4 − 11
6240x

5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 90� �
AsymptoticDSolveValue[9*x^2*y''[x]+9*x^2*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
3
√
x

(
−13x5

5280 + 7x4

528 − 7x3

120 + x2

5 − x

2 + 1
)

+ c1x
2/3
(
−11x5

6240 + 11x4

1092 − x3

21 + 5x2

28 − x

2 + 1
)
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2.24 problem 24
2.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 544

Internal problem ID [5579]
Internal file name [OUTPUT/4827_Sunday_June_05_2022_03_07_05_PM_89504628/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2y′′ + 3xy′ + (2x− 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ + 3xy′ + (2x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
2x

q(x) = 2x− 1
2x2
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Table 54: Table p(x), q(x) singularites.

p(x) = 3
2x

singularity type
x = 0 “regular”

q(x) = 2x−1
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2y′′ + 3xy′ + (2x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 3x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ (2x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

2x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=1

2an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + 3xra0r − a0x
r = 0

Or
(2xrr(−1 + r) + 3xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + r − 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
2r2 + r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + 3an(n+ r) + 2an−1 − an = 0

Solving for an from recursive equation (4) gives

an = − 2an−1

2n2 + 4nr + 2r2 + n+ r − 1 (4)

Which for the root r = 1
2 becomes

an = − 2an−1

n (2n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 2
2r2 + 5r + 2

Which for the root r = 1
2 becomes

a1 = −2
5

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+5r+2 −2
5

For n = 2, using the above recursive equation gives

a2 =
4

(2r2 + 5r + 2) (2r2 + 9r + 9)

Which for the root r = 1
2 becomes

a2 =
2
35

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+5r+2 −2
5

a2
4

(2r2+5r+2)(2r2+9r+9)
2
35

For n = 3, using the above recursive equation gives

a3 = − 8
(2r2 + 5r + 2) (2r2 + 9r + 9) (2r2 + 13r + 20)

Which for the root r = 1
2 becomes

a3 = − 4
945
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And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+5r+2 −2
5

a2
4

(2r2+5r+2)(2r2+9r+9)
2
35

a3 − 8
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20) − 4

945

For n = 4, using the above recursive equation gives

a4 =
16

(2r2 + 5r + 2) (2r2 + 9r + 9) (2r2 + 13r + 20) (2r2 + 17r + 35)

Which for the root r = 1
2 becomes

a4 =
2

10395

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2+5r+2 −2
5

a2
4

(2r2+5r+2)(2r2+9r+9)
2
35

a3 − 8
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20) − 4

945

a4
16

(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)(2r2+17r+35)
2

10395

For n = 5, using the above recursive equation gives

a5 = − 32
(2r2 + 5r + 2) (2r2 + 9r + 9) (2r2 + 13r + 20) (2r2 + 17r + 35) (2r2 + 21r + 54)

Which for the root r = 1
2 becomes

a5 = − 4
675675

And the table now becomes
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n an,r an

a0 1 1
a1 − 2

2r2+5r+2 −2
5

a2
4

(2r2+5r+2)(2r2+9r+9)
2
35

a3 − 8
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20) − 4

945

a4
16

(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)(2r2+17r+35)
2

10395

a5 − 32
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)(2r2+17r+35)(2r2+21r+54) − 4

675675

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1) + 3bn(n+ r) + 2bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = − 2bn−1

2n2 + 4nr + 2r2 + n+ r − 1 (4)

Which for the root r = −1 becomes

bn = − 2bn−1

n (2n− 3) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 2
2r2 + 5r + 2
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Which for the root r = −1 becomes

b1 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+5r+2 2

For n = 2, using the above recursive equation gives

b2 =
4

(2r2 + 5r + 2) (2r2 + 9r + 9)
Which for the root r = −1 becomes

b2 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+5r+2 2

b2
4

(2r2+5r+2)(2r2+9r+9) −2

For n = 3, using the above recursive equation gives

b3 = − 8
(2r2 + 5r + 2) (2r2 + 9r + 9) (2r2 + 13r + 20)

Which for the root r = −1 becomes

b3 =
4
9

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+5r+2 2

b2
4

(2r2+5r+2)(2r2+9r+9) −2

b3 − 8
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)

4
9
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For n = 4, using the above recursive equation gives

b4 =
16

(2r2 + 5r + 2) (2r2 + 9r + 9) (2r2 + 13r + 20) (2r2 + 17r + 35)

Which for the root r = −1 becomes

b4 = − 2
45

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+5r+2 2

b2
4

(2r2+5r+2)(2r2+9r+9) −2

b3 − 8
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)

4
9

b4
16

(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)(2r2+17r+35) − 2
45

For n = 5, using the above recursive equation gives

b5 = − 32
(2r2 + 5r + 2) (2r2 + 9r + 9) (2r2 + 13r + 20) (2r2 + 17r + 35) (2r2 + 21r + 54)

Which for the root r = −1 becomes

b5 =
4

1575

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2+5r+2 2

b2
4

(2r2+5r+2)(2r2+9r+9) −2

b3 − 8
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)

4
9

b4
16

(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)(2r2+17r+35) − 2
45

b5 − 32
(2r2+5r+2)(2r2+9r+9)(2r2+13r+20)(2r2+17r+35)(2r2+21r+54)

4
1575
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Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+
c2
(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O(x6)
)

x

Hence the final solution is

y = yh

= c1
√
x

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+
c2
(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+
c2
(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O(x6)
)

x

Verification of solutions

y = c1
√
x

(
1− 2x

5 + 2x2

35 − 4x3

945 + 2x4

10395 − 4x5

675675 +O
(
x6))

+
c2
(
1 + 2x− 2x2 + 4x3

9 − 2x4

45 + 4x5

1575 +O(x6)
)

x

Verified OK.
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2.24.1 Maple step by step solution

Let’s solve
2x2y′′ + 3xy′ + (2x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −3y′

2x − (2x−1)y
2x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

2x + (2x−1)y
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
2x , P3(x) = 2x−1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2y′′ + 3xy′ + (2x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r − 1) + 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 12

}
• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
(
k − 1

2 + r
)
ak + 2ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 1

2 + r
)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+2+r)(2k+1+2r)

• Recursion relation for r = −1
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 1

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
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• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 47� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+(2*x-1)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

3
2
(
1− 2

5x+ 2
35x

2 − 4
945x

3 + 2
10395x

4 − 4
675675x

5 +O(x6)
)
+ c1

(
1 + 2x− 2x2 + 4

9x
3 − 2

45x
4 + 4

1575x
5 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 84� �
AsymptoticDSolveValue[2*x^2*y''[x]+3*x*y'[x]+(2*x-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
− 4x5

675675 + 2x4

10395 − 4x3

945 + 2x2

35 − 2x
5 + 1

)

+
c2
(

4x5

1575 −
2x4

45 + 4x3

9 − 2x2 + 2x+ 1
)

x
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2.25 problem 25
2.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 556

Internal problem ID [5580]
Internal file name [OUTPUT/4828_Sunday_June_05_2022_03_07_09_PM_87162009/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + 2y′ − xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 2y′ − xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x

q(x) = −1
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Table 56: Table p(x), q(x) singularites.

p(x) = 2
x

singularity type
x = 0 “regular”

q(x) = −1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 2y′ − xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+2

(
∞∑
n=0

(n+ r) anxn+r−1

)
− x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=2

(
−an−2x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r−1)
)
+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =2

(
−an−2x

n+r−1)= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −1

Since a0 6= 0 then the indicial equation becomes

r x−1+r(1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an(n+ r)− an−2 = 0

Solving for an from recursive equation (4) gives

an = an−2

n2 + 2nr + r2 + n+ r
(4)

Which for the root r = 0 becomes

an = an−2

n (1 + n) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1

r2 + 5r + 6

Which for the root r = 0 becomes
a2 =

1
6

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+5r+6

1
6

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+5r+6

1
6

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r4 + 14r3 + 71r2 + 154r + 120
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Which for the root r = 0 becomes

a4 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+5r+6

1
6

a3 0 0
a4

1
r4+14r3+71r2+154r+120

1
120

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
r2+5r+6

1
6

a3 0 0
a4

1
r4+14r3+71r2+154r+120

1
120

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x2

6 + x4

120 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→−1

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 2(n+ r) bn − bn−2 = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2) + 2(n− 1) bn − bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = bn−2

n2 + 2nr + r2 + n+ r
(5)

Which for the root r = −1 becomes

bn = bn−2

n2 − n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
1

r2 + 5r + 6
Which for the root r = −1 becomes

b2 =
1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+5r+6

1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+5r+6

1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(r2 + 5r + 6) (r2 + 9r + 20)

Which for the root r = −1 becomes

b4 =
1
24
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+5r+6

1
2

b3 0 0
b4

1
r4+14r3+71r2+154r+120

1
24

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
r2+5r+6

1
2

b3 0 0
b4

1
r4+14r3+71r2+154r+120

1
24

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x2

2 + x4

24 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x2

6 + x4

120 +O
(
x6))+

c2
(
1 + x2

2 + x4

24 +O(x6)
)

x
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Hence the final solution is

y = yh

= c1

(
1 + x2

6 + x4

120 +O
(
x6))+

c2
(
1 + x2

2 + x4

24 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1

(
1 + x2

6 + x4

120 +O
(
x6))+

c2
(
1 + x2

2 + x4

24 +O(x6)
)

x

Verification of solutions

y = c1

(
1 + x2

6 + x4

120 +O
(
x6))+

c2
(
1 + x2

2 + x4

24 +O(x6)
)

x

Verified OK.

2.25.1 Maple step by step solution

Let’s solve
y′′x+ 2y′ − xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
+ y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
− y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = −1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 2y′ − xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r)− ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 0}
• Each term must be 0

a1(1 + r) (2 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 2 + r)− ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 3 + r)− ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = ak
(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = ak

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = ak

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = ak

(k+1)(k+2) , 0 = 0, bk+2 = bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1 + 1

6x
2 + 1

120x
4 +O

(
x6))+

c2
(
1 + 1

2x
2 + 1

24x
4 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 42� �
AsymptoticDSolveValue[x*y''[x]+2*y'[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x3

24 + x

2 + 1
x

)
+ c2

(
x4

120 + x2

6 + 1
)
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2.26 problem 26
2.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 569

Internal problem ID [5581]
Internal file name [OUTPUT/4829_Sunday_June_05_2022_03_07_11_PM_30919380/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 4x2 − 1
4x2
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Table 58: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 4x2−1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 1

4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r

4

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r

4 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r −
a0x

r

4 = 0

Or (
xrr(−1 + r) + xrr − xr

4

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(4r2 − 1)xr

4 = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 1
4 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes

(4r2 − 1)xr

4 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 −
an
4 = 0

Solving for an from recursive equation (4) gives

an = − 4an−2

4n2 + 8nr + 4r2 − 1 (4)

Which for the root r = 1
2 becomes

an = − an−2

n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 4
4r2 + 16r + 15

Which for the root r = 1
2 becomes

a2 = −1
6

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+15 −1
6

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+15 −1
6

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
16

(4r2 + 16r + 15) (4r2 + 32r + 63)

Which for the root r = 1
2 becomes

a4 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+15 −1
6

a3 0 0
a4

16
(4r2+16r+15)(4r2+32r+63)

1
120

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+15 −1
6

a3 0 0
a4

16
(4r2+16r+15)(4r2+32r+63)

1
120

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x2

6 + x4

120 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→− 1

2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2 −
bn
4 = 0
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Which for for the root r = −1
2 becomes

(4A)bn

(
n− 1

2

)(
n− 3

2

)
+ bn

(
n− 1

2

)
+ bn−2 −

bn
4 = 0

Solving for bn from the recursive equation (4) gives

bn = − 4bn−2

4n2 + 8nr + 4r2 − 1 (5)

Which for the root r = −1
2 becomes

bn = − 4bn−2

4n2 − 4n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 4
4r2 + 16r + 15

Which for the root r = −1
2 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r+15 −1
2

For n = 3, using the above recursive equation gives

b3 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r+15 −1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
16

(4r2 + 16r + 15) (4r2 + 32r + 63)
Which for the root r = −1

2 becomes

b4 =
1
24

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r+15 −1
2

b3 0 0
b4

16
(4r2+16r+15)(4r2+32r+63)

1
24

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r+15 −1
2

b3 0 0
b4

16
(4r2+16r+15)(4r2+32r+63)

1
24

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

2 + x4

24 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1
√
x

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

√
x

Verification of solutions

y = c1
√
x

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

√
x

Verified OK.

2.26.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 − 1

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′
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• Isolate 2nd derivative

y′′ = −
(
4x2−1

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
4x2−1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (4x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r
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◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x
(
1− 1

6x
2 + 1

120x
4 +O(x6)

)
+ c2

(
1− 1

2x
2 + 1

24x
4 +O(x6)

)
√
x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 58� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-1/4)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x7/2

24 − x3/2

2 + 1√
x

)
+ c2

(
x9/2

120 − x5/2

6 +
√
x

)
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2.27 problem 27
Internal problem ID [5582]
Internal file name [OUTPUT/4830_Sunday_June_05_2022_03_07_13_PM_36920882/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Laguerre , [_2nd_order , _linear , `_with_symmetry_ [0,F(x)]`]]

xy′′ − xy′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ − xy′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1

q(x) = 1
x
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Table 60: Table p(x), q(x) singularites.

p(x) = −1
singularity type

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ − xy′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x− x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r−1)+( ∞∑

n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0
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Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(n+ r − 2)
(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = an−1(n− 1)
(n+ 1)n (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1 + r

(1 + r) r

Which for the root r = 1 becomes
a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
(1+r)r 0

For n = 2, using the above recursive equation gives

a2 =
−1 + r

(1 + r)2 (2 + r)

Which for the root r = 1 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
(1+r)r 0

a2
−1+r

(1+r)2(2+r) 0

For n = 3, using the above recursive equation gives

a3 =
−1 + r

(1 + r) (2 + r)2 (3 + r)
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Which for the root r = 1 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
(1+r)r 0

a2
−1+r

(1+r)2(2+r) 0

a3
−1+r

(1+r)(2+r)2(3+r) 0

For n = 4, using the above recursive equation gives

a4 =
−1 + r

(1 + r) (2 + r) (3 + r)2 (4 + r)

Which for the root r = 1 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
(1+r)r 0

a2
−1+r

(1+r)2(2+r) 0

a3
−1+r

(1+r)(2+r)2(3+r) 0

a4
−1+r

(1+r)(2+r)(3+r)2(4+r) 0

For n = 5, using the above recursive equation gives

a5 =
−1 + r

(1 + r) (2 + r) (3 + r) (4 + r)2 (5 + r)

Which for the root r = 1 becomes
a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−1+r
(1+r)r 0

a2
−1+r

(1+r)2(2+r) 0

a3
−1+r

(1+r)(2+r)2(3+r) 0

a4
−1+r

(1+r)(2+r)(3+r)2(4+r) 0

a5
−1+r

(1+r)(2+r)(3+r)(4+r)2(5+r) 0

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −1 + r

(1 + r) r

Therefore

lim
r→r2

−1 + r

(1 + r) r = lim
r→0

−1 + r

(1 + r) r
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ − xy′ + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

− x

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(y′′1(x)x− y′1(x)x+ y1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x− y1(x)

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

− x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(

∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

y′′1(x)x− y′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x− y1(x)

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

− x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(

∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− (1 + x)

(
∞∑
n=0

anx
n+r1

))
C

x

+
−
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x2 +

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x− (1 + x)

(
∞∑
n=0

anx
n+1
))

C

x

+
−
(

∞∑
n=0

xn−1bnn

)
x2 +

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2 +

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xnan(n+ 1)
)

+
∞∑

n =0

(−Canx
n) +

∞∑
n =0

(
−C xn+1an

)
+

∞∑
n =0

(−xnbnn) +
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0
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The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

(
−C xn+1an

)
=

∞∑
n=2

(
−Ca−2+nx

n−1)
∞∑

n =0

(−xnbnn) =
∞∑
n=1

(
−(n− 1) bn−1x

n−1)
∞∑

n =0

bnx
n =

∞∑
n=1

bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+

∞∑
n =1

(
−Can−1x

n−1)+ ∞∑
n =2

(
−Ca−2+nx

n−1)
+

∞∑
n =1

(
−(n−1) bn−1x

n−1)+( ∞∑
n=0

nxn−1bn(n−1)
)
+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
(−a0 + 3a1)C + 2b2 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1 + 2b2 = 0

Solving the above for b2 gives
b2 = −1

2
For n = 3, Eq (2B) gives

(−a1 + 5a2)C − b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
2 + 6b3 = 0

Solving the above for b3 gives
b3 = − 1

12
For n = 4, Eq (2B) gives

(−a2 + 7a3)C − 2b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
6 + 12b4 = 0

Solving the above for b4 gives
b4 = − 1

72
For n = 5, Eq (2B) gives

(−a3 + 9a4)C − 3b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
24 + 20b5 = 0

Solving the above for b5 gives
b5 = − 1

480
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x
(
1 +O

(
x6))) ln (x) + 1− x2

2 − x3

12 − x4

72 − x5

480 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1+O

(
x6))+c2

(
(−1)

(
x
(
1+O

(
x6))) ln (x)+1−x2

2 − x3

12−
x4

72−
x5

480+O
(
x6))

Hence the final solution is

y = yh

= c1x
(
1 +O

(
x6))+ c2

(
−x
(
1 +O

(
x6)) ln (x) + 1− x2

2 − x3

12 − x4

72 − x5

480 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
(
1+O

(
x6))+ c2

(
−x
(
1+O

(
x6)) ln (x) + 1− x2

2 − x3

12 − x4

72 − x5

480 +O
(
x6))

Verification of solutions

y = c1x
(
1 +O

(
x6))+ c2

(
−x
(
1 +O

(
x6)) ln (x) + 1− x2

2 − x3

12 − x4

72 − x5

480 +O
(
x6))

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 42� �
Order:=6;
dsolve(x*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = ln (x)
(
−x+O

(
x6)) c2 + c1x

(
1 + O

(
x6))

+
(
1 + x− 1

2x
2 − 1

12x
3 − 1

72x
4 − 1

480x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 41� �
AsymptoticDSolveValue[x*y''[x]-x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
72
(
−x4 − 6x3 − 36x2 + 144x+ 72

)
− x log(x)

)
+ c2x
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2.28 problem 28
2.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 597

Internal problem ID [5583]
Internal file name [OUTPUT/4831_Sunday_June_05_2022_03_07_17_PM_1035518/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 3y′
x

− 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′ + 3y′
x

− 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x

q(x) = −2
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Table 61: Table p(x), q(x) singularites.

p(x) = 3
x

singularity type
x = 0 “regular”

q(x) = −2
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−2xy + xy′′ + 3y′ = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−2x

(
∞∑
n=0

anx
n+r

)
+
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
= 0

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−2x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran

)
=

∞∑
n=2

(
−2an−2x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

3(n+r) anxn+r−1

)
+

∞∑
n =2

(
−2an−2x

n+r−1)= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −2

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 3an(n+ r)− 2an−2 = 0

Solving for an from recursive equation (4) gives

an = 2an−2

n2 + 2nr + r2 + 2n+ 2r (4)

Which for the root r = 0 becomes

an = 2an−2

n (n+ 2) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
2

r2 + 6r + 8

Which for the root r = 0 becomes
a2 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2
r2+6r+8

1
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2
r2+6r+8

1
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4

(4 + r)2 (2 + r) (r + 6)
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Which for the root r = 0 becomes
a4 =

1
48

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2
r2+6r+8

1
4

a3 0 0
a4

4
(4+r)2(2+r)(r+6)

1
48

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2
r2+6r+8

1
4

a3 0 0
a4

4
(4+r)2(2+r)(r+6)

1
48

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x2

4 + x4

48 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 2
r2 + 6r + 8

Therefore

lim
r→r2

2
r2 + 6r + 8 = lim

r→−2

2
r2 + 6r + 8

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode −2xy + xy′′ + 3y′ = 0 gives

−2x
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
+
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2 +

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 3Cy′1(x) ln (x) +
3Cy1(x)

x
+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0
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Which can be written as

(7)

(
(y′′1(x)x− 2y1(x)x+ 3y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x+ 3y1(x)

x

)
C

− 2x
(

∞∑
n=0

bnx
n+r2

)
+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x− 2y1(x)x+ 3y′1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ 3y1(x)

x

)
C − 2x

(
∞∑
n=0

bnx
n+r2

)

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ 2

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 − 2x2

(
∞∑
n=0

bnx
n+r2

)
+ 3
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x

x
= 0
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Since r1 = 0 and r2 = −2 then the above becomes(
2
(

∞∑
n=0

x−1+nann

)
x+ 2

(
∞∑
n=0

anx
n

))
C

x

+

(
∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2 − 2x2

(
∞∑
n=0

bnx
n−2
)
+ 3
(

∞∑
n=0

x−3+nbn(n− 2)
)
x

x
= 0

(10)

Which simplifies to

(2A)

(
∞∑
n=0

2C x−1+nann

)
+
(

∞∑
n=0

2C x−1+nan

)
+
(

∞∑
n=0

x−3+nbn
(
n2 − 5n+ 6

))

+
∞∑

n =0

(
−2x−1+nbn

)
+
(

∞∑
n=0

3x−3+nbn(n− 2)
)

= 0

The next step is to make all powers of x be −3 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−3+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x−1+nann =
∞∑
n=2

2C(n− 2) an−2x
−3+n

∞∑
n =0

2C x−1+nan =
∞∑
n=2

2Can−2x
−3+n

∞∑
n =0

(
−2x−1+nbn

)
=

∞∑
n=2

(
−2bn−2x

−3+n
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to −3 + n.

(2B)

(
∞∑
n=2

2C(n− 2) an−2x
−3+n

)
+
(

∞∑
n=2

2Can−2x
−3+n

)

+
(

∞∑
n=0

x−3+nbn
(
n2 − 5n+ 6

))
+

∞∑
n =2

(
−2bn−2x

−3+n
)

+
(

∞∑
n=0

3x−3+nbn(n− 2)
)

= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 = 0

Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C − 2 = 0

Which is solved for C. Solving for C gives

C = 1

For n = 3, Eq (2B) gives
4Ca1 − 2b1 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
6Ca2 − 2b2 + 8b4 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8b4 +
3
2 = 0

Solving the above for b4 gives
b4 = − 3

16
For n = 5, Eq (2B) gives

8Ca3 − 2b3 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(
1 + x2

4 + x4

48 +O
(
x6)) ln (x) +

1− 3x4

16 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1+x2

4 + x4

48+O
(
x6))+c2

(
1
(
1+x2

4 + x4

48+O
(
x6)) ln (x)+

1− 3x4

16 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1

(
1+ x2

4 + x4

48 +O
(
x6))+ c2

((
1+ x2

4 + x4

48 +O
(
x6)) ln (x) +

1− 3x4

16 +O(x6)
x2

)
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Summary
The solution(s) found are the following

(1)
y = c1

(
1 + x2

4 + x4

48 +O
(
x6))

+ c2

((
1 + x2

4 + x4

48 +O
(
x6)) ln (x) +

1− 3x4

16 +O(x6)
x2

)
Verification of solutions

y = c1

(
1+ x2

4 + x4

48 +O
(
x6))+ c2

((
1+ x2

4 + x4

48 +O
(
x6)) ln (x)+

1− 3x4

16 +O(x6)
x2

)

Verified OK.

