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1.1 problem 6
1.1.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 10

Internal problem ID [5623]
Internal file name [OUTPUT/4871_Sunday_June_05_2022_03_08_50_PM_14605768/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]

(1 + x) y′ − y = 0

With the expansion point for the power series method at x = 0.

1.1.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0
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But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f
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Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)

Hence

F0 =
y

1 + x

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

= 0

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

= 0

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

= 0

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

= 0

And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = y(0) gives

F0 = y(0)
F1 = 0
F2 = 0
F3 = 0
F4 = 0

Substituting all the above in (6) and simplifying gives the solution as

y = (1 + x) y(0) +O
(
x6)
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Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

y′ + q(x)y = p(x)

y′ − y

1 + x
= 0

Where

q(x) = − 1
1 + x

p(x) = 0

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not. Now the ode is normalized by writing it as

(1 + x) y′ − y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

Substituting the above back into the ode gives

(1 + x)
(

∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0 (1)
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Which simplifies to

(2)
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 1) an+1x
n

)
+
(

∞∑
n=1

nanx
n

)
+

∞∑
n =0

(−anx
n) = 0

n = 0 gives

a1 − a0 = 0
a1 = a0

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1 + nan − an = 0

Solving for an+1, gives

(5)an+1 = −an(n− 1)
n+ 1

For n = 1 the recurrence equation gives

2a2 = 0

Which after substituting the earlier terms found becomes

a2 = 0
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For n = 2 the recurrence equation gives

3a3 + a2 = 0

Which after substituting the earlier terms found becomes

a3 = 0

For n = 3 the recurrence equation gives

4a4 + 2a3 = 0

Which after substituting the earlier terms found becomes

a4 = 0

For n = 4 the recurrence equation gives

5a5 + 3a4 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 5 the recurrence equation gives

6a6 + 4a5 = 0

Which after substituting the earlier terms found becomes

a6 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0x+ a0 + . . .
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Collecting terms, the solution becomes

(3)y = (1 + x) a0 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = (1 + x) y(0) +O
(
x6)

(2)y = (1 + x) c1 +O
(
x6)

Figure 1: Slope field plot

Verification of solutions

y = (1 + x) y(0) +O
(
x6)

Verified OK.

y = (1 + x) c1 +O
(
x6)

Verified OK.
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1.1.2 Maple step by step solution

Let’s solve
(1 + x) y′ − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

1+x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
1+x

dx+ c1

• Evaluate integral
ln (y) = ln (1 + x) + c1

• Solve for y
y = ec1(1 + x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
Order:=6;
dsolve((1+x)*diff(y(x),x)=y(x),y(x),type='series',x=0);� �

y(x) = y(0) (x+ 1)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 9� �
AsymptoticDSolveValue[(1+x)*y'[x]==y[x],y[x],{x,0,5}]� �

y(x) → c1(x+ 1)
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1.2 problem 7
1.2.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 19

Internal problem ID [5624]
Internal file name [OUTPUT/4872_Sunday_June_05_2022_03_08_51_PM_96409877/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]

2xy + y′ = 0

With the expansion point for the power series method at x = 0.

1.2.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0

12



But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f
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Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)

Hence

F0 = −2xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

=
(
4x2 − 2

)
y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

=
(
−8x3 + 12x

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

= 4y
(
4x4 − 12x2 + 3

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

= −32
(
x4 − 5x2 + 15

4

)
yx

And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = y(0) gives

F0 = 0
F1 = −2y(0)
F2 = 0
F3 = 12y(0)
F4 = 0

Substituting all the above in (6) and simplifying gives the solution as

y =
(
1− x2 + 1

2x
4
)
y(0) +O

(
x6)
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Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

y′ + q(x)y = p(x)
2xy + y′ = 0

Where

q(x) = 2x
p(x) = 0

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not. Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

Substituting the above back into the ode gives

2x
(

∞∑
n=0

anx
n

)
+
(

∞∑
n=1

nanx
n−1

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

2x1+nan

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(1 + n) a1+nx
n

∞∑
n =0

2x1+nan =
∞∑
n=1

2an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(1 + n) a1+nx
n

)
+
(

∞∑
n=1

2an−1x
n

)
= 0

For 1 ≤ n, the recurrence equation is

(4)(1 + n) a1+n + 2an−1 = 0

Solving for a1+n, gives

(5)a1+n = −2an−1

1 + n

For n = 1 the recurrence equation gives

2a2 + 2a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a0

For n = 2 the recurrence equation gives

3a3 + 2a1 = 0

Which after substituting the earlier terms found becomes

a3 = 0
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For n = 3 the recurrence equation gives

4a4 + 2a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2

For n = 4 the recurrence equation gives

5a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 5 the recurrence equation gives

6a6 + 2a4 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
6

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 − a0x
2 + 1

2a0x
4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

2x
4
)
a0 +O

(
x6)
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Summary
The solution(s) found are the following

(1)y =
(
1− x2 + 1

2x
4
)
y(0) +O

(
x6)

(2)y =
(
1− x2 + 1

2x
4
)
c1 +O

(
x6)

Figure 2: Slope field plot

Verification of solutions

y =
(
1− x2 + 1

2x
4
)
y(0) +O

(
x6)

Verified OK.

y =
(
1− x2 + 1

2x
4
)
c1 +O

(
x6)

Verified OK.
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1.2.2 Maple step by step solution

Let’s solve
2xy + y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −2x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−2xdx+ c1

• Evaluate integral
ln (y) = −x2 + c1

• Solve for y
y = e−x2+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
Order:=6;
dsolve(diff(y(x),x)=-2*x*y(x),y(x),type='series',x=0);� �

y(x) =
(
1− x2 + 1

2x
4
)
y(0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 20� �
AsymptoticDSolveValue[y'[x]==-2*x*y[x],y[x],{x,0,5}]� �

y(x) → c1

(
x4

2 − x2 + 1
)
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1.3 problem 8
1.3.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 25

Internal problem ID [5625]
Internal file name [OUTPUT/4873_Sunday_June_05_2022_03_08_52_PM_75155354/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Regular singular point"

Maple gives the following as the ode type
[_separable]

xy′ − 3y = k

With the expansion point for the power series method at x = 0.

1.3.1 Solving as series ode

Writing the ODE as

y′ + q(x)y = p(x)

y′ − 3y
x

= k

x

Where

q(x) = −3
x

p(x) = k

x

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
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singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not.

Since x = 0 is not an ordinary point, we now check to see if it is a regular singular
point. xq(x) = −3 has a Taylor series around x = 0. Since x = 0 is regular singular
point, then Frobenius power series is used. Since this is an inhomogeneous, then let the
solution be

y = yh + yp

Where yh is the solution to the homogeneous ode y′ − 3y
x

= 0,and yp is a particular
solution to the inhomogeneous ode. First, we solve for yh Let the solution be represented
as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

Substituting the above back into the ode gives

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

3
(

∞∑
n=0

anx
n+r

)
x

= 0 (1)

Hence the ODE in Eq (1) becomes

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

3
(

∞∑
n=0

anx
n+r

)
x

= 0 (1)

Expanding the second term in (1) gives(
∞∑
n=0

(n+ r) anxn+r−1

)
+−3 ·

(
∞∑
n=0

anx
n+r

)
+ 1

x
·

(
∞∑
n=0

anx
n+r

)
= 0 (1)
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Which simplifies to

(2A)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−3xn+r−1an

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of x are the same and equal
to n+ r − 1.

(2B)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−3xn+r−1an

)
= 0

The indicial equation is obtained from n = 0. From Eq (2) this gives

(n+ r) anxn+r−1 − 3xn+r−1an = 0

When n = 0 the above becomes

ra0x
−1+r − 3x−1+ra0 = 0

The corresponding balance equation is found by replacing r by m and a by c to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is (

x−1+mm− 3x−1+m
)
c0 =

k

x

This equation will used later to find the particular solution.

Since a0 6= 0 then the indicial equation becomes

(r − 3)x−1+r = 0

Since the above is true for all x then the indicial equation simplifies to

r − 3 = 0

Solving for r gives the root of the indicial equation as

r = 3
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We start by finding yh. From the above we see that there is no recurrence relation since
there is only one summation term. Therefore all an terms are zero except for a0. Hence

yh = a0x
r

Therefore the homogeneous solution is

yh(x) = a0
(
x3 +O

(
x6))

Now we determine the particular solution yp by solving the balance equation(
x−1+mm− 3x−1+m

)
c0 =

k

x

For c0 and x. This results in

c0 = −k

3
m = 0

The particular solution is therefore

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n+0

Where in the above c0 = −k
3 . The remaining cn values are found using the same

recurrence relation used to find the homogeneous solution but using c0 in place of
a0 and using m = 0 in place of the root of the indicial equation used to find the
homogeneous solution. The following are the values of an found in terms of the indicial
root r. These will be now used to find find cn by replacing a0 = −k

3 and r = 0. The
following table gives the an values found and the corresponding cn values which will be
used to find the particular solution

n an cn

0 a0 = 1 c0 = −k
3

The particular solution is now found using

yp = xm
∞∑
n=0

cnx
n

= 1
∞∑
n=0

cnx
n
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Using the values found above for cn into the above sum gives

yp = 1
(
−k

3

)
At x = 0 the solution above becomes

y = −k

3 +O
(
x6)+ c1

(
x3 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = −k

3 +O
(
x6)+ c1

(
x3 +O

(
x6))

Verification of solutions

y = −k

3 +O
(
x6)+ c1

(
x3 +O

(
x6))

Verified OK.

1.3.2 Maple step by step solution

Let’s solve
y′ − 3y

x
= k

x

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

3y+k
= 1

x

• Integrate both sides with respect to x∫
y′

3y+k
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln(3y+k)

3 = ln (x) + c1

• Solve for y
y = e3c1x3

3 − k
3
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
Order:=6;
dsolve(x*diff(y(x),x)-3*y(x)=k,y(x),type='series',x=0);� �

y(x) = c1x
3(1 + O

(
x6))+ (−k

3 + O
(
x6))

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 15� �
AsymptoticDSolveValue[x*y'[x]-3*y[x]==k,y[x],{x,0,5}]� �

y(x) → −k

3 + c1x
3
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1.4 problem 9
1.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 34

Internal problem ID [5626]
Internal file name [OUTPUT/4874_Sunday_June_05_2022_03_08_54_PM_58810182/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_linear_constant_co-
eff", "second_order_ode_can_be_made_integrable", "second order series
method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (4)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −y′(0)
F2 = y(0)
F3 = y′(0)
F4 = −y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

anx
n

)
= 0

For 0 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an = 0
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Solving for an+2, gives

(5)an+2 = − an
(n+ 2) (n+ 1)

For n = 0 the recurrence equation gives

2a2 + a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a0
2

For n = 1 the recurrence equation gives

6a3 + a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
6

For n = 2 the recurrence equation gives

12a4 + a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
24

For n = 3 the recurrence equation gives

20a5 + a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
120

For n = 4 the recurrence equation gives

30a6 + a4 = 0
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Which after substituting the earlier terms found becomes

a6 = − a0
720

For n = 5 the recurrence equation gives

42a7 + a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a1
5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
6a1x

3 + 1
24a0x

4 + 1
120a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

24x
4
)
a0 +

(
x− 1

6x
3 + 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)
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Figure 3: Slope field plot

Verification of solutions

y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)

Verified OK.

1.4.1 Maple step by step solution

Let’s solve
y′′ = −y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y = 0
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• Characteristic polynomial of ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the ODE
y1(x) = cos (x)

• 2nd solution of the ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = cos (x) c1 + c2 sin (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 + 1

24x
4
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

120 − x3

6 + x

)
+ c1

(
x4

24 − x2

2 + 1
)
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1.5 problem 10
1.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 44

Internal problem ID [5627]
Internal file name [OUTPUT/4875_Sunday_June_05_2022_03_08_55_PM_1437241/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second
order series method. Ordinary point", "second order series method. Taylor
series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′ + xy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (7)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (8)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

38



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = y′ − xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (1− x) y′ − (1 + x) y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−1− 2x) y′ + y
(
x2 − x− 1

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x2 − 3x− 4

)
y′ + y

(
2x2 + 3x− 1

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
3x2 + 2x− 8

)
y′ − y

(
x3 − 3x2 − 8x− 3

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y′(0)
F1 = −y(0) + y′(0)
F2 = −y′(0)− y(0)
F3 = −4y′(0)− y(0)
F4 = −8y′(0) + 3y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5 + 1

240x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5 − 1

90x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 =
(

∞∑
n=1

nanx
n−1

)
− x

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(
−nanx

n−1)+( ∞∑
n=0

x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

(
−nanx

n−1) = ∞∑
n=0

(−(1 + n) a1+nx
n)

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+

∞∑
n =0

(−(1 + n) a1+nx
n) +

(
∞∑
n=1

an−1x
n

)
= 0
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n = 0 gives
2a2 − a1 = 0

a2 =
a1
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n)− (1 + n) a1+n + an−1 = 0

Solving for an+2, gives

(5)

an+2 =
na1+n + a1+n − an−1

(n+ 2) (1 + n)

= a1+n

n+ 2 − an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 − 2a2 + a0 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
6 − a0

6

For n = 2 the recurrence equation gives

12a4 − 3a3 + a1 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
24 − a0

24

For n = 3 the recurrence equation gives

20a5 − 4a4 + a2 = 0

Which after substituting the earlier terms found becomes

a5 = −a1
30 − a0

120
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For n = 4 the recurrence equation gives

30a6 − 5a5 + a3 = 0

Which after substituting the earlier terms found becomes

a6 = −a1
90 + a0

240

For n = 5 the recurrence equation gives

42a7 − 6a6 + a4 = 0

Which after substituting the earlier terms found becomes

a7 = − a1
1680 + a0

630

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a1x
2

2 +
(a1
6 − a0

6

)
x3 +

(
−a1
24 − a0

24

)
x4 +

(
−a1
30 − a0

120

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
a0 +

(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
c1 +

(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)
y =

(
1− 1

6x
3 − 1

24x
4 − 1

120x
5 + 1

240x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5 − 1

90x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
c1 +

(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5 + 1

240x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5 − 1

90x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
c1 +

(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5
)
c2 +O

(
x6)

Verified OK.

1.5.1 Maple step by step solution

Let’s solve
y′′ = y′ − xy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1
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◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′ to series expansion

y′ =
∞∑
k=1

akk x
k−1

◦ Shift index using k− >k + 1

y′ =
∞∑
k=0

ak+1(k + 1)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − a1 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak+1(k + 1) + ak−1)xk

)
= 0

• Each term must be 0
2a2 − a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak+1k + ak−1 − ak+1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+2(k + 1) + ak − ak+2 = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = kak+2−ak+2ak+2

k2+5k+6 , 2a2 − a1 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve(diff(y(x),x$2)-diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
y(0)

+
(
x+ 1

2x
2 + 1

6x
3 − 1

24x
4 − 1

30x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[y''[x]-y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
− x5

120 − x4

24 − x3

6 + 1
)
+ c2

(
−x5

30 − x4

24 + x3

6 + x2

2 + x

)
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1.6 problem 11
1.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 54

Internal problem ID [5628]
Internal file name [OUTPUT/4876_Sunday_June_05_2022_03_08_56_PM_17151009/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′ + yx2 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (10)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (11)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

48



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = y′ − yx2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(
−x2 + 1

)
y′ − x(x+ 2) y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−2x2 − 4x+ 1

)
y′ + y(1 + x)

(
x3 − x2 − 2

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x4 − 3x2 − 10x− 5

)
y′ + 2y

(
x4 + 4x3 − 1

2x
2 − x− 1

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
3x4 + 12x3 − 4x2 − 18x− 17

)
y′ − y

(
x6 − 3x4 − 18x3 − 29x2 + 2x+ 2

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y′(0)
F1 = y′(0)
F2 = y′(0)− 2y(0)
F3 = −5y′(0)− 2y(0)
F4 = −17y′(0)− 2y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

12x
4 − 1

60x
5 − 1

360x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5 − 17

720x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 =
(

∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
x2 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(
−nanx

n−1)+( ∞∑
n=0

xn+2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

(
−nanx

n−1) = ∞∑
n=0

(−(n+ 1) an+1x
n)

∞∑
n =0

xn+2an =
∞∑
n=2

an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =0

(−(n+ 1) an+1x
n) +

(
∞∑
n=2

an−2x
n

)
= 0
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n = 0 gives
2a2 − a1 = 0

a2 =
a1
2

n = 1 gives
6a3 − 2a2 = 0

Which after substituting earlier equations, simplifies to

6a3 − a1 = 0

Or
a3 =

a1
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− (n+ 1) an+1 + an−2 = 0

Solving for an+2, gives

(5)

an+2 =
nan+1 − an−2 + an+1

(n+ 2) (n+ 1)

= − an−2

(n+ 2) (n+ 1) +
an+1

n+ 2

For n = 2 the recurrence equation gives

12a4 − 3a3 + a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a1
24 − a0

12

For n = 3 the recurrence equation gives

20a5 − 4a4 + a1 = 0
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Which after substituting the earlier terms found becomes

a5 = −a1
24 − a0

60

For n = 4 the recurrence equation gives

30a6 − 5a5 + a2 = 0

Which after substituting the earlier terms found becomes

a6 = −17a1
720 − a0

360

For n = 5 the recurrence equation gives

42a7 − 6a6 + a3 = 0

Which after substituting the earlier terms found becomes

a7 = −37a1
5040 − a0

2520

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a1x
2

2 + a1x
3

6 +
(a1
24 − a0

12

)
x4 +

(
−a1
24 − a0

60

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

12x
4 − 1

60x
5
)
a0 +

(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

12x
4 − 1

60x
5
)
c1 +

(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)
y =

(
1− 1

12x
4 − 1

60x
5 − 1

360x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5 − 17

720x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

12x
4 − 1

60x
5
)
c1 +

(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

12x
4 − 1

60x
5 − 1

360x
6
)
y(0)

+
(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5 − 17

720x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

12x
4 − 1

60x
5
)
c1 +

(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5
)
c2 +O

(
x6)

Verified OK.

1.6.1 Maple step by step solution

Let’s solve
y′′ = y′ − yx2

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′ + yx2 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2
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◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′ to series expansion

y′ =
∞∑
k=1

akk x
k−1

◦ Shift index using k− >k + 1

y′ =
∞∑
k=0

ak+1(k + 1)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − a1 + (6a3 − 2a2)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak+1(k + 1) + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − a1 = 0, 6a3 − 2a2 = 0]

• Solve for the dependent coefficient(s){
a2 = a1

2 , a3 =
a1
6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 − ak+1k + ak−2 − ak+1 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 − ak+3(k + 2) + ak − ak+3 = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = kak+3−ak+3ak+3

k2+7k+12 , a2 = a1
2 , a3 =

a1
6

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
Order:=6;
dsolve(diff(y(x),x$2)-diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
1− 1

12x
4 − 1

60x
5
)
y(0) +

(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

24x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56� �
AsymptoticDSolveValue[y''[x]-y'[x]+x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x5

60 − x4

12 + 1
)
+ c2

(
−x5

24 + x4

24 + x3

6 + x2

2 + x

)
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1.7 problem 12
1.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 64

Internal problem ID [5629]
Internal file name [OUTPUT/4877_Sunday_June_05_2022_03_08_57_PM_41509662/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_2", "sec-
ond order series method. Taylor series method", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer]

(
−x2 + 1

)
y′′ − 2xy′ + 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (13)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (14)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(−y + xy′)
x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 8(−y + xy′)x
(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −8(−y + xy′) (5x2 + 1)
(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
240(−y + xy′)

(
x2 + 3

5

)
x

(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −48(−y + xy′) (35x4 + 42x2 + 3)
(x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
F1 = 0
F2 = −8y(0)
F3 = 0
F4 = −144y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x2 − 1

3x
4 − 1

5x
6
)
y(0) + xy′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x2 + 1
)
y′′ − 2xy′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
−x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 2x

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nanxn) +
(

∞∑
n=0

2anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−2nanxn) +
(

∞∑
n=0

2anxn

)
= 0
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n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− 2nan + 2an = 0

Solving for an+2, gives

(5)an+2 =
(n− 1) an
n+ 1

For n = 2 the recurrence equation gives

−4a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
3

For n = 3 the recurrence equation gives

−10a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

−18a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
5
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For n = 5 the recurrence equation gives

−28a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 1

3a0x
4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 − 1

3x
4
)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 − 1

3x
4
)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x2 − 1

3x
4 − 1

5x
6
)
y(0) + xy′(0) +O

(
x6)

(2)y =
(
1− x2 − 1

3x
4
)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1− x2 − 1

3x
4 − 1

5x
6
)
y(0) + xy′(0) +O

(
x6)

Verified OK.

y =
(
1− x2 − 1

3x
4
)
c1 + c2x+O

(
x6)

Verified OK.
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1.7.1 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − 2xy′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2xy′

x2−1 +
2y

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2xy′

x2−1 −
2y

x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 2

x2−1

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
(x2 − 1) y′′ + 2xy′ − 2y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = 1 + x

[y = −a0x]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve((1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x2 − 1

3x
4
)
y(0) +D(y) (0)x+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 25� �
AsymptoticDSolveValue[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x4

3 − x2 + 1
)
+ c2x
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1.8 problem 13
1.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 74

Internal problem ID [5630]
Internal file name [OUTPUT/4878_Sunday_June_05_2022_03_08_58_PM_82098902/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ +
(
x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (16)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (17)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
(
x2 + 1

)
y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −2xy −
(
x2 + 1

)
y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −4xy′ + y
(
x4 + 2x2 − 1

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 8xy
(
x2 + 1

)
+
(
x4 + 2x2 − 5

)
y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 12
(
x3 + x

)
y′ − y

(
x6 + 3x4 − 27x2 − 13

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −y′(0)
F2 = −y(0)
F3 = −5y′(0)
F4 = 13y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 − 1

24x
4 + 13

720x
6
)
y(0) +

(
x− 1

6x
3 − 1

24x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −
(
x2 + 1

)( ∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

xn+2an

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

xn+2an =
∞∑
n=2

an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=2

an−2x
n

)
+
(

∞∑
n=0

anx
n

)
= 0

n = 0 gives
2a2 + a0 = 0
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a2 = −a0
2

n = 1 gives
6a3 + a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an−2 + an = 0

Solving for an+2, gives

(5)

an+2 = − an−2 + an
(n+ 2) (n+ 1)

= − an
(n+ 2) (n+ 1) −

an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + a0 + a2 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
24

For n = 3 the recurrence equation gives

20a5 + a1 + a3 = 0

Which after substituting the earlier terms found becomes

a5 = −a1
24

For n = 4 the recurrence equation gives

30a6 + a2 + a4 = 0
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Which after substituting the earlier terms found becomes

a6 =
13a0
720

For n = 5 the recurrence equation gives

42a7 + a3 + a5 = 0

Which after substituting the earlier terms found becomes

a7 =
5a1
1008

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
6a1x

3 − 1
24a0x

4 − 1
24a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 − 1

24x
4
)
a0 +

(
x− 1

6x
3 − 1

24x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 − 1

24x
4
)
c1 +

(
x− 1

6x
3 − 1

24x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 − 1

24x
4 + 13

720x
6
)
y(0) +

(
x− 1

6x
3 − 1

24x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 − 1

24x
4
)
c1 +

(
x− 1

6x
3 − 1

24x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− 1

2x
2 − 1

24x
4 + 13

720x
6
)
y(0) +

(
x− 1

6x
3 − 1

24x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 − 1

24x
4
)
c1 +

(
x− 1

6x
3 − 1

24x
5
)
c2 +O

(
x6)

Verified OK.

1.8.1 Maple step by step solution

Let’s solve
y′′ = −(x2 + 1) y

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y(−x2 − 1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + a0 + (6a3 + a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + a0 = 0, 6a3 + a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −a0

2 , a3 = −a1
6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + ak + ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 + ak+2 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = − ak+2+ak

k2+7k+12 , a2 = −a0
2 , a3 = −a1

6

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+(1+x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 − 1

24x
4
)
y(0) +

(
x− 1

6x
3 − 1

24x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]+(1+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−x5

24 − x3

6 + x

)
+ c1

(
−x4

24 − x2

2 + 1
)
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1.9 problem 14
1.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 84

Internal problem ID [5631]
Internal file name [OUTPUT/4879_Sunday_June_05_2022_03_09_00_PM_36843820/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_1", "lin-
ear_second_order_ode_solved_by_an_integrating_factor", "second or-
der series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (19)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (20)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −4yx2 + 4xy′ + 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −16yx3 + 12x2y′ + 6y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
32x3 + 48x

)
y′ − 48y

(
x4 + x2 − 1

4

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= −128yx5 + 80y′x4 − 320yx3 + 240x2y′ + 60y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
192x5 + 960x3 + 720x

)
y′ − 320y

(
x6 + 9

2x
4 + 9

4x
2 − 3

8

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 2y(0)
F1 = 6y′(0)
F2 = 12y(0)
F3 = 60y′(0)
F4 = 120y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + x2 + 1

2x
4 + 1

6x
6
)
y(0) +

(
x+ x3 + 1

2x
5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −4
(

∞∑
n=0

anx
n

)
x2 + 4x

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−4nxnan) +
(

∞∑
n=0

4xn+2an

)
+

∞∑
n =0

(−2anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

4xn+2an =
∞∑
n=2

4an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−4nxnan) +
(

∞∑
n=2

4an−2x
n

)
+

∞∑
n =0

(−2anxn) = 0

(3)
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n = 0 gives
2a2 − 2a0 = 0

a2 = a0

n = 1 gives
6a3 − 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = a1

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 4nan + 4an−2 − 2an = 0

Solving for an+2, gives

(5)

an+2 =
4nan + 2an − 4an−2

(n+ 2) (n+ 1)

= 2(2n+ 1) an
(n+ 2) (n+ 1) −

4an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 − 10a2 + 4a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2

For n = 3 the recurrence equation gives

20a5 − 14a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
2
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For n = 4 the recurrence equation gives

30a6 − 18a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
6

For n = 5 the recurrence equation gives

42a7 − 22a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
6

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a0x
2 + a1x

3 + 1
2a0x

4 + 1
2a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x2 + 1

2x
4
)
a0 +

(
x+ x3 + 1

2x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x2 + 1

2x
4
)
c1 +

(
x+ x3 + 1

2x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + x2 + 1

2x
4 + 1

6x
6
)
y(0) +

(
x+ x3 + 1

2x
5
)
y′(0) +O

(
x6)

(2)y =
(
1 + x2 + 1

2x
4
)
c1 +

(
x+ x3 + 1

2x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + x2 + 1

2x
4 + 1

6x
6
)
y(0) +

(
x+ x3 + 1

2x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + x2 + 1

2x
4
)
c1 +

(
x+ x3 + 1

2x
5
)
c2 +O

(
x6)

Verified OK.

1.9.1 Maple step by step solution

Let’s solve
y′′ = −4yx2 + 4xy′ + 2y

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (−4x2 + 2) y + 4xy′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 4xy′ + (4x2 − 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion
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y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
Order:=6;
dsolve(diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + x2 + 1

2x
4
)
y(0) +

(
x+ x3 + 1

2x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[y''[x]-4*x*y'[x]+(4*x^2-2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

2 + x3 + x

)
+ c1

(
x4

2 + x2 + 1
)
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1.10 problem 16
1.10.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 87
1.10.2 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 88
1.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 95

Internal problem ID [5632]
Internal file name [OUTPUT/4880_Sunday_June_05_2022_03_09_01_PM_43917989/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature", "first order ode
series method. Ordinary point", "first order ode series method. Taylor series
method"

Maple gives the following as the ode type
[_quadrature]

4y + y′ = 1

With initial conditions [
y(0) = 5

4

]
With the expansion point for the power series method at x = 0.

1.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 4
q(x) = 1
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Hence the ode is

4y + y′ = 1

The domain of p(x) = 4 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.10.2 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0

But
df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f

Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)
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Hence

F0 = −4y + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

= 16y − 4

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

= −64y + 16

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

= 256y − 64

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

= −1024y + 256

And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = 5
4 gives

F0 = −4
F1 = 16
F2 = −64
F3 = 256
F4 = −1024

Substituting all the above in (6) and simplifying gives the solution as

y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = y(0)
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Therefore the solution becomes

y = 5
4 − 4x+ 8x2 − 32

3 x3 + 32
3 x4 − 128

15 x5

Hence the solution can be written as

y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

which simplifies to

y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

y′ + q(x)y = p(x)
4y + y′ = 1

Where

q(x) = 4
p(x) = 1

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not. Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1
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Substituting the above back into the ode gives

4
(

∞∑
n=0

anx
n

)
+
(

∞∑
n=1

nanx
n−1

)
= 1 (1)

Which simplifies to

(2)
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

4anxn

)
= 1

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 1) an+1x
n

)
+
(

∞∑
n=0

4anxn

)
= 1

For 0 ≤ n, the recurrence equation is

(4)((n+ 1) an+1 + 4an)xn = 1

For n = 0 the recurrence equation gives

(a1 + 4a0) 1 = 1
a1 + 4a0 = 1

Which after substituting the earlier terms found becomes

a1 = 1− 4a0

For n = 1 the recurrence equation gives

(2a2 + 4a1)x = 0
2a2 + 4a1 = 0
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Which after substituting the earlier terms found becomes

a2 = −2 + 8a0

For n = 2 the recurrence equation gives

(3a3 + 4a2)x2 = 0
3a3 + 4a2 = 0

Which after substituting the earlier terms found becomes

a3 =
8
3 − 32a0

3

For n = 3 the recurrence equation gives

(4a4 + 4a3)x3 = 0
4a4 + 4a3 = 0

Which after substituting the earlier terms found becomes

a4 = −8
3 + 32a0

3

For n = 4 the recurrence equation gives

(5a5 + 4a4)x4 = 0
5a5 + 4a4 = 0

Which after substituting the earlier terms found becomes

a5 =
32
15 − 128a0

15

For n = 5 the recurrence equation gives

(6a6 + 4a5)x5 = 0
6a6 + 4a5 = 0
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Which after substituting the earlier terms found becomes

a6 = −64
45 + 256a0

45

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + (1− 4a0)x+ (−2 + 8a0)x2 +
(
8
3 − 32a0

3

)
x3

+
(
−8
3 + 32a0

3

)
x4 +

(
32
15 − 128a0

15

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1−4x+8x2− 32

3 x3+ 32
3 x4− 128

15 x5
)
a0+x−2x2+ 8x3

3 − 8x4

3 + 32x5

15 +O
(
x6)

At x = 0 the solution above becomes

y(0) = a0

Therefore the solution in Eq(3) now can be written as

y =
(
1− 4x+8x2− 32

3 x3+ 32
3 x4− 128

15 x5
)
y(0)+x− 2x2+ 8x3

3 − 8x4

3 + 32x5

15 +O
(
x6)

Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = 5
4

Therefore the solution becomes

y = 5
4 − 4x+ 8x2 − 32

3 x3 + 32
3 x4 − 128

15 x5
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Hence the solution can be written as

y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

which simplifies to

y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

(2)y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

Verification of solutions

y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

Verified OK.

y = 5
4 − 4x+ 8x2 − 32x3

3 + 32x4

3 − 128x5

15 +O
(
x6)

Verified OK.

1.10.3 Maple step by step solution

Let’s solve[
4y + y′ = 1, y(0) = 5

4

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

−4y+1 = 1

• Integrate both sides with respect to x∫
y′

−4y+1dx =
∫
1dx+ c1

• Evaluate integral
− ln(−4y+1)

4 = x+ c1
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• Solve for y
y = − e−4x−4c1

4 + 1
4

• Use initial condition y(0) = 5
4

5
4 = − e−4c1

4 + 1
4

• Solve for c1
c1 = − ln(2)

2 − Iπ
4

• Substitute c1 = − ln(2)
2 − Iπ

4 into general solution and simplify

y = e−4x + 1
4

• Solution to the IVP
y = e−4x + 1

4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x)+4*y(x)=1,y(0) = 5/4],y(x),type='series',x=0);� �

y(x) = 5
4 − 4x+ 8x2 − 32

3 x3 + 32
3 x4 − 128

15 x5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{y'[x]+4*y[x]==1,{y[0]==125/100}},y[x],{x,0,5}]� �

y(x) → −128x5

15 + 32x4

3 − 32x3

3 + 8x2 − 4x+ 5
4
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1.11 problem 17
1.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 97
1.11.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 105

Internal problem ID [5633]
Internal file name [OUTPUT/4881_Sunday_June_05_2022_03_09_02_PM_90872983/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 3xy′ + 2y = 0

With initial conditions

[y(0) = 1, y′(0) = 1]

With the expansion point for the power series method at x = 0.

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 3x
q(x) = 2

F = 0
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Hence the ode is

y′′ + 3xy′ + 2y = 0

The domain of p(x) = 3x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (23)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (24)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −3xy′ − 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 9x2y′ + 6xy − 5y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −27y′x3 − 18yx2 + 39xy′ + 16y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
81x4 − 216x2 + 55

)
y′ +

(
54x3 − 114x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−243x5 + 1026x3 − 711x

)
y′ +

(
−162x4 + 594x2 − 224

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = 1 gives

F0 = −2
F1 = −5
F2 = 16
F3 = 55
F4 = −224

Substituting all the above in (7) and simplifying gives the solution as

y = −x2 + x+ 1− 5x3

6 + 2x4

3 + 11x5

24 − 14x6

45 +O
(
x6)

y = −x2 + x+ 1− 5x3

6 + 2x4

3 + 11x5

24 − 14x6

45 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −3x
(

∞∑
n=1

nanx
n−1

)
− 2
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

3nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

3nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + 2a0 = 0

a2 = −a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 3nan + 2an = 0

Solving for an+2, gives

(5)an+2 = − an(3n+ 2)
(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + 5a1 = 0

Which after substituting the earlier terms found becomes

a3 = −5a1
6

For n = 2 the recurrence equation gives

12a4 + 8a2 = 0

Which after substituting the earlier terms found becomes

a4 =
2a0
3

For n = 3 the recurrence equation gives

20a5 + 11a3 = 0

Which after substituting the earlier terms found becomes

a5 =
11a1
24

For n = 4 the recurrence equation gives

30a6 + 14a4 = 0

Which after substituting the earlier terms found becomes

a6 = −14a0
45
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For n = 5 the recurrence equation gives

42a7 + 17a5 = 0

Which after substituting the earlier terms found becomes

a7 = −187a1
1008

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 5

6a1x
3 + 2

3a0x
4 + 11

24a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 2

3x
4
)
a0 +

(
x− 5

6x
3 + 11

24x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 2

3x
4
)
c1 +

(
x− 5

6x
3 + 11

24x
5
)
c2 +O

(
x6)

y = 1− x2 + 2x4

3 + x− 5x3

6 + 11x5

24 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = −x2 + x+ 1− 5x3

6 + 2x4

3 + 11x5

24 − 14x6

45 +O
(
x6)

(2)y = 1− x2 + 2x4

3 + x− 5x3

6 + 11x5

24 +O
(
x6)
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Verification of solutions

y = −x2 + x+ 1− 5x3

6 + 2x4

3 + 11x5

24 − 14x6

45 +O
(
x6)

Verified OK.

y = 1− x2 + 2x4

3 + x− 5x3

6 + 11x5

24 +O
(
x6)

Verified OK.

1.11.2 Maple step by step solution

Let’s solve[
y′′ = −3xy′ − 2y, y(0) = 1, y′

∣∣∣{x=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3xy′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(3k + 2))xk = 0
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• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 3akk + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = −ak(3k+2)

k2+3k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+3*x*diff(y(x),x)+2*y(x)=0,y(0) = 1, D(y)(0) = 1],y(x),type='series',x=0);� �

y(x) = 1 + x− x2 − 5
6x

3 + 2
3x

4 + 11
24x

5 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32� �
AsymptoticDSolveValue[{y''[x]+3*x*y'[x]+2*y[x]==0,{y[0]==1,y'[0]==1}},y[x],{x,0,5}]� �

y(x) → 11x5

24 + 2x4

3 − 5x3

6 − x2 + x+ 1
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1.12 problem 18
1.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 108
1.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 116

Internal problem ID [5634]
Internal file name [OUTPUT/4882_Sunday_June_05_2022_03_09_05_PM_64167886/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

(
−x2 + 1

)
y′′ − 2xy′ + 30y = 0

With initial conditions [
y(0) = 0, y′(0) = 15

8

]
With the expansion point for the power series method at x = 0.

1.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − 2x
−x2 + 1

q(x) = 30
−x2 + 1

F = 0
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Hence the ode is

y′′ − 2xy′
−x2 + 1 + 30y

−x2 + 1 = 0

The domain of p(x) = − 2x
−x2+1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 30
−x2+1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (26)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (27)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(xy′ − 15y)
x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 36x2y′ − 120xy − 28y′

(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −24(11y′x3 − 60yx2 − 9xy′ + 30y)
(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (2760x4 − 2880x2 + 504) y′ + (−13680x3 + 7920x) y
(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−30240x5 + 33600x3 − 7200x) y′ + 151200

(
x4 − 2

3x
2 + 1

21

)
y

(x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 15

8 gives

F0 = 0

F1 = −105
2

F2 = 0
F3 = 945
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = 15x
8 − 35x3

4 + 63x5

8 +O
(
x6)
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y = 15x
8 − 35x3

4 + 63x5

8 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x2 + 1
)
y′′ − 2xy′ + 30y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
−x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 2x

(
∞∑
n=1

nanx
n−1

)
+ 30

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to
∞∑

n =2

(−xnann(n− 1)) +
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nanxn) +
(

∞∑
n=0

30anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−2nanxn) +
(

∞∑
n=0

30anxn

)
= 0
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n = 0 gives
2a2 + 30a0 = 0

a2 = −15a0

n = 1 gives
6a3 + 28a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −14a1
3

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− 2nan + 30an = 0

Solving for an+2, gives

(5)an+2 =
an(n2 + n− 30)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

24a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 30a0

For n = 3 the recurrence equation gives

18a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
21a1
5
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For n = 4 the recurrence equation gives

10a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −10a0

For n = 5 the recurrence equation gives

42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 15a0x2 − 14
3 a1x

3 + 30a0x4 + 21
5 a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
30x4 − 15x2 + 1

)
a0 +

(
x− 14

3 x3 + 21
5 x5

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
30x4 − 15x2 + 1

)
c1 +

(
x− 14

3 x3 + 21
5 x5

)
c2 +O

(
x6)

y = 15x
8 − 35x3

4 + 63x5

8 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = 15x
8 − 35x3

4 + 63x5

8 +O
(
x6)

(2)y = 15x
8 − 35x3

4 + 63x5

8 +O
(
x6)

Verification of solutions

y = 15x
8 − 35x3

4 + 63x5

8 +O
(
x6)

Verified OK.

y = 15x
8 − 35x3

4 + 63x5

8 +O
(
x6)

Verified OK.

1.12.2 Maple step by step solution

Let’s solve[
(−x2 + 1) y′′ − 2xy′ + 30y = 0, y(0) = 0, y′

∣∣∣{x=0}
= 15

8

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = − 2xy′

x2−1 +
30y
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2xy′

x2−1 −
30y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 30

x2−1

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (1 + x)2 · P3(x) is analytic at x = −1
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(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
(x2 − 1) y′′ + 2xy′ − 30y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 30y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 6) (k + r − 5)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
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r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 6) (k − 5) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+6)(k−5)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 5
ak+1 = ak(k+6)(k−5)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −15a0

• Apply recursion relation for k = 1
a2 = −7a1

2

• Express in terms of a0
a2 = 105a0

2

• Apply recursion relation for k = 2
a3 = −4a2

3

• Express in terms of a0
a3 = −70a0

• Apply recursion relation for k = 3
a4 = −9a3

16

• Express in terms of a0
a4 = 315a0

8

• Apply recursion relation for k = 4
a5 = −a4

5

• Express in terms of a0
a5 = −63a0

8

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 15u+ 105

2 u2 − 70u3 + 315
8 u4 − 63

8 u
5)

• Revert the change of variables u = 1 + x[
y = a0

(
−15

8 x+ 35
4 x

3 − 63
8 x

5)]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
Order:=6;
dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+30*y(x)=0,y(0) = 0, D(y)(0) = 15/8],y(x),type='series',x=0);� �

y(x) = 15
8 x− 35

4 x3 + 63
8 x5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 23� �
AsymptoticDSolveValue[{(1-x^2)*y''[x]-2*x*y'[x]+30*y[x]==0,{y[0]==0,y'[0]==1875/1000}},y[x],{x,0,5}]� �

y(x) → 63x5

8 − 35x3

4 + 15x
8
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1.13 problem 19
1.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 120
1.13.2 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 121
1.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 128

Internal problem ID [5635]
Internal file name [OUTPUT/4883_Sunday_June_05_2022_03_09_07_PM_21564007/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_lookup", "first order
ode series method. Ordinary point", "first order ode series method. Taylor
series method"

Maple gives the following as the ode type
[_separable]

(−2 + x) y′ − xy = 0

With initial conditions

[y(0) = 4]

With the expansion point for the power series method at x = 0.

1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − x

−2 + x

q(x) = 0
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Hence the ode is

y′ − xy

−2 + x
= 0

The domain of p(x) = − x
−2+x

is

{x < 2∨ 2 < x}

And the point x0 = 0 is inside this domain. Hence solution exists and is unique.

1.13.2 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0

But
df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f

Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)
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Hence

F0 =
xy

−2 + x

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

= y(x2 − 2)
(−2 + x)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

= y(x2 + 2x− 2)
(−2 + x)2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

= xy(x+ 4)
(−2 + x)2

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

= y(x2 + 6x+ 4)
(−2 + x)2

And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = 4 gives

F0 = 0
F1 = −2
F2 = −2
F3 = 0
F4 = 4

Substituting all the above in (6) and simplifying gives the solution as

y = −x2 + 4− x3

3 + x5

30 +O
(
x6)
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Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = y(0)

Therefore the solution becomes

y = −x2 + 4− 1
3x

3 + 1
30x

5

Hence the solution can be written as

y = −x2 + 4− x3

3 + x5

30 +O
(
x6)

which simplifies to

y = −x2 + 4− x3

3 + x5

30 +O
(
x6)

Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

y′ + q(x)y = p(x)

y′ − xy

−2 + x
= 0

Where

q(x) = − x

−2 + x

p(x) = 0

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not. Now the ode is normalized by writing it as

(−2 + x) y′ − xy = 0
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Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

Substituting the above back into the ode gives

(−2 + x)
(

∞∑
n=1

nanx
n−1

)
− x

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
∞∑

n =1

(
−2nanxn−1)+( ∞∑

n=1

nanx
n

)
+

∞∑
n =0

(
−x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =1

(
−2nanxn−1) = ∞∑

n=0

(−2(1 + n) a1+nx
n)

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
∞∑

n =0

(−2(1 + n) a1+nx
n) +

(
∞∑
n=1

nanx
n

)
+

∞∑
n =1

(−an−1x
n) = 0

For 1 ≤ n, the recurrence equation is

(4)−2(1 + n) a1+n + nan − an−1 = 0
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Solving for a1+n, gives

(5)a1+n = nan − an−1

2 + 2n

For n = 1 the recurrence equation gives

−4a2 + a1 − a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a0
4

For n = 2 the recurrence equation gives

−6a3 + 2a2 − a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
12

For n = 3 the recurrence equation gives

−8a4 + 3a3 − a2 = 0

Which after substituting the earlier terms found becomes

a4 = 0

For n = 4 the recurrence equation gives

−10a5 + 4a4 − a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
120

For n = 5 the recurrence equation gives

−12a6 + 5a5 − a4 = 0
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Which after substituting the earlier terms found becomes

a6 =
a0
288

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 −
1
4a0x

2 − 1
12a0x

3 + 1
120a0x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

4x
2 − 1

12x
3 + 1

120x
5
)
a0 +O

(
x6)

At x = 0 the solution above becomes

y(0) = a0

Therefore the solution in Eq(3) now can be written as

y =
(
1− 1

4x
2 − 1

12x
3 + 1

120x
5
)
y(0) +O

(
x6)

Now we substitute the given initial conditions in the above to solve for y(0). Solving
for y(0) from initial conditions gives

y(0) = 4

Therefore the solution becomes

y = −x2 + 4− 1
3x

3 + 1
30x

5

Hence the solution can be written as

y = −x2 + 4− x3

3 + x5

30 +O
(
x6)
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which simplifies to

y = −x2 + 4− x3

3 + x5

30 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = −x2 + 4− x3

3 + x5

30 +O
(
x6)

(2)y = −x2 + 4− x3

3 + x5

30 +O
(
x6)

Verification of solutions

y = −x2 + 4− x3

3 + x5

30 +O
(
x6)

Verified OK.

y = −x2 + 4− x3

3 + x5

30 +O
(
x6)

Verified OK.

1.13.3 Maple step by step solution

Let’s solve
[(−2 + x) y′ − xy = 0, y(0) = 4]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x

−2+x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x

−2+x
dx+ c1

• Evaluate integral
ln (y) = x+ 2 ln (−2 + x) + c1

• Solve for y
y = ex+c1(−2 + x)2

• Use initial condition y(0) = 4
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4 = 4 ec1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = ex(−2 + x)2

• Solution to the IVP
y = ex(−2 + x)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
Order:=6;
dsolve([(x-2)*diff(y(x),x)=x*y(x),y(0) = 4],y(x),type='series',x=0);� �

y(x) = 4− x2 − 1
3x

3 + 1
30x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 24� �
AsymptoticDSolveValue[{(x-2)*y'[x]==x*y[x],{y[0]==4}},y[x],{x,0,5}]� �

y(x) → x5

30 − x3

3 − x2 + 4

129



2 Chapter 5. Series Solutions of ODEs. Special
Functions. Problem set 5.3. Extended Power
Series Method: Frobenius Method page 186

2.1 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.2 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.3 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.4 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2.5 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
2.6 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
2.7 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
2.8 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
2.9 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
2.10 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
2.11 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
2.12 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
2.13 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
2.14 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
2.15 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
2.16 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
2.17 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
2.18 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
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2.1 problem 2
Internal problem ID [5636]
Internal file name [OUTPUT/4884_Sunday_June_05_2022_03_09_08_PM_23824306/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method", "second_or-
der_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(−2 + x)2 y′′ + (x+ 2) y′ − y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (30)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (31)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −xy′ + 2y′ − y

(−2 + x)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (xy′ + 2y′ − y) (3x− 2)
(−2 + x)4

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −4(xy′ + 2y′ − y)x(3x− 4)
(−2 + x)6

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
60((x+ 2) y′ − y)

(
x3 − 2x2 + 16

15

)
(−2 + x)8

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −8(xy′ + 2y′ − y) (45x4 − 120x3 + 192x− 112)
(−2 + x)10

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 =
y(0)
4 − y′(0)

2

F1 =
y(0)
8 − y′(0)

4
F2 = 0

F3 =
y′(0)
2 − y(0)

4

F4 = −7y(0)
8 + 7y′(0)

4
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

8x
2 + 1

48x
3 − 1

480x
5 − 7

5760x
6
)
y(0)

+
(
x− 1

4x
2 − 1

24x
3 + 1

240x
5 + 7

2880x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 − 4x+ 4
)
y′′ + (x+ 2) y′ − y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 − 4x+ 4

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (x+ 2)

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =2

(
−4nxn−1an(n− 1)

)
+
(

∞∑
n=2

4n(n− 1) anxn−2

)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=1

2nanxn−1

)
+

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

(
−4nxn−1an(n− 1)

)
=

∞∑
n=1

(−4(n+ 1) an+1nxn)

∞∑
n =2

4n(n− 1) anxn−2 =
∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =1

(−4(n+ 1) an+1nxn)

+
(

∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nanx
n

)

+
(

∞∑
n=0

2(n+ 1) an+1x
n

)
+

∞∑
n =0

(−anx
n) = 0

n = 0 gives
8a2 + 2a1 − a0 = 0

a2 =
a0
8 − a1

4

n = 1 gives
−4a2 + 24a3 = 0

Which after substituting earlier equations, simplifies to

−a0
2 + a1 + 24a3 = 0

Or
a3 =

a0
48 − a1

24
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For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− 4(n+ 1) an+1n+ 4(n+ 2) an+2(n+ 1) + nan + 2(n+ 1) an+1 − an = 0

Solving for an+2, gives

(5)

an+2 = −nan − 4nan+1 − an + 2an+1

4 (n+ 2)

= −(n− 1) an
4 (n+ 2) − (−4n+ 2) an+1

4 (n+ 2)

For n = 2 the recurrence equation gives

3a2 − 18a3 + 48a4 = 0

Which after substituting the earlier terms found becomes

a4 = 0

For n = 3 the recurrence equation gives

8a3 − 40a4 + 80a5 = 0

Which after substituting the earlier terms found becomes

a5 = − a0
480 + a1

240

For n = 4 the recurrence equation gives

15a4 − 70a5 + 120a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 7a0
5760 + 7a1

2880

For n = 5 the recurrence equation gives

24a5 − 108a6 + 168a7 = 0
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Which after substituting the earlier terms found becomes

a7 = − 13a0
26880 + 13a1

13440

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(a0
8 − a1

4

)
x2 +

(a0
48 − a1

24

)
x3 +

(
− a0
480 + a1

240

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

8x
2 + 1

48x
3 − 1

480x
5
)
a0 +

(
x− 1

4x
2 − 1

24x
3 + 1

240x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

8x
2 + 1

48x
3 − 1

480x
5
)
c1 +

(
x− 1

4x
2 − 1

24x
3 + 1

240x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + 1

8x
2 + 1

48x
3 − 1

480x
5 − 7

5760x
6
)
y(0)

+
(
x− 1

4x
2 − 1

24x
3 + 1

240x
5 + 7

2880x
6
)
y′(0) +O

(
x6)

(2)y =
(
1 + 1

8x
2 + 1

48x
3 − 1

480x
5
)
c1 +

(
x− 1

4x
2 − 1

24x
3 + 1

240x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + 1

8x
2 + 1

48x
3 − 1

480x
5 − 7

5760x
6
)
y(0)

+
(
x− 1

4x
2 − 1

24x
3 + 1

240x
5 + 7

2880x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

8x
2 + 1

48x
3 − 1

480x
5
)
c1 +

(
x− 1

4x
2 − 1

24x
3 + 1

240x
5
)
c2 +O

(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 44� �
Order:=6;
dsolve((x-2)^2*diff(y(x),x$2)+(x+2)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
1+ 1

8x
2+ 1

48x
3− 1

480x
5
)
y(0)+

(
x− 1

4x
2− 1

24x
3+ 1

240x
5
)
D(y) (0)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56� �
AsymptoticDSolveValue[(x-2)^2*y''[x]+(x+2)*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
− x5

480 + x3

48 + x2

8 + 1
)
+ c2

(
x5

240 − x3

24 − x2

4 + x

)
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2.2 problem 3
2.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 149

Internal problem ID [5637]
Internal file name [OUTPUT/4885_Sunday_June_05_2022_03_09_10_PM_98595007/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

xy′′ + 2y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 2y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x

q(x) = 1
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Table 14: Table p(x), q(x) singularites.

p(x) = 2
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 2y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+2

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −1

Since a0 6= 0 then the indicial equation becomes

r x−1+r(1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 + n+ r
(4)

Which for the root r = 0 becomes

an = − an−2

n (1 + n) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 5r + 6

Which for the root r = 0 becomes
a2 = −1

6
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+5r+6 −1
6

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+5r+6 −1
6

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r4 + 14r3 + 71r2 + 154r + 120
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Which for the root r = 0 becomes

a4 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+5r+6 −1
6

a3 0 0
a4

1
r4+14r3+71r2+154r+120

1
120

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+5r+6 −1
6

a3 0 0
a4

1
r4+14r3+71r2+154r+120

1
120

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

6 + x4

120 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→−1

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 2(n+ r) bn + bn−2 = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2) + 2(n− 1) bn + bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−2

n2 + 2nr + r2 + n+ r
(5)

Which for the root r = −1 becomes

bn = − bn−2

n2 − n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
r2 + 5r + 6

Which for the root r = −1 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+5r+6 −1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+5r+6 −1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(r2 + 5r + 6) (r2 + 9r + 20)

Which for the root r = −1 becomes

b4 =
1
24
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+5r+6 −1
2

b3 0 0
b4

1
r4+14r3+71r2+154r+120

1
24

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+5r+6 −1
2

b3 0 0
b4

1
r4+14r3+71r2+154r+120

1
24

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

2 + x4

24 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x
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Hence the final solution is

y = yh

= c1

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x

Verification of solutions

y = c1

(
1− x2

6 + x4

120 +O
(
x6))+

c2
(
1− x2

2 + x4

24 +O(x6)
)

x

Verified OK.

2.2.1 Maple step by step solution

Let’s solve
y′′x+ 2y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
+ y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 2y′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 0}
• Each term must be 0

a1(1 + r) (2 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 3 + r) + ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1− 1

6x
2 + 1

120x
4 +O

(
x6))+

c2
(
1− 1

2x
2 + 1

24x
4 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 42� �
AsymptoticDSolveValue[x*y''[x]+2*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x3

24 − x

2 + 1
x

)
+ c2

(
x4

120 − x2

6 + 1
)
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2.3 problem 4
2.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 164

Internal problem ID [5638]
Internal file name [OUTPUT/4886_Sunday_June_05_2022_03_09_12_PM_66663530/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x
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Table 16: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = − an−1

(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
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For n = 1, using the above recursive equation gives

a1 = − 1
(1 + r) r

Which for the root r = 1 becomes
a1 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

For n = 2, using the above recursive equation gives

a2 =
1

(1 + r)2 r (2 + r)

Which for the root r = 1 becomes
a2 =

1
12

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

For n = 3, using the above recursive equation gives

a3 = − 1
(1 + r)2 r (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = − 1
144

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

For n = 4, using the above recursive equation gives

a4 =
1

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 =
1

2880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

For n = 5, using the above recursive equation gives

a5 = − 1
(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 1
86400

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

a5 − 1
(1+r)2r(2+r)2(3+r)2(4+r)2(5+r) − 1

86400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
(1 + r) r

Therefore

lim
r→r2

− 1
(1 + r) r = lim

r→0
− 1
(1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2 +

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

(
2y′1(x)

x
− y1(x)

x2

)
xC +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(

∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x−

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x−

(
∞∑
n=0

anx
n+1
))

C

x

+

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2 +

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to(
∞∑
n=0

2C xnan(n+ 1)
)

+
∞∑

n =0

(−C xnan) +
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0

(2A)

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(−C xnan) =
∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

bnx
n =

∞∑
n=1

bn−1x
n−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

5Ca2 + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 −
7
6 = 0

Solving the above for b3 gives
b3 =

7
36

For n = 4, Eq (2B) gives
7Ca3 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 +
35
144 = 0
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Solving the above for b4 gives
b4 = − 35

1728
For n = 5, Eq (2B) gives

9Ca4 + b4 + 20b5 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 −
101
4320 = 0

Solving the above for b5 gives
b5 =

101
86400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Hence the final solution is
y = yh

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))

163



Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Verification of solutions

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))

Verified OK.