2.28.1 Maple step by step solution

Let’s solve
−2xy + y′′x+ 3y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −3y′

x
+ 2y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x
− 2y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = −2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
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Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
−2xy + y′′x+ 3y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 3 + r)− 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}
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• Each term must be 0
a1(1 + r) (3 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 3 + r)− 2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + r + 2) (k + 4 + r)− 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2ak

(k+r+2)(k+4+r)

• Recursion relation for r = −2
ak+2 = 2ak

k(k+2)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = 2ak

k(k+2) ,−a1 = 0
]

• Recursion relation for r = 0
ak+2 = 2ak

(k+2)(k+4)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 2ak

(k+2)(k+4) , 3a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = 2ak

k(k+2) ,−a1 = 0, bk+2 = 2bk
(k+2)(k+4) , 3b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 46� �
Order:=6;
dsolve(diff(y(x),x$2)+3/x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1
(
1 + 1

4x
2 + 1

48x
4 +O(x6)

)
x2 + c2

(
ln (x)

(
(−2)x2 − 1

2x
4 +O(x6)

)
+
(
−2 + 3

8x
4 +O(x6)

))
x2

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 57� �
AsymptoticDSolveValue[y''[x]+3/x*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4

48 + x2

4 + 1
)
+ c1

(
1
4
(
x2 + 4

)
log(x)− 5x4 + 8x2 − 16

16x2

)

600



2.29 problem 29
2.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 609

Internal problem ID [5584]
Internal file name [OUTPUT/4832_Sunday_June_05_2022_03_07_20_PM_38239968/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

xy′′ + (1− x) y′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (1− x) y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x− 1
x

q(x) = −1
x
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Table 63: Table p(x), q(x) singularites.

p(x) = −x−1
x

singularity type
x = 0 “regular”

q(x) = − 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (1− x) y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (1− x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0
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Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1) + an(n+ r)− an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1

n+ r
(4)

604



Which for the root r = 0 becomes

an = an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

1 + r

Which for the root r = 0 becomes
a1 = 1

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1

For n = 2, using the above recursive equation gives

a2 =
1

(2 + r) (1 + r)

Which for the root r = 0 becomes
a2 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1

a2
1

(2+r)(1+r)
1
2
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For n = 3, using the above recursive equation gives

a3 =
1

(2 + r) (1 + r) (3 + r)

Which for the root r = 0 becomes
a3 =

1
6

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1

a2
1

(2+r)(1+r)
1
2

a3
1

(2+r)(1+r)(3+r)
1
6

For n = 4, using the above recursive equation gives

a4 =
1

(4 + r) (2 + r) (1 + r) (3 + r)

Which for the root r = 0 becomes
a4 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1

a2
1

(2+r)(1+r)
1
2

a3
1

(2+r)(1+r)(3+r)
1
6

a4
1

(4+r)(2+r)(1+r)(3+r)
1
24

For n = 5, using the above recursive equation gives

a5 =
1

(5 + r) (4 + r) (2 + r) (1 + r) (3 + r)

Which for the root r = 0 becomes

a5 =
1
120
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And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1

a2
1

(2+r)(1+r)
1
2

a3
1

(2+r)(1+r)(3+r)
1
6

a4
1

(4+r)(2+r)(1+r)(3+r)
1
24

a5
1

(5+r)(4+r)(2+r)(1+r)(3+r)
1

120

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

1
1+r

1 − 1
(1+r)2 −1

b2
1

(2+r)(1+r)
1
2

−3−2r
(2+r)2(1+r)2 −3

4

b3
1

(2+r)(1+r)(3+r)
1
6

−3r2−12r−11
(2+r)2(1+r)2(3+r)2 −11

36

b4
1

(4+r)(2+r)(1+r)(3+r)
1
24

−4r3−30r2−70r−50
(4+r)2(2+r)2(1+r)2(3+r)2 − 25

288

b5
1

(5+r)(4+r)(2+r)(1+r)(3+r)
1

120
−5r4−60r3−255r2−450r−274

(5+r)2(4+r)2(2+r)2(1+r)2(3+r)2 − 137
7200
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1+x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x)−x− 3x2

4 − 11x3

36 − 25x4

288 − 137x5

7200
+O

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x)− x− 3x2

4 − 11x3

36

− 25x4

288 − 137x5

7200 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x)− x− 3x2

4 − 11x3

36 − 25x4

288

− 137x5

7200 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x)− x− 3x2

4 − 11x3

36

− 25x4

288 − 137x5

7200 +O
(
x6))
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Verification of solutions

y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x)− x− 3x2

4 − 11x3

36 − 25x4

288

− 137x5

7200 +O
(
x6))

Verified OK.

2.29.1 Maple step by step solution

Let’s solve
y′′x+ (1− x) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (x−1)y′
x

+ y
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x−1)y′
x

− y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x−1
x
, P3(x) = − 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
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y′′x+ (1− x) y′ − y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 − ak(k + 1 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (ak+1(k + 1)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0
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[
y =

∞∑
k=0

akx
k, ak+1 = ak

k+1

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 +O

(
x6))

+
(
−x− 3

4x
2 − 11

36x
3 − 25

288x
4 − 137

7200x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 107� �
AsymptoticDSolveValue[x*y''[x]+(1-x)*y'[x]-y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
x5

120 + x4

24 + x3

6 + x2

2 + x+ 1
)

+c2

(
−137x5

7200 − 25x4

288 − 11x3

36 − 3x2

4 +
(

x5

120 +
x4

24 +
x3

6 + x2

2 +x+1
)
log(x)−x

)
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2.30 problem 30
2.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 620

Internal problem ID [5585]
Internal file name [OUTPUT/4833_Sunday_June_05_2022_03_07_22_PM_64756893/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1
x
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Table 65: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
(

∞∑
n=0

(n+r) (n+r−1) anxn+r−2

)
x+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
(r + 1)2
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Which for the root r = 0 becomes
a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(r+1)2 −1

For n = 2, using the above recursive equation gives

a2 =
1

(r + 1)2 (r + 2)2

Which for the root r = 0 becomes
a2 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(r+1)2 −1

a2
1

(r+1)2(r+2)2
1
4

For n = 3, using the above recursive equation gives

a3 = − 1
(r + 1)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes

a3 = − 1
36

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(r+1)2 −1

a2
1

(r+1)2(r+2)2
1
4

a3 − 1
(r+1)2(r+2)2(r+3)2 − 1

36
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For n = 4, using the above recursive equation gives

a4 =
1

(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes

a4 =
1
576

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(r+1)2 −1

a2
1

(r+1)2(r+2)2
1
4

a3 − 1
(r+1)2(r+2)2(r+3)2 − 1

36

a4
1

(r+1)2(r+2)2(r+3)2(4+r)2
1

576

For n = 5, using the above recursive equation gives

a5 = − 1
(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2 (5 + r)2

Which for the root r = 0 becomes

a5 = − 1
14400

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(r+1)2 −1

a2
1

(r+1)2(r+2)2
1
4

a3 − 1
(r+1)2(r+2)2(r+3)2 − 1

36

a4
1

(r+1)2(r+2)2(r+3)2(4+r)2
1

576

a5 − 1
(r+1)2(r+2)2(r+3)2(4+r)2(5+r)2 − 1

14400
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 − 1

(r+1)2 −1 2
(r+1)3 2

b2
1

(r+1)2(r+2)2
1
4

−4r−6
(r+1)3(r+2)3 −3

4

b3 − 1
(r+1)2(r+2)2(r+3)2 − 1

36
6r2+24r+22

(r+1)3(r+2)3(r+3)3
11
108

b4
1

(r+1)2(r+2)2(r+3)2(4+r)2
1

576
−8r3−60r2−140r−100

(r+1)3(r+2)3(r+3)3(4+r)3 − 25
3456

b5 − 1
(r+1)2(r+2)2(r+3)2(4+r)2(5+r)2 − 1

14400
10r4+120r3+510r2+900r+548

(r+1)3(r+2)3(r+3)3(4+r)3(5+r)3
137

432000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x)

+ 2x− 3x2

4 + 11x3

108 − 25x4

3456 + 137x5

432000 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Verification of solutions

y = c1

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

((
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x) + 2x− 3x2

4 + 11x3

108

− 25x4

3456 + 137x5

432000 +O
(
x6))

Verified OK.
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2.30.1 Maple step by step solution

Let’s solve
y′′x+ y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x
− y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+1)2

• Recursion relation for r = 0
ak+1 = − ak

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 − 1

14400x
5 +O

(
x6))

+
(
2x− 3

4x
2 + 11

108x
3 − 25

3456x
4 + 137

432000x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 111� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
− x5

14400 + x4

576 − x3

36 + x2

4 − x+ 1
)
+ c2

(
137x5

432000 − 25x4

3456 + 11x3

108 − 3x2

4

+
(
− x5

14400 + x4

576 − x3

36 + x2

4 − x+ 1
)
log(x) + 2x

)
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2.31 problem 31
2.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 636

Internal problem ID [5586]
Internal file name [OUTPUT/4834_Sunday_June_05_2022_03_07_24_PM_77989509/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (x− 6) y′ − 3y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (x− 6) y′ − 3y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x− 6
x

q(x) = −3
x
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Table 67: Table p(x), q(x) singularites.

p(x) = x−6
x

singularity type
x = 0 “regular”

q(x) = − 3
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (x− 6) y′ − 3y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (x− 6)
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 3
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−6(n+ r) anxn+r−1)+ ∞∑

n =0

(
−3anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−3anxn+r

)
=

∞∑
n=1

(
−3an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)

+
∞∑

n =0

(
−6(n+ r) anxn+r−1)+ ∞∑

n =1

(
−3an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 6(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 6ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 6r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−7 + r) = 0
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Since the above is true for all x then the indicial equation becomes

r(−7 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 7
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−7 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 7 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x7

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+7

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1)− 6an(n+ r)− 3an−1 = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n+ r − 4)
n2 + 2nr + r2 − 7n− 7r (4)

Which for the root r = 7 becomes

an = −an−1(n+ 3)
n (n+ 7) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 7 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r + 3

r2 − 5r − 6
Which for the root r = 7 becomes

a1 = −1
2

And the table now becomes

n an,r an

a0 1 1
a1

−r+3
r2−5r−6 −1

2

For n = 2, using the above recursive equation gives

a2 =
(−2 + r) (r − 3)

r4 − 8r3 − r2 + 68r + 60
Which for the root r = 7 becomes

a2 =
5
36

And the table now becomes

n an,r an

a0 1 1
a1

−r+3
r2−5r−6 −1

2

a2
(−2+r)(r−3)

r4−8r3−r2+68r+60
5
36
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For n = 3, using the above recursive equation gives

a3 = − (−2 + r) (r − 3) (−1 + r)
r6 − 9r5 − 5r4 + 165r3 + 4r2 − 876r − 720

Which for the root r = 7 becomes

a3 = − 1
36

And the table now becomes

n an,r an

a0 1 1
a1

−r+3
r2−5r−6 −1

2

a2
(−2+r)(r−3)

r4−8r3−r2+68r+60
5
36

a3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

36

For n = 4, using the above recursive equation gives

a4 =
(−2 + r) r(−1 + r)

(r + 4) (r6 − 9r5 − 5r4 + 165r3 + 4r2 − 876r − 720)

Which for the root r = 7 becomes

a4 =
7

1584
And the table now becomes

n an,r an

a0 1 1
a1

−r+3
r2−5r−6 −1

2

a2
(−2+r)(r−3)

r4−8r3−r2+68r+60
5
36

a3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

36

a4
(−2+r)r(−1+r)

(r+4)(r6−9r5−5r4+165r3+4r2−876r−720)
7

1584

For n = 5, using the above recursive equation gives

a5 = − r(−1 + r)
(r + 5) (r5 − 10r4 + 5r3 + 160r2 − 156r − 720) (r + 4)
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Which for the root r = 7 becomes

a5 = − 7
11880

And the table now becomes

n an,r an

a0 1 1
a1

−r+3
r2−5r−6 −1

2

a2
(−2+r)(r−3)

r4−8r3−r2+68r+60
5
36

a3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

36

a4
(−2+r)r(−1+r)

(r+4)(r6−9r5−5r4+165r3+4r2−876r−720)
7

1584

a5 − r(−1+r)
(r+5)(r5−10r4+5r3+160r2−156r−720)(r+4) − 7

11880

For n = 6, using the above recursive equation gives

a6 =
r

(r + 6) (r + 4) (r − 5) (r − 6) (r + 3) (r − 4) (r + 5)
Which for the root r = 7 becomes

a6 =
7

102960
And the table now becomes

n an,r an

a0 1 1
a1

−r+3
r2−5r−6 −1

2

a2
(−2+r)(r−3)

r4−8r3−r2+68r+60
5
36

a3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

36

a4
(−2+r)r(−1+r)

(r+4)(r6−9r5−5r4+165r3+4r2−876r−720)
7

1584

a5 − r(−1+r)
(r+5)(r5−10r4+5r3+160r2−156r−720)(r+4) − 7

11880

a6
r

(r+6)(r+4)(r−5)(r−6)(r+3)(r−4)(r+5)
7

102960

For n = 7, using the above recursive equation gives

a7 = − 1
(r + 7) (r2 − 36) (r2 − 16) (r2 − 25)
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Which for the root r = 7 becomes

a7 = − 1
144144

And the table now becomes

n an,r an

a0 1 1
a1

−r+3
r2−5r−6 −1

2

a2
(−2+r)(r−3)

r4−8r3−r2+68r+60
5
36

a3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

36

a4
(−2+r)r(−1+r)

(r+4)(r6−9r5−5r4+165r3+4r2−876r−720)
7

1584

a5 − r(−1+r)
(r+5)(r5−10r4+5r3+160r2−156r−720)(r+4) − 7

11880

a6
r

(r+6)(r+4)(r−5)(r−6)(r+3)(r−4)(r+5)
7

102960

a7 − 1
(r+7)(r2−36)(r2−16)(r2−25) − 1

144144

Using the above table, then the solution y1(x) is

y1(x) = x7(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8. . .

)
= x7

(
1− x

2 + 5x2

36 − x3

36 + 7x4

1584 − 7x5

11880 + 7x6

102960 − x7

144144 +O
(
x8))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 7. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a7(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a7

= − 1
(r + 7) (r2 − 36) (r2 − 16) (r2 − 25)

Therefore

lim
r→r2

− 1
(r + 7) (r2 − 36) (r2 − 16) (r2 − 25) = lim

r→0
− 1
(r + 7) (r2 − 36) (r2 − 16) (r2 − 25)

= 1
100800
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The limit is 1
100800 . Since the limit exists then the log term is not needed and we can

set C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1)− 6(n+ r) bn − 3bn−1 = 0

Which for for the root r = 0 becomes

(4A)bnn(n− 1) + bn−1(n− 1)− 6nbn − 3bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−1(n+ r − 4)
n2 + 2nr + r2 − 7n− 7r (5)

Which for the root r = 0 becomes

bn = −bn−1(n− 4)
n2 − 7n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − r − 3
r2 − 5r − 6

Which for the root r = 0 becomes
b1 = −1

2
And the table now becomes
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n bn,r bn

b0 1 1
b1

−r+3
r2−5r−6 −1

2

For n = 2, using the above recursive equation gives

b2 =
(r − 3) (−2 + r)

(r2 − 5r − 6) (r2 − 3r − 10)
Which for the root r = 0 becomes

b2 =
1
10

And the table now becomes

n bn,r bn

b0 1 1
b1

−r+3
r2−5r−6 −1

2

b2
(−2+r)(r−3)

r4−8r3−r2+68r+60
1
10

For n = 3, using the above recursive equation gives

b3 = − (−2 + r) (r − 3) (−1 + r)
(r2 − 5r − 6) (r2 − 3r − 10) (r2 − r − 12)

Which for the root r = 0 becomes

b3 = − 1
120

And the table now becomes

n bn,r bn

b0 1 1
b1

−r+3
r2−5r−6 −1

2

b2
(−2+r)(r−3)

r4−8r3−r2+68r+60
1
10

b3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

120

For n = 4, using the above recursive equation gives

b4 =
(−2 + r) r(−1 + r)

(r + 4) (r2 − 5r − 6) (r2 − 3r − 10) (r2 − r − 12)

632



Which for the root r = 0 becomes
b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−r+3
r2−5r−6 −1

2

b2
(−2+r)(r−3)

r4−8r3−r2+68r+60
1
10

b3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

120

b4
(−2+r)r(−1+r)

r7−5r6−41r5+145r4+664r3−860r2−4224r−2880 0

For n = 5, using the above recursive equation gives

b5 = − r(−1 + r)
(r + 5) (r2 − r − 12) (r2 − 3r − 10) (r − 6) (r + 4)

Which for the root r = 0 becomes
b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−r+3
r2−5r−6 −1

2

b2
(−2+r)(r−3)

r4−8r3−r2+68r+60
1
10

b3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

120

b4
(−2+r)r(−1+r)

r7−5r6−41r5+145r4+664r3−860r2−4224r−2880 0

b5 − r(−1+r)
(r+5)(r−5)(r−6)(r+3)(2+r)(r−4)(r+4) 0

For n = 6, using the above recursive equation gives

b6 =
r

(r + 6) (r + 4) (r − 6) (r − 5) (r2 − r − 12) (r + 5)

Which for the root r = 0 becomes
b6 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1

−r+3
r2−5r−6 −1

2

b2
(−2+r)(r−3)

r4−8r3−r2+68r+60
1
10

b3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

120

b4
(−2+r)r(−1+r)

r7−5r6−41r5+145r4+664r3−860r2−4224r−2880 0

b5 − r(−1+r)
(r+5)(r−5)(r−6)(r+3)(2+r)(r−4)(r+4) 0

b6
r

(r+4)(r2−r−12)(r2−36)(r2−25) 0

For n = 7, using the above recursive equation gives

b7 = − 1
(r + 6) (r + 4) (r − 5) (r − 6) (r − 4) (r + 5) (r + 7)

Which for the root r = 0 becomes

b7 =
1

100800

And the table now becomes

n bn,r bn

b0 1 1
b1

−r+3
r2−5r−6 −1

2

b2
(−2+r)(r−3)

r4−8r3−r2+68r+60
1
10

b3 − (−2+r)(r−3)(−1+r)
r6−9r5−5r4+165r3+4r2−876r−720 − 1

120

b4
(−2+r)r(−1+r)

r7−5r6−41r5+145r4+664r3−860r2−4224r−2880 0

b5 − r(−1+r)
(r+5)(r−5)(r−6)(r+3)(2+r)(r−4)(r+4) 0

b6
r

(r+4)(r2−r−12)(r2−36)(r2−25) 0

b7 − 1
(r+7)(r2−36)(r2−16)(r2−25)

1
100800
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Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

= 1− x

2 + x2

10 − x3

120 + x7

100800 +O
(
x8)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
7
(
1− x

2 + 5x2

36 − x3

36 + 7x4

1584 − 7x5

11880 + 7x6

102960 − x7

144144 +O
(
x8))

+ c2

(
1− x

2 + x2

10 − x3

120 + x7

100800 +O
(
x8))

Hence the final solution is

y = yh

= c1x
7
(
1− x

2 + 5x2

36 − x3

36 + 7x4

1584 − 7x5

11880 + 7x6

102960 − x7

144144 +O
(
x8))

+ c2

(
1− x

2 + x2

10 − x3

120 + x7

100800 +O
(
x8))

Summary
The solution(s) found are the following

(1)
y = c1x

7
(
1− x

2 + 5x2

36 − x3

36 + 7x4

1584 − 7x5

11880 + 7x6

102960 − x7

144144 +O
(
x8))

+ c2

(
1− x

2 + x2

10 − x3

120 + x7

100800 +O
(
x8))

Verification of solutions

y = c1x
7
(
1− x

2 + 5x2

36 − x3

36 + 7x4

1584 − 7x5

11880 + 7x6

102960 − x7

144144 +O
(
x8))

+ c2

(
1− x

2 + x2

10 − x3

120 + x7

100800 +O
(
x8))

Verified OK.
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2.31.1 Maple step by step solution

Let’s solve
y′′x+ (x− 6) y′ − 3y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 3y
x
− (x−6)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x−6)y′
x

− 3y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x−6
x
, P3(x) = − 3

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (x− 6) y′ − 3y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−7 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 6 + r) + ak(k + r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 7}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 6 + r) + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(k+1+r)(k−6+r)

• Recursion relation for r = 0 ; series terminates at k = 3
ak+1 = − ak(k−3)

(k+1)(k−6)

• Apply recursion relation for k = 0
a1 = −a0

2

• Apply recursion relation for k = 1
a2 = −a1

5

• Express in terms of a0
a2 = a0

10

• Apply recursion relation for k = 2
a3 = −a2

12

• Express in terms of a0
a3 = − a0

120
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• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1− 1

2x+ 1
10x

2 − 1
120x

3)
• Recursion relation for r = 7

ak+1 = − ak(k+4)
(k+8)(k+1)

• Solution for r = 7[
y =

∞∑
k=0

akx
k+7, ak+1 = − ak(k+4)

(k+8)(k+1)

]
• Combine solutions and rename parameters[

y = a0 ·
(
1− 1

2x+ 1
10x

2 − 1
120x

3)+ ( ∞∑
k=0

bkx
k+7
)
, bk+1 = − bk(k+4)

(k+8)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 40� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(x-6)*diff(y(x),x)-3*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
7
(
1− 1

2x+ 5
36x

2 − 1
36x

3 + 7
1584x

4 − 7
11880x

5 +O
(
x6))

+ c2
(
3628800− 1814400x+ 362880x2 − 30240x3 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 63� �
AsymptoticDSolveValue[x*y''[x]+(x-6)*y'[x]-3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
− x3

120 + x2

10 − x

2 + 1
)
+ c2

(
7x11

1584 − x10

36 + 5x9

36 − x8

2 + x7
)
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2.32 problem 32
2.32.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 650

Internal problem ID [5587]
Internal file name [OUTPUT/4835_Sunday_June_05_2022_03_07_28_PM_18175668/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x(x− 1) y′′ + 3y′ − 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x2 − x
)
y′′ − 2y + 3y′ = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x (x− 1)

q(x) = − 2
x (x− 1)
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Table 69: Table p(x), q(x) singularites.

p(x) = 3
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = − 2
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x(x− 1) y′′ + 3y′ − 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 2
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+r−1an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

an−1(n+r−1) (n+r−2)xn+r−1

)
+

∞∑
n =0

(
−xn+r−1an(n+r) (n+r−1)

)
+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−2an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

−xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

−x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
−x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(4− r) = 0
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Since the above is true for all x then the indicial equation becomes

−r(−4 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 4
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(4− r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x4

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+4

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2)− an(n+ r) (n+ r − 1) + 3an(n+ r)− 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = (n+ r − 3) an−1

n− 4 + r
(4)

Which for the root r = 4 becomes

an = (n+ 1) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2 + r

r − 3
Which for the root r = 4 becomes

a1 = 2

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
r−3 2

For n = 2, using the above recursive equation gives

a2 =
−1 + r

r − 3
Which for the root r = 4 becomes

a2 = 3

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
r−3 2

a2
−1+r
r−3 3
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For n = 3, using the above recursive equation gives

a3 =
r

r − 3

Which for the root r = 4 becomes
a3 = 4

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
r−3 2

a2
−1+r
r−3 3

a3
r

r−3 4

For n = 4, using the above recursive equation gives

a4 =
1 + r

r − 3

Which for the root r = 4 becomes
a4 = 5

And the table now becomes

n an,r an

a0 1 1
a1

−2+r
r−3 2

a2
−1+r
r−3 3

a3
r

r−3 4

a4
1+r
r−3 5

For n = 5, using the above recursive equation gives

a5 =
2 + r

r − 3

Which for the root r = 4 becomes
a5 = 6
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And the table now becomes

n an,r an

a0 1 1
a1

−2+r
r−3 2

a2
−1+r
r−3 3

a3
r

r−3 4

a4
1+r
r−3 5

a5
2+r
r−3 6

Using the above table, then the solution y1(x) is

y1(x) = x4(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x4(1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 1 + r

r − 3
Therefore

lim
r→r2

1 + r

r − 3 = lim
r→0

1 + r

r − 3
= −1

3
The limit is −1

3 . Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn−1(n+ r − 1) (n+ r − 2)− bn(n+ r) (n+ r − 1) + 3(n+ r) bn − 2bn−1 = 0

Which for for the root r = 0 becomes

(4A)bn−1(n− 1) (n− 2)− bnn(n− 1) + 3nbn − 2bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = (n+ r − 3) bn−1

n− 4 + r
(5)

Which for the root r = 0 becomes

bn = (n− 3) bn−1

n− 4 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−2 + r

r − 3
Which for the root r = 0 becomes

b1 =
2
3

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
r−3

2
3

For n = 2, using the above recursive equation gives

b2 =
−1 + r

r − 3
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Which for the root r = 0 becomes
b2 =

1
3

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
r−3

2
3

b2
−1+r
r−3

1
3

For n = 3, using the above recursive equation gives

b3 =
r

r − 3

Which for the root r = 0 becomes
b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
r−3

2
3

b2
−1+r
r−3

1
3

b3
r

r−3 0

For n = 4, using the above recursive equation gives

b4 =
1 + r

r − 3

Which for the root r = 0 becomes
b4 = −1

3
And the table now becomes
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n bn,r bn

b0 1 1
b1

−2+r
r−3

2
3

b2
−1+r
r−3

1
3

b3
r

r−3 0

b4
1+r
r−3 −1

3

For n = 5, using the above recursive equation gives

b5 =
2 + r

r − 3

Which for the root r = 0 becomes
b5 = −2

3
And the table now becomes

n bn,r bn

b0 1 1
b1

−2+r
r−3

2
3

b2
−1+r
r−3

1
3

b3
r

r−3 0

b4
1+r
r−3 −1

3

b5
2+r
r−3 −2

3

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + 2x
3 + x2

3 − x4

3 − 2x5

3 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
4(1+2x+3x2+4x3+5x4+6x5+O

(
x6))+c2

(
1+ 2x

3 + x2

3 − x4

3 − 2x5

3 +O
(
x6))
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Hence the final solution is

y = yh

= c1x
4(1+2x+3x2+4x3+5x4+6x5+O

(
x6))+ c2

(
1+ 2x

3 + x2

3 − x4

3 − 2x5

3 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

4(1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O
(
x6))

+ c2

(
1 + 2x

3 + x2

3 − x4

3 − 2x5

3 +O
(
x6))

Verification of solutions

y = c1x
4(1+2x+3x2+4x3+5x4+6x5+O

(
x6))+c2

(
1+ 2x

3 + x2

3 − x4

3 − 2x5

3 +O
(
x6))

Verified OK.

2.32.1 Maple step by step solution

Let’s solve
y′′x(x− 1) + 3y′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y

x(x−1) −
3y′

x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x(x−1) −
2y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x(x−1) , P3(x) = − 2

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(x− 1) + 3y′ − 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−4 + r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k − 3 + r) + ak(k + 1 + r) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 4}

• Each term in the series must be 0, giving the recursion relation
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((−k − r + 3) ak+1 + ak(k + r − 2)) (k + 1 + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
k−3+r

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

k−3

• Apply recursion relation for k = 0
a1 = 2a0

3

• Apply recursion relation for k = 1
a2 = a1

2

• Express in terms of a0
a2 = a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1 + 2

3x+ 1
3x

2)
• Recursion relation for r = 4

ak+1 = ak(k+2)
k+1

• Solution for r = 4[
y =

∞∑
k=0

akx
k+4, ak+1 = ak(k+2)

k+1

]
• Combine solutions and rename parameters[

y = a0 ·
(
1 + 2

3x+ 1
3x

2)+ ( ∞∑
k=0

bkx
k+4
)
, bk+1 = bk(k+2)

k+1

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 42� �
Order:=6;
dsolve(x*(x-1)*diff(y(x),x$2)+3*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
4(1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
−144− 96x− 48x2 + 48x4 + 96x5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 55� �
AsymptoticDSolveValue[x*(x-1)*y''[x]+3*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x4

3 + x2

3 + 2x
3 + 1

)
+ c2

(
5x8 + 4x7 + 3x6 + 2x5 + x4)
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2.33 problem 33
Internal problem ID [5588]
Internal file name [OUTPUT/4836_Sunday_June_05_2022_03_07_31_PM_28516887/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

Unable to solve or complete the solution.

x4y′′ + λy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x4y′′ + λy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = λ

x4
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Table 71: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = λ
x4

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^4*diff(y(x),x$2)+lambda*y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.104 (sec). Leaf size: 50� �
AsymptoticDSolveValue[x^4*y''[x]+\[Lambda]*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1xe
i
√
λ

x − ic2xe
− i

√
λ

x

2
√
λ
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2.34 problem 36 (a)
Internal problem ID [5589]
Internal file name [OUTPUT/4837_Sunday_June_05_2022_03_07_31_PM_81374011/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 36 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

Unable to solve or complete the solution.

x3y′′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x3y′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x3
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Table 72: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^3*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 222� �
AsymptoticDSolveValue[x^3*y''[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1e

− 2i√
xx3/4

(
−468131288625ix9/2

8796093022208 + 66891825ix7/2

4294967296 − 72765ix5/2

8388608 + 105ix3/2

8192

+ 33424574007825x5

281474976710656 − 14783093325x4

549755813888 + 2837835x3

268435456 − 4725x2

524288 + 15x
512 − 3i

√
x

16

+1
)
+c2e

2i√
xx3/4

(
468131288625ix9/2

8796093022208 − 66891825ix7/2

4294967296 +72765ix5/2

8388608 − 105ix3/2

8192 +33424574007825x5

281474976710656 − 14783093325x4

549755813888 + 2837835x3

268435456−
4725x2

524288+
15x
512 +

3i
√
x

16 +1
)
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2.35 problem 36 (b)
Internal problem ID [5590]
Internal file name [OUTPUT/4838_Sunday_June_05_2022_03_07_32_PM_45094205/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page
239
Problem number: 36 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Irregular
singular point"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

Unable to solve or complete the solution.

x2y′′ + (3x− 1) y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + (3x− 1) y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x− 1
x2

q(x) = 1
x2
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Table 73: Table p(x), q(x) singularites.

p(x) = 3x−1
x2

singularity type
x = 0 “irregular”

q(x) = 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+(3*x-1)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 43� �
AsymptoticDSolveValue[x^2*y''[x]+(3*x-1)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
120x5 + 24x4 + 6x3 + 2x2 + x+ 1

)
+ c2e

−1/x

x
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3 Chapter 6. SERIES SOLUTIONS OF LINEAR
EQUATIONS. Exercises. 6.3.1 page 250

3.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
3.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
3.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
3.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
3.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
3.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
3.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
3.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
3.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
3.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
3.11 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
3.12 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
3.13 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
3.14 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
3.15 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
3.16 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
3.17 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
3.18 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900
3.19 problem 22(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
3.20 problem 22(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920
3.21 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
3.22 problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
3.23 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
3.24 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
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3.1 problem 1
3.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 673

Internal problem ID [5591]
Internal file name [OUTPUT/4839_Sunday_June_05_2022_03_07_33_PM_52973265/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 − 1

9

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 1

9

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 9x2 − 1
9x2
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Table 74: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 9x2−1
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 1

9

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 1

9

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r

9

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r

9

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r

9 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r −
a0x

r

9 = 0

Or (
xrr(−1 + r) + xrr − xr

9

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(9r2 − 1)xr

9 = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 1
9 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes

(9r2 − 1)xr

9 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 −
an
9 = 0

Solving for an from recursive equation (4) gives

an = − 9an−2

9n2 + 18nr + 9r2 − 1 (4)
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Which for the root r = 1
3 becomes

an = − 3an−2

n (3n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 9
9r2 + 36r + 35

Which for the root r = 1
3 becomes

a2 = − 3
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+35 − 3
16

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+35 − 3
16

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
81

(9r2 + 36r + 35) (9r2 + 72r + 143)

Which for the root r = 1
3 becomes

a4 =
9
896

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+35 − 3
16

a3 0 0
a4

81
(9r2+36r+35)(9r2+72r+143)

9
896

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

9r2+36r+35 − 3
16

a3 0 0
a4

81
(9r2+36r+35)(9r2+72r+143)

9
896

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 3x2

16 + 9x4

896 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2 −
bn
9 = 0

Solving for bn from recursive equation (4) gives

bn = − 9bn−2

9n2 + 18nr + 9r2 − 1 (4)

Which for the root r = −1
3 becomes

bn = − 3bn−2

n (3n− 2) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 9
9r2 + 36r + 35

Which for the root r = −1
3 becomes

b2 = −3
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+35 −3
8
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+35 −3
8

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
81

(9r2 + 36r + 35) (9r2 + 72r + 143)

Which for the root r = −1
3 becomes

b4 =
9
320

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+35 −3
8

b3 0 0
b4

81
(9r2+36r+35)(9r2+72r+143)

9
320

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 9

9r2+36r+35 −3
8

b3 0 0
b4

81
(9r2+36r+35)(9r2+72r+143)

9
320

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 3x2

8 + 9x4

320 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 3x2

16 + 9x4

896 +O
(
x6))+

c2
(
1− 3x2

8 + 9x4

320 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x
1
3

(
1− 3x2

16 + 9x4

896 +O
(
x6))+

c2
(
1− 3x2

8 + 9x4

320 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1− 3x2

16 + 9x4

896 +O
(
x6))+

c2
(
1− 3x2

8 + 9x4

320 +O(x6)
)

x
1
3

Verification of solutions

y = c1x
1
3

(
1− 3x2

16 + 9x4

896 +O
(
x6))+

c2
(
1− 3x2

8 + 9x4

320 +O(x6)
)

x
1
3

Verified OK.
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3.1.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 − 1

9

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2−1

)
y

9x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
9x2−1

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 9x2−1

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + 9xy′ + (9x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + a1(4 + 3r) (2 + 3r)x1+r +
(

∞∑
k=2

(ak(3k + 3r + 1) (3k + 3r − 1) + 9ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term must be 0

a1(4 + 3r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(3k + 3r + 1) (3k + 3r − 1) + 9ak−2 = 0
• Shift index using k− >k + 2

ak+2(3k + 7 + 3r) (3k + 5 + 3r) + 9ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 9ak
(3k+7+3r)(3k+5+3r)

• Recursion relation for r = −1
3

ak+2 = − 9ak
(3k+6)(3k+4)

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+2 = − 9ak
(3k+6)(3k+4) , a1 = 0

]
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• Recursion relation for r = 1
3

ak+2 = − 9ak
(3k+8)(3k+6)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − 9ak
(3k+8)(3k+6) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − 9ak

(3k+6)(3k+4) , a1 = 0, bk+2 = − 9bk
(3k+8)(3k+6) , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/9)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

2
3
(
1− 3

16x
2 + 9

896x
4 +O(x6)

)
+ c1

(
1− 3

8x
2 + 9

320x
4 +O(x6)

)
x

1
3
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-1/9)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
9x4

896 − 3x2

16 + 1
)
+

c2
(

9x4

320 −
3x2

8 + 1
)

3
√
x
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3.2 problem 2
3.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 688

Internal problem ID [5592]
Internal file name [OUTPUT/4840_Sunday_June_05_2022_03_07_35_PM_41596924/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Bessel]

x2y′′ + xy′ +
(
x2 − 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = x2 − 1
x2
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Table 76: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = x2−1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − a0x
r = 0

Or
(xrr(−1 + r) + xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 1 = 0

679



Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 − an = 0
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Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 1 (4)

Which for the root r = 1 becomes

an = − an−2

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 4r + 3

Which for the root r = 1 becomes
a2 = −1

8
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r+3 −1
8

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r+3 −1
8

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
1

(r + 3)2 (1 + r) (5 + r)

Which for the root r = 1 becomes

a4 =
1
192

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r+3 −1
8

a3 0 0
a4

1
(r+3)2(1+r)(5+r)

1
192

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r+3 −1
8

a3 0 0
a4

1
(r+3)2(1+r)(5+r)

1
192

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x2

8 + x4

192 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= − 1
r2 + 4r + 3

Therefore

lim
r→r2

− 1
r2 + 4r + 3 = lim

r→−1
− 1
r2 + 4r + 3

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + xy′ + (x2 − 1) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
x2 − 1

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x)+y′1(x)x+

(
x2−1

)
y1(x)

)
ln (x)+x2

(
2y′1(x)

x
− y1(x)

x2

)
+y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
x2 − 1

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) + y′1(x)x+
(
x2 − 1

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
x2 − 1

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)
2x
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
C +

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(

∞∑
n=0

bnx
n+r2

)
x2 +

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x−

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = −1 then the above becomes

(10)
2x
(

∞∑
n=0

xnan(n+ 1)
)
C +

(
∞∑
n=0

x−3+nbn(n− 1) (n− 2)
)
x2

+
(

∞∑
n=0

bnx
n−1

)
x2 +

(
∞∑
n=0

xn−2bn(n− 1)
)
x−

(
∞∑
n=0

bnx
n−1

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+1an(n+ 1)
)

+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))

+
(

∞∑
n=0

xn+1bn

)
+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
∞∑

n =0

(
−bnx

n−1) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+1an(n+ 1) =
∞∑
n=2

2Can−2(n− 1)xn−1

∞∑
n =0

xn+1bn =
∞∑
n=2

bn−2x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n− 1.

(2B)

(
∞∑
n=2

2Can−2(n− 1)xn−1

)
+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))

+
(

∞∑
n=2

bn−2x
n−1

)
+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
∞∑

n =0

(
−bnx

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 = 0

Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 1 = 0

Which is solved for C. Solving for C gives

C = −1
2

For n = 3, Eq (2B) gives
4Ca1 + b1 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
6Ca2 + b2 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8b4 +
3
8 = 0
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Solving the above for b4 gives
b4 = − 3

64
For n = 5, Eq (2B) gives

8Ca3 + b3 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1
2 and all bn, then the second solution becomes

y2(x) = −1
2

(
x

(
1− x2

8 + x4

192 +O
(
x6))) ln (x) +

1− 3x4

64 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x2

8 + x4

192 +O
(
x6))

+ c2

(
−1
2

(
x

(
1− x2

8 + x4

192 +O
(
x6))) ln (x) +

1− 3x4

64 +O(x6)
x

)

Hence the final solution is

y = yh

= c1x

(
1− x2

8 + x4

192 +O
(
x6))

+ c2

−
x
(
1− x2

8 + x4

192 +O(x6)
)
ln (x)

2 +
1− 3x4

64 +O(x6)
x
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Summary
The solution(s) found are the following

(1)
y = c1x

(
1− x2

8 + x4

192 +O
(
x6))

+ c2

−
x
(
1− x2

8 + x4

192 +O(x6)
)
ln (x)

2 +
1− 3x4

64 +O(x6)
x


Verification of solutions

y = c1x

(
1− x2

8 + x4

192 +O
(
x6))

+ c2

−
x
(
1− x2

8 + x4

192 +O(x6)
)
ln (x)

2 +
1− 3x4

64 +O(x6)
x


Verified OK.

3.2.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−1

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
x2−1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr + a1(2 + r) r x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term must be 0
a1(2 + r) r = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 1) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r + 1) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+3+r)(k+r+1)

• Recursion relation for r = −1
ak+2 = − ak

(k+2)k

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+2)k , a1 = 0
]

• Recursion relation for r = 1
ak+2 = − ak

(k+4)(k+2)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = − ak

k(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+4) , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

2(1− 1
8x

2 + 1
192x

4 +O(x6)
)
+ c2

(
ln (x)

(
x2 − 1

8x
4 +O(x6)

)
+
(
−2 + 3

32x
4 +O(x6)

))
x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 58� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

192 − x3

8 + x

)
+ c1

(
1
16x

(
x2 − 8

)
log(x)− 5x4 − 16x2 − 64

64x

)
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3.3 problem 3
3.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 701

Internal problem ID [5593]
Internal file name [OUTPUT/4841_Sunday_June_05_2022_03_07_38_PM_905349/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 4xy′ +
(
4x2 − 25

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ + 4xy′ +
(
4x2 − 25

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 4x2 − 25
4x2
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Table 78: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 4x2−25
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ + 4xy′ +
(
4x2 − 25

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 4x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
4x2 − 25

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

4xn+r+2an

)
+

∞∑
n =0

(
−25anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an =
∞∑
n=2

4an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=2

4an−2x
n+r

)
+

∞∑
n =0

(
−25anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− 25anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − 25a0xr = 0

Or
(4xrr(−1 + r) + 4xrr − 25xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 25

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 25 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
5
2

r2 = −5
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 25

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x
5
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
5
2

Or

y1(x) =
∞∑
n=0

anx
n+ 5

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 5

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 4an(n+ r) + 4an−2 − 25an = 0
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Solving for an from recursive equation (4) gives

an = − 4an−2

4n2 + 8nr + 4r2 − 25 (4)

Which for the root r = 5
2 becomes

an = − an−2

n (n+ 5) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 4
4r2 + 16r − 9

Which for the root r = 5
2 becomes

a2 = − 1
14

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r−9 − 1
14

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r−9 − 1
14

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
16

(4r2 + 16r − 9) (4r2 + 32r + 39)

Which for the root r = 5
2 becomes

a4 =
1
504

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r−9 − 1
14

a3 0 0
a4

16
(4r2+16r−9)(4r2+32r+39)

1
504

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r−9 − 1
14

a3 0 0
a4

16
(4r2+16r−9)(4r2+32r+39)

1
504

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
5
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
5
2

(
1− x2

14 + x4

504 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 5. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a5(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a5

= 0

Therefore

lim
r→r2

0 = lim
r→− 5

2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 5

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0
For 2 ≤ n the recursive equation is

(4)4bn(n+ r) (n+ r − 1) + 4bn(n+ r) + 4bn−2 − 25bn = 0

Which for for the root r = −5
2 becomes

(4A)4bn
(
n− 5

2

)(
n− 7

2

)
+ 4bn

(
n− 5

2

)
+ 4bn−2 − 25bn = 0
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Solving for bn from the recursive equation (4) gives

bn = − 4bn−2

4n2 + 8nr + 4r2 − 25 (5)

Which for the root r = −5
2 becomes

bn = − 4bn−2

4n2 − 20n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −5

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 4
4r2 + 16r − 9

Which for the root r = −5
2 becomes

b2 =
1
6

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r−9
1
6

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r−9
1
6

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
16

(4r2 + 16r − 9) (4r2 + 32r + 39)

Which for the root r = −5
2 becomes

b4 =
1
24

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r−9
1
6

b3 0 0
b4

16
(4r2+16r−9)(4r2+32r+39)

1
24

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

4r2+16r−9
1
6

b3 0 0
b4

16
(4r2+16r−9)(4r2+32r+39)

1
24

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) = x
5
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x2

6 + x4

24 +O(x6)
x

5
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5
2

(
1− x2

14 + x4

504 +O
(
x6))+

c2
(
1 + x2

6 + x4

24 +O(x6)
)

x
5
2

Hence the final solution is

y = yh

= c1x
5
2

(
1− x2

14 + x4

504 +O
(
x6))+

c2
(
1 + x2

6 + x4

24 +O(x6)
)

x
5
2

Summary
The solution(s) found are the following

(1)y = c1x
5
2

(
1− x2

14 + x4

504 +O
(
x6))+

c2
(
1 + x2

6 + x4

24 +O(x6)
)

x
5
2

Verification of solutions

y = c1x
5
2

(
1− x2

14 + x4

504 +O
(
x6))+

c2
(
1 + x2

6 + x4

24 +O(x6)
)

x
5
2

Verified OK.

3.3.1 Maple step by step solution

Let’s solve
4x2y′′ + 4xy′ + (4x2 − 25) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −
(
4x2−25

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
4x2−25

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 4x2−25

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −25
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (4x2 − 25) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion
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x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (−5 + 2r)xr + a1(7 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
5
2

}
• Each term must be 0

a1(7 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2(2k + 9 + 2r) (2k − 1 + 2r) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 4ak
(2k+9+2r)(2k−1+2r)

• Recursion relation for r = −5
2

ak+2 = − 4ak
(2k+4)(2k−6)

• Solution for r = −5
2[

y =
∞∑
k=0

akx
k− 5

2 , ak+2 = − 4ak
(2k+4)(2k−6) , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = − 4ak
(2k+14)(2k+4)

• Solution for r = 5
2[

y =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − 4ak
(2k+14)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − 4ak

(2k+4)(2k−6) , a1 = 0, bk+2 = − 4bk
(2k+14)(2k+4) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2-25)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x

5(1− 1
14x

2 + 1
504x

4 +O(x6)
)
+ c2(2880 + 480x2 + 120x4 +O(x6))
x

5
2

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 58� �
AsymptoticDSolveValue[4*x^2*y''[x]+4*x*y'[x]+(4*x^2-25)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x3/2

24 + 1
x5/2 + 1

6
√
x

)
+ c2

(
x13/2

504 − x9/2

14 + x5/2
)
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3.4 problem 4
3.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 713

Internal problem ID [5594]
Internal file name [OUTPUT/4842_Sunday_June_05_2022_03_07_41_PM_53719700/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

16x2y′′ + 16xy′ +
(
16x2 − 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

16x2y′′ + 16xy′ +
(
16x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 16x2 − 1
16x2
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Table 80: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 16x2−1
16x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

16x2y′′ + 16xy′ +
(
16x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
16x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 16x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
16x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

16xn+ran(n+ r)
)

+
(

∞∑
n=0

16xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

16xn+r+2an =
∞∑
n=2

16an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

16xn+ran(n+ r)
)

+
(

∞∑
n=2

16an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

16xn+ran(n+ r) (n+ r − 1) + 16xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

16xra0r(−1 + r) + 16xra0r − a0x
r = 0

Or
(16xrr(−1 + r) + 16xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
16r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

16r2 − 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
1
4

r2 = −1
4

Since a0 6= 0 then the indicial equation becomes(
16r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

4

y2(x) =
∞∑
n=0

bnx
n− 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)16an(n+ r) (n+ r − 1) + 16an(n+ r) + 16an−2 − an = 0

Solving for an from recursive equation (4) gives

an = − 16an−2

16n2 + 32nr + 16r2 − 1 (4)

Which for the root r = 1
4 becomes

an = − 2an−2

2n2 + n
(5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 16
16r2 + 64r + 63

Which for the root r = 1
4 becomes

a2 = −1
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

16r2+64r+63 −1
5

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

16r2+64r+63 −1
5

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
256

(16r2 + 64r + 63) (16r2 + 128r + 255)
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Which for the root r = 1
4 becomes

a4 =
1
90

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

16r2+64r+63 −1
5

a3 0 0
a4

256
(16r2+64r+63)(16r2+128r+255)

1
90

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

16r2+64r+63 −1
5

a3 0 0
a4

256
(16r2+64r+63)(16r2+128r+255)

1
90

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
4

(
1− x2

5 + x4

90 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0
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For 2 ≤ n the recursive equation is

(3)16bn(n+ r) (n+ r − 1) + 16bn(n+ r) + 16bn−2 − bn = 0

Solving for bn from recursive equation (4) gives

bn = − 16bn−2

16n2 + 32nr + 16r2 − 1 (4)

Which for the root r = −1
4 becomes

bn = − 2bn−2

n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 16
16r2 + 64r + 63

Which for the root r = −1
4 becomes

b2 = −1
3

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 16

16r2+64r+63 −1
3

For n = 3, using the above recursive equation gives

b3 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 16

16r2+64r+63 −1
3

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
256

(16r2 + 64r + 63) (16r2 + 128r + 255)
Which for the root r = −1

4 becomes

b4 =
1
42

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 16

16r2+64r+63 −1
3

b3 0 0
b4

256
(16r2+64r+63)(16r2+128r+255)

1
42

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 16

16r2+64r+63 −1
3

b3 0 0
b4

256
(16r2+64r+63)(16r2+128r+255)

1
42

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) = x
1
4
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

3 + x4

42 +O(x6)
x

1
4

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
4

(
1− x2

5 + x4

90 +O
(
x6))+

c2
(
1− x2

3 + x4

42 +O(x6)
)

x
1
4

Hence the final solution is

y = yh

= c1x
1
4

(
1− x2

5 + x4

90 +O
(
x6))+

c2
(
1− x2

3 + x4

42 +O(x6)
)

x
1
4

Summary
The solution(s) found are the following

(1)y = c1x
1
4

(
1− x2

5 + x4

90 +O
(
x6))+

c2
(
1− x2

3 + x4

42 +O(x6)
)

x
1
4

Verification of solutions

y = c1x
1
4

(
1− x2

5 + x4

90 +O
(
x6))+

c2
(
1− x2

3 + x4

42 +O(x6)
)

x
1
4

Verified OK.

3.4.1 Maple step by step solution

Let’s solve
16x2y′′ + 16xy′ + (16x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −
(
16x2−1

)
y

16x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
16x2−1

)
y

16x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 16x2−1

16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= − 1
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
16x2y′′ + 16xy′ + (16x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion
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x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 4r) (−1 + 4r)xr + a1(5 + 4r) (3 + 4r)x1+r +
(

∞∑
k=2

(ak(4k + 4r + 1) (4k + 4r − 1) + 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 4r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

4 ,
1
4

}
• Each term must be 0

a1(5 + 4r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k + 4r + 1) (4k + 4r − 1) + 16ak−2 = 0
• Shift index using k− >k + 2

ak+2(4k + 9 + 4r) (4k + 7 + 4r) + 16ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 16ak
(4k+9+4r)(4k+7+4r)

• Recursion relation for r = −1
4

ak+2 = − 16ak
(4k+8)(4k+6)

• Solution for r = −1
4[

y =
∞∑
k=0

akx
k− 1

4 , ak+2 = − 16ak
(4k+8)(4k+6) , a1 = 0

]
• Recursion relation for r = 1

4

ak+2 = − 16ak
(4k+10)(4k+8)

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = − 16ak
(4k+10)(4k+8) , a1 = 0

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k− 1

4

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = − 16ak

(4k+8)(4k+6) , a1 = 0, bk+2 = − 16bk
(4k+10)(4k+8) , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
Order:=6;
dsolve(16*x^2*diff(y(x),x$2)+16*x*diff(y(x),x)+(16*x^2-1)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2
√
x
(
1− 1

5x
2 + 1

90x
4 +O(x6)

)
+ c1

(
1− 1

3x
2 + 1

42x
4 +O(x6)

)
x

1
4

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[16*x^2*y''[x]+16*x*y'[x]+(16*x^2-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
4
√
x

(
x4

90 − x2

5 + 1
)
+

c2
(

x4

42 −
x2

3 + 1
)

4
√
x
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3.5 problem 5
3.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 724

Internal problem ID [5595]
Internal file name [OUTPUT/4843_Sunday_June_05_2022_03_07_43_PM_84878401/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[_Lienard]

xy′′ + y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1
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Table 82: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −an−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
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For n = 2, using the above recursive equation gives

a2 = − 1
(r + 2)2

Which for the root r = 0 becomes
a2 = −1

4
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r + 2)2 (4 + r)2

Which for the root r = 0 becomes
a4 =

1
64

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

a3 0 0
a4

1
(r+2)2(4+r)2

1
64

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

a3 0 0
a4

1
(r+2)2(4+r)2

1
64

a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

4 + x4

64 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r
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And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − 1

(r+2)2 −1
4

2
(r+2)3

1
4

b3 0 0 0 0
b4

1
(r+2)2(4+r)2

1
64

−12−4r
(r+2)3(4+r)3 − 3

128

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x2

4 + x4

64 +O
(
x6)) ln (x) + x2

4 − 3x4

128 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x2

4 + x4

64+O
(
x6))+c2

((
1− x2

4 + x4

64+O
(
x6)) ln (x)+ x2

4 − 3x4

128+O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− x2

4 + x4

64 +O
(
x6))+ c2

((
1− x2

4 + x4

64 +O
(
x6)) ln (x)+ x2

4 − 3x4

128 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1− x2

4 + x4

64 +O
(
x6))

+ c2

((
1− x2

4 + x4

64 +O
(
x6)) ln (x) + x2

4 − 3x4

128 +O
(
x6))
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Verification of solutions

y = c1

(
1− x2

4 + x4

64 +O
(
x6))+c2

((
1− x2

4 + x4

64 +O
(
x6)) ln (x)+ x2

4 − 3x4

128 +O
(
x6))

Verified OK.