2.3.1 Maple step by step solution

Let’s solve
y′′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = − ak

(k+1)k

165



• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak
(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − ak

(k+1)k , bk+1 = − bk
(k+2)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 − 1
144x

3 + 1
2880x

4 − 1
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 + 1

144x
4 − 1

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 7

36x
3 − 35

1728x
4 + 101

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
144x

(
x3 − 12x2 + 72x− 144

)
log(x)

+ −47x4 + 480x3 − 2160x2 + 1728x+ 1728
1728

)
+ c2

(
x5

2880 −
x4

144 +
x3

12 −
x2

2 +x

)
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2.4 problem 5
2.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 176

Internal problem ID [5639]
Internal file name [OUTPUT/4887_Sunday_June_05_2022_03_09_15_PM_74329414/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (1 + 2x) y′ + (1 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (1 + 2x) y′ + (1 + x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1 + 2x
x

q(x) = 1 + x

x
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Table 18: Table p(x), q(x) singularites.

p(x) = 1+2x
x

singularity type
x = 0 “regular”

q(x) = 1+x
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (1 + 2x) y′ + (1 + x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (1 + 2x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ (1 + x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r−1

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0
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Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−2r − 1
(1 + r)2

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an−1(n+ r − 1) + an(n+ r) + an−1 + an−2 = 0
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Solving for an from recursive equation (4) gives

an = −2nan−1 + 2ran−1 + an−2 − an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −2nan−1 − an−2 + an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−2r−1
(1+r)2 −1

For n = 2, using the above recursive equation gives

a2 =
3r2 + 6r + 2

(1 + r)2 (r + 2)2

Which for the root r = 0 becomes
a2 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1

−2r−1
(1+r)2 −1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

For n = 3, using the above recursive equation gives

a3 =
−4r3 − 18r2 − 22r − 6
(1 + r)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes
a3 = −1

6
And the table now becomes
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n an,r an

a0 1 1
a1

−2r−1
(1+r)2 −1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
−4r3−18r2−22r−6
(1+r)2(r+2)2(r+3)2 −1

6

For n = 4, using the above recursive equation gives

a4 =
5r4 + 40r3 + 105r2 + 100r + 24
(1 + r)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes
a4 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1

−2r−1
(1+r)2 −1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
−4r3−18r2−22r−6
(1+r)2(r+2)2(r+3)2 −1

6

a4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24

For n = 5, using the above recursive equation gives

a5 =
−6r5 − 75r4 − 340r3 − 675r2 − 548r − 120
(1 + r)2 (r + 2)2 (r + 3)2 (4 + r)2 (r + 5)2

Which for the root r = 0 becomes

a5 = − 1
120

And the table now becomes
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n an,r an

a0 1 1
a1

−2r−1
(1+r)2 −1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
−4r3−18r2−22r−6
(1+r)2(r+2)2(r+3)2 −1

6

a4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24

a5
−6r5−75r4−340r3−675r2−548r−120
(1+r)2(r+2)2(r+3)2(4+r)2(r+5)2 − 1

120

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

−2r−1
(1+r)2 −1 2r

(1+r)3 0

b2
3r2+6r+2

(1+r)2(r+2)2
1
2

−6r3−18r2−14r
(1+r)3(r+2)3 0

b3
−4r3−18r2−22r−6
(1+r)2(r+2)2(r+3)2 −1

6
12
(
r4+8r3+ 47

2 r2+30r+ 85
6
)
r

(1+r)3(r+2)3(r+3)3 0

b4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24 −20

(
r6+15r5+ 183

2 r4+290r3+ 5031
10 r2+453r+166

)
r

(1+r)3(r+2)3(r+3)3(4+r)3 0

b5
−6r5−75r4−340r3−675r2−548r−120
(1+r)2(r+2)2(r+3)2(4+r)2(r+5)2 − 1

120
30r
(
r8+24r7+ 739

3 r6+1410r5+4915r4+10668r3+14063r2+10290r+ 48076
15

)
(1+r)3(r+2)3(r+3)3(4+r)3(r+5)3 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6)) ln (x) +O

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

((
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6)) ln (x) +O

(
x6))

Hence the final solution is

y = yh

= c1

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

((
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6)) ln (x) +O

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

((
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6)) ln (x) +O

(
x6))

Verification of solutions

y = c1

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

((
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6)) ln (x) +O

(
x6))

Verified OK.
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2.4.1 Maple step by step solution

Let’s solve
y′′x+ (1 + 2x) y′ + (1 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (1+2x)y′
x

− (1+x)y
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+2x)y′
x

+ (1+x)y
x

= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1+2x
x

, P3(x) = 1+x
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (1 + 2x) y′ + (1 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
a1(1 + r)2 + a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 + ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 + a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + 2akk + ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + 2ak+1(k + 1) + ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = −2kak+1+ak+3ak+1

(k+2)2
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −2kak+1+ak+3ak+1

(k+2)2 , a1 + a0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 43� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(2*x+1)*diff(y(x),x)+(x+1)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x+ 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

120x
5
)
(c2 ln (x) + c1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 78� �
AsymptoticDSolveValue[x*y''[x]+(2*x+1)*y'[x]+(x+1)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
− x5

120 + x4

24 − x3

6 + x2

2 − x+1
)
+ c2

(
− x5

120 + x4

24 − x3

6 + x2

2 − x+1
)
log(x)
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2.5 problem 6
Internal problem ID [5640]
Internal file name [OUTPUT/4888_Sunday_June_05_2022_03_09_18_PM_54282956/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + 2y′x3 +
(
x2 − 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 2y′x3 +
(
x2 − 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2

q(x) = x2 − 2
x
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Table 20: Table p(x), q(x) singularites.

p(x) = 2x2

singularity type
x = ∞ “regular”
x = −∞ “regular”

q(x) = x2−2
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞,−∞, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 2y′x3 +
(
x2 − 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ 2
(

∞∑
n=0

(n+ r) anxn+r−1

)
x3 +

(
x2 − 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x2+n+ran(n+ r)
)

+
(

∞∑
n=0

x2+n+ran

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2x2+n+ran(n+ r) =
∞∑
n=3

2an−3(n+ r − 3)xn+r−1

∞∑
n =0

x2+n+ran =
∞∑
n=3

an−3x
n+r−1

∞∑
n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=3

2an−3(n+ r − 3)xn+r−1

)

+
(

∞∑
n=3

an−3x
n+r−1

)
+

∞∑
n =1

(
−2an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0
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Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
2

r (1 + r)
Substituting n = 2 in Eq. (2B) gives

a2 =
4

(1 + r)2 r (2 + r)

For 3 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an−3(n+ r − 3) + an−3 − 2an−1 = 0

Solving for an from recursive equation (4) gives

an = −2nan−3 + 2ran−3 − 5an−3 − 2an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = −2nan−3 + 3an−3 + 2an−1

(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

2
r(1+r) 1

a2
4

(1+r)2r(2+r)
1
3

For n = 3, using the above recursive equation gives

a3 =
−2r5 − 9r4 − 14r3 − 9r2 − 2r + 8

(1 + r)2 r (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = − 7
36

And the table now becomes
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n an,r an

a0 1 1
a1

2
r(1+r) 1

a2
4

(1+r)2r(2+r)
1
3

a3
−2r5−9r4−14r3−9r2−2r+8

(1+r)2r(2+r)2(3+r) − 7
36

For n = 4, using the above recursive equation gives

a4 =
−8r5 − 56r4 − 168r3 − 268r2 − 220r − 56

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 = − 97
360

And the table now becomes

n an,r an

a0 1 1
a1

2
r(1+r) 1

a2
4

(1+r)2r(2+r)
1
3

a3
−2r5−9r4−14r3−9r2−2r+8

(1+r)2r(2+r)2(3+r) − 7
36

a4
−8r5−56r4−168r3−268r2−220r−56

(1+r)2r(2+r)2(3+r)2(4+r) − 97
360

For n = 5, using the above recursive equation gives

a5 =
−24r5 − 228r4 − 1000r3 − 2412r2 − 3056r − 1552

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 517
5400

And the table now becomes
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n an,r an

a0 1 1
a1

2
r(1+r) 1

a2
4

(1+r)2r(2+r)
1
3

a3
−2r5−9r4−14r3−9r2−2r+8

(1+r)2r(2+r)2(3+r) − 7
36

a4
−8r5−56r4−168r3−268r2−220r−56

(1+r)2r(2+r)2(3+r)2(4+r) − 97
360

a5
−24r5−228r4−1000r3−2412r2−3056r−1552

(1+r)2r(2+r)2(3+r)2(4+r)2(5+r) − 517
5400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 2
r (1 + r)

Therefore

lim
r→r2

2
r (1 + r) = lim

r→0

2
r (1 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ + 2y′x3 + (x2 − 2) y = 0 gives

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 2
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x3

+
(
x2 − 2

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
y′′1(x)x+ 2y′1(x)x3 +

(
x2 − 2

)
y1(x)

)
ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x

+ 2y1(x)x2
)
C +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x3 +

(
x2 − 2

)( ∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

y′′1(x)x+ 2y′1(x)x3 +
(
x2 − 2

)
y1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ 2y1(x)x2

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x3 +

(
x2 − 2

)( ∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ (2x3 − 1)

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 + 2

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x4 + (x2 − 2)

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x+ (2x3 − 1)

(
∞∑
n=0

anx
n+1
))

C

x

+

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2 + 2

(
∞∑
n=0

xn−1bnn

)
x4 + (x2 − 2)

(
∞∑
n=0

bnx
n

)
x

x
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C xnan(n+ 1)
)

+
(

∞∑
n=0

2C xn+3an

)
+

∞∑
n =0

(−Canx
n)

+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

2nx2+nbn

)

+
(

∞∑
n=0

x2+nbn

)
+

∞∑
n =0

(−2bnxn) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

2C xn+3an =
∞∑
n=4

2Can−4x
n−1

∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

2nx2+nbn =
∞∑
n=3

2(n− 3) bn−3x
n−1

∞∑
n =0

x2+nbn =
∞∑
n=3

bn−3x
n−1

∞∑
n =0

(−2bnxn) =
∞∑
n=1

(
−2bn−1x

n−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+
(

∞∑
n=4

2Can−4x
n−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=3

2(n− 3) bn−3x
n−1

)

+
(

∞∑
n=3

bn−3x
n−1

)
+

∞∑
n =1

(
−2bn−1x

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C − 2 = 0

Which is solved for C. Solving for C gives

C = 2

For n = 2, Eq (2B) gives
3Ca1 − 2b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 + 6 = 0

Solving the above for b2 gives
b2 = −3

For n = 3, Eq (2B) gives
5Ca2 + b0 − 2b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 +
31
3 = 0

Solving the above for b3 gives
b3 = −31

18
For n = 4, Eq (2B) gives

(2a0 + 7a3)C + 3b1 − 2b3 + 12b4 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

85
18 + 12b4 = 0

Solving the above for b4 gives
b4 = − 85

216
For n = 5, Eq (2B) gives

(2a1 + 9a4)C + 5b2 − 2b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4067
270 + 20b5 = 0

Solving the above for b5 gives
b5 =

4067
5400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 2 and all bn, then the second solution becomes

y2(x) = 2
(
x

(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6))) ln (x)

+ 1− 3x2 − 31x3

18 − 85x4

216 + 4067x5

5400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6))

+ c2

(
2
(
x

(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6))) ln (x) + 1− 3x2

− 31x3

18 − 85x4

216 + 4067x5

5400 +O
(
x6))
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Hence the final solution is

y = yh

= c1x

(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6))

+ c2

(
2x
(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6)) ln (x) + 1− 3x2 − 31x3

18

− 85x4

216 + 4067x5

5400 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6))

+ c2

(
2x
(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6)) ln (x) + 1− 3x2

− 31x3

18 − 85x4

216 + 4067x5

5400 +O
(
x6))

Verification of solutions

y = c1x

(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6))

+ c2

(
2x
(
1 + x+ x2

3 − 7x3

36 − 97x4

360 − 517x5

5400 +O
(
x6)) ln (x) + 1− 3x2 − 31x3

18

− 85x4

216 + 4067x5

5400 +O
(
x6))

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*diff(y(x),x$2)+2*x^3*diff(y(x),x)+(x^2-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1 + x+ 1

3x
2 − 7

36x
3 − 97

360x
4 − 517

5400x
5 +O

(
x6))

+ c2

(
ln (x)

(
2x+ 2x2 + 2

3x
3 − 7

18x
4 − 97

180x
5 +O

(
x6))

+
(
1− 3x2 − 31

18x
3 − 85

216x
4 + 4067

5400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 83� �
AsymptoticDSolveValue[x*y''[x]+2*x^3*y'[x]+(x^2-2)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
216
(
−x4 − 516x3 − 1080x2 − 432x+ 216

)
− 1

18x
(
7x3 − 12x2 − 36x− 36

)
log(x)

)
+ c2

(
−97x5

360 − 7x4

36 + x3

3 + x2 + x

)
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2.6 problem 7
2.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 201

Internal problem ID [5641]
Internal file name [OUTPUT/4889_Sunday_June_05_2022_03_09_22_PM_66828457/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + (x− 1) y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (37)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (38)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −(x− 1) y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y − (x− 1) y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −2y′ + (x− 1)2 y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x− 1) ((x− 1) y′ + 4y)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −(x− 1)3 y + (6x− 6) y′ + 4y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)
F1 = −y(0) + y′(0)
F2 = y(0)− 2y′(0)
F3 = y′(0)− 4y(0)
F4 = 5y(0)− 6y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5 + 1

144x
6
)
y(0)

+
(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5 − 1

120x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −(x− 1)
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

x1+nan

)
+

∞∑
n =0

(−anx
n) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=1

an−1x
n

)
+

∞∑
n =0

(−anx
n) = 0

n = 0 gives
2a2 − a0 = 0
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a2 =
a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + an−1 − an = 0

Solving for an+2, gives

(5)

an+2 =
−an−1 + an

(n+ 2) (1 + n)

= an
(n+ 2) (1 + n) −

an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 + a0 − a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
6 + a1

6

For n = 2 the recurrence equation gives

12a4 + a1 − a2 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
12 + a0

24

For n = 3 the recurrence equation gives

20a5 + a2 − a3 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
30 + a1

120

199



For n = 4 the recurrence equation gives

30a6 + a3 − a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
144 − a1

120

For n = 5 the recurrence equation gives

42a7 + a4 − a5 = 0

Which after substituting the earlier terms found becomes

a7 =
11a1
5040 − a0

560

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a0x
2

2 +
(
−a0

6 + a1
6

)
x3 +

(
−a1
12 + a0

24

)
x4 +

(
−a0
30 + a1

120

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1+ 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5
)
a0 +

(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5
)
c1 +

(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)
y =

(
1 + 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5 + 1

144x
6
)
y(0)

+
(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5 − 1

120x
6
)
y′(0) +O

(
x6)

(2)y =
(
1 + 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5
)
c1 +

(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5 + 1

144x
6
)
y(0)

+
(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5 − 1

120x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5
)
c1 +

(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5
)
c2 +O

(
x6)

Verified OK.

2.6.1 Maple step by step solution

Let’s solve
y′′ = −(x− 1) y

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (1− x) y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1
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xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak + ak−1)xk

)
= 0

• Each term must be 0
2a2 − a0 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak + ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = −−ak+1+ak

k2+5k+6 , 2a2 − a0 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve(diff(y(x),x$2)+(x-1)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

30x
5
)
y(0)

+
(
x+ 1

6x
3 − 1

12x
4 + 1

120x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[y''[x]+(x-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

120 − x4

12 + x3

6 + x

)
+ c1

(
−x5

30 + x4

24 − x3

6 + x2

2 + 1
)

203



2.7 problem 8
2.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 211

Internal problem ID [5642]
Internal file name [OUTPUT/4890_Sunday_June_05_2022_03_09_23_PM_51342390/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[_Lienard]

xy′′ + y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1
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Table 22: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −an−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
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For n = 2, using the above recursive equation gives

a2 = − 1
(r + 2)2

Which for the root r = 0 becomes
a2 = −1

4
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r + 2)2 (4 + r)2

Which for the root r = 0 becomes
a4 =

1
64

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

a3 0 0
a4

1
(r+2)2(4+r)2

1
64

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

(r+2)2 −1
4

a3 0 0
a4

1
(r+2)2(4+r)2

1
64

a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

4 + x4

64 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r
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And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − 1

(r+2)2 −1
4

2
(r+2)3

1
4

b3 0 0 0 0
b4

1
(r+2)2(4+r)2

1
64

−12−4r
(r+2)3(4+r)3 − 3

128

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x2

4 + x4

64 +O
(
x6)) ln (x) + x2

4 − 3x4

128 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x2

4 + x4

64+O
(
x6))+c2

((
1− x2

4 + x4

64+O
(
x6)) ln (x)+ x2

4 − 3x4

128+O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− x2

4 + x4

64 +O
(
x6))+ c2

((
1− x2

4 + x4

64 +O
(
x6)) ln (x)+ x2

4 − 3x4

128 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1− x2

4 + x4

64 +O
(
x6))

+ c2

((
1− x2

4 + x4

64 +O
(
x6)) ln (x) + x2

4 − 3x4

128 +O
(
x6))
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Verification of solutions

y = c1

(
1− x2

4 + x4

64 +O
(
x6))+c2

((
1− x2

4 + x4

64 +O
(
x6)) ln (x)+ x2

4 − 3x4

128 +O
(
x6))

Verified OK.

2.7.1 Maple step by step solution

Let’s solve
y′′x+ y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

211



� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + ak = 0
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• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2)2

• Recursion relation for r = 0
ak+2 = − ak

(k+2)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)2 , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− 1

4x
2 + 1

64x
4 +O

(
x6))+

(
1
4x

2 − 3
128x

4 +O
(
x6)) c2

213



3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

64 − x2

4 + 1
)
+ c2

(
−3x4

128 + x2

4 +
(
x4

64 − x2

4 + 1
)
log(x)

)
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2.8 problem 9
2.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 225

Internal problem ID [5643]
Internal file name [OUTPUT/4891_Sunday_June_05_2022_03_09_25_PM_35616607/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Jacobi]

2x(x− 1) y′′ − (1 + x) y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x2 − 2x
)
y′′ + (−1− x) y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1 + x

2x (x− 1)

q(x) = 1
2x (x− 1)
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Table 24: Table p(x), q(x) singularites.

p(x) = − 1+x
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 1
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x(x− 1) y′′ + (−1− x) y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ (−1− x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+r−1an(n+ r) (n+ r − 1)

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r−1

)

+
∞∑

n =0

(
−2xn+r−1an(n+ r) (n+ r − 1)

)
+

∞∑
n =1

(
−an−1(n+ r − 1)xn+r−1)

+
∞∑

n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

−2xn+r−1an(n+ r) (n+ r − 1)− (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

−2x−1+ra0r(−1 + r)− ra0x
−1+r = 0
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Or (
−2x−1+rr(−1 + r)− r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to(
−2r2 + r

)
x−1+r = 0

Since the above is true for all x then the indicial equation becomes

−2r2 + r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes(
−2r2 + r

)
x−1+r = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an−1(n+ r − 1) (n+ r − 2)− 2an(n+ r) (n+ r − 1)
− an−1(n+ r − 1)− an(n+ r) + an−1 = 0
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Solving for an from recursive equation (4) gives

an = an−1(2n2 + 4nr + 2r2 − 7n− 7r + 6)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 1
2 becomes

an = an−1(2n2 − 5n+ 3)
2n2 + n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2r2 − 3r + 1
2r2 + 3r + 1

Which for the root r = 1
2 becomes

a1 = 0
And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2r2+3r+1 0

For n = 2, using the above recursive equation gives

a2 =
2r3 − 3r2 + r

2r3 + 9r2 + 13r + 6
Which for the root r = 1

2 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2r2+3r+1 0

a2
2r3−3r2+r

2r3+9r2+13r+6 0
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For n = 3, using the above recursive equation gives

a3 =
2r3 − 3r2 + r

2r3 + 15r2 + 37r + 30

Which for the root r = 1
2 becomes

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2r2+3r+1 0

a2
2r3−3r2+r

2r3+9r2+13r+6 0

a3
2r3−3r2+r

2r3+15r2+37r+30 0

For n = 4, using the above recursive equation gives

a4 =
2r3 − 3r2 + r

2r3 + 21r2 + 73r + 84

Which for the root r = 1
2 becomes

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2r2+3r+1 0

a2
2r3−3r2+r

2r3+9r2+13r+6 0

a3
2r3−3r2+r

2r3+15r2+37r+30 0

a4
2r3−3r2+r

2r3+21r2+73r+84 0

For n = 5, using the above recursive equation gives

a5 =
2r3 − 3r2 + r

2r3 + 27r2 + 121r + 180

Which for the root r = 1
2 becomes

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1

2r2−3r+1
2r2+3r+1 0

a2
2r3−3r2+r

2r3+9r2+13r+6 0

a3
2r3−3r2+r

2r3+15r2+37r+30 0

a4
2r3−3r2+r

2r3+21r2+73r+84 0

a5
2r3−3r2+r

2r3+27r2+121r+180 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn−1(n+ r − 1) (n+ r − 2)− 2bn(n+ r) (n+ r − 1)
− bn−1(n+ r − 1)− (n+ r) bn + bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1(2n2 + 4nr + 2r2 − 7n− 7r + 6)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 0 becomes

bn = bn−1(2n2 − 7n+ 6)
2n2 − n

(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
2r2 − 3r + 1
2r2 + 3r + 1

Which for the root r = 0 becomes
b1 = 1

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−3r+1
2r2+3r+1 1

For n = 2, using the above recursive equation gives

b2 =
2r3 − 3r2 + r

2r3 + 9r2 + 13r + 6

Which for the root r = 0 becomes
b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−3r+1
2r2+3r+1 1

b2
2r3−3r2+r

2r3+9r2+13r+6 0

For n = 3, using the above recursive equation gives

b3 =
2r3 − 3r2 + r

2r3 + 15r2 + 37r + 30

Which for the root r = 0 becomes
b3 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

2r2−3r+1
2r2+3r+1 1

b2
2r3−3r2+r

2r3+9r2+13r+6 0

b3
2r3−3r2+r

2r3+15r2+37r+30 0

For n = 4, using the above recursive equation gives

b4 =
2r3 − 3r2 + r

2r3 + 21r2 + 73r + 84

Which for the root r = 0 becomes
b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−3r+1
2r2+3r+1 1

b2
2r3−3r2+r

2r3+9r2+13r+6 0

b3
2r3−3r2+r

2r3+15r2+37r+30 0

b4
2r3−3r2+r

2r3+21r2+73r+84 0

For n = 5, using the above recursive equation gives

b5 =
2r3 − 3r2 + r

2r3 + 27r2 + 121r + 180

Which for the root r = 0 becomes
b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

2r2−3r+1
2r2+3r+1 1

b2
2r3−3r2+r

2r3+9r2+13r+6 0

b3
2r3−3r2+r

2r3+15r2+37r+30 0

b4
2r3−3r2+r

2r3+21r2+73r+84 0

b5
2r3−3r2+r

2r3+27r2+121r+180 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + x+O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1 +O

(
x6))+ c2

(
1 + x+O

(
x6))

Hence the final solution is

y = yh

= c1
√
x
(
1 +O

(
x6))+ c2

(
1 + x+O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x
(
1 +O

(
x6))+ c2

(
1 + x+O

(
x6))

Verification of solutions

y = c1
√
x
(
1 +O

(
x6))+ c2

(
1 + x+O

(
x6))

Verified OK.

224



2.8.1 Maple step by step solution

Let’s solve
2y′′x(x− 1) + (−1− x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (1+x)y′
2x(x−1) −

y
2x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (1+x)y′
2x(x−1) +

y
2x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 1+x
2x(x−1) , P3(x) = 1

2x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x(x− 1) + (−1− x) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + 2ak(k + r − 1)

(
k + r − 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)(2k+2r−1)

(2k+1+2r)(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k−1)(2k−1)

(2k+1)(k+1)

• Apply recursion relation for k = 0
a1 = a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y = a0 · (1 + x)

• Recursion relation for r = 1
2

ak+1 =
2ak
(
k− 1

2
)
k

(2k+2)
(
k+ 3

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
2ak
(
k− 1

2
)
k

(2k+2)
(
k+ 3

2
)
]
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• Combine solutions and rename parameters[
y = a0 · (1 + x) +

(
∞∑
k=0

bkx
k+ 1

2

)
, bk+1 =

2bk
(
k− 1

2
)
k

(2k+2)
(
k+ 3

2
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
Order:=6;
dsolve(2*x*(x-1)*diff(y(x),x$2)-(x+1)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x
(
1 + O

(
x6))+ c2

(
1 + x+O

(
x6))

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18� �
AsymptoticDSolveValue[2*x*(x-1)*y''[x]-(x+1)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x+ c2(x+ 1)
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2.9 problem 10
2.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 237

Internal problem ID [5644]
Internal file name [OUTPUT/4892_Sunday_June_05_2022_03_09_28_PM_88180568/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + 2y′ + 4xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 2y′ + 4xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x

q(x) = 4
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Table 26: Table p(x), q(x) singularites.

p(x) = 2
x

singularity type
x = 0 “regular”

q(x) = 4
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 2y′ + 4xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r−1) anxn+r−2

)
x+2

(
∞∑
n=0

(n+ r) anxn+r−1

)
+4x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+
(

∞∑
n=0

4x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran =
∞∑
n=2

4an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

2(n+r) anxn+r−1

)
+
(

∞∑
n=2

4an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −1

Since a0 6= 0 then the indicial equation becomes

r x−1+r(1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an(n+ r) + 4an−2 = 0

Solving for an from recursive equation (4) gives

an = − 4an−2

n2 + 2nr + r2 + n+ r
(4)

Which for the root r = 0 becomes

an = − 4an−2

n (1 + n) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 4
r2 + 5r + 6

Which for the root r = 0 becomes
a2 = −2

3
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+5r+6 −2
3

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+5r+6 −2
3

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
16

(r2 + 5r + 6) (r2 + 9r + 20)

232



Which for the root r = 0 becomes
a4 =

2
15

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+5r+6 −2
3

a3 0 0
a4

16
(r2+5r+6)(r2+9r+20)

2
15

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+5r+6 −2
3

a3 0 0
a4

16
(r2+5r+6)(r2+9r+20)

2
15

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 2x2

3 + 2x4

15 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if

233



C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→−1

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 2(n+ r) bn + 4bn−2 = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2) + 2(n− 1) bn + 4bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = − 4bn−2

n2 + 2nr + r2 + n+ r
(5)

Which for the root r = −1 becomes

bn = − 4bn−2

n2 − n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 4
r2 + 5r + 6

Which for the root r = −1 becomes

b2 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+5r+6 −2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+5r+6 −2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
16

(r2 + 5r + 6) (r2 + 9r + 20)

Which for the root r = −1 becomes

b4 =
2
3

235



And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+5r+6 −2

b3 0 0
b4

16
(r2+5r+6)(r2+9r+20)

2
3

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+5r+6 −2

b3 0 0
b4

16
(r2+5r+6)(r2+9r+20)

2
3

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 2x2 + 2x4

3 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 2x2

3 + 2x4

15 +O
(
x6))+

c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x
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Hence the final solution is

y = yh

= c1

(
1− 2x2

3 + 2x4

15 +O
(
x6))+

c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1

(
1− 2x2

3 + 2x4

15 +O
(
x6))+

c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x

Verification of solutions

y = c1

(
1− 2x2

3 + 2x4

15 +O
(
x6))+

c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x

Verified OK.

2.9.1 Maple step by step solution

Let’s solve
y′′x+ 2y′ + 4xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
− 4y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
+ 4y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 4

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 2y′ + 4xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 0}
• Each term must be 0

a1(1 + r) (2 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 2 + r) + 4ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 3 + r) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 4ak
(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − 4ak

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − 4ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − 4ak

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − 4ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − 4ak

(k+1)(k+2) , 0 = 0, bk+2 = − 4bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+4*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1− 2

3x
2 + 2

15x
4 +O

(
x6))+

c2
(
1− 2x2 + 2

3x
4 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 40� �
AsymptoticDSolveValue[x*y''[x]+2*y'[x]+4*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
2x3

3 − 2x+ 1
x

)
+ c2

(
2x4

15 − 2x2

3 + 1
)
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2.10 problem 11
2.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 251

Internal problem ID [5645]
Internal file name [OUTPUT/4893_Sunday_June_05_2022_03_09_30_PM_19903692/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (−2x+ 2) y′ + (−2 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (−2x+ 2) y′ + (−2 + x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2(x− 1)
x

q(x) = −2 + x

x
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Table 28: Table p(x), q(x) singularites.

p(x) = −2(x−1)
x

singularity type
x = 0 “regular”

q(x) = −2+x
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (−2x+ 2) y′ + (−2 + x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (−2x+ 2)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ (−2 + x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

)
+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−2anxn+r

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)
∞∑

n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−2an−1(n+ r

− 1)xn+r−1)+( ∞∑
n=0

2(n+ r) anxn+r−1

)

+
∞∑

n =1

(
−2an−1x

n+r−1)+( ∞∑
n=2

an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 2ra0x−1+r = 0
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Or (
x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −1

Since a0 6= 0 then the indicial equation becomes

r x−1+r(1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

244



Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
2

r + 2
For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 2an−1(n+ r − 1) + 2an(n+ r)− 2an−1 + an−2 = 0

Solving for an from recursive equation (4) gives

an = 2nan−1 + 2ran−1 − an−2

n2 + 2nr + r2 + n+ r
(4)

Which for the root r = 0 becomes

an = 2nan−1 − an−2

n (1 + n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

2
r+2 1

For n = 2, using the above recursive equation gives

a2 =
3

r2 + 5r + 6

Which for the root r = 0 becomes
a2 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1

2
r+2 1

a2
3

r2+5r+6
1
2
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For n = 3, using the above recursive equation gives

a3 =
4

(4 + r) (r + 3) (r + 2)

Which for the root r = 0 becomes
a3 =

1
6

And the table now becomes

n an,r an

a0 1 1
a1

2
r+2 1

a2
3

r2+5r+6
1
2

a3
4

(4+r)(r+3)(r+2)
1
6

For n = 4, using the above recursive equation gives

a4 =
5

(r2 + 9r + 20) (r2 + 5r + 6)

Which for the root r = 0 becomes
a4 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1

2
r+2 1

a2
3

r2+5r+6
1
2

a3
4

(4+r)(r+3)(r+2)
1
6

a4
5

(r2+9r+20)(r2+5r+6)
1
24

For n = 5, using the above recursive equation gives

a5 =
6

(r + 6) (r + 5) (4 + r) (r + 3) (r + 2)

Which for the root r = 0 becomes

a5 =
1
120
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And the table now becomes

n an,r an

a0 1 1
a1

2
r+2 1

a2
3

r2+5r+6
1
2

a3
4

(4+r)(r+3)(r+2)
1
6

a4
5

(r2+9r+20)(r2+5r+6)
1
24

a5
6

(r+6)(r+5)(4+r)(r+3)(r+2)
1

120

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 2
r + 2

Therefore

lim
r→r2

2
r + 2 = lim

r→−1

2
r + 2

= 2

The limit is 2. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 =
2

r + 2

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1)− 2bn−1(n+ r − 1) + 2(n+ r) bn − 2bn−1 + bn−2 = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2)− 2bn−1(n− 2) + 2(n− 1) bn − 2bn−1 + bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = 2nbn−1 + 2rbn−1 − bn−2

n2 + 2nr + r2 + n+ r
(5)

Which for the root r = −1 becomes

bn = 2nbn−1 − bn−2 − 2bn−1

n2 − n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

2
r+2 2

For n = 2, using the above recursive equation gives

b2 =
3

r2 + 5r + 6

Which for the root r = −1 becomes

b2 =
3
2

And the table now becomes
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n bn,r bn

b0 1 1
b1

2
r+2 2

b2
3

r2+5r+6
3
2

For n = 3, using the above recursive equation gives

b3 =
4

(r2 + 7r + 12) (r + 2)
Which for the root r = −1 becomes

b3 =
2
3

And the table now becomes

n bn,r bn

b0 1 1
b1

2
r+2 2

b2
3

r2+5r+6
3
2

b3
4

(4+r)(r+3)(r+2)
2
3

For n = 4, using the above recursive equation gives

b4 =
5

(r + 3) (r + 2) (r2 + 9r + 20)
Which for the root r = −1 becomes

b4 =
5
24

And the table now becomes

n bn,r bn

b0 1 1
b1

2
r+2 2

b2
3

r2+5r+6
3
2

b3
4

(4+r)(r+3)(r+2)
2
3

b4
5

(r+3)(r+2)(r+5)(4+r)
5
24
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For n = 5, using the above recursive equation gives

b5 =
6

(r2 + 7r + 12) (r + 2) (r2 + 11r + 30)

Which for the root r = −1 becomes

b5 =
1
20

And the table now becomes

n bn,r bn

b0 1 1
b1

2
r+2 2

b2
3

r2+5r+6
3
2

b3
4

(4+r)(r+3)(r+2)
2
3

b4
5

(r+3)(r+2)(r+5)(4+r)
5
24

b5
6

(r+6)(r+5)(4+r)(r+3)(r+2)
1
20

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 2x+ 3x2

2 + 2x3

3 + 5x4

24 + x5

20 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1+x+x2

2 +x3

6 + x4

24+
x5

120+O
(
x6))+ c2

(
1 + 2x+ 3x2

2 + 2x3

3 + 5x4

24 + x5

20 +O(x6)
)

x

Hence the final solution is

y = yh

= c1

(
1+x+ x2

2 + x3

6 + x4

24+
x5

120+O
(
x6))+ c2

(
1 + 2x+ 3x2

2 + 2x3

3 + 5x4

24 + x5

20 +O(x6)
)

x

250



Summary
The solution(s) found are the following

(1)
y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+
c2
(
1 + 2x+ 3x2

2 + 2x3

3 + 5x4

24 + x5

20 +O(x6)
)

x

Verification of solutions

y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+
c2
(
1 + 2x+ 3x2

2 + 2x3

3 + 5x4

24 + x5

20 +O(x6)
)

x

Verified OK.

2.10.1 Maple step by step solution

Let’s solve
y′′x+ (−2x+ 2) y′ + (−2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (−2+x)y
x

+ 2(x−1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2(x−1)y′
x

+ (−2+x)y
x

= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x−1)
x

, P3(x) = −2+x
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0
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◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (−2x+ 2) y′ + (−2 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + (a1(1 + r) (2 + r)− 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 2 + r)− 2ak(k + 1 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−1, 0}
• Each term must be 0

a1(1 + r) (2 + r)− 2a0(1 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k + 2 + r)− 2akk − 2akr − 2ak + ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 3 + r)− 2ak+1(k + 1)− 2rak+1 − 2ak+1 + ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = 2kak+1+2rak+1−ak+4ak+1
(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3) , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0, bk+2 = 2kbk+1−bk+4bk+1
(k+2)(k+3) , 2b1 − 2b0 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(2-2*x)*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 +O

(
x6))

+
c2
(
1 + 2x+ 3

2x
2 + 2

3x
3 + 5

24x
4 + 1

20x
5 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 58� �
AsymptoticDSolveValue[x*y''[x]+(2-2*x)*y'[x]+(x-2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
5x3

24 + 2x2

3 + 3x
2 + 1

x
+ 2
)
+ c2

(
x4

24 + x3

6 + x2

2 + x+ 1
)
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2.11 problem 12
2.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 264

Internal problem ID [5646]
Internal file name [OUTPUT/4894_Sunday_June_05_2022_03_09_33_PM_92840325/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + 6xy′ +
(
4x2 + 6

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + 6xy′ +
(
4x2 + 6

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 6
x

q(x) = 4x2 + 6
x2
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Table 30: Table p(x), q(x) singularites.

p(x) = 6
x

singularity type
x = 0 “regular”

q(x) = 4x2+6
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + 6xy′ +
(
4x2 + 6

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 6x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
4x2 + 6

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

6xn+ran(n+ r)
)

+
(

∞∑
n=0

4xn+r+2an

)
+
(

∞∑
n=0

6anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an =
∞∑
n=2

4an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

6xn+ran(n+ r)
)

+
(

∞∑
n=2

4an−2x
n+r

)
+
(

∞∑
n=0

6anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 6xn+ran(n+ r) + 6anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 6xra0r + 6a0xr = 0

Or
(xrr(−1 + r) + 6xrr + 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 5r + 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 5r + 6 = 0
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Solving for r gives the roots of the indicial equation as

r1 = −2
r2 = −3

Since a0 6= 0 then the indicial equation becomes(
r2 + 5r + 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =

∞∑
n=0

anx
n

x2

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x3

Or

y1(x) =
∞∑
n=0

anx
n−2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−3

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 6an(n+ r) + 4an−2 + 6an = 0
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Solving for an from recursive equation (4) gives

an = − 4an−2

n2 + 2nr + r2 + 5n+ 5r + 6 (4)

Which for the root r = −2 becomes

an = − 4an−2

n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 4
r2 + 9r + 20

Which for the root r = −2 becomes

a2 = −2
3

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+9r+20 −2
3

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+9r+20 −2
3

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
16

(r + 5) (4 + r) (r + 7) (r + 6)

Which for the root r = −2 becomes

a4 =
2
15

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+9r+20 −2
3

a3 0 0
a4

16
(r+5)(4+r)(r+7)(r+6)

2
15

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

r2+9r+20 −2
3

a3 0 0
a4

16
(r+5)(4+r)(r+7)(r+6)

2
15

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
1
x2

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− 2x2

3 + 2x4

15 +O(x6)
x2
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→−3

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−3

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 6bn(n+ r) + 4bn−2 + 6bn = 0

Which for for the root r = −3 becomes

(4A)bn(n− 3) (n− 4) + 6bn(n− 3) + 4bn−2 + 6bn = 0

Solving for bn from the recursive equation (4) gives

bn = − 4bn−2

n2 + 2nr + r2 + 5n+ 5r + 6 (5)
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Which for the root r = −3 becomes

bn = − 4bn−2

n2 − n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 4
r2 + 9r + 20

Which for the root r = −3 becomes

b2 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+9r+20 −2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+9r+20 −2

b3 0 0
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For n = 4, using the above recursive equation gives

b4 =
16

(r2 + 9r + 20) (r2 + 13r + 42)

Which for the root r = −3 becomes

b4 =
2
3

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+9r+20 −2

b3 0 0
b4

16
(r+5)(4+r)(r+7)(r+6)

2
3

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 4

r2+9r+20 −2

b3 0 0
b4

16
(r+5)(4+r)(r+7)(r+6)

2
3

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
1
x2

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 2x2 + 2x4

3 +O(x6)
x3
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 2x2

3 + 2x4

15 +O(x6)
)

x2 +
c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x3

Hence the final solution is

y = yh

=
c1
(
1− 2x2

3 + 2x4

15 +O(x6)
)

x2 +
c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x3

Summary
The solution(s) found are the following

(1)y =
c1
(
1− 2x2

3 + 2x4

15 +O(x6)
)

x2 +
c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x3

Verification of solutions

y =
c1
(
1− 2x2

3 + 2x4

15 +O(x6)
)

x2 +
c2
(
1− 2x2 + 2x4

3 +O(x6)
)

x3

Verified OK.

2.11.1 Maple step by step solution

Let’s solve
x2y′′ + 6xy′ + (4x2 + 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2
(
2x2+3

)
y

x2 − 6y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 6y′
x
+ 2

(
2x2+3

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
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◦ Define functions[
P2(x) = 6

x
, P3(x) = 2

(
2x2+3

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + 6xy′ + (4x2 + 6) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (2 + r)xr + a1(4 + r) (3 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 3) (k + r + 2) + 4ak−2)xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−2}

• Each term must be 0
a1(4 + r) (3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r + 2) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 5 + r) (k + 4 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(k+5+r)(k+4+r)

• Recursion relation for r = −3
ak+2 = − 4ak

(k+2)(k+1)

• Solution for r = −3[
y =

∞∑
k=0

akx
k−3, ak+2 = − 4ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −2
ak+2 = − 4ak

(k+3)(k+2)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = − 4ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−2
)
, ak+2 = − 4ak

(k+1)(k+2) , a1 = 0, bk+2 = − 4bk
(k+2)(k+3) , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+6*x*diff(y(x),x)+(4*x^2+6)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− 2

3x
2 + 2

15x
4 +O(x6)

)
x+ c2

(
1− 2x2 + 2

3x
4 +O(x6)

)
x3

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 38� �
AsymptoticDSolveValue[x^2*y''[x]+6*x*y'[x]+(4*x^2+6)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x3 + 2x

3 − 2
x

)
+ c2

(
2x2

15 + 1
x2 − 2

3

)
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2.12 problem 13
2.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 276

Internal problem ID [5647]
Internal file name [OUTPUT/4895_Sunday_June_05_2022_03_09_36_PM_54650723/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (1− 2x) y′ + (x− 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (1− 2x) y′ + (x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x− 1
x

q(x) = x− 1
x
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Table 32: Table p(x), q(x) singularites.

p(x) = −2x−1
x

singularity type
x = 0 “regular”

q(x) = x−1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (1− 2x) y′ + (x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (1− 2x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ (x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1)

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
+

∞∑
n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0
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Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
2r + 1
(1 + r)2

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 2an−1(n+ r − 1) + an(n+ r) + an−2 − an−1 = 0
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Solving for an from recursive equation (4) gives

an = 2nan−1 + 2ran−1 − an−2 − an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = (2n− 1) an−1 − an−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

For n = 2, using the above recursive equation gives

a2 =
3r2 + 6r + 2

(1 + r)2 (r + 2)2

Which for the root r = 0 becomes
a2 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

For n = 3, using the above recursive equation gives

a3 =
4r3 + 18r2 + 22r + 6

(1 + r)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes
a3 =

1
6

And the table now becomes
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n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6

For n = 4, using the above recursive equation gives

a4 =
5r4 + 40r3 + 105r2 + 100r + 24
(1 + r)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes
a4 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6

a4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24

For n = 5, using the above recursive equation gives

a5 =
6r5 + 75r4 + 340r3 + 675r2 + 548r + 120
(1 + r)2 (r + 2)2 (r + 3)2 (4 + r)2 (r + 5)2

Which for the root r = 0 becomes

a5 =
1
120

And the table now becomes
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n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6

a4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24

a5
6r5+75r4+340r3+675r2+548r+120
(1+r)2(r+2)2(r+3)2(4+r)2(r+5)2

1
120

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

2r+1
(1+r)2 1 − 2r

(1+r)3 0

b2
3r2+6r+2

(1+r)2(r+2)2
1
2

−6r3−18r2−14r
(1+r)3(r+2)3 0

b3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6 −12

(
r4+8r3+ 47

2 r2+30r+ 85
6
)
r

(1+r)3(r+2)3(r+3)3 0

b4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24 −20

(
r6+15r5+ 183

2 r4+290r3+ 5031
10 r2+453r+166

)
r

(1+r)3(r+2)3(r+3)3(4+r)3 0

b5
6r5+75r4+340r3+675r2+548r+120
(1+r)2(r+2)2(r+3)2(4+r)2(r+5)2

1
120 −30r

(
r8+24r7+ 739

3 r6+1410r5+4915r4+10668r3+14063r2+10290r+ 48076
15

)
(1+r)3(r+2)3(r+3)3(4+r)3(r+5)3 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Hence the final solution is

y = yh

= c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Verification of solutions

y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Verified OK.
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2.12.1 Maple step by step solution

Let’s solve
y′′x+ (1− 2x) y′ + (x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x−1)y
x

+ (2x−1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (2x−1)y′
x

+ (x−1)y
x

= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = x−1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (1− 2x) y′ + (x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + (−2k − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + (−2k − 3) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+3ak+1

(k+2)2
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+3ak+1

(k+2)2 , a1 − a0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 43� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(1-2*x)*diff(y(x),x)+(x-1)*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 74� �
AsymptoticDSolveValue[x*y''[x]+(1-2*x)*y'[x]+(x-1)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
x5

120 + x4

24 + x3

6 + x2

2 + x+ 1
)
+ c2

(
x5

120 + x4

24 + x3

6 + x2

2 + x+ 1
)
log(x)
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2.13 problem 15
2.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 289

Internal problem ID [5648]
Internal file name [OUTPUT/4896_Sunday_June_05_2022_03_09_38_PM_76748019/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

2x(1− x) y′′ − (1 + 6x) y′ − 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x2 + 2x
)
y′′ + (−6x− 1) y′ − 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1 + 6x
2x (x− 1)

q(x) = 1
x (x− 1)
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Table 34: Table p(x), q(x) singularites.

p(x) = 1+6x
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 1
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−2x(x− 1) y′′ + (−6x− 1) y′ − 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−2
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+ (−6x− 1)
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 2
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−6xn+ran(n+r)

)
+

∞∑
n =0

(
−(n+r) anxn+r−1)+ ∞∑

n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−6xn+ran(n+ r)

)
=

∞∑
n=1

(
−6an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =1

(
−6an−1(n+ r− 1)xn+r−1)

+
∞∑

n =0

(
−(n+ r) anxn+r−1)+ ∞∑

n =1

(
−2an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1)− (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r)− ra0x
−1+r = 0
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Or (
2x−1+rr(−1 + r)− r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−3 + 2r) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − 3r = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−3 + 2r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−2an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1)
− 6an−1(n+ r − 1)− an(n+ r)− 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = 2(n+ r) an−1

2n− 3 + 2r (4)

Which for the root r = 3
2 becomes

an =
(
n+ 3

2

)
an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2 + 2r
2r − 1

Which for the root r = 3
2 becomes

a1 =
5
2

And the table now becomes

n an,r an

a0 1 1
a1

2+2r
2r−1

5
2

For n = 2, using the above recursive equation gives

a2 =
4r2 + 12r + 8

4r2 − 1

Which for the root r = 3
2 becomes

a2 =
35
8

And the table now becomes
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n an,r an

a0 1 1
a1

2+2r
2r−1

5
2

a2
4r2+12r+8

4r2−1
35
8

For n = 3, using the above recursive equation gives

a3 =
8r3 + 48r2 + 88r + 48
8r3 + 12r2 − 2r − 3

Which for the root r = 3
2 becomes

a3 =
105
16

And the table now becomes

n an,r an

a0 1 1
a1

2+2r
2r−1

5
2

a2
4r2+12r+8

4r2−1
35
8

a3
8r3+48r2+88r+48
8r3+12r2−2r−3

105
16

For n = 4, using the above recursive equation gives

a4 =
16r4 + 160r3 + 560r2 + 800r + 384
16r4 + 64r3 + 56r2 − 16r − 15

Which for the root r = 3
2 becomes

a4 =
1155
128

And the table now becomes

n an,r an

a0 1 1
a1

2+2r
2r−1

5
2

a2
4r2+12r+8

4r2−1
35
8

a3
8r3+48r2+88r+48
8r3+12r2−2r−3

105
16

a4
16r4+160r3+560r2+800r+384

16r4+64r3+56r2−16r−15
1155
128
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For n = 5, using the above recursive equation gives

a5 =
32r5 + 480r4 + 2720r3 + 7200r2 + 8768r + 3840
32r5 + 240r4 + 560r3 + 360r2 − 142r − 105

Which for the root r = 3
2 becomes

a5 =
3003
256

And the table now becomes

n an,r an

a0 1 1
a1

2+2r
2r−1

5
2

a2
4r2+12r+8

4r2−1
35
8

a3
8r3+48r2+88r+48
8r3+12r2−2r−3

105
16

a4
16r4+160r3+560r2+800r+384

16r4+64r3+56r2−16r−15
1155
128

a5
32r5+480r4+2720r3+7200r2+8768r+3840

32r5+240r4+560r3+360r2−142r−105
3003
256

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1 + 5x

2 + 35x2

8 + 105x3

16 + 1155x4

128 + 3003x5

256 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)−2bn−1(n+ r − 1) (n+ r − 2) + 2bn(n+ r) (n+ r − 1)
− 6bn−1(n+ r − 1)− (n+ r) bn − 2bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = 2(n+ r) bn−1

2n− 3 + 2r (4)

Which for the root r = 0 becomes

bn = 2nbn−1

2n− 3 (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
2 + 2r
2r − 1

Which for the root r = 0 becomes
b1 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1

2+2r
2r−1 −2

For n = 2, using the above recursive equation gives

b2 =
4r2 + 12r + 8

4r2 − 1

Which for the root r = 0 becomes
b2 = −8

And the table now becomes

n bn,r bn

b0 1 1
b1

2+2r
2r−1 −2

b2
4r2+12r+8

4r2−1 −8

For n = 3, using the above recursive equation gives

b3 =
8r3 + 48r2 + 88r + 48
8r3 + 12r2 − 2r − 3
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Which for the root r = 0 becomes

b3 = −16

And the table now becomes

n bn,r bn

b0 1 1
b1

2+2r
2r−1 −2

b2
4r2+12r+8

4r2−1 −8

b3
8r3+48r2+88r+48
8r3+12r2−2r−3 −16

For n = 4, using the above recursive equation gives

b4 =
16r4 + 160r3 + 560r2 + 800r + 384
16r4 + 64r3 + 56r2 − 16r − 15

Which for the root r = 0 becomes

b4 = −128
5

And the table now becomes

n bn,r bn

b0 1 1
b1

2+2r
2r−1 −2

b2
4r2+12r+8

4r2−1 −8

b3
8r3+48r2+88r+48
8r3+12r2−2r−3 −16

b4
16r4+160r3+560r2+800r+384

16r4+64r3+56r2−16r−15 −128
5

For n = 5, using the above recursive equation gives

b5 =
32r5 + 480r4 + 2720r3 + 7200r2 + 8768r + 3840
32r5 + 240r4 + 560r3 + 360r2 − 142r − 105

Which for the root r = 0 becomes

b5 = −256
7
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And the table now becomes

n bn,r bn

b0 1 1
b1

2+2r
2r−1 −2

b2
4r2+12r+8

4r2−1 −8

b3
8r3+48r2+88r+48
8r3+12r2−2r−3 −16

b4
16r4+160r3+560r2+800r+384

16r4+64r3+56r2−16r−15 −128
5

b5
32r5+480r4+2720r3+7200r2+8768r+3840

32r5+240r4+560r3+360r2−142r−105 −256
7

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− 2x− 8x2 − 16x3 − 128x4

5 − 256x5

7 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1 + 5x

2 + 35x2

8 + 105x3

16 + 1155x4

128 + 3003x5

256 +O
(
x6))

+ c2

(
1− 2x− 8x2 − 16x3 − 128x4

5 − 256x5

7 +O
(
x6))

Hence the final solution is
y = yh

= c1x
3
2

(
1 + 5x

2 + 35x2

8 + 105x3

16 + 1155x4

128 + 3003x5

256 +O
(
x6))

+ c2

(
1− 2x− 8x2 − 16x3 − 128x4

5 − 256x5

7 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

3
2

(
1 + 5x

2 + 35x2

8 + 105x3

16 + 1155x4

128 + 3003x5

256 +O
(
x6))

+ c2

(
1− 2x− 8x2 − 16x3 − 128x4

5 − 256x5

7 +O
(
x6))
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Verification of solutions

y = c1x
3
2

(
1 + 5x

2 + 35x2

8 + 105x3

16 + 1155x4

128 + 3003x5

256 +O
(
x6))

+ c2

(
1− 2x− 8x2 − 16x3 − 128x4

5 − 256x5

7 +O
(
x6))

Verified OK.