3.5.1 Maple step by step solution

Let’s solve
y′′x+ y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + ak = 0
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• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2)2

• Recursion relation for r = 0
ak+2 = − ak

(k+2)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)2 , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− 1

4x
2 + 1

64x
4 +O

(
x6))+

(
1
4x

2 − 3
128x

4 +O
(
x6)) c2
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

64 − x2

4 + 1
)
+ c2

(
−3x4

128 + x2

4 +
(
x4

64 − x2

4 + 1
)
log(x)

)
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3.6 problem 6
3.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 739

Internal problem ID [5596]
Internal file name [OUTPUT/4844_Sunday_June_05_2022_03_07_45_PM_74008201/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Bessel]

xy′′ + y′ +
(
x− 4

x

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ +
(
x− 4

x

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = x2 − 4
x2
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Table 84: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = x2−4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 − 4an = 0
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Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 4 (4)

Which for the root r = 2 becomes

an = − an−2

n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r (r + 4)

Which for the root r = 2 becomes

a2 = − 1
12

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+4) − 1
12

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+4) − 1
12

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
1

r (r + 4) (r + 6) (r + 2)

Which for the root r = 2 becomes

a4 =
1
384

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+4) − 1
12

a3 0 0
a4

1
r(r+4)(r+6)(r+2)

1
384

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+4) − 1
12

a3 0 0
a4

1
r(r+4)(r+6)(r+2)

1
384

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− x2

12 + x4

384 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 1
r (r + 4) (r + 6) (r + 2)

Therefore

lim
r→r2

1
r (r + 4) (r + 6) (r + 2) = lim

r→−2

1
r (r + 4) (r + 6) (r + 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + xy′ + (x2 − 4) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
x2 − 4

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x)+y′1(x)x+

(
x2−4

)
y1(x)

)
ln (x)+x2

(
2y′1(x)

x
− y1(x)

x2

)
+y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) + y′1(x)x+
(
x2 − 4

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)
2x
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
C +

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(

∞∑
n=0

bnx
n+r2

)
x2 +

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x− 4

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 2 and r2 = −2 then the above becomes

(10)
2x
(

∞∑
n=0

x1+nan(n+ 2)
)
C +

(
∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2

+
(

∞∑
n=0

bnx
n−2

)
x2 +

(
∞∑
n=0

x−3+nbn(n− 2)
)
x− 4

(
∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+2an(n+ 2)
)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))

+
(

∞∑
n=0

bnx
n

)
+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =0

(
−4bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+2an(n+ 2) =
∞∑
n=4

2Ca−4+n(n− 2)xn−2

∞∑
n =0

bnx
n =

∞∑
n=2

bn−2x
n−2

Substituting all the above in Eq (2A) gives the following equation where now all powers

736



of x are the same and equal to n− 2.

(2B)

(
∞∑
n=4

2Ca−4+n(n− 2)xn−2

)
+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))

+
(

∞∑
n=2

bn−2x
n−2

)
+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =0

(
−4bnxn−2) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
b0 − 4b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1− 4b2 = 0

Solving the above for b2 gives
b2 =

1
4

For n = 3, Eq (2B) gives
b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 1
4 = 0
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Which is solved for C. Solving for C gives

C = − 1
16

For n = 5, Eq (2B) gives
6Ca1 + b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 1
16 and all bn, then the second solution becomes

y2(x) = − 1
16

(
x2
(
1− x2

12 + x4

384 +O
(
x6))) ln (x) +

1 + x2

4 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

(
− 1
16

(
x2
(
1− x2

12 + x4

384 +O
(
x6))) ln (x) +

1 + x2

4 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1x
2
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

−
x2
(
1− x2

12 +
x4

384 +O(x6)
)
ln (x)

16 +
1 + x2

4 +O(x6)
x2
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Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

−
x2
(
1− x2

12 +
x4

384 +O(x6)
)
ln (x)

16 +
1 + x2

4 +O(x6)
x2


Verification of solutions

y = c1x
2
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

−
x2
(
1− x2

12 +
x4

384 +O(x6)
)
ln (x)

16 +
1 + x2

4 +O(x6)
x2


Verified OK.

3.6.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (x2 − 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−4

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
x2−4

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2−4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (x2 − 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term must be 0
a1(3 + r) (−1 + r) = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+4+r)(k+r)

• Recursion relation for r = −2
ak+2 = − ak

(k+2)(k−2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = − ak

(k+2)(k−2)

• Recursion relation for r = 2
ak+2 = − ak

(k+6)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+6)(k+2) , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
Order:=6;
dsolve(diff(x*diff(y(x),x),x)+(x-4/x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1− 1
12x

2 + 1
384x

4 +O(x6)
)
+ c2(ln (x) (9x4 +O(x6)) + (−144− 36x2 +O(x6)))

x2

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 52� �
AsymptoticDSolveValue[D[x*D[y[x],x],x]+(x-4/x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
(x2 + 8)2

64x2 − 1
16x

2 log(x)
)

+ c2

(
x6

384 − x4

12 + x2
)
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3.7 problem 7
3.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 754

Internal problem ID [5597]
Internal file name [OUTPUT/4845_Sunday_June_05_2022_03_07_48_PM_13206810/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
9x2 − 4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
9x2 − 4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 9x2 − 4
x2
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Table 86: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 9x2−4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
9x2 − 4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
9x2 − 4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

9xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

9xn+r+2an =
∞∑
n=2

9an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

9an−2x
n+r

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + 9an−2 − 4an = 0
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Solving for an from recursive equation (4) gives

an = − 9an−2

n2 + 2nr + r2 − 4 (4)

Which for the root r = 2 becomes

an = − 9an−2

n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 9
r (r + 4)

Which for the root r = 2 becomes
a2 = −3

4
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

r(r+4) −3
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

r(r+4) −3
4

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
81

r (r + 4) (r + 6) (r + 2)

Which for the root r = 2 becomes

a4 =
27
128

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

r(r+4) −3
4

a3 0 0
a4

81
r(r+4)(r+6)(r+2)

27
128

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 9

r(r+4) −3
4

a3 0 0
a4

81
r(r+4)(r+6)(r+2)

27
128

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− 3x2

4 + 27x4

128 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 81
r (r + 4) (r + 6) (r + 2)

Therefore

lim
r→r2

81
r (r + 4) (r + 6) (r + 2) = lim

r→−2

81
r (r + 4) (r + 6) (r + 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + xy′ + (9x2 − 4) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
9x2 − 4

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) + y′1(x)x+

(
9x2 − 4

)
y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
9x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) + y′1(x)x+
(
9x2 − 4

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
9x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0

750



Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

2x
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
C + 9

(
∞∑
n=0

bnx
n+r2

)
x2

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x− 4

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 2 and r2 = −2 then the above becomes

(10)

2x
(

∞∑
n=0

x1+nan(n+ 2)
)
C + 9

(
∞∑
n=0

bnx
n−2

)
x2

+
(

∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2

+
(

∞∑
n=0

x−3+nbn(n− 2)
)
x− 4

(
∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+2an(n+ 2)
)

+
(

∞∑
n=0

9bnxn

)
+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =0

(
−4bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+2an(n+ 2) =
∞∑
n=4

2Ca−4+n(n− 2)xn−2

∞∑
n =0

9bnxn =
∞∑
n=2

9bn−2x
n−2
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

(
∞∑
n=4

2Ca−4+n(n− 2)xn−2

)
+
(

∞∑
n=2

9bn−2x
n−2

)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+6

))
+
(

∞∑
n=0

xn−2bn(n− 2)
)
+

∞∑
n =0

(
−4bnxn−2) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
9b0 − 4b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

9− 4b2 = 0

Solving the above for b2 gives
b2 =

9
4

For n = 3, Eq (2B) gives
9b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 81
4 = 0
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Which is solved for C. Solving for C gives

C = −81
16

For n = 5, Eq (2B) gives
6Ca1 + 9b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −81
16 and all bn, then the second solution becomes

y2(x) = −81
16

(
x2
(
1− 3x2

4 + 27x4

128 +O
(
x6))) ln (x) +

1 + 9x2

4 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− 3x2

4 + 27x4

128 +O
(
x6))

+ c2

(
−81
16

(
x2
(
1− 3x2

4 + 27x4

128 +O
(
x6))) ln (x) +

1 + 9x2

4 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1x
2
(
1− 3x2

4 + 27x4

128 +O
(
x6))

+ c2

−
81x2

(
1− 3x2

4 + 27x4

128 +O(x6)
)
ln (x)

16 +
1 + 9x2

4 +O(x6)
x2
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Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1− 3x2

4 + 27x4

128 +O
(
x6))

+ c2

−
81x2

(
1− 3x2

4 + 27x4

128 +O(x6)
)
ln (x)

16 +
1 + 9x2

4 +O(x6)
x2


Verification of solutions

y = c1x
2
(
1− 3x2

4 + 27x4

128 +O
(
x6))

+ c2

−
81x2

(
1− 3x2

4 + 27x4

128 +O(x6)
)
ln (x)

16 +
1 + 9x2

4 +O(x6)
x2


Verified OK.

3.7.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (9x2 − 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2−4

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
9x2−4

)
y

x2 = 0

• Simplify ODE
9yx2 + x2y′′ + xy′ − 4y = 0

• Make a change of variables
t = 3x

• Compute y′

y′ = 3 d
dt
y(t)

• Compute second derivative
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y′′ = 9 d2

dt2
y(t)

• Apply change of variables to the ODE

y(t) t2 + t2
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− 4y(t) = 0

• ODE is now of the Bessel form
• Solution to Bessel ODE

y(t) = c1BesselJ (2, t) + c2BesselY (2, t)
• Make the change from t back to x

y = c1BesselJ (2, 3x) + c2BesselY (2, 3x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(9*x^2-4)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1− 3
4x

2 + 27
128x

4 +O(x6)
)
+ c2(ln (x) (729x4 +O(x6)) + (−144− 324x2 +O(x6)))

x2
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3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 54� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(9*x^2-4)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
(9x2 + 8)2

64x2 − 81
16x

2 log(x)
)

+ c2

(
27x6

128 − 3x4

4 + x2
)
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3.8 problem 8
3.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 766

Internal problem ID [5598]
Internal file name [OUTPUT/4846_Sunday_June_05_2022_03_07_52_PM_30257725/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 144x2 − 1
4x2
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Table 88: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 144x2−1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
36x2 − 1

4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

36xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r

4

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

36xn+r+2an =
∞∑
n=2

36an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

36an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r

4 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r −
a0x

r

4 = 0

Or (
xrr(−1 + r) + xrr − xr

4

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(4r2 − 1)xr

4 = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 1
4 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes

(4r2 − 1)xr

4 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + 36an−2 −
an
4 = 0

Solving for an from recursive equation (4) gives

an = − 144an−2

4n2 + 8nr + 4r2 − 1 (4)

Which for the root r = 1
2 becomes

an = − 36an−2

n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 144
4r2 + 16r + 15

Which for the root r = 1
2 becomes

a2 = −6

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 144

4r2+16r+15 −6

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 144

4r2+16r+15 −6

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
20736

(4r2 + 16r + 15) (4r2 + 32r + 63)

Which for the root r = 1
2 becomes

a4 =
54
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 144

4r2+16r+15 −6

a3 0 0
a4

20736
(4r2+16r+15)(4r2+32r+63)

54
5

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 144

4r2+16r+15 −6

a3 0 0
a4

20736
(4r2+16r+15)(4r2+32r+63)

54
5

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 6x2 + 54x4

5 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→− 1

2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + bn(n+ r) + 36bn−2 −
bn
4 = 0
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Which for for the root r = −1
2 becomes

(4A)bn

(
n− 1

2

)(
n− 3

2

)
+ bn

(
n− 1

2

)
+ 36bn−2 −

bn
4 = 0

Solving for bn from the recursive equation (4) gives

bn = − 144bn−2

4n2 + 8nr + 4r2 − 1 (5)

Which for the root r = −1
2 becomes

bn = − 144bn−2

4n2 − 4n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 144
4r2 + 16r + 15

Which for the root r = −1
2 becomes

b2 = −18

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 144

4r2+16r+15 −18

For n = 3, using the above recursive equation gives

b3 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 144

4r2+16r+15 −18

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
20736

(4r2 + 16r + 15) (4r2 + 32r + 63)
Which for the root r = −1

2 becomes

b4 = 54

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 144

4r2+16r+15 −18

b3 0 0
b4

20736
(4r2+16r+15)(4r2+32r+63) 54

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 144

4r2+16r+15 −18

b3 0 0
b4

20736
(4r2+16r+15)(4r2+32r+63) 54

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1− 18x2 + 54x4 +O(x6)√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 6x2 + 54x4

5 +O
(
x6))+ c2(1− 18x2 + 54x4 +O(x6))√

x

Hence the final solution is

y = yh

= c1
√
x

(
1− 6x2 + 54x4

5 +O
(
x6))+ c2(1− 18x2 + 54x4 +O(x6))√

x

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− 6x2 + 54x4

5 +O
(
x6))+ c2(1− 18x2 + 54x4 +O(x6))√

x

Verification of solutions

y = c1
√
x

(
1− 6x2 + 54x4

5 +O
(
x6))+ c2(1− 18x2 + 54x4 +O(x6))√

x

Verified OK.

3.8.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
36x2 − 1

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
144x2−1

)
y

4x2 − y′

x
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
144x2−1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 144x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (144x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r
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Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 144ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 144ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 144ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 144ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 144ak
4k2+12k+8

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 144ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 144ak
4k2+20k+24

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 144ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 144ak

4k2+12k+8 , a1 = 0, bk+2 = − 144bk
4k2+20k+24 , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(36*x^2-1/4)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x
(
1− 6x2 + 54

5 x
4 +O(x6)

)
+ c2(1− 18x2 + 54x4 +O(x6))
√
x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 52� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(36*x^2-1/4)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
54x7/2 − 18x3/2 + 1√

x

)
+ c2

(
54x9/2

5 − 6x5/2 +
√
x

)
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3.9 problem 9
3.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 779

Internal problem ID [5599]
Internal file name [OUTPUT/4847_Sunday_June_05_2022_03_07_54_PM_87154698/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
25x2 − 4

9

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
25x2 − 4

9

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 225x2 − 4
9x2
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Table 90: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 225x2−4
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
25x2 − 4

9

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
25x2 − 4

9

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

25xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

9

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

25xn+r+2an =
∞∑
n=2

25an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

25an−2x
n+r

)
+

∞∑
n =0

(
−4anxn+r

9

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r

9 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r −
4a0xr

9 = 0

Or (
xrr(−1 + r) + xrr − 4xr

9

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(9r2 − 4)xr

9 = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 4
9 = 0

Solving for r gives the roots of the indicial equation as

r1 =
2
3

r2 = −2
3

Since a0 6= 0 then the indicial equation becomes

(9r2 − 4)xr

9 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 2

3

y2(x) =
∞∑
n=0

bnx
n− 2

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + 25an−2 −
4an
9 = 0

Solving for an from recursive equation (4) gives

an = − 225an−2

9n2 + 18nr + 9r2 − 4 (4)
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Which for the root r = 2
3 becomes

an = − 75an−2

n (3n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 225
9r2 + 36r + 32

Which for the root r = 2
3 becomes

a2 = −15
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 225

9r2+36r+32 −15
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 225

9r2+36r+32 −15
4

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
50625

(9r2 + 36r + 32) (9r2 + 72r + 140)

Which for the root r = 2
3 becomes

a4 =
1125
256

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 225

9r2+36r+32 −15
4

a3 0 0
a4

50625
(9r2+36r+32)(9r2+72r+140)

1125
256

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 225

9r2+36r+32 −15
4

a3 0 0
a4

50625
(9r2+36r+32)(9r2+72r+140)

1125
256

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
2
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
2
3

(
1− 15x2

4 + 1125x4

256 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn(n+ r) (n+ r − 1) + bn(n+ r) + 25bn−2 −
4bn
9 = 0

Solving for bn from recursive equation (4) gives

bn = − 225bn−2

9n2 + 18nr + 9r2 − 4 (4)

Which for the root r = −2
3 becomes

bn = − 75bn−2

n (3n− 4) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 225
9r2 + 36r + 32

Which for the root r = −2
3 becomes

b2 = −75
4

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 225

9r2+36r+32 −75
4
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 225

9r2+36r+32 −75
4

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
50625

(9r2 + 36r + 32) (9r2 + 72r + 140)

Which for the root r = −2
3 becomes

b4 =
5625
128

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 225

9r2+36r+32 −75
4

b3 0 0
b4

50625
(9r2+36r+32)(9r2+72r+140)

5625
128

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 225

9r2+36r+32 −75
4

b3 0 0
b4

50625
(9r2+36r+32)(9r2+72r+140)

5625
128

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
2
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 75x2

4 + 5625x4

128 +O(x6)
x

2
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
3

(
1− 15x2

4 + 1125x4

256 +O
(
x6))+

c2
(
1− 75x2

4 + 5625x4

128 +O(x6)
)

x
2
3

Hence the final solution is

y = yh

= c1x
2
3

(
1− 15x2

4 + 1125x4

256 +O
(
x6))+

c2
(
1− 75x2

4 + 5625x4

128 +O(x6)
)

x
2
3

Summary
The solution(s) found are the following

(1)y = c1x
2
3

(
1− 15x2

4 + 1125x4

256 +O
(
x6))+

c2
(
1− 75x2

4 + 5625x4

128 +O(x6)
)

x
2
3

Verification of solutions

y = c1x
2
3

(
1− 15x2

4 + 1125x4

256 +O
(
x6))+

c2
(
1− 75x2

4 + 5625x4

128 +O(x6)
)

x
2
3

Verified OK.
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3.9.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
25x2 − 4

9

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
225x2−4

)
y

9x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
225x2−4

)
y

9x2 = 0

• Simplify ODE
25yx2 + x2y′′ + xy′ − 4y

9 = 0

• Make a change of variables
t = 5x

• Compute y′

y′ = 5 d
dt
y(t)

• Compute second derivative
y′′ = 25 d2

dt2
y(t)

• Apply change of variables to the ODE

y(t) t2 + t2
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− 4y(t)

9 = 0

• ODE is now of the Bessel form
• Solution to Bessel ODE

y(t) = c1BesselJ
(2
3 , t
)
+ c2BesselY

(2
3 , t
)

• Make the change from t back to x
y = c1BesselJ

(2
3 , 5x

)
+ c2BesselY

(2
3 , 5x

)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(25*x^2-4/9)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

4
3
(
1− 15

4 x
2 + 1125

256 x
4 +O(x6)

)
+ c1

(
1− 75

4 x
2 + 5625

128 x
4 +O(x6)

)
x

2
3

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(25*x^2-4/9)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
2/3
(
1125x4

256 − 15x2

4 + 1
)
+

c2
(

5625x4

128 − 75x2

4 + 1
)

x2/3
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3.10 problem 10
3.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 804

Internal problem ID [5600]
Internal file name [OUTPUT/4848_Sunday_June_05_2022_03_07_56_PM_89338792/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
2x2 − 64

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
2x2 − 64

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 2x2 − 64
x2
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Table 92: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 2x2−64
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
2x2 − 64

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
2x2 − 64

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

2xn+r+2an

)
+

∞∑
n =0

(
−64anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an =
∞∑
n=2

2an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

2an−2x
n+r

)
+

∞∑
n =0

(
−64anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 64anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 64a0xr = 0

Or
(xrr(−1 + r) + xrr − 64xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 64

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 64 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 8
r2 = −8

Since a0 6= 0 then the indicial equation becomes(
r2 − 64

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 16 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x8

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x8

Or

y1(x) =
∞∑
n=0

anx
n+8

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−8

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + 2an−2 − 64an = 0

784



Solving for an from recursive equation (4) gives

an = − 2an−2

n2 + 2nr + r2 − 64 (4)

Which for the root r = 8 becomes

an = − 2an−2

n (n+ 16) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 8 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 2
r2 + 4r − 60

Which for the root r = 8 becomes

a2 = − 1
18

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
4

(r2 + 4r − 60) (r2 + 8r − 48)

Which for the root r = 8 becomes

a4 =
1
720

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0

For n = 6, using the above recursive equation gives

a6 = − 8
(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28)

Which for the root r = 8 becomes

a6 = − 1
47520
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

For n = 7, using the above recursive equation gives

a7 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0

For n = 8, using the above recursive equation gives

a8 =
16

(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16)

Which for the root r = 8 becomes

a8 =
1

4561920
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

For n = 9, using the above recursive equation gives

a9 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0

For n = 10, using the above recursive equation gives

a10 = − 32
(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16) (r2 + 20r + 36)
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Which for the root r = 8 becomes

a10 = − 1
593049600

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0
a10 − 32

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36) − 1
593049600

For n = 11, using the above recursive equation gives

a11 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0
a10 − 32

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36) − 1
593049600

a11 0 0

For n = 12, using the above recursive equation gives

a12 =
64

(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16) (r2 + 20r + 36) (r2 + 24r + 80)

Which for the root r = 8 becomes

a12 =
1

99632332800

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0
a10 − 32

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36) − 1
593049600

a11 0 0
a12

64
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)

1
99632332800

For n = 13, using the above recursive equation gives

a13 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0
a10 − 32

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36) − 1
593049600

a11 0 0
a12

64
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)

1
99632332800

a13 0 0

For n = 14, using the above recursive equation gives

a14 = − 128
(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16) (r2 + 20r + 36) (r2 + 24r + 80) (r2 + 28r + 132)

Which for the root r = 8 becomes

a14 = − 1
20922789888000

And the table now becomes

792



n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0
a10 − 32

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36) − 1
593049600

a11 0 0
a12

64
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)

1
99632332800

a13 0 0
a14 − 128

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)(r2+28r+132) − 1
20922789888000

For n = 15, using the above recursive equation gives

a15 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0
a10 − 32

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36) − 1
593049600

a11 0 0
a12

64
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)

1
99632332800

a13 0 0
a14 − 128

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)(r2+28r+132) − 1
20922789888000

a15 0 0

For n = 16, using the above recursive equation gives

a16 =
256

(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16) (r2 + 20r + 36) (r2 + 24r + 80) (r2 + 28r + 132) (r2 + 32r + 192)

Which for the root r = 8 becomes

a16 =
1

5356234211328000

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 2

r2+4r−60 − 1
18

a3 0 0
a4

4
(r2+4r−60)(r2+8r−48)

1
720

a5 0 0
a6 − 8

(r2+4r−60)(r2+8r−48)(r2+12r−28) − 1
47520

a7 0 0
a8

16
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)

1
4561920

a9 0 0
a10 − 32

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36) − 1
593049600

a11 0 0
a12

64
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)

1
99632332800

a13 0 0
a14 − 128

(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)(r2+28r+132) − 1
20922789888000

a15 0 0
a16

256
(r2+4r−60)(r2+8r−48)(r2+12r−28)r(r+16)(r2+20r+36)(r2+24r+80)(r2+28r+132)(r2+32r+192)

1
5356234211328000

Using the above table, then the solution y1(x) is

y1(x) = x8(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + a9x

9 + a10x
10 + a11x

11 + a12x
12 + a13x

13 + a14x
14 + a15x

15 + a16x
16 + a17x

17. . .
)

= x8
(
1− x2

18 + x4

720 − x6

47520 + x8

4561920 − x10

593049600 + x12

99632332800 − x14

20922789888000 + x16

5356234211328000 +O
(
x17))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken as
the larger root. Hence for this problem we have N = 16. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a16(r). If this limit exists, then C = 0,
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else we need to keep the log term and C 6= 0. The above table shows that

aN = a16

= 256
(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16) (r2 + 20r + 36) (r2 + 24r + 80) (r2 + 28r + 132) (r2 + 32r + 192)

Therefore

lim
r→r2

256
(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16) (r2 + 20r + 36) (r2 + 24r + 80) (r2 + 28r + 132) (r2 + 32r + 192) = lim

r→−8

256
(r2 + 4r − 60) (r2 + 8r − 48) (r2 + 12r − 28) r (r + 16) (r2 + 20r + 36) (r2 + 24r + 80) (r2 + 28r + 132) (r2 + 32r + 192)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + xy′ + (2x2 − 64) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
2x2 − 64

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) + y′1(x)x+

(
2x2 − 64

)
y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
2x2 − 64

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) + y′1(x)x+
(
2x2 − 64

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
2x2 − 64

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

2x
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
C + 2

(
∞∑
n=0

bnx
n+r2

)
x2

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x− 64

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 8 and r2 = −8 then the above becomes

(10)

2x
(

∞∑
n=0

x7+nan(n+ 8)
)
C + 2

(
∞∑
n=0

bnx
n−8

)
x2

+
(

∞∑
n=0

x−10+nbn(n− 8) (−9 + n)
)
x2

+
(

∞∑
n=0

x−9+nbn(n− 8)
)
x− 64

(
∞∑
n=0

bnx
n−8

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+8an(n+8)
)
+
(

∞∑
n=0

2x−6+nbn

)
+
(

∞∑
n=0

xn−8bn(−9+n) (n−8)
)

+
(

∞∑
n=0

xn−8bn(n− 8)
)

+
∞∑

n =0

(
−64bnxn−8) = 0

The next step is to make all powers of x be n − 8 in each summation term. Going
over each summation term above with power of x in it which is not already xn−8 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+8an(n+ 8) =
∞∑

n=16

2Can−16(n− 8)xn−8

∞∑
n =0

2x−6+nbn =
∞∑
n=2

2bn−2x
n−8
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 8.(

∞∑
n=16

2Can−16(n− 8)xn−8

)
+
(

∞∑
n=2

2bn−2x
n−8

)

+
(

∞∑
n=0

xn−8bn(−9 + n) (n− 8)
)

+
(

∞∑
n=0

xn−8bn(n− 8)
)

+
∞∑

n =0

(
−64bnxn−8) = 0

(2B)

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−15b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−15b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
2b0 − 28b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2− 28b2 = 0