2.13.1 Maple step by step solution

Let’s solve
−2y′′x(x− 1) + (−6x− 1) y′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (1+6x)y′
2x(x−1) −

y
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+6x)y′
2x(x−1) +

y
x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+6x
2x(x−1) , P3(x) = 1

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x(x− 1) + (1 + 6x) y′ + 2y = 0
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• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(
−ak+1(k + r + 1) (2k − 1 + 2r) + 2ak(k + r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−2(k + r + 1)

(
k + r − 1

2

)
ak+1 + 2ak(k + r + 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+1)

2k−1+2r

• Recursion relation for r = 0
ak+1 = 2ak(k+1)

2k−1

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = 2ak(k+1)

2k−1

]
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• Recursion relation for r = 3
2

ak+1 =
2ak
(
k+ 5

2
)

2k+2

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+1 =
2ak
(
k+ 5

2
)

2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = 2ak(k+1)

2k−1 , bk+1 =
2bk
(
k+ 5

2
)

2k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 44� �
Order:=6;
dsolve(2*x*(1-x)*diff(y(x),x$2)-(1+6*x)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
2

(
1 + 5

2x+ 35
8 x2 + 105

16 x3 + 1155
128 x4 + 3003

256 x5 +O
(
x6))

+ c2

(
1− 2x− 8x2 − 16x3 − 128

5 x4 − 256
7 x5 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 79� �
AsymptoticDSolveValue[2*x*(1-x)*y''[x]-(1+6*x)*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−256x5

7 − 128x4

5 − 16x3 − 8x2 − 2x+ 1
)

+ c1

(
3003x5

256 + 1155x4

128 + 105x3

16 + 35x2

8 + 5x
2 + 1

)
x3/2
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2.14 problem 16
2.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 303

Internal problem ID [5649]
Internal file name [OUTPUT/4897_Sunday_June_05_2022_03_09_41_PM_19950706/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Jacobi]

x(1− x) y′′ +
(
1
2 + 2x

)
y′ − 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ +

(
1
2 + 2x

)
y′ − 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 4x+ 1
2x (x− 1)

q(x) = 2
x (x− 1)
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Table 36: Table p(x), q(x) singularites.

p(x) = − 4x+1
2x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 2
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−x(x− 1) y′′ +
(
1
2 + 2x

)
y′ − 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

+
(
1
2 + 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 2
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+r)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

2

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

2xn+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

2

)
+

∞∑
n =1

(
−2an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1

2 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r

2 = 0
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Or (
x−1+rr(−1 + r) + r x−1+r

2

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r

(
−1
2 + r

)
= 0

Since the above is true for all x then the indicial equation becomes

r2 − 1
2r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r

(
−1
2 + r

)
= 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)

+ 2an−1(n+ r − 1) + an(n+ r)
2 − 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = 2an−1(n2 + 2nr + r2 − 5n− 5r + 6)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 1
2 becomes

an = an−1(4n2 − 16n+ 15)
4n2 + 2n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2r2 − 6r + 4
2r2 + 3r + 1

Which for the root r = 1
2 becomes

a1 =
1
2

And the table now becomes

n an,r an

a0 1 1
a1

2r2−6r+4
2r2+3r+1

1
2

For n = 2, using the above recursive equation gives

a2 =
4(−1 + r)2 (−2 + r) r

4r4 + 20r3 + 35r2 + 25r + 6

Which for the root r = 1
2 becomes

a2 = − 1
40

And the table now becomes
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n an,r an

a0 1 1
a1

2r2−6r+4
2r2+3r+1

1
2

a2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 − 1
40

For n = 3, using the above recursive equation gives

a3 =
8(−1 + r)2 (−2 + r) r2

8r5 + 76r4 + 274r3 + 461r2 + 351r + 90

Which for the root r = 1
2 becomes

a3 = − 1
560

And the table now becomes

n an,r an

a0 1 1
a1

2r2−6r+4
2r2+3r+1

1
2

a2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 − 1
40

a3
8(−1+r)2(−2+r)r2

8r5+76r4+274r3+461r2+351r+90 − 1
560

For n = 4, using the above recursive equation gives

a4 =
16(−1 + r)2 (−2 + r) r2(r + 1)

16r6 + 240r5 + 1432r4 + 4296r3 + 6697r2 + 4959r + 1260

Which for the root r = 1
2 becomes

a4 = − 1
2688

And the table now becomes
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n an,r an

a0 1 1
a1

2r2−6r+4
2r2+3r+1

1
2

a2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 − 1
40

a3
8(−1+r)2(−2+r)r2

8r5+76r4+274r3+461r2+351r+90 − 1
560

a4
16(−1+r)2(−2+r)r2(r+1)

16r6+240r5+1432r4+4296r3+6697r2+4959r+1260 − 1
2688

For n = 5, using the above recursive equation gives

a5 =
32(−1 + r)2 r2(r + 1) (r2 − 4)

32r7 + 688r6 + 6080r5 + 28360r4 + 74378r3 + 107347r2 + 76065r + 18900

Which for the root r = 1
2 becomes

a5 = − 1
8448

And the table now becomes

n an,r an

a0 1 1
a1

2r2−6r+4
2r2+3r+1

1
2

a2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 − 1
40

a3
8(−1+r)2(−2+r)r2

8r5+76r4+274r3+461r2+351r+90 − 1
560

a4
16(−1+r)2(−2+r)r2(r+1)

16r6+240r5+1432r4+4296r3+6697r2+4959r+1260 − 1
2688

a5
32(−1+r)2r2(r+1)

(
r2−4

)
32r7+688r6+6080r5+28360r4+74378r3+107347r2+76065r+18900 − 1

8448

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 + x

2 − x2

40 − x3

560 − x4

2688 − x5

8448 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)−bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)

+ 2bn−1(n+ r − 1) + (n+ r) bn
2 − 2bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = 2bn−1(n2 + 2nr + r2 − 5n− 5r + 6)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 0 becomes

bn = 2bn−1(n2 − 5n+ 6)
n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
2r2 − 6r + 4
2r2 + 3r + 1

Which for the root r = 0 becomes
b1 = 4

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−6r+4
2r2+3r+1 4

For n = 2, using the above recursive equation gives

b2 =
4(−1 + r)2 (−2 + r) r

4r4 + 20r3 + 35r2 + 25r + 6
Which for the root r = 0 becomes

b2 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−6r+4
2r2+3r+1 4

b2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 0

For n = 3, using the above recursive equation gives

b3 =
8(−1 + r)2 (−2 + r) r2

8r5 + 76r4 + 274r3 + 461r2 + 351r + 90
Which for the root r = 0 becomes

b3 = 0
And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−6r+4
2r2+3r+1 4

b2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 0

b3
8(−1+r)2(−2+r)r2

8r5+76r4+274r3+461r2+351r+90 0

For n = 4, using the above recursive equation gives

b4 =
16(−1 + r)2 (−2 + r) r2(r + 1)

16r6 + 240r5 + 1432r4 + 4296r3 + 6697r2 + 4959r + 1260
Which for the root r = 0 becomes

b4 = 0
And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−6r+4
2r2+3r+1 4

b2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 0

b3
8(−1+r)2(−2+r)r2

8r5+76r4+274r3+461r2+351r+90 0

b4
16(−1+r)2(−2+r)r2(r+1)

16r6+240r5+1432r4+4296r3+6697r2+4959r+1260 0
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For n = 5, using the above recursive equation gives

b5 =
32(−1 + r)2 r2(r + 1) (r2 − 4)

32r7 + 688r6 + 6080r5 + 28360r4 + 74378r3 + 107347r2 + 76065r + 18900
Which for the root r = 0 becomes

b5 = 0
And the table now becomes

n bn,r bn

b0 1 1
b1

2r2−6r+4
2r2+3r+1 4

b2
4(−1+r)2(−2+r)r

4r4+20r3+35r2+25r+6 0

b3
8(−1+r)2(−2+r)r2

8r5+76r4+274r3+461r2+351r+90 0

b4
16(−1+r)2(−2+r)r2(r+1)

16r6+240r5+1432r4+4296r3+6697r2+4959r+1260 0

b5
32(−1+r)2r2(r+1)

(
r2−4

)
32r7+688r6+6080r5+28360r4+74378r3+107347r2+76065r+18900 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + 4x+O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1 + x

2 − x2

40 − x3

560 − x4

2688 − x5

8448 +O
(
x6))+ c2

(
1 + 4x+O

(
x6))

Hence the final solution is
y = yh

= c1
√
x

(
1 + x

2 − x2

40 − x3

560 − x4

2688 − x5

8448 +O
(
x6))+ c2

(
1 + 4x+O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1 + x

2 − x2

40 − x3

560 − x4

2688 − x5

8448 +O
(
x6))+ c2

(
1 + 4x+O

(
x6))
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Verification of solutions

y = c1
√
x

(
1 + x

2 − x2

40 − x3

560 − x4

2688 − x5

8448 +O
(
x6))+ c2

(
1 + 4x+O

(
x6))

Verified OK.

2.14.1 Maple step by step solution

Let’s solve
−y′′x(x− 1) +

(1
2 + 2x

)
y′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 2y
x(x−1) +

(1+4x)y′
2x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (1+4x)y′
2x(x−1) +

2y
x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 1+4x
2x(x−1) , P3(x) = 2

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x(x− 1) + (−4x− 1) y′ + 4y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + 2ak(k + r − 1) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + 2ak(k + r − 1) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)(k+r−2)

(2k+1+2r)(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = 2ak(k−1)(k−2)

(2k+1)(k+1)

• Apply recursion relation for k = 0
a1 = 4a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
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y = a0 · (1 + 4x)
• Recursion relation for r = 1

2

ak+1 =
2ak
(
k− 1

2
)(
k− 3

2
)

(2k+2)
(
k+ 3

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
2ak
(
k− 1

2
)(
k− 3

2
)

(2k+2)
(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y = a0 · (1 + 4x) +

(
∞∑
k=0

bkx
k+ 1

2

)
, bk+1 =

2bk
(
k− 1

2
)(
k− 3

2
)

(2k+2)
(
k+ 3

2
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 36� �
Order:=6;
dsolve(x*(1-x)*diff(y(x),x$2)+(1/2+2*x)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1

√
x

(
1+ 1

2x−
1
40x

2− 1
560x

3− 1
2688x

4− 1
8448x

5+O
(
x6))+c2

(
1+4x+O

(
x6))
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 55� �
AsymptoticDSolveValue[x*(1-x)*y''[x]+(1/2+2*x)*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
− x5

8448 − x4

2688 − x3

560 − x2

40 + x

2 + 1
)
+ c2(4x+ 1)
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2.15 problem 17
2.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 317

Internal problem ID [5650]
Internal file name [OUTPUT/4898_Sunday_June_05_2022_03_09_45_PM_71058820/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

4xy′′ + y′ + 8y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4xy′′ + y′ + 8y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
4x

q(x) = 2
x
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Table 38: Table p(x), q(x) singularites.

p(x) = 1
4x

singularity type
x = 0 “regular”

q(x) = 2
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4xy′′ + y′ + 8y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

4
(

∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ 8
(

∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

8anxn+r

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

8anxn+r =
∞∑
n=1

8an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

4xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=1

8an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

4x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
4x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−3 + 4r) = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 3r = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
4

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−3 + 4r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

4

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + an(n+ r) + 8an−1 = 0

Solving for an from recursive equation (4) gives

an = − 8an−1

4n2 + 8nr + 4r2 − 3n− 3r (4)

Which for the root r = 3
4 becomes

an = − 8an−1

n (4n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 8
4r2 + 5r + 1
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Which for the root r = 3
4 becomes

a1 = −8
7

And the table now becomes

n an,r an

a0 1 1
a1 − 8

4r2+5r+1 −8
7

For n = 2, using the above recursive equation gives

a2 =
64

(4r2 + 5r + 1) (4r2 + 13r + 10)

Which for the root r = 3
4 becomes

a2 =
32
77

And the table now becomes

n an,r an

a0 1 1
a1 − 8

4r2+5r+1 −8
7

a2
64

(4r2+5r+1)(4r2+13r+10)
32
77

For n = 3, using the above recursive equation gives

a3 = − 512
(4r2 + 5r + 1) (4r2 + 13r + 10) (4r2 + 21r + 27)

Which for the root r = 3
4 becomes

a3 = − 256
3465

And the table now becomes

n an,r an

a0 1 1
a1 − 8

4r2+5r+1 −8
7

a2
64

(4r2+5r+1)(4r2+13r+10)
32
77

a3 − 512
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27) − 256

3465
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For n = 4, using the above recursive equation gives

a4 =
4096

(4r2 + 5r + 1) (4r2 + 13r + 10) (4r2 + 21r + 27) (4r2 + 29r + 52)

Which for the root r = 3
4 becomes

a4 =
512
65835

And the table now becomes

n an,r an

a0 1 1
a1 − 8

4r2+5r+1 −8
7

a2
64

(4r2+5r+1)(4r2+13r+10)
32
77

a3 − 512
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27) − 256

3465

a4
4096

(4r2+5r+1)(4r2+13r+10)(4r2+21r+27)(4r2+29r+52)
512

65835

For n = 5, using the above recursive equation gives

a5 = − 32768
(4r2 + 5r + 1) (4r2 + 13r + 10) (4r2 + 21r + 27) (4r2 + 29r + 52) (4r2 + 37r + 85)

Which for the root r = 3
4 becomes

a5 = − 4096
7571025

And the table now becomes

n an,r an

a0 1 1
a1 − 8

4r2+5r+1 −8
7

a2
64

(4r2+5r+1)(4r2+13r+10)
32
77

a3 − 512
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27) − 256

3465

a4
4096

(4r2+5r+1)(4r2+13r+10)(4r2+21r+27)(4r2+29r+52)
512

65835

a5 − 32768
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27)(4r2+29r+52)(4r2+37r+85) − 4096

7571025
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Using the above table, then the solution y1(x) is

y1(x) = x
3
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
4

(
1− 8x

7 + 32x2

77 − 256x3

3465 + 512x4

65835 − 4096x5

7571025 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)4bn(n+ r) (n+ r − 1) + (n+ r) bn + 8bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = − 8bn−1

4n2 + 8nr + 4r2 − 3n− 3r (4)

Which for the root r = 0 becomes

bn = − 8bn−1

n (4n− 3) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 8
4r2 + 5r + 1

Which for the root r = 0 becomes
b1 = −8

And the table now becomes

n bn,r bn

b0 1 1
b1 − 8

4r2+5r+1 −8
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For n = 2, using the above recursive equation gives

b2 =
64

(4r2 + 5r + 1) (4r2 + 13r + 10)

Which for the root r = 0 becomes
b2 =

32
5

And the table now becomes

n bn,r bn

b0 1 1
b1 − 8

4r2+5r+1 −8

b2
64

(4r2+5r+1)(4r2+13r+10)
32
5

For n = 3, using the above recursive equation gives

b3 = − 512
(4r2 + 5r + 1) (4r2 + 13r + 10) (4r2 + 21r + 27)

Which for the root r = 0 becomes

b3 = −256
135

And the table now becomes

n bn,r bn

b0 1 1
b1 − 8

4r2+5r+1 −8

b2
64

(4r2+5r+1)(4r2+13r+10)
32
5

b3 − 512
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27) −256

135

For n = 4, using the above recursive equation gives

b4 =
4096

(4r2 + 5r + 1) (4r2 + 13r + 10) (4r2 + 21r + 27) (4r2 + 29r + 52)

Which for the root r = 0 becomes

b4 =
512
1755
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And the table now becomes

n bn,r bn

b0 1 1
b1 − 8

4r2+5r+1 −8

b2
64

(4r2+5r+1)(4r2+13r+10)
32
5

b3 − 512
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27) −256

135

b4
4096

(4r2+5r+1)(4r2+13r+10)(4r2+21r+27)(4r2+29r+52)
512
1755

For n = 5, using the above recursive equation gives

b5 = − 32768
(4r2 + 5r + 1) (4r2 + 13r + 10) (4r2 + 21r + 27) (4r2 + 29r + 52) (4r2 + 37r + 85)

Which for the root r = 0 becomes

b5 = − 4096
149175

And the table now becomes

n bn,r bn

b0 1 1
b1 − 8

4r2+5r+1 −8

b2
64

(4r2+5r+1)(4r2+13r+10)
32
5

b3 − 512
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27) −256

135

b4
4096

(4r2+5r+1)(4r2+13r+10)(4r2+21r+27)(4r2+29r+52)
512
1755

b5 − 32768
(4r2+5r+1)(4r2+13r+10)(4r2+21r+27)(4r2+29r+52)(4r2+37r+85) − 4096

149175

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− 8x+ 32x2

5 − 256x3

135 + 512x4

1755 − 4096x5

149175 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
4

(
1− 8x

7 + 32x2

77 − 256x3

3465 + 512x4

65835 − 4096x5

7571025 +O
(
x6))

+ c2

(
1− 8x+ 32x2

5 − 256x3

135 + 512x4

1755 − 4096x5

149175 +O
(
x6))

Hence the final solution is

y = yh

= c1x
3
4

(
1− 8x

7 + 32x2

77 − 256x3

3465 + 512x4

65835 − 4096x5

7571025 +O
(
x6))

+ c2

(
1− 8x+ 32x2

5 − 256x3

135 + 512x4

1755 − 4096x5

149175 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

3
4

(
1− 8x

7 + 32x2

77 − 256x3

3465 + 512x4

65835 − 4096x5

7571025 +O
(
x6))

+ c2

(
1− 8x+ 32x2

5 − 256x3

135 + 512x4

1755 − 4096x5

149175 +O
(
x6))

Verification of solutions

y = c1x
3
4

(
1− 8x

7 + 32x2

77 − 256x3

3465 + 512x4

65835 − 4096x5

7571025 +O
(
x6))

+ c2

(
1− 8x+ 32x2

5 − 256x3

135 + 512x4

1755 − 4096x5

149175 +O
(
x6))

Verified OK.
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2.15.1 Maple step by step solution

Let’s solve
4y′′x+ y′ + 8y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y′

4x − 2y
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

4x + 2y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
4x , P3(x) = 2

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x+ y′ + 8y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + 4r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (4k + 1 + 4r) + 8ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 34
}

• Each term in the series must be 0, giving the recursion relation
4
(
k + 1

4 + r
)
(k + 1 + r) ak+1 + 8ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 8ak

(4k+1+4r)(k+1+r)

• Recursion relation for r = 0
ak+1 = − 8ak

(4k+1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 8ak

(4k+1)(k+1)

]
• Recursion relation for r = 3

4

ak+1 = − 8ak
(4k+4)

(
k+ 7

4
)

• Solution for r = 3
4[

y =
∞∑
k=0

akx
k+ 3

4 , ak+1 = − 8ak
(4k+4)

(
k+ 7

4
)
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+1 = − 8ak

(4k+1)(k+1) , bk+1 = − 8bk
(4k+4)

(
k+ 7

4
)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
Order:=6;
dsolve(4*x*diff(y(x),x$2)+diff(y(x),x)+8*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
4

(
1− 8

7x+ 32
77x

2 − 256
3465x

3 + 512
65835x

4 − 4096
7571025x

5 +O
(
x6))

+ c2

(
1− 8x+ 32

5 x2 − 256
135x

3 + 512
1755x

4 − 4096
149175x

5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 83� �
AsymptoticDSolveValue[4*x*y''[x]+y'[x]+8*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−4096x5

149175 + 512x4

1755 − 256x3

135 + 32x2

5 − 8x+ 1
)

+ c1x
3/4
(
− 4096x5

7571025 + 512x4

65835 − 256x3

3465 + 32x2

77 − 8x
7 + 1

)
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2.16 problem 18
2.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 328

Internal problem ID [5651]
Internal file name [OUTPUT/4899_Sunday_June_05_2022_03_09_47_PM_26749394/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4
(
t2 − 3t+ 2

)
y′′ − 2y′ + y = 0

With the expansion point for the power series method at t = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (49)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (50)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − y − 2y′
4 (t2 − 3t+ 2)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−2t2 − 2t+ 10) y′ + y(4t− 7)
8 (t2 − 3t+ 2)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (16t3 − 28t2 − 52t+ 94) y′ + (−23t2 + 81t− 73) y
16 (t2 − 3t+ 2)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(−71t4 + 270t3 − 104t2 − 633t+ 643) y′ + 88y

(
t3 − 467

88 t
2 + 845

88 t−
1037
176

)
16 (t2 − 3t+ 2)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(1488t5 − 8466t4 + 13692t3 + 5550t2 − 33312t+ 22938) y′ − 1689y

(
t4 − 3998

563 t
3 + 10884

563 t2 − 13391
563 t+ 6257

563

)
64 (t2 − 3t+ 2)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
8 + y′(0)

4

F1 = −7y(0)
32 + 5y′(0)

16

F2 = −73y(0)
128 + 47y′(0)

64

F3 = −1037y(0)
512 + 643y′(0)

256

F4 = −18771y(0)
2048 + 11469y′(0)

1024
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5 − 6257

491520t
6
)
y(0)

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5 + 3823

245760t
6
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

y′′
(
4t2 − 12t+ 8

)
+ y − 2y′ = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

ant
n

Then

y′ =
∞∑
n=1

nant
n−1

y′′ =
∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
4t2 − 12t+ 8

)
+
(

∞∑
n=0

ant
n

)
− 2
(

∞∑
n=1

nant
n−1

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

4tnann(n− 1)
)

+
∞∑

n =2

(
−12n tn−1an(n− 1)

)
+
(

∞∑
n=2

8n(n− 1) antn−2

)
+

∞∑
n =1

(
−2nantn−1)+( ∞∑

n=0

ant
n

)
= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
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power and the corresponding index gives

∞∑
n =2

(
−12n tn−1an(n− 1)

)
=

∞∑
n=1

(−12(n+ 1) an+1n tn)

∞∑
n =2

8n(n− 1) antn−2 =
∞∑
n=0

8(n+ 2) an+2(n+ 1) tn

∞∑
n =1

(
−2nantn−1) = ∞∑

n=0

(−2(n+ 1) an+1t
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

4tnann(n− 1)
)

+
∞∑

n =1

(−12(n+ 1) an+1n tn)

+
(

∞∑
n=0

8(n+2) an+2(n+1) tn
)
+

∞∑
n =0

(−2(n+1) an+1t
n)+

(
∞∑
n=0

ant
n

)
= 0

n = 0 gives
16a2 − 2a1 + a0 = 0

a2 = −a0
16 + a1

8

n = 1 gives
−28a2 + 48a3 + a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −7a0
192 + 5a1

96

For 2 ≤ n, the recurrence equation is

(4)4nan(n− 1)− 12(n+ 1) an+1n+ 8(n+ 2) an+2(n+ 1)− 2(n+ 1) an+1 + an = 0
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Solving for an+2, gives

(5)

an+2 = −4n2an − 12n2an+1 − 4nan − 14nan+1 + an − 2an+1

8 (n+ 2) (n+ 1)

= −(4n2 − 4n+ 1) an
8 (n+ 2) (n+ 1) − (−12n2 − 14n− 2) an+1

8 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

9a2 − 78a3 + 96a4 = 0

Which after substituting the earlier terms found becomes

a4 = −73a0
3072 + 47a1

1536

For n = 3 the recurrence equation gives

25a3 − 152a4 + 160a5 = 0

Which after substituting the earlier terms found becomes

a5 = −1037a0
61440 + 643a1

30720

For n = 4 the recurrence equation gives

49a4 − 250a5 + 240a6 = 0

Which after substituting the earlier terms found becomes

a6 = −6257a0
491520 + 3823a1

245760

For n = 5 the recurrence equation gives

81a5 − 372a6 + 336a7 = 0

Which after substituting the earlier terms found becomes

a7 = −137969a0
13762560 + 83791a1

6881280
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And so on. Therefore the solution is

y =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1t+
(
−a0
16 + a1

8

)
t2 +

(
−7a0
192 + 5a1

96

)
t3

+
(
−73a0
3072 + 47a1

1536

)
t4 +

(
−1037a0

61440 + 643a1
30720

)
t5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5
)
a0

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y =
(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5
)
c1

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5
)
c2 +O

(
t6
)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5 − 6257

491520t
6
)
y(0)

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5 + 3823

245760t
6
)
y′(0) +O

(
t6
)

(2)
y =

(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5
)
c1

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5
)
c2 +O

(
t6
)
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Verification of solutions

y =
(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5 − 6257

491520t
6
)
y(0)

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5 + 3823

245760t
6
)
y′(0) +O

(
t6
)

Verified OK.

y =
(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5
)
c1

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5
)
c2 +O

(
t6
)

Verified OK.

2.16.1 Maple step by step solution

Let’s solve
y′′(4t2 − 12t+ 8) + y − 2y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

4(t2−3t+2) +
y′

2(t2−3t+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

2(t2−3t+2) +
y

4(t2−3t+2) = 0

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = − 1
2(t2−3t+2) , P3(t) = 1

4(t2−3t+2)

]
◦ (t− 1) · P2(t) is analytic at t = 1

((t− 1) · P2(t))
∣∣∣∣
t=1

= 1
2

◦ (t− 1)2 · P3(t) is analytic at t = 1(
(t− 1)2 · P3(t)

) ∣∣∣∣
t=1

= 0

◦ t = 1is a regular singular point
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Check to see if t0 is a regular singular point
t0 = 1

• Multiply by denominators
y′′(4t2 − 12t+ 8) + y − 2y′ = 0

• Change variables using t = u+ 1 so that the regular singular point is at u = 0

(4u2 − 4u)
(

d2

du2y(u)
)
− 2 d

du
y(u) + y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 − 4

(
k + 1

2 + r
)
ak+1(k + 1 + r) = 0
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• Recursion relation that defines series solution to ODE

ak+1 = ak(2k+2r−1)2
2(2k+1+2r)(k+1+r)

• Recursion relation for r = 0

ak+1 = ak(2k−1)2
2(2k+1)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(2k−1)2

2(2k+1)(k+1)

]
• Revert the change of variables u = t− 1[

y =
∞∑
k=0

ak(t− 1)k , ak+1 = ak(2k−1)2
2(2k+1)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = 2akk2
(2k+2)

(
k+ 3

2
)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 = 2akk2
(2k+2)

(
k+ 3

2
)
]

• Revert the change of variables u = t− 1[
y =

∞∑
k=0

ak(t− 1)k+
1
2 , ak+1 = 2akk2

(2k+2)
(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(t− 1)k
)
+
(

∞∑
k=0

bk(t− 1)k+
1
2

)
, ak+1 = ak(2k−1)2

2(2k+1)(k+1) , bk+1 = 2bkk2
(2k+2)

(
k+ 3

2
)
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 54� �
Order:=6;
dsolve(4*(t^2-3*t+2)*diff(y(t),t$2)-2*diff(y(t),t)+y(t)=0,y(t),type='series',t=0);� �

y(t) =
(
1− 1

16t
2 − 7

192t
3 − 73

3072t
4 − 1037

61440t
5
)
y(0)

+
(
t+ 1

8t
2 + 5

96t
3 + 47

1536t
4 + 643

30720t
5
)
D(y) (0) +O

(
t6
)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 70� �
AsymptoticDSolveValue[4*(t^2-3*t+2)*y''[t]-2*y'[t]+y[t]==0,y[t],{t,0,5}]� �
y(t) → c1

(
−1037t5

61440 − 73t4
3072 − 7t3

192 − t2

16 + 1
)
+ c2

(
643t5
30720 + 47t4

1536 + 5t3
96 + t2

8 + t

)
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2.17 problem 19
2.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 340

Internal problem ID [5652]
Internal file name [OUTPUT/4900_Sunday_June_05_2022_03_09_49_PM_30337475/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2
(
t2 − 5t+ 6

)
y′′ + (2t− 3) y′ − 8y = 0

With the expansion point for the power series method at t = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (52)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (53)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2ty′ − 3y′ − 8y
2 (t2 − 5t+ 6)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (24t2 − 104t+ 111) y′ + (−48t+ 104) y
4 (t2 − 5t+ 6)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −
30
(
−23

10 + t
) ((

t2 − 13
3 t+

37
8

)
y′ − 2

(
t− 13

6

)
y
)

(t2 − 5t+ 6)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
180
(
t2 − 23

5 t+
213
40

) ((
t2 − 13

3 t+
37
8

)
y′ − 2

(
t− 13

6

)
y
)

(t2 − 5t+ 6)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −
1260

(
t3 − 69

10t
2 + 639

40 t−
993
80

) ((
t2 − 13

3 t+
37
8

)
y′ − 2

(
t− 13

6

)
y
)

(t2 − 5t+ 6)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 =
2y(0)
3 + y′(0)

4

F1 =
13y(0)
18 + 37y′(0)

48

F2 =
299y(0)
216 + 851y′(0)

576

F3 =
923y(0)
288 + 2627y′(0)

768

F4 =
30121y(0)

3456 + 85729y′(0)
9216
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5 + 30121

2488320t
6
)
y(0)

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5 + 85729

6635520t
6
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

y′′
(
2t2 − 10t+ 12

)
+ (2t− 3) y′ − 8y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

ant
n

Then

y′ =
∞∑
n=1

nant
n−1

y′′ =
∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 − 10t+ 12

)
+ (2t− 3)

(
∞∑
n=1

nant
n−1

)
− 8
(

∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

2tnann(n− 1)
)
+

∞∑
n =2

(
−10n tn−1an(n− 1)

)
+
(

∞∑
n=2

12n(n− 1) antn−2

)

+
(

∞∑
n=1

2nantn
)

+
∞∑

n =1

(
−3nantn−1)+ ∞∑

n =0

(−8antn) = 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
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power and the corresponding index gives

∞∑
n =2

(
−10n tn−1an(n− 1)

)
=

∞∑
n=1

(−10(n+ 1) an+1n tn)

∞∑
n =2

12n(n− 1) antn−2 =
∞∑
n=0

12(n+ 2) an+2(n+ 1) tn

∞∑
n =1

(
−3nantn−1) = ∞∑

n=0

(−3(n+ 1) an+1t
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n− 1)
)

+
∞∑

n =1

(−10(n+ 1) an+1n tn)

+
(

∞∑
n=0

12(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=1

2nantn
)

+
∞∑

n =0

(−3(n+ 1) an+1t
n) +

∞∑
n =0

(−8antn) = 0

n = 0 gives
24a2 − 3a1 − 8a0 = 0

a2 =
a0
3 + a1

8

n = 1 gives
−26a2 + 72a3 − 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
13a0
108 + 37a1

288

For 2 ≤ n, the recurrence equation is

2nan(n− 1)− 10(n+1) an+1n+12(n+2) an+2(n+1)+ 2nan − 3(n+1) an+1 − 8an = 0
(4)
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Solving for an+2, gives

(5)

an+2 = −2n2an − 10n2an+1 − 13nan+1 − 8an − 3an+1

12 (n+ 2) (n+ 1)

= − (2n2 − 8) an
12 (n+ 2) (n+ 1) −

(−10n2 − 13n− 3) an+1

12 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

−69a3 + 144a4 = 0

Which after substituting the earlier terms found becomes

a4 =
299a0
5184 + 851a1

13824

For n = 3 the recurrence equation gives

10a3 − 132a4 + 240a5 = 0

Which after substituting the earlier terms found becomes

a5 =
923a0
34560 + 2627a1

92160

For n = 4 the recurrence equation gives

24a4 − 215a5 + 360a6 = 0

Which after substituting the earlier terms found becomes

a6 =
30121a0
2488320 + 85729a1

6635520

For n = 5 the recurrence equation gives

42a5 − 318a6 + 504a7 = 0

Which after substituting the earlier terms found becomes

a7 =
161603a0
29859840 + 459947a1

79626240
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And so on. Therefore the solution is

y =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1t+
(a0
3 + a1

8

)
t2 +

(
13a0
108 + 37a1

288

)
t3

+
(
299a0
5184 + 851a1

13824

)
t4 +

(
923a0
34560 + 2627a1

92160

)
t5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5
)
a0

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y =
(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5
)
c1

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5
)
c2 +O

(
t6
)

Summary
The solution(s) found are the following

(1)
y =

(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5 + 30121

2488320t
6
)
y(0)

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5 + 85729

6635520t
6
)
y′(0) +O

(
t6
)

(2)
y =

(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5
)
c1

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5
)
c2 +O

(
t6
)
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Verification of solutions

y =
(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5 + 30121

2488320t
6
)
y(0)

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5 + 85729

6635520t
6
)
y′(0) +O

(
t6
)

Verified OK.

y =
(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5
)
c1

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5
)
c2 +O

(
t6
)

Verified OK.

2.17.1 Maple step by step solution

Let’s solve
y′′(2t2 − 10t+ 12) + (2t− 3) y′ − 8y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 4y
t2−5t+6 −

(2t−3)y′
2(t2−5t+6)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2t−3)y′
2(t2−5t+6) −

4y
t2−5t+6 = 0

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = 2t−3
2(t2−5t+6) , P3(t) = − 4

t2−5t+6

]
◦ (−2 + t) · P2(t) is analytic at t = 2

((−2 + t) · P2(t))
∣∣∣∣
t=2

= −1
2

◦ (−2 + t)2 · P3(t) is analytic at t = 2(
(−2 + t)2 · P3(t)

) ∣∣∣∣
t=2

= 0

◦ t = 2is a regular singular point
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Check to see if t0 is a regular singular point
t0 = 2

• Multiply by denominators
y′′(2t2 − 10t+ 12) + (2t− 3) y′ − 8y = 0

• Change variables using t = u+ 2 so that the regular singular point is at u = 0

(2u2 − 2u)
(

d2

du2y(u)
)
+ (2u+ 1)

(
d
du
y(u)

)
− 8y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak(k + r + 2) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−2
(
k + r − 1

2

)
(k + 1 + r) ak+1 + 2ak(k + r + 2) (k + r − 2) = 0
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• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)(k+r−2)

(2k−1+2r)(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = 2ak(k+2)(k−2)

(2k−1)(k+1)

• Apply recursion relation for k = 0
a1 = 8a0

• Apply recursion relation for k = 1
a2 = −3a1

• Express in terms of a0
a2 = −24a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−24u2 + 8u+ 1)

• Revert the change of variables u = −2 + t

[y = a0(−24t2 + 104t− 111)]
• Recursion relation for r = 3

2

ak+1 =
2ak
(
k+ 7

2
)(
k− 1

2
)

(2k+2)
(
k+ 5

2
)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
2ak
(
k+ 7

2
)(
k− 1

2
)

(2k+2)
(
k+ 5

2
)
]

• Revert the change of variables u = −2 + t[
y =

∞∑
k=0

ak(−2 + t)k+
3
2 , ak+1 =

2ak
(
k+ 7

2
)(
k− 1

2
)

(2k+2)
(
k+ 5

2
)
]

• Combine solutions and rename parameters[
y = a0(−24t2 + 104t− 111) +

(
∞∑
k=0

bk(−2 + t)k+
3
2

)
, bk+1 =

2bk
(
k+ 7

2
)(
k− 1

2
)

(2k+2)
(
k+ 5

2
)
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve(2*(t^2-5*t+6)*diff(y(t),t$2)+(2*t-3)*diff(y(t),t)-8*y(t)=0,y(t),type='series',t=0);� �

y(t) =
(
1 + 1

3t
2 + 13

108t
3 + 299

5184t
4 + 923

34560t
5
)
y(0)

+
(
t+ 1

8t
2 + 37

288t
3 + 851

13824t
4 + 2627

92160t
5
)
D(y) (0) +O

(
t6
)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 70� �
AsymptoticDSolveValue[2*(t^2-5*t+6)*y''[t]+(2*t-3)*y'[t]-8*y[t]==0,y[t],{t,0,5}]� �
y(t) → c1

(
923t5
34560 + 299t4

5184 + 13t3
108 + t2

3 + 1
)
+ c2

(
2627t5
92160 + 851t4

13824 + 37t3
288 + t2

8 + t

)
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2.18 problem 20
2.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 356

Internal problem ID [5653]
Internal file name [OUTPUT/4901_Sunday_June_05_2022_03_09_50_PM_22191277/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended
Power Series Method: Frobenius Method page 186
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3t(t+ 1) y′′ + ty′ − y = 0

With the expansion point for the power series method at t = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

3t2 + 3t
)
y′′ + ty′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(t)y′ + q(t)y = 0

Where

p(t) = 1
3t+ 3

q(t) = − 1
3t (t+ 1)
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Table 42: Table p(t), q(t) singularites.

p(t) = 1
3t+3

singularity type
t = −1 “regular”

q(t) = − 1
3t(t+1)

singularity type
t = −1 “regular”
t = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since t = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3t(t+ 1) y′′ + ty′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

ant
n+r

Then

y′ =
∞∑
n=0

(n+ r) antn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) antn+r−2

Substituting the above back into the ode gives

(1)
3t(t+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) antn+r−2

)

+ t

(
∞∑
n=0

(n+ r) antn+r−1

)
−

(
∞∑
n=0

ant
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3tn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3tn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

tn+ran(n+ r)
)

+
∞∑

n =0

(
−ant

n+r
)
= 0

The next step is to make all powers of t be n+ r − 1 in each summation term. Going
over each summation term above with power of t in it which is not already tn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

3tn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2) tn+r−1

∞∑
n =0

tn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1) tn+r−1

∞∑
n =0

(
−ant

n+r
)
=

∞∑
n=1

(
−an−1t

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of t are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

3an−1(n+r−1) (n+r−2) tn+r−1

)
+
(

∞∑
n=0

3tn+r−1an(n+r) (n+r−1)
)

+
(

∞∑
n=1

an−1(n+ r − 1) tn+r−1

)
+

∞∑
n =1

(
−an−1t

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3tn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

3t−1+ra0r(−1 + r) = 0

Or
3t−1+ra0r(−1 + r) = 0
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Since a0 6= 0 then the above simplifies to

3t−1+rr(−1 + r) = 0

Since the above is true for all t then the indicial equation becomes

3r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

3t−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(t) = tr1

(
∞∑
n=0

ant
n

)

y2(t) = Cy1(t) ln (t) + tr2

(
∞∑
n=0

bnt
n

)

Or

y1(t) = t

(
∞∑
n=0

ant
n

)

y2(t) = Cy1(t) ln (t) +
(

∞∑
n=0

bnt
n

)

Or

y1(t) =
∞∑
n=0

ant
n+1

y2(t) = Cy1(t) ln (t) +
(

∞∑
n=0

bnt
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)3an−1(n+ r− 1) (n+ r− 2) + 3an(n+ r) (n+ r− 1) + an−1(n+ r− 1)− an−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(3n2 + 6nr + 3r2 − 8n− 8r + 4)
3 (n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = −an−1(3n2 − 2n− 1)
3 (n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−3r2 + 2r + 1
3 (1 + r) r

Which for the root r = 1 becomes
a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−3r2+2r+1
3(1+r)r 0

For n = 2, using the above recursive equation gives

a2 =
9r3 + 6r2 − 11r − 4
9 (1 + r)2 (2 + r)

Which for the root r = 1 becomes
a2 = 0
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And the table now becomes

n an,r an

a0 1 1
a1

−3r2+2r+1
3(1+r)r 0

a2
9r3+6r2−11r−4
9(1+r)2(2+r) 0

For n = 3, using the above recursive equation gives

a3 =
−27r4 − 81r3 − 9r2 + 89r + 28

27 (3 + r) (2 + r)2 (1 + r)

Which for the root r = 1 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−3r2+2r+1
3(1+r)r 0

a2
9r3+6r2−11r−4
9(1+r)2(2+r) 0

a3
−27r4−81r3−9r2+89r+28

27(3+r)(2+r)2(1+r) 0

For n = 4, using the above recursive equation gives

a4 =
81r5 + 513r4 + 837r3 − 177r2 − 974r − 280

81 (4 + r) (1 + r) (2 + r) (3 + r)2

Which for the root r = 1 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−3r2+2r+1
3(1+r)r 0

a2
9r3+6r2−11r−4
9(1+r)2(2+r) 0

a3
−27r4−81r3−9r2+89r+28

27(3+r)(2+r)2(1+r) 0

a4
81r5+513r4+837r3−177r2−974r−280

81(4+r)(1+r)(2+r)(3+r)2 0

For n = 5, using the above recursive equation gives

a5 =
−243r6 − 2592r5 − 9180r4 − 10350r3 + 5223r2 + 13502r + 3640

243 (5 + r) (3 + r) (2 + r) (1 + r) (4 + r)2

Which for the root r = 1 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−3r2+2r+1
3(1+r)r 0

a2
9r3+6r2−11r−4
9(1+r)2(2+r) 0

a3
−27r4−81r3−9r2+89r+28

27(3+r)(2+r)2(1+r) 0

a4
81r5+513r4+837r3−177r2−974r−280

81(4+r)(1+r)(2+r)(3+r)2 0

a5
−243r6−2592r5−9180r4−10350r3+5223r2+13502r+3640

243(5+r)(3+r)(2+r)(1+r)(4+r)2 0

Using the above table, then the solution y1(t) is

y1(t) = t
(
a0 + a1t+ a2t

2 + a3t
3 + a4t

4 + a5t
5 + a6t

6. . .
)

= t
(
1 +O

(
t6
))

Now the second solution y2(t) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −3r2 + 2r + 1
3 (1 + r) r

Therefore

lim
r→r2

−3r2 + 2r + 1
3 (1 + r) r = lim

r→0

−3r2 + 2r + 1
3 (1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(t) = Cy1(t) ln (t) +
(

∞∑
n=0

bnt
n+r2

)
Therefore

d

dt
y2(t) = Cy′1(t) ln (t) +

Cy1(t)
t

+
(

∞∑
n=0

bnt
n+r2(n+ r2)

t

)

= Cy′1(t) ln (t) +
Cy1(t)

t
+
(

∞∑
n=0

t−1+n+r2bn(n+ r2)
)

d2

dt2
y2(t) = Cy′′1(t) ln (t)+

2Cy′1(t)
t

− Cy1(t)
t2

+
∞∑
n=0

(
bnt

n+r2(n+ r2)2

t2
− bnt

n+r2(n+ r2)
t2

)

= Cy′′1(t) ln (t) +
2Cy′1(t)

t
− Cy1(t)

t2
+
(

∞∑
n=0

t−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

Substituting these back into the given ode 3t(t+ 1) y′′ + ty′ − y = 0 gives

3t(t+ 1)
(
Cy′′1(t) ln (t) +

2Cy′1(t)
t

− Cy1(t)
t2

+
∞∑
n=0

(
bnt

n+r2(n+ r2)2

t2
− bnt

n+r2(n+ r2)
t2

))

+ t

(
Cy′1(t) ln (t) +

Cy1(t)
t

+
(

∞∑
n=0

bnt
n+r2(n+ r2)

t

))

− Cy1(t) ln (t)−
(

∞∑
n=0

bnt
n+r2

)
= 0
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Which can be written as

(7)

(
(3t(t+1) y′′1(t)+y′1(t) t−y1(t)) ln (t)+3t(t+1)

(
2y′1(t)

t
− y1(t)

t2

)
+y1(t)

)
C

+ 3t(t+ 1)
(

∞∑
n=0

(
bnt

n+r2(n+ r2)2

t2
− bnt

n+r2(n+ r2)
t2

))

+ t

(
∞∑
n=0

bnt
n+r2(n+ r2)

t

)
−

(
∞∑
n=0

bnt
n+r2

)
= 0

But since y1(t) is a solution to the ode, then

3t(t+ 1) y′′1(t) + y′1(t) t− y1(t) = 0

Eq (7) simplifes to

(8)

(
3t(t+ 1)

(
2y′1(t)

t
− y1(t)

t2

)
+ y1(t)

)
C

+ 3t(t+ 1)
(

∞∑
n=0

(
bnt

n+r2(n+ r2)2

t2
− bnt

n+r2(n+ r2)
t2

))

+ t

(
∞∑
n=0

bnt
n+r2(n+ r2)

t

)
−

(
∞∑
n=0

bnt
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

ant
n+r1 into the above gives

(9)

(
6t(t+ 1)

(
∞∑
n=0

t−1+n+r1an(n+ r1)
)
+ (−2t− 3)

(
∞∑
n=0

ant
n+r1

))
C

t

+
3(t3 + t2)

(
∞∑
n=0

t−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
+
(

∞∑
n=0

t−1+n+r2bn(n+ r2)
)
t2 −

(
∞∑
n=0

bnt
n+r2

)
t

t
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
6t(t+ 1)

(
∞∑
n=0

tnan(n+ 1)
)
+ (−2t− 3)

(
∞∑
n=0

ant
n+1
))

C

t

+
3(t3 + t2)

(
∞∑
n=0

t−2+nbnn(n− 1)
)
+
(

∞∑
n=0

tn−1bnn

)
t2 −

(
∞∑
n=0

bnt
n

)
t

t
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

6C tn+1an(n+ 1)
)

+
(

∞∑
n=0

6C tnan(n+ 1)
)

+
∞∑

n =0

(
−2C tn+1an

)
+

∞∑
n =0

(−3Cant
n) +

(
∞∑
n=0

3tnbnn(n− 1)
)

+
(

∞∑
n=0

3n tn−1bn(n− 1)
)

+
(

∞∑
n=0

tnbnn

)
+

∞∑
n =0

(−bnt
n) = 0

The next step is to make all powers of t be n − 1 in each summation term. Going
over each summation term above with power of t in it which is not already tn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

6C tn+1an(n+ 1) =
∞∑
n=2

6Ca−2+n(n− 1) tn−1

∞∑
n =0

6C tnan(n+ 1) =
∞∑
n=1

6Can−1n tn−1

∞∑
n =0

(
−2C tn+1an

)
=

∞∑
n=2

(
−2Ca−2+nt

n−1)
∞∑

n =0

(−3Cant
n) =

∞∑
n=1

(
−3Can−1t

n−1)
∞∑

n =0

3tnbnn(n− 1) =
∞∑
n=1

3(n− 1) bn−1(−2 + n) tn−1

∞∑
n =0

tnbnn =
∞∑
n=1

(n− 1) bn−1t
n−1

∞∑
n =0

(−bnt
n) =

∞∑
n=1

(
−bn−1t

n−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers

353



of t are the same and equal to n− 1.

(2B)

(
∞∑
n=2

6Ca−2+n(n− 1) tn−1

)
+
(

∞∑
n=1

6Can−1n tn−1

)

+
∞∑

n =2

(
−2Ca−2+nt

n−1)+ ∞∑
n =1

(
−3Can−1t

n−1)
+
(

∞∑
n=1

3(n− 1) bn−1(−2 + n) tn−1

)
+
(

∞∑
n=0

3n tn−1bn(n− 1)
)

+
(

∞∑
n=1

(n− 1) bn−1t
n−1

)
+

∞∑
n =1

(
−bn−1t

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

3C − 1 = 0

Which is solved for C. Solving for C gives

C = 1
3

For n = 2, Eq (2B) gives
(4a0 + 9a1)C + 6b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

4
3 + 6b2 = 0

Solving the above for b2 gives
b2 = −2

9
For n = 3, Eq (2B) gives

(10a1 + 15a2)C + 7b2 + 18b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−14
9 + 18b3 = 0

Solving the above for b3 gives
b3 =

7
81
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For n = 4, Eq (2B) gives

(16a2 + 21a3)C + 20b3 + 36b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

140
81 + 36b4 = 0

Solving the above for b4 gives
b4 = − 35

729
For n = 5, Eq (2B) gives

(22a3 + 27a4)C + 39b4 + 60b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−455
243 + 60b5 = 0

Solving the above for b5 gives
b5 =

91
2916

Now that we found all bn and C, we can calculate the second solution from

y2(t) = Cy1(t) ln (t) +
(

∞∑
n=0

bnt
n+r2

)

Using the above value found for C = 1
3 and all bn, then the second solution becomes

y2(t) =
1
3
(
t
(
1 +O

(
t6
)))

ln (t) + 1− 2t2
9 + 7t3

81 − 35t4
729 + 91t5

2916 +O
(
t6
)

Therefore the homogeneous solution is

yh(t) = c1y1(t) + c2y2(t)

= c1t
(
1+O

(
t6
))

+c2

(
1
3
(
t
(
1+O

(
t6
)))

ln (t)+1− 2t2
9 + 7t3

81 − 35t4
729 + 91t5

2916 +O
(
t6
))

Hence the final solution is

y = yh

= c1t
(
1 +O

(
t6
))

+ c2

(
t(1 +O(t6)) ln (t)

3 + 1− 2t2
9 + 7t3

81 − 35t4
729 + 91t5

2916 +O
(
t6
))
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Summary
The solution(s) found are the following

(1)y = c1t
(
1 +O

(
t6
))

+ c2

(
t(1 +O(t6)) ln (t)

3 + 1− 2t2
9 + 7t3

81 − 35t4
729 + 91t5

2916 +O
(
t6
))

Verification of solutions

y = c1t
(
1 +O

(
t6
))

+ c2

(
t(1 +O(t6)) ln (t)

3 + 1− 2t2
9 + 7t3

81 − 35t4
729 + 91t5

2916 +O
(
t6
))

Verified OK.

2.18.1 Maple step by step solution

Let’s solve
3t(t+ 1) y′′ + ty′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

3t(t+1) −
y′

3(t+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

3(t+1) −
y

3t(t+1) = 0

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = 1
3(t+1) , P3(t) = − 1

3t(t+1)

]
◦ (t+ 1) · P2(t) is analytic at t = −1

((t+ 1) · P2(t))
∣∣∣∣
t=−1

= 1
3

◦ (t+ 1)2 · P3(t) is analytic at t = −1(
(t+ 1)2 · P3(t)

) ∣∣∣∣
t=−1

= 0

◦ t = −1is a regular singular point
Check to see if t0 is a regular singular point
t0 = −1
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• Multiply by denominators
3t(t+ 1) y′′ + ty′ − y = 0

• Change variables using t = u− 1 so that the regular singular point is at u = 0

(3u2 − 3u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−2 + 3r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (3k + 3r + 1) + ak(3k + 3r + 1) (k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 23
}

• Each term in the series must be 0, giving the recursion relation
3((−k − r − 1) ak+1 + ak(k + r − 1))

(
k + r + 1

3

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)

k+1+r
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• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k−1)

k+1

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = t+ 1
[y = −a0t]

• Recursion relation for r = 2
3

ak+1 =
ak
(
k− 1

3
)

k+ 5
3

• Solution for r = 2
3[

y(u) =
∞∑
k=0

aku
k+ 2

3 , ak+1 =
ak
(
k− 1

3
)

k+ 5
3

]
• Revert the change of variables u = t+ 1[

y =
∞∑
k=0

ak(t+ 1)k+
2
3 , ak+1 =

ak
(
k− 1

3
)

k+ 5
3

]
• Combine solutions and rename parameters[

y = −a0t+
(

∞∑
k=0

bk(t+ 1)k+
2
3

)
, bk+1 =

bk
(
k− 1

3
)

k+ 5
3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 42� �
Order:=6;
dsolve(3*t*(1+t)*diff(y(t),t$2)+t*diff(y(t),t)-y(t)=0,y(t),type='series',t=0);� �

y(t) = c1t
(
1 + O

(
t6
))

+
(
1
3t+O

(
t6
))

ln (t) c2

+
(
1− 1

3t−
2
9t

2 + 7
81t

3 − 35
729t

4 + 91
2916t

5 +O
(
t6
))

c2
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3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 43� �
AsymptoticDSolveValue[3*t*(1+t)*y''[t]+t*y'[t]-y[t]==0,y[t],{t,0,5}]� �

y(t) → c1

(
1
729
(
−35t4 + 63t3 − 162t2 + 243t+ 729

)
+ 1

3t log(t)
)
+ c2t
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3.1 problem 2
3.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 371

Internal problem ID [5654]
Internal file name [OUTPUT/4902_Sunday_June_05_2022_03_09_54_PM_25170467/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.4. Bessels
Equation page 195
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 − 4

49

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 4

49

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 49x2 − 4
49x2
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Table 44: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 49x2−4
49x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 4

49

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 4

49

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

49

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−4anxn+r

49

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r

49 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r −
4a0xr

49 = 0

Or (
xrr(−1 + r) + xrr − 4xr

49

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(49r2 − 4)xr

49 = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 4
49 = 0

Solving for r gives the roots of the indicial equation as

r1 =
2
7

r2 = −2
7

Since a0 6= 0 then the indicial equation becomes

(49r2 − 4)xr

49 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
7 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 2

7

y2(x) =
∞∑
n=0

bnx
n− 2

7

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 −
4an
49 = 0

Solving for an from recursive equation (4) gives

an = − 49an−2

49n2 + 98nr + 49r2 − 4 (4)
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Which for the root r = 2
7 becomes

an = − 7an−2

n (7n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2

7 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 49
49r2 + 196r + 192

Which for the root r = 2
7 becomes

a2 = − 7
36

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 49

49r2+196r+192 − 7
36

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 49

49r2+196r+192 − 7
36

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
2401

(49r2 + 196r + 192) (49r2 + 392r + 780)

Which for the root r = 2
7 becomes

a4 =
49
4608

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 49

49r2+196r+192 − 7
36

a3 0 0
a4

2401
(49r2+196r+192)(49r2+392r+780)

49
4608

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 49

49r2+196r+192 − 7
36

a3 0 0
a4

2401
(49r2+196r+192)(49r2+392r+780)

49
4608

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
2
7
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
2
7

(
1− 7x2

36 + 49x4

4608 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2 −
4bn
49 = 0

Solving for bn from recursive equation (4) gives

bn = − 49bn−2

49n2 + 98nr + 49r2 − 4 (4)

Which for the root r = −2
7 becomes

bn = − 7bn−2

n (7n− 4) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2

7 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 49
49r2 + 196r + 192

Which for the root r = −2
7 becomes

b2 = − 7
20

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 49

49r2+196r+192 − 7
20

368



For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 49

49r2+196r+192 − 7
20

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
2401

(49r2 + 196r + 192) (49r2 + 392r + 780)

Which for the root r = −2
7 becomes

b4 =
49
1920

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 49

49r2+196r+192 − 7
20

b3 0 0
b4

2401
(49r2+196r+192)(49r2+392r+780)

49
1920

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 49

49r2+196r+192 − 7
20

b3 0 0
b4

2401
(49r2+196r+192)(49r2+392r+780)

49
1920

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
2
7
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 7x2

20 + 49x4

1920 +O(x6)
x

2
7

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
7

(
1− 7x2

36 + 49x4

4608 +O
(
x6))+

c2
(
1− 7x2

20 + 49x4

1920 +O(x6)
)

x
2
7

Hence the final solution is

y = yh

= c1x
2
7

(
1− 7x2

36 + 49x4

4608 +O
(
x6))+

c2
(
1− 7x2

20 + 49x4

1920 +O(x6)
)

x
2
7

Summary
The solution(s) found are the following

(1)y = c1x
2
7

(
1− 7x2

36 + 49x4

4608 +O
(
x6))+

c2
(
1− 7x2

20 + 49x4

1920 +O(x6)
)

x
2
7

Verification of solutions

y = c1x
2
7

(
1− 7x2

36 + 49x4

4608 +O
(
x6))+

c2
(
1− 7x2

20 + 49x4

1920 +O(x6)
)

x
2
7

Verified OK.
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3.1.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 − 4

49

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
49x2−4

)
y

49x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+
(
49x2−4

)
y

49x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 49x2−4

49x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= − 4
49

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
49x2y′′ + 49xy′ + (49x2 − 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + 7r) (−2 + 7r)xr + a1(9 + 7r) (5 + 7r)x1+r +
(

∞∑
k=2

(ak(7k + 7r + 2) (7k + 7r − 2) + 49ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + 7r) (−2 + 7r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2

7 ,
2
7

}
• Each term must be 0

a1(9 + 7r) (5 + 7r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(7k + 7r + 2) (7k + 7r − 2) + 49ak−2 = 0
• Shift index using k− >k + 2

ak+2(7k + 16 + 7r) (7k + 12 + 7r) + 49ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 49ak
(7k+16+7r)(7k+12+7r)

• Recursion relation for r = −2
7

ak+2 = − 49ak
(7k+14)(7k+10)

• Solution for r = −2
7[

y =
∞∑
k=0

akx
k− 2

7 , ak+2 = − 49ak
(7k+14)(7k+10) , a1 = 0

]
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• Recursion relation for r = 2
7

ak+2 = − 49ak
(7k+18)(7k+14)

• Solution for r = 2
7[

y =
∞∑
k=0

akx
k+ 2

7 , ak+2 = − 49ak
(7k+18)(7k+14) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 2

7

)
+
(

∞∑
k=0

bkx
k+ 2

7

)
, ak+2 = − 49ak

(7k+14)(7k+10) , a1 = 0, bk+2 = − 49bk
(7k+18)(7k+14) , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-4/49)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

4
7
(
1− 7

36x
2 + 49

4608x
4 +O(x6)

)
+ c1

(
1− 7

20x
2 + 49

1920x
4 +O(x6)

)
x

2
7
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-4/49)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
2/7
(
49x4

4608 − 7x2

36 + 1
)
+

c2
(

49x4

1920 −
7x2

20 + 1
)

x2/7
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3.2 problem 3
3.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 383

Internal problem ID [5655]
Internal file name [OUTPUT/4903_Sunday_June_05_2022_03_09_57_PM_70570903/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.4. Bessels
Equation page 195
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y′ + y

4 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + y

4 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1
4x
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Table 46: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1
4x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + y

4 = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
(

∞∑
n=0

(n+r) (n+r−1) anxn+r−2

)
x+
(

∞∑
n=0

(n+r) anxn+r−1

)
+

(
∞∑
n=0

anx
n+r

)
4 = 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

4

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r

4 =
∞∑
n=1

an−1x
n+r−1

4

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

4

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

377



Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−1

4 = 0

Solving for an from recursive equation (4) gives

an = − an−1

4 (n2 + 2nr + r2) (4)

Which for the root r = 0 becomes

an = −an−1

4n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
4 (r + 1)2
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Which for the root r = 0 becomes
a1 = −1

4
And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

For n = 2, using the above recursive equation gives

a2 =
1

16 (r + 1)2 (r + 2)2

Which for the root r = 0 becomes
a2 =

1
64

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

For n = 3, using the above recursive equation gives

a3 = − 1
64 (r + 1)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes

a3 = − 1
2304

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

a3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304
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For n = 4, using the above recursive equation gives

a4 =
1

256 (r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes

a4 =
1

147456

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

a3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304

a4
1

256(r+1)2(r+2)2(r+3)2(4+r)2
1

147456

For n = 5, using the above recursive equation gives

a5 = − 1
1024 (r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2 (r + 5)2

Which for the root r = 0 becomes

a5 = − 1
14745600

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

a3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304

a4
1

256(r+1)2(r+2)2(r+3)2(4+r)2
1

147456

a5 − 1
1024(r+1)2(r+2)2(r+3)2(4+r)2(r+5)2 − 1

14745600
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 − 1

4(r+1)2 −1
4

1
2(r+1)3

1
2

b2
1

16(r+1)2(r+2)2
1
64

−2r−3
8(r+1)3(r+2)3 − 3

64

b3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304
3r2+12r+11

32(r+1)3(r+2)3(r+3)3
11

6912

b4
1

256(r+1)2(r+2)2(r+3)2(4+r)2
1

147456
−2r3−15r2−35r−25

64(r+1)3(r+2)3(r+3)3(4+r)3 − 25
884736

b5 − 1
1024(r+1)2(r+2)2(r+3)2(4+r)2(r+5)2 − 1

14745600
5r4+60r3+255r2+450r+274

512(r+1)3(r+2)3(r+3)3(4+r)3(r+5)3
137

442368000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x)

+ x

2 − 3x2

64 + 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Verification of solutions

y = c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Verified OK.
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3.2.1 Maple step by step solution

Let’s solve
y′′x+ y′ + y

4 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
− y

4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y

4x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

4x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x+ y + 4y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

4a0r2x−1+r +
(

∞∑
k=0

(
4ak+1(k + 1 + r)2 + ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1)2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

4(k+1)2

• Recursion relation for r = 0
ak+1 = − ak

4(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

4(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+1/4*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− 1

4x+ 1
64x

2 − 1
2304x

3 + 1
147456x

4 − 1
14745600x

5 +O
(
x6))

+
(
1
2x− 3

64x
2 + 11

6912x
3 − 25

884736x
4 + 137

442368000x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 117� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+1/4*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
− x5

14745600 + x4

147456 − x3

2304 + x2

64 − x

4 + 1
)
+ c2

(
137x5

442368000 − 25x4

884736

+ 11x3

6912 − 3x2

64 +
(
− x5

14745600 + x4

147456 − x3

2304 + x2

64 − x

4 + 1
)
log(x) + x

2

)
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3.3 problem 4
Internal problem ID [5656]
Internal file name [OUTPUT/4904_Sunday_June_05_2022_03_09_59_PM_47996665/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.4. Bessels
Equation page 195
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode_form_A",
"second order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ +
(
e−2x − 1

9

)
y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (58)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (59)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −(9 e−2x − 1) y
9

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−y′ + 2y) e−2x + y′

9
F2 =

dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 2(−19y + 18y′) e−2x

9 + y e−4x + y

81
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (−8y + y′) e−4x + 10(8y − 11y′) e−2x

9 + y′

81
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (133y − 36y′) e−4x

3 + (−517y + 900y′) e−2x

27 − y e−6x + y

729

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −8y(0)
9

F1 = 2y(0)− 8y′(0)
9

F2 = −260y(0)
81 + 4y′(0)

F3 =
8y(0)
9 − 908y′(0)

81

F4 =
17632y(0)

729 + 64y′(0)
3
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 4

9x
2 + 1

3x
3 − 65

486x
4 + 1

135x
5 + 1102

32805x
6
)
y(0)

+
(
x− 4

27x
3 + 1

6x
4 − 227

2430x
5 + 4

135x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

9y′′e2x +
(
−e2x + 9

)
y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

9
(

∞∑
n=2

n(n− 1) anxn−2

)
e2x +

(
−e2x + 9

)( ∞∑
n=0

anx
n

)
= 0 (1)

Expanding 9 e2x as Taylor series around x = 0 and keeping only the first 6 terms gives

9 e2x = 9 + 18x+ 18x2 + 12x3 + 6x4 + 12
5 x5 + 4

5x
6 + . . .

= 9 + 18x+ 18x2 + 12x3 + 6x4 + 12
5 x5 + 4

5x
6

Expanding −e2x + 9 as Taylor series around x = 0 and keeping only the first 6 terms
gives

−e2x + 9 = 8− 2x− 2x2 − 4
3x

3 − 2
3x

4 − 4
15x

5 − 4
45x

6 + . . .

= 8− 2x− 2x2 − 4
3x

3 − 2
3x

4 − 4
15x

5 − 4
45x

6
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Hence the ODE in Eq (1) becomes

(
9 + 18x+ 18x2 + 12x3 + 6x4 + 12

5 x5 + 4
5x

6
)( ∞∑

n=2

n(n− 1) anxn−2

)

+
(
8− 2x− 2x2 − 4

3x
3 − 2

3x
4 − 4

15x
5 − 4

45x
6
)( ∞∑

n=0

anx
n

)
= 0

Expanding the first term in (1) gives

9 ·
(

∞∑
n=2

n(n− 1) anxn−2

)
+ 18x ·

(
∞∑
n=2

n(n− 1) anxn−2

)

+ 18x2 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+ 12x3

·

(
∞∑
n=2

n(n− 1) anxn−2

)
+ 6x4 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+ 12x5

5

·

(
∞∑
n=2

n(n− 1) anxn−2

)
+ 4x6

5 ·

(
∞∑
n=2

n(n− 1) anxn−2

)

+
(
8− 2x− 2x2 − 4

3x
3 − 2

3x
4 − 4

15x
5 − 4

45x
6
)( ∞∑

n=0

anx
n

)
= 0

Expanding the second term in (1) gives

Expression too large to display
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Which simplifies to

(2)

(
∞∑
n=2

4nxn+4an(n− 1)
5

)
+
(

∞∑
n=2

12nxn+3an(n− 1)
5

)

+
(

∞∑
n=2

6nxn+2an(n− 1)
)

+
(

∞∑
n=2

12nx1+nan(n− 1)
)

+
(

∞∑
n=2

18nanxn(n− 1)
)

+
(

∞∑
n=2

18nxn−1an(n− 1)
)

+
(

∞∑
n=2

9n(n− 1) anxn−2

)
+
(

∞∑
n=0

8anxn

)
+

∞∑
n =0

(
−2x1+nan

)
+

∞∑
n =0

(
−2xn+2an

)
+

∞∑
n =0

(
−4xn+3an

3

)
+

∞∑
n =0

(
−2xn+4an

3

)
+

∞∑
n =0

(
−4xn+5an

15

)
+

∞∑
n =0

(
−4xn+6an

45

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

4nxn+4an(n− 1)
5 =

∞∑
n=6

4(n− 4) an−4(n− 5)xn

5

∞∑
n =2

12nxn+3an(n− 1)
5 =

∞∑
n=5

12(n− 3) an−3(n− 4)xn

5

∞∑
n =2

6nxn+2an(n− 1) =
∞∑
n=4

6(n− 2) an−2(n− 3)xn

∞∑
n =2

12nx1+nan(n− 1) =
∞∑
n=3

12(n− 1) an−1(n− 2)xn

∞∑
n =2

18nxn−1an(n− 1) =
∞∑
n=1

18(1 + n) a1+nnxn

∞∑
n =2

9n(n− 1) anxn−2 =
∞∑
n=0

9(n+ 2) an+2(1 + n)xn
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∞∑
n =0

(
−2x1+nan

)
=

∞∑
n=1

(−2an−1x
n)

∞∑
n =0

(
−2xn+2an

)
=

∞∑
n=2

(−2an−2x
n)

∞∑
n =0

(
−4xn+3an

3

)
=

∞∑
n=3

(
−4an−3x

n

3

)
∞∑

n =0

(
−2xn+4an

3

)
=

∞∑
n=4

(
−2an−4x

n

3

)
∞∑

n =0

(
−4xn+5an

15

)
=

∞∑
n=5

(
−4an−5x

n

15

)
∞∑

n =0

(
−4xn+6an

45

)
=

∞∑
n=6

(
−4an−6x

n

45

)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=6

4(n− 4) an−4(n− 5)xn

5

)
+
(

∞∑
n=5

12(n− 3) an−3(n− 4)xn

5

)

+
(

∞∑
n=4

6(n− 2) an−2(n− 3)xn

)
+
(

∞∑
n=3

12(n− 1) an−1(n− 2)xn

)

+
(

∞∑
n=2

18nanxn(n− 1)
)

+
(

∞∑
n=1

18(1 + n) a1+nnxn

)

+
(

∞∑
n=0

9(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=0

8anxn

)

+
∞∑

n =1

(−2an−1x
n) +

∞∑
n =2

(−2an−2x
n) +

∞∑
n =3

(
−4an−3x

n

3

)
+

∞∑
n =4

(
−2an−4x

n

3

)
+

∞∑
n =5

(
−4an−5x

n

15

)
+

∞∑
n =6

(
−4an−6x

n

45

)
= 0

n = 0 gives
18a2 + 8a0 = 0
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a2 = −4a0
9

n = 1 gives
36a2 + 54a3 + 8a1 − 2a0 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
3 − 4a1

27

n = 2 gives
44a2 + 108a3 + 108a4 − 2a1 − 2a0 = 0

Which after substituting earlier equations, simplifies to

a4 = −65a0
486 + a1

6

n = 3 gives

22a2 + 116a3 + 216a4 + 180a5 − 2a1 −
4a0
3 = 0

Which after substituting earlier equations, simplifies to

a5 =
a0
135 − 227a1

2430

n = 4 gives

10a2 + 70a3 + 224a4 + 360a5 + 270a6 −
4a1
3 − 2a0

3 = 0

Which after substituting earlier equations, simplifies to

a6 =
1102a0
32805 + 4a1

135

n = 5 gives

52a2
15 + 34a3 + 142a4 + 368a5 + 540a6 + 378a7 −

2a1
3 − 4a0

15 = 0
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Which after substituting earlier equations, simplifies to

a7 = −19a0
630 + 503a1

459270

For 6 ≤ n, the recurrence equation is

(4)
4(n− 4) an−4(n− 5)

5 + 12(n− 3) an−3(n− 4)
5 + 6(n− 2) an−2(n− 3)

+12(n−1) an−1(n−2)+18nan(n−1)+18(1+n) a1+nn+9(n+2) an+2(1+n)

+ 8an − 2an−1 − 2an−2 −
4an−3

3 − 2an−4

3 − 4an−5

15 − 4an−6

45 = 0

Solving for an+2, gives

(5)

an+2 =

−2(405n2an + 405n2a1+n + 18n2an−4 + 54n2an−3 + 135n2an−2 + 270n2an−1 − 405nan + 405na1+n − 162nan−4 − 378nan−3 − 675nan−2 − 810nan−1 + 180an − 2an−6 − 6an−5 + 345an−4 + 618an−3 + 765an−2 + 495an−1)
405 (n+ 2) (1 + n)

= −2(405n2 − 405n+ 180) an
405 (n+ 2) (1 + n) − 2(405n2 + 405n) a1+n

405 (n+ 2) (1 + n) + 4an−6

405 (n+ 2) (1 + n)

+ 4an−5

135 (n+ 2) (1 + n)−
2(18n2 − 162n+ 345) an−4

405 (n+ 2) (1 + n) − 2(54n2 − 378n+ 618) an−3

405 (n+ 2) (1 + n)

− 2(135n2 − 675n+ 765) an−2

405 (n+ 2) (1 + n) − 2(270n2 − 810n+ 495) an−1

405 (n+ 2) (1 + n)

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x−
4a0x2

9 +
(
a0
3 − 4a1

27

)
x3 +

(
−65a0

486 + a1
6

)
x4 +

(
a0
135 − 227a1

2430

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 4

9x
2+ 1

3x
3− 65

486x
4+ 1

135x
5
)
a0+

(
x− 4

27x
3+ 1

6x
4− 227

2430x
5
)
a1+O

(
x6)
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At x = 0 the solution above becomes

y =
(
1− 4

9x
2 + 1

3x
3 − 65

486x
4 + 1

135x
5
)
c1 +

(
x− 4

27x
3 + 1

6x
4 − 227

2430x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 4

9x
2 + 1

3x
3 − 65

486x
4 + 1

135x
5 + 1102

32805x
6
)
y(0)

+
(
x− 4

27x
3 + 1

6x
4 − 227

2430x
5 + 4

135x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 4

9x
2 + 1

3x
3 − 65

486x
4 + 1

135x
5
)
c1 +

(
x− 4

27x
3 + 1

6x
4 − 227

2430x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 4

9x
2 + 1

3x
3 − 65

486x
4 + 1

135x
5 + 1102

32805x
6
)
y(0)

+
(
x− 4

27x
3 + 1

6x
4 − 227

2430x
5 + 4

135x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 4

9x
2 + 1

3x
3 − 65

486x
4 + 1

135x
5
)
c1 +

(
x− 4

27x
3 + 1

6x
4 − 227

2430x
5
)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
Change of variables used:

[x = -1/2*ln(t)]
Linear ODE actually solved:

(9*t-1)*u(t)+36*t*diff(u(t),t)+36*t^2*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve(diff(y(x),x$2)+(exp(-2*x)-1/9)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 4

9x
2 + 1

3x
3 − 65

486x
4 + 1

135x
5
)
y(0)

+
(
x− 4

27x
3 + 1

6x
4 − 227

2430x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[y''[x]+(Exp[-2*x]-1/9)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−227x5

2430 + x4

6 − 4x3

27 + x

)
+ c1

(
x5

135 − 65x4

486 + x3

3 − 4x2

9 + 1
)
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3.4 problem 6
3.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 409

Internal problem ID [5657]
Internal file name [OUTPUT/4905_Sunday_June_05_2022_03_10_01_PM_69803307/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.4. Bessels
Equation page 195
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ +
(
x+ 3

4

)
y

4 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x

4 + 3
16

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 4x+ 3
16x2
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Table 48: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 4x+3
16x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x

4 + 3
16

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+
(
x

4 + 3
16

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran
4

)
+
(

∞∑
n=0

3anxn+r

16

)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran
4 =

∞∑
n=1

an−1x
n+r

4

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r

4

)
+
(

∞∑
n=0

3anxn+r

16

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3anxn+r

16 = 0

When n = 0 the above becomes

xra0r(−1 + r) + 3a0xr

16 = 0

Or (
xrr(−1 + r) + 3xr

16

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(16r2 − 16r + 3)xr

16 = 0

Since the above is true for all x then the indicial equation becomes

r2 − r + 3
16 = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
4

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes

(16r2 − 16r + 3)xr

16 = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

4

y2(x) =
∞∑
n=0

bnx
n+ 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−1

4 + 3an
16 = 0

Solving for an from recursive equation (4) gives

an = − 4an−1

16n2 + 32nr + 16r2 − 16n− 16r + 3 (4)

Which for the root r = 3
4 becomes

an = − an−1

4n2 + 2n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 4
16r2 + 16r + 3
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Which for the root r = 3
4 becomes

a1 = −1
6

And the table now becomes

n an,r an

a0 1 1
a1 − 4

16r2+16r+3 −1
6

For n = 2, using the above recursive equation gives

a2 =
16

(16r2 + 16r + 3) (16r2 + 48r + 35)
Which for the root r = 3

4 becomes

a2 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1 − 4

16r2+16r+3 −1
6

a2
16

(16r2+16r+3)(16r2+48r+35)
1

120

For n = 3, using the above recursive equation gives

a3 = − 64
(16r2 + 16r + 3) (16r2 + 48r + 35) (16r2 + 80r + 99)

Which for the root r = 3
4 becomes

a3 = − 1
5040

And the table now becomes

n an,r an

a0 1 1
a1 − 4

16r2+16r+3 −1
6

a2
16

(16r2+16r+3)(16r2+48r+35)
1

120

a3 − 64
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99) − 1

5040
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For n = 4, using the above recursive equation gives

a4 =
256

(16r2 + 16r + 3) (16r2 + 48r + 35) (16r2 + 80r + 99) (16r2 + 112r + 195)

Which for the root r = 3
4 becomes

a4 =
1

362880

And the table now becomes

n an,r an

a0 1 1
a1 − 4

16r2+16r+3 −1
6

a2
16

(16r2+16r+3)(16r2+48r+35)
1

120

a3 − 64
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99) − 1

5040

a4
256

(16r2+16r+3)(16r2+48r+35)(16r2+80r+99)(16r2+112r+195)
1

362880

For n = 5, using the above recursive equation gives

a5 = − 1024
(16r2 + 16r + 3) (16r2 + 48r + 35) (16r2 + 80r + 99) (16r2 + 112r + 195) (16r2 + 144r + 323)

Which for the root r = 3
4 becomes

a5 = − 1
39916800

And the table now becomes

n an,r an

a0 1 1
a1 − 4

16r2+16r+3 −1
6

a2
16

(16r2+16r+3)(16r2+48r+35)
1

120

a3 − 64
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99) − 1

5040

a4
256

(16r2+16r+3)(16r2+48r+35)(16r2+80r+99)(16r2+112r+195)
1

362880

a5 − 1024
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99)(16r2+112r+195)(16r2+144r+323) − 1

39916800

404



Using the above table, then the solution y1(x) is

y1(x) = x
3
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
4

(
1− x

6 + x2

120 − x3

5040 + x4

362880 − x5

39916800 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1) + bn−1

4 + 3bn
16 = 0

Solving for bn from recursive equation (4) gives

bn = − 4bn−1

16n2 + 32nr + 16r2 − 16n− 16r + 3 (4)

Which for the root r = 1
4 becomes

bn = − bn−1

4n2 − 2n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 4
16r2 + 16r + 3

Which for the root r = 1
4 becomes

b1 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

16r2+16r+3 −1
2
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For n = 2, using the above recursive equation gives

b2 =
16

(16r2 + 16r + 3) (16r2 + 48r + 35)

Which for the root r = 1
4 becomes

b2 =
1
24

And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

16r2+16r+3 −1
2

b2
16

(16r2+16r+3)(16r2+48r+35)
1
24

For n = 3, using the above recursive equation gives

b3 = − 64
(16r2 + 16r + 3) (16r2 + 48r + 35) (16r2 + 80r + 99)

Which for the root r = 1
4 becomes

b3 = − 1
720

And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

16r2+16r+3 −1
2

b2
16

(16r2+16r+3)(16r2+48r+35)
1
24

b3 − 64
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99) − 1

720

For n = 4, using the above recursive equation gives

b4 =
256

(16r2 + 16r + 3) (16r2 + 48r + 35) (16r2 + 80r + 99) (16r2 + 112r + 195)

Which for the root r = 1
4 becomes

b4 =
1

40320
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And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

16r2+16r+3 −1
2

b2
16

(16r2+16r+3)(16r2+48r+35)
1
24

b3 − 64
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99) − 1

720

b4
256

(16r2+16r+3)(16r2+48r+35)(16r2+80r+99)(16r2+112r+195)
1

40320

For n = 5, using the above recursive equation gives

b5 = − 1024
(16r2 + 16r + 3) (16r2 + 48r + 35) (16r2 + 80r + 99) (16r2 + 112r + 195) (16r2 + 144r + 323)

Which for the root r = 1
4 becomes

b5 = − 1
3628800

And the table now becomes

n bn,r bn

b0 1 1
b1 − 4

16r2+16r+3 −1
2

b2
16

(16r2+16r+3)(16r2+48r+35)
1
24

b3 − 64
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99) − 1

720

b4
256

(16r2+16r+3)(16r2+48r+35)(16r2+80r+99)(16r2+112r+195)
1

40320

b5 − 1024
(16r2+16r+3)(16r2+48r+35)(16r2+80r+99)(16r2+112r+195)(16r2+144r+323) − 1

3628800

Using the above table, then the solution y2(x) is

y2(x) = x
3
4
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
4

(
1− x

2 + x2

24 − x3

720 + x4

40320 − x5

3628800 +O
(
x6))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
4

(
1− x

6 + x2

120 − x3

5040 + x4

362880 − x5

39916800 +O
(
x6))

+ c2x
1
4

(
1− x

2 + x2

24 − x3

720 + x4

40320 − x5

3628800 +O
(
x6))

Hence the final solution is

y = yh

= c1x
3
4

(
1− x

6 + x2

120 − x3

5040 + x4

362880 − x5

39916800 +O
(
x6))

+ c2x
1
4

(
1− x

2 + x2

24 − x3

720 + x4

40320 − x5

3628800 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

3
4

(
1− x

6 + x2

120 − x3

5040 + x4

362880 − x5

39916800 +O
(
x6))

+ c2x
1
4

(
1− x

2 + x2

24 − x3

720 + x4

40320 − x5

3628800 +O
(
x6))

Verification of solutions

y = c1x
3
4

(
1− x

6 + x2

120 − x3

5040 + x4

362880 − x5

39916800 +O
(
x6))

+ c2x
1
4

(
1− x

2 + x2

24 − x3

720 + x4

40320 − x5

3628800 +O
(
x6))

Verified OK.
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3.4.1 Maple step by step solution

Let’s solve
x2y′′ +

(
x
4 +

3
16

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y(4x+3)

16x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y(4x+3)

16x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 4x+3
16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
16x2y′′ + y(4x+ 3) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

409



xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)xr +
(

∞∑
k=1

(ak(4k + 4r − 1) (4k + 4r − 3) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term in the series must be 0, giving the recursion relation

16
(
k + r − 3

4

) (
k + r − 1

4

)
ak + 4ak−1 = 0

• Shift index using k− >k + 1
16
(
k + 1

4 + r
) (

k + 3
4 + r

)
ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(4k+1+4r)(4k+3+4r)

• Recursion relation for r = 1
4

ak+1 = − 4ak
(4k+2)(4k+4)

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+1 = − 4ak
(4k+2)(4k+4)

]
• Recursion relation for r = 3

4

ak+1 = − 4ak
(4k+4)(4k+6)

• Solution for r = 3
4[

y =
∞∑
k=0

akx
k+ 3

4 , ak+1 = − 4ak
(4k+4)(4k+6)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+1 = − 4ak

(4k+2)(4k+4) , bk+1 = − 4bk
(4k+4)(4k+6)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+1/4*(x+3/4)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
4

(
1− 1

2x+ 1
24x

2 − 1
720x

3 + 1
40320x

4 − 1
3628800x

5 +O
(
x6))

+ c2x
3
4

(
1− 1

6x+ 1
120x

2 − 1
5040x

3 + 1
362880x

4 − 1
39916800x

5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 90� �
AsymptoticDSolveValue[x^2*y''[x]+1/4*(x+3/4)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
4
√
x

(
− x5

3628800 + x4

40320 − x3

720 + x2

24 − x

2 + 1
)

+ c1x
3/4
(
− x5

39916800 + x4

362880 − x3

5040 + x2

120 − x

6 + 1
)
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3.5 problem 7
3.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 421

Internal problem ID [5658]
Internal file name [OUTPUT/4906_Sunday_June_05_2022_03_10_04_PM_48433408/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.4. Bessels
Equation page 195
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ + (x2 − 1) y
4 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2

4 − 1
4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = x2 − 1
4x2
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Table 50: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = x2−1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2

4 − 1
4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2

4 − 1
4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an
4

)
+

∞∑
n =0

(
−anx

n+r

4

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an
4 =

∞∑
n=2

an−2x
n+r

4

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

4

)
+

∞∑
n =0

(
−anx

n+r

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r

4 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r −
a0x

r

4 = 0

Or (
xrr(−1 + r) + xrr − xr

4

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(4r2 − 1)xr

4 = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 1
4 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes

(4r2 − 1)xr

4 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2

4 − an
4 = 0

Solving for an from recursive equation (4) gives

an = − an−2

4n2 + 8nr + 4r2 − 1 (4)

Which for the root r = 1
2 becomes

an = − an−2

4n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
4r2 + 16r + 15

Which for the root r = 1
2 becomes

a2 = − 1
24

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+16r+15 − 1
24

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+16r+15 − 1
24

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

16r4 + 192r3 + 824r2 + 1488r + 945
Which for the root r = 1

2 becomes

a4 =
1

1920
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+16r+15 − 1
24

a3 0 0
a4

1
16r4+192r3+824r2+1488r+945

1
1920

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+16r+15 − 1
24

a3 0 0
a4

1
16r4+192r3+824r2+1488r+945

1
1920

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x2

24 + x4

1920 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→− 1

2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2

4 − bn
4 = 0
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Which for for the root r = −1
2 becomes

(4A)bn

(
n− 1

2

)(
n− 3

2

)
+ bn

(
n− 1

2

)
+ bn−2

4 − bn
4 = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−2

4n2 + 8nr + 4r2 − 1 (5)

Which for the root r = −1
2 becomes

bn = − bn−2

4n2 − 4n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
4r2 + 16r + 15

Which for the root r = −1
2 becomes

b2 = −1
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

4r2+16r+15 −1
8

For n = 3, using the above recursive equation gives

b3 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

4r2+16r+15 −1
8

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(4r2 + 16r + 15) (4r2 + 32r + 63)
Which for the root r = −1

2 becomes

b4 =
1
384

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

4r2+16r+15 −1
8

b3 0 0
b4

1
16r4+192r3+824r2+1488r+945

1
384

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

4r2+16r+15 −1
8

b3 0 0
b4

1
16r4+192r3+824r2+1488r+945

1
384

b5 0 0
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Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

8 + x4

384 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x2

24 + x4

1920 +O
(
x6))+

c2
(
1− x2

8 + x4

384 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1
√
x

(
1− x2

24 + x4

1920 +O
(
x6))+

c2
(
1− x2

8 + x4

384 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− x2

24 + x4

1920 +O
(
x6))+

c2
(
1− x2

8 + x4

384 +O(x6)
)

√
x

Verification of solutions

y = c1
√
x

(
1− x2

24 + x4

1920 +O
(
x6))+

c2
(
1− x2

8 + x4

384 +O(x6)
)

√
x

Verified OK.

3.5.1 Maple step by step solution

Let’s solve

x2y′′ + xy′ +
(

x2

4 − 1
4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′
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• Isolate 2nd derivative

y′′ = −
(
x2−1

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+
(
x2−1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r
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◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − ak
4k2+12k+8

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = − ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − ak
4k2+20k+24

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − ak

4k2+12k+8 , a1 = 0, bk+2 = − bk
4k2+20k+24 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+1/4*(x^2-1)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x
(
1− 1

24x
2 + 1

1920x
4 +O(x6)

)
+ c2

(
1− 1

8x
2 + 1

384x
4 +O(x6)

)
√
x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 58� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+1/4*(x^2-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x7/2

384 − x3/2

8 + 1√
x

)
+ c2

(
x9/2

1920 − x5/2

24 +
√
x

)
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3.6 problem 8
3.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 433

Internal problem ID [5659]
Internal file name [OUTPUT/4907_Sunday_June_05_2022_03_10_07_PM_97201833/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.4. Bessels
Equation page 195
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(1 + 2x)2 y′′ + 2(1 + 2x) y′ + 16x(1 + x) y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (63)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (64)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(8yx2 + 2xy′ + 8xy + y′)
(1 + 2x)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −
32
(
x2 + x− 1

2

) ((1
2 + x

)
y′ − y

)
(1 + 2x)3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(128x3 + 192x2 − 96x− 80) y′ + 256y

(
x4 + 2x3 + 1

4x
2 − 3

4x+ 1
2

)
(1 + 2x)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(512x5 + 1280x4 + 128x3 − 1088x2 + 1216x+ 832) y′ − 1024

(
x4 + 2x3 − 3

2x
2 − 5

2x+ 19
16

)
y

(1 + 2x)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−3072x5 − 7680x4 + 5376x3 + 15744x2 − 14208x− 9984) y′ − 4096

(
x6 + 3x5 + 3

4x
4 − 7

2x
3 + 21

4 x
2 + 15

2 x− 115
32

)
y

(1 + 2x)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y′(0)
F1 = −16y(0) + 8y′(0)
F2 = 128y(0)− 80y′(0)
F3 = −1216y(0) + 832y′(0)
F4 = 14720y(0)− 9984y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 8

3x
3 + 16

3 x4 − 152
15 x5 + 184

9 x6
)
y(0)

+
(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5 − 208

15 x6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

4x2 + 4x+ 1
)
y′′ + (2 + 4x) y′ +

(
16x2 + 16x

)
y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
4x2 + 4x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (2 + 4x)

(
∞∑
n=1

nanx
n−1

)
+
(
16x2 + 16x

)( ∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

4xnann(n− 1)
)

+
(

∞∑
n=2

4nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

2nanxn−1

)
+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=0

16xn+2an

)
+
(

∞∑
n=0

16x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the

429



power and the corresponding index gives

∞∑
n =2

4nxn−1an(n− 1) =
∞∑
n=1

4(1 + n) a1+nnxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(1 + n) a1+nx
n

∞∑
n =0

16xn+2an =
∞∑
n=2

16an−2x
n

∞∑
n =0

16x1+nan =
∞∑
n=1

16an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

4xnann(n− 1)
)

+
(

∞∑
n=1

4(1 + n) a1+nnxn

)

+
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=0

2(1 + n) a1+nx
n

)

+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=2

16an−2x
n

)
+
(

∞∑
n=1

16an−1x
n

)
= 0

n = 0 gives
2a2 + 2a1 = 0

a2 = −a1

n = 1 gives
12a2 + 6a3 + 4a1 + 16a0 = 0
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Which after substituting earlier equations, simplifies to

a3 = −8a0
3 + 4a1

3

For 2 ≤ n, the recurrence equation is

(4)4nan(n− 1) + 4(1 + n) a1+nn+ (n+ 2) an+2(1 + n)
+ 2(1 + n) a1+n + 4nan + 16an−2 + 16an−1 = 0

Solving for an+2, gives

(5)

an+2 = −2(2n2an + 2n2a1+n + 3na1+n + a1+n + 8an−2 + 8an−1)
(n+ 2) (1 + n)

= − 4n2an
(n+ 2) (1 + n) −

2(2n2 + 3n+ 1) a1+n

(n+ 2) (1 + n) − 16an−2

(n+ 2) (1 + n) −
16an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

16a2 + 30a3 + 12a4 + 16a0 + 16a1 = 0

Which after substituting the earlier terms found becomes

a4 = −10a1
3 + 16a0

3

For n = 3 the recurrence equation gives

36a3 + 56a4 + 20a5 + 16a1 + 16a2 = 0

Which after substituting the earlier terms found becomes

a5 = −152a0
15 + 104a1

15

For n = 4 the recurrence equation gives

64a4 + 90a5 + 30a6 + 16a2 + 16a3 = 0
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Which after substituting the earlier terms found becomes

a6 = −208a1
15 + 184a0

9

For n = 5 the recurrence equation gives

100a5 + 132a6 + 42a7 + 16a3 + 16a4 = 0

Which after substituting the earlier terms found becomes

a7 = −288a0
7 + 8768a1

315

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a1x
2 +

(
−8a0

3 + 4a1
3

)
x3

+
(
−10a1

3 + 16a0
3

)
x4 +

(
−152a0

15 + 104a1
15

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 8

3x
3 + 16

3 x4 − 152
15 x5

)
a0 +

(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 8

3x
3 + 16

3 x4 − 152
15 x5

)
c1 +

(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5

)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 8

3x
3 + 16

3 x4 − 152
15 x5 + 184

9 x6
)
y(0)

+
(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5 − 208

15 x6
)
y′(0) +O

(
x6)

(2)y =
(
1− 8

3x
3 + 16

3 x4 − 152
15 x5

)
c1 +

(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5

)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− 8

3x
3 + 16

3 x4 − 152
15 x5 + 184

9 x6
)
y(0)

+
(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5 − 208

15 x6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 8

3x
3 + 16

3 x4 − 152
15 x5

)
c1 +

(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5

)
c2 +O

(
x6)

Verified OK.

3.6.1 Maple step by step solution

Let’s solve
(4x2 + 4x+ 1) y′′ + (2 + 4x) y′ + (16x2 + 16x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −16x(1+x)y

4x2+4x+1 −
2y′

1+2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

1+2x + 16x(1+x)y
4x2+4x+1 = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = 2

1+2x , P3(x) = 16x(1+x)
4x2+4x+1

]
◦
(1
2 + x

)
· P2(x) is analytic at x = −1

2((1
2 + x

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= 1

◦
(1
2 + x

)2 · P3(x) is analytic at x = −1
2((1

2 + x
)2 · P3(x)

) ∣∣∣∣
x=− 1

2

= −1

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point
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x0 = −1
2

• Multiply by denominators
y′′(1 + 2x) (4x2 + 4x+ 1) + (8x2 + 8x+ 2) y′ + 16x(1 + x) (1 + 2x) y = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

8u3
(

d2

du2y(u)
)
+ 8u2( d

du
y(u)

)
+ (32u3 − 8u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 1..3

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert u3 ·
(

d2

du2y(u)
)

to series expansion

u3 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r+1

◦ Shift index using k− >k − 1

u3 ·
(

d2

du2y(u)
)
=

∞∑
k=1

ak−1(k − 1 + r) (k − 2 + r)uk+r

Rewrite ODE with series expansions

8a0(1 + r) (−1 + r)u1+r + 8a1(2 + r) r u2+r +
(

∞∑
k=3

(8ak−1(k + r) (k − 2 + r) + 32ak−3)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
8(1 + r) (−1 + r) = 0
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• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term must be 0
8a1(2 + r) r = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
8ak−1(k + r) (k − 2 + r) + 32ak−3 = 0

• Shift index using k− >k + 3
8ak+2(k + 3 + r) (k + r + 1) + 32ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(k+3+r)(k+r+1)

• Recursion relation for r = −1
ak+2 = − 4ak

(k+2)k

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = − 4ak

(k+2)k , a1 = 0
]

• Revert the change of variables u = 1
2 + x[

y =
∞∑
k=0

ak
(1
2 + x

)k−1
, ak+2 = − 4ak

(k+2)k , a1 = 0
]

• Recursion relation for r = 1
ak+2 = − 4ak

(k+4)(k+2)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+2 = − 4ak

(k+4)(k+2) , a1 = 0
]

• Revert the change of variables u = 1
2 + x[

y =
∞∑
k=0

ak
(1
2 + x

)k+1
, ak+2 = − 4ak

(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(1
2 + x

)k−1
)
+
(

∞∑
k=0

bk
(1
2 + x

)k+1
)
, ak+2 = − 4ak

(k+2)k , a1 = 0, bk+2 = − 4bk
(k+4)(k+2) , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
Order:=6;
dsolve((2*x+1)^2*diff(y(x),x$2)+2*(2*x+1)*diff(y(x),x)+16*x*(x+1)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 8

3x
3 + 16

3 x4 − 152
15 x5

)
y(0)

+
(
x− x2 + 4

3x
3 − 10

3 x4 + 104
15 x5

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 61� �
AsymptoticDSolveValue[(2*x+1)^2*y''[x]+2*(2*x+1)*y'[x]+16*x*(x+1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−152x5

15 + 16x4

3 − 8x3

3 + 1
)
+ c2

(
104x5

15 − 10x4

3 + 4x3

3 − x2 + x

)
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4 Chapter 5. Series Solutions of ODEs. Special
Functions. Problem set 5.5. Bessel Functions
Y(x). General Solution page 200

4.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
4.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
4.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
4.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
4.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
4.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
4.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
4.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
4.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
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4.1 problem 1
4.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 447

Internal problem ID [5660]
Internal file name [OUTPUT/4908_Sunday_June_05_2022_03_10_08_PM_81248895/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Bessel]

x2y′′ + xy′ +
(
x2 − 6

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 6

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = x2 − 6
x2
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Table 53: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = x2−6
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 6

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 6

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−6anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−6anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 6anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 6a0xr = 0

Or
(xrr(−1 + r) + xrr − 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 6 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
√
6

r2 = −
√
6

Since a0 6= 0 then the indicial equation becomes(
r2 − 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
√
6 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+

√
6

y2(x) =
∞∑
n=0

bnx
n−

√
6

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 − 6an = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 6 (4)

Which for the root r =
√
6 becomes

an = − an−2

n
(
2
√
6 + n

) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r =

√
6 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 4r − 2

Which for the root r =
√
6 becomes

a2 = − 1
4 + 4

√
6

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−2 − 1
4+4

√
6

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−2 − 1
4+4

√
6

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r2 + 4r − 2) (r2 + 8r + 10)
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Which for the root r =
√
6 becomes

a4 =
1

32
(
1 +

√
6
) (

2 +
√
6
)

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−2 − 1
4+4

√
6

a3 0 0
a4

1
(r2+4r−2)(r2+8r+10)

1
32
(
1+

√
6
)(

2+
√
6
)

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−2 − 1
4+4

√
6

a3 0 0
a4

1
(r2+4r−2)(r2+8r+10)

1
32
(
1+

√
6
)(

2+
√
6
)

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
√
6(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
√
6

(
1− x2

4 + 4
√
6
+ x4

32
(
1 +

√
6
) (

2 +
√
6
) +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2 − 6bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−2

n2 + 2nr + r2 − 6 (4)

Which for the root r = −
√
6 becomes

bn = − bn−2

n
(
−2

√
6 + n

) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −

√
6 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
r2 + 4r − 2

Which for the root r = −
√
6 becomes

b2 =
1

−4 + 4
√
6

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−2
1

−4+4
√
6
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−2
1

−4+4
√
6

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(r2 + 4r − 2) (r2 + 8r + 10)

Which for the root r = −
√
6 becomes

b4 =
1

32
(
−1 +

√
6
) (

−2 +
√
6
)

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−2
1

−4+4
√
6

b3 0 0
b4

1
(r2+4r−2)(r2+8r+10)

1
32
(
−1+

√
6
)(

−2+
√
6
)

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−2
1

−4+4
√
6

b3 0 0
b4

1
(r2+4r−2)(r2+8r+10)

1
32
(
−1+

√
6
)(

−2+
√
6
)

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
√
6(b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x−
√
6

(
1 + x2

−4 + 4
√
6
+ x4

32
(
−1 +

√
6
) (

−2 +
√
6
) +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
√
6

(
1− x2

4 + 4
√
6
+ x4

32
(
1 +

√
6
) (

2 +
√
6
) +O

(
x6))

+ c2x
−
√
6

(
1 + x2

−4 + 4
√
6
+ x4

32
(
−1 +

√
6
) (

−2 +
√
6
) +O

(
x6))

Hence the final solution is

y = yh

= c1x
√
6

(
1− x2

4 + 4
√
6
+ x4

32
(
1 +

√
6
) (

2 +
√
6
) +O

(
x6))

+ c2x
−
√
6

(
1 + x2

−4 + 4
√
6
+ x4

32
(
−1 +

√
6
) (

−2 +
√
6
) +O

(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1x

√
6

(
1− x2

4 + 4
√
6
+ x4

32
(
1 +

√
6
) (

2 +
√
6
) +O

(
x6))

+ c2x
−
√
6

(
1 + x2

−4 + 4
√
6
+ x4

32
(
−1 +

√
6
) (

−2 +
√
6
) +O

(
x6))

Verification of solutions

y = c1x
√
6

(
1− x2

4 + 4
√
6
+ x4

32
(
1 +

√
6
) (

2 +
√
6
) +O

(
x6))

+ c2x
−
√
6

(
1 + x2

−4 + 4
√
6
+ x4

32
(
−1 +

√
6
) (

−2 +
√
6
) +O

(
x6))

Verified OK.

4.1.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (x2 − 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−6

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+
(
x2−6

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2−6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (x2 − 6) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(r2 − 6)xr + a1(r2 + 2r − 5)x1+r +
(

∞∑
k=2

(ak(k2 + 2kr + r2 − 6) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 − 6 = 0

• Values of r that satisfy the indicial equation
r ∈

{√
6,−

√
6
}

• Each term must be 0
a1(r2 + 2r − 5) = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k2 + 2kr + r2 − 6) + ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
(k + 2)2 + 2(k + 2) r + r2 − 6

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k2+2kr+r2+4k+4r−2

• Recursion relation for r =
√
6

ak+2 = − ak
k2+2k

√
6+4+4k+4

√
6

• Solution for r =
√
6[

y =
∞∑
k=0

akx
k+

√
6, ak+2 = − ak

k2+2k
√
6+4+4k+4

√
6 , a1 = 0

]
• Recursion relation for r = −

√
6

ak+2 = − ak
k2−2k

√
6+4+4k−4

√
6

• Solution for r = −
√
6[

y =
∞∑
k=0

akx
k−

√
6, ak+2 = − ak

k2−2k
√
6+4+4k−4

√
6 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+

√
6
)
+
(

∞∑
k=0

bkx
k−

√
6
)
, ak+2 = − ak

k2+2k
√
6+4+4k+4

√
6 , a1 = 0, bk+2 = − bk

k2−2k
√
6+4+4k−4

√
6 , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 97� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-6)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
−
√
6

(
1 + 1

−4 + 4
√
6
x2 + 1

32
1(

−2 +
√
6
) (

−1 +
√
6
)x4 +O

(
x6))

+ c2x
√
6

(
1− 1

4 + 4
√
6
x2 + 1

32
1(

2 +
√
6
) (

1 +
√
6
)x4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 210� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-6)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4(

−4−
√
6 +

(
1−

√
6
) (

2−
√
6
)) (

−2−
√
6 +

(
3−

√
6
) (

4−
√
6
))

− x2

−4−
√
6 +

(
1−

√
6
) (

2−
√
6
) + 1

)
x−

√
6

+ c1

(
x4(

−4 +
√
6 +

(
1 +

√
6
) (

2 +
√
6
)) (

−2 +
√
6 +

(
3 +

√
6
) (

4 +
√
6
))

− x2

−4 +
√
6 +

(
1 +

√
6
) (

2 +
√
6
) + 1

)
x
√
6
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4.2 problem 2
4.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 463

Internal problem ID [5661]
Internal file name [OUTPUT/4909_Sunday_June_05_2022_03_10_11_PM_14604385/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

xy′′ + 5y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 5y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5
x

q(x) = 1
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Table 55: Table p(x), q(x) singularites.

p(x) = 5
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 5y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+5

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

5(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 5(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 5ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 5r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(4 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(4 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −4

Since a0 6= 0 then the indicial equation becomes

r x−1+r(4 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x4

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−4

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 5an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 + 4n+ 4r (4)

Which for the root r = 0 becomes

an = − an−2

n (n+ 4) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 8r + 12

Which for the root r = 0 becomes

a2 = − 1
12

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+8r+12 − 1
12

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+8r+12 − 1
12

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r + 6) (r + 2) (r + 8) (4 + r)
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Which for the root r = 0 becomes

a4 =
1
384

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+8r+12 − 1
12

a3 0 0
a4

1
(r+6)(r+2)(r+8)(4+r)

1
384

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+8r+12 − 1
12

a3 0 0
a4

1
(r+6)(r+2)(r+8)(4+r)

1
384

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

12 + x4

384 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 1
(r + 6) (r + 2) (r + 8) (4 + r)

Therefore

lim
r→r2

1
(r + 6) (r + 2) (r + 8) (4 + r) = lim

r→−4

1
(r + 6) (r + 2) (r + 8) (4 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode xy′′ + 5y′ + xy = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+ 5Cy′1(x) ln (x) +

5Cy1(x)
x

+ 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ x

(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

(
(y1(x)x+ y′′1(x)x+ 5y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x+ 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
+ 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

But since y1(x) is a solution to the ode, then

y1(x)x+ y′′1(x)x+ 5y′1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
+ 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ 4

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 + x2

(
∞∑
n=0

bnx
n+r2

)
+ 5
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x

x
= 0

Since r1 = 0 and r2 = −4 then the above becomes(
2
(

∞∑
n=0

x−1+nann

)
x+ 4

(
∞∑
n=0

anx
n

))
C

x

+

(
∞∑
n=0

x−6+nbn(n− 4) (−5 + n)
)
x2 + x2

(
∞∑
n=0

bnx
n−4
)
+ 5
(

∞∑
n=0

x−5+nbn(n− 4)
)
x

x
= 0
(10)

Which simplifies to

(2A)

(
∞∑
n=0

2C x−1+nann

)
+
(

∞∑
n=0

4C x−1+nan

)
+
(

∞∑
n=0

x−5+nbn(−5+n) (n−4)
)

+
(

∞∑
n=0

x−3+nbn

)
+
(

∞∑
n=0

5x−5+nbn(n− 4)
)

= 0

The next step is to make all powers of x be −5 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−5+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x−1+nann =
∞∑
n=4

2C(n− 4) an−4x
−5+n

∞∑
n =0

4C x−1+nan =
∞∑
n=4

4Can−4x
−5+n

∞∑
n =0

x−3+nbn =
∞∑
n=2

bn−2x
−5+n

460



Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to −5 + n.

(2B)

(
∞∑
n=4

2C(n− 4) an−4x
−5+n

)
+
(

∞∑
n=4

4Can−4x
−5+n

)

+
(

∞∑
n=0

x−5+nbn(−5 + n) (n− 4)
)

+
(

∞∑
n=2

bn−2x
−5+n

)
+
(

∞∑
n=0

5x−5+nbn(n− 4)
)

= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
−4b2 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b2 + 1 = 0

Solving the above for b2 gives
b2 =

1
4

For n = 3, Eq (2B) gives
−3b3 + b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0
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For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 1
4 = 0

Which is solved for C. Solving for C gives

C = − 1
16

For n = 5, Eq (2B) gives
6Ca1 + b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 1
16 and all bn, then the second solution becomes

y2(x) = − 1
16

(
1− x2

12 + x4

384 +O
(
x6)) ln (x) +

1 + x2

4 +O(x6)
x4

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x2

12+
x4

384+O
(
x6))+c2

(
− 1
16

(
1− x2

12+
x4

384+O
(
x6)) ln (x)+

1 + x2

4 +O(x6)
x4

)

Hence the final solution is

y = yh

= c1

(
1− x2

12 + x4

384 +O
(
x6))

+ c2

((
− 1
16 + x2

192 − x4

6144 − O(x6)
16

)
ln (x) +

1 + x2

4 +O(x6)
x4

)
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Summary
The solution(s) found are the following

(1)
y = c1

(
1− x2

12 + x4

384 +O
(
x6))

+ c2

((
− 1
16 + x2

192 − x4

6144 − O(x6)
16

)
ln (x) +

1 + x2

4 +O(x6)
x4

)
Verification of solutions

y = c1

(
1− x2

12 + x4

384 +O
(
x6))

+ c2

((
− 1
16 + x2

192 − x4

6144 − O(x6)
16

)
ln (x) +

1 + x2

4 +O(x6)
x4

)

Verified OK.

4.2.1 Maple step by step solution

Let’s solve
y′′x+ 5y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −5y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 5y′

x
+ y = 0

• Simplify ODE
x2y′′ + 5xy′ + yx2 = 0

• Make a change of variables
y = u(x)

x2

• Compute y′

y′ = −2u(x)
x3 + u′(x)

x2

• Compute y′′

y′′ = 6u(x)
x4 − 4u′(x)

x3 + u′′(x)
x2
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• Apply change of variables to the ODE
u(x)x2 + u′′(x)x2 + u′(x)x− 4u(x) = 0

• ODE is now of the Bessel form
• Solution to Bessel ODE

u(x) = c1BesselJ (2, x) + c2BesselY (2, x)
• Make the change from y back to y

y = c1BesselJ(2,x)+c2BesselY (2,x)
x2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
Order:=6;
dsolve(x*diff(y(x),x$2)+5*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1− 1
12x

2 + 1
384x

4 +O(x6)
)
+ c2(ln (x) (9x4 +O(x6)) + (−144− 36x2 +O(x6)))

x4
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 47� �
AsymptoticDSolveValue[x*y''[x]+5*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4

384 − x2

12 + 1
)
+ c1

(
(x2 + 8)2

64x4 − log(x)
16

)
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4.3 problem 3
4.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 474

Internal problem ID [5662]
Internal file name [OUTPUT/4910_Sunday_June_05_2022_03_10_14_PM_63350163/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ + 9xy′ +
(
36x4 − 16

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ + 9xy′ +
(
36x4 − 16

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) =
4x4 − 16

9
x2
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Table 57: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 4x4− 16
9

x2

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ + 9xy′ +
(
36x4 − 16

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 9x
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(
36x4 − 16

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

36xn+r+4an

)
+

∞∑
n =0

(
−16anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

36xn+r+4an =
∞∑
n=4

36an−4x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=4

36an−4x
n+r

)
+

∞∑
n =0

(
−16anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r)− 16anxn+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 9xra0r − 16a0xr = 0

Or
(9xrr(−1 + r) + 9xrr − 16xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 16

)
xr = 0

Since the above is true for all x then the indicial equation becomes

9r2 − 16 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
4
3

r2 = −4
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 16

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 8
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 4

3

y2(x) =
∞∑
n=0

bnx
n− 4

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

Substituting n = 3 in Eq. (2B) gives

a3 = 0

For 4 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1) + 9an(n+ r) + 36an−4 − 16an = 0
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Solving for an from recursive equation (4) gives

an = − 36an−4

9n2 + 18nr + 9r2 − 16 (4)

Which for the root r = 4
3 becomes

an = − 12an−4

n (3n+ 8) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 4

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = − 36
9r2 + 72r + 128

Which for the root r = 4
3 becomes

a4 = − 3
20

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 36

9r2+72r+128 − 3
20

For n = 5, using the above recursive equation gives

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 36

9r2+72r+128 − 3
20

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
4
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
4
3

(
1− 3x4

20 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

Substituting n = 2 in Eq. (2B) gives

b2 = 0

Substituting n = 3 in Eq. (2B) gives

b3 = 0

For 4 ≤ n the recursive equation is

(3)9bn(n+ r) (n+ r − 1) + 9bn(n+ r) + 36bn−4 − 16bn = 0

Solving for bn from recursive equation (4) gives

bn = − 36bn−4

9n2 + 18nr + 9r2 − 16 (4)

Which for the root r = −4
3 becomes

bn = − 12bn−4

n (3n− 8) (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −4

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = − 36
9r2 + 72r + 128

Which for the root r = −4
3 becomes

b4 = −3
4

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 36

9r2+72r+128 −3
4

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 36

9r2+72r+128 −3
4

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
4
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 3x4

4 +O(x6)
x

4
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
4
3

(
1− 3x4

20 +O
(
x6))+

c2
(
1− 3x4

4 +O(x6)
)

x
4
3

Hence the final solution is

y = yh

= c1x
4
3

(
1− 3x4

20 +O
(
x6))+

c2
(
1− 3x4

4 +O(x6)
)

x
4
3

Summary
The solution(s) found are the following

(1)y = c1x
4
3

(
1− 3x4

20 +O
(
x6))+

c2
(
1− 3x4

4 +O(x6)
)

x
4
3

Verification of solutions

y = c1x
4
3

(
1− 3x4

20 +O
(
x6))+

c2
(
1− 3x4

4 +O(x6)
)

x
4
3

Verified OK.