Solving the above for b2 gives
b2 =

1
14

For n = 3, Eq (2B) gives
2b1 − 39b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−39b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
2b2 − 48b4 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
7 − 48b4 = 0

Solving the above for b4 gives
b4 =

1
336

For n = 5, Eq (2B) gives
2b3 − 55b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−55b5 = 0

Solving the above for b5 gives
b5 = 0

For n = 6, Eq (2B) gives
2b4 − 60b6 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
168 − 60b6 = 0

Solving the above for b6 gives
b6 =

1
10080

For n = 7, Eq (2B) gives
2b5 − 63b7 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−63b7 = 0

Solving the above for b7 gives
b7 = 0

For n = 8, Eq (2B) gives
2b6 − 64b8 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
5040 − 64b8 = 0
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Solving the above for b8 gives
b8 =

1
322560

For n = 9, Eq (2B) gives
2b7 − 63b9 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−63b9 = 0

Solving the above for b9 gives
b9 = 0

For n = 10, Eq (2B) gives
2b8 − 60b10 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
161280 − 60b10 = 0

Solving the above for b10 gives
b10 =

1
9676800

For n = 11, Eq (2B) gives
2b9 − 55b11 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−55b11 = 0

Solving the above for b11 gives
b11 = 0

For n = 12, Eq (2B) gives
2b10 − 48b12 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
4838400 − 48b12 = 0

Solving the above for b12 gives

b12 =
1

232243200
For n = 13, Eq (2B) gives

2b11 − 39b13 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−39b13 = 0

Solving the above for b13 gives
b13 = 0

For n = 14, Eq (2B) gives
2b12 − 28b14 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
116121600 − 28b14 = 0

Solving the above for b14 gives

b14 =
1

3251404800

For n = 15, Eq (2B) gives
2b13 − 15b15 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−15b15 = 0

Solving the above for b15 gives
b15 = 0

For n = N , where N = 16 which is the difference between the two roots, we are free to
choose b16 = 0. Hence for n = 16, Eq (2B) gives

16C + 1
1625702400 = 0

Which is solved for C. Solving for C gives

C = − 1
26011238400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = − 1
26011238400 and all bn, then the second solution

becomes

y2(x) = − 1
26011238400

(
x8
(
1− x2

18 + x4

720 − x6

47520 + x8

4561920 − x10

593049600

+ x12

99632332800 − x14

20922789888000 + x16

5356234211328000 +O
(
x17))) ln (x)

+
1 + x2

14 +
x4

336 +
x6

10080 +
x8

322560 +
x10

9676800 +
x12

232243200 +
x14

3251404800 +O(x17)
x8

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
8
(
1− x2

18 + x4

720 − x6

47520 + x8

4561920 − x10

593049600 + x12

99632332800

− x14

20922789888000 + x16

5356234211328000 +O
(
x17))

+c2

(
− 1
26011238400

(
x8
(
1− x2

18+
x4

720−
x6

47520+
x8

4561920−
x10

593049600+
x12

99632332800−
x14

20922789888000+
x16

5356234211328000+O
(
x17))) ln (x)

+
1 + x2

14 +
x4

336 +
x6

10080 +
x8

322560 +
x10

9676800 +
x12

232243200 +
x14

3251404800 +O(x17)
x8

)

Hence the final solution is

y = yh

= c1x
8
(
1− x2

18 + x4

720 − x6

47520 + x8

4561920 − x10

593049600 + x12

99632332800

− x14

20922789888000 + x16

5356234211328000 +O
(
x17))

+c2

−
x8
(
1− x2

18 +
x4

720 −
x6

47520 +
x8

4561920 −
x10

593049600 +
x12

99632332800 −
x14

20922789888000 +
x16

5356234211328000 +O(x17)
)
ln (x)

26011238400

+
1 + x2

14 +
x4

336 +
x6

10080 +
x8

322560 +
x10

9676800 +
x12

232243200 +
x14

3251404800 +O(x17)
x8
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Summary
The solution(s) found are the following

(1)y = c1x
8
(
1− x2

18 + x4

720 − x6

47520 + x8

4561920 − x10

593049600 + x12

99632332800

− x14

20922789888000 + x16

5356234211328000 +O
(
x17))

+c2

−
x8
(
1− x2

18 +
x4

720 −
x6

47520 +
x8

4561920 −
x10

593049600 +
x12

99632332800 −
x14

20922789888000 +
x16

5356234211328000 +O(x17)
)
ln (x)

26011238400

+
1 + x2

14 +
x4

336 +
x6

10080 +
x8

322560 +
x10

9676800 +
x12

232243200 +
x14

3251404800 +O(x17)
x8


Verification of solutions

y = c1x
8
(
1− x2

18 + x4

720 − x6

47520 + x8

4561920 − x10

593049600 + x12

99632332800

− x14

20922789888000 + x16

5356234211328000 +O
(
x17))

+c2

−
x8
(
1− x2

18 +
x4

720 −
x6

47520 +
x8

4561920 −
x10

593049600 +
x12

99632332800 −
x14

20922789888000 +
x16

5356234211328000 +O(x17)
)
ln (x)

26011238400

+
1 + x2

14 +
x4

336 +
x6

10080 +
x8

322560 +
x10

9676800 +
x12

232243200 +
x14

3251404800 +O(x17)
x8


Verified OK.

3.10.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (2x2 − 64) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2
(
x2−32

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+ 2

(
x2−32

)
y

x2 = 0
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� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 2

(
x2−32

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −64

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (2x2 − 64) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions
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a0(8 + r) (−8 + r)xr + a1(9 + r) (−7 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 8) (k + r − 8) + 2ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(8 + r) (−8 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−8, 8}

• Each term must be 0
a1(9 + r) (−7 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 8) (k + r − 8) + 2ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 10 + r) (k − 6 + r) + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 2ak

(k+10+r)(k−6+r)

• Recursion relation for r = −8
ak+2 = − 2ak

(k+2)(k−14)

• Series not valid for r = −8 , division by 0 in the recursion relation at k = 14
ak+2 = − 2ak

(k+2)(k−14)

• Recursion relation for r = 8
ak+2 = − 2ak

(k+18)(k+2)

• Solution for r = 8[
y =

∞∑
k=0

akx
k+8, ak+2 = − 2ak

(k+18)(k+2) , a1 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(2*x^2-64)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

8
(
1− 1

18x
2 + 1

720x
4 +O

(
x6))

+ c2(−27360196043587190784000000− 1954299717399085056000000x2 − 81429154891628544000000x4 +O(x6))
x8

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 46� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(2*x^2-64)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x12

720 − x10

18 + x8
)
+ c1

(
1
x8 + 1

14x6 + 1
336x4

)
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3.11 problem 13
3.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 820

Internal problem ID [5601]
Internal file name [OUTPUT/4849_Sunday_June_05_2022_03_08_02_PM_69386176/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + 2y′ + 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 2y′ + 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x

q(x) = 4
x
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Table 94: Table p(x), q(x) singularites.

p(x) = 2
x

singularity type
x = 0 “regular”

q(x) = 4
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 2y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+2

(
∞∑
n=0

(n+ r) anxn+r−1

)
+4
(

∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+
(

∞∑
n=0

4anxn+r

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

4anxn+r =
∞∑
n=1

4an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

2(n+r) anxn+r−1

)
+
(

∞∑
n=1

4an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −1

Since a0 6= 0 then the indicial equation becomes

r x−1+r(1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + 2an(n+ r) + 4an−1 = 0

Solving for an from recursive equation (4) gives

an = − 4an−1

n2 + 2nr + r2 + n+ r
(4)

Which for the root r = 0 becomes

an = − 4an−1

n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 4
r2 + 3r + 2

Which for the root r = 0 becomes
a1 = −2

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r2+3r+2 −2

For n = 2, using the above recursive equation gives

a2 =
16

(r + 2)2 (1 + r) (r + 3)

Which for the root r = 0 becomes
a2 =

4
3

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r2+3r+2 −2

a2
16

(r+2)2(1+r)(r+3)
4
3

For n = 3, using the above recursive equation gives

a3 = − 64
(r + 2)2 (1 + r) (r + 3)2 (4 + r)

Which for the root r = 0 becomes
a3 = −4

9
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And the table now becomes

n an,r an

a0 1 1
a1 − 4

r2+3r+2 −2

a2
16

(r+2)2(1+r)(r+3)
4
3

a3 − 64
(r+2)2(1+r)(r+3)2(4+r) −4

9

For n = 4, using the above recursive equation gives

a4 =
256

(r + 2)2 (1 + r) (r + 3)2 (4 + r)2 (5 + r)

Which for the root r = 0 becomes
a4 =

4
45

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r2+3r+2 −2

a2
16

(r+2)2(1+r)(r+3)
4
3

a3 − 64
(r+2)2(1+r)(r+3)2(4+r) −4

9

a4
256

(r+2)2(1+r)(r+3)2(4+r)2(5+r)
4
45

For n = 5, using the above recursive equation gives

a5 = − 1024
(r + 2)2 (1 + r) (r + 3)2 (4 + r)2 (5 + r)2 (r + 6)

Which for the root r = 0 becomes

a5 = − 8
675

And the table now becomes
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n an,r an

a0 1 1
a1 − 4

r2+3r+2 −2

a2
16

(r+2)2(1+r)(r+3)
4
3

a3 − 64
(r+2)2(1+r)(r+3)2(4+r) −4

9

a4
256

(r+2)2(1+r)(r+3)2(4+r)2(5+r)
4
45

a5 − 1024
(r+2)2(1+r)(r+3)2(4+r)2(5+r)2(r+6) − 8

675

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 2x+ 4x2

3 − 4x3

9 + 4x4

45 − 8x5

675 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 4
r2 + 3r + 2

Therefore

lim
r→r2

− 4
r2 + 3r + 2 = lim

r→−1
− 4
r2 + 3r + 2

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ + 2y′ + 4y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+ 2Cy′1(x) ln (x) +

2Cy1(x)
x

+ 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 4Cy1(x) ln (x) + 4

(
∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(y′′1(x)x+ 4y1(x) + 2y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x+ 2y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 4
(

∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ 4y1(x) + 2y′1(x) = 0
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Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ 2y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 4
(

∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 + 2

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x+ 4

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 0 and r2 = −1 then the above becomes(
2
(

∞∑
n=0

xn−1ann

)
x+

(
∞∑
n=0

anx
n

))
C

x

+

(
∞∑
n=0

x−3+nbn(n− 1) (−2 + n)
)
x2 + 2

(
∞∑
n=0

x−2+nbn(n− 1)
)
x+ 4

(
∞∑
n=0

bnx
n−1
)
x

x
= 0

(10)

Which simplifies to

(2A)

(
∞∑
n=0

2C xn−1ann

)
+
(

∞∑
n=0

C xn−1an

)
+
(

∞∑
n=0

x−2+nbn
(
n2 − 3n+ 2

))

+
(

∞∑
n=0

2x−2+nbn(n− 1)
)

+
(

∞∑
n=0

4bnxn−1

)
= 0
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The next step is to make all powers of x be −2 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−2+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn−1ann =
∞∑
n=1

2C(n− 1) an−1x
−2+n

∞∑
n =0

C xn−1an =
∞∑
n=1

Can−1x
−2+n

∞∑
n =0

4bnxn−1 =
∞∑
n=1

4bn−1x
−2+n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to −2 + n.

(2B)

(
∞∑
n=1

2C(n− 1) an−1x
−2+n

)
+
(

∞∑
n=1

Can−1x
−2+n

)

+
(

∞∑
n=0

x−2+nbn
(
n2 − 3n+ 2

))

+
(

∞∑
n=0

2x−2+nbn(n− 1)
)

+
(

∞∑
n=1

4bn−1x
−2+n

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 4 = 0

Which is solved for C. Solving for C gives

C = −4

For n = 2, Eq (2B) gives
3Ca1 + 4b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 + 24 = 0
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Solving the above for b2 gives
b2 = −12

For n = 3, Eq (2B) gives
5Ca2 + 4b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 −
224
3 = 0

Solving the above for b3 gives
b3 =

112
9

For n = 4, Eq (2B) gives
7Ca3 + 4b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 +
560
9 = 0

Solving the above for b4 gives
b4 = −140

27
For n = 5, Eq (2B) gives

9Ca4 + 4b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 −
3232
135 = 0

Solving the above for b5 gives
b5 =

808
675

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −4 and all bn, then the second solution becomes

y2(x) = (−4)
(
1− 2x+ 4x2

3 − 4x3

9 + 4x4

45 − 8x5

675 +O
(
x6)) ln (x)

+
1− 12x2 + 112x3

9 − 140x4

27 + 808x5

675 +O(x6)
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 2x+ 4x2

3 − 4x3

9 + 4x4

45 − 8x5

675 +O
(
x6))

+ c2

(
(−4)

(
1− 2x+ 4x2

3 − 4x3

9 + 4x4

45 − 8x5

675 +O
(
x6)) ln (x)

+
1− 12x2 + 112x3

9 − 140x4

27 + 808x5

675 +O(x6)
x

)

Hence the final solution is

y = yh

= c1

(
1− 2x+ 4x2

3 − 4x3

9 + 4x4

45 − 8x5

675 +O
(
x6))

+ c2

((
−4 + 8x− 16x2

3 + 16x3

9 − 16x4

45 + 32x5

675 − 4O
(
x6)) ln (x)

+
1− 12x2 + 112x3

9 − 140x4

27 + 808x5

675 +O(x6)
x

)

Summary
The solution(s) found are the following

(1)

y = c1

(
1− 2x+ 4x2

3 − 4x3

9 + 4x4

45 − 8x5

675 +O
(
x6))

+ c2

((
−4 + 8x− 16x2

3 + 16x3

9 − 16x4

45 + 32x5

675 − 4O
(
x6)) ln (x)

+
1− 12x2 + 112x3

9 − 140x4

27 + 808x5

675 +O(x6)
x

)
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Verification of solutions

y = c1

(
1− 2x+ 4x2

3 − 4x3

9 + 4x4

45 − 8x5

675 +O
(
x6))

+ c2

((
−4 + 8x− 16x2

3 + 16x3

9 − 16x4

45 + 32x5

675 − 4O
(
x6)) ln (x)

+
1− 12x2 + 112x3

9 − 140x4

27 + 808x5

675 +O(x6)
x

)

Verified OK.

3.11.1 Maple step by step solution

Let’s solve
y′′x+ 2y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −4y

x
− 2y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
+ 4y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 4

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
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y′′x+ 2y′ + 4y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + 2 + r) + 4ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 2 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(k+1+r)(k+2+r)

• Recursion relation for r = −1
ak+1 = − 4ak

k(k+1)

• Solution for r = −1

821



[
y =

∞∑
k=0

akx
k−1, ak+1 = − 4ak

k(k+1)

]
• Recursion relation for r = 0

ak+1 = − 4ak
(k+1)(k+2)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 4ak

(k+1)(k+2)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+1 = − 4ak

k(k+1) , bk+1 = − 4bk
(k+1)(k+2)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 64� �
Order:=6;
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1
(
1− 2x+ 4

3x
2 − 4

9x
3 + 4

45x
4 − 8

675x
5 +O(x6)

)
x+ c2

(
ln (x)

(
(−4)x+ 8x2 − 16

3 x
3 + 16

9 x
4 − 16

45x
5 +O(x6)

)
+
(
1− 12x2 + 112

9 x3 − 140
27 x

4 + 808
675x

5 +O(x6)
))

x
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3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x*y''[x]+2*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
4x4

45 − 4x3

9 + 4x2

3 − 2x+ 1
)

+ c1

(
4
9
(
4x3 − 12x2 + 18x− 9

)
log(x)− 188x4 − 480x3 + 540x2 − 108x− 27

27x

)
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3.12 problem 14
3.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 835

Internal problem ID [5602]
Internal file name [OUTPUT/4850_Sunday_June_05_2022_03_08_05_PM_86311054/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

xy′′ + 3y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 3y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x

q(x) = 1
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Table 96: Table p(x), q(x) singularites.

p(x) = 3
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 3y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+3

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −2

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 3an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 + 2n+ 2r (4)

Which for the root r = 0 becomes

an = − an−2

n (n+ 2) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 6r + 8

Which for the root r = 0 becomes
a2 = −1

8
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+6r+8 −1
8

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+6r+8 −1
8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(4 + r)2 (2 + r) (r + 6)
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Which for the root r = 0 becomes

a4 =
1
192

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+6r+8 −1
8

a3 0 0
a4

1
(4+r)2(2+r)(r+6)

1
192

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+6r+8 −1
8

a3 0 0
a4

1
(4+r)2(2+r)(r+6)

1
192

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

8 + x4

192 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= − 1
r2 + 6r + 8

Therefore

lim
r→r2

− 1
r2 + 6r + 8 = lim

r→−2
− 1
r2 + 6r + 8

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode xy′′ + 3y′ + xy = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+ 3Cy′1(x) ln (x) +

3Cy1(x)
x

+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ x

(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

(
(y1(x)x+ y′′1(x)x+ 3y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x+ 3y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

But since y1(x) is a solution to the ode, then

y1(x)x+ y′′1(x)x+ 3y′1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ 3y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
+ 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ 2

(
∞∑
n=0

anx
n+r1

))
C

x

+
x2
(

∞∑
n=0

bnx
n+r2

)
+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 + 3

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x

x
= 0

Since r1 = 0 and r2 = −2 then the above becomes(
2
(

∞∑
n=0

x−1+nann

)
x+ 2

(
∞∑
n=0

anx
n

))
C

x

+
x2
(

∞∑
n=0

bnx
n−2
)
+
(

∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2 + 3

(
∞∑
n=0

x−3+nbn(n− 2)
)
x

x
= 0
(10)

Which simplifies to

(2A)

(
∞∑
n=0

2C x−1+nann

)
+
(

∞∑
n=0

2C x−1+nan

)
+
(

∞∑
n=0

x−1+nbn

)

+
(

∞∑
n=0

x−3+nbn
(
n2 − 5n+ 6

))
+
(

∞∑
n=0

3x−3+nbn(n− 2)
)

= 0

The next step is to make all powers of x be −3 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−3+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x−1+nann =
∞∑
n=2

2C(n− 2) an−2x
−3+n

∞∑
n =0

2C x−1+nan =
∞∑
n=2

2Can−2x
−3+n

∞∑
n =0

x−1+nbn =
∞∑
n=2

bn−2x
−3+n
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to −3 + n.

(2B)

(
∞∑
n=2

2C(n− 2) an−2x
−3+n

)
+
(

∞∑
n=2

2Can−2x
−3+n

)
+
(

∞∑
n=2

bn−2x
−3+n

)

+
(

∞∑
n=0

x−3+nbn
(
n2 − 5n+ 6

))
+
(

∞∑
n=0

3x−3+nbn(n− 2)
)

= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 = 0

Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 1 = 0

Which is solved for C. Solving for C gives

C = −1
2

For n = 3, Eq (2B) gives
4Ca1 + b1 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
6Ca2 + b2 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8b4 +
3
8 = 0
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Solving the above for b4 gives
b4 = − 3

64
For n = 5, Eq (2B) gives

8Ca3 + b3 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1

2 and all bn, then the second solution becomes

y2(x) = −1
2

(
1− x2

8 + x4

192 +O
(
x6)) ln (x) +

1− 3x4

64 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1−x2

8 + x4

192+O
(
x6))+c2

(
−1
2

(
1−x2

8 + x4

192+O
(
x6)) ln (x)+

1− 3x4

64 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1

(
1− x2

8 + x4

192+O
(
x6))+c2

((
−1
2+

x2

16−
x4

384−
O(x6)
2

)
ln (x)+

1− 3x4

64 +O(x6)
x2

)

Summary
The solution(s) found are the following

(1)
y = c1

(
1− x2

8 + x4

192 +O
(
x6))

+ c2

((
−1
2 + x2

16 − x4

384 − O(x6)
2

)
ln (x) +

1− 3x4

64 +O(x6)
x2

)
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Verification of solutions

y = c1

(
1− x2

8 + x4

192 +O
(
x6))

+ c2

((
−1
2 + x2

16 − x4

384 − O(x6)
2

)
ln (x) +

1− 3x4

64 +O(x6)
x2

)

Verified OK.

3.12.1 Maple step by step solution

Let’s solve
y′′x+ 3y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −3y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x
+ y = 0

• Simplify ODE
x2y′′ + 3xy′ + yx2 = 0

• Make a change of variables
y = u(x)

x

• Compute y′

y′ = −u(x)
x2 + u′(x)

x

• Compute y′′

y′′ = 2u(x)
x3 − 2u′(x)

x2 + u′′(x)
x

• Apply change of variables to the ODE
x2u(x) + u′′(x)x2 + u′(x)x− u(x) = 0

• ODE is now of the Bessel form
• Solution to Bessel ODE

u(x) = c1BesselJ (1, x) + c2BesselY (1, x)
• Make the change from y back to y
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y = c1BesselJ(1,x)+c2BesselY (1,x)
x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 46� �
Order:=6;
dsolve(x*diff(y(x),x$2)+3*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

2(1− 1
8x

2 + 1
192x

4 +O(x6)
)
+ c2

(
ln (x)

(
x2 − 1

8x
4 +O(x6)

)
+
(
−2 + 3

32x
4 +O(x6)

))
x2

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 57� �
AsymptoticDSolveValue[x*y''[x]+3*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4

192 − x2

8 + 1
)
+ c1

(
1
16
(
x2 − 8

)
log(x)− 5x4 − 16x2 − 64

64x2

)
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3.13 problem 15
3.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 848

Internal problem ID [5603]
Internal file name [OUTPUT/4851_Sunday_June_05_2022_03_08_09_PM_12831850/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

xy′′ − y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ − y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1
x

q(x) = 1
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Table 98: Table p(x), q(x) singularites.

p(x) = − 1
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ − y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x−

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− ra0x
−1+r = 0

Or (
x−1+rr(−1 + r)− r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−2 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−2 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 2n− 2r (4)

Which for the root r = 2 becomes

an = − an−2

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r (r + 2)

Which for the root r = 2 becomes
a2 = −1

8
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+2) −1
8

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+2) −1
8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r (r + 2)2 (4 + r)

Which for the root r = 2 becomes

a4 =
1
192
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+2) −1
8

a3 0 0
a4

1
r(r+2)2(4+r)

1
192

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+2) −1
8

a3 0 0
a4

1
r(r+2)2(4+r)

1
192

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− x2

8 + x4

192 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= − 1
r (r + 2)

Therefore

lim
r→r2

− 1
r (r + 2) = lim

r→0
− 1
r (r + 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ − y′ + xy = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x− Cy′1(x) ln (x)−

Cy1(x)
x

−

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ x

(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0
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Which can be written as

(7)

(
(y′′1(x)x+ y1(x)x− y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x− y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
−

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x)x− y′1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x− y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
−

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 2

(
∞∑
n=0

anx
n+r1

))
C

x

+

((
∞∑
n=0

bnx
n+r2

)
+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
))

x2 −
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x

x
= 0

Since r1 = 2 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

x1+nan(n+ 2)
)
x− 2

(
∞∑
n=0

anx
n+2
))

C

x

+

((
∞∑
n=0

bnx
n

)
+
(

∞∑
n=0

xn−2bnn(−1 + n)
))

x2 −
(

∞∑
n=0

x−1+nbnn

)
x

x
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C x1+nan(n+ 2)
)

+
∞∑

n =0

(
−2C x1+nan

)
+
(

∞∑
n=0

x1+nbn

)

+
(

∞∑
n=0

nx−1+nbn(−1 + n)
)

+
∞∑

n =0

(
−x−1+nbnn

)
= 0

The next step is to make all powers of x be −1 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−1+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x1+nan(n+ 2) =
∞∑
n=2

2Can−2nx−1+n

∞∑
n =0

(
−2C x1+nan

)
=

∞∑
n=2

(
−2Can−2x

−1+n
)

∞∑
n =0

x1+nbn =
∞∑
n=2

bn−2x
−1+n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to −1 + n.