473



4.3.1 Maple step by step solution

Let’s solve
9x2y′′ + 9xy′ + (36x4 − 16) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −y′

x
− 4

(
9x4−4

)
y

9x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+ 4

(
9x4−4

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 4

(
9x4−4

)
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −16
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + 9xy′ + (36x4 − 16) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..4

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(4 + 3r) (−4 + 3r)xr + a1(7 + 3r) (−1 + 3r)x1+r + a2(10 + 3r) (2 + 3r)x2+r + a3(13 + 3r) (5 + 3r)x3+r +
(

∞∑
k=4

(ak(3k + 3r + 4) (3k + 3r − 4) + 36ak−4)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(4 + 3r) (−4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−4

3 ,
4
3

}
• The coefficients of each power of x must be 0

[a1(7 + 3r) (−1 + 3r) = 0, a2(10 + 3r) (2 + 3r) = 0, a3(13 + 3r) (5 + 3r) = 0]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

ak(3k + 3r + 4) (3k + 3r − 4) + 36ak−4 = 0
• Shift index using k− >k + 4

ak+4(3k + 16 + 3r) (3k + 8 + 3r) + 36ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = − 36ak
(3k+16+3r)(3k+8+3r)

• Recursion relation for r = −4
3

ak+4 = − 36ak
(3k+12)(3k+4)

• Solution for r = −4
3[

y =
∞∑
k=0

akx
k− 4

3 , ak+4 = − 36ak
(3k+12)(3k+4) , a1 = 0, a2 = 0, a3 = 0

]
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• Recursion relation for r = 4
3

ak+4 = − 36ak
(3k+20)(3k+12)

• Solution for r = 4
3[

y =
∞∑
k=0

akx
k+ 4

3 , ak+4 = − 36ak
(3k+20)(3k+12) , a1 = 0, a2 = 0, a3 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 4

3

)
+
(

∞∑
k=0

bkx
k+ 4

3

)
, ak+4 = − 36ak

(3k+12)(3k+4) , a1 = 0, a2 = 0, a3 = 0, bk+4 = − 36bk
(3k+20)(3k+12) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)+9*x*diff(y(x),x)+(36*x^4-16)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

8
3
(
1− 3

20x
4 +O(x6)

)
+ c1

(
1− 3

4x
4 +O(x6)

)
x

4
3
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 38� �
AsymptoticDSolveValue[9*x^2*y''[x]+9*x*y'[x]+(36*x^4-16)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1− 3x4

20

)
x4/3 +

c2
(
1− 3x4

4

)
x4/3
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4.4 problem 4
4.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 485

Internal problem ID [5663]
Internal file name [OUTPUT/4911_Sunday_June_05_2022_03_10_16_PM_9350364/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_or-
der_bessel_ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + xy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (69)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (70)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y − xy′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −2y′ + yx2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= x(xy′ + 4y)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −yx3 + 6xy′ + 4y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −y(0)
F2 = −2y′(0)
F3 = 0
F4 = 4y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6x
3 + 1

180x
6
)
y(0) +

(
x− 1

12x
4
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −x

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=1

an−1x
n

)
= 0

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + an−1 = 0

482



Solving for an+2, gives

(5)an+2 = − an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 + a0 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
6

For n = 2 the recurrence equation gives

12a4 + a1 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
12

For n = 3 the recurrence equation gives

20a5 + a2 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

30a6 + a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
180

For n = 5 the recurrence equation gives

42a7 + a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
a1
504

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
6a0x

3 − 1
12a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x3

6

)
a0 +

(
x− 1

12x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x3

6

)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

6x
3 + 1

180x
6
)
y(0) +

(
x− 1

12x
4
)
y′(0) +O

(
x6)

(2)y =
(
1− x3

6

)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

6x
3 + 1

180x
6
)
y(0) +

(
x− 1

12x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x3

6

)
c1 +

(
x− 1

12x
4
)
c2 +O

(
x6)

Verified OK.
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4.4.1 Maple step by step solution

Let’s solve
y′′ = −xy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak−1 = 0

• Shift index using k− >k + 1
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(
(k + 1)2 + 3k + 5

)
ak+3 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = − ak

k2+5k+6 , 2a2 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x3

6

)
y(0) +

(
x− 1

12x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x4

12

)
+ c1

(
1− x3

6

)
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4.5 problem 5
4.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 495

Internal problem ID [5664]
Internal file name [OUTPUT/4912_Sunday_June_05_2022_03_10_18_PM_84276166/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

4xy′′ + 4y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4xy′′ + 4y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1
4x
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Table 60: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1
4x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4xy′′ + 4y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

4
(

∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+

(
∞∑
n=0

anx
n+r

)
+ 4
(

∞∑
n=0

(n+ r) anxn+r−1

)
= 0

(1)

Which simplifies to(
∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

4xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

4(n+r) anxn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+r−1an(n+ r) (n+ r − 1) + 4(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

4x−1+ra0r(−1 + r) + 4ra0x−1+r = 0

Or (
4x−1+rr(−1 + r) + 4r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

4x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

4r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

4x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 4an(n+ r) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

4 (n2 + 2nr + r2) (4)

Which for the root r = 0 becomes

an = −an−1

4n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
4 (r + 1)2
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Which for the root r = 0 becomes
a1 = −1

4
And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

For n = 2, using the above recursive equation gives

a2 =
1

16 (r + 1)2 (r + 2)2

Which for the root r = 0 becomes
a2 =

1
64

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

For n = 3, using the above recursive equation gives

a3 = − 1
64 (r + 1)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes

a3 = − 1
2304

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

a3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304
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For n = 4, using the above recursive equation gives

a4 =
1

256 (r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes

a4 =
1

147456

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

a3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304

a4
1

256(r+1)2(r+2)2(r+3)2(4+r)2
1

147456

For n = 5, using the above recursive equation gives

a5 = − 1
1024 (r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2 (r + 5)2

Which for the root r = 0 becomes

a5 = − 1
14745600

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(r+1)2 −1
4

a2
1

16(r+1)2(r+2)2
1
64

a3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304

a4
1

256(r+1)2(r+2)2(r+3)2(4+r)2
1

147456

a5 − 1
1024(r+1)2(r+2)2(r+3)2(4+r)2(r+5)2 − 1

14745600
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 − 1

4(r+1)2 −1
4

1
2(r+1)3

1
2

b2
1

16(r+1)2(r+2)2
1
64

−2r−3
8(r+1)3(r+2)3 − 3

64

b3 − 1
64(r+1)2(r+2)2(r+3)2 − 1

2304
3r2+12r+11

32(r+1)3(r+2)3(r+3)3
11

6912

b4
1

256(r+1)2(r+2)2(r+3)2(4+r)2
1

147456
−2r3−15r2−35r−25

64(r+1)3(r+2)3(r+3)3(4+r)3 − 25
884736

b5 − 1
1024(r+1)2(r+2)2(r+3)2(4+r)2(r+5)2 − 1

14745600
5r4+60r3+255r2+450r+274

512(r+1)3(r+2)3(r+3)3(4+r)3(r+5)3
137

442368000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x)

+ x

2 − 3x2

64 + 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Verification of solutions

y = c1

(
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6))

+ c2

((
1− x

4 + x2

64 − x3

2304 + x4

147456 − x5

14745600 +O
(
x6)) ln (x) + x

2 − 3x2

64

+ 11x3

6912 − 25x4

884736 + 137x5

442368000 +O
(
x6))

Verified OK.
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4.5.1 Maple step by step solution

Let’s solve
4y′′x+ y + 4y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
− y

4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ y

4x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1

4x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x+ y + 4y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

4a0r2x−1+r +
(

∞∑
k=0

(
4ak+1(k + 1 + r)2 + ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1)2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

4(k+1)2

• Recursion relation for r = 0
ak+1 = − ak

4(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

4(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
Order:=6;
dsolve(4*x*diff(y(x),x$2)+4*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− 1

4x+ 1
64x

2 − 1
2304x

3 + 1
147456x

4 − 1
14745600x

5 +O
(
x6))

+
(
1
2x− 3

64x
2 + 11

6912x
3 − 25

884736x
4 + 137

442368000x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 117� �
AsymptoticDSolveValue[4*x*y''[x]+4*y'[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
− x5

14745600 + x4

147456 − x3

2304 + x2

64 − x

4 + 1
)
+ c2

(
137x5

442368000 − 25x4

884736

+ 11x3

6912 − 3x2

64 +
(
− x5

14745600 + x4

147456 − x3

2304 + x2

64 − x

4 + 1
)
log(x) + x

2

)
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4.6 problem 6
4.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 506

Internal problem ID [5665]
Internal file name [OUTPUT/4913_Sunday_June_05_2022_03_10_20_PM_4755430/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y′ + 36y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ + 36y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 36
x
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Table 62: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 36
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ + 36y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
+36

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

36anxn+r

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

36anxn+r =
∞∑
n=1

36an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+
(

∞∑
n=1

36an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + 36an−1 = 0

Solving for an from recursive equation (4) gives

an = − 36an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = −36an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 36
(r + 1)2
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Which for the root r = 0 becomes

a1 = −36

And the table now becomes

n an,r an

a0 1 1
a1 − 36

(r+1)2 −36

For n = 2, using the above recursive equation gives

a2 =
1296

(r + 1)2 (r + 2)2

Which for the root r = 0 becomes
a2 = 324

And the table now becomes

n an,r an

a0 1 1
a1 − 36

(r+1)2 −36

a2
1296

(r+1)2(r+2)2 324

For n = 3, using the above recursive equation gives

a3 = − 46656
(r + 1)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes

a3 = −1296

And the table now becomes

n an,r an

a0 1 1
a1 − 36

(r+1)2 −36

a2
1296

(r+1)2(r+2)2 324

a3 − 46656
(r+1)2(r+2)2(r+3)2 −1296
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For n = 4, using the above recursive equation gives

a4 =
1679616

(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes

a4 = 2916

And the table now becomes

n an,r an

a0 1 1
a1 − 36

(r+1)2 −36

a2
1296

(r+1)2(r+2)2 324

a3 − 46656
(r+1)2(r+2)2(r+3)2 −1296

a4
1679616

(r+1)2(r+2)2(r+3)2(4+r)2 2916

For n = 5, using the above recursive equation gives

a5 = − 60466176
(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2 (r + 5)2

Which for the root r = 0 becomes

a5 = −104976
25

And the table now becomes

n an,r an

a0 1 1
a1 − 36

(r+1)2 −36

a2
1296

(r+1)2(r+2)2 324

a3 − 46656
(r+1)2(r+2)2(r+3)2 −1296

a4
1679616

(r+1)2(r+2)2(r+3)2(4+r)2 2916

a5 − 60466176
(r+1)2(r+2)2(r+3)2(4+r)2(r+5)2 −104976

25
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 − 36

(r+1)2 −36 72
(r+1)3 72

b2
1296

(r+1)2(r+2)2 324 −5184r−7776
(r+1)3(r+2)3 −972

b3 − 46656
(r+1)2(r+2)2(r+3)2 −1296 279936r2+1119744r+1026432

(r+1)3(r+2)3(r+3)3 4752

b4
1679616

(r+1)2(r+2)2(r+3)2(4+r)2 2916 − 13436928
(
r2+5r+5

)(
r+ 5

2
)

(r+1)3(r+2)3(r+3)3(4+r)3 −12150

b5 − 60466176
(r+1)2(r+2)2(r+3)2(4+r)2(r+5)2 −104976

25
604661760r4+7255941120r3+30837749760r2+54419558400r+33135464448

(r+1)3(r+2)3(r+3)3(4+r)3(r+5)3
2396952

125

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6)) ln (x)

− 12150x4 + 4752x3 − 972x2 + 72x+ 2396952x5

125 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6))

+ c2

((
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6)) ln (x)

− 12150x4 + 4752x3 − 972x2 + 72x+ 2396952x5

125 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6))

+ c2

((
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6)) ln (x)− 12150x4

+ 4752x3 − 972x2 + 72x+ 2396952x5

125 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1

(
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6))

+ c2

((
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6)) ln (x)

− 12150x4 + 4752x3 − 972x2 + 72x+ 2396952x5

125 +O
(
x6))

Verification of solutions

y = c1

(
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6))

+ c2

((
2916x4 − 1296x3 + 324x2 − 36x+ 1− 104976x5

25 +O
(
x6)) ln (x)

− 12150x4 + 4752x3 − 972x2 + 72x+ 2396952x5

125 +O
(
x6))

Verified OK.
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4.6.1 Maple step by step solution

Let’s solve
y′′x+ y′ + 36y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −36y

x
− y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ 36y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 36

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ + 36y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + 36ak

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + 36ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 36ak

(k+1)2

• Recursion relation for r = 0
ak+1 = − 36ak

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 36ak

(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 59� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+36*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− 36x+ 324x2 − 1296x3 + 2916x4 − 104976

25 x5 +O
(
x6))

+
(
72x− 972x2 + 4752x3 − 12150x4 + 2396952

125 x5 +O
(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 93� �
AsymptoticDSolveValue[x*y''[x]+y'[x]+36*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−104976x5

25 + 2916x4 − 1296x3 + 324x2 − 36x+ 1
)

+ c2

(
2396952x5

125 − 12150x4 + 4752x3 − 972x2

+
(
−104976x5

25 + 2916x4 − 1296x3 + 324x2 − 36x+ 1
)
log(x) + 72x

)
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4.7 problem 7
4.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 516

Internal problem ID [5666]
Internal file name [OUTPUT/4914_Sunday_June_05_2022_03_10_22_PM_44815352/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + k2x2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (74)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (75)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −k2x2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −k2x(xy′ + 2y)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= k2(x4k2y − 4xy′ − 2y
)

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= k2((x4k2 − 6
)
y′ + 8x3k2y

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −x2k4(−12xy′ + y
(
x4k2 − 30

))
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = −2k2y(0)
F3 = −6y′(0) k2

F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x4k2

12

)
y(0) +

(
x− 1

20k
2x5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −k2x2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

xn+2k2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

xn+2k2an =
∞∑
n=2

an−2k
2xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=2

an−2k
2xn

)
= 0

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an−2k
2 = 0
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Solving for an+2, gives

(5)an+2 = − an−2k
2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

a0k
2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −a0k
2

12

For n = 3 the recurrence equation gives

a1k
2 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −a1k
2

20

For n = 4 the recurrence equation gives

a2k
2 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

a3k
2 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

514



And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
12a0k

2x4 − 1
20a1k

2x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x4k2

12

)
a0 +

(
x− 1

20k
2x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x4k2

12

)
c1 +

(
x− 1

20k
2x5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x4k2

12

)
y(0) +

(
x− 1

20k
2x5
)
y′(0) +O

(
x6)

(2)y =
(
1− x4k2

12

)
c1 +

(
x− 1

20k
2x5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− x4k2

12

)
y(0) +

(
x− 1

20k
2x5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x4k2

12

)
c1 +

(
x− 1

20k
2x5
)
c2 +O

(
x6)

Verified OK.
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4.7.1 Maple step by step solution

Let’s solve
y′′ = −k2x2y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + k2x2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3x+ 2a2 +
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + k2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + k2ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + k2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = − k2ak

k2+7k+12 , a2 = 0, a3 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
Order:=6;
dsolve(diff(y(x),x$2)+k^2*x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− k2x4

12

)
y(0) +

(
x− 1

20k
2x5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[y''[x]+k^2*x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− k2x5

20

)
+ c1

(
1− k2x4

12

)
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4.8 problem 8
4.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 524

Internal problem ID [5667]
Internal file name [OUTPUT/4915_Sunday_June_05_2022_03_10_23_PM_3980180/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + x4k2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (77)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (78)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −x4k2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −k2x3(xy′ + 4y)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−8xy′ + y

(
x6k2 − 12

))
x2k2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= k2x
(
y′k2x7 + 16x6k2y − 36xy′ − 24y

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= k2(−x12k4y + 24y′k2x7 + 148x6k2y − 96xy′ − 24y
)

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 0
F3 = 0
F4 = −24k2y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x6k2

30

)
y(0) + xy′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −x4k2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

xn+4k2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

xn+4k2an =
∞∑
n=4

an−4k
2xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=4

an−4k
2xn

)
= 0

For 4 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an−4k
2 = 0
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Solving for an+2, gives

(5)an+2 = − an−4k
2

(n+ 2) (n+ 1)

For n = 4 the recurrence equation gives

a0k
2 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −a0k
2

30

For n = 5 the recurrence equation gives

a1k
2 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −a1k
2

42

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y = a1x+ a0 +O
(
x6)

At x = 0 the solution above becomes

y = c2x+ c1 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y =
(
1− x6k2

30

)
y(0) + xy′(0) +O

(
x6)

(2)y = c2x+ c1 +O
(
x6)

Verification of solutions

y =
(
1− x6k2

30

)
y(0) + xy′(0) +O

(
x6)

Verified OK.

y = c2x+ c1 +O
(
x6)

Verified OK.

4.8.1 Maple step by step solution

Let’s solve
y′′ = −x4k2y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + x4k2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x4 · y to series expansion

x4 · y =
∞∑
k=0

akx
k+4

◦ Shift index using k− >k − 4

x4 · y =
∞∑
k=4

ak−4x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2
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◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

20a5x3 + 12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=4

(ak+2(k + 2) (k + 1) + k2ak−4)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0, 20a5 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0, a5 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + k2ak−4 = 0

• Shift index using k− >k + 4(
(k + 4)2 + 3k + 14

)
ak+6 + k2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+6 = − k2ak

k2+11k+30 , a2 = 0, a3 = 0, a4 = 0, a5 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve(diff(y(x),x$2)+k^2*x^4*y(x)=0,y(x),type='series',x=0);� �

y(x) = y(0) +D(y) (0)x+O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 10� �
AsymptoticDSolveValue[y''[x]+k^2*x^4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x+ c1
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4.9 problem 9
4.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 539

Internal problem ID [5668]
Internal file name [OUTPUT/4916_Sunday_June_05_2022_03_10_25_PM_54572420/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel
Functions Y(x). General Solution page 200
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

xy′′ − 5y′ + xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ − 5y′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −5
x

q(x) = 1
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Table 66: Table p(x), q(x) singularites.

p(x) = − 5
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ − 5y′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x− 5

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)

+
∞∑

n =0

(
−5(n+ r) anxn+r−1)+( ∞∑

n=0

x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r−1)
)
+

∞∑
n =0

(
−5(n+ r) anxn+r−1)+( ∞∑

n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 5(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 5ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 5r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−6 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−6 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 6
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−6 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x6

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+6

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 5an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 6n− 6r (4)

Which for the root r = 6 becomes

an = − an−2

n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 6 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 − 2r − 8

Which for the root r = 6 becomes

a2 = − 1
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r4 − 20r2 + 64
Which for the root r = 6 becomes

a4 =
1
640
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

a5 0 0

For n = 6, using the above recursive equation gives

a6 = − 1
(r4 − 20r2 + 64) r (r + 6)

Which for the root r = 6 becomes

a6 = − 1
46080

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

a5 0 0
a6 − 1

(r4−20r2+64)r(r+6) − 1
46080

Using the above table, then the solution y1(x) is

y1(x) = x6(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7. . .
)

= x6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= − 1
(r4 − 20r2 + 64) r (r + 6)

Therefore

lim
r→r2

− 1
(r4 − 20r2 + 64) r (r + 6) = lim

r→0
− 1
(r4 − 20r2 + 64) r (r + 6)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ − 5y′ + xy = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x− 5Cy′1(x) ln (x)−

5Cy1(x)
x

− 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ x

(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)x− 5y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x− 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
− 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x)x− 5y′1(x) = 0
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Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x− 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
∞∑
n=0

bnx
n+r2

)
− 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 6

(
∞∑
n=0

anx
n+r1

))
C

x

+

((
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
+
(

∞∑
n=0

bnx
n+r2

))
x2 − 5

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x

x
= 0

Since r1 = 6 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

x5+nan(n+ 6)
)
x− 6

(
∞∑
n=0

anx
n+6
))

C

x

+

((
∞∑
n=0

xn−2bnn(−1 + n)
)
+
(

∞∑
n=0

bnx
n

))
x2 − 5

(
∞∑
n=0

x−1+nbnn

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C x5+nan(n+ 6)
)

+
∞∑

n =0

(
−6C x5+nan

)
+
(

∞∑
n=0

nx−1+nbn(−1 + n)
)

+
(

∞∑
n=0

x1+nbn

)
+

∞∑
n =0

(
−5x−1+nbnn

)
= 0
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The next step is to make all powers of x be −1 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−1+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x5+nan(n+ 6) =
∞∑
n=6

2Ca−6+nnx−1+n

∞∑
n =0

(
−6C x5+nan

)
=

∞∑
n=6

(
−6Ca−6+nx

−1+n
)

∞∑
n =0

x1+nbn =
∞∑
n=2

bn−2x
−1+n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to −1 + n.

(2B)

(
∞∑
n=6

2Ca−6+nnx−1+n

)
+

∞∑
n =6

(
−6Ca−6+nx

−1+n
)

+
(

∞∑
n=0

nx−1+nbn(−1+n)
)
+
(

∞∑
n=2

bn−2x
−1+n

)
+

∞∑
n =0

(
−5x−1+nbnn

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−5b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
−8b2 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b2 + 1 = 0

Solving the above for b2 gives
b2 =

1
8
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For n = 3, Eq (2B) gives
−9b3 + b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−9b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
−8b4 + b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b4 +
1
8 = 0

Solving the above for b4 gives
b4 =

1
64

For n = 5, Eq (2B) gives
−5b5 + b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b5 = 0

Solving the above for b5 gives
b5 = 0

For n = N , where N = 6 which is the difference between the two roots, we are free to
choose b6 = 0. Hence for n = 6, Eq (2B) gives

6C + 1
64 = 0

Which is solved for C. Solving for C gives

C = − 1
384

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = − 1
384 and all bn, then the second solution becomes

y2(x) = − 1
384

(
x6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))) ln (x) + 1 + x2

8 + x4

64 +O
(
x7)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+c2

(
− 1
384

(
x6
(
1− x2

16+
x4

640−
x6

46080+O
(
x7))) ln (x)+1+ x2

8 + x4

64+O
(
x7))

Hence the final solution is

y = yh

= c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Summary
The solution(s) found are the following

(1)
y = c1x

6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Verification of solutions

y = c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Verified OK.
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4.9.1 Maple step by step solution

Let’s solve
y′′x− 5y′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 5y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 5y′

x
+ y = 0

• Simplify ODE
x2y′′ − 5xy′ + yx2 = 0

• Make a change of variables
y = x3u(x)

• Compute y′

y′ = 3x2u(x) + x3u′(x)
• Compute y′′

y′′ = 6xu(x) + 6x2u′(x) + x3u′′(x)
• Apply change of variables to the ODE

x2u(x) + u′′(x)x2 + u′(x)x− 9u(x) = 0
• ODE is now of the Bessel form
• Solution to Bessel ODE

u(x) = c1BesselJ (3, x) + c2BesselY (3, x)
• Make the change from y back to y

y = (c1BesselJ (3, x) + c2BesselY (3, x))x3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*diff(y(x),x$2)-5*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

6
(
1− 1

16x
2 + 1

640x
4 +O

(
x6))+ c2

(
−86400− 10800x2 − 1350x4 +O

(
x6))

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 44� �
AsymptoticDSolveValue[x*y''[x]-5*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

64 + x2

8 + 1
)
+ c2

(
x10

640 − x8

16 + x6
)

540



5 Chapter 5. Series Solutions of ODEs. REVIEW
QUESTIONS. page 201

5.1 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
5.2 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
5.3 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
5.4 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
5.5 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
5.6 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
5.7 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
5.8 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
5.9 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
5.10 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

541



5.1 problem 11
5.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 549

Internal problem ID [5669]
Internal file name [OUTPUT/4917_Sunday_June_05_2022_03_10_28_PM_25425926/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_linear_constant_co-
eff", "second_order_ode_can_be_made_integrable", "second order series
method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + 4y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (81)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (82)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −4y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −4y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 16y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 16y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −64y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −4y(0)
F1 = −4y′(0)
F2 = 16y(0)
F3 = 16y′(0)
F4 = −64y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 2x2 + 2

3x
4 − 4

45x
6
)
y(0) +

(
x− 2

3x
3 + 2

15x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −4
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

4anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

4anxn

)
= 0

For 0 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 4an = 0
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Solving for an+2, gives

(5)an+2 = − 4an
(n+ 2) (n+ 1)

For n = 0 the recurrence equation gives

2a2 + 4a0 = 0

Which after substituting the earlier terms found becomes

a2 = −2a0

For n = 1 the recurrence equation gives

6a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a3 = −2a1
3

For n = 2 the recurrence equation gives

12a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
2a0
3

For n = 3 the recurrence equation gives

20a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a5 =
2a1
15

For n = 4 the recurrence equation gives

30a6 + 4a4 = 0
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Which after substituting the earlier terms found becomes

a6 = −4a0
45

For n = 5 the recurrence equation gives

42a7 + 4a5 = 0

Which after substituting the earlier terms found becomes

a7 = −4a1
315

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 2a0x2 − 2
3a1x

3 + 2
3a0x

4 + 2
15a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 2x2 + 2

3x
4
)
a0 +

(
x− 2

3x
3 + 2

15x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 2x2 + 2

3x
4
)
c1 +

(
x− 2

3x
3 + 2

15x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 2x2 + 2

3x
4 − 4

45x
6
)
y(0) +

(
x− 2

3x
3 + 2

15x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 2x2 + 2

3x
4
)
c1 +

(
x− 2

3x
3 + 2

15x
5
)
c2 +O

(
x6)
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Figure 4: Slope field plot

Verification of solutions

y =
(
1− 2x2 + 2

3x
4 − 4

45x
6
)
y(0) +

(
x− 2

3x
3 + 2

15x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 2x2 + 2

3x
4
)
c1 +

(
x− 2

3x
3 + 2

15x
5
)
c2 +O

(
x6)

Verified OK.

5.1.1 Maple step by step solution

Let’s solve
y′′ = −4y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4y = 0
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• Characteristic polynomial of ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−2 I, 2 I)

• 1st solution of the ODE
y1(x) = cos (2x)

• 2nd solution of the ODE
y2(x) = sin (2x)

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1 cos (2x) + c2 sin (2x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 2x2 + 2

3x
4
)
y(0) +

(
x− 2

3x
3 + 2

15x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[y''[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
2x5

15 − 2x3

3 + x

)
+ c1

(
2x4

3 − 2x2 + 1
)
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5.2 problem 12
5.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 560

Internal problem ID [5670]
Internal file name [OUTPUT/4918_Sunday_June_05_2022_03_10_29_PM_13387700/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (1− 2x) y′ + (x− 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (1− 2x) y′ + (x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x− 1
x

q(x) = x− 1
x
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Table 69: Table p(x), q(x) singularites.

p(x) = −2x−1
x

singularity type
x = 0 “regular”

q(x) = x−1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (1− 2x) y′ + (x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (1− 2x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+ (x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r−1)

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
+

∞∑
n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0
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Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
2r + 1
(1 + r)2

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 2an−1(n+ r − 1) + an(n+ r) + an−2 − an−1 = 0
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Solving for an from recursive equation (4) gives

an = 2nan−1 + 2ran−1 − an−2 − an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = (2n− 1) an−1 − an−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

For n = 2, using the above recursive equation gives

a2 =
3r2 + 6r + 2

(1 + r)2 (r + 2)2

Which for the root r = 0 becomes
a2 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

For n = 3, using the above recursive equation gives

a3 =
4r3 + 18r2 + 22r + 6

(1 + r)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes
a3 =

1
6

And the table now becomes
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n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6

For n = 4, using the above recursive equation gives

a4 =
5r4 + 40r3 + 105r2 + 100r + 24
(1 + r)2 (r + 2)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes
a4 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6

a4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24

For n = 5, using the above recursive equation gives

a5 =
6r5 + 75r4 + 340r3 + 675r2 + 548r + 120
(1 + r)2 (r + 2)2 (r + 3)2 (4 + r)2 (r + 5)2

Which for the root r = 0 becomes

a5 =
1
120

And the table now becomes
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n an,r an

a0 1 1
a1

2r+1
(1+r)2 1

a2
3r2+6r+2

(1+r)2(r+2)2
1
2

a3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6

a4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24

a5
6r5+75r4+340r3+675r2+548r+120
(1+r)2(r+2)2(r+3)2(4+r)2(r+5)2

1
120

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

2r+1
(1+r)2 1 − 2r

(1+r)3 0

b2
3r2+6r+2

(1+r)2(r+2)2
1
2

−6r3−18r2−14r
(1+r)3(r+2)3 0

b3
4r3+18r2+22r+6

(1+r)2(r+2)2(r+3)2
1
6 −12

(
r4+8r3+ 47

2 r2+30r+ 85
6
)
r

(1+r)3(r+2)3(r+3)3 0

b4
5r4+40r3+105r2+100r+24
(1+r)2(r+2)2(r+3)2(4+r)2

1
24 −20

(
r6+15r5+ 183

2 r4+290r3+ 5031
10 r2+453r+166

)
r

(1+r)3(r+2)3(r+3)3(4+r)3 0

b5
6r5+75r4+340r3+675r2+548r+120
(1+r)2(r+2)2(r+3)2(4+r)2(r+5)2

1
120 −30

(
r8+24r7+ 739

3 r6+1410r5+4915r4+10668r3+14063r2+10290r+ 48076
15

)
r

(1+r)3(r+2)3(r+3)3(4+r)3(r+5)3 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Hence the final solution is

y = yh

= c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Verification of solutions

y = c1

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

((
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)) ln (x) +O

(
x6))

Verified OK.
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5.2.1 Maple step by step solution

Let’s solve
y′′x+ (1− 2x) y′ + (x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x−1)y
x

+ (2x−1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (2x−1)y′
x

+ (x−1)y
x

= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = x−1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (1− 2x) y′ + (x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + (−2k − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + (−2k − 3) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+3ak+1

(k+2)2
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+3ak+1

(k+2)2 , a1 − a0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 43� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(1-2*x)*diff(y(x),x)+(x-1)*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 74� �
AsymptoticDSolveValue[x*y''[x]+(1-2*x)*y'[x]+(x-1)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
x5

120 + x4

24 + x3

6 + x2

2 + x+ 1
)
+ c2

(
x5

120 + x4

24 + x3

6 + x2

2 + x+ 1
)
log(x)
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5.3 problem 13
5.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 571

Internal problem ID [5671]
Internal file name [OUTPUT/4919_Sunday_June_05_2022_03_10_32_PM_35236915/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x− 1)2 y′′ − (x− 1) y′ − 35y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (85)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (86)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
xy′ − y′ + 35y

(x− 1)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (35x− 35) y′ − 35y
(x− 1)3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−70x+ 70) y′ + 1330y
(x− 1)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 1470(x− 1) y′ − 7770y
(x− 1)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−12180x+ 12180) y′ + 90300y
(x− 1)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 35y(0)− y′(0)
F1 = 35y(0) + 35y′(0)
F2 = 1330y(0) + 70y′(0)
F3 = 7770y(0) + 1470y′(0)
F4 = 90300y(0) + 12180y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 35

2 x2 + 35
6 x3 + 665

12 x4 + 259
4 x5 + 1505

12 x6
)
y(0)

+
(
x− 1

2x
2 + 35

6 x3 + 35
12x

4 + 49
4 x5 + 203

12 x6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 − 2x+ 1
)
y′′ + (1− x) y′ − 35y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 − 2x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (1− x)

(
∞∑
n=1

nanx
n−1

)
− 35

(
∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =2

(
−2nxn−1an(n− 1)

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

nanx
n−1

)
+

∞∑
n =1

(−nanx
n) +

∞∑
n =0

(−35anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

(
−2nxn−1an(n− 1)

)
=

∞∑
n=1

(−2(n+ 1) an+1nxn)

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n−1)
)
+

∞∑
n =1

(−2(n+1) an+1nxn)+
(

∞∑
n=0

(n+2) an+2(n+1)xn

)

+
(

∞∑
n=0

(n+ 1) an+1x
n

)
+

∞∑
n =1

(−nanx
n) +

∞∑
n =0

(−35anxn) = 0

n = 0 gives
2a2 + a1 − 35a0 = 0

a2 =
35a0
2 − a1

2

n = 1 gives
−2a2 + 6a3 − 36a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
35a0
6 + 35a1

6

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− 2(n+ 1) an+1n+ (n+ 2) an+2(n+ 1) + (n+ 1) an+1 − nan − 35an = 0
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Solving for an+2, gives

(5)

an+2 = −n2an − 2n2an+1 − 2nan − nan+1 − 35an + an+1

(n+ 2) (n+ 1)

= −(n2 − 2n− 35) an
(n+ 2) (n+ 1) − (−2n2 − n+ 1) an+1

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

−35a2 − 9a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
665a0
12 + 35a1

12

For n = 3 the recurrence equation gives

−32a3 − 20a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
259a0
4 + 49a1

4

For n = 4 the recurrence equation gives

−27a4 − 35a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
1505a0
12 + 203a1

12

For n = 5 the recurrence equation gives

−20a5 − 54a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
2305a0
12 + 331a1

12
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
35a0
2 − a1

2

)
x2 +

(
35a0
6 + 35a1

6

)
x3

+
(
665a0
12 + 35a1

12

)
x4 +

(
259a0
4 + 49a1

4

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 35

2 x2 + 35
6 x3 + 665

12 x4 + 259
4 x5

)
a0

+
(
x− 1

2x
2 + 35

6 x3 + 35
12x

4 + 49
4 x5

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y=
(
1+ 35

2 x2+35
6 x3+665

12 x4+259
4 x5

)
c1+

(
x− 1

2x
2+35

6 x3+35
12x

4+49
4 x5

)
c2+O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + 35

2 x2 + 35
6 x3 + 665

12 x4 + 259
4 x5 + 1505

12 x6
)
y(0)

+
(
x− 1

2x
2 + 35

6 x3 + 35
12x

4 + 49
4 x5 + 203

12 x6
)
y′(0) +O

(
x6)

(2)
y =

(
1 + 35

2 x2 + 35
6 x3 + 665

12 x4 + 259
4 x5

)
c1

+
(
x− 1

2x
2 + 35

6 x3 + 35
12x

4 + 49
4 x5

)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + 35

2 x2 + 35
6 x3 + 665

12 x4 + 259
4 x5 + 1505

12 x6
)
y(0)

+
(
x− 1

2x
2 + 35

6 x3 + 35
12x

4 + 49
4 x5 + 203

12 x6
)
y′(0) +O

(
x6)

Verified OK.

y=
(
1+ 35

2 x2+35
6 x3+665

12 x4+259
4 x5

)
c1+

(
x− 1

2x
2+35

6 x3+35
12x

4+49
4 x5

)
c2+O

(
x6)

Verified OK.

5.3.1 Maple step by step solution

Let’s solve
(x2 − 2x+ 1) y′′ + (1− x) y′ − 35y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 35y

x2−2x+1 +
y′

x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

x−1 −
35y

x2−2x+1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − 1
x−1 , P3(x) = − 35

x2−2x+1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= −35

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1
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• Multiply by denominators
(x− 1) y′′(x2 − 2x+ 1) + (−x2 + 2x− 1) y′ + (−35x+ 35) y = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u3
(

d2

du2y(u)
)
− u2( d

du
y(u)

)
− 35uy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite DE with series expansions
◦ Convert u · y(u) to series expansion

u · y(u) =
∞∑
k=0

aku
k+r+1

◦ Shift index using k− >k − 1

u · y(u) =
∞∑
k=1

ak−1u
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert u3 ·
(

d2

du2y(u)
)

to series expansion

u3 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r+1

◦ Shift index using k− >k − 1

u3 ·
(

d2

du2y(u)
)
=

∞∑
k=1

ak−1(k − 1 + r) (k − 2 + r)uk+r

Rewrite DE with series expansions
∞∑
k=1

ak−1(k + 4 + r) (k − 8 + r)uk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
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ak−1(k + 4) (k − 8) = 0
• Shift index using k− >k + 1

ak(k + 5) (k − 7) = 0
• Recursion relation that defines series solution to ODE

ak = 0
• Recursion relation for r = 0

ak = 0
• Solution for r = 0[

y(u) =
∞∑
k=0

aku
k, ak = 0

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k , ak = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve((x-1)^2*diff(y(x),x$2)-(x-1)*diff(y(x),x)-35*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 35

2 x2 + 35
6 x3 + 665

12 x4 + 259
4 x5

)
y(0)

+
(
x− 1

2x
2 + 35

6 x3 + 35
12x

4 + 49
4 x5

)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 70� �
AsymptoticDSolveValue[(x-1)^2*y''[x]-(x-1)*y'[x]-35*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
259x5

4 + 665x4

12 + 35x3

6 + 35x2

2 + 1
)
+ c2

(
49x5

4 + 35x4

12 + 35x3

6 − x2

2 + x

)
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5.4 problem 14
5.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 583

Internal problem ID [5672]
Internal file name [OUTPUT/4920_Sunday_June_05_2022_03_10_33_PM_38014976/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

16(1 + x)2 y′′ + 3y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (88)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (89)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 3y
16 (1 + x)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−3x− 3) y′ + 6y
16 (1 + x)3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
−279y

256 + 3(1+x)y′
4

(1 + x)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 1080y + (−855x− 855) y′

256 (1 + x)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
−83835y

4096 + 1125(1+x)y′
64

(1 + x)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −3y(0)
16

F1 =
3y(0)
8 − 3y′(0)

16

F2 = −279y(0)
256 + 3y′(0)

4

F3 =
135y(0)

32 − 855y′(0)
256

F4 = −83835y(0)
4096 + 1125y′(0)

64
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 3

32x
2 + 1

16x
3 − 93

2048x
4 + 9

256x
5 − 1863

65536x
6
)
y(0)

+
(
x− 1

32x
3 + 1

32x
4 − 57

2048x
5 + 25

1024x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

16x2 + 32x+ 16
)
y′′ + 3y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
16x2 + 32x+ 16

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 3
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

16xnann(n− 1)
)

+
(

∞∑
n=2

32nxn−1an(n− 1)
)

+
(

∞∑
n=2

16n(n− 1) anxn−2

)
+
(

∞∑
n=0

3anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

32nxn−1an(n− 1) =
∞∑
n=1

32(n+ 1) an+1nxn

∞∑
n =2

16n(n− 1) anxn−2 =
∞∑
n=0

16(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

16xnann(n− 1)
)

+
(

∞∑
n=1

32(n+ 1) an+1nxn

)

+
(

∞∑
n=0

16(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

3anxn

)
= 0

n = 0 gives
32a2 + 3a0 = 0

a2 = −3a0
32

n = 1 gives
64a2 + 96a3 + 3a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
16 − a1

32

For 2 ≤ n, the recurrence equation is

(4)16nan(n− 1) + 32(n+ 1) an+1n+ 16(n+ 2) an+2(n+ 1) + 3an = 0

Solving for an+2, gives

(5)

an+2 = −16n2an + 32n2an+1 − 16nan + 32nan+1 + 3an
16 (n+ 2) (n+ 1)

= −(16n2 − 16n+ 3) an
16 (n+ 2) (n+ 1) − (32n2 + 32n) an+1

16 (n+ 2) (n+ 1)
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For n = 2 the recurrence equation gives

35a2 + 192a3 + 192a4 = 0

Which after substituting the earlier terms found becomes

a4 = −93a0
2048 + a1

32

For n = 3 the recurrence equation gives

99a3 + 384a4 + 320a5 = 0

Which after substituting the earlier terms found becomes

a5 =
9a0
256 − 57a1

2048

For n = 4 the recurrence equation gives

195a4 + 640a5 + 480a6 = 0

Which after substituting the earlier terms found becomes

a6 = −1863a0
65536 + 25a1

1024

For n = 5 the recurrence equation gives

323a5 + 960a6 + 672a7 = 0

Which after substituting the earlier terms found becomes

a7 =
777a0
32768 − 1409a1

65536

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

581



Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3a0x2

32 +
(a0
16 − a1

32

)
x3 +

(
−93a0
2048 + a1

32

)
x4 +

(
9a0
256 − 57a1

2048

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3

32x
2 + 1

16x
3 − 93

2048x
4 + 9

256x
5
)
a0

+
(
x− 1

32x
3 + 1

32x
4 − 57

2048x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 3

32x
2+ 1

16x
3− 93

2048x
4+ 9

256x
5
)
c1+

(
x− 1

32x
3+ 1

32x
4− 57

2048x
5
)
c2+O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 3

32x
2 + 1

16x
3 − 93

2048x
4 + 9

256x
5 − 1863

65536x
6
)
y(0)

+
(
x− 1

32x
3 + 1

32x
4 − 57

2048x
5 + 25

1024x
6
)
y′(0) +O

(
x6)

(2)
y =

(
1− 3

32x
2 + 1

16x
3 − 93

2048x
4 + 9

256x
5
)
c1

+
(
x− 1

32x
3 + 1

32x
4 − 57

2048x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 3

32x
2 + 1

16x
3 − 93

2048x
4 + 9

256x
5 − 1863

65536x
6
)
y(0)

+
(
x− 1

32x
3 + 1

32x
4 − 57

2048x
5 + 25

1024x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 3

32x
2+ 1

16x
3− 93

2048x
4+ 9

256x
5
)
c1+

(
x− 1

32x
3+ 1

32x
4− 57

2048x
5
)
c2+O

(
x6)

Verified OK.
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5.4.1 Maple step by step solution

Let’s solve
(16x2 + 32x+ 16) y′′ + 3y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 3y

16(x2+2x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y

16(x2+2x+1) = 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 3
16(x2+2x+1)

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 3
16

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators
(16x2 + 32x+ 16) y′′ + 3y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

16u2
(

d2

du2y(u)
)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite DE with series expansions
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◦ Convert u2 ·
(

d2

du2y(u)
)

to series expansion

u2 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r

Rewrite DE with series expansions
∞∑
k=0

ak(4k + 4r − 1) (4k + 4r − 3)uk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak(4k − 1) (4k − 3) = 0

• Recursion relation that defines series solution to ODE
ak = 0

• Recursion relation for r = 0
ak = 0

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak = 0

]
• Revert the change of variables u = 1 + x[

y =
∞∑
k=0

ak(1 + x)k , ak = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �

584



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve(16*(x+1)^2*diff(y(x),x$2)+3*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 3

32x
2 + 1

16x
3 − 93

2048x
4 + 9

256x
5
)
y(0)

+
(
x− 1

32x
3 + 1

32x
4 − 57

2048x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[16*(x+1)^2*y''[x]+3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−57x5

2048 + x4

32 − x3

32 + x

)
+ c1

(
9x5

256 − 93x4

2048 + x3

16 − 3x2

32 + 1
)
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5.5 problem 15
5.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 595

Internal problem ID [5673]
Internal file name [OUTPUT/4921_Sunday_June_05_2022_03_10_34_PM_45195600/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Bessel]

x2y′′ + xy′ +
(
x2 − 5

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 5

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = x2 − 5
x2

586



Table 73: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = x2−5
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 5

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 5

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 5anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 5a0xr = 0

Or
(xrr(−1 + r) + xrr − 5xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 5

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 5 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
√
5

r2 = −
√
5

Since a0 6= 0 then the indicial equation becomes(
r2 − 5

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
√
5 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+

√
5

y2(x) =
∞∑
n=0

bnx
n−

√
5

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 − 5an = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 5 (4)

Which for the root r =
√
5 becomes

an = − an−2

n
(
2
√
5 + n

) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r =

√
5 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 4r − 1

Which for the root r =
√
5 becomes

a2 = − 1
4 + 4

√
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r2 + 4r − 1) (r2 + 8r + 11)
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Which for the root r =
√
5 becomes

a4 =
1

32
(√

5 + 1
) (

2 +
√
5
)

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

a3 0 0
a4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5+1
)(

2+
√
5
)

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

a3 0 0
a4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5+1
)(

2+
√
5
)

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
√
5(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (

2 +
√
5
) +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2 − 5bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−2

n2 + 2nr + r2 − 5 (4)

Which for the root r = −
√
5 becomes

bn = − bn−2

n
(
−2

√
5 + n

) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −

√
5 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
r2 + 4r − 1

Which for the root r = −
√
5 becomes

b2 =
1

−4 + 4
√
5

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(r2 + 4r − 1) (r2 + 8r + 11)

Which for the root r = −
√
5 becomes

b4 =
1

32
(√

5− 1
) (

−2 +
√
5
)

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5

b3 0 0
b4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5−1
)(

−2+
√
5
)

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5

b3 0 0
b4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5−1
)(

−2+
√
5
)

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
√
5(b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (

2 +
√
5
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Hence the final solution is

y = yh

= c1x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (

2 +
√
5
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1x

√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (

2 +
√
5
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Verification of solutions

y = c1x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (

2 +
√
5
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Verified OK.

5.5.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (x2 − 5) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−5

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+
(
x2−5

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2−5

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −5

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (x2 − 5) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(r2 − 5)xr + a1(r2 + 2r − 4)x1+r +
(

∞∑
k=2

(ak(k2 + 2kr + r2 − 5) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 − 5 = 0

• Values of r that satisfy the indicial equation
r ∈

{√
5,−

√
5
}

• Each term must be 0
a1(r2 + 2r − 4) = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k2 + 2kr + r2 − 5) + ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
(k + 2)2 + 2(k + 2) r + r2 − 5

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k2+2kr+r2+4k+4r−1

• Recursion relation for r =
√
5

ak+2 = − ak
k2+2k

√
5+4+4k+4

√
5

• Solution for r =
√
5[

y =
∞∑
k=0

akx
k+

√
5, ak+2 = − ak

k2+2k
√
5+4+4k+4

√
5 , a1 = 0

]
• Recursion relation for r = −

√
5

ak+2 = − ak
k2−2k

√
5+4+4k−4

√
5

• Solution for r = −
√
5[

y =
∞∑
k=0

akx
k−

√
5, ak+2 = − ak

k2−2k
√
5+4+4k−4

√
5 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+

√
5
)
+
(

∞∑
k=0

bkx
k−

√
5
)
, ak+2 = − ak

k2+2k
√
5+4+4k+4

√
5 , a1 = 0, bk+2 = − bk

k2−2k
√
5+4+4k−4

√
5 , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 97� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-5)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
−
√
5

(
1 + 1

−4 + 4
√
5
x2 + 1

32
1(

−2 +
√
5
) (√

5− 1
)x4 +O

(
x6))

+ c2x
√
5

(
1− 1

4 + 4
√
5
x2 + 1

32
1(√

5 + 2
) (√

5 + 1
)x4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 210� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-5)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4(

−3−
√
5 +

(
1−

√
5
) (

2−
√
5
)) (

−1−
√
5 +

(
3−

√
5
) (

4−
√
5
))

− x2

−3−
√
5 +

(
1−

√
5
) (

2−
√
5
) + 1

)
x−

√
5

+ c1

(
x4(

−3 +
√
5 +

(
1 +

√
5
) (

2 +
√
5
)) (

−1 +
√
5 +

(
3 +

√
5
) (

4 +
√
5
))

− x2

−3 +
√
5 +

(
1 +

√
5
) (

2 +
√
5
) + 1

)
x
√
5
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5.6 problem 16
5.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 609

Internal problem ID [5674]
Internal file name [OUTPUT/4922_Sunday_June_05_2022_03_10_37_PM_25431950/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + 2y′x3 +
(
x2 − 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + 2y′x3 +
(
x2 − 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x

q(x) = x2 − 2
x2
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Table 75: Table p(x), q(x) singularites.

p(x) = 2x
singularity type
x = ∞ “regular”
x = −∞ “regular”

q(x) = x2−2
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞,−∞, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + 2y′x3 +
(
x2 − 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 2
(

∞∑
n=0

(n+ r) anxn+r−1

)
x3 +

(
x2 − 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x2+n+ran(n+ r)
)

+
(

∞∑
n=0

x2+n+ran

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x2+n+ran(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

x2+n+ran =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 2anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 2a0xr = 0

Or
(xrr(−1 + r)− 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − r − 2

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an−2(n+ r − 2) + an−2 − 2an = 0

Solving for an from recursive equation (4) gives

an = − an−2(2n+ 2r − 3)
n2 + 2nr + r2 − n− r − 2 (4)

Which for the root r = 2 becomes

an = (−2n− 1) an−2

n (n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−2r − 1
r (r + 3)

Which for the root r = 2 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2r−1
r(r+3) −1

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−2r−1
r(r+3) −1

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 12r + 5

r (r + 3) (r + 5) (r + 2)

Which for the root r = 2 becomes
a4 =

9
56

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2r−1
r(r+3) −1

2

a3 0 0
a4

4r2+12r+5
r(r+3)(r+5)(r+2)

9
56

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2r−1
r(r+3) −1

2

a3 0 0
a4

4r2+12r+5
r(r+3)(r+5)(r+2)

9
56

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− x2

2 + 9x4

56 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→−1

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 2bn−2(n+ r − 2) + bn−2 − 2bn = 0

Which for for the root r = −1 becomes

(4A)bn(n− 1) (n− 2) + 2bn−2(n− 3) + bn−2 − 2bn = 0
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Solving for bn from the recursive equation (4) gives

bn = − bn−2(2n+ 2r − 3)
n2 + 2nr + r2 − n− r − 2 (5)

Which for the root r = −1 becomes

bn = −bn−2(2n− 5)
n2 − 3n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1 + 2r
r (r + 3)

Which for the root r = −1 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−2r−1
r(r+3) −1

2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−2r−1
r(r+3) −1

2

b3 0 0
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For n = 4, using the above recursive equation gives

b4 =
4r2 + 12r + 5

r (r + 3) (r2 + 7r + 10)

Which for the root r = −1 becomes

b4 =
3
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−2r−1
r(r+3) −1

2

b3 0 0
b4

4r2+12r+5
r(r+3)(r+5)(r+2)

3
8

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−2r−1
r(r+3) −1

2

b3 0 0
b4

4r2+12r+5
r(r+3)(r+5)(r+2)

3
8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
=

1− x2

2 + 3x4

8 +O(x6)
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− x2

2 + 9x4

56 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
2
(
1− x2

2 + 9x4

56 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1x
2
(
1− x2

2 + 9x4

56 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x

Verification of solutions

y = c1x
2
(
1− x2

2 + 9x4

56 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x

Verified OK.

5.6.1 Maple step by step solution

Let’s solve
x2y′′ + 2y′x3 + (x2 − 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2xy′ −
(
x2−2

)
y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2xy′ +
(
x2−2

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
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◦ Define functions[
P2(x) = 2x, P3(x) = x2−2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + 2y′x3 + (x2 − 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x3 · y′ to series expansion

x3 · y′ =
∞∑
k=0

ak(k + r)xk+r+2

◦ Shift index using k− >k − 2

x3 · y′ =
∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r
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Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr + a1(2 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k − 2 + r) + ak−2(2k − 3 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term must be 0
a1(2 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k − 2 + r) + 2ak−2

(
k − 3

2 + r
)
= 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r) + 2ak

(
k + 1

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(2k+2r+1)

(k+3+r)(k+r)

• Recursion relation for r = −1
ak+2 = − ak(2k−1)

(k+2)(k−1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak(2k−1)

(k+2)(k−1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak(2k+5)

(k+5)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = − ak(2k+5)

(k+5)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak(2k−1)

(k+2)(k−1) , a1 = 0, bk+2 = − bk(2k+5)
(k+5)(k+2) , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+2*x^3*diff(y(x),x)+(x^2-2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1− 1

2x
2 + 9

56x
4 +O

(
x6))+

c2
(
12− 6x2 + 9

2x
4 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 44� �
AsymptoticDSolveValue[x^2*y''[x]+2*x^3*y'[x]+(x^2-2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
3x3

8 − x

2 + 1
x

)
+ c2

(
9x6

56 − x4

2 + x2
)
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5.7 problem 17
5.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 624

Internal problem ID [5675]
Internal file name [OUTPUT/4923_Sunday_June_05_2022_03_10_39_PM_80628939/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Laguerre]

xy′′ − (1 + x) y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + (−1− x) y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1 + x

x

q(x) = 1
x
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Table 77: Table p(x), q(x) singularites.

p(x) = −1+x
x

singularity type
x = 0 “regular”

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + (−1− x) y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+ (−1− x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r−1)

+
∞∑

n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− ra0x
−1+r = 0

Or (
x−1+rr(−1 + r)− r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−2 + r) = 0
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Since the above is true for all x then the indicial equation becomes

r(−2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−2 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1)− an(n+ r) + an−1 = 0
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Solving for an from recursive equation (4) gives

an = an−1

n+ r
(4)

Which for the root r = 2 becomes

an = an−1

n+ 2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

1 + r

Which for the root r = 2 becomes
a1 =

1
3

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
3

For n = 2, using the above recursive equation gives

a2 =
1

(1 + r) (2 + r)

Which for the root r = 2 becomes
a2 =

1
12

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
3

a2
1

(1+r)(2+r)
1
12
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For n = 3, using the above recursive equation gives

a3 =
1

(2 + r) (3 + r) (1 + r)

Which for the root r = 2 becomes
a3 =

1
60

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
3

a2
1

(1+r)(2+r)
1
12

a3
1

(2+r)(3+r)(1+r)
1
60

For n = 4, using the above recursive equation gives

a4 =
1

(3 + r) (1 + r) (2 + r) (4 + r)

Which for the root r = 2 becomes

a4 =
1
360

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
3

a2
1

(1+r)(2+r)
1
12

a3
1

(2+r)(3+r)(1+r)
1
60

a4
1

(3+r)(1+r)(2+r)(4+r)
1

360

For n = 5, using the above recursive equation gives

a5 =
1

(1 + r) (2 + r) (4 + r) (3 + r) (5 + r)
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Which for the root r = 2 becomes

a5 =
1

2520

And the table now becomes

n an,r an

a0 1 1
a1

1
1+r

1
3

a2
1

(1+r)(2+r)
1
12

a3
1

(2+r)(3+r)(1+r)
1
60

a4
1

(3+r)(1+r)(2+r)(4+r)
1

360

a5
1

(1+r)(2+r)(4+r)(3+r)(5+r)
1

2520

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1 + x

3 + x2

12 + x3

60 + x4

360 + x5

2520 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 1
(1 + r) (2 + r)

Therefore

lim
r→r2

1
(1 + r) (2 + r) = lim

r→0

1
(1 + r) (2 + r)

= 1
2
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The limit is 1
2 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1)− bn−1(n+ r − 1)− (n+ r) bn + bn−1 = 0

Which for for the root r = 0 becomes

(4A)bnn(n− 1)− bn−1(n− 1)− nbn + bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = bn−1

n+ r
(5)

Which for the root r = 0 becomes

bn = bn−1

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
1

1 + r

Which for the root r = 0 becomes
b1 = 1

And the table now becomes

620



n bn,r bn

b0 1 1
b1

1
1+r

1

For n = 2, using the above recursive equation gives

b2 =
1

(1 + r) (2 + r)

Which for the root r = 0 becomes
b2 =

1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

For n = 3, using the above recursive equation gives

b3 =
1

(2 + r) (3 + r) (1 + r)

Which for the root r = 0 becomes
b3 =

1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

b3
1

(2+r)(3+r)(1+r)
1
6

For n = 4, using the above recursive equation gives

b4 =
1

(3 + r) (1 + r) (2 + r) (4 + r)
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Which for the root r = 0 becomes
b4 =

1
24

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

b3
1

(2+r)(3+r)(1+r)
1
6

b4
1

(3+r)(1+r)(2+r)(4+r)
1
24

For n = 5, using the above recursive equation gives

b5 =
1

(1 + r) (2 + r) (4 + r) (3 + r) (5 + r)

Which for the root r = 0 becomes
b5 =

1
120

And the table now becomes

n bn,r bn

b0 1 1
b1

1
1+r

1

b2
1

(1+r)(2+r)
1
2

b3
1

(2+r)(3+r)(1+r)
1
6

b4
1

(3+r)(1+r)(2+r)(4+r)
1
24

b5
1

(1+r)(2+r)(4+r)(3+r)(5+r)
1

120

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1+ x

3 + x2

12 +
x3

60 +
x4

360 +
x5

2520 +O
(
x6))+ c2

(
1+x+ x2

2 + x3

6 + x4

24 +
x5

120

+O
(
x6))

Hence the final solution is

y = yh

= c1x
2
(
1 + x

3 + x2

12 + x3

60 + x4

360 + x5

2520 +O
(
x6))+ c2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120

+O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1 + x

3 + x2

12 + x3

60 + x4

360 + x5

2520 +O
(
x6))

+ c2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Verification of solutions

y = c1x
2
(
1 + x

3 + x2

12 + x3

60 + x4

360 + x5

2520 +O
(
x6))

+ c2

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Verified OK.
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5.7.1 Maple step by step solution

Let’s solve
y′′x+ (−1− x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x
+ (1+x)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (1+x)y′
x

+ y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −1+x
x
, P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (−1− x) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−2 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = ak

k+3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 44� �
Order:=6;
dsolve(x*diff(y(x),x$2)-(x+1)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1 + 1

3x+ 1
12x

2 + 1
60x

3 + 1
360x

4 + 1
2520x

5 +O
(
x6))

+ c2

(
−2− 2x− x2 − 1

3x
3 − 1

12x
4 − 1

60x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 66� �
AsymptoticDSolveValue[x*y''[x]-(x+1)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

24 + x3

6 + x2

2 + x+ 1
)
+ c2

(
x6

360 + x5

60 + x4

12 + x3

3 + x2
)
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5.8 problem 18
5.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 635

Internal problem ID [5676]
Internal file name [OUTPUT/4924_Sunday_June_05_2022_03_10_42_PM_99217/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + 3y′ + 4yx3 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + 3y′ + 4yx3 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x

q(x) = 4x2
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Table 79: Table p(x), q(x) singularites.

p(x) = 3
x

singularity type
x = 0 “regular”

q(x) = 4x2

singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + 3y′ + 4yx3 = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+r) (n+r−1) anxn+r−2

)
x+3

(
∞∑
n=0

(n+r) anxn+r−1

)
+4
(

∞∑
n=0

anx
n+r

)
x3 = 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

3(n+ r) anxn+r−1

)
+
(

∞∑
n=0

4x3+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

4x3+n+ran =
∞∑
n=4

4an−4x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

3(n+r) anxn+r−1

)
+
(

∞∑
n=4

4an−4x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 3(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 3ra0x−1+r = 0

Or (
x−1+rr(−1 + r) + 3r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(2 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −2

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

Substituting n = 3 in Eq. (2B) gives

a3 = 0

For 4 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 3an(n+ r) + 4an−4 = 0

Solving for an from recursive equation (4) gives

an = − 4an−4

n2 + 2nr + r2 + 2n+ 2r (4)
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Which for the root r = 0 becomes

an = − 4an−4

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = − 4
r2 + 10r + 24

Which for the root r = 0 becomes
a4 = −1

6
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 4

r2+10r+24 −1
6

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 − 4

r2+10r+24 −1
6

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x4

6 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 0

Therefore

lim
r→r2

0 = lim
r→−2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

Substituting n = 2 in Eq(3) gives
b2 = 0

Substituting n = 3 in Eq(3) gives
b3 = 0

For 4 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1) + 3(n+ r) bn + 4bn−4 = 0

Which for for the root r = −2 becomes

(4A)bn(n− 2) (n− 3) + 3(n− 2) bn + 4bn−4 = 0

Solving for bn from the recursive equation (4) gives

bn = − 4bn−4

n2 + 2nr + r2 + 2n+ 2r (5)

Which for the root r = −2 becomes

bn = − 4bn−4

n2 − 2n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = − 4
r2 + 10r + 24
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Which for the root r = −2 becomes

b4 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 4

r2+10r+24 −1
2

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 − 4

r2+10r+24 −1
2

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x4

2 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x4

6 +O
(
x6))+

c2
(
1− x4

2 +O(x6)
)

x2
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Hence the final solution is

y = yh

= c1

(
1− x4

6 +O
(
x6))+

c2
(
1− x4

2 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)y = c1

(
1− x4

6 +O
(
x6))+

c2
(
1− x4

2 +O(x6)
)

x2

Verification of solutions

y = c1

(
1− x4

6 +O
(
x6))+

c2
(
1− x4

2 +O(x6)
)

x2

Verified OK.

5.8.1 Maple step by step solution

Let’s solve
y′′x+ 3y′ + 4yx3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −3y′

x
− 4yx2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x
+ 4yx2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ 3y′ + 4yx3 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y to series expansion

x3 · y =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y =
∞∑
k=3

ak−3x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−2, 0}
• The coefficients of each power of x must be 0

[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0
• Shift index using k− >k + 3

ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = − 4ak
(k+4+r)(k+6+r)

• Recursion relation for r = −2
ak+4 = − 4ak

(k+2)(k+4)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0, bk+4 = − 4bk
(k+4)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

637



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 28� �
Order:=6;
dsolve(x*diff(y(x),x$2)+3*diff(y(x),x)+4*x^3*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1− 1

6x
4 +O

(
x6))+ c2(−2 + x4 +O(x6))

x2

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 30� �
AsymptoticDSolveValue[x*y''[x]+3*y'[x]+4*x^3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
1− x4

6

)
+ c1

(
1
x2 − x2

2

)
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5.9 problem 19
5.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 651

Internal problem ID [5677]
Internal file name [OUTPUT/4925_Sunday_June_05_2022_03_10_45_PM_67524443/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + y

4x = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′ + y

4x = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
4x
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Table 81: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
4x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4xy′′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)4
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)
(

∞∑
n=0

4xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

4x−1+ra0r(−1 + r) = 0

Or
4x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

4x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

4r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

4x−1+rr(−1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)4an(n+ r) (n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

4 (n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = − an−1

4 (n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
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For n = 1, using the above recursive equation gives

a1 = − 1
4 (1 + r) r

Which for the root r = 1 becomes
a1 = −1

8
And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(1+r)r −1
8

For n = 2, using the above recursive equation gives

a2 =
1

16 (1 + r)2 r (2 + r)

Which for the root r = 1 becomes

a2 =
1
192

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(1+r)r −1
8

a2
1

16(1+r)2r(2+r)
1

192

For n = 3, using the above recursive equation gives

a3 = − 1
64 (1 + r)2 r (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = − 1
9216

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

4(1+r)r −1
8

a2
1

16(1+r)2r(2+r)
1

192

a3 − 1
64(1+r)2r(2+r)2(3+r) − 1

9216

For n = 4, using the above recursive equation gives

a4 =
1

256 (1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 =
1

737280

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4(1+r)r −1
8

a2
1

16(1+r)2r(2+r)
1

192

a3 − 1
64(1+r)2r(2+r)2(3+r) − 1

9216

a4
1

256(1+r)2r(2+r)2(3+r)2(4+r)
1

737280

For n = 5, using the above recursive equation gives

a5 = − 1
1024 (1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 1
88473600

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

4(1+r)r −1
8

a2
1

16(1+r)2r(2+r)
1

192

a3 − 1
64(1+r)2r(2+r)2(3+r) − 1

9216

a4
1

256(1+r)2r(2+r)2(3+r)2(4+r)
1

737280

a5 − 1
1024(1+r)2r(2+r)2(3+r)2(4+r)2(5+r) − 1

88473600

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

8 + x2

192 − x3

9216 + x4

737280 − x5

88473600 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
4 (1 + r) r

Therefore

lim
r→r2

− 1
4 (1 + r) r = lim

r→0
− 1
4 (1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode 4xy′′ + y = 0 gives

4
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2 +

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(4y′′1(x)x+ y1(x)) ln (x) + 4

(
2y′1(x)

x
− y1(x)

x2

)
x

)
C

+ 4
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

4y′′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)4
(
2y′1(x)

x
− y1(x)

x2

)
xC + 4

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(

∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)
8

( ∞∑
n=0

x−1+n+r1an(n+ r1)
)
x−

( ∞∑
n=0

anxn+r1
)

2

C

x

+ 4
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)
8

( ∞∑
n=0

xnan(n+ 1)
)
x−

( ∞∑
n=0

anxn+1
)

2

C

x

+ 4
(

∞∑
n=0

x−2+nbnn(n− 1)
)
x+

(
∞∑
n=0

bnx
n

)
= 0

Which simplifies to(
∞∑
n=0

8C xnan(n+ 1)
)
+

∞∑
n =0

(−4C xnan) +
(

∞∑
n=0

4nxn−1bn(n− 1)
)
+
(

∞∑
n=0

bnx
n

)
= 0

(2A)

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

8C xnan(n+ 1) =
∞∑
n=1

8Can−1nxn−1

∞∑
n =0

(−4C xnan) =
∞∑
n=1

(
−4Can−1x

n−1)
∞∑

n =0

bnx
n =

∞∑
n=1

bn−1x
n−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

8Can−1nxn−1

)
+

∞∑
n =1

(
−4Can−1x

n−1)
+
(

∞∑
n=0

4nxn−1bn(n− 1)
)

+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

4C + 1 = 0

Which is solved for C. Solving for C gives

C = −1
4

For n = 2, Eq (2B) gives
12Ca1 + b1 + 8b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8b2 +
3
8 = 0

Solving the above for b2 gives
b2 = − 3

64
For n = 3, Eq (2B) gives

20Ca2 + b2 + 24b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

24b3 −
7
96 = 0

Solving the above for b3 gives
b3 =

7
2304

For n = 4, Eq (2B) gives
28Ca3 + b3 + 48b4 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

48b4 +
35
9216 = 0

Solving the above for b4 gives
b4 = − 35

442368
For n = 5, Eq (2B) gives

36Ca4 + b4 + 80b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

80b5 −
101

1105920 = 0

Solving the above for b5 gives
b5 =

101
88473600

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1
4 and all bn, then the second solution becomes

y2(x) = −1
4

(
x

(
1− x

8 + x2

192 − x3

9216 + x4

737280 − x5

88473600 +O
(
x6))) ln (x)

+ 1− 3x2

64 + 7x3

2304 − 35x4

442368 + 101x5

88473600 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

8 + x2

192 − x3

9216 + x4

737280 − x5

88473600 +O
(
x6))

+ c2

(
−1
4

(
x

(
1− x

8 + x2

192 − x3

9216 + x4

737280 − x5

88473600 +O
(
x6))) ln (x)

+ 1− 3x2

64 + 7x3

2304 − 35x4

442368 + 101x5

88473600 +O
(
x6))
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Hence the final solution is

y = yh

= c1x

(
1− x

8 + x2

192 − x3

9216 + x4

737280 − x5

88473600 +O
(
x6))

+ c2

−
x
(
1− x

8 +
x2

192 −
x3

9216 +
x4

737280 −
x5

88473600 +O(x6)
)
ln (x)

4 + 1− 3x2

64 + 7x3

2304

− 35x4

442368 + 101x5

88473600 +O
(
x6)

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

8 + x2

192 − x3

9216 + x4

737280 − x5

88473600 +O
(
x6))

+ c2

−
x
(
1− x

8 +
x2

192 −
x3

9216 +
x4

737280 −
x5

88473600 +O(x6)
)
ln (x)

4 + 1− 3x2

64

+ 7x3

2304 − 35x4

442368 + 101x5

88473600 +O
(
x6)

Verification of solutions

y = c1x

(
1− x

8 + x2

192 − x3

9216 + x4

737280 − x5

88473600 +O
(
x6))

+ c2

−
x
(
1− x

8 +
x2

192 −
x3

9216 +
x4

737280 −
x5

88473600 +O(x6)
)
ln (x)

4 + 1− 3x2

64 + 7x3

2304

− 35x4

442368 + 101x5

88473600 +O
(
x6)

Verified OK.

650



5.9.1 Maple step by step solution

Let’s solve
4y′′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

4x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
4x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1
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x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

4a0r(−1 + r)x−1+r +
(

∞∑
k=0

(4ak+1(k + 1 + r) (k + r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

4(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = − ak

4(k+1)k

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

4(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak
4(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

4(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − ak

4(k+1)k , bk+1 = − bk
4(k+2)(k+1)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 58� �
Order:=6;
dsolve(diff(y(x),x$2)+1/(4*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

8x+ 1
192x

2 − 1
9216x

3 + 1
737280x

4 − 1
88473600x

5 +O
(
x6))

+ c2

(
ln (x)

(
−1
4x+ 1

32x
2 − 1

768x
3 + 1

36864x
4 − 1

2949120x
5 +O

(
x6))

+
(
1− 3

64x
2 + 7

2304x
3 − 35

442368x
4 + 101

88473600x
5 +O

(
x6)))
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3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 85� �
AsymptoticDSolveValue[y''[x]+1/(4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x(x3 − 48x2 + 1152x− 9216) log(x)

36864

+ −47x4 + 1920x3 − 34560x2 + 110592x+ 442368
442368

)
+ c2

(
x5

737280 − x4

9216 + x3

192 − x2

8 + x

)
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5.10 problem 20
5.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 662

Internal problem ID [5678]
Internal file name [OUTPUT/4926_Sunday_June_05_2022_03_10_48_PM_2520066/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + y′ − xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y′ − xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = −1
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Table 83: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = −1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y′ − xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
− x

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=2

(
−an−2x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =2

(
−an−2x

n+r−1) = 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r)− an−2 = 0

Solving for an from recursive equation (4) gives

an = an−2

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = an−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
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For n = 2, using the above recursive equation gives

a2 =
1

(r + 2)2

Which for the root r = 0 becomes
a2 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
(r+2)2

1
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
(r+2)2

1
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r + 2)2 (4 + r)2

Which for the root r = 0 becomes
a4 =

1
64

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

1
(r+2)2

1
4

a3 0 0
a4

1
(r+2)2(4+r)2

1
64

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
(r+2)2

1
4

a3 0 0
a4

1
(r+2)2(4+r)2

1
64

a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x2

4 + x4

64 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r
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And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

1
(r+2)2

1
4 − 2

(r+2)3 −1
4

b3 0 0 0 0
b4

1
(r+2)2(4+r)2

1
64

−12−4r
(r+2)3(4+r)3 − 3

128

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1 + x2

4 + x4

64 +O
(
x6)) ln (x)− x2

4 − 3x4

128 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1+ x2

4 + x4

64+O
(
x6))+c2

((
1+ x2

4 + x4

64+O
(
x6)) ln (x)− x2

4 − 3x4

128+O
(
x6))

Hence the final solution is

y = yh

= c1

(
1+ x2

4 + x4

64 +O
(
x6))+ c2

((
1+ x2

4 + x4

64 +O
(
x6)) ln (x)− x2

4 − 3x4

128 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1 + x2

4 + x4

64 +O
(
x6))

+ c2

((
1 + x2

4 + x4

64 +O
(
x6)) ln (x)− x2

4 − 3x4

128 +O
(
x6))
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Verification of solutions

y = c1

(
1+ x2

4 + x4

64 +O
(
x6))+ c2

((
1+ x2

4 + x4

64 +O
(
x6)) ln (x)− x2

4 − 3x4

128 +O
(
x6))

Verified OK.

5.10.1 Maple step by step solution

Let’s solve
y′′x+ y′ − xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
+ y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = −1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y′ − xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 − ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 − ak = 0
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• Recursion relation that defines series solution to ODE
ak+2 = ak

(k+2)2

• Recursion relation for r = 0
ak+2 = ak

(k+2)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = ak

(k+2)2 , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 41� �
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1 + 1

4x
2 + 1

64x
4 +O

(
x6))+

(
−1
4x

2 − 3
128x

4 +O
(
x6)) c2
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x*y''[x]+y'[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

64 + x2

4 + 1
)
+ c2

(
−3x4

128 − x2

4 +
(
x4

64 + x2

4 + 1
)
log(x)

)
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6 Chapter 6. Laplace Transforms. Problem set 6.2,
page 216

6.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
6.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
6.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
6.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
6.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
6.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
6.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
6.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
6.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
6.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
6.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
6.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
6.13 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
6.14 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
6.15 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
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6.1 problem 1
6.1.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 667
6.1.2 Solving as laplace ode . . . . . . . . . . . . . . . . . . . . . . . 668
6.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 670

Internal problem ID [5679]
Internal file name [OUTPUT/4927_Sunday_June_05_2022_03_10_50_PM_62015448/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ + 26y
5 = 97 sin (2t)

5

With initial conditions

[y(0) = 0]

6.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(t)y = q(t)

Where here

p(t) = 26
5

q(t) = 97 sin (2t)
5
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Hence the ode is

y′ + 26y
5 = 97 sin (2t)

5

The domain of p(t) = 26
5 is

{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 97 sin(2t)
5 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

6.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)

The given ode now becomes an algebraic equation in the Laplace domain

sY (s)− y(0) + 26Y (s)
5 = 194

5 (s2 + 4) (1)

Replacing initial condition gives

sY (s) + 26Y (s)
5 = 194

5 (s2 + 4)

Solving for Y (s) gives

Y (s) = 194
(s2 + 4) (5s+ 26)

Applying partial fractions decomposition results in

Y (s) = 5
4
(
s+ 26

5

) + −5
8 −

13i
8

s− 2i +
−5

8 +
13i
8

s+ 2i
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The inverse Laplace of each term above is now found, which gives

L−1

(
5

4
(
s+ 26

5

)) = 5 e− 26t
5

4

L−1
(−5

8 −
13i
8

s− 2i

)
=
(
−5
8 − 13i

8

)
e2it

L−1
(−5

8 +
13i
8

s+ 2i

)
=
(
−5
8 + 13i

8

)
e−2it

Adding the above results and simplifying gives

y = 5 e− 26t
5

4 − 5 cos (2t)
4 + 13 sin (2t)

4

Summary
The solution(s) found are the following

(1)y = 5 e− 26t
5

4 − 5 cos (2t)
4 + 13 sin (2t)

4

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5 e− 26t
5

4 − 5 cos (2t)
4 + 13 sin (2t)

4

Verified OK.
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6.1.3 Maple step by step solution

Let’s solve[
y′ + 26y

5 = 97 sin(2t)
5 , y(0) = 0

]
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative
y′ = −26y

5 + 97 sin(2t)
5

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 26y

5 = 97 sin(2t)
5

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t)

(
y′ + 26y

5

)
= 97µ(t) sin(2t)

5

• Assume the lhs of the ODE is the total derivative d
dt
(µ(t) y)

µ(t)
(
y′ + 26y

5

)
= µ′(t) y + µ(t) y′

• Isolate µ′(t)
µ′(t) = 26µ(t)

5

• Solve to find the integrating factor
µ(t) = e 26t

5

• Integrate both sides with respect to t∫ (
d
dt
(µ(t) y)

)
dt =

∫ 97µ(t) sin(2t)
5 dt+ c1

• Evaluate the integral on the lhs
µ(t) y =

∫ 97µ(t) sin(2t)
5 dt+ c1

• Solve for y

y =
∫ 97µ(t) sin(2t)

5 dt+c1
µ(t)

• Substitute µ(t) = e 26t
5

y =
∫ 97 e

26t
5 sin(2t)
5 dt+c1

e
26t
5

• Evaluate the integrals on the rhs

y = − 5 e
26t
5 cos(2t)

4 + 13 e
26t
5 sin(2t)
4 +c1

e
26t
5
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• Simplify
y = 13 sin(2t)

4 − 5 cos(2t)
4 + c1e−

26t
5

• Use initial condition y(0) = 0
0 = −5

4 + c1

• Solve for c1
c1 = 5

4

• Substitute c1 = 5
4 into general solution and simplify

y = 5 e−
26t
5

4 − 5 cos(2t)
4 + 13 sin(2t)

4

• Solution to the IVP

y = 5 e−
26t
5

4 − 5 cos(2t)
4 + 13 sin(2t)

4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.891 (sec). Leaf size: 23� �
dsolve([diff(y(t),t)+52/10*y(t)=194/10*sin(2*t),y(0) = 0],y(t), singsol=all)� �

y(t) = 5 e− 26t
5

4 − 5 cos (2t)
4 + 13 sin (2t)

4

3 Solution by Mathematica
Time used: 0.095 (sec). Leaf size: 31� �
DSolve[{y'[t]+52/10*y[t]==194/10*Sin[2*t],{y[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
4
(
5e−26t/5 + 13 sin(2t)− 5 cos(2t)

)
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6.2 problem 2
6.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 672
6.2.2 Solving as laplace ode . . . . . . . . . . . . . . . . . . . . . . . 673
6.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 674

Internal problem ID [5680]
Internal file name [OUTPUT/4928_Sunday_June_05_2022_03_10_51_PM_30685895/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

2y + y′ = 0

With initial conditions [
y(0) = 3

2

]

6.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(t)y = q(t)

Where here

p(t) = 2
q(t) = 0

Hence the ode is

2y + y′ = 0
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The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. Hence solution exists and is unique.

6.2.2 Solving as laplace ode

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)

The given ode now becomes an algebraic equation in the Laplace domain

2Y (s) + sY (s)− y(0) = 0 (1)

Replacing initial condition gives

2Y (s) + sY (s)− 3
2 = 0

Solving for Y (s) gives

Y (s) = 3
2 (2 + s)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(

3
2 (2 + s)

)
= 3 e−2t

2

Summary
The solution(s) found are the following

(1)y = 3 e−2t

2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 3 e−2t

2

Verified OK.

6.2.3 Maple step by step solution

Let’s solve[
2y + y′ = 0, y(0) = 3

2

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y
= −2

• Integrate both sides with respect to t∫
y′

y
dt =

∫
(−2) dt+ c1

• Evaluate integral
ln (y) = −2t+ c1

• Solve for y
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y = e−2t+c1

• Use initial condition y(0) = 3
2

3
2 = ec1

• Solve for c1
c1 = ln

(3
2

)
• Substitute c1 = ln

(3
2

)
into general solution and simplify

y = 3 e−2t

2

• Solution to the IVP
y = 3 e−2t

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.688 (sec). Leaf size: 10� �
dsolve([diff(y(t),t)+2*y(t)=0,y(0) = 3/2],y(t), singsol=all)� �

y(t) = 3 e−2t

2

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 31� �
DSolve[{y'[t]+52/10*y[t]==194/10*Sin[2*t],{y[0]==15/10}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
4
(
11e−26t/5 + 13 sin(2t)− 5 cos(2t)

)
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6.3 problem 3
6.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 676
6.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 679

Internal problem ID [5681]
Internal file name [OUTPUT/4929_Sunday_June_05_2022_03_10_52_PM_84049704/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − y′ − 6y = 0

With initial conditions

[y(0) = 11, y′(0) = 28]

6.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = −1
q(t) = −6
F = 0

Hence the ode is

y′′ − y′ − 6y = 0
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The domain of p(t) = −1 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = −6 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0)− sY (s) + y(0)− 6Y (s) = 0 (1)

But the initial conditions are

y(0) = 11
y′(0) = 28

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 17− 11s− sY (s)− 6Y (s) = 0

Solving the above equation for Y (s) results in

Y (s) = 11s+ 17
s2 − s− 6

Applying partial fractions decomposition results in

Y (s) = 1
s+ 2 + 10

s− 3
The inverse Laplace of each term above is now found, which gives

L−1
(

1
s+ 2

)
= e−2t

L−1
(

10
s− 3

)
= 10 e3t
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Adding the above results and simplifying gives

y = 10 e3t + e−2t

Simplifying the solution gives

y =
(
10 e5t + 1

)
e−2t

Summary
The solution(s) found are the following

(1)y =
(
10 e5t + 1

)
e−2t

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
(
10 e5t + 1

)
e−2t

Verified OK.
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6.3.2 Maple step by step solution

Let’s solve[
y′′ − y′ − 6y = 0, y(0) = 11, y′

∣∣∣{t=0}
= 28

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of ODE
r2 − r − 6 = 0

• Factor the characteristic polynomial
(r + 2) (r − 3) = 0

• Roots of the characteristic polynomial
r = (−2, 3)

• 1st solution of the ODE
y1(t) = e−2t

• 2nd solution of the ODE
y2(t) = e3t

• General solution of the ODE
y = c1y1(t) + c2y2(t)

• Substitute in solutions
y = c1e−2t + e3tc2

� Check validity of solution y = c1e−2t + e3tc2
◦ Use initial condition y(0) = 11

11 = c1 + c2

◦ Compute derivative of the solution
y′ = −2c1e−2t + 3 e3tc2

◦ Use the initial condition y′
∣∣∣{t=0}

= 28

28 = −2c1 + 3c2
◦ Solve for c1 and c2

{c1 = 1, c2 = 10}
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◦ Substitute constant values into general solution and simplify
y = (10 e5t + 1) e−2t

• Solution to the IVP
y = (10 e5t + 1) e−2t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.797 (sec). Leaf size: 15� �
dsolve([diff(y(t),t$2)-diff(y(t),t)-6*y(t)=0,y(0) = 11, D(y)(0) = 28],y(t), singsol=all)� �

y(t) =
(
10 e5t + 1

)
e−2t

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18� �
DSolve[{y''[t]-y'[t]-6*y[t]==0,{y[0]==11,y'[0]==28}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → e−2t + 10e3t
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6.4 problem 4
6.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 681
6.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 684

Internal problem ID [5682]
Internal file name [OUTPUT/4930_Sunday_June_05_2022_03_10_54_PM_15329181/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 9y = 10 e−t

With initial conditions

[y(0) = 0, y′(0) = 0]

6.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0
q(t) = 9
F = 10 e−t

Hence the ode is

y′′ + 9y = 10 e−t
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The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 9 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 10 e−t is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 9Y (s) = 10
s+ 1 (1)

But the initial conditions are

y(0) = 0
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 9Y (s) = 10
s+ 1

Solving the above equation for Y (s) results in

Y (s) = 10
(s+ 1) (s2 + 9)

Applying partial fractions decomposition results in

Y (s) =
−1

2 −
i
6

s− 3i +
−1

2 +
i
6

s+ 3i + 1
s+ 1
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The inverse Laplace of each term above is now found, which gives

L−1
(−1

2 −
i
6

s− 3i

)
=
(
−1
2 − i

6

)
e3it

L−1
(−1

2 +
i
6

s+ 3i

)
=
(
−1
2 + i

6

)
e−3it

L−1
(

1
s+ 1

)
= e−t

Adding the above results and simplifying gives

y = − cos (3t) + sin (3t)
3 + e−t

Simplifying the solution gives

y = − cos (3t) + sin (3t)
3 + e−t

Summary
The solution(s) found are the following

(1)y = − cos (3t) + sin (3t)
3 + e−t

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = − cos (3t) + sin (3t)
3 + e−t

Verified OK.

6.4.2 Maple step by step solution

Let’s solve[
y′′ + 9y = 10 e−t, y(0) = 0, y′

∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 9 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−36
)

2

• Roots of the characteristic polynomial
r = (−3 I, 3 I)

• 1st solution of the homogeneous ODE
y1(t) = cos (3t)

• 2nd solution of the homogeneous ODE
y2(t) = sin (3t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (3t) + c2 sin (3t) + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 10 e−t

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(t) , y2(t)) =

 cos (3t) sin (3t)
−3 sin (3t) 3 cos (3t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = 3
◦ Substitute functions into equation for yp(t)

yp(t) = −10 cos(3t)
(∫

sin(3t)e−tdt
)

3 + 10 sin(3t)
(∫

cos(3t)e−tdt
)

3

◦ Compute integrals
yp(t) = e−t

• Substitute particular solution into general solution to ODE
y = c1 cos (3t) + c2 sin (3t) + e−t

� Check validity of solution y = c1 cos (3t) + c2 sin (3t) + e−t

◦ Use initial condition y(0) = 0
0 = c1 + 1

◦ Compute derivative of the solution
y′ = −3c1 sin (3t) + 3c2 cos (3t)− e−t

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = −1 + 3c2
◦ Solve for c1 and c2{

c1 = −1, c2 = 1
3

}
◦ Substitute constant values into general solution and simplify

y = − cos (3t) + sin(3t)
3 + e−t

• Solution to the IVP
y = − cos (3t) + sin(3t)

3 + e−t
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.891 (sec). Leaf size: 21� �
dsolve([diff(y(t),t$2)+9*y(t)=10*exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = − cos (3t) + sin (3t)
3 + e−t

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 25� �
DSolve[{y''[t]+9*y[t]==10*Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → e−t + 1
3 sin(3t)− cos(3t)
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6.5 problem 5
6.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 687
6.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 690

Internal problem ID [5683]
Internal file name [OUTPUT/4931_Sunday_June_05_2022_03_10_55_PM_72200753/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff", "second_order_ode_can_be_made_in-
tegrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − y

4 = 0

With initial conditions

[y(0) = 12, y′(0) = 0]

6.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0

q(t) = −1
4

F = 0
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Hence the ode is

y′′ − y

4 = 0

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = −1
4 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0)− Y (s)
4 = 0 (1)

But the initial conditions are

y(0) = 12
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 12s− Y (s)
4 = 0

Solving the above equation for Y (s) results in

Y (s) = 48s
4s2 − 1

Applying partial fractions decomposition results in

Y (s) = 6
s+ 1

2
+ 6

s− 1
2
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The inverse Laplace of each term above is now found, which gives

L−1
(

6
s+ 1

2

)
= 6 e− t

2

L−1
(

6
s− 1

2

)
= 6 e t

2

Adding the above results and simplifying gives

y = 12 cosh
(
t

2

)
Simplifying the solution gives

y = 12 cosh
(
t

2

)
Summary
The solution(s) found are the following

(1)y = 12 cosh
(
t

2

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 12 cosh
(
t

2

)
Verified OK.
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6.5.2 Maple step by step solution

Let’s solve[
y′′ − y

4 = 0, y(0) = 12, y′
∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 1

4 = 0

• Factor the characteristic polynomial
(2r−1)(2r+1)

4 = 0

• Roots of the characteristic polynomial
r =

(
−1

2 ,
1
2

)
• 1st solution of the ODE

y1(t) = e− t
2

• 2nd solution of the ODE
y2(t) = e t

2

• General solution of the ODE
y = c1y1(t) + c2y2(t)

• Substitute in solutions
y = c1e−

t
2 + c2e

t
2

� Check validity of solution y = c1e−
t
2 + c2e

t
2

◦ Use initial condition y(0) = 12
12 = c1 + c2

◦ Compute derivative of the solution

y′ = − c1e−
t
2

2 + c2e
t
2

2

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = − c1
2 + c2

2

◦ Solve for c1 and c2

{c1 = 6, c2 = 6}
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◦ Substitute constant values into general solution and simplify
y = 6 e− t

2 + 6 e t
2

• Solution to the IVP
y = 6 e− t

2 + 6 e t
2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.781 (sec). Leaf size: 10� �
dsolve([diff(y(t),t$2)-1/4*y(t)=0,y(0) = 12, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = 12 cosh
(
t

2

)
3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 19� �
DSolve[{y''[t]-1/4*y[t]==0,{y[0]==12,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 6e−t/2(et + 1
)
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6.6 problem 6
6.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 692
6.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 695

Internal problem ID [5684]
Internal file name [OUTPUT/4932_Sunday_June_05_2022_03_10_56_PM_44958753/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 6y′ + 5y = 29 cos (2t)

With initial conditions [
y(0) = 16

5 , y′(0) = 31
5

]

6.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = −6
q(t) = 5
F = 29 cos (2t)
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Hence the ode is

y′′ − 6y′ + 5y = 29 cos (2t)

The domain of p(t) = −6 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 29 cos (2t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0)− 6sY (s) + 6y(0) + 5Y (s) = 29s
s2 + 4 (1)

But the initial conditions are

y(0) = 16
5

y′(0) = 31
5

Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 13− 16s
5 − 6sY (s) + 5Y (s) = 29s

s2 + 4
Solving the above equation for Y (s) results in

Y (s) = 16s3 − 65s2 + 209s− 260
5 (s2 + 4) (s2 − 6s+ 5)
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Applying partial fractions decomposition results in

Y (s) =
1
10 +

6i
5

s− 2i +
1
10 −

6i
5

s+ 2i + 1
s− 1 + 2

s− 5

The inverse Laplace of each term above is now found, which gives

L−1
( 1

10 +
6i
5

s− 2i

)
=
(

1
10 + 6i

5

)
e2it

L−1
( 1

10 −
6i
5

s+ 2i

)
=
(

1
10 − 6i

5

)
e−2it

L−1
(

1
s− 1

)
= et

L−1
(

2
s− 5

)
= 2 e5t

Adding the above results and simplifying gives

y = 2 e5t + et + cos (2t)
5 − 12 sin (2t)

5

Simplifying the solution gives

y = 2 e5t + et + cos (2t)
5 − 12 sin (2t)

5

Summary
The solution(s) found are the following

(1)y = 2 e5t + et + cos (2t)
5 − 12 sin (2t)

5
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 e5t + et + cos (2t)
5 − 12 sin (2t)

5

Verified OK.

6.6.2 Maple step by step solution

Let’s solve[
y′′ − 6y′ + 5y = 29 cos (2t) , y(0) = 16

5 , y
′∣∣∣{t=0}

= 31
5

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 − 6r + 5 = 0

• Factor the characteristic polynomial
(r − 1) (r − 5) = 0

• Roots of the characteristic polynomial
r = (1, 5)

• 1st solution of the homogeneous ODE
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y1(t) = et

• 2nd solution of the homogeneous ODE
y2(t) = e5t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1et + c2e5t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 29 cos (2t)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 et e5t

et 5 e5t


◦ Compute Wronskian

W (y1(t) , y2(t)) = 4 e6t

◦ Substitute functions into equation for yp(t)

yp(t) = −29 et
(∫

cos(2t)e−tdt
)

4 + 29 e5t
(∫

cos(2t)e−5tdt
)

4

◦ Compute integrals
yp(t) = cos(2t)

5 − 12 sin(2t)
5

• Substitute particular solution into general solution to ODE
y = c1et + c2e5t + cos(2t)

5 − 12 sin(2t)
5

� Check validity of solution y = c1et + c2e5t + cos(2t)
5 − 12 sin(2t)

5

◦ Use initial condition y(0) = 16
5

16
5 = c1 + c2 + 1

5

◦ Compute derivative of the solution
y′ = c1et + 5c2e5t − 2 sin(2t)

5 − 24 cos(2t)
5

◦ Use the initial condition y′
∣∣∣{t=0}

= 31
5

31
5 = c1 + 5c2 − 24

5
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◦ Solve for c1 and c2

{c1 = 1, c2 = 2}
◦ Substitute constant values into general solution and simplify

y = 2 e5t + et + cos(2t)
5 − 12 sin(2t)

5

• Solution to the IVP
y = 2 e5t + et + cos(2t)

5 − 12 sin(2t)
5

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 2.079 (sec). Leaf size: 25� �
dsolve([diff(y(t),t$2)-6*diff(y(t),t)+5*y(t)=29*cos(2*t),y(0) = 16/5, D(y)(0) = 31/5],y(t), singsol=all)� �

y(t) = cos (2t)
5 − 12 sin (2t)

5 + et + 2 e5t

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 32� �
DSolve[{y''[t]-6*y'[t]+5*y[t]==29*Cos[2*t],{y[0]==32/10,y'[0]==62/10}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → et + 2e5t − 12
5 sin(2t) + 1

5 cos(2t)
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6.7 problem 7
6.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 698
6.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 701

Internal problem ID [5685]
Internal file name [OUTPUT/4933_Sunday_June_05_2022_03_10_57_PM_13379888/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 7y′ + 12y = 21 e3t

With initial conditions [
y(0) = 7

2 , y
′(0) = −10

]

6.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 7
q(t) = 12
F = 21 e3t
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Hence the ode is

y′′ + 7y′ + 12y = 21 e3t

The domain of p(t) = 7 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 12 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 21 e3t is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 7sY (s)− 7y(0) + 12Y (s) = 21
s− 3 (1)

But the initial conditions are

y(0) = 7
2

y′(0) = −10

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 29
2 − 7s

2 + 7sY (s) + 12Y (s) = 21
s− 3

Solving the above equation for Y (s) results in

Y (s) = 7s2 + 8s− 45
2 (s− 3) (s2 + 7s+ 12)
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Applying partial fractions decomposition results in

Y (s) = 1
2s− 6 + 1

2s+ 6 + 5
2 (s+ 4)

The inverse Laplace of each term above is now found, which gives

L−1
(

1
2s− 6

)
= e3t

2

L−1
(

1
2s+ 6

)
= e−3t

2

L−1
(

5
2 (s+ 4)

)
= 5 e−4t

2
Adding the above results and simplifying gives

y = 5 e−4t

2 + cosh (3t)

Simplifying the solution gives

y = 5 e−4t

2 + cosh (3t)

Summary
The solution(s) found are the following

(1)y = 5 e−4t

2 + cosh (3t)

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 5 e−4t

2 + cosh (3t)

Verified OK.

6.7.2 Maple step by step solution

Let’s solve[
y′′ + 7y′ + 12y = 21 e3t, y(0) = 7

2 , y
′∣∣∣{t=0}

= −10
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 7r + 12 = 0

• Factor the characteristic polynomial
(r + 4) (r + 3) = 0

• Roots of the characteristic polynomial
r = (−4,−3)

• 1st solution of the homogeneous ODE
y1(t) = e−4t

• 2nd solution of the homogeneous ODE
y2(t) = e−3t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−4t + c2e−3t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 21 e3t

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(t) , y2(t)) =

 e−4t e−3t

−4 e−4t −3 e−3t


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−7t

◦ Substitute functions into equation for yp(t)
yp(t) = −21 e−4t(∫ e7tdt

)
+ 21 e−3t(∫ e6tdt

)
◦ Compute integrals

yp(t) = e3t
2

• Substitute particular solution into general solution to ODE
y = c1e−4t + c2e−3t + e3t

2

� Check validity of solution y = c1e−4t + c2e−3t + e3t
2

◦ Use initial condition y(0) = 7
2

7
2 = c1 + c2 + 1

2

◦ Compute derivative of the solution
y′ = −4c1e−4t − 3c2e−3t + 3 e3t

2

◦ Use the initial condition y′
∣∣∣{t=0}

= −10

−10 = −4c1 − 3c2 + 3
2

◦ Solve for c1 and c2{
c1 = 5

2 , c2 =
1
2

}
◦ Substitute constant values into general solution and simplify

y =
(
e7t+et+5

)
e−4t

2

• Solution to the IVP

y =
(
e7t+et+5

)
e−4t

2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.797 (sec). Leaf size: 15� �
dsolve([diff(y(t),t$2)+7*diff(y(t),t)+12*y(t)=21*exp(3*t),y(0) = 7/2, D(y)(0) = -10],y(t), singsol=all)� �

y(t) = 5 e−4t

2 + cosh (3t)

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 28� �
DSolve[{y''[t]+7*y'[t]+12*y[t]==21*Exp[3*t],{y[0]==32/10,y'[0]==62/10}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
10e

−4t(155et + 5e7t − 128
)
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6.8 problem 8
6.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 704
6.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 707

Internal problem ID [5686]
Internal file name [OUTPUT/4934_Sunday_June_05_2022_03_10_59_PM_77286167/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff", "linear_second_order_ode_solved_by_an_in-
tegrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 4y′ + 4y = 0

With initial conditions [
y(0) = 81

10 , y
′(0) = 39

10

]

6.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = −4
q(t) = 4
F = 0
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Hence the ode is

y′′ − 4y′ + 4y = 0

The domain of p(t) = −4 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 4 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0)− 4sY (s) + 4y(0) + 4Y (s) = 0 (1)

But the initial conditions are

y(0) = 81
10

y′(0) = 39
10

Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 57
2 − 81s

10 − 4sY (s) + 4Y (s) = 0

Solving the above equation for Y (s) results in

Y (s) =
−57

2 + 81s
10

s2 − 4s+ 4
Applying partial fractions decomposition results in

Y (s) = − 123
10 (s− 2)2

+ 81
10 (s− 2)
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The inverse Laplace of each term above is now found, which gives

L−1
(
− 123
10 (s− 2)2

)
= −123t e2t

10

L−1
(

81
10 (s− 2)

)
= 81 e2t

10

Adding the above results and simplifying gives

y = −3(41t− 27) e2t
10

Simplifying the solution gives

y = −3(41t− 27) e2t
10

Summary
The solution(s) found are the following

(1)y = −3(41t− 27) e2t
10

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −3(41t− 27) e2t
10

Verified OK.
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6.8.2 Maple step by step solution

Let’s solve[
y′′ − 4y′ + 4y = 0, y(0) = 81

10 , y
′∣∣∣{t=0}

= 39
10

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of ODE
r2 − 4r + 4 = 0

• Factor the characteristic polynomial
(r − 2)2 = 0

• Root of the characteristic polynomial
r = 2

• 1st solution of the ODE
y1(t) = e2t

• Repeated root, multiply y1(t) by t to ensure linear independence
y2(t) = t e2t

• General solution of the ODE
y = c1y1(t) + c2y2(t)

• Substitute in solutions
y = c1e2t + c2t e2t

� Check validity of solution y = c1e2t + c2te2t

◦ Use initial condition y(0) = 81
10

81
10 = c1

◦ Compute derivative of the solution
y′ = 2c1e2t + c2e2t + 2c2t e2t

◦ Use the initial condition y′
∣∣∣{t=0}

= 39
10

39
10 = 2c1 + c2

◦ Solve for c1 and c2{
c1 = 81

10 , c2 = −123
10

}
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◦ Substitute constant values into general solution and simplify

y = −3(41t−27)e2t
10

• Solution to the IVP

y = −3(41t−27)e2t
10

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.719 (sec). Leaf size: 15� �
dsolve([diff(y(t),t$2)-4*diff(y(t),t)+4*y(t)=0,y(0) = 81/10, D(y)(0) = 39/10],y(t), singsol=all)� �

y(t) = −3(41t− 27) e2t
10

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 19� �
DSolve[{y''[t]-4*y'[t]+4*y[t]==0,{y[0]==81/10,y'[0]==39/10}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → − 3
10e

2t(41t− 27)
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6.9 problem 9
6.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 709
6.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 712

Internal problem ID [5687]
Internal file name [OUTPUT/4935_Sunday_June_05_2022_03_11_00_PM_11693725/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 4y′ + 3y = 6t− 8

With initial conditions

[y(0) = 0, y′(0) = 0]

6.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = −4
q(t) = 3
F = 6t− 8

Hence the ode is

y′′ − 4y′ + 3y = 6t− 8
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The domain of p(t) = −4 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 3 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 6t− 8 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0)− 4sY (s) + 4y(0) + 3Y (s) = 6
s2

− 8
s

(1)

But the initial conditions are

y(0) = 0
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 4sY (s) + 3Y (s) = 6
s2

− 8
s

Solving the above equation for Y (s) results in

Y (s) = − 2(−3 + 4s)
s2 (s2 − 4s+ 3)

Applying partial fractions decomposition results in

Y (s) = 2
s2

− 1
s− 3 + 1

s− 1
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The inverse Laplace of each term above is now found, which gives

L−1
(

2
s2

)
= 2t

L−1
(
− 1
s− 3

)
= −e3t

L−1
(

1
s− 1

)
= et

Adding the above results and simplifying gives

y = 2t− 2 e2t sinh (t)

Simplifying the solution gives

y = 2t− 2 e2t sinh (t)

Summary
The solution(s) found are the following

(1)y = 2t− 2 e2t sinh (t)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2t− 2 e2t sinh (t)

Verified OK.
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6.9.2 Maple step by step solution

Let’s solve[
y′′ − 4y′ + 3y = 6t− 8, y(0) = 0, y′

∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 4r + 3 = 0

• Factor the characteristic polynomial
(r − 1) (r − 3) = 0

• Roots of the characteristic polynomial
r = (1, 3)

• 1st solution of the homogeneous ODE
y1(t) = et

• 2nd solution of the homogeneous ODE
y2(t) = e3t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1et + e3tc2 + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 6t− 8

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 et e3t

et 3 e3t


◦ Compute Wronskian

W (y1(t) , y2(t)) = 2 e4t

◦ Substitute functions into equation for yp(t)
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yp(t) = −et
(∫

(3t− 4) e−tdt
)
+ e3t

(∫
(3t− 4) e−3tdt

)
◦ Compute integrals

yp(t) = 2t
• Substitute particular solution into general solution to ODE

y = c1et + e3tc2 + 2t
� Check validity of solution y = c1et + e3tc2 + 2t

◦ Use initial condition y(0) = 0
0 = c1 + c2

◦ Compute derivative of the solution
y′ = c1et + 3 e3tc2 + 2

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = c1 + 3c2 + 2
◦ Solve for c1 and c2

{c1 = 1, c2 = −1}
◦ Substitute constant values into general solution and simplify

y = et − e3t + 2t
• Solution to the IVP

y = et − e3t + 2t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.672 (sec). Leaf size: 16� �
dsolve([diff(y(t),t$2)-4*diff(y(t),t)+3*y(t)=6*t-8,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = 2t− 2 e2t sinh (t)

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 19� �
DSolve[{y''[t]-4*y'[t]+3*y[t]==6*t-8,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 2t+ et − e3t
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6.10 problem 10
6.10.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 715
6.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 718

Internal problem ID [5688]
Internal file name [OUTPUT/4936_Sunday_June_05_2022_03_11_01_PM_71765021/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y

25 = t2

50

With initial conditions

[y(0) = −25, y′(0) = 0]

6.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0

q(t) = 1
25

F = t2

50
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Hence the ode is

y′′ + y

25 = t2

50
The domain of p(t) = 0 is

{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1
25 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = t2

50 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + Y (s)
25 = 1

25s3 (1)

But the initial conditions are

y(0) = −25
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 25s+ Y (s)
25 = 1

25s3

Solving the above equation for Y (s) results in

Y (s) = −25s2 − 1
s3
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Applying partial fractions decomposition results in

Y (s) = −25
s

+ 1
s3

The inverse Laplace of each term above is now found, which gives

L−1
(
−25

s

)
= −25

L−1
(

1
s3

)
= t2

2

Adding the above results and simplifying gives

y = −25 + t2

2

Simplifying the solution gives

y = −25 + t2

2

Summary
The solution(s) found are the following

(1)y = −25 + t2

2

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = −25 + t2

2

Verified OK.

6.10.2 Maple step by step solution

Let’s solve[
y′′ + y

25 = t2

50 , y(0) = −25, y′
∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1

25 = 0

• Use quadratic formula to solve for r

r =
0±
(√

− 4
25

)
2

• Roots of the characteristic polynomial
r =

(
− I

5 ,
I
5

)
• 1st solution of the homogeneous ODE

y1(t) = cos
(
t
5

)
• 2nd solution of the homogeneous ODE

y2(t) = sin
(
t
5

)
• General solution of the ODE

y = c1y1(t) + c2y2(t) + yp(t)
• Substitute in solutions of the homogeneous ODE

y = c1 cos
(
t
5

)
+ c2 sin

(
t
5

)
+ yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = t2

50

]
◦ Wronskian of solutions of the homogeneous equation

718



W (y1(t) , y2(t)) =

 cos
(
t
5

)
sin
(
t
5

)
− sin

(
t
5
)

5
cos
(
t
5
)

5


◦ Compute Wronskian

W (y1(t) , y2(t)) = 1
5

◦ Substitute functions into equation for yp(t)

yp(t) = − cos
(
t
5
)(∫

sin
(
t
5
)
t2dt

)
10 + sin

(
t
5
)(∫

cos
(
t
5
)
t2dt

)
10

◦ Compute integrals
yp(t) = −25 + t2

2

• Substitute particular solution into general solution to ODE
y = c1 cos

(
t
5

)
+ c2 sin

(
t
5

)
− 25 + t2

2

� Check validity of solution y = c1 cos
(
t
5

)
+ c2 sin

(
t
5

)
− 25 + t2

2

◦ Use initial condition y(0) = −25
−25 = c1 − 25

◦ Compute derivative of the solution

y′ = − c1 sin
(
t
5
)

5 + c2 cos
(
t
5
)

5 + t

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = c2
5

◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = −25 + t2

2

• Solution to the IVP
y = −25 + t2

2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.672 (sec). Leaf size: 11� �
dsolve([diff(y(t),t$2)+4/100*y(t)=2/100*t^2,y(0) = -25, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = t2

2 − 25

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 14� �
DSolve[{y''[t]+4/100*y[t]==2/100*t^2,{y[0]==-25,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
2
(
t2 − 50

)
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6.11 problem 11
6.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 721
6.11.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 724

Internal problem ID [5689]
Internal file name [OUTPUT/4937_Sunday_June_05_2022_03_11_03_PM_24778006/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff", "linear_second_order_ode_solved_by_an_in-
tegrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 3y′ + 9y
4 = 9t3 + 64

With initial conditions [
y(0) = 1, y′(0) = 63

2

]

6.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 3

q(t) = 9
4

F = 9t3 + 64
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Hence the ode is

y′′ + 3y′ + 9y
4 = 9t3 + 64

The domain of p(t) = 3 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 9
4 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 9t3 + 64 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 3sY (s)− 3y(0) + 9Y (s)
4 = 54

s4
+ 64

s
(1)

But the initial conditions are

y(0) = 1

y′(0) = 63
2

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 69
2 − s+ 3sY (s) + 9Y (s)

4 = 54
s4

+ 64
s

Solving the above equation for Y (s) results in

Y (s) = 4s5 + 138s4 + 256s3 + 216
s4 (4s2 + 12s+ 9)
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Applying partial fractions decomposition results in

Y (s) = −32
s3

+ 24
s4

+ 32
s2

+ 1(
s+ 3

2

)2 + 1
s+ 3

2

The inverse Laplace of each term above is now found, which gives

L−1
(
−32
s3

)
= −16t2

L−1
(
24
s4

)
= 4t3

L−1
(
32
s2

)
= 32t

L−1

(
1(

s+ 3
2

)2
)

= t e− 3t
2

L−1
(

1
s+ 3

2

)
= e− 3t

2

Adding the above results and simplifying gives

y = 4t3 − 16t2 + 32t+ e− 3t
2 (t+ 1)

Simplifying the solution gives

y = 4t3 + t e− 3t
2 − 16t2 + e− 3t

2 + 32t

Summary
The solution(s) found are the following

(1)y = 4t3 + t e− 3t
2 − 16t2 + e− 3t

2 + 32t
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 4t3 + t e− 3t
2 − 16t2 + e− 3t

2 + 32t

Verified OK.

6.11.2 Maple step by step solution

Let’s solve[
y′′ + 3y′ + 9y

4 = 9t3 + 64, y(0) = 1, y′
∣∣∣{t=0}

= 63
2

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3r + 9

4 = 0

• Factor the characteristic polynomial
(2r+3)2

4 = 0

• Root of the characteristic polynomial
r = −3

2

• 1st solution of the homogeneous ODE
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y1(t) = e− 3t
2

• Repeated root, multiply y1(t) by t to ensure linear independence
y2(t) = t e− 3t

2

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−

3t
2 + c2t e−

3t
2 + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 9t3 + 64

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e− 3t
2 t e− 3t

2

−3 e−
3t
2

2 e− 3t
2 − 3t e−

3t
2

2


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−3t

◦ Substitute functions into equation for yp(t)

yp(t) = e− 3t
2

(
−
(∫

(9t4 + 64t) e 3t
2 dt
)
+
(∫

e 3t
2 (9t3 + 64) dt

)
t
)

◦ Compute integrals
yp(t) = 4t(t2 − 4t+ 8)

• Substitute particular solution into general solution to ODE
y = c1e−

3t
2 + c2t e−

3t
2 + 4t(t2 − 4t+ 8)

� Check validity of solution y = c1e−
3t
2 + c2te−

3t
2 + 4t(t2 − 4t+ 8)

◦ Use initial condition y(0) = 1
1 = c1

◦ Compute derivative of the solution

y′ = −3c1e−
3t
2

2 + c2e−
3t
2 − 3c2t e−

3t
2

2 + 4t2 − 16t+ 32 + 4t(2t− 4)

◦ Use the initial condition y′
∣∣∣{t=0}

= 63
2

63
2 = −3c1

2 + c2 + 32
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◦ Solve for c1 and c2

{c1 = 1, c2 = 1}
◦ Substitute constant values into general solution and simplify

y = 4t3 + t e− 3t
2 − 16t2 + e− 3t

2 + 32t
• Solution to the IVP

y = 4t3 + t e− 3t
2 − 16t2 + e− 3t

2 + 32t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.703 (sec). Leaf size: 26� �
dsolve([diff(y(t),t$2)+3*diff(y(t),t)+225/100*y(t)=9*t^3+64,y(0) = 1, D(y)(0) = 63/2],y(t), singsol=all)� �

y(t) = 4t3 + e− 3t
2 t− 16t2 + e− 3t

2 + 32t

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 28� �
DSolve[{y''[t]+3*y'[t]+225/100*y[t]==9*t^3+64,{y[0]==1,y'[0]==315/10}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 4t
(
t2 − 4t+ 8

)
+ e−3t/2(t+ 1)
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6.12 problem 12
6.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 727
6.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 730

Internal problem ID [5690]
Internal file name [OUTPUT/4938_Sunday_June_05_2022_03_11_04_PM_64268551/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ − 3y = 0

With initial conditions

[y(4) = −3, y′(4) = −17]

6.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = −2
q(t) = −3
F = 0

Hence the ode is

y′′ − 2y′ − 3y = 0
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The domain of p(t) = −2 is
{−∞ < t < ∞}

And the point t0 = 4 is inside this domain. The domain of q(t) = −3 is

{−∞ < t < ∞}

And the point t0 = 4 is also inside this domain. Hence solution exists and is unique.