(2B)

(
∞∑
n=2

2Can−2nx−1+n

)
+

∞∑
n =2

(
−2Can−2x

−1+n
)
+
(

∞∑
n=2

bn−2x
−1+n

)

+
(

∞∑
n=0

nx−1+nbn(−1 + n)
)

+
∞∑

n =0

(
−x−1+nbnn

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 = 0

Solving the above for b1 gives
b1 = 0
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For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 1 = 0

Which is solved for C. Solving for C gives

C = −1
2

For n = 3, Eq (2B) gives
4Ca1 + b1 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
6Ca2 + b2 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8b4 +
3
8 = 0

Solving the above for b4 gives
b4 = − 3

64
For n = 5, Eq (2B) gives

8Ca3 + b3 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = −1
2 and all bn, then the second solution becomes

y2(x) = −1
2

(
x2
(
1− x2

8 + x4

192 +O
(
x6))) ln (x) + 1− 3x4

64 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− x2

8 + x4

192 +O
(
x6))

+ c2

(
−1
2

(
x2
(
1− x2

8 + x4

192 +O
(
x6))) ln (x) + 1− 3x4

64 +O
(
x6))

Hence the final solution is

y = yh

= c1x
2
(
1− x2

8 + x4

192 +O
(
x6))

+ c2

−
x2
(
1− x2

8 + x4

192 +O(x6)
)
ln (x)

2 + 1− 3x4

64 +O
(
x6)

Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1− x2

8 + x4

192 +O
(
x6))

+ c2

−
x2
(
1− x2

8 + x4

192 +O(x6)
)
ln (x)

2 + 1− 3x4

64 +O
(
x6)

Verification of solutions

y = c1x
2
(
1− x2

8 + x4

192 +O
(
x6))

+ c2

−
x2
(
1− x2

8 + x4

192 +O(x6)
)
ln (x)

2 + 1− 3x4

64 +O
(
x6)

Verified OK.
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3.13.1 Maple step by step solution

Let’s solve
y′′x− y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

x
+ y = 0

• Simplify ODE
x2y′′ − xy′ + yx2 = 0

• Make a change of variables
y = xu(x)

• Compute y′

y′ = u(x) + xu′(x)
• Compute y′′

y′′ = 2u′(x) + xu′′(x)
• Apply change of variables to the ODE

u′′(x)x2 + x2u(x) + xu′(x)− u(x) = 0
• ODE is now of the Bessel form
• Solution to Bessel ODE

u(x) = c1BesselJ (1, x) + c2BesselY (1, x)
• Make the change from y back to y

y = (c1BesselJ (1, x) + c2BesselY (1, x))x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 42� �
Order:=6;
dsolve(x*diff(y(x),x$2)-diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1− 1

8x
2 + 1

192x
4 +O

(
x6))

+ c2

(
ln (x)

(
x2 − 1

8x
4 +O

(
x6))+

(
−2 + 3

32x
4 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 59� �
AsymptoticDSolveValue[x*y''[x]-y'[x]+x*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
16
(
x2 − 8

)
x2 log(x) + 1

64
(
−5x4 + 16x2 + 64

))
+ c2

(
x6

192 − x4

8 + x2
)
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3.14 problem 16
3.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 862

Internal problem ID [5604]
Internal file name [OUTPUT/4852_Sunday_June_05_2022_03_08_12_PM_48301624/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

xy′′ − 5y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ − 5y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −5
x

q(x) = 1
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Table 100: Table p(x), q(x) singularites.

p(x) = − 5
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ − 5y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x− 5

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)

+
∞∑

n =0

(
−5(n+ r) anxn+r−1)+( ∞∑

n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r−1)
)
+

∞∑
n =0

(
−5(n+ r) anxn+r−1)+( ∞∑

n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 5(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 5ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 5r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−6 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−6 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 6
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−6 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x6

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+6

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 5an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 6n− 6r (4)

Which for the root r = 6 becomes

an = − an−2

n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 6 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 − 2r − 8

Which for the root r = 6 becomes

a2 = − 1
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r4 − 20r2 + 64
Which for the root r = 6 becomes

a4 =
1
640

854



And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

a5 0 0

For n = 6, using the above recursive equation gives

a6 = − 1
(r4 − 20r2 + 64) r (r + 6)

Which for the root r = 6 becomes

a6 = − 1
46080

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

a5 0 0
a6 − 1

(r4−20r2+64)r(r+6) − 1
46080

Using the above table, then the solution y1(x) is

y1(x) = x6(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7. . .
)

= x6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= − 1
(r4 − 20r2 + 64) r (r + 6)

Therefore

lim
r→r2

− 1
(r4 − 20r2 + 64) r (r + 6) = lim

r→0
− 1
(r4 − 20r2 + 64) r (r + 6)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ − 5y′ + xy = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x− 5Cy′1(x) ln (x)−

5Cy1(x)
x

− 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ x

(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)x− 5y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x− 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
− 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x)x− 5y′1(x) = 0
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Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x− 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
− 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 6

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 + x2

(
∞∑
n=0

bnx
n+r2

)
− 5
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x

x
= 0

Since r1 = 6 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

x5+nan(n+ 6)
)
x− 6

(
∞∑
n=0

anx
n+6
))

C

x

+

(
∞∑
n=0

xn−2bnn(−1 + n)
)
x2 + x2

(
∞∑
n=0

bnx
n

)
− 5
(

∞∑
n=0

x−1+nbnn

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C x5+nan(n+ 6)
)

+
∞∑

n =0

(
−6C x5+nan

)
+
(

∞∑
n=0

nx−1+nbn(−1 + n)
)

+
(

∞∑
n=0

x1+nbn

)
+

∞∑
n =0

(
−5x−1+nbnn

)
= 0

858



The next step is to make all powers of x be −1 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−1+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x5+nan(n+ 6) =
∞∑
n=6

2Ca−6+nnx−1+n

∞∑
n =0

(
−6C x5+nan

)
=

∞∑
n=6

(
−6Ca−6+nx

−1+n
)

∞∑
n =0

x1+nbn =
∞∑
n=2

bn−2x
−1+n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to −1 + n.

(2B)

(
∞∑
n=6

2Ca−6+nnx−1+n

)
+

∞∑
n =6

(
−6Ca−6+nx

−1+n
)

+
(

∞∑
n=0

nx−1+nbn(−1+n)
)
+
(

∞∑
n=2

bn−2x
−1+n

)
+

∞∑
n =0

(
−5x−1+nbnn

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−5b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
−8b2 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b2 + 1 = 0

Solving the above for b2 gives
b2 =

1
8
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For n = 3, Eq (2B) gives
−9b3 + b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−9b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
−8b4 + b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b4 +
1
8 = 0

Solving the above for b4 gives
b4 =

1
64

For n = 5, Eq (2B) gives
−5b5 + b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b5 = 0

Solving the above for b5 gives
b5 = 0

For n = N , where N = 6 which is the difference between the two roots, we are free to
choose b6 = 0. Hence for n = 6, Eq (2B) gives

6C + 1
64 = 0

Which is solved for C. Solving for C gives

C = − 1
384

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = − 1
384 and all bn, then the second solution becomes

y2(x) = − 1
384

(
x6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))) ln (x) + 1 + x2

8 + x4

64 +O
(
x7)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+c2

(
− 1
384

(
x6
(
1− x2

16+
x4

640−
x6

46080+O
(
x7))) ln (x)+1+ x2

8 + x4

64+O
(
x7))

Hence the final solution is

y = yh

= c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Summary
The solution(s) found are the following

(1)
y = c1x

6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Verification of solutions

y = c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Verified OK.
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3.14.1 Maple step by step solution

Let’s solve
y′′x− 5y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 5y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 5y′

x
+ y = 0

• Simplify ODE
x2y′′ − 5xy′ + yx2 = 0

• Make a change of variables
y = x3u(x)

• Compute y′

y′ = 3x2u(x) + x3u′(x)
• Compute y′′

y′′ = 6xu(x) + 6x2u′(x) + x3u′′(x)
• Apply change of variables to the ODE

x2u(x) + u′′(x)x2 + u′(x)x− 9u(x) = 0
• ODE is now of the Bessel form
• Solution to Bessel ODE

u(x) = c1BesselJ (3, x) + c2BesselY (3, x)
• Make the change from y back to y

y = (c1BesselJ (3, x) + c2BesselY (3, x))x3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*diff(y(x),x$2)-5*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

6
(
1− 1

16x
2 + 1

640x
4 +O

(
x6))+ c2

(
−86400− 10800x2 − 1350x4 +O

(
x6))

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 44� �
AsymptoticDSolveValue[x*y''[x]-5*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

64 + x2

8 + 1
)
+ c2

(
x10

640 − x8

16 + x6
)
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3.15 problem 17
3.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 873

Internal problem ID [5605]
Internal file name [OUTPUT/4853_Sunday_June_05_2022_03_08_15_PM_51195457/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ +
(
x2 − 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x2 − 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = x2 − 2
x2
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Table 102: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = x2−2
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x2 − 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+
(
x2 − 2

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

865



The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 2anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 2a0xr = 0

Or
(xrr(−1 + r)− 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − r − 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 2

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−2 − 2an = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − n− r − 2 (4)

Which for the root r = 2 becomes

an = − an−2

n (n+ 3) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r (r + 3)

Which for the root r = 2 becomes

a2 = − 1
10

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+3) − 1
10

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+3) − 1
10

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r (r + 3) (5 + r) (r + 2)
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Which for the root r = 2 becomes

a4 =
1
280

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+3) − 1
10

a3 0 0
a4

1
r(r+3)(5+r)(r+2)

1
280

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r(r+3) − 1
10

a3 0 0
a4

1
r(r+3)(5+r)(r+2)

1
280

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− x2

10 + x4

280 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→−1

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + bn−2 − 2bn = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2) + bn−2 − 2bn = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−2

n2 + 2nr + r2 − n− r − 2 (5)

Which for the root r = −1 becomes

bn = − bn−2

n2 − 3n (6)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
r (r + 3)

Which for the root r = −1 becomes

b2 =
1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r(r+3)
1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r(r+3)
1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

r (r + 3) (r2 + 7r + 10)
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Which for the root r = −1 becomes

b4 = −1
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r(r+3)
1
2

b3 0 0
b4

1
r(r+3)(5+r)(r+2) −1

8

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r(r+3)
1
2

b3 0 0
b4

1
r(r+3)(5+r)(r+2) −1

8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
=

1 + x2

2 − x4

8 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− x2

10 + x4

280 +O
(
x6))+

c2
(
1 + x2

2 − x4

8 +O(x6)
)

x
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Hence the final solution is

y = yh

= c1x
2
(
1− x2

10 + x4

280 +O
(
x6))+

c2
(
1 + x2

2 − x4

8 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1x
2
(
1− x2

10 + x4

280 +O
(
x6))+

c2
(
1 + x2

2 − x4

8 +O(x6)
)

x

Verification of solutions

y = c1x
2
(
1− x2

10 + x4

280 +O
(
x6))+

c2
(
1 + x2

2 − x4

8 +O(x6)
)

x

Verified OK.

3.15.1 Maple step by step solution

Let’s solve
x2y′′ + (x2 − 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−2

)
y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−2

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = x2−2
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + (x2 − 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr + a1(2 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term must be 0
a1(2 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+3+r)(k+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+2)(k−1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+2)(k−1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+5)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+5)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(k−1) , a1 = 0, bk+2 = − bk
(k+5)(k+2) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �

875



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+(x^2-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1− 1

10x
2 + 1

280x
4 +O

(
x6))+

c2
(
12 + 6x2 − 3

2x
4 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 44� �
AsymptoticDSolveValue[x^2*y''[x]+(x^2-2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x3

8 + x

2 + 1
x

)
+ c2

(
x6

280 − x4

10 + x2
)
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3.16 problem 18
3.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 884

Internal problem ID [5606]
Internal file name [OUTPUT/4854_Sunday_June_05_2022_03_08_17_PM_60331657/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ +
(
16x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ +
(
16x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 16x2 + 1
4x2
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Table 104: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 16x2+1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ +
(
16x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+
(
16x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

16xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

16xn+r+2an =
∞∑
n=2

16an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

16an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

xr(2r − 1)2 = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

xr(2r − 1)2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 16an−2 + an = 0

Solving for an from recursive equation (4) gives

an = − 16an−2

4n2 + 8nr + 4r2 − 4n− 4r + 1 (4)

Which for the root r = 1
2 becomes

an = −4an−2

n2 (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 16
(2r + 3)2

Which for the root r = 1
2 becomes

a2 = −1

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

(2r+3)2 −1

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

(2r+3)2 −1

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
256

(2r + 3)2 (2r + 7)2
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Which for the root r = 1
2 becomes

a4 =
1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

(2r+3)2 −1

a3 0 0
a4

256
(2r+3)2(2r+7)2

1
4

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 16

(2r+3)2 −1

a3 0 0
a4

256
(2r+3)2(2r+7)2

1
4

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
−x2 + 1 + x4

4 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − 16

(2r+3)2 −1 64
(2r+3)3 1

b3 0 0 0 0
b4

256
(2r+3)2(2r+7)2

1
4

−4096r−10240
(2r+3)3(2r+7)3 −3

8

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
−x2 + 1 + x4

4 +O
(
x6)) ln (x) +

√
x

(
x2 − 3x4

8 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
−x2 + 1 + x4

4 +O
(
x6))

+ c2

(√
x

(
−x2 + 1 + x4

4 +O
(
x6)) ln (x) +

√
x

(
x2 − 3x4

8 +O
(
x6)))

Hence the final solution is

y = yh

= c1
√
x

(
−x2 + 1 + x4

4 +O
(
x6))

+ c2

(√
x

(
−x2 + 1 + x4

4 +O
(
x6)) ln (x) +

√
x

(
x2 − 3x4

8 +O
(
x6)))
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Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
−x2 + 1 + x4

4 +O
(
x6))

+ c2

(√
x

(
−x2 + 1 + x4

4 +O
(
x6)) ln (x) +

√
x

(
x2 − 3x4

8 +O
(
x6)))

Verification of solutions

y = c1
√
x

(
−x2 + 1 + x4

4 +O
(
x6))

+ c2

(√
x

(
−x2 + 1 + x4

4 +O
(
x6)) ln (x) +

√
x

(
x2 − 3x4

8 +O
(
x6)))

Verified OK.

3.16.1 Maple step by step solution

Let’s solve
4x2y′′ + (16x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
16x2+1

)
y

4x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
16x2+1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 16x2+1
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4
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◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + (16x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + 16ak−2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

)2
ak + 16ak−2 = 0
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• Shift index using k− >k + 2

4
(
k + 3

2 + r
)2

ak+2 + 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 16ak

(2k+3+2r)2

• Recursion relation for r = 1
2

ak+2 = − 16ak
(2k+4)2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 16ak
(2k+4)2 , a1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+(16*x^2+1)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x

(
(c2 ln (x) + c1)

(
1− x2 + 1

4x
4 +O

(
x6))+

(
x2 − 3

8x
4 +O

(
x6)) c2

)
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 69� �
AsymptoticDSolveValue[4*x^2*y''[x]+(16*x^2+1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
x4

4 − x2 + 1
)
+ c2

(√
x

(
x2 − 3x4

8

)
+
√
x

(
x4

4 − x2 + 1
)
log(x)

)
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3.17 problem 19
3.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 896

Internal problem ID [5607]
Internal file name [OUTPUT/4855_Sunday_June_05_2022_03_08_20_PM_31829690/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + 3y′ + yx3 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 3y′ + yx3 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x

q(x) = x2
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Table 106: Table p(x), q(x) singularites.

p(x) = 3
x

singularity type
x = 0 “regular”

q(x) = x2

singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 3y′ + yx3 = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r−1) anxn+r−2

)
x+3

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
x3 = 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x3+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x3+n+ran =
∞∑
n=4

an−4x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=4

an−4x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −2

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

Substituting n = 3 in Eq. (2B) gives

a3 = 0

For 4 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 3an(n+ r) + an−4 = 0

Solving for an from recursive equation (4) gives

an = − an−4

n2 + 2nr + r2 + 2n+ 2r (4)
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Which for the root r = 0 becomes

an = − an−4

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = − 1
r2 + 10r + 24

Which for the root r = 0 becomes

a4 = − 1
24

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 1

r2+10r+24 − 1
24

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 1

r2+10r+24 − 1
24

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x4

24 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 0

Therefore

lim
r→r2

0 = lim
r→−2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

Substituting n = 2 in Eq(3) gives
b2 = 0

Substituting n = 3 in Eq(3) gives
b3 = 0

For 4 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 3(n+ r) bn + bn−4 = 0

Which for for the root r = −2 becomes

(4A)bn(n− 2) (n− 3) + 3(n− 2) bn + bn−4 = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−4

n2 + 2nr + r2 + 2n+ 2r (5)

Which for the root r = −2 becomes

bn = − bn−4

n2 − 2n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = − 1
r2 + 10r + 24
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Which for the root r = −2 becomes

b4 = −1
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 1

r2+10r+24 −1
8

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 1

r2+10r+24 −1
8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x4

8 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x4

24 +O
(
x6))+

c2
(
1− x4

8 +O(x6)
)

x2
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Hence the final solution is

y = yh

= c1

(
1− x4

24 +O
(
x6))+

c2
(
1− x4

8 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)y = c1

(
1− x4

24 +O
(
x6))+

c2
(
1− x4

8 +O(x6)
)

x2

Verification of solutions

y = c1

(
1− x4

24 +O
(
x6))+

c2
(
1− x4

8 +O(x6)
)

x2

Verified OK.

3.17.1 Maple step by step solution

Let’s solve
y′′x+ 3y′ + yx3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −3y′

x
− yx2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x
+ yx2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = x2]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 3y′ + yx3 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y to series expansion

x3 · y =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y =
∞∑
k=3

ak−3x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−2, 0}
• The coefficients of each power of x must be 0

[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k + r + 3) + ak−3 = 0
• Shift index using k− >k + 3

ak+4(k + 4 + r) (k + 6 + r) + ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = − ak
(k+4+r)(k+6+r)

• Recursion relation for r = −2
ak+4 = − ak

(k+2)(k+4)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+4 = − ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − ak

(k+4)(k+6)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+4 = − ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, ak+4 = − ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0, bk+4 = − bk
(k+4)(k+6) , b1 = 0, b2 = 0, b3 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
Order:=6;
dsolve(x*diff(y(x),x$2)+3*diff(y(x),x)+x^3*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1− 1

24x
4 +O

(
x6))+

c2
(
−2 + 1

4x
4 +O(x6)

)
x2

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 30� �
AsymptoticDSolveValue[x*y''[x]+3*y'[x]+x^3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
1− x4

24

)
+ c1

(
1
x2 − x2

8

)
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3.18 problem 20
3.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 907

Internal problem ID [5608]
Internal file name [OUTPUT/4856_Sunday_June_05_2022_03_08_22_PM_7104875/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ + 9xy′ +
(
x6 − 36

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ + 9xy′ +
(
x6 − 36

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = x6 − 36
9x2

900



Table 108: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = x6−36
9x2

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ + 9xy′ +
(
x6 − 36

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 9x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x6 − 36

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+6an

)
+

∞∑
n =0

(
−36anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+6an =
∞∑
n=6

an−6x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=6

an−6x
n+r

)
+

∞∑
n =0

(
−36anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r)− 36anxn+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 9xra0r − 36a0xr = 0

Or
(9xrr(−1 + r) + 9xrr − 36xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 36

)
xr = 0

Since the above is true for all x then the indicial equation becomes

9r2 − 36 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
9r2 − 36

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0
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Substituting n = 3 in Eq. (2B) gives

a3 = 0

Substituting n = 4 in Eq. (2B) gives

a4 = 0

Substituting n = 5 in Eq. (2B) gives

a5 = 0

For 6 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1) + 9an(n+ r) + an−6 − 36an = 0

Solving for an from recursive equation (4) gives

an = − an−6

9 (n2 + 2nr + r2 − 4) (4)

Which for the root r = 2 becomes

an = − an−6

9n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2(1 +O

(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 0

Therefore

lim
r→r2

0 = lim
r→−2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

Substituting n = 2 in Eq(3) gives
b2 = 0

Substituting n = 3 in Eq(3) gives
b3 = 0

Substituting n = 4 in Eq(3) gives
b4 = 0

Substituting n = 5 in Eq(3) gives
b5 = 0

For 6 ≤ n the recursive equation is

(4)9bn(n+ r) (n+ r − 1) + 9bn(n+ r) + bn−6 − 36bn = 0
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Which for for the root r = −2 becomes

(4A)9bn(n− 2) (n− 3) + 9bn(n− 2) + bn−6 − 36bn = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−6

9 (n2 + 2nr + r2 − 4) (5)

Which for the root r = −2 becomes

bn = − bn−6

9 (n2 − 4n) (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
= 1 +O(x6)

x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2(1 +O

(
x6))+ c2(1 +O(x6))

x2

Hence the final solution is

y = yh

= c1x
2(1 +O

(
x6))+ c2(1 +O(x6))

x2
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Summary
The solution(s) found are the following

(1)y = c1x
2(1 +O

(
x6))+ c2(1 +O(x6))

x2

Verification of solutions

y = c1x
2(1 +O

(
x6))+ c2(1 +O(x6))

x2

Verified OK.

3.18.1 Maple step by step solution

Let’s solve
9x2y′′ + 9xy′ + (x6 − 36) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −y′

x
−

(
x6−36

)
y

9x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
x6−36

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x6−36

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
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9x2y′′ + 9xy′ + (x6 − 36) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..6

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

9a0(2 + r) (−2 + r)xr + 9a1(3 + r) (−1 + r)x1+r + 9a2(4 + r) r x2+r + 9a3(5 + r) (1 + r)x3+r + 9a4(6 + r) (2 + r)x4+r + 9a5(7 + r) (3 + r)x5+r +
(

∞∑
k=6

(9ak(k + r + 2) (k + r − 2) + ak−6)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
9(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• The coefficients of each power of x must be 0
[9a1(3 + r) (−1 + r) = 0, 9a2(4 + r) r = 0, 9a3(5 + r) (1 + r) = 0, 9a4(6 + r) (2 + r) = 0, 9a5(7 + r) (3 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0}

• Each term in the series must be 0, giving the recursion relation
9ak(k + r + 2) (k + r − 2) + ak−6 = 0

• Shift index using k− >k + 6
9ak+6(k + 8 + r) (k + 4 + r) + ak = 0
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• Recursion relation that defines series solution to ODE
ak+6 = − ak

9(k+8+r)(k+4+r)

• Recursion relation for r = −2
ak+6 = − ak

9(k+6)(k+2)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+6 = − ak

9(k+6)(k+2) , a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0
]

• Recursion relation for r = 2
ak+6 = − ak

9(k+10)(k+6)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+6 = − ak

9(k+10)(k+6) , a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+6 = − ak

9(k+6)(k+2) , a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0, bk+6 = − bk
9(k+10)(k+6) , b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 27� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)+9*x*diff(y(x),x)+(x^6-36)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2(1 + O

(
x6))+ c2(−144 + O (x6))

x2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 16� �
AsymptoticDSolveValue[9*x^2*y''[x]+9*x*y'[x]+(x^6-36)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x
2 + c1

x2
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3.19 problem 22(a)
3.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 917

Internal problem ID [5609]
Internal file name [OUTPUT/4857_Sunday_June_05_2022_03_08_24_PM_61357096/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 22(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ − yx2 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (124)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (125)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = yx2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x(xy′ + 2y)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= yx4 + 4xy′ + 2y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′x4 + 8yx3 + 6y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 12y′x3 + x2y
(
x4 + 30

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 2y(0)
F3 = 6y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 =
(

∞∑
n=0

anx
n

)
x2 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =0

(
−xn+2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

(
−xn+2an

)
=

∞∑
n=2

(−an−2x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =2

(−an−2x
n) = 0

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− an−2 = 0
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Solving for an+2, gives

(5)an+2 =
an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 − a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
12

For n = 3 the recurrence equation gives

20a5 − a1 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
20

For n = 4 the recurrence equation gives

30a6 − a2 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

42a7 − a3 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
12a0x

4 + 1
20a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x4

12

)
a0 +

(
x+ 1

20x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x4

12

)
c1 +

(
x+ 1

20x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
y′(0) +O

(
x6)

(2)y =
(
1 + x4

12

)
c1 +

(
x+ 1

20x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + x4

12

)
c1 +

(
x+ 1

20x
5
)
c2 +O

(
x6)

Verified OK.

3.19.1 Maple step by step solution

Let’s solve
y′′ = yx2

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ − yx2 = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3x+ 2a2 +
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = ak

k2+7k+12 , a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)-x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]-x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

20 + x

)
+ c1

(
x4

12 + 1
)
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3.20 problem 22(b)
3.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 926

Internal problem ID [5610]
Internal file name [OUTPUT/4858_Sunday_June_05_2022_03_08_25_PM_75345777/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 22(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y′ − 7yx3 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ − 7yx3 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = −7x2
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Table 111: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = −7x2

singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ − 7yx3 = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r−1) anxn+r−2

)
x+
(

∞∑
n=0

(n+ r) anxn+r−1

)
−7
(

∞∑
n=0

anx
n+r

)
x3 = 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−7x3+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−7x3+n+ran

)
=

∞∑
n=4

(
−7an−4x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r−1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =4

(
−7an−4x

n+r−1)= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

Substituting n = 3 in Eq. (2B) gives

a3 = 0

For 4 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r)− 7an−4 = 0

Solving for an from recursive equation (4) gives

an = 7an−4

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = 7an−4

n2 (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 =
7

(4 + r)2

Which for the root r = 0 becomes
a4 =

7
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4

7
(4+r)2

7
16

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4

7
(4+r)2

7
16

a5 0 0
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + 7x4

16 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 0 0 0 0
b3 0 0 0 0
b4

7
(4+r)2

7
16 − 14

(4+r)3 − 7
32

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1 + 7x4

16 +O
(
x6)) ln (x)− 7x4

32 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + 7x4

16 +O
(
x6))+ c2

((
1 + 7x4

16 +O
(
x6)) ln (x)− 7x4

32 +O
(
x6))
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Hence the final solution is

y = yh

= c1

(
1 + 7x4

16 +O
(
x6))+ c2

((
1 + 7x4

16 +O
(
x6)) ln (x)− 7x4

32 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1

(
1 + 7x4

16 +O
(
x6))+ c2

((
1 + 7x4

16 +O
(
x6)) ln (x)− 7x4

32 +O
(
x6))

Verification of solutions

y = c1

(
1 + 7x4

16 +O
(
x6))+ c2

((
1 + 7x4

16 +O
(
x6)) ln (x)− 7x4

32 +O
(
x6))

Verified OK.