Since both initial conditions are not at zero, then let

y(0) = c1

y′(0) = c2

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0)− 2sY (s) + 2y(0)− 3Y (s) = 0 (1)

But the initial conditions are

y(0) = c1

y′(0) = c2

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− c2 − sc1 − 2sY (s) + 2c1 − 3Y (s) = 0

Solving the above equation for Y (s) results in

Y (s) = sc1 − 2c1 + c2
s2 − 2s− 3

Applying partial fractions decomposition results in

Y (s) =
c1
4 + c2

4
s− 3 +

3c1
4 − c2

4
s+ 1
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The inverse Laplace of each term above is now found, which gives

L−1
( c1

4 + c2
4

s− 3

)
= (c1 + c2) e3t

4

L−1
( 3c1

4 − c2
4

s+ 1

)
= (3c1 − c2) e−t

4

Adding the above results and simplifying gives

y = et(2c1 cosh (2t) + sinh (2t) (−c1 + c2))
2

Since both initial conditions given are not at zero, then we need to setup two equations
to solve for c1, c1. At t = 4 the first equation becomes, using the above solution

−3 = e4(2c1 cosh (8) + sinh (8) (−c1 + c2))
2

And taking derivative of the solution and evaluating at t = 4 gives the second equation
as

−17 = e4(2c1 cosh (8) + sinh (8) (−c1 + c2))
2 + e4(4c1 sinh (8) + 2 cosh (8) (−c1 + c2))

2

Solving gives

c1 = −e−4(−7 sinh (8) + 3 cosh (8))
cosh (8)2 − sinh (8)2

c2 = −(17 cosh (8)− 13 sinh (8)) e−4

cosh (8)2 − sinh (8)2

Subtituting these in the solution obtained above gives

y =
et
(
−2 e−4(−7 sinh(8)+3 cosh(8)) cosh(2t)

cosh(8)2−sinh(8)2 + sinh (2t)
(

e−4(−7 sinh(8)+3 cosh(8))
cosh(8)2−sinh(8)2 − (17 cosh(8)−13 sinh(8))e−4

cosh(8)2−sinh(8)2

))
2

= −3 et−4

(cosh (8)− 7 sinh (8)
3

)
cosh (2t) +

7
(
cosh (8)− 3 sinh(8)

7

)
sinh (2t)

3


Simplifying the solution gives

y = −3 et−4

(cosh (8)− 7 sinh (8)
3

)
cosh (2t) +

7
(
cosh (8)− 3 sinh(8)

7

)
sinh (2t)

3



729



Summary
The solution(s) found are the following

(1)y = −3 et−4

(cosh (8)− 7 sinh (8)
3

)
cosh (2t) +

7
(
cosh (8)− 3 sinh(8)

7

)
sinh (2t)

3



(a) Solution plot (b) Slope field plot

Verification of solutions

y = −3 et−4

(cosh (8)− 7 sinh (8)
3

)
cosh (2t) +

7
(
cosh (8)− 3 sinh(8)

7

)
sinh (2t)

3


Verified OK.

6.12.2 Maple step by step solution

Let’s solve[
y′′ − 2y′ − 3y = 0, y(4) = −3, y′

∣∣∣{t=4}
= −17

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of ODE
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r2 − 2r − 3 = 0
• Factor the characteristic polynomial

(r + 1) (r − 3) = 0
• Roots of the characteristic polynomial

r = (−1, 3)
• 1st solution of the ODE

y1(t) = e−t

• 2nd solution of the ODE
y2(t) = e3t

• General solution of the ODE
y = c1y1(t) + c2y2(t)

• Substitute in solutions
y = e−tc1 + e3tc2

� Check validity of solution y = e−tc1 + e3tc2
◦ Use initial condition y(4) = −3

−3 = e−4c1 + e12c2
◦ Compute derivative of the solution

y′ = −e−tc1 + 3 e3tc2

◦ Use the initial condition y′
∣∣∣{t=4}

= −17

−17 = −e−4c1 + 3 e12c2
◦ Solve for c1 and c2{

c1 = 2
e−4 , c2 = − 5

e12
}

◦ Substitute constant values into general solution and simplify
y = 2 e−t+4 − 5 e3t−12

• Solution to the IVP
y = 2 e−t+4 − 5 e3t−12
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.672 (sec). Leaf size: 21� �
dsolve([diff(y(t),t$2)-2*diff(y(t),t)-3*y(t)=0,y(4) = -3, D(y)(4) = -17],y(t), singsol=all)� �

y(t) = −5 e3t−12 + 2 e−t+4

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 24� �
DSolve[{y''[t]-2*y'[t]-3*y[t]==0,{y[4]==-3,y'[4]==-17}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 2e4−t − 5e3(t−4)
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6.13 problem 13
6.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 733
6.13.2 Solving as laplace ode . . . . . . . . . . . . . . . . . . . . . . . 734
6.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 735

Internal problem ID [5691]
Internal file name [OUTPUT/4939_Sunday_June_05_2022_03_11_05_PM_14214297/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − 6y = 0

With initial conditions

[y(−1) = 4]

6.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(t)y = q(t)

Where here

p(t) = −6
q(t) = 0

Hence the ode is

y′ − 6y = 0
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The domain of p(t) = −6 is
{−∞ < t < ∞}

And the point t0 = −1 is inside this domain. Hence solution exists and is unique.

6.13.2 Solving as laplace ode

Since initial condition is not at zero, then let

y(0) = c1

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)

The given ode now becomes an algebraic equation in the Laplace domain

sY (s)− y(0)− 6Y (s) = 0 (1)

Replacing initial condition gives

sY (s)− c1 − 6Y (s) = 0

Solving for Y (s) gives

Y (s) = c1
s− 6

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(

c1
s− 6

)
= c1e6t

The constant c1 is determined from the given initial condition y(0) = c1 using the
solution found above. This results in

4 = c1e−6
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Solving gives

c1 = 4 e6

Hence the solution now becomes

y = 4 e6e6t

Summary
The solution(s) found are the following

(1)y = 4 e6e6t

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 4 e6e6t

Verified OK.

6.13.3 Maple step by step solution

Let’s solve
[y′ − 6y = 0, y(−1) = 4]

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

y
= 6

• Integrate both sides with respect to t∫
y′

y
dt =

∫
6dt+ c1

• Evaluate integral
ln (y) = 6t+ c1

• Solve for y
y = e6t+c1

• Use initial condition y(−1) = 4
4 = e−6+c1

• Solve for c1
c1 = 6 + 2 ln (2)

• Substitute c1 = 6 + 2 ln (2) into general solution and simplify
y = 4 e6t+6

• Solution to the IVP
y = 4 e6t+6

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.625 (sec). Leaf size: 12� �
dsolve([diff(y(t),t)-6*y(t)=0,y(-1) = 4],y(t), singsol=all)� �

y(t) = 4 e6t+6

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 14� �
DSolve[{y'[t]-6*y[t]==0,{y[-1]==4}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 4e6t+6
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6.14 problem 14
6.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 738
6.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 742

Internal problem ID [5692]
Internal file name [OUTPUT/4940_Sunday_June_05_2022_03_11_07_PM_29162432/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2y′ + 5y = 50t− 100

With initial conditions

[y(2) = −4, y′(2) = 14]

6.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 2
q(t) = 5
F = 50t− 100

Hence the ode is

y′′ + 2y′ + 5y = 50t− 100
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The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 2 is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = 2 is also inside this domain. The domain of F = 50t− 100 is

{−∞ < t < ∞}

And the point t0 = 2 is also inside this domain. Hence solution exists and is unique.

Since both initial conditions are not at zero, then let

y(0) = c1

y′(0) = c2

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 2sY (s)− 2y(0) + 5Y (s) = 50
s2

− 100
s

(1)

But the initial conditions are

y(0) = c1

y′(0) = c2

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− c2 − sc1 + 2sY (s)− 2c1 + 5Y (s) = 50
s2

− 100
s

739



Solving the above equation for Y (s) results in

Y (s) = c1s
3 + 2c1s2 + c2s

2 − 100s+ 50
s2 (s2 + 2s+ 5)

Applying partial fractions decomposition results in

Y (s) =
(−1 + 2i)

(
− c1

8 − c2
8 − 7

4

)
+ 3c1

8 − c2
8 + 41

4
s+ 1− 2i +

(−1− 2i)
(
− c1

8 − c2
8 − 7

4

)
+ 3c1

8 − c2
8 + 41

4
s+ 1 + 2i −24

s
+10
s2

The inverse Laplace of each term above is now found, which gives

L−1

(
(−1 + 2i)

(
− c1

8 − c2
8 − 7

4

)
+ 3c1

8 − c2
8 + 41

4
s+ 1− 2i

)
= e(−1+2i)t(48− 14i− ic2 + (2− i) c1)

4

L−1

(
(−1− 2i)

(
− c1

8 − c2
8 − 7

4

)
+ 3c1

8 − c2
8 + 41

4
s+ 1 + 2i

)
= e(−1−2i)t(48 + 14i+ ic2 + (2 + i) c1)

4

L−1
(
−24

s

)
= −24

L−1
(
10
s2

)
= 10t

Adding the above results and simplifying gives

y = −24 + 10t+ (2 cos (2t) (c1 + 24) + sin (2t) (c1 + c2 + 14)) e−t

2

Since both initial conditions given are not at zero, then we need to setup two equations
to solve for c1, c1. At t = 2 the first equation becomes, using the above solution

−4 = −4 + (2 cos (4) (c1 + 24) + sin (4) (c1 + c2 + 14)) e−2

2

And taking derivative of the solution and evaluating at t = 2 gives the second equation
as

14 = 10 + (−4 sin (4) (c1 + 24) + 2 cos (4) (c1 + c2 + 14)) e−2

2 − (2 cos (4) (c1 + 24) + sin (4) (c1 + c2 + 14)) e−2

2

Solving gives

c1 = −
2 e2
(
12 cos (4)2 e−2 + 12 sin (4)2 e−2 + sin (4)

)
cos (4)2 + sin (4)2

c2 =
2
(
5 cos (4)2 e−2 + 5 sin (4)2 e−2 + 2 cos (4) + sin (4)

)
e2

cos (4)2 + sin (4)2

740



Subtituting these in the solution obtained above gives

y = −24 + 10t+

(
2 cos (2t)

(
−

2 e2
(
12 cos(4)2e−2+12 sin(4)2e−2+sin(4)

)
cos(4)2+sin(4)2 + 24

)
+ sin (2t)

(
−

2 e2
(
12 cos(4)2e−2+12 sin(4)2e−2+sin(4)

)
cos(4)2+sin(4)2 +

2
(
5 cos(4)2e−2+5 sin(4)2e−2+2 cos(4)+sin(4)

)
e2

cos(4)2+sin(4)2 + 14
))

e−t

2
= 2 cos (4) e2−t sin (2t)− 2 e2−t sin (4) cos (2t) + 10t− 24

Simplifying the solution gives

y = 2 cos (4) e2−t sin (2t)− 2 e2−t sin (4) cos (2t) + 10t− 24

Summary
The solution(s) found are the following

(1)y = 2 cos (4) e2−t sin (2t)− 2 e2−t sin (4) cos (2t) + 10t− 24

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 cos (4) e2−t sin (2t)− 2 e2−t sin (4) cos (2t) + 10t− 24

Verified OK.
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6.14.2 Maple step by step solution

Let’s solve[
y′′ + 2y′ + 5y = 50t− 100, y(2) = −4, y′

∣∣∣{t=2}
= 14

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 5 = 0

• Use quadratic formula to solve for r

r = (−2)±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−1− 2 I,−1 + 2 I)

• 1st solution of the homogeneous ODE
y1(t) = cos (2t) e−t

• 2nd solution of the homogeneous ODE
y2(t) = sin (2t) e−t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (2t) e−t + c2 sin (2t) e−t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 50t− 100

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 cos (2t) e−t sin (2t) e−t

−2 sin (2t) e−t − cos (2t) e−t 2 cos (2t) e−t − sin (2t) e−t


◦ Compute Wronskian

W (y1(t) , y2(t)) = 2 e−2t

◦ Substitute functions into equation for yp(t)
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yp(t) = −25 e−t
(
cos (2t)

(∫
(−2 + t) sin (2t) etdt

)
− sin (2t)

(∫
(−2 + t) cos (2t) etdt

))
◦ Compute integrals

yp(t) = −24 + 10t
• Substitute particular solution into general solution to ODE

y = c1 cos (2t) e−t + c2 sin (2t) e−t − 24 + 10t
� Check validity of solution y = c1 cos (2t) e−t + c2 sin (2t) e−t − 24 + 10t

◦ Use initial condition y(2) = −4
−4 = c1 cos (4) e−2 + c2 sin (4) e−2 − 4

◦ Compute derivative of the solution
y′ = −2c1 sin (2t) e−t − c1 cos (2t) e−t + 2c2 cos (2t) e−t − c2 sin (2t) e−t + 10

◦ Use the initial condition y′
∣∣∣{t=2}

= 14

14 = −2c1 sin (4) e−2 − c1 cos (4) e−2 + 2c2 cos (4) e−2 − c2 sin (4) e−2 + 10
◦ Solve for c1 and c2{

c1 = − 2 sin(4)
e−2

(
cos(4)2+sin(4)2

) , c2 = 2 cos(4)
e−2

(
cos(4)2+sin(4)2

)
}

◦ Substitute constant values into general solution and simplify
y = 2 cos (4) e2−t sin (2t)− 2 e2−t sin (4) cos (2t) + 10t− 24

• Solution to the IVP
y = 2 cos (4) e2−t sin (2t)− 2 e2−t sin (4) cos (2t) + 10t− 24

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.672 (sec). Leaf size: 23� �
dsolve([diff(y(t),t$2)+2*diff(y(t),t)+5*y(t)=50*t-100,y(2) = -4, D(y)(2) = 14],y(t), singsol=all)� �

y(t) = 2 sin (2t− 4) e−t+2 − 24 + 10t

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 25� �
DSolve[{y''[t]+2*y'[t]+5*y[t]==50*t-100,{y[2]==-4,y'[2]==14}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 10t− 2e2−t sin(4− 2t)− 24
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6.15 problem 15
6.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 745
6.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 749

Internal problem ID [5693]
Internal file name [OUTPUT/4941_Sunday_June_05_2022_03_11_08_PM_53618701/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 3y′ − 4y = 6 e2t−3

With initial conditions [
y

(
3
2

)
= 4, y′

(
3
2

)
= 5
]

6.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 3
q(t) = −4
F = 6 e2t−3
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Hence the ode is

y′′ + 3y′ − 4y = 6 e2t−3

The domain of p(t) = 3 is
{−∞ < t < ∞}

And the point t0 = 3
2 is inside this domain. The domain of q(t) = −4 is

{−∞ < t < ∞}

And the point t0 = 3
2 is also inside this domain. The domain of F = 6 e2t−3 is

{−∞ < t < ∞}

And the point t0 = 3
2 is also inside this domain. Hence solution exists and is unique.

Since both initial conditions are not at zero, then let

y(0) = c1

y′(0) = c2

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 3sY (s)− 3y(0)− 4Y (s) = 6 e−3

s− 2 (1)

But the initial conditions are

y(0) = c1

y′(0) = c2
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Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− c2 − sc1 + 3sY (s)− 3c1 − 4Y (s) = 6 e−3

s− 2

Solving the above equation for Y (s) results in

Y (s) = s2c1 + sc1 + c2s+ 6 e−3 − 6c1 − 2c2
(s− 2) (s2 + 3s− 4)

Applying partial fractions decomposition results in

Y (s) =
4c1
5 + c2

5 − 6 e−3

5
s− 1 + e−3

s− 2 +
c1
5 − c2

5 + e−3

5
s+ 4

The inverse Laplace of each term above is now found, which gives

L−1

(
4c1
5 + c2

5 − 6 e−3

5
s− 1

)
= et(4c1 + c2 − 6 e−3)

5

L−1
(

e−3

s− 2

)
= e2t−3

L−1

(
c1
5 − c2

5 + e−3

5
s+ 4

)
= (c1 − c2 + e−3) e−4t

5

Adding the above results and simplifying gives

y = e2t−3 + et(4c1 + c2 − 6 e−3)
5 + (c1 − c2 + e−3) e−4t

5
Since both initial conditions given are not at zero, then we need to setup two equations
to solve for c1, c1. At t = 3

2 the first equation becomes, using the above solution

4 = 1 + e 3
2 (4c1 + c2 − 6 e−3)

5 + (c1 − c2 + e−3) e−6

5

And taking derivative of the solution and evaluating at t = 3
2 gives the second equation

as

5 = 2 + e 3
2 (4c1 + c2 − 6 e−3)

5 − 4(c1 − c2 + e−3) e−6

5
Solving gives

c1 =
(
e 3

2 e−3 + 3
)
e− 3

2

c2 = e− 3
2

(
2 e 3

2 e−3 + 3
)

747



Subtituting these in the solution obtained above gives

y = e2t−3 +
et
(
4
(
e 3

2 e−3 + 3
)
e− 3

2 + e− 3
2

(
2 e 3

2 e−3 + 3
)
− 6 e−3

)
5 +

((
e 3

2 e−3 + 3
)
e− 3

2 − e− 3
2

(
2 e 3

2 e−3 + 3
)
+ e−3

)
e−4t

5
= e2t−3 + 3 et− 3

2

Simplifying the solution gives

y = e2t−3 + 3 et− 3
2

Summary
The solution(s) found are the following

(1)y = e2t−3 + 3 et− 3
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e2t−3 + 3 et− 3
2

Verified OK.
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6.15.2 Maple step by step solution

Let’s solve[
y′′ + 3y′ − 4y = 6 e2t−3, y

(3
2

)
= 4, y′

∣∣∣{
t= 3

2
} = 5

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3r − 4 = 0

• Factor the characteristic polynomial
(r + 4) (r − 1) = 0

• Roots of the characteristic polynomial
r = (−4, 1)

• 1st solution of the homogeneous ODE
y1(t) = e−4t

• 2nd solution of the homogeneous ODE
y2(t) = et

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−4t + c2et + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 6 e2t−3

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−4t et

−4 e−4t et


◦ Compute Wronskian

W (y1(t) , y2(t)) = 5 e−3t

◦ Substitute functions into equation for yp(t)
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yp(t) = 6
(
e5t
(∫

et−3dt
)
−
(∫

e6t−3dt
))
e−4t

5

◦ Compute integrals
yp(t) = e2t−3

• Substitute particular solution into general solution to ODE
y = c1e−4t + c2et + e2t−3

� Check validity of solution y = c1e−4t + c2et + e2t−3

◦ Use initial condition y
(3
2

)
= 4

4 = c1e−6 + c2e
3
2 + 1

◦ Compute derivative of the solution
y′ = −4c1e−4t + c2et + 2 e2t−3

◦ Use the initial condition y′
∣∣∣{

t= 3
2
} = 5

5 = −4c1e−6 + c2e
3
2 + 2

◦ Solve for c1 and c2{
c1 = 0, c2 = 3

e
3
2

}
◦ Substitute constant values into general solution and simplify

y = e2t−3 + 3 et− 3
2

• Solution to the IVP
y = e2t−3 + 3 et− 3

2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.812 (sec). Leaf size: 17� �
dsolve([diff(y(t),t$2)+3*diff(y(t),t)-4*y(t)=6*exp(2*t-3),y(3/2) = 4, D(y)(3/2) = 5],y(t), singsol=all)� �

y(t) = e2t−3 + 3 et− 3
2

3 Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 22� �
DSolve[{y''[t]+3*y'[t]-4*y[t]==6*Exp[2*t-3],{y[15/10]==4,y'[15/10]==5}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 3et− 3
2 + e2t−3
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7 Chapter 6. Laplace Transforms. Problem set 6.3,
page 224

7.1 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
7.2 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
7.3 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
7.4 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
7.5 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
7.6 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
7.7 problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
7.8 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
7.9 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
7.10 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
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7.1 problem 18
7.1.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 753
7.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 755

Internal problem ID [5694]
Internal file name [OUTPUT/4942_Sunday_June_05_2022_03_11_10_PM_38793469/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff", "linear_second_order_ode_solved_by_an_in-
tegrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

9y′′ − 6y′ + y = 0

With initial conditions

[y(0) = 3, y′(0) = 1]

7.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = −2
3

q(t) = 1
9

F = 0
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Hence the ode is

y′′ − 2y′
3 + y

9 = 0

The domain of p(t) = −2
3 is

{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1
9 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

9s2Y (s)− 9y′(0)− 9sy(0)− 6sY (s) + 6y(0) + Y (s) = 0 (1)

But the initial conditions are

y(0) = 3
y′(0) = 1

Substituting these initial conditions in above in Eq (1) gives

9s2Y (s) + 9− 27s− 6sY (s) + Y (s) = 0

Solving the above equation for Y (s) results in

Y (s) = 9
3s− 1

Taking inverse Laplace transform gives

L−1
(

9
3s− 1

)
= 3 e t

3
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Simplifying the solution gives

y = 3 e t
3

Summary
The solution(s) found are the following

(1)y = 3 e t
3

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 3 e t
3

Verified OK.

7.1.2 Maple step by step solution

Let’s solve[
9y′′ − 6y′ + y = 0, y(0) = 3, y′

∣∣∣{t=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = 2y′
3 − y

9

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′

3 + y
9 = 0

• Characteristic polynomial of ODE
r2 − 2

3r +
1
9 = 0

• Factor the characteristic polynomial
(3r−1)2

9 = 0

• Root of the characteristic polynomial
r = 1

3

• 1st solution of the ODE
y1(t) = e t

3

• Repeated root, multiply y1(t) by t to ensure linear independence
y2(t) = t e t

3

• General solution of the ODE
y = c1y1(t) + c2y2(t)

• Substitute in solutions
y = c1e

t
3 + c2t e

t
3

� Check validity of solution y = c1e
t
3 + c2te

t
3

◦ Use initial condition y(0) = 3
3 = c1

◦ Compute derivative of the solution

y′ = c1e
t
3

3 + c2e
t
3 + c2t e

t
3

3

◦ Use the initial condition y′
∣∣∣{t=0}

= 1

1 = c1
3 + c2

◦ Solve for c1 and c2

{c1 = 3, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = 3 e t
3

• Solution to the IVP
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y = 3 e t
3

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.719 (sec). Leaf size: 10� �
dsolve([9*diff(y(t),t$2)-6*diff(y(t),t)+y(t)=0,y(0) = 3, D(y)(0) = 1],y(t), singsol=all)� �

y(t) = 3 e t
3

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 14� �
DSolve[{9*y''[t]-6*y'[t]+y[t]==0,{y[0]==3,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 3et/3
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7.2 problem 19
7.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 758
7.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 761

Internal problem ID [5695]
Internal file name [OUTPUT/4943_Sunday_June_05_2022_03_11_11_PM_55865171/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 6y′ + 8y = e−3t − e−5t

With initial conditions

[y(0) = 0, y′(0) = 0]

7.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 6
q(t) = 8
F = e−3t − e−5t

Hence the ode is

y′′ + 6y′ + 8y = e−3t − e−5t
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The domain of p(t) = 6 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 8 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = e−3t − e−5t is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 6sY (s)− 6y(0) + 8Y (s) = 2
(s+ 3) (s+ 5) (1)

But the initial conditions are

y(0) = 0
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 6sY (s) + 8Y (s) = 2
(s+ 3) (s+ 5)

Solving the above equation for Y (s) results in

Y (s) = 2
(s+ 3) (s+ 5) (s2 + 6s+ 8)

Applying partial fractions decomposition results in

Y (s) = − 1
s+ 3 − 1

3 (s+ 5) +
1

3s+ 6 + 1
s+ 4
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The inverse Laplace of each term above is now found, which gives

L−1
(
− 1
s+ 3

)
= −e−3t

L−1
(
− 1
3 (s+ 5)

)
= −e−5t

3

L−1
(

1
3s+ 6

)
= e−2t

3

L−1
(

1
s+ 4

)
= e−4t

Adding the above results and simplifying gives

y = e−4t − e−5t

3 − e−3t + e−2t

3

Simplifying the solution gives

y = e−4t − e−5t

3 − e−3t + e−2t

3

Summary
The solution(s) found are the following

(1)y = e−4t − e−5t

3 − e−3t + e−2t

3

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = e−4t − e−5t

3 − e−3t + e−2t

3

Verified OK.

7.2.2 Maple step by step solution

Let’s solve[
y′′ + 6y′ + 8y = e−3t − e−5t, y(0) = 0, y′

∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 6r + 8 = 0

• Factor the characteristic polynomial
(r + 4) (r + 2) = 0

• Roots of the characteristic polynomial
r = (−4,−2)

• 1st solution of the homogeneous ODE
y1(t) = e−4t

• 2nd solution of the homogeneous ODE
y2(t) = e−2t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−4t + c2e−2t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = e−3t − e−5t

]
◦ Wronskian of solutions of the homogeneous equation

761



W (y1(t) , y2(t)) =

 e−4t e−2t

−4 e−4t −2 e−2t


◦ Compute Wronskian

W (y1(t) , y2(t)) = 2 e−6t

◦ Substitute functions into equation for yp(t)

yp(t) = − e−4t(∫ (et−e−t
)
dt
)

2 + e−2t(∫ (e2t−1
)
e−3tdt

)
2

◦ Compute integrals
yp(t) = − e−5t

3 − e−3t

• Substitute particular solution into general solution to ODE
y = c1e−4t + c2e−2t − e−5t

3 − e−3t

� Check validity of solution y = c1e−4t + c2e−2t − e−5t

3 − e−3t

◦ Use initial condition y(0) = 0
0 = c1 + c2 − 4

3

◦ Compute derivative of the solution
y′ = −4c1e−4t − 2c2e−2t + 5 e−5t

3 + 3 e−3t

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = −4c1 − 2c2 + 14
3

◦ Solve for c1 and c2{
c1 = 1, c2 = 1

3

}
◦ Substitute constant values into general solution and simplify

y = e−4t − e−5t

3 − e−3t + e−2t

3

• Solution to the IVP
y = e−4t − e−5t

3 − e−3t + e−2t

3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.812 (sec). Leaf size: 27� �
dsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=exp(-3*t)-exp(-5*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = e−4t − e−3t − e−5t

3 + e−2t

3

3 Solution by Mathematica
Time used: 0.113 (sec). Leaf size: 21� �
DSolve[{y''[t]+6*y'[t]+8*y[t]==Exp[-3*t]-Exp[-5*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
3e

−5t(et − 1
)3
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7.3 problem 20
7.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 764
7.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 767

Internal problem ID [5696]
Internal file name [OUTPUT/4944_Sunday_June_05_2022_03_11_12_PM_3379136/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 10y′ + 24y = 144t2

With initial conditions [
y(0) = 19

12 , y
′(0) = −5

]

7.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 10
q(t) = 24
F = 144t2
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Hence the ode is

y′′ + 10y′ + 24y = 144t2

The domain of p(t) = 10 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 24 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 144t2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 10sY (s)− 10y(0) + 24Y (s) = 288
s3

(1)

But the initial conditions are

y(0) = 19
12

y′(0) = −5

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 65
6 − 19s

12 + 10sY (s) + 24Y (s) = 288
s3

Solving the above equation for Y (s) results in

Y (s) = 19s2 − 60s+ 144
12s3
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Applying partial fractions decomposition results in

Y (s) = 19
12s − 5

s2
+ 12

s3

The inverse Laplace of each term above is now found, which gives

L−1
(

19
12s

)
= 19

12

L−1
(
− 5
s2

)
= −5t

L−1
(
12
s3

)
= 6t2

Adding the above results and simplifying gives

y = 6t2 − 5t+ 19
12

Simplifying the solution gives

y = 6t2 − 5t+ 19
12

Summary
The solution(s) found are the following

(1)y = 6t2 − 5t+ 19
12

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 6t2 − 5t+ 19
12

Verified OK.

7.3.2 Maple step by step solution

Let’s solve[
y′′ + 10y′ + 24y = 144t2, y(0) = 19

12 , y
′∣∣∣{t=0}

= −5
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 10r + 24 = 0

• Factor the characteristic polynomial
(r + 6) (r + 4) = 0

• Roots of the characteristic polynomial
r = (−6,−4)

• 1st solution of the homogeneous ODE
y1(t) = e−6t

• 2nd solution of the homogeneous ODE
y2(t) = e−4t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−6t + c2e−4t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 144t2

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(t) , y2(t)) =

 e−6t e−4t

−6 e−6t −4 e−4t


◦ Compute Wronskian

W (y1(t) , y2(t)) = 2 e−10t

◦ Substitute functions into equation for yp(t)
yp(t) = −72 e−6t(∫ t2e6tdt

)
+ 72 e−4t(∫ t2e4tdt

)
◦ Compute integrals

yp(t) = 6t2 − 5t+ 19
12

• Substitute particular solution into general solution to ODE
y = c1e−6t + c2e−4t + 6t2 − 5t+ 19

12

� Check validity of solution y = c1e−6t + c2e−4t + 6t2 − 5t+ 19
12

◦ Use initial condition y(0) = 19
12

19
12 = c1 + c2 + 19

12

◦ Compute derivative of the solution
y′ = −6c1e−6t − 4c2e−4t + 12t− 5

◦ Use the initial condition y′
∣∣∣{t=0}

= −5

−5 = −6c1 − 4c2 − 5
◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = 6t2 − 5t+ 19
12

• Solution to the IVP
y = 6t2 − 5t+ 19

12
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.687 (sec). Leaf size: 14� �
dsolve([diff(y(t),t$2)+10*diff(y(t),t)+24*y(t)=144*t^2,y(0) = 19/12, D(y)(0) = -5],y(t), singsol=all)� �

y(t) = 6t2 − 5t+ 19
12

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 17� �
DSolve[{y''[t]+10*y'[t]+24*y[t]==144*t^2,{y[0]==19/12,y'[0]==-5}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 6t2 − 5t+ 19
12
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7.4 problem 21
7.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 770
7.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 773

Internal problem ID [5697]
Internal file name [OUTPUT/4945_Sunday_June_05_2022_03_11_14_PM_59146011/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 9y =

 8 sin (t) 0 < t < π

0 π < t

With initial conditions

[y(0) = 0, y′(0) = 4]

7.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0
q(t) = 9

F =


0 t ≤ 0

8 sin (t) t < π

0 π ≤ t
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Hence the ode is

y′′ + 9y =


0 t ≤ 0

8 sin (t) t < π

0 π ≤ t

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 9 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F =


0 t ≤ 0

8 sin (t) t < π

0 π ≤ t
is

{0 ≤ t ≤ π, π ≤ t ≤ ∞,−∞ ≤ t ≤ 0}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 9Y (s) = 8 + 8 e−πs

s2 + 1 (1)

But the initial conditions are

y(0) = 0
y′(0) = 4
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Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 4 + 9Y (s) = 8 + 8 e−πs

s2 + 1

Solving the above equation for Y (s) results in

Y (s) = 4s2 + 8 e−πs + 12
(s2 + 1) (s2 + 9)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
4s2 + 8 e−πs + 12
(s2 + 1) (s2 + 9)

)
= sin (3t) + sin (t)− 4Heaviside (t− π) sin (t)3

3

Hence the final solution is

y = sin (3t) + sin (t)− 4Heaviside (t− π) sin (t)3

3

Simplifying the solution gives

y = −4Heaviside (t− π) sin (t)3

3 + 4 sin (t) cos (t)2

Summary
The solution(s) found are the following

(1)y = −4Heaviside (t− π) sin (t)3

3 + 4 sin (t) cos (t)2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −4Heaviside (t− π) sin (t)3

3 + 4 sin (t) cos (t)2

Verified OK.

7.4.2 Maple step by step solution

Let’s solvey′′ + 9y =


0 t ≤ 0

8 sin (t) t < π

0 π ≤ t

, y(0) = 0, y′
∣∣∣{t=0}

= 4


• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 9 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−36
)

2

• Roots of the characteristic polynomial
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r = (−3 I, 3 I)
• 1st solution of the homogeneous ODE

y1(t) = cos (3t)
• 2nd solution of the homogeneous ODE

y2(t) = sin (3t)
• General solution of the ODE

y = c1y1(t) + c2y2(t) + yp(t)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (3t) + c2 sin (3t) + yp(t)
� Find a particular solution yp(t) of the ODE

◦ Use variation of parameters to find yp here f(t) is the forcing functionyp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) =


0 t ≤ 0

8 sin (t) t < π

0 π ≤ t


◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 cos (3t) sin (3t)
−3 sin (3t) 3 cos (3t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = 3
◦ Substitute functions into equation for yp(t)

yp(t) = − cos (3t)

∫



0 t ≤ 0
8 sin(3t) sin(t)

3 t < π

0 π ≤ t

 dt

+ sin (3t)

∫



0 t ≤ 0
8 cos(3t) sin(t)

3 t < π

0 π ≤ t

 dt


◦ Compute integrals

yp(t) =


0 t ≤ 0

4 sin(t)3
3 t ≤ π

0 π < t

• Substitute particular solution into general solution to ODE
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y = c1 cos (3t) + c2 sin (3t) +


0 t ≤ 0

4 sin(t)3
3 t ≤ π

0 π < t

� Check validity of solution y = c1 cos (3t) + c2 sin (3t) +


0 t ≤ 0

4 sin(t)3
3 t ≤ π

0 π < t

◦ Use initial condition y(0) = 0
0 = c1

◦ Compute derivative of the solution

y′ = −3c1 sin (3t) + 3c2 cos (3t) +


0 t ≤ 0

4 sin (t)2 cos (t) t ≤ π

0 π < t

◦ Use the initial condition y′
∣∣∣{t=0}

= 4

4 = 3c2
◦ Solve for c1 and c2{

c1 = 0, c2 = 4
3

}
◦ Substitute constant values into general solution and simplify

y = 4 sin(3t)
3 +


0 t ≤ 0

4 sin(t)3
3 t ≤ π

0 π < t

• Solution to the IVP

y = 4 sin(3t)
3 +


0 t ≤ 0

4 sin(t)3
3 t ≤ π

0 π < t
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.281 (sec). Leaf size: 31� �
dsolve([diff(y(t),t$2)+9*y(t)=piecewise(0<t and t<Pi,8*sin(t),t>Pi,0),y(0) = 0, D(y)(0) = 4],y(t), singsol=all)� �

y(t) = 4

 sin (t) cos (t)2 t < π
sin(3t)

3 π ≤ t


3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 30� �
DSolve[{y''[t]+9*y[t]==Piecewise[{{8*Sin[t],0<t<Pi},{0,t>Pi}}],{y[0]==0,y'[0]==4}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → {
4
3 sin(3t) t > π ∨ t ≤ 0

sin(t) + sin(3t) True

776



7.5 problem 22
7.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 777
7.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 781

Internal problem ID [5698]
Internal file name [OUTPUT/4946_Sunday_June_05_2022_03_11_18_PM_59599965/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 3y′ + 2y =

 4t 0 < t < 1
8 1 < t

With initial conditions

[y(0) = 0, y′(0) = 0]

7.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F
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Where here

p(t) = 3
q(t) = 2

F = 4




0 t ≤ 0
t t < 1
0 t = 1
2 1 < t


Hence the ode is

y′′ + 3y′ + 2y = 4




0 t ≤ 0
t t < 1
0 t = 1
2 1 < t


The domain of p(t) = 3 is

{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 4




0 t ≤ 0
t t < 1
0 t = 1
2 1 < t


is

{t < 1∨ 1 < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)
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Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 3sY (s)− 3y(0) + 2Y (s) = laplace




0 t ≤ 0
4t t < 1
0 t = 1
8 1 < t

, t, s

 (1)

But the initial conditions are

y(0) = 0
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 3sY (s) + 2Y (s) = laplace




0 t ≤ 0
4t t < 1
0 t = 1
8 1 < t

, t, s


Solving the above equation for Y (s) results in

Y (s) =

laplace




0 t ≤ 0
4t t < 1
0 t = 1
8 1 < t

, t, s


s2 + 3s+ 2
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1



laplace




0 t ≤ 0
4t t < 1
0 t = 1
8 1 < t

, t, s


s2 + 3s+ 2


= (2t− 7)Heaviside (−t+ 1) +

(
3 e−2t+2 − 8 e−t+1)Heaviside (t− 1) + 4 e−t + 4− e−2t

Hence the final solution is

y = (2t− 7)Heaviside (−t+ 1)+
(
3 e−2t+2 − 8 e−t+1)Heaviside (t− 1) + 4 e−t + 4− e−2t

Simplifying the solution gives

y = 3Heaviside (t− 1) e−2t+2 − 8Heaviside (t− 1) e−t+1

+ (−2t+ 7)Heaviside (t− 1) + 2t− e−2t + 4 e−t − 3

Summary
The solution(s) found are the following

(1)y = 3Heaviside (t− 1) e−2t+2 − 8Heaviside (t− 1) e−t+1

+ (−2t+ 7)Heaviside (t− 1) + 2t− e−2t + 4 e−t − 3
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 3Heaviside (t− 1) e−2t+2 − 8Heaviside (t− 1) e−t+1

+ (−2t+ 7)Heaviside (t− 1) + 2t− e−2t + 4 e−t − 3

Verified OK.

7.5.2 Maple step by step solution

Let’s solvey′′ + 3y′ + 2y =


0 t ≤ 0
4t t < 1
0 t = 1
8 1 < t

, y(0) = 0, y′
∣∣∣{t=0}

= 0


• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3r + 2 = 0

• Factor the characteristic polynomial
(r + 2) (r + 1) = 0
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• Roots of the characteristic polynomial
r = (−2,−1)

• 1st solution of the homogeneous ODE
y1(t) = e−2t

• 2nd solution of the homogeneous ODE
y2(t) = e−t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−2t + c2e−t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing functionyp(t) = −y1(t)

(∫ y2(t)f(t)
W (y1(t),y2(t))dt

)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) =


0 t ≤ 0
4t t < 1
0 t = 1
8 1 < t


◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−2t e−t

−2 e−2t −e−t


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−3t

◦ Substitute functions into equation for yp(t)

yp(t) = −4 e−2t


∫
e2t




0 t ≤ 0
t t < 1
0 t = 1
2 1 < t

 dt

+ 4 e−t


∫
et




0 t ≤ 0
t t < 1
0 t = 1
2 1 < t

 dt


◦ Compute integrals
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yp(t) =


0 t ≤ 0

−3 + 4 e−t − e−2t + 2t t ≤ 1
4 + 4 e−t − e−2t + 3 e−2t+2 − 8 e−t+1 1 < t

• Substitute particular solution into general solution to ODE

y = c1e−2t + c2e−t +


0 t ≤ 0

−3 + 4 e−t − e−2t + 2t t ≤ 1
4 + 4 e−t − e−2t + 3 e−2t+2 − 8 e−t+1 1 < t

� Check validity of solution y = c1e−2t + c2e−t +


0 t ≤ 0

−3 + 4e−t − e−2t + 2t t ≤ 1
4 + 4e−t − e−2t + 3e−2t+2 − 8e−t+1 1 < t

◦ Use initial condition y(0) = 0
0 = c1 + c2

◦ Compute derivative of the solution

y′ = −2c1e−2t − c2e−t +


0 t ≤ 0

−4 e−t + 2 e−2t + 2 t ≤ 1
−4 e−t + 2 e−2t − 6 e−2t+2 + 8 e−t+1 1 < t

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = −2c1 − c2

◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y =


0 t ≤ 0

−3 + 4 e−t − e−2t + 2t t ≤ 1
4 + 4 e−t − e−2t + 3 e−2t+2 − 8 e−t+1 1 < t

• Solution to the IVP

783



y =


0 t ≤ 0

−3 + 4 e−t − e−2t + 2t t ≤ 1
4 + 4 e−t − e−2t + 3 e−2t+2 − 8 e−t+1 1 < t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 1.156 (sec). Leaf size: 71� �
dsolve([diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<t and t<1,4*t,t>1,8),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)� �

y(t) =


2t− e−2t − 3 + 4 e−t t < 1
−e−2 + 1 + 4 e−1 t = 1

3 e−2t+2 − 8 e1−t − e−2t + 4 + 4 e−t 1 < t

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 70� �
DSolve[{y''[t]+3*y'[t]+2*y[t]==Piecewise[{{4*t,0<t<1},{8,t>1}}],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → {
0 t ≤ 0

2t− e−2t + 4e−t − 3 0 < t ≤ 1
e−2t(−1 + 3e2 + 4et + 4e2t − 8et+1) True
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7.6 problem 23
7.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 785
7.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 788

Internal problem ID [5699]
Internal file name [OUTPUT/4947_Sunday_June_05_2022_03_11_22_PM_35045146/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y′ − 2y =

 3 sin (t)− cos (t) 0 < t < 2π
3 sin (2t)− cos (2t) 2π < t

With initial conditions

[y(0) = 1, y′(0) = 0]

7.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F
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Where here

p(t) = 1
q(t) = −2

F =


0 t ≤ 0

3 sin (t)− cos (t) t < 2π
0 t = 2π

3 sin (2t)− cos (2t) 2π < t

Hence the ode is

y′′ + y′ − 2y =


0 t ≤ 0

3 sin (t)− cos (t) t < 2π
0 t = 2π

3 sin (2t)− cos (2t) 2π < t

The domain of p(t) = 1 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = −2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F =


0 t ≤ 0

3 sin (t)− cos (t) t < 2π
0 t = 2π

3 sin (2t)− cos (2t) 2π < t
is

{0 ≤ t ≤ 2π, 2π ≤ t ≤ ∞,−∞ ≤ t ≤ 0}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)
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Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + sY (s)− y(0)− 2Y (s) =
3− s+ 3 e−2πs(s+2)(s−1)

s2+4
s2 + 1 (1)

But the initial conditions are

y(0) = 1
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 1− s+ sY (s)− 2Y (s) =
3− s+ 3 e−2πs(s+2)(s−1)

s2+4
s2 + 1

Solving the above equation for Y (s) results in

Y (s) = s4 − s3 + 3 e−2πss+ 6s2 − 3 e−2πs − 4s+ 8
(s− 1) (s2 + 1) (s2 + 4)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
s4 − s3 + 3 e−2πss+ 6s2 − 3 e−2πs − 4s+ 8

(s− 1) (s2 + 1) (s2 + 4)

)
= − sin (t) + et + Heaviside (t− 2π) (2 sin (t)− sin (2t))

2
Hence the final solution is

y = − sin (t) + et + Heaviside (t− 2π) (2 sin (t)− sin (2t))
2

Simplifying the solution gives

y = − sin (t) (cos (t)− 1)Heaviside (t− 2π) + et − sin (t)

Summary
The solution(s) found are the following

(1)y = − sin (t) (cos (t)− 1)Heaviside (t− 2π) + et − sin (t)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − sin (t) (cos (t)− 1)Heaviside (t− 2π) + et − sin (t)

Verified OK.

7.6.2 Maple step by step solution

Let’s solvey′′ + y′ − 2y =


0 t ≤ 0

3 sin (t)− cos (t) t < 2π
0 t = 2π

3 sin (2t)− cos (2t) 2π < t

, y(0) = 1, y′
∣∣∣{t=0}

= 0


• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + r − 2 = 0

• Factor the characteristic polynomial
(r + 2) (r − 1) = 0

• Roots of the characteristic polynomial
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r = (−2, 1)
• 1st solution of the homogeneous ODE

y1(t) = e−2t

• 2nd solution of the homogeneous ODE
y2(t) = et

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−2t + c2et + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing functionyp(t) = −y1(t)

(∫ y2(t)f(t)
W (y1(t),y2(t))dt

)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) =


0 t ≤ 0

3 sin (t)− cos (t) t < 2π
0 t = 2π

3 sin (2t)− cos (2t) 2π < t


◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−2t et

−2 e−2t et


◦ Compute Wronskian

W (y1(t) , y2(t)) = 3 e−t

◦ Substitute functions into equation for yp(t)

yp(t) = −


−e3t


∫




0 t ≤ 0
3 sin (t)− cos (t) t < 2π

0 t = 2π
3 sin (2t)− cos (2t) 2π < t


e−tdt


+
∫




0 t ≤ 0
3 sin (t)− cos (t) t < 2π

0 t = 2π
3 sin (2t)− cos (2t) 2π < t


e2tdt


e−2t

3

◦ Compute integrals
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yp(t) =

e−2t





0 t ≤ 0
e3t − 3 sin (t) e2t − 1 t ≤ 2π

−3 sin(2t)e2t
2 + e3t − 1 2π < t


3

• Substitute particular solution into general solution to ODE

y = c1e−2t + c2et +

e−2t





0 t ≤ 0
e3t − 3 sin (t) e2t − 1 t ≤ 2π

−3 sin(2t)e2t
2 + e3t − 1 2π < t


3

� Check validity of solution y = c1e−2t + c2et +

e−2t





0 t ≤ 0
e3t − 3 sin (t) e2t − 1 t ≤ 2π

−3 sin(2t)e2t
2 + e3t − 1 2π < t


3

◦ Use initial condition y(0) = 1
1 = c1 + c2

◦ Compute derivative of the solution

y′ = −2c1e−2t + c2et −

2 e−2t





0 t ≤ 0
e3t − 3 sin (t) e2t − 1 t ≤ 2π

−3 sin(2t)e2t
2 + e3t − 1 2π < t


3 +

e−2t





0 t ≤ 0
3 e3t − 3 e2t cos (t)− 6 sin (t) e2t t ≤ 2π

−3 cos (2t) e2t − 3 sin (2t) e2t + 3 e3t 2π < t


3

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = −2c1 + c2

◦ Solve for c1 and c2{
c1 = 1

3 , c2 =
2
3

}
◦ Substitute constant values into general solution and simplify

y =


(
2 e3t+1

)
e−2t

3 t ≤ 0

− sin (t) + et t ≤ 2π
et − sin(2t)

2 2π < t

• Solution to the IVP
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y =


(
2 e3t+1

)
e−2t

3 t ≤ 0

− sin (t) + et t ≤ 2π
et − sin(2t)

2 2π < t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.344 (sec). Leaf size: 31� �
dsolve([diff(y(t),t$2)+diff(y(t),t)-2*y(t)=piecewise(0<t and t<2*Pi,3*sin(t)-cos(t),t>2*Pi,3*sin(2*t)-cos(2*t)),y(0) = 1, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = et −

 sin (t) t < 2π
sin(2t)

2 2π ≤ t


3 Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 55� �
DSolve[{y''[t]+y'[t]-2*y[t]==Piecewise[{{3*Sin[t]-Cos[t],0<t<2*Pi},{3*Sin[2*t]-Cos[2*t],t>2*Pi}}],{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → {

e−2t

3 + 2et
3 t ≤ 0

et − sin(t) 0 < t ≤ 2π
et − cos(t) sin(t) True
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7.7 problem 24
7.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 792
7.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 795

Internal problem ID [5700]
Internal file name [OUTPUT/4948_Sunday_June_05_2022_03_11_28_PM_98332360/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 3y′ + 2y =

 1 0 < t < 1
0 1 < t

With initial conditions

[y(0) = 0, y′(0) = 0]

7.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 3
q(t) = 2

F =


0 t ≤ 0
1 t < 1
0 1 ≤ t
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Hence the ode is

y′′ + 3y′ + 2y =


0 t ≤ 0
1 t < 1
0 1 ≤ t

The domain of p(t) = 3 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F =


0 t ≤ 0
1 t < 1
0 1 ≤ t

is

{0 ≤ t ≤ 1, 1 ≤ t ≤ ∞,−∞ ≤ t ≤ 0}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 3sY (s)− 3y(0) + 2Y (s) = 1− e−s

s
(1)

But the initial conditions are

y(0) = 0
y′(0) = 0
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Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 3sY (s) + 2Y (s) = 1− e−s

s

Solving the above equation for Y (s) results in

Y (s) = − −1 + e−s

s (s2 + 3s+ 2)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
− −1 + e−s

s (s2 + 3s+ 2)

)
= Heaviside (−t+ 1)

2 − e−t + e−2t

2 + (−e−2t+2 + 2 e−t+1)Heaviside (t− 1)
2

Hence the final solution is

y = Heaviside (−t+ 1)
2 − e−t + e−2t

2 + (−e−2t+2 + 2 e−t+1)Heaviside (t− 1)
2

Simplifying the solution gives

y = 1
2−

Heaviside (t− 1)
2 −e−t+ e−2t

2 −Heaviside (t− 1) e−2t+2

2 +Heaviside (t−1) e−t+1

Summary
The solution(s) found are the following

(1)
y = 1

2 − Heaviside (t− 1)
2 − e−t + e−2t

2
− Heaviside (t− 1) e−2t+2

2 + Heaviside (t− 1) e−t+1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2−

Heaviside (t− 1)
2 −e−t+ e−2t

2 −Heaviside (t− 1) e−2t+2

2 +Heaviside (t−1) e−t+1

Verified OK.

7.7.2 Maple step by step solution

Let’s solvey′′ + 3y′ + 2y =


0 t ≤ 0
1 t < 1
0 1 ≤ t

, y(0) = 0, y′
∣∣∣{t=0}

= 0


• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3r + 2 = 0

• Factor the characteristic polynomial
(r + 2) (r + 1) = 0

• Roots of the characteristic polynomial
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r = (−2,−1)
• 1st solution of the homogeneous ODE

y1(t) = e−2t

• 2nd solution of the homogeneous ODE
y2(t) = e−t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−2t + c2e−t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing functionyp(t) = −y1(t)

(∫ y2(t)f(t)
W (y1(t),y2(t))dt

)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) =


0 t ≤ 0
1 t < 1
0 1 ≤ t


◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−2t e−t

−2 e−2t −e−t


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−3t

◦ Substitute functions into equation for yp(t)

yp(t) = −e−2t

∫



0 t ≤ 0
e2t t < 1
0 1 ≤ t

 dt

+ e−t

∫



0 t ≤ 0
et t < 1
0 1 ≤ t

 dt


◦ Compute integrals

yp(t) = −





0 t ≤ 0
2 e−t − e−2t − 1 t ≤ 1

2 e−t − e−2t + e−2t+2 − 2 e−t+1 1 < t


2

• Substitute particular solution into general solution to ODE
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y = c1e−2t + c2e−t −





0 t ≤ 0
2 e−t − e−2t − 1 t ≤ 1

2 e−t − e−2t + e−2t+2 − 2 e−t+1 1 < t


2

� Check validity of solution y = c1e−2t + c2e−t −





0 t ≤ 0
2e−t − e−2t − 1 t ≤ 1

2e−t − e−2t + e−2t+2 − 2e−t+1 1 < t


2

◦ Use initial condition y(0) = 0
0 = c1 + c2

◦ Compute derivative of the solution

y′ = −2c1e−2t − c2e−t −





0 t ≤ 0
−2 e−t + 2 e−2t t ≤ 1

−2 e−t + 2 e−2t − 2 e−2t+2 + 2 e−t+1 1 < t


2

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = −2c1 − c2

◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = −





0 t ≤ 0
2 e−t − e−2t − 1 t ≤ 1

2 e−t − e−2t + e−2t+2 − 2 e−t+1 1 < t


2

• Solution to the IVP

y = −





0 t ≤ 0
2 e−t − e−2t − 1 t ≤ 1

2 e−t − e−2t + e−2t+2 − 2 e−t+1 1 < t


2

797



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 1.062 (sec). Leaf size: 65� �
dsolve([diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<t and t<1,1,t>1,0),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)� �

y(t) =




1− 2 e−t + e−2t t < 1
−2 e−1 + e−2 + 2 t = 1

2 e1−t − e−2t+2 − 2 e−t + e−2t 1 < t


2

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 57� �
DSolve[{y''[t]+3*y'[t]+2*y[t]==Piecewise[{{1,0<t<1},{0,t>1}}],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → {

0 t ≤ 0
1
2e

−2t(−1 + et)2 0 < t ≤ 1
1
2(−1 + e)e−2t(−1− e+ 2et) True
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7.8 problem 25
7.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 799
7.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 802

Internal problem ID [5701]
Internal file name [OUTPUT/4949_Sunday_June_05_2022_03_11_32_PM_75529370/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y =

 t 0 < t < 1
0 1 < t

With initial conditions

[y(0) = 0, y′(0) = 0]

7.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0
q(t) = 1

F =


0 t ≤ 0
t t < 1
0 1 ≤ t
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Hence the ode is

y′′ + y =


0 t ≤ 0
t t < 1
0 1 ≤ t

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F =


0 t ≤ 0
t t < 1
0 1 ≤ t

is

{t < 1∨ 1 < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + Y (s) = −(s+ 1) e−s + 1
s2

(1)

But the initial conditions are

y(0) = 0
y′(0) = 0
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Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + Y (s) = −(s+ 1) e−s + 1
s2

Solving the above equation for Y (s) results in

Y (s) = −e−ss+ e−s − 1
s2 (s2 + 1)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
−e−ss+ e−s − 1

s2 (s2 + 1)

)
= − sin (t) + t− Heaviside (t− 1)

(
2 sin

(
t

2 − 1
2

)2

− sin (t− 1) + t− 1
)

Hence the final solution is

y = − sin (t) + t− Heaviside (t− 1)
(
2 sin

(
t

2 − 1
2

)2

− sin (t− 1) + t− 1
)

Simplifying the solution gives

y = − sin (t) + t+ (cos (t− 1) + sin (t− 1)− t)Heaviside (t− 1)

Summary
The solution(s) found are the following

(1)y = − sin (t) + t+ (cos (t− 1) + sin (t− 1)− t)Heaviside (t− 1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − sin (t) + t+ (cos (t− 1) + sin (t− 1)− t)Heaviside (t− 1)

Verified OK.