3.20.1 Maple step by step solution

Let’s solve
y′′x+ y′ − 7yx3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
+ 7yx2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− 7yx2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = −7x2]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ − 7yx3 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y to series expansion

x3 · y =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y =
∞∑
k=3

ak−3x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr + a2(2 + r)2 x1+r + a3(3 + r)2 x2+r +

(
∞∑
k=3

(
ak+1(k + 1 + r)2 − 7ak−3

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• The coefficients of each power of x must be 0[

a1(1 + r)2 = 0, a2(2 + r)2 = 0, a3(3 + r)2 = 0
]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − 7ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4)2 − 7ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = 7ak

(k+4)2

• Recursion relation for r = 0
ak+4 = 7ak

(k+4)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+4 = 7ak

(k+4)2 , a1 = 0, a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)-7*x^3*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1 + 7

16x
4 +O

(
x6))+

(
− 7
32x

4 +O
(
x6)) c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 39� �
AsymptoticDSolveValue[x*y''[x]+y'[x]-7*x^3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
7x4

16 + 1
)
+ c2

((
7x4

16 + 1
)
log(x)− 7x4

32

)
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3.21 problem 23
3.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 937

Internal problem ID [5611]
Internal file name [OUTPUT/4859_Sunday_June_05_2022_03_08_27_PM_30922448/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_linear_constant_co-
eff", "second_order_ode_can_be_made_integrable", "second order series
method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (128)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (129)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −y′(0)
F2 = y(0)
F3 = y′(0)
F4 = −y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

anx
n

)
= 0

For 0 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an = 0
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Solving for an+2, gives

(5)an+2 = − an
(n+ 2) (n+ 1)

For n = 0 the recurrence equation gives

2a2 + a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a0
2

For n = 1 the recurrence equation gives

6a3 + a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
6

For n = 2 the recurrence equation gives

12a4 + a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
24

For n = 3 the recurrence equation gives

20a5 + a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
120

For n = 4 the recurrence equation gives

30a6 + a4 = 0
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Which after substituting the earlier terms found becomes

a6 = − a0
720

For n = 5 the recurrence equation gives

42a7 + a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a1
5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
6a1x

3 + 1
24a0x

4 + 1
120a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

24x
4
)
a0 +

(
x− 1

6x
3 + 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)
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Figure 1: Slope field plot

Verification of solutions

y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)

Verified OK.

3.21.1 Maple step by step solution

Let’s solve
y′′ = −y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y = 0
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• Characteristic polynomial of ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the ODE
y1(x) = cos (x)

• 2nd solution of the ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = cos (x) c1 + c2 sin (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 + 1

24x
4
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

120 − x3

6 + x

)
+ c1

(
x4

24 − x2

2 + 1
)
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3.22 problem 24
3.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 949

Internal problem ID [5612]
Internal file name [OUTPUT/4860_Sunday_June_05_2022_03_08_27_PM_20093763/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + 4xy′ + y
(
x2 + 2

)
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + 4xy′ + y
(
x2 + 2

)
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4
x

q(x) = x2 + 2
x2

940



Table 114: Table p(x), q(x) singularites.

p(x) = 4
x

singularity type
x = 0 “regular”

q(x) = x2+2
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + 4xy′ + y
(
x2 + 2

)
= 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 4x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)(
x2 + 2

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r) + 2anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 4xra0r + 2a0xr = 0

Or
(xrr(−1 + r) + 4xrr + 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 3r + 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 3r + 2 = 0
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Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 + 3r + 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =

∞∑
n=0

anx
n

x

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 4an(n+ r) + an−2 + 2an = 0
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Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 + 3n+ 3r + 2 (4)

Which for the root r = −1 becomes

an = − an−2

n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 7r + 12

Which for the root r = −1 becomes

a2 = −1
6

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+7r+12 −1
6

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+7r+12 −1
6

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
1

(4 + r) (r + 3) (r + 6) (5 + r)

Which for the root r = −1 becomes

a4 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+7r+12 −1
6

a3 0 0
a4

1
(4+r)(r+3)(r+6)(5+r)

1
120

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+7r+12 −1
6

a3 0 0
a4

1
(4+r)(r+3)(r+6)(5+r)

1
120

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− x2

6 + x4

120 +O(x6)
x
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→−2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 4bn(n+ r) + bn−2 + 2bn = 0

Which for for the root r = −2 becomes

(4A)bn(n− 2) (n− 3) + 4bn(n− 2) + bn−2 + 2bn = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−2

n2 + 2nr + r2 + 3n+ 3r + 2 (5)
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Which for the root r = −2 becomes

bn = − bn−2

n2 − n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
r2 + 7r + 12

Which for the root r = −2 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+7r+12 −1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+7r+12 −1
2

b3 0 0
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For n = 4, using the above recursive equation gives

b4 =
1

(r2 + 7r + 12) (r2 + 11r + 30)

Which for the root r = −2 becomes

b4 =
1
24

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+7r+12 −1
2

b3 0 0
b4

1
(4+r)(r+3)(r+6)(5+r)

1
24

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+7r+12 −1
2

b3 0 0
b4

1
(4+r)(r+3)(r+6)(5+r)

1
24

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
1
x

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

2 + x4

24 +O(x6)
x2
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x2

6 + x4

120 +O(x6)
)

x
+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x2

Hence the final solution is

y = yh

=
c1
(
1− x2

6 + x4

120 +O(x6)
)

x
+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)y =
c1
(
1− x2

6 + x4

120 +O(x6)
)

x
+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x2

Verification of solutions

y =
c1
(
1− x2

6 + x4

120 +O(x6)
)

x
+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x2

Verified OK.

3.22.1 Maple step by step solution

Let’s solve
x2y′′ + 4xy′ + y(x2 + 2) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+2

)
y

x2 − 4y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 4y′
x
+

(
x2+2

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
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◦ Define functions[
P2(x) = 4

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + 4xy′ + y(x2 + 2) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + ak−2)xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+4+r)(k+3+r)

• Recursion relation for r = −2
ak+2 = − ak

(k+2)(k+1)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1
ak+2 = − ak

(k+3)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = − ak

(k+2)(k+1) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(x^2+2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x
(
1− 1

6x
2 + 1

120x
4 +O(x6)

)
+ c2

(
1− 1

2x
2 + 1

24x
4 +O(x6)

)
x2

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 40� �
AsymptoticDSolveValue[x^2*y''[x]+4*x*y'[x]+(x^2+2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x3

120 − x

6 + 1
x

)
+ c1

(
x2

24 + 1
x2 − 1

2

)
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3.23 problem 25
3.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 961

Internal problem ID [5613]
Internal file name [OUTPUT/4861_Sunday_June_05_2022_03_08_30_PM_93011495/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

16x2y′′ + 32xy′ +
(
x4 − 12

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

16x2y′′ + 32xy′ +
(
x4 − 12

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x

q(x) = x4 − 12
16x2
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Table 116: Table p(x), q(x) singularites.

p(x) = 2
x

singularity type
x = 0 “regular”

q(x) = x4−12
16x2

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

16x2y′′ + 32xy′ +
(
x4 − 12

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
16x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 32x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x4 − 12

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

32xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+4an

)
+

∞∑
n =0

(
−12anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+4an =
∞∑
n=4

an−4x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

32xn+ran(n+ r)
)

+
(

∞∑
n=4

an−4x
n+r

)
+

∞∑
n =0

(
−12anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

16xn+ran(n+ r) (n+ r − 1) + 32xn+ran(n+ r)− 12anxn+r = 0

When n = 0 the above becomes

16xra0r(−1 + r) + 32xra0r − 12a0xr = 0

Or
(16xrr(−1 + r) + 32xrr − 12xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
16r2 + 16r − 12

)
xr = 0

Since the above is true for all x then the indicial equation becomes

16r2 + 16r − 12 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −3
2

Since a0 6= 0 then the indicial equation becomes(
16r2 + 16r − 12

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
3
2

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 3

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0
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Substituting n = 3 in Eq. (2B) gives

a3 = 0

For 4 ≤ n the recursive equation is

(3)16an(n+ r) (n+ r − 1) + 32an(n+ r) + an−4 − 12an = 0

Solving for an from recursive equation (4) gives

an = − an−4

4 (4n2 + 8nr + 4r2 + 4n+ 4r − 3) (4)

Which for the root r = 1
2 becomes

an = − an−4

16n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = − 1
16r2 + 144r + 308

Which for the root r = 1
2 becomes

a4 = − 1
384

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 1

16r2+144r+308 − 1
384
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 1

16r2+144r+308 − 1
384

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x4

384 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 0

Therefore

lim
r→r2

0 = lim
r→− 3

2

0

= 0
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The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 3

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

Substituting n = 2 in Eq(3) gives
b2 = 0

Substituting n = 3 in Eq(3) gives
b3 = 0

For 4 ≤ n the recursive equation is

(4)16bn(n+ r) (n+ r − 1) + 32bn(n+ r) + bn−4 − 12bn = 0

Which for for the root r = −3
2 becomes

(4A)16bn
(
n− 3

2

)(
n− 5

2

)
+ 32bn

(
n− 3

2

)
+ bn−4 − 12bn = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−4

4 (4n2 + 8nr + 4r2 + 4n+ 4r − 3) (5)

Which for the root r = −3
2 becomes

bn = − bn−4

4 (4n2 − 8n) (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3

2 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = − 1
4 (4r2 + 36r + 77)

Which for the root r = −3
2 becomes

b4 = − 1
128

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 1

16r2+144r+308 − 1
128

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 1

16r2+144r+308 − 1
128

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x4

128 +O(x6)
x

3
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x4

384 +O
(
x6))+

c2
(
1− x4

128 +O(x6)
)

x
3
2

Hence the final solution is

y = yh

= c1
√
x

(
1− x4

384 +O
(
x6))+

c2
(
1− x4

128 +O(x6)
)

x
3
2

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− x4

384 +O
(
x6))+

c2
(
1− x4

128 +O(x6)
)

x
3
2

Verification of solutions

y = c1
√
x

(
1− x4

384 +O
(
x6))+

c2
(
1− x4

128 +O(x6)
)

x
3
2

Verified OK.

3.23.1 Maple step by step solution

Let’s solve
16x2y′′ + 32xy′ + (x4 − 12) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −2y′
x
−

(
x4−12

)
y

16x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2y′
x
+

(
x4−12

)
y

16x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = x4−12

16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
16x2y′′ + 32xy′ + (x4 − 12) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..4

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion
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x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

4a0(3 + 2r) (−1 + 2r)xr + 4a1(5 + 2r) (1 + 2r)x1+r + 4a2(7 + 2r) (3 + 2r)x2+r + 4a3(9 + 2r) (5 + 2r)x3+r +
(

∞∑
k=4

(4ak(2k + 2r + 3) (2k + 2r − 1) + ak−4)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4(3 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3

2 ,
1
2

}
• The coefficients of each power of x must be 0

[4a1(5 + 2r) (1 + 2r) = 0, 4a2(7 + 2r) (3 + 2r) = 0, 4a3(9 + 2r) (5 + 2r) = 0]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

16
(
k + r + 3

2

) (
k + r − 1

2

)
ak + ak−4 = 0

• Shift index using k− >k + 4
16
(
k + 11

2 + r
) (

k + 7
2 + r

)
ak+4 + ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − ak

4(2k+11+2r)(2k+7+2r)

• Recursion relation for r = −3
2

ak+4 = − ak
4(2k+8)(2k+4)

• Solution for r = −3
2[

y =
∞∑
k=0

akx
k− 3

2 , ak+4 = − ak
4(2k+8)(2k+4) , a1 = 0, a2 = 0, a3 = 0

]
• Recursion relation for r = 1

2

ak+4 = − ak
4(2k+12)(2k+8)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+4 = − ak
4(2k+12)(2k+8) , a1 = 0, a2 = 0, a3 = 0

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k− 3

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+4 = − ak

4(2k+8)(2k+4) , a1 = 0, a2 = 0, a3 = 0, bk+4 = − bk
4(2k+12)(2k+8) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 31� �
Order:=6;
dsolve(16*x^2*diff(y(x),x$2)+32*x*diff(y(x),x)+(x^4-12)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x

2(1− 1
384x

4 +O(x6)
)
+ c2

(
−2 + 1

64x
4 +O(x6)

)
x

3
2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 40� �
AsymptoticDSolveValue[16*x^2*y''[x]+32*x*y'[x]+(x^4-12)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1

x3/2 − x5/2

128

)
+ c2

(√
x− x9/2

384

)
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3.24 problem 26
3.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 973

Internal problem ID [5614]
Internal file name [OUTPUT/4862_Sunday_June_05_2022_03_08_32_PM_1535898/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page
250
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ − 4xy′ +
(
16x4 + 3

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ − 4xy′ +
(
16x4 + 3

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1
x

q(x) = 16x4 + 3
4x2
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Table 118: Table p(x), q(x) singularites.

p(x) = − 1
x

singularity type
x = 0 “regular”

q(x) = 16x4+3
4x2

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ − 4xy′ +
(
16x4 + 3

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

− 4x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
16x4 + 3

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

16xn+r+4an

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

16xn+r+4an =
∞∑
n=4

16an−4x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=4

16an−4x
n+r

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r) + 3anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r)− 4xra0r + 3a0xr = 0

Or
(4xrr(−1 + r)− 4xrr + 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 8r + 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 8r + 3 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 8r + 3

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x
3
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
√
x

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+ 1

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0
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Substituting n = 3 in Eq. (2B) gives

a3 = 0

For 4 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1)− 4an(n+ r) + 16an−4 + 3an = 0

Solving for an from recursive equation (4) gives

an = − 16an−4

4n2 + 8nr + 4r2 − 8n− 8r + 3 (4)

Which for the root r = 3
2 becomes

an = − 4an−4

n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = − 16
4r2 + 24r + 35

Which for the root r = 3
2 becomes

a4 = −1
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 16

4r2+24r+35 −1
5
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 16

4r2+24r+35 −1
5

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1− x4

5 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→ 1

2

0

= 0
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The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n+ 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

Substituting n = 2 in Eq(3) gives
b2 = 0

Substituting n = 3 in Eq(3) gives
b3 = 0

For 4 ≤ n the recursive equation is

(4)4bn(n+ r) (n+ r − 1)− 4bn(n+ r) + 16bn−4 + 3bn = 0

Which for for the root r = 1
2 becomes

(4A)4bn
(
n+ 1

2

)(
n− 1

2

)
− 4bn

(
n+ 1

2

)
+ 16bn−4 + 3bn = 0

Solving for bn from the recursive equation (4) gives

bn = − 16bn−4

4n2 + 8nr + 4r2 − 8n− 8r + 3 (5)

Which for the root r = 1
2 becomes

bn = − 16bn−4

4n2 − 4n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = − 16
4r2 + 24r + 35

Which for the root r = 1
2 becomes

b4 = −1
3

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 16

4r2+24r+35 −1
3

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 16

4r2+24r+35 −1
3

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) = x
3
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x

(
1− x4

3 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1− x4

5 +O
(
x6))+ c2

√
x

(
1− x4

3 +O
(
x6))

Hence the final solution is

y = yh

= c1x
3
2

(
1− x4

5 +O
(
x6))+ c2

√
x

(
1− x4

3 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
3
2

(
1− x4

5 +O
(
x6))+ c2

√
x

(
1− x4

3 +O
(
x6))

Verification of solutions

y = c1x
3
2

(
1− x4

5 +O
(
x6))+ c2

√
x

(
1− x4

3 +O
(
x6))

Verified OK.

3.24.1 Maple step by step solution

Let’s solve
4x2y′′ − 4xy′ + (16x4 + 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y′

x
−

(
16x4+3

)
y

4x2
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − y′

x
+

(
16x4+3

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
x
, P3(x) = 16x4+3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ − 4xy′ + (16x4 + 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..4

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r
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Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r + a2(3 + 2r) (1 + 2r)x2+r + a3(5 + 2r) (3 + 2r)x3+r +
(

∞∑
k=4

(ak(2k + 2r − 1) (2k + 2r − 3) + 16ak−4)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• The coefficients of each power of x must be 0

[a1(1 + 2r) (−1 + 2r) = 0, a2(3 + 2r) (1 + 2r) = 0, a3(5 + 2r) (3 + 2r) = 0]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
k + r − 3

2

)
ak + 16ak−4 = 0

• Shift index using k− >k + 4
4
(
k + 7

2 + r
) (

k + 5
2 + r

)
ak+4 + 16ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 16ak

(2k+7+2r)(2k+5+2r)

• Recursion relation for r = 1
2

ak+4 = − 16ak
(2k+8)(2k+6)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+4 = − 16ak
(2k+8)(2k+6) , a1 = 0, a2 = 0, a3 = 0

]
• Recursion relation for r = 3

2

ak+4 = − 16ak
(2k+10)(2k+8)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+4 = − 16ak
(2k+10)(2k+8) , a1 = 0, a2 = 0, a3 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+4 = − 16ak

(2k+8)(2k+6) , a1 = 0, a2 = 0, a3 = 0, bk+4 = − 16bk
(2k+10)(2k+8) , b1 = 0, b2 = 0, b3 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(16*x^4+3)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x

(
x

(
1− 1

5x
4 +O

(
x6)) c1 +

(
1− 1

3x
4 +O

(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 40� �
AsymptoticDSolveValue[4*x^2*y''[x]-4*x*y'[x]+(16*x^4+3)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(√
x− x9/2

3

)
+ c2

(
x3/2 − x11/2

5

)
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4 Chapter 6. SERIES SOLUTIONS OF LINEAR
EQUATIONS. Chapter 6 review exercises. page
253

4.1 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
4.2 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991
4.3 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000
4.4 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009
4.5 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
4.6 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
4.7 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
4.8 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053
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4.1 problem 9
4.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 988

Internal problem ID [5615]
Internal file name [OUTPUT/4863_Sunday_June_05_2022_03_08_35_PM_845170/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

2xy′′ + y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2xy′′ + y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
2x

q(x) = 1
2x
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Table 120: Table p(x), q(x) singularites.

p(x) = 1
2x

singularity type
x = 0 “regular”

q(x) = 1
2x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2xy′′ + y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(2A)

979



The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
2x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−1 + 2r) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−1 + 2r) = 0

980



Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + an(n+ r) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

2n2 + 4nr + 2r2 − n− r
(4)

Which for the root r = 1
2 becomes

an = − an−1

2n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
2r2 + 3r + 1
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Which for the root r = 1
2 becomes

a1 = −1
3

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+3r+1 −1
3

For n = 2, using the above recursive equation gives

a2 =
1

4r4 + 20r3 + 35r2 + 25r + 6
Which for the root r = 1

2 becomes
a2 =

1
30

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+3r+1 −1
3

a2
1

4r4+20r3+35r2+25r+6
1
30

For n = 3, using the above recursive equation gives

a3 = − 1
8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90

Which for the root r = 1
2 becomes

a3 = − 1
630

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+3r+1 −1
3

a2
1

4r4+20r3+35r2+25r+6
1
30

a3 − 1
8r6+84r5+350r4+735r3+812r2+441r+90 − 1

630
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For n = 4, using the above recursive equation gives

a4 =
1

16r8 + 288r7 + 2184r6 + 9072r5 + 22449r4 + 33642r3 + 29531r2 + 13698r + 2520

Which for the root r = 1
2 becomes

a4 =
1

22680

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+3r+1 −1
3

a2
1

4r4+20r3+35r2+25r+6
1
30

a3 − 1
8r6+84r5+350r4+735r3+812r2+441r+90 − 1

630

a4
1

16r8+288r7+2184r6+9072r5+22449r4+33642r3+29531r2+13698r+2520
1

22680

For n = 5, using the above recursive equation gives

a5 = − 1
32r10 + 880r9 + 10560r8 + 72600r7 + 315546r6 + 902055r5 + 1708465r4 + 2102375r3 + 1594197r2 + 664290r + 113400

Which for the root r = 1
2 becomes

a5 = − 1
1247400

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+3r+1 −1
3

a2
1

4r4+20r3+35r2+25r+6
1
30

a3 − 1
8r6+84r5+350r4+735r3+812r2+441r+90 − 1

630

a4
1

16r8+288r7+2184r6+9072r5+22449r4+33642r3+29531r2+13698r+2520
1

22680

a5 − 1
32r10+880r9+10560r8+72600r7+315546r6+902055r5+1708465r4+2102375r3+1594197r2+664290r+113400 − 1

1247400
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x

3 + x2

30 − x3

630 + x4

22680 − x5

1247400 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1) + (n+ r) bn + bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1

2n2 + 4nr + 2r2 − n− r
(4)

Which for the root r = 0 becomes

bn = − bn−1

n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 1
2r2 + 3r + 1

Which for the root r = 0 becomes
b1 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+3r+1 −1
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For n = 2, using the above recursive equation gives

b2 =
1

4r4 + 20r3 + 35r2 + 25r + 6

Which for the root r = 0 becomes
b2 =

1
6

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+3r+1 −1

b2
1

4r4+20r3+35r2+25r+6
1
6

For n = 3, using the above recursive equation gives

b3 = − 1
8r6 + 84r5 + 350r4 + 735r3 + 812r2 + 441r + 90

Which for the root r = 0 becomes

b3 = − 1
90

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+3r+1 −1

b2
1

4r4+20r3+35r2+25r+6
1
6

b3 − 1
8r6+84r5+350r4+735r3+812r2+441r+90 − 1

90

For n = 4, using the above recursive equation gives

b4 =
1

16r8 + 288r7 + 2184r6 + 9072r5 + 22449r4 + 33642r3 + 29531r2 + 13698r + 2520

Which for the root r = 0 becomes

b4 =
1

2520
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And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+3r+1 −1

b2
1

4r4+20r3+35r2+25r+6
1
6

b3 − 1
8r6+84r5+350r4+735r3+812r2+441r+90 − 1

90

b4
1

16r8+288r7+2184r6+9072r5+22449r4+33642r3+29531r2+13698r+2520
1

2520

For n = 5, using the above recursive equation gives

b5 = − 1
32r10 + 880r9 + 10560r8 + 72600r7 + 315546r6 + 902055r5 + 1708465r4 + 2102375r3 + 1594197r2 + 664290r + 113400

Which for the root r = 0 becomes

b5 = − 1
113400

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+3r+1 −1

b2
1

4r4+20r3+35r2+25r+6
1
6

b3 − 1
8r6+84r5+350r4+735r3+812r2+441r+90 − 1

90

b4
1

16r8+288r7+2184r6+9072r5+22449r4+33642r3+29531r2+13698r+2520
1

2520

b5 − 1
32r10+880r9+10560r8+72600r7+315546r6+902055r5+1708465r4+2102375r3+1594197r2+664290r+113400 − 1

113400

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x+ x2

6 − x3

90 + x4

2520 − x5

113400 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x

3 + x2

30 − x3

630 + x4

22680 − x5

1247400 +O
(
x6))

+ c2

(
1− x+ x2

6 − x3

90 + x4

2520 − x5

113400 +O
(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1− x

3 + x2

30 − x3

630 + x4

22680 − x5

1247400 +O
(
x6))

+ c2

(
1− x+ x2

6 − x3

90 + x4

2520 − x5

113400 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− x

3 + x2

30 − x3

630 + x4

22680 − x5

1247400 +O
(
x6))

+ c2

(
1− x+ x2

6 − x3

90 + x4

2520 − x5

113400 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1− x

3 + x2

30 − x3

630 + x4

22680 − x5

1247400 +O
(
x6))

+ c2

(
1− x+ x2

6 − x3

90 + x4

2520 − x5

113400 +O
(
x6))

Verified OK.
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4.1.1 Maple step by step solution

Let’s solve
2y′′x+ y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

2x − y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

2x + y
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
2x , P3(x) = 1

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x+ y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 1 + 2r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(2k+1+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = − ak

(2k+1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(2k+1)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = − ak
(2k+2)

(
k+ 3

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
(2k+2)

(
k+ 3

2
)
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − ak

(2k+1)(k+1) , bk+1 = − bk
(2k+2)

(
k+ 3

2
)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
Order:=6;
dsolve(2*x*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1− 1

3x+ 1
30x

2 − 1
630x

3 + 1
22680x

4 − 1
1247400x

5 +O
(
x6))

+ c2

(
1− x+ 1

6x
2 − 1

90x
3 + 1

2520x
4 − 1

113400x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 83� �
AsymptoticDSolveValue[2*x*y''[x]+y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
− x5

1247400 + x4

22680 − x3

630 + x2

30 − x

3 + 1
)

+ c2

(
− x5

113400 + x4

2520 − x3

90 + x2

6 − x+ 1
)
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4.2 problem 10
4.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 998

Internal problem ID [5616]
Internal file name [OUTPUT/4864_Sunday_June_05_2022_03_08_37_PM_40457729/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′ − xy′ − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (135)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (136)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = xy′ + y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x2y′ + xy + 2y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
x3 + 5x

)
y′ + y

(
x2 + 3

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x4 + 9x2 + 8

)
y′ + yx

(
x2 + 7

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
x5 + 14x3 + 33x

)
y′ + y

(
x4 + 12x2 + 15

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)
F1 = 2y′(0)
F2 = 3y(0)
F3 = 8y′(0)
F4 = 15y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

2x
2 + 1

8x
4 + 1

48x
6
)
y(0) +

(
x+ 1

3x
3 + 1

15x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = x

(
∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−nxnan) +
∞∑

n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−nxnan) +
∞∑

n =0

(−anx
n) = 0

n = 0 gives
2a2 − a0 = 0

a2 =
a0
2
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− nan − an = 0

Solving for an+2, gives

(5)an+2 =
an

n+ 2

For n = 1 the recurrence equation gives

6a3 − 2a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
3

For n = 2 the recurrence equation gives

12a4 − 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
8

For n = 3 the recurrence equation gives

20a5 − 4a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
15

For n = 4 the recurrence equation gives

30a6 − 5a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
48
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For n = 5 the recurrence equation gives

42a7 − 6a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
105

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
2a0x

2 + 1
3a1x

3 + 1
8a0x

4 + 1
15a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

2x
2 + 1

8x
4
)
a0 +

(
x+ 1

3x
3 + 1

15x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

2x
2 + 1

8x
4
)
c1 +

(
x+ 1

3x
3 + 1

15x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 1

2x
2 + 1

8x
4 + 1

48x
6
)
y(0) +

(
x+ 1

3x
3 + 1

15x
5
)
y′(0) +O

(
x6)

(2)y =
(
1 + 1

2x
2 + 1

8x
4
)
c1 +

(
x+ 1

3x
3 + 1

15x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

2x
2 + 1

8x
4 + 1

48x
6
)
y(0) +

(
x+ 1

3x
3 + 1

15x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

2x
2 + 1

8x
4
)
c1 +

(
x+ 1

3x
3 + 1

15x
5
)
c2 +O

(
x6)

Verified OK.
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4.2.1 Maple step by step solution

Let’s solve
y′′ = xy′ + y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k + 1))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (ak+2(k + 2)− ak) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = ak

k+2

]

998



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)-x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 + 1

8x
4
)
y(0) +

(
x+ 1

3x
3 + 1

15x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]-x*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

15 + x3

3 + x

)
+ c1

(
x4

8 + x2

2 + 1
)
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4.3 problem 11
Internal problem ID [5617]
Internal file name [OUTPUT/4865_Sunday_June_05_2022_03_08_39_PM_72663456/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(x− 1) y′′ + 3y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (138)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (139)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 3y
x− 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−3x+ 3) y′ + 3y
(x− 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (6x− 6) y′ + (9x− 15) y
(x− 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (9x2 − 36x+ 27) y′ + (−36x+ 54) y
(x− 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−54x2 + 180x− 126) y′ − 27y

(
x2 − 8x+ 29

3

)
(x− 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 3y(0)
F1 = 3y(0) + 3y′(0)
F2 = 15y(0) + 6y′(0)
F3 = 54y(0) + 27y′(0)
F4 = 261y(0) + 126y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 3

2x
2 + 1

2x
3 + 5

8x
4 + 9

20x
5 + 29

80x
6
)
y(0)

+
(
x+ 1

2x
3 + 1

4x
4 + 9

40x
5 + 7

40x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x− 1) y′′ + 3y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x− 1)
(

∞∑
n=2

n(n− 1) anxn−2

)
+ 3
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

nxn−1an(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) anxn−2)+( ∞∑

n=0

3anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

(
−n(n− 1) anxn−2) = ∞∑

n=0

(−(n+ 2) an+2(n+ 1)xn)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=1

(n+ 1) an+1nxn

)
+

∞∑
n =0

(−(n+ 2) an+2(n+ 1)xn) +
(

∞∑
n=0

3anxn

)
= 0

n = 0 gives
−2a2 + 3a0 = 0

a2 =
3a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n− (n+ 2) an+2(n+ 1) + 3an = 0

Solving for an+2, gives

(5)

an+2 =
n2an+1 + nan+1 + 3an

(n+ 2) (n+ 1)

= 3an
(n+ 2) (n+ 1) +

(n2 + n) an+1

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2a2 − 6a3 + 3a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
2 + a1

2

For n = 2 the recurrence equation gives

6a3 − 12a4 + 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
8 + a1

4

1005



For n = 3 the recurrence equation gives

12a4 − 20a5 + 3a3 = 0

Which after substituting the earlier terms found becomes

a5 =
9a0
20 + 9a1

40

For n = 4 the recurrence equation gives

20a5 − 30a6 + 3a4 = 0

Which after substituting the earlier terms found becomes

a6 =
29a0
80 + 7a1

40

For n = 5 the recurrence equation gives

30a6 − 42a7 + 3a5 = 0

Which after substituting the earlier terms found becomes

a7 =
163a0
560 + 79a1

560

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 3a0x2

2 +
(a0
2 + a1

2

)
x3 +

(
5a0
8 + a1

4

)
x4 +

(
9a0
20 + 9a1

40

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 3

2x
2 + 1

2x
3 + 5

8x
4 + 9

20x
5
)
a0 +

(
x+ 1

2x
3 + 1

4x
4 + 9

40x
5
)
a1 +O

(
x6)
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At x = 0 the solution above becomes

y =
(
1 + 3

2x
2 + 1

2x
3 + 5

8x
4 + 9

20x
5
)
c1 +

(
x+ 1

2x
3 + 1

4x
4 + 9

40x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + 3

2x
2 + 1

2x
3 + 5

8x
4 + 9

20x
5 + 29

80x
6
)
y(0)

+
(
x+ 1

2x
3 + 1

4x
4 + 9

40x
5 + 7

40x
6
)
y′(0) +O

(
x6)

(2)y =
(
1 + 3

2x
2 + 1

2x
3 + 5

8x
4 + 9

20x
5
)
c1 +

(
x+ 1

2x
3 + 1

4x
4 + 9

40x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 3

2x
2 + 1

2x
3 + 5

8x
4 + 9

20x
5 + 29

80x
6
)
y(0)

+
(
x+ 1

2x
3 + 1

4x
4 + 9

40x
5 + 7

40x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 3

2x
2 + 1

2x
3 + 5

8x
4 + 9

20x
5
)
c1 +

(
x+ 1

2x
3 + 1

4x
4 + 9

40x
5
)
c2 +O

(
x6)

Verified OK.

1007



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve((x-1)*diff(y(x),x$2)+3*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
1+ 3

2x
2+ 1

2x
3+ 5

8x
4+ 9

20x
5
)
y(0)+

(
x+ 1

2x
3+ 1

4x
4+ 9

40x
5
)
D(y) (0)+O

(
x6)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 63� �
AsymptoticDSolveValue[(x-1)*y''[x]+3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
9x5

40 + x4

4 + x3

2 + x

)
+ c1

(
9x5

20 + 5x4

8 + x3

2 + 3x2

2 + 1
)
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4.4 problem 12
4.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1016

Internal problem ID [5618]
Internal file name [OUTPUT/4866_Sunday_June_05_2022_03_08_40_PM_97857263/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second_order_change_of_variable_on_y_method_2",
"second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − x2y′ + xy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (141)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (142)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = x2y′ − xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(
x4 + x

)
y′ +

(
−x3 − 1

)
y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= x2(x3 + 4
)
(−y + xy′)

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x8 + 9x5 + 8x2) y′ + (−x7 − 9x4 − 8x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
x9 + 16x6 + 44x3 + 8

)
(−y + xy′)

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −y(0)
F2 = 0
F3 = 0
F4 = −8y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
3 − 1

90x
6
)
y(0) + xy′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = x2

(
∞∑
n=1

nanx
n−1

)
− x

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(
−nx1+nan

)
+
(

∞∑
n=0

x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

(
−nx1+nan

)
=

∞∑
n=2

(−(n− 1) an−1x
n)

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+

∞∑
n =2

(−(n− 1) an−1x
n) +

(
∞∑
n=1

an−1x
n

)
= 0

1013



n = 1 gives
6a3 + a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n)− (n− 1) an−1 + an−1 = 0

Solving for an+2, gives

(5)an+2 =
an−1(n− 2)

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 0

For n = 3 the recurrence equation gives

20a5 − a2 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

30a6 − 2a3 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
90
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For n = 5 the recurrence equation gives

42a7 − 3a4 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
6a0x

3 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x3

6

)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x3

6

)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

6x
3 − 1

90x
6
)
y(0) + xy′(0) +O

(
x6)

(2)y =
(
1− x3

6

)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1− 1

6x
3 − 1

90x
6
)
y(0) + xy′(0) +O

(
x6)

Verified OK.

y =
(
1− x3

6

)
c1 + c2x+O

(
x6)

Verified OK.
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4.4.1 Maple step by step solution

Let’s solve
y′′ = x2y′ − xy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − x2y′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 · y′ =
∞∑
k=1

ak−1(k − 1)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1(k − 2))xk

)
= 0
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• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−1(k − 2) = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak(k − 1) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = ak(k−1)

k2+5k+6 , 2a2 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
Order:=6;
dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x3

6

)
y(0) +D(y) (0)x+O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 20� �
AsymptoticDSolveValue[y''[x]-x^2*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1− x3

6

)
+ c2x
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4.5 problem 13
4.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1030

Internal problem ID [5619]
Internal file name [OUTPUT/4867_Sunday_June_05_2022_03_08_41_PM_89602476/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Laguerre]

xy′′ − (x+ 2) y′ + 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (−x− 2) y′ + 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x+ 2
x

q(x) = 2
x
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Table 124: Table p(x), q(x) singularites.

p(x) = −x+2
x

singularity type
x = 0 “regular”

q(x) = 2
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (−x− 2) y′ + 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (−x− 2)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ 2
(

∞∑
n=0

anx
n+r

)
= 0

1020



Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =0

(
−2(n+ r) anxn+r−1)+( ∞∑

n=0

2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

2anxn+r =
∞∑
n=1

2an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r−1)

+
∞∑

n =0

(
−2(n+ r) anxn+r−1)+( ∞∑

n=1

2an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−3 + r) = 0
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Since the above is true for all x then the indicial equation becomes

r(−3 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−3 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1)− 2an(n+ r) + 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = an−1

n+ r
(4)

Which for the root r = 3 becomes

an = an−1

n+ 3 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

1 + r

Which for the root r = 3 becomes
a1 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
4

For n = 2, using the above recursive equation gives

a2 =
1

(1 + r) (2 + r)

Which for the root r = 3 becomes
a2 =

1
20

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
4

a2
1

(1+r)(2+r)
1
20
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For n = 3, using the above recursive equation gives

a3 =
1

(1 + r) (2 + r) (3 + r)

Which for the root r = 3 becomes

a3 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
4

a2
1

(1+r)(2+r)
1
20

a3
1

(1+r)(2+r)(3+r)
1

120

For n = 4, using the above recursive equation gives

a4 =
1

(2 + r) (3 + r) (4 + r) (1 + r)

Which for the root r = 3 becomes

a4 =
1
840

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
4

a2
1

(1+r)(2+r)
1
20

a3
1

(1+r)(2+r)(3+r)
1

120

a4
1

(2+r)(3+r)(4+r)(1+r)
1

840

For n = 5, using the above recursive equation gives

a5 =
1

(3 + r) (4 + r) (1 + r) (2 + r) (5 + r)
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Which for the root r = 3 becomes

a5 =
1

6720

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
4

a2
1

(1+r)(2+r)
1
20

a3
1

(1+r)(2+r)(3+r)
1

120

a4
1

(2+r)(3+r)(4+r)(1+r)
1

840

a5
1

(3+r)(4+r)(1+r)(2+r)(5+r)
1

6720

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3

(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 1
(1 + r) (2 + r) (3 + r)

Therefore

lim
r→r2

1
(1 + r) (2 + r) (3 + r) = lim

r→0

1
(1 + r) (2 + r) (3 + r)

= 1
6
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The limit is 1
6 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1)− bn−1(n+ r − 1)− 2(n+ r) bn + 2bn−1 = 0

Which for for the root r = 0 becomes

(4A)bnn(n− 1)− bn−1(n− 1)− 2nbn + 2bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = bn−1

n+ r
(5)

Which for the root r = 0 becomes

bn = bn−1

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
1

1 + r

Which for the root r = 0 becomes
b1 = 1

And the table now becomes

1026



n bn,r bn

b0 1 1
b1

1
1+r

1

For n = 2, using the above recursive equation gives

b2 =
1

(1 + r) (2 + r)

Which for the root r = 0 becomes
b2 =

1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

For n = 3, using the above recursive equation gives

b3 =
1

(1 + r) (2 + r) (3 + r)

Which for the root r = 0 becomes
b3 =

1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

b3
1

(1+r)(2+r)(3+r)
1
6

For n = 4, using the above recursive equation gives

b4 =
1

(2 + r) (3 + r) (4 + r) (1 + r)
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Which for the root r = 0 becomes
b4 =

1
24

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

b3
1

(1+r)(2+r)(3+r)
1
6

b4
1

(2+r)(3+r)(4+r)(1+r)
1
24

For n = 5, using the above recursive equation gives

b5 =
1

(3 + r) (4 + r) (1 + r) (2 + r) (5 + r)

Which for the root r = 0 becomes
b5 =

1
120

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

b3
1

(1+r)(2+r)(3+r)
1
6

b4
1

(2+r)(3+r)(4+r)(1+r)
1
24

b5
1

(3+r)(4+r)(1+r)(2+r)(5+r)
1

120

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+ c2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Hence the final solution is

y = yh

= c1x
3
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+ c2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

3
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+ c2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Verification of solutions

y = c1x
3
(
1 + x

4 + x2

20 + x3

120 + x4

840 + x5

6720 +O
(
x6))

+ c2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Verified OK.
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4.5.1 Maple step by step solution

Let’s solve
y′′x+ (−x− 2) y′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2y
x
+ (x+2)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x+2)y′
x

+ 2y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+2
x
, P3(x) = 2

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (−x− 2) y′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 2)− ak(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak

k+1

]
• Recursion relation for r = 3

ak+1 = ak
k+4

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+1 = ak

k+4

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+3
)
, ak+1 = ak

k+1 , bk+1 = bk
k+4

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 44� �
Order:=6;
dsolve(x*diff(y(x),x$2)-(x+2)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
(
1 + 1

4x+ 1
20x

2 + 1
120x

3 + 1
840x

4 + 1
6720x

5 +O
(
x6))

+ c2

(
12 + 12x+ 6x2 + 2x3 + 1

2x
4 + 1

10x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 66� �
AsymptoticDSolveValue[x*y''[x]-(x+2)*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

24 + x3

6 + x2

2 + x+ 1
)
+ c2

(
x7

840 + x6

120 + x5

20 + x4

4 + x3
)
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4.6 problem 14
Internal problem ID [5620]
Internal file name [OUTPUT/4868_Sunday_June_05_2022_03_08_44_PM_35553539/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

cos (x) y′′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (145)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (146)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − y

cos (x)

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= − sec (x) (y tan (x) + y′)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −2 sec (x)
(
tan (x) y′ +

(
sec (x) + 1

2

)
y(sec (x)− 1)

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
((
−6 sec (x)2 + sec (x) + 3

)
y′ + sec (x)2 y tan (x)

(
cos (x)2 + 4 cos (x)− 6

))
sec (x)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −24

−
sec (x)2 tan (x)

(
cos (x)2 + 3 cos(x)

2 − 6
)
y′

6 + y

(
sec (x)4 − 3 sec (x)3

4 − 19 sec (x)2

24 + 11 sec (x)
24 + 1

24

) sec (x)

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −y′(0)
F2 = 0
F3 = −2y′(0)
F4 = y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 + 1

720x
6
)
y(0) +

(
x− 1

6x
3 − 1

60x
5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −

∞∑
n=0

anx
n

cos (x) (1)

Expanding cos (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

cos (x) = 1− 1
2x

2 + 1
24x

4 − 1
720x

6 + . . .

= 1− 1
2x

2 + 1
24x

4 − 1
720x

6

Hence the ODE in Eq (1) becomes(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)( ∞∑

n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0

Expanding the first term in (1) gives

1 ·
(

∞∑
n=2

n(n− 1) anxn−2

)
− x2

2 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+ x4

24

·

(
∞∑
n=2

n(n− 1) anxn−2

)
− x6

720 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0

Which simplifies to

(2)

∞∑
n =2

(
−nxn+4an(n− 1)

720

)
+
(

∞∑
n=2

nxn+2an(n− 1)
24

)

+
∞∑

n =2

(
−nanx

n(n− 1)
2

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−nxn+4an(n− 1)

720

)
=

∞∑
n=6

(
−(n− 4) an−4(n− 5)xn

720

)
∞∑

n =2

nxn+2an(n− 1)
24 =

∞∑
n=4

(n− 2) an−2(n− 3)xn

24

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =6

(
−(n− 4) an−4(n− 5)xn

720

)
+
(

∞∑
n=4

(n− 2) an−2(n− 3)xn

24

)

+
∞∑

n =2

(
−nanx

n(n− 1)
2

)
+
(

∞∑
n=0

(n+2) an+2(n+1)xn

)
+
(

∞∑
n=0

anx
n

)
= 0

n = 0 gives
2a2 + a0 = 0

a2 = −a0
2

n = 1 gives
6a3 + a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
6

n = 3 gives
−2a3 + 20a5 = 0
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Which after substituting earlier equations, simplifies to

a1
3 + 20a5 = 0

Or
a5 = −a1

60

n = 4 gives
a2
12 − 5a4 + 30a6 = 0

Which after substituting earlier equations, simplifies to

−a0
24 + 30a6 = 0

Or
a6 =

a0
720

n = 5 gives
a3
4 − 9a5 + 42a7 = 0

Which after substituting earlier equations, simplifies to

13a1
120 + 42a7 = 0

Or

a7 = −13a1
5040

For 6 ≤ n, the recurrence equation is

−(n− 4) an−4(n− 5)
720 + (n− 2) an−2(n− 3)

24 − nan(n− 1)
2 +(n+2) an+2(n+1)+an = 0

(4)
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Solving for an+2, gives

(5)

an+2

= 360n2an + n2an−4 − 30n2an−2 − 360nan − 9nan−4 + 150nan−2 − 720an + 20an−4 − 180an−2

720 (n+ 2) (n+ 1)

= (360n2 − 360n− 720) an
720 (n+ 2) (n+ 1) + (n2 − 9n+ 20) an−4

720 (n+ 2) (n+ 1) + (−30n2 + 150n− 180) an−2

720 (n+ 2) (n+ 1)

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
6a1x

3 − 1
60a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
−x2

2 + 1
)
a0 +

(
x− 1

6x
3 − 1

60x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
−x2

2 + 1
)
c1 +

(
x− 1

6x
3 − 1

60x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 + 1

720x
6
)
y(0) +

(
x− 1

6x
3 − 1

60x
5
)
y′(0) +O

(
x6)

(2)y =
(
−x2

2 + 1
)
c1 +

(
x− 1

6x
3 − 1

60x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

2x
2 + 1

720x
6
)
y(0) +

(
x− 1

6x
3 − 1

60x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
−x2

2 + 1
)
c1 +

(
x− 1

6x
3 − 1

60x
5
)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

u(t)-t^2*diff(u(t),t)+(-t^3+t)*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
Order:=6;
dsolve(cos(x)*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x2

2

)
y(0) +

(
x− 1

6x
3 − 1

60x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35� �
AsymptoticDSolveValue[Cos[x]*y''[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1− x2

2

)
+ c2

(
−x5

60 − x3

6 + x

)
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4.7 problem 15
4.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1043
4.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1051

Internal problem ID [5621]
Internal file name [OUTPUT/4869_Sunday_June_05_2022_03_08_46_PM_69524103/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + xy′ + 2y = 0

With initial conditions

[y(0) = 3, y′(0) = −2]

With the expansion point for the power series method at x = 0.

4.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x

q(x) = 2
F = 0
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Hence the ode is

y′′ + xy′ + 2y = 0

The domain of p(x) = x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (148)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (149)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −xy′ − 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x2y′ + 2xy − 3y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −y′x3 − 2yx2 + 7xy′ + 8y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x4 − 12x2 + 15

)
y′ + 2

(
x3 − 9x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−x5 + 18x3 − 57x

)
y′ − 2y

(
x4 − 15x2 + 24

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 3 and
y′(0) = −2 gives

F0 = −6
F1 = 6
F2 = 24
F3 = −30
F4 = −144

Substituting all the above in (7) and simplifying gives the solution as

y = x4 + x3 − 3x2 − 2x+ 3− x5

4 − x6

5 +O
(
x6)

y = x4 + x3 − 3x2 − 2x+ 3− x5

4 − x6

5 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −x

(
∞∑
n=1

nanx
n−1

)
− 2
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + 2a0 = 0

a2 = −a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + nan + 2an = 0

Solving for an+2, gives

(5)an+2 = − an
n+ 1

For n = 1 the recurrence equation gives

6a3 + 3a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
2

For n = 2 the recurrence equation gives

12a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
3

For n = 3 the recurrence equation gives

20a5 + 5a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
8

For n = 4 the recurrence equation gives

30a6 + 6a4 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
15
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For n = 5 the recurrence equation gives

42a7 + 7a5 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
48

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 1

2a1x
3 + 1

3a0x
4 + 1

8a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

3x
4
)
a0 +

(
x− 1

2x
3 + 1

8x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

3x
4
)
c1 +

(
x− 1

2x
3 + 1

8x
5
)
c2 +O

(
x6)

y = x4 − 3x2 + 3− 2x+ x3 − x5

4 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = x4 + x3 − 3x2 − 2x+ 3− x5

4 − x6

5 +O
(
x6)

(2)y = x4 − 3x2 + 3− 2x+ x3 − x5

4 +O
(
x6)
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Verification of solutions

y = x4 + x3 − 3x2 − 2x+ 3− x5

4 − x6

5 +O
(
x6)

Verified OK.

y = x4 − 3x2 + 3− 2x+ x3 − x5

4 +O
(
x6)

Verified OK.

4.7.2 Maple step by step solution

Let’s solve[
y′′ = −xy′ − 2y, y(0) = 3, y′

∣∣∣{x=0}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0
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• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak + ak+2) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(0) = 3, D(y)(0) = -2],y(x),type='series',x=0);� �

y(x) = 3− 2x− 3x2 + x3 + x4 − 1
4x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 26� �
AsymptoticDSolveValue[{y''[x]+x*y'[x]+2*y[x]==0,{y[0]==3,y'[0]==-2}},y[x],{x,0,5}]� �

y(x) → −x5

4 + x4 + x3 − 3x2 − 2x+ 3
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4.8 problem 16
4.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1053

Internal problem ID [5622]
Internal file name [OUTPUT/4870_Sunday_June_05_2022_03_08_48_PM_8462272/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.
Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review
exercises. page 253
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(x+ 2) y′′ + 3y = 0

With initial conditions

[y(0) = 0, y′(0) = 1]

With the expansion point for the power series method at x = 0.

4.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0

q(x) = 3
x+ 2

F = 0
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Hence the ode is

y′′ + 3y
x+ 2 = 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 3
x+2 is

{x < −2∨−2 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

1054



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (151)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (152)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 3y
x+ 2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−3x− 6) y′ + 3y
(x+ 2)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (6x+ 12) y′ + (9x+ 12) y
(x+ 2)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 9x2y′ + 18xy′ − 36xy − 54y
(x+ 2)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−54x2 − 144x− 72) y′ − 27y

(
x2 − 2x− 16

3

)
(x+ 2)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 1 gives

F0 = 0

F1 = −3
2

F2 =
3
2

F3 = 0

F4 = −9
4
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Substituting all the above in (7) and simplifying gives the solution as

y = x− x3

4 + x4

16 − x6

320 +O
(
x6)

y = x− x3

4 + x4

16 − x6

320 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x+ 2) y′′ + 3y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x+ 2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+ 3
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) anxn−2

)
+
(

∞∑
n=0

3anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=1

(n+ 1) an+1nxn

)
+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

3anxn

)
= 0

n = 0 gives
4a2 + 3a0 = 0

a2 = −3a0
4

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ 2(n+ 2) an+2(n+ 1) + 3an = 0

Solving for an+2, gives

(5)

an+2 = −n2an+1 + nan+1 + 3an
2 (n+ 2) (n+ 1)

= − 3an
2 (n+ 2) (n+ 1) −

(n2 + n) an+1

2 (n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2a2 + 12a3 + 3a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
8 − a1

4

For n = 2 the recurrence equation gives

6a3 + 24a4 + 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
16 + a1

16
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For n = 3 the recurrence equation gives

12a4 + 40a5 + 3a3 = 0

Which after substituting the earlier terms found becomes

a5 = −9a0
320

For n = 4 the recurrence equation gives

20a5 + 60a6 + 3a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
160 − a1

320

For n = 5 the recurrence equation gives

30a6 + 84a7 + 3a5 = 0

Which after substituting the earlier terms found becomes

a7 = −11a0
8960 + a1

896

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3a0x2

4 +
(a0
8 − a1

4

)
x3 +

(a0
16 + a1

16

)
x4 − 9a0x5

320 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3

4x
2 + 1

8x
3 + 1

16x
4 − 9

320x
5
)
a0 +

(
x− 1

4x
3 + 1

16x
4
)
a1 +O

(
x6)
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At x = 0 the solution above becomes

y =
(
1− 3

4x
2 + 1

8x
3 + 1

16x
4 − 9

320x
5
)
c1 +

(
x− 1

4x
3 + 1

16x
4
)
c2 +O

(
x6)

y = x− x3

4 + x4

16 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = x− x3

4 + x4

16 − x6

320 +O
(
x6)

(2)y = x− x3

4 + x4

16 +O
(
x6)

Verification of solutions

y = x− x3

4 + x4

16 − x6

320 +O
(
x6)

Verified OK.

y = x− x3

4 + x4

16 +O
(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve([(x+2)*diff(y(x),x$2)+3*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);� �

y(x) = x− 1
4x

3 + 1
16x

4 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19� �
AsymptoticDSolveValue[{(x+2)*y''[x]+3*y[x]==0,{y[0]==0,y'[0]==1}},y[x],{x,0,5}]� �

y(x) → x4

16 − x3

4 + x
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