7.8.2 Maple step by step solution

Let’s solvey′′ + y =


0 t ≤ 0
t t < 1
0 1 ≤ t

, y(0) = 0, y′
∣∣∣{t=0}

= 0


• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)
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• 1st solution of the homogeneous ODE
y1(t) = cos (t)

• 2nd solution of the homogeneous ODE
y2(t) = sin (t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (t) + c2 sin (t) + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing functionyp(t) = −y1(t)

(∫ y2(t)f(t)
W (y1(t),y2(t))dt

)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) =


0 t ≤ 0
t t < 1
0 1 ≤ t


◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 cos (t) sin (t)
− sin (t) cos (t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = 1
◦ Substitute functions into equation for yp(t)

yp(t) = − cos (t)

∫



0 t ≤ 0
sin (t) t t < 1

0 1 ≤ t

 dt

+ sin (t)

∫



0 t ≤ 0
cos (t) t t < 1

0 1 ≤ t

 dt


◦ Compute integrals

yp(t) =


0 t ≤ 0

− sin (t) + t t ≤ 1
(cos (1)− sin (1)) cos (t) + (sin (1) + cos (1)− 1) sin (t) 1 < t

• Substitute particular solution into general solution to ODE
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y = c1 cos (t) + c2 sin (t) +


0 t ≤ 0

− sin (t) + t t ≤ 1
(cos (1)− sin (1)) cos (t) + (sin (1) + cos (1)− 1) sin (t) 1 < t

� Check validity of solution y = c1 cos (t) + c2 sin (t) +


0 t ≤ 0

− sin (t) + t t ≤ 1
(cos (1)− sin (1)) cos (t) + (sin (1) + cos (1)− 1) sin (t) 1 < t

◦ Use initial condition y(0) = 0
0 = c1

◦ Compute derivative of the solution

y′ = −c1 sin (t) + c2 cos (t) +


0 t ≤ 0

− cos (t) + 1 t ≤ 1
−(cos (1)− sin (1)) sin (t) + (sin (1) + cos (1)− 1) cos (t) 1 < t

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = c2

◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y =


0 t ≤ 0

− sin (t) + t t ≤ 1
(cos (1)− sin (1)) cos (t) + (sin (1) + cos (1)− 1) sin (t) 1 < t

• Solution to the IVP

y =


0 t ≤ 0

− sin (t) + t t ≤ 1
(cos (1)− sin (1)) cos (t) + (sin (1) + cos (1)− 1) sin (t) 1 < t
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.61 (sec). Leaf size: 37� �
dsolve([diff(y(t),t$2)+y(t)=piecewise(0<t and t<1,t,t>1,0),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = − sin (t) +

 t t < 1
sin (t− 1) + cos (t− 1) 1 ≤ t


3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 44� �
DSolve[{y''[t]+y[t]==Piecewise[{{t,0<t<1},{0,t>1}}],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → {
t− sin(t) 0 < t ≤ 1

cos(1− t)− sin(1− t)− sin(t) t > 1
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7.9 problem 26
7.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 806

Internal problem ID [5702]
Internal file name [OUTPUT/4950_Sunday_June_05_2022_03_14_28_PM_35172071/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 2y′ + 5y =

 10 sin (t) 0 < t < 2π
0 2π < t

With initial conditions

[y(π) = 1, y′(π) = 2 e−π − 2]

7.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 2
q(t) = 5

F =


0 t ≤ 0

10 sin (t) t < 2π
0 2π ≤ t
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Hence the ode is

y′′ + 2y′ + 5y =


0 t ≤ 0

10 sin (t) t < 2π
0 2π ≤ t

The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = π is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = π is also inside this domain. The domain of F =


0 t ≤ 0

10 sin (t) t < 2π
0 2π ≤ t

is
{0 ≤ t ≤ 2π, 2π ≤ t ≤ ∞,−∞ ≤ t ≤ 0}

And the point t0 = π is also inside this domain. Hence solution exists and is unique.

Since both initial conditions are not at zero, then let

y(0) = c1

y′(0) = c2

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 2sY (s)− 2y(0) + 5Y (s) = 10− 10 e−2πs

s2 + 1 (1)
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But the initial conditions are

y(0) = c1

y′(0) = c2

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− c2 − sc1 + 2sY (s)− 2c1 + 5Y (s) = 10− 10 e−2πs

s2 + 1

Solving the above equation for Y (s) results in

Y (s) = −−c1s
3 − 2c1s2 − c2s

2 − sc1 + 10 e−2πs − 2c1 − c2 − 10
(s2 + 1) (s2 + 2s+ 5)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
−−c1s

3 − 2c1s2 − c2s
2 − sc1 + 10 e−2πs − 2c1 − c2 − 10

(s2 + 1) (s2 + 2s+ 5)

)
= (−2 cos (2t) + sin (2t))Heaviside (t− 2π) e2π−t

2 + (2 cos (2t) (c1 + 1) + sin (2t) (−1 + c1 + c2)) e−t

2 + (− cos (t) + 2 sin (t))Heaviside (2π − t)

Since both initial conditions given are not at zero, then we need to setup two equations
to solve for c1, c1. At t = π the first equation becomes, using the above solution

1 = 1 + (2 + 2c1) e−π

2

And taking derivative of the solution and evaluating at t = π gives the second equation
as

2 e−π − 2 = −2 + (−2 + 2c1 + 2c2) e−π

2 − (2 + 2c1) e−π

2

Solving gives

c1 = −1
c2 = 4

Subtituting these in the solution obtained above gives

y = (−2 cos (2t) + sin (2t))Heaviside (t− 2π) e2π−t

2 + sin (2t) e−t + (− cos (t) + 2 sin (t))Heaviside (2π − t)

=
(
−2 cos (t)2 + cos (t) sin (t) + 1

)
Heaviside (t− 2π) e2π−t + (cos (t)− 2 sin (t))Heaviside (t− 2π) + 2 sin (t) cos (t) e−t − cos (t) + 2 sin (t)
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Hence the final solution is

y =
(
−2 cos (t)2 + cos (t) sin (t) + 1

)
Heaviside (t− 2π) e2π−t

+ (cos (t)− 2 sin (t))Heaviside (t− 2π) + 2 sin (t) cos (t) e−t − cos (t) + 2 sin (t)

Simplifying the solution gives

y =
(
−2 cos (t)2 + cos (t) sin (t) + 1

)
Heaviside (t− 2π) e2π−t

+ (cos (t)− 2 sin (t))Heaviside (t− 2π) + 2 sin (t) cos (t) e−t − cos (t) + 2 sin (t)

Summary
The solution(s) found are the following

(1)y =
(
−2 cos (t)2 + cos (t) sin (t) + 1

)
Heaviside (t− 2π) e2π−t

+ (cos (t)− 2 sin (t))Heaviside (t− 2π) + 2 sin (t) cos (t) e−t − cos (t) + 2 sin (t)

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
(
−2 cos (t)2 + cos (t) sin (t) + 1

)
Heaviside (t− 2π) e2π−t

+ (cos (t)− 2 sin (t))Heaviside (t− 2π) + 2 sin (t) cos (t) e−t − cos (t) + 2 sin (t)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.343 (sec). Leaf size: 70� �
dsolve([diff(y(t),t$2)+2*diff(y(t),t)+5*y(t)=piecewise(0<t and t<2*Pi,10*sin(t),t>2*Pi,0),y(Pi) = 1, D(y)(Pi) = 2*exp(-Pi)-2],y(t), singsol=all)� �

y(t) =


sin (2t) e−t − cos (t) + 2 sin (t) t < 2π

−2 t = 2π

sin (2t) e−t + (−2 cos(2t)+sin(2t))e2π−t

2 2π < t

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 94� �
DSolve[{y''[t]+2*y'[t]+5*y[t]==Piecewise[{{10*Sin[t],0<t<2*Pi},{0,t>2*Pi}}],{y[Pi]==1,y'[Pi]==2*Exp[-Pi]-2}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → {

1
2e

−t(3 sin(2t)− 2 cos(2t)) t ≤ 0

− cos(t) + 2 sin(t) + e−t sin(2t) 0 < t ≤ 2π
1
2e

−t((2 + e2π) sin(2t)− 2e2π cos(2t)) True
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7.10 problem 27
7.10.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 811
7.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 815

Internal problem ID [5703]
Internal file name [OUTPUT/4951_Sunday_June_05_2022_03_14_35_PM_63270777/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.3, page 224
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y =

 8t2 0 < t < 5
0 5 < t

With initial conditions

[y(1) = 1 + cos (2) , y′(1) = 4− 2 sin (2)]

7.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0
q(t) = 4

F =


0 t ≤ 0
8t2 t < 5
0 5 ≤ t
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Hence the ode is

y′′ + 4y =


0 t ≤ 0
8t2 t < 5
0 5 ≤ t

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 1 is inside this domain. The domain of q(t) = 4 is

{−∞ < t < ∞}

And the point t0 = 1 is also inside this domain. The domain of F =


0 t ≤ 0
8t2 t < 5
0 5 ≤ t

is

{t < 5∨ 5 < t}

And the point t0 = 1 is also inside this domain. Hence solution exists and is unique.

Since both initial conditions are not at zero, then let

y(0) = c1

y′(0) = c2

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 4Y (s) = 16− 8(25s2 + 10s+ 2) e−5s

s3
(1)
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But the initial conditions are

y(0) = c1

y′(0) = c2

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− c2 − sc1 + 4Y (s) = 16− 8(25s2 + 10s+ 2) e−5s

s3

Solving the above equation for Y (s) results in

Y (s) = −−s4c1 − c2s
3 + 200 e−5ss2 + 80 e−5ss+ 16 e−5s − 16

s3 (s2 + 4)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
−−s4c1 − c2s

3 + 200 e−5ss2 + 80 e−5ss+ 16 e−5s − 16
s3 (s2 + 4)

)
= −1 + c2 sin (2t)

2 + 2t2 + cos (2t) (c1 + 1)− Heaviside (t− 5)
(
100 sin (t− 5)2 + 2t2 + cos (−10 + 2t)− 10 sin (−10 + 2t)− 51

)
Since both initial conditions given are not at zero, then we need to setup two equations
to solve for c1, c1. At t = 1 the first equation becomes, using the above solution

1 + cos (2) = 1 + c2 sin (2)
2 + cos (2) (c1 + 1)

And taking derivative of the solution and evaluating at t = 1 gives the second equation
as

4− 2 sin (2) = c2 cos (2) + 4− 2 sin (2) (c1 + 1)

Solving gives

c1 = 0
c2 = 0

Subtituting these in the solution obtained above gives

y = −1 + 2t2 + cos (2t)− Heaviside (t− 5)
(
100 sin (t− 5)2 + 2t2 + cos (−10 + 2t)− 10 sin (−10 + 2t)− 51

)
= −2Heaviside (t− 5) t2 + 2t2 +Heaviside (t− 5)− 1 + 49Heaviside (t− 5) cos (−10 + 2t) + 10Heaviside (t− 5) sin (−10 + 2t) + cos (2t)
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Hence the final solution is

y = −2Heaviside (t− 5) t2 + 2t2 +Heaviside (t− 5)− 1
+ 49Heaviside (t− 5) cos (−10 + 2t) + 10Heaviside (t− 5) sin (−10 + 2t) + cos (2t)

Simplifying the solution gives

y = −2Heaviside (t− 5) t2 + 2t2 +Heaviside (t− 5)− 1
+ 49Heaviside (t− 5) cos (−10 + 2t) + 10Heaviside (t− 5) sin (−10 + 2t) + cos (2t)

Summary
The solution(s) found are the following

(1)
y = −2Heaviside (t− 5) t2 + 2t2 +Heaviside (t− 5)

− 1 + 49Heaviside (t− 5) cos (−10 + 2t)
+ 10Heaviside (t− 5) sin (−10 + 2t) + cos (2t)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2Heaviside (t− 5) t2 + 2t2 +Heaviside (t− 5)− 1
+ 49Heaviside (t− 5) cos (−10 + 2t) + 10Heaviside (t− 5) sin (−10 + 2t) + cos (2t)

Verified OK.
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7.10.2 Maple step by step solution

Let’s solvey′′ + 4y =


0 t ≤ 0
8t2 t < 5
0 5 ≤ t

, y(1) = 1 + cos (2) , y′
∣∣∣{t=1}

= 4− 2 sin (2)


• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−2 I, 2 I)

• 1st solution of the homogeneous ODE
y1(t) = cos (2t)

• 2nd solution of the homogeneous ODE
y2(t) = sin (2t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (2t) + c2 sin (2t) + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing functionyp(t) = −y1(t)

(∫ y2(t)f(t)
W (y1(t),y2(t))dt

)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) =


0 t ≤ 0
8t2 t < 5
0 5 ≤ t


◦ Wronskian of solutions of the homogeneous equation
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W (y1(t) , y2(t)) =

 cos (2t) sin (2t)
−2 sin (2t) 2 cos (2t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = 2
◦ Substitute functions into equation for yp(t)

yp(t) = − cos (2t)

∫



0 t ≤ 0
4 sin (2t) t2 t < 5

0 5 ≤ t

 dt

+ sin (2t)

∫



0 t ≤ 0
4 cos (2t) t2 t < 5

0 5 ≤ t

 dt


◦ Compute integrals

yp(t) =


0 t ≤ 0

−1 + 2t2 + cos (2t) t ≤ 5

(49 sin (10) + 10 cos (10)) sin (2t) + 49 cos (2t)
(
cos (10)− 10 sin(10)

49 + 1
49

)
5 < t

• Substitute particular solution into general solution to ODE

y = c1 cos (2t) + c2 sin (2t) +


0 t ≤ 0

−1 + 2t2 + cos (2t) t ≤ 5

(49 sin (10) + 10 cos (10)) sin (2t) + 49 cos (2t)
(
cos (10)− 10 sin(10)

49 + 1
49

)
5 < t

� Check validity of solution y = c1 cos (2t) + c2 sin (2t) +


0 t ≤ 0

−1 + 2t2 + cos (2t) t ≤ 5

(49 sin (10) + 10 cos (10)) sin (2t) + 49 cos (2t)
(
cos (10)− 10 sin(10)

49 + 1
49

)
5 < t

◦ Use initial condition y(1) = 1 + cos (2)
1 + cos (2) = c1 cos (2) + c2 sin (2) + 1 + cos (2)

◦ Compute derivative of the solution

y′ = −2c1 sin (2t) + 2c2 cos (2t) +


0 t ≤ 0

4t− 2 sin (2t) t ≤ 5

2(49 sin (10) + 10 cos (10)) cos (2t)− 98 sin (2t)
(
cos (10)− 10 sin(10)

49 + 1
49

)
5 < t

◦ Use the initial condition y′
∣∣∣{t=1}

= 4− 2 sin (2)
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4− 2 sin (2) = −2c1 sin (2) + 2c2 cos (2) + 4− 2 sin (2)
◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y =


0 t ≤ 0

−1 + 2t2 + cos (2t) t ≤ 5

(49 sin (10) + 10 cos (10)) sin (2t) + 49 cos (2t)
(
cos (10)− 10 sin(10)

49 + 1
49

)
5 < t

• Solution to the IVP

y =


0 t ≤ 0

−1 + 2t2 + cos (2t) t ≤ 5

(49 sin (10) + 10 cos (10)) sin (2t) + 49 cos (2t)
(
cos (10)− 10 sin(10)

49 + 1
49

)
5 < t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.844 (sec). Leaf size: 87� �
dsolve([diff(y(t),t$2)+4*y(t)=piecewise(0<t and t<5,8*t^2,t>5,0),y(1) = 1+cos(2), D(y)(1) = 4-2*sin(2)],y(t), singsol=all)� �

y(t) = cos (2t) +

 2t2 − 1 t < 5
10 sin (2t− 10) + 49 cos (2t− 10) 5 ≤ t
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3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 51� �
DSolve[{y''[t]+4*y[t]==Piecewise[{{8*t^2,0<t<5},{0,t>5}}],{y[1]==1+Cos[2],y'[1]==4-2*Sin[2]}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → {
2t2 + cos(2t)− 1 0 < t ≤ 5

49 cos(2(t− 5)) + cos(2t)− 10 sin(10− 2t) t > 5
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8.1 problem 3
8.1.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 820
8.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 823

Internal problem ID [5704]
Internal file name [OUTPUT/4952_Sunday_June_05_2022_03_14_40_PM_37812013/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y = δ(t− π)

With initial conditions

[y(0) = 8, y′(0) = 0]

8.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0
q(t) = 4
F = δ(t− π)

Hence the ode is

y′′ + 4y = δ(t− π)
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The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 4 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = δ(t− π) is

{t < π ∨ π < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 4Y (s) = e−πs (1)

But the initial conditions are

y(0) = 8
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 8s+ 4Y (s) = e−πs

Solving the above equation for Y (s) results in

Y (s) = e−πs + 8s
s2 + 4
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
e−πs + 8s
s2 + 4

)
= Heaviside (t− π) sin (2t)

2 + 8 cos (2t)

Hence the final solution is

y = Heaviside (t− π) sin (2t)
2 + 8 cos (2t)

Simplifying the solution gives

y = Heaviside (t− π) sin (2t)
2 + 8 cos (2t)

Summary
The solution(s) found are the following

(1)y = Heaviside (t− π) sin (2t)
2 + 8 cos (2t)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = Heaviside (t− π) sin (2t)
2 + 8 cos (2t)

Verified OK.
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8.1.2 Maple step by step solution

Let’s solve[
y′′ + 4y = Dirac(t− π) , y(0) = 8, y′

∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−2 I, 2 I)

• 1st solution of the homogeneous ODE
y1(t) = cos (2t)

• 2nd solution of the homogeneous ODE
y2(t) = sin (2t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (2t) + c2 sin (2t) + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = Dirac(t− π)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 cos (2t) sin (2t)
−2 sin (2t) 2 cos (2t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = 2
◦ Substitute functions into equation for yp(t)
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yp(t) = sin(2t)
(∫

Dirac(t−π)dt
)

2

◦ Compute integrals
yp(t) = Heaviside(t−π) sin(2t)

2

• Substitute particular solution into general solution to ODE
y = c1 cos (2t) + c2 sin (2t) + Heaviside(t−π) sin(2t)

2

� Check validity of solution y = c1 cos (2t) + c2 sin (2t) + Heaviside(t−π) sin(2t)
2

◦ Use initial condition y(0) = 8
8 = c1

◦ Compute derivative of the solution
y′ = −2c1 sin (2t) + 2c2 cos (2t) + Dirac(t−π) sin(2t)

2 + Heaviside(t− π) cos (2t)

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = 2c2
◦ Solve for c1 and c2

{c1 = 8, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = Heaviside(t−π) sin(2t)
2 + 8 cos (2t)

• Solution to the IVP
y = Heaviside(t−π) sin(2t)

2 + 8 cos (2t)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.797 (sec). Leaf size: 23� �
dsolve([diff(y(t),t$2)+4*y(t)=Dirac(t-Pi),y(0) = 8, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = Heaviside (t− π) sin (2t)
2 + 8 cos (2t)

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 23� �
DSolve[{y''[t]+4*y[t]==DiracDelta[t-Pi],{y[0]==8,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → θ(t− π) sin(t) cos(t) + 8 cos(2t)
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8.2 problem 4
8.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 826
8.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 829

Internal problem ID [5705]
Internal file name [OUTPUT/4953_Sunday_June_05_2022_03_14_42_PM_93725491/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff", "second_order_ode_can_be_made_in-
tegrable"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 16y = 4δ(t− 3π)

With initial conditions

[y(0) = 2, y′(0) = 0]

8.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0
q(t) = 16
F = 4δ(t− 3π)
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Hence the ode is

y′′ + 16y = 4δ(t− 3π)

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 16 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 4δ(t− 3π) is

{t < 3π ∨ 3π < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 16Y (s) = 4 e−3πs (1)

But the initial conditions are

y(0) = 2
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 2s+ 16Y (s) = 4 e−3πs

Solving the above equation for Y (s) results in

Y (s) = 4 e−3πs + 2s
s2 + 16
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
4 e−3πs + 2s
s2 + 16

)
= Heaviside (t− 3π) sin (4t) + 2 cos (4t)

Hence the final solution is

y = Heaviside (t− 3π) sin (4t) + 2 cos (4t)

Simplifying the solution gives

y = Heaviside (t− 3π) sin (4t) + 2 cos (4t)

Summary
The solution(s) found are the following

(1)y = Heaviside (t− 3π) sin (4t) + 2 cos (4t)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = Heaviside (t− 3π) sin (4t) + 2 cos (4t)

Verified OK.
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8.2.2 Maple step by step solution

Let’s solve[
y′′ + 16y = 4Dirac(t− 3π) , y(0) = 2, y′

∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 16 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−64
)

2

• Roots of the characteristic polynomial
r = (−4 I, 4 I)

• 1st solution of the homogeneous ODE
y1(t) = cos (4t)

• 2nd solution of the homogeneous ODE
y2(t) = sin (4t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (4t) + c2 sin (4t) + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 4Dirac(t− 3π)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 cos (4t) sin (4t)
−4 sin (4t) 4 cos (4t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = 4
◦ Substitute functions into equation for yp(t)
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yp(t) = sin (4t)
(∫

Dirac(t− 3π) dt
)

◦ Compute integrals
yp(t) = Heaviside(t− 3π) sin (4t)

• Substitute particular solution into general solution to ODE
y = c1 cos (4t) + c2 sin (4t) + Heaviside(t− 3π) sin (4t)

� Check validity of solution y = c1 cos (4t) + c2 sin (4t) + Heaviside(t− 3π) sin (4t)
◦ Use initial condition y(0) = 2

2 = c1

◦ Compute derivative of the solution
y′ = −4c1 sin (4t) + 4c2 cos (4t) + Dirac(t− 3π) sin (4t) + 4Heaviside(t− 3π) cos (4t)

◦ Use the initial condition y′
∣∣∣{t=0}

= 0

0 = 4c2
◦ Solve for c1 and c2

{c1 = 2, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = Heaviside(t− 3π) sin (4t) + 2 cos (4t)
• Solution to the IVP

y = Heaviside(t− 3π) sin (4t) + 2 cos (4t)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 1.0 (sec). Leaf size: 22� �
dsolve([diff(y(t),t$2)+16*y(t)=4*Dirac(t-3*Pi),y(0) = 2, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = Heaviside (t− 3π) sin (4t) + 2 cos (4t)

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 23� �
DSolve[{y''[t]+16*y[t]==4*DiracDelta[t-3*Pi],{y[0]==2,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → θ(t− 3π) sin(4t) + 2 cos(4t)
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8.3 problem 5
8.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 832
8.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 835

Internal problem ID [5706]
Internal file name [OUTPUT/4954_Sunday_June_05_2022_03_14_45_PM_37094733/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff", "second_order_ode_can_be_made_in-
tegrable"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y = δ(t− π)− δ(t− 2π)

With initial conditions

[y(0) = 0, y′(0) = 1]

8.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 0
q(t) = 1
F = δ(t− π)− δ(t− 2π)
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Hence the ode is

y′′ + y = δ(t− π)− δ(t− 2π)

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = δ(t− π)−δ(t− 2π)
is

{π ≤ t ≤ 2π, 2π ≤ t ≤ ∞,−∞ ≤ t ≤ π}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + Y (s) = e−πs − e−2πs (1)

But the initial conditions are

y(0) = 0
y′(0) = 1

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 1 + Y (s) = e−πs − e−2πs

Solving the above equation for Y (s) results in

Y (s) = e−πs − e−2πs + 1
s2 + 1
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
e−πs − e−2πs + 1

s2 + 1

)
= sin (t) (−Heaviside (t− π) + Heaviside (2π − t))

Hence the final solution is

y = sin (t) (−Heaviside (t− π) + Heaviside (2π − t))

Simplifying the solution gives

y = sin (t) (1− Heaviside (t− π)− Heaviside (t− 2π))

Summary
The solution(s) found are the following

(1)y = sin (t) (1− Heaviside (t− π)− Heaviside (t− 2π))

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (t) (1− Heaviside (t− π)− Heaviside (t− 2π))

Verified OK.
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8.3.2 Maple step by step solution

Let’s solve[
y′′ + y = Dirac(t− π)− Dirac(t− 2π) , y(0) = 0, y′

∣∣∣{t=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the homogeneous ODE
y1(t) = cos (t)

• 2nd solution of the homogeneous ODE
y2(t) = sin (t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (t) + c2 sin (t) + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = Dirac(t− π)− Dirac(t− 2π)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 cos (t) sin (t)
− sin (t) cos (t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = 1
◦ Substitute functions into equation for yp(t)

835



yp(t) = sin (t)
(∫

(−Dirac(t− π)− Dirac(t− 2π)) dt
)

◦ Compute integrals
yp(t) = sin (t) (−Heaviside(t− π)− Heaviside(t− 2π))

• Substitute particular solution into general solution to ODE
y = c1 cos (t) + c2 sin (t) + sin (t) (−Heaviside(t− π)− Heaviside(t− 2π))

� Check validity of solution y = c1 cos (t) + c2 sin (t) + sin (t) (−Heaviside(t− π)− Heaviside(t− 2π))
◦ Use initial condition y(0) = 0

0 = c1

◦ Compute derivative of the solution
y′ = −c1 sin (t) + c2 cos (t) + cos (t) (−Heaviside(t− π)− Heaviside(t− 2π)) + sin (t) (−Dirac(t− π)− Dirac(t− 2π))

◦ Use the initial condition y′
∣∣∣{t=0}

= 1

1 = c2

◦ Solve for c1 and c2

{c1 = 0, c2 = 1}
◦ Substitute constant values into general solution and simplify

y = sin (t) (1− Heaviside(t− π)− Heaviside(t− 2π))
• Solution to the IVP

y = sin (t) (1− Heaviside(t− π)− Heaviside(t− 2π))

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.844 (sec). Leaf size: 24� �
dsolve([diff(y(t),t$2)+y(t)=Dirac(t-Pi)-Dirac(t-2*Pi),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)� �

y(t) = sin (t) (1− Heaviside (t− 2π)− Heaviside (t− π))

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 23� �
DSolve[{y''[t]+y[t]==DiracDelta[t-Pi]-DiracDelta[t-2*Pi],{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → −((θ(t− 2π) + θ(t− π)− 1) sin(t))
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8.4 problem 6
8.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 838
8.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 841

Internal problem ID [5707]
Internal file name [OUTPUT/4955_Sunday_June_05_2022_03_14_47_PM_41430436/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y′ + 5y = δ(t− 1)

With initial conditions

[y(0) = 0, y′(0) = 3]

8.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 4
q(t) = 5
F = δ(t− 1)

Hence the ode is

y′′ + 4y′ + 5y = δ(t− 1)
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The domain of p(t) = 4 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = δ(t− 1) is

{t < 1∨ 1 < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 4sY (s)− 4y(0) + 5Y (s) = e−s (1)

But the initial conditions are

y(0) = 0
y′(0) = 3

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 3 + 4sY (s) + 5Y (s) = e−s

Solving the above equation for Y (s) results in

Y (s) = e−s + 3
s2 + 4s+ 5

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(

e−s + 3
s2 + 4s+ 5

)
= Heaviside (t− 1) e−2t+2 sin (t− 1) + 3 e−2t sin (t)

839



Hence the final solution is

y = Heaviside (t− 1) e−2t+2 sin (t− 1) + 3 e−2t sin (t)

Simplifying the solution gives

y = Heaviside (t− 1) e−2t+2 sin (t− 1) + 3 e−2t sin (t)

Summary
The solution(s) found are the following

(1)y = Heaviside (t− 1) e−2t+2 sin (t− 1) + 3 e−2t sin (t)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = Heaviside (t− 1) e−2t+2 sin (t− 1) + 3 e−2t sin (t)

Verified OK.
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8.4.2 Maple step by step solution

Let’s solve[
y′′ + 4y′ + 5y = Dirac(t− 1) , y(0) = 0, y′

∣∣∣{t=0}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r + 5 = 0

• Use quadratic formula to solve for r

r = (−4)±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−2− I,−2 + I)

• 1st solution of the homogeneous ODE
y1(t) = e−2t cos (t)

• 2nd solution of the homogeneous ODE
y2(t) = e−2t sin (t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = cos (t) e−2tc1 + sin (t) e−2tc2 + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = Dirac(t− 1)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−2t cos (t) e−2t sin (t)
−2 e−2t cos (t)− e−2t sin (t) −2 e−2t sin (t) + e−2t cos (t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−4t

◦ Substitute functions into equation for yp(t)
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yp(t) = (sin (t) cos (1)− cos (t) sin (1))
(∫

Dirac(t− 1) dt
)
e−2t+2

◦ Compute integrals
yp(t) = Heaviside(t− 1) e−2t+2(sin (t) cos (1)− cos (t) sin (1))

• Substitute particular solution into general solution to ODE
y = cos (t) e−2tc1 + sin (t) e−2tc2 + Heaviside(t− 1) e−2t+2(sin (t) cos (1)− cos (t) sin (1))

� Check validity of solution y = cos (t) e−2tc1 + sin (t) e−2tc2 + Heaviside(t− 1) e−2t+2(sin (t) cos (1)− cos (t) sin (1))
◦ Use initial condition y(0) = 0

0 = c1

◦ Compute derivative of the solution
y′ = − sin (t) e−2tc1 − 2 cos (t) e−2tc1 + cos (t) e−2tc2 − 2 sin (t) e−2tc2 + Dirac(t− 1) e−2t+2(sin (t) cos (1)− cos (t) sin (1))− 2Heaviside(t− 1) e−2t+2(sin (t) cos (1)− cos (t) sin (1)) + Heaviside(t− 1) e−2t+2(cos (t) cos (1) + sin (t) sin (1))

◦ Use the initial condition y′
∣∣∣{t=0}

= 3

3 = −2c1 + c2

◦ Solve for c1 and c2

{c1 = 0, c2 = 3}
◦ Substitute constant values into general solution and simplify

y = Heaviside(t− 1) e−2t+2(sin (t) cos (1)− cos (t) sin (1)) + 3 e−2t sin (t)
• Solution to the IVP

y = Heaviside(t− 1) e−2t+2(sin (t) cos (1)− cos (t) sin (1)) + 3 e−2t sin (t)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.859 (sec). Leaf size: 28� �
dsolve([diff(y(t),t$2)+4*diff(y(t),t)+5*y(t)=Dirac(t-1),y(0) = 0, D(y)(0) = 3],y(t), singsol=all)� �

y(t) = Heaviside (t− 1) e−2t+2 sin (t− 1) + 3 e−2t sin (t)

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 31� �
DSolve[{y''[t]+4*y'[t]+5*y[t]==DiracDelta[t-1],{y[0]==0,y'[0]==3}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → e−2t(3 sin(t)− e2θ(t− 1) sin(1− t)
)
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8.5 problem 7
8.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 844
8.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 847

Internal problem ID [5708]
Internal file name [OUTPUT/4956_Sunday_June_05_2022_03_14_51_PM_21833028/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

4y′′ + 24y′ + 37y = 17 e−t + δ

(
t− 1

2

)

With initial conditions

[y(0) = 1, y′(0) = 1]

8.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 6

q(t) = 37
4

F = 17 e−t

4 +
δ
(
t− 1

2

)
4
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Hence the ode is

y′′ + 6y′ + 37y
4 = 17 e−t

4 +
δ
(
t− 1

2

)
4

The domain of p(t) = 6 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 37
4 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 17 e−t

4 + δ
(
t− 1

2
)

4 is

{
t <

1
2 ∨ 1

2 < t

}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

4s2Y (s)− 4y′(0)− 4sy(0) + 24sY (s)− 24y(0) + 37Y (s) = 17
s+ 1 + e− s

2 (1)

But the initial conditions are

y(0) = 1
y′(0) = 1

Substituting these initial conditions in above in Eq (1) gives

4s2Y (s)− 28− 4s+ 24sY (s) + 37Y (s) = 17
s+ 1 + e− s

2
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Solving the above equation for Y (s) results in

Y (s) = e− s
2 s+ 4s2 + e− s

2 + 32s+ 45
(s+ 1) (4s2 + 24s+ 37)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
e− s

2 s+ 4s2 + e− s
2 + 32s+ 45

(s+ 1) (4s2 + 24s+ 37)

)
=

Heaviside
(
t− 1

2

)
e−3t+ 3

2 sin
(
t
2 −

1
4

)
2 + 4 e−3t sin

(
t

2

)
+ e−t

Hence the final solution is

y =
Heaviside

(
t− 1

2

)
e−3t+ 3

2 sin
(
t
2 −

1
4

)
2 + 4 e−3t sin

(
t

2

)
+ e−t

Simplifying the solution gives

y =
Heaviside

(
t− 1

2

)
e−3t+ 3

2 sin
(
t
2 −

1
4

)
2 + 4 e−3t sin

(
t

2

)
+ e−t

Summary
The solution(s) found are the following

(1)y =
Heaviside

(
t− 1

2

)
e−3t+ 3

2 sin
(
t
2 −

1
4

)
2 + 4 e−3t sin

(
t

2

)
+ e−t

(a) Solution plot (b) Slope field plot
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Verification of solutions

y =
Heaviside

(
t− 1

2

)
e−3t+ 3

2 sin
(
t
2 −

1
4

)
2 + 4 e−3t sin

(
t

2

)
+ e−t

Verified OK.

8.5.2 Maple step by step solution

Let’s solve[
4y′′ + 24y′ + 37y = 17 e−t + Dirac

(
t− 1

2

)
, y(0) = 1, y′

∣∣∣{t=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −6y′ − 37y
4 + 17 e−t

4 + Dirac
(
t− 1

2
)

4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 6y′ + 37y
4 = 17 e−t

4 + Dirac
(
t− 1

2
)

4

• Characteristic polynomial of homogeneous ODE
r2 + 6r + 37

4 = 0

• Use quadratic formula to solve for r

r = (−6)±
(√

−1
)

2

• Roots of the characteristic polynomial
r =

(
−3− I

2 ,−3 + I
2

)
• 1st solution of the homogeneous ODE

y1(t) = e−3t cos
(
t
2

)
• 2nd solution of the homogeneous ODE

y2(t) = e−3t sin
(
t
2

)
• General solution of the ODE

y = c1y1(t) + c2y2(t) + yp(t)
• Substitute in solutions of the homogeneous ODE

y = c1e−3t cos
(
t
2

)
+ c2e−3t sin

(
t
2

)
+ yp(t)
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� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 17 e−t

4 + Dirac
(
t− 1

2
)

4

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−3t cos
(
t
2

)
e−3t sin

(
t
2

)
−3 e−3t cos

(
t
2

)
− e−3t sin

(
t
2
)

2 −3 e−3t sin
(
t
2

)
+ e−3t cos

(
t
2
)

2


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−6t

2

◦ Substitute functions into equation for yp(t)

yp(t) = −
e−3t

(
cos
(
t
2
)(∫ (

sin
( 1
4
)
e
3
2Dirac

(
t− 1

2
)
+17 sin

(
t
2
)
e2t
)
dt
)
−sin

(
t
2
)(∫ (

cos
( 1
4
)
e
3
2Dirac

(
t− 1

2
)
+17 cos

(
t
2
)
e2t
)
dt
))

2

◦ Compute integrals

yp(t) =
e−3t

(
e
3
2
(
sin
(
t
2
)
cos
( 1
4
)
−cos

(
t
2
)
sin
( 1
4
))
Heaviside

(
t− 1

2
)
+2 e2t

)
2

• Substitute particular solution into general solution to ODE

y = c1e−3t cos
(
t
2

)
+ c2e−3t sin

(
t
2

)
+

e−3t
(
e
3
2
(
sin
(
t
2
)
cos
( 1
4
)
−cos

(
t
2
)
sin
( 1
4
))
Heaviside

(
t− 1

2
)
+2 e2t

)
2

� Check validity of solution y = c1e−3t cos
(
t
2

)
+ c2e−3t sin

(
t
2

)
+

e−3t
(
e
3
2
(
sin
(
t
2
)
cos
( 1
4
)
−cos

(
t
2
)
sin
( 1
4
))
Heaviside

(
t− 1

2
)
+2e2t

)
2

◦ Use initial condition y(0) = 1
1 = c1 + 1

◦ Compute derivative of the solution

y′ = −3c1e−3t cos
(
t
2

)
− c1e−3t sin

(
t
2
)

2 − 3c2e−3t sin
(
t
2

)
+ c2e−3t cos

(
t
2
)

2 −
3 e−3t

(
e
3
2
(
sin
(
t
2
)
cos
( 1
4
)
−cos

(
t
2
)
sin
( 1
4
))
Heaviside

(
t− 1

2
)
+2 e2t

)
2 +

e−3t

(
e
3
2

(
cos

(
t
2
)
cos

(
1
4
)

2 +
sin

(
t
2
)
sin

(
1
4
)

2

)
Heaviside

(
t− 1

2
)
+e

3
2
(
sin
(
t
2
)
cos
( 1
4
)
−cos

(
t
2
)
sin
( 1
4
))
Dirac

(
t− 1

2
)
+4 e2t

)
2

◦ Use the initial condition y′
∣∣∣{t=0}

= 1

1 = −3c1 − 1 + c2
2

◦ Solve for c1 and c2

{c1 = 0, c2 = 4}
◦ Substitute constant values into general solution and simplify

y =
(
e
3
2
(
sin
(
t
2
)
cos
( 1
4
)
−cos

(
t
2
)
sin
( 1
4
))
Heaviside

(
t− 1

2
)
+2 e2t+8 sin

(
t
2
))

e−3t

2
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• Solution to the IVP

y =
(
e
3
2
(
sin
(
t
2
)
cos
( 1
4
)
−cos

(
t
2
)
sin
( 1
4
))
Heaviside

(
t− 1

2
)
+2 e2t+8 sin

(
t
2
))

e−3t

2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.281 (sec). Leaf size: 37� �
dsolve([4*diff(y(t),t$2)+24*diff(y(t),t)+37*y(t)=17*exp(-t)+Dirac(t-1/2),y(0) = 1, D(y)(0) = 1],y(t), singsol=all)� �

y(t) =
Heaviside

(
t− 1

2

)
e−3t+ 3

2 sin
(
−1

4 +
t
2

)
2 + 4 e−3t sin

(
t

2

)
+ e−t

3 Solution by Mathematica
Time used: 0.109 (sec). Leaf size: 63� �
DSolve[{4*y''[t]+24*y'[t]+27*y[t]==17*Exp[-t]+DiracDelta[t-1/2],{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
84e

−9t/2(7e3/4(e3t − e3/2
)
θ(2t− 1) + 12

(
−7e3t + 17e7t/2 − 3

))
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8.6 problem 8
8.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 850
8.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 853

Internal problem ID [5709]
Internal file name [OUTPUT/4957_Sunday_June_05_2022_03_14_56_PM_50845792/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 3y′ + 2y = 10 sin (t) + 10δ(t− 1)

With initial conditions

[y(0) = 1, y′(0) = −1]

8.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 3
q(t) = 2
F = 10 sin (t) + 10δ(t− 1)

Hence the ode is

y′′ + 3y′ + 2y = 10 sin (t) + 10δ(t− 1)
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The domain of p(t) = 3 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 10 sin (t)+10δ(t− 1)
is

{t < 1∨ 1 < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 3sY (s)− 3y(0) + 2Y (s) = 10
s2 + 1 + 10 e−s (1)

But the initial conditions are

y(0) = 1
y′(0) = −1

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 2− s+ 3sY (s) + 2Y (s) = 10
s2 + 1 + 10 e−s

Solving the above equation for Y (s) results in

Y (s) = 10 e−ss2 + s3 + 2s2 + 10 e−s + s+ 12
(s2 + 1) (s2 + 3s+ 2)
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
10 e−ss2 + s3 + 2s2 + 10 e−s + s+ 12

(s2 + 1) (s2 + 3s+ 2)

)
= −3 cos (t) + sin (t) + 6 e−t − 2 e−2t + 10

(
e−t+1 − e−2t+2)Heaviside (t− 1)

Hence the final solution is

y = −3 cos (t) + sin (t) + 6 e−t − 2 e−2t + 10
(
e−t+1 − e−2t+2)Heaviside (t− 1)

Simplifying the solution gives

y=10Heaviside (t−1) e−t+1−10Heaviside (t−1) e−2t+2+sin (t)−2 e−2t+6 e−t−3 cos (t)

Summary
The solution(s) found are the following

(1)y = 10Heaviside (t− 1) e−t+1 − 10Heaviside (t− 1) e−2t+2

+ sin (t)− 2 e−2t + 6 e−t − 3 cos (t)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 10Heaviside (t− 1) e−t+1 − 10Heaviside (t− 1) e−2t+2 + sin (t)− 2 e−2t + 6 e−t

− 3 cos (t)

Verified OK.
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8.6.2 Maple step by step solution

Let’s solve[
y′′ + 3y′ + 2y = 10 sin (t) + 10Dirac(t− 1) , y(0) = 1, y′

∣∣∣{t=0}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3r + 2 = 0

• Factor the characteristic polynomial
(r + 2) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−2,−1)

• 1st solution of the homogeneous ODE
y1(t) = e−2t

• 2nd solution of the homogeneous ODE
y2(t) = e−t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−2t + c2e−t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 10 sin (t) + 10Dirac(t− 1)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−2t e−t

−2 e−2t −e−t


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−3t

◦ Substitute functions into equation for yp(t)
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yp(t) = −10 e−2t(∫ (Dirac(t− 1) e2 + sin (t) e2t) dt
)
+ 10 e−t

(∫
(sin (t) + Dirac(t− 1)) etdt

)
◦ Compute integrals

yp(t) = −3 cos (t) + sin (t)− 10Heaviside(t− 1) e−2t+2 + 10Heaviside(t− 1) e−t+1

• Substitute particular solution into general solution to ODE
y = c1e−2t + c2e−t − 3 cos (t) + sin (t)− 10Heaviside(t− 1) e−2t+2 + 10Heaviside(t− 1) e−t+1

� Check validity of solution y = c1e−2t + c2e−t − 3 cos (t) + sin (t)− 10Heaviside(t− 1) e−2t+2 + 10Heaviside(t− 1) e−t+1

◦ Use initial condition y(0) = 1
1 = c1 + c2 − 3

◦ Compute derivative of the solution
y′ = −2c1e−2t − c2e−t + 3 sin (t) + cos (t)− 10Dirac(t− 1) e−2t+2 + 20Heaviside(t− 1) e−2t+2 + 10Dirac(t− 1) e−t+1 − 10Heaviside(t− 1) e−t+1

◦ Use the initial condition y′
∣∣∣{t=0}

= −1

−1 = −2c1 − c2 + 1
◦ Solve for c1 and c2

{c1 = −2, c2 = 6}
◦ Substitute constant values into general solution and simplify

y = 10Heaviside(t− 1) e−t+1 − 10Heaviside(t− 1) e−2t+2 + sin (t)− 2 e−2t + 6 e−t − 3 cos (t)
• Solution to the IVP

y = 10Heaviside(t− 1) e−t+1 − 10Heaviside(t− 1) e−2t+2 + sin (t)− 2 e−2t + 6 e−t − 3 cos (t)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
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3 Solution by Maple
Time used: 0.984 (sec). Leaf size: 44� �
dsolve([diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=10*(sin(t)+Dirac(t-1)),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)� �

y(t) = −10Heaviside (t− 1) e−2t+2 + 10Heaviside (t− 1) e1−t

− 2 e−2t + sin (t)− 3 cos (t) + 6 e−t

3 Solution by Mathematica
Time used: 0.165 (sec). Leaf size: 46� �
DSolve[{y''[t]+3*y'[t]+2*y[t]==10*(Sin[t]+DiracDelta[t-1]),{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 10e1−2t(et − e
)
θ(t− 1)− 2e−2t + 6e−t + sin(t)− 3 cos(t)
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8.7 problem 9
8.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 856
8.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 859

Internal problem ID [5710]
Internal file name [OUTPUT/4958_Sunday_June_05_2022_03_15_00_PM_82102922/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y′ + 5y = (1− Heaviside (−10 + t)) et − e10δ(−10 + t)

With initial conditions

[y(0) = 0, y′(0) = 1]

8.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 4
q(t) = 5
F = −etHeaviside (−10 + t)− e10δ(−10 + t) + et

Hence the ode is

y′′ + 4y′ + 5y = −etHeaviside (−10 + t)− e10δ(−10 + t) + et
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The domain of p(t) = 4 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = −et Heaviside (−10 + t)−
e10δ(−10 + t) + et is

{t < 10∨ 10 < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 4sY (s)− 4y(0) + 5Y (s) = −e−10s+10s+ 1
s− 1 (1)

But the initial conditions are

y(0) = 0
y′(0) = 1

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 1 + 4sY (s) + 5Y (s) = −e−10s+10s+ 1
s− 1

Solving the above equation for Y (s) results in

Y (s) = − s(e−10s+10 − 1)
(s− 1) (s2 + 4s+ 5)
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
− s(e−10s+10 − 1)
(s− 1) (s2 + 4s+ 5)

)
= et Heaviside (10− t)

10 + e30−2t Heaviside (−10 + t) (cos (−10 + t)− 7 sin (−10 + t))
10 + (− cos (t) + 7 sin (t)) e−2t

10
Hence the final solution is

y = et Heaviside (10− t)
10 + e30−2t Heaviside (−10 + t) (cos (−10 + t)− 7 sin (−10 + t))

10
+ (− cos (t) + 7 sin (t)) e−2t

10

Simplifying the solution gives

y

= ((−e3t + ((cos (10) + 7 sin (10)) cos (t) + (−7 cos (10) + sin (10)) sin (t)) e30)Heaviside (−10 + t)− cos (t) + 7 sin (t) + e3t) e−2t

10

Summary
The solution(s) found are the following

(1)y

= ((−e3t + ((cos (10) + 7 sin (10)) cos (t) + (−7 cos (10) + sin (10)) sin (t)) e30)Heaviside (−10 + t)− cos (t) + 7 sin (t) + e3t) e−2t

10

(a) Solution plot (b) Slope field plot
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Verification of solutions
y

= ((−e3t + ((cos (10) + 7 sin (10)) cos (t) + (−7 cos (10) + sin (10)) sin (t)) e30)Heaviside (−10 + t)− cos (t) + 7 sin (t) + e3t) e−2t

10

Verified OK.

8.7.2 Maple step by step solution

Let’s solve[
y′′ + 4y′ + 5y = −etHeaviside(−10 + t)− e10Dirac(−10 + t) + et, y(0) = 0, y′

∣∣∣{t=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r + 5 = 0

• Use quadratic formula to solve for r

r = (−4)±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−2− I,−2 + I)

• 1st solution of the homogeneous ODE
y1(t) = e−2t cos (t)

• 2nd solution of the homogeneous ODE
y2(t) = e−2t sin (t)

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = cos (t) e−2tc1 + sin (t) e−2tc2 + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = −etHeaviside(−10 + t)− e10Dirac(−10 + t) + et

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(t) , y2(t)) =

 e−2t cos (t) e−2t sin (t)
−2 e−2t cos (t)− e−2t sin (t) −2 e−2t sin (t) + e−2t cos (t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−4t

◦ Substitute functions into equation for yp(t)
yp(t) = e−2t((∫ sin (t) (e2t+10Dirac(−10 + t) + e3t(−1 + Heaviside(−10 + t))) dt

)
cos (t)−

(∫
cos (t) (e2t+10Dirac(−10 + t) + e3t(−1 + Heaviside(−10 + t))) dt

)
sin (t)

)
◦ Compute integrals

yp(t) =
((
−e3t+((cos(t)−7 sin(t)) cos(10)+(7 cos(t)+sin(t)) sin(10))e30

)
Heaviside(−10+t)+e3t

)
e−2t

10

• Substitute particular solution into general solution to ODE

y = cos (t) e−2tc1 + sin (t) e−2tc2 +
((
−e3t+((cos(t)−7 sin(t)) cos(10)+(7 cos(t)+sin(t)) sin(10))e30

)
Heaviside(−10+t)+e3t

)
e−2t

10

� Check validity of solution y = cos (t) e−2tc1 + sin (t) e−2tc2 +
((
−e3t+((cos(t)−7 sin(t)) cos(10)+(7 cos(t)+sin(t)) sin(10))e30

)
Heaviside(−10+t)+e3t

)
e−2t

10

◦ Use initial condition y(0) = 0
0 = c1 + 1

10

◦ Compute derivative of the solution

y′ = − sin (t) e−2tc1 − 2 cos (t) e−2tc1 + cos (t) e−2tc2 − 2 sin (t) e−2tc2 +
((
−3 e3t+((−7 cos(t)−sin(t)) cos(10)+(cos(t)−7 sin(t)) sin(10))e30

)
Heaviside(−10+t)+

(
−e3t+((cos(t)−7 sin(t)) cos(10)+(7 cos(t)+sin(t)) sin(10))e30

)
Dirac(−10+t)+3 e3t

)
e−2t

10 −
((
−e3t+((cos(t)−7 sin(t)) cos(10)+(7 cos(t)+sin(t)) sin(10))e30

)
Heaviside(−10+t)+e3t

)
e−2t

5

◦ Use the initial condition y′
∣∣∣{t=0}

= 1

1 = 1
10 − 2c1 + c2

◦ Solve for c1 and c2{
c1 = − 1

10 , c2 =
7
10

}
◦ Substitute constant values into general solution and simplify

y =
((
−e3t+((cos(10)+7 sin(10)) cos(t)+(−7 cos(10)+sin(10)) sin(t))e30

)
Heaviside(−10+t)−cos(t)+7 sin(t)+e3t

)
e−2t

10

• Solution to the IVP

y =
((
−e3t+((cos(10)+7 sin(10)) cos(t)+(−7 cos(10)+sin(10)) sin(t))e30

)
Heaviside(−10+t)−cos(t)+7 sin(t)+e3t

)
e−2t

10
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.328 (sec). Leaf size: 53� �
dsolve([diff(y(t),t$2)+4*diff(y(t),t)+5*y(t)=(1-Heaviside(t-10))*exp(t)-exp(10)*Dirac(t-10),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)� �
y(t)

= e−2t((−e3t + ((−7 cos (10) + sin (10)) sin (t) + (cos (10) + 7 sin (10)) cos (t)) e30)Heaviside (t− 10)− cos (t) + 7 sin (t) + e3t)
10

3 Solution by Mathematica
Time used: 0.571 (sec). Leaf size: 94� �
DSolve[{y''[t]+4*y'[t]+5*y[t]==(1-UnitStep[t-10])*Exp[t]-Exp[10]*DiracDelta[t-10],{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]� �
y(t)→ 1

10e
−2t(10e30θ(t−10) sin(10−t)+θ(10−t)

(
e3t+3e30 sin(10−t)−e30 cos(10−t)

)
− 3e30 sin(10− t) + 7 sin(t) + e30 cos(10− t)− cos(t)

)
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8.8 problem 10
8.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 862
8.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 865

Internal problem ID [5711]
Internal file name [OUTPUT/4959_Sunday_June_05_2022_03_15_06_PM_67783294/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 5y′ + 6y = δ
(
t− π

2

)
+ cos (t)Heaviside (t− π)

With initial conditions

[y(0) = 0, y′(0) = 0]

8.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 5
q(t) = 6

F = δ
(
t− π

2

)
+ cos (t)Heaviside (t− π)
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Hence the ode is

y′′ + 5y′ + 6y = δ
(
t− π

2

)
+ cos (t)Heaviside (t− π)

The domain of p(t) = 5 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 6 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = δ
(
t− π

2

)
+

cos (t)Heaviside (t− π) is

{
π ≤ t ≤ π

2 ,
π

2 ≤ t ≤ ∞,−∞ ≤ t ≤ π
}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 5sY (s)− 5y(0) + 6Y (s) = e−πs
2 − e−πss

s2 + 1 (1)

But the initial conditions are

y(0) = 0
y′(0) = 0

Substituting these initial conditions in above in Eq (1) gives

s2Y (s) + 5sY (s) + 6Y (s) = e−πs
2 − e−πss

s2 + 1
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Solving the above equation for Y (s) results in

Y (s) = e−πs
2 s2 − e−πss+ e−πs

2

(s2 + 1) (s2 + 5s+ 6)

Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
e−πs

2 s2 − e−πss+ e−πs
2

(s2 + 1) (s2 + 5s+ 6)

)
= Heaviside (t− π) (cos (t) + 4 e2π−2t − 3 e3π−3t + sin (t))

10 +
(
−e−3t+ 3π

2 + e−2t+π
)
Heaviside

(
t− π

2

)
Hence the final solution is

y = Heaviside (t− π) (cos (t) + 4 e2π−2t − 3 e3π−3t + sin (t))
10

+
(
−e−3t+ 3π

2 + e−2t+π
)
Heaviside

(
t− π

2

)
Simplifying the solution gives

y =−Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside (t− π) e2π−2t

5 − 3Heaviside (t− π) e3π−3t

10
+ Heaviside

(
t− π

2

)
e−2t+π + Heaviside (t− π) (sin (t) + cos (t))

10

Summary
The solution(s) found are the following

(1)

y = −Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside (t− π) e2π−2t

5
− 3Heaviside (t− π) e3π−3t

10 + Heaviside
(
t− π

2

)
e−2t+π

+ Heaviside (t− π) (sin (t) + cos (t))
10
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(a) Solution plot (b) Slope field plot

Verification of solutions

y =−Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside (t− π) e2π−2t

5 − 3Heaviside (t− π) e3π−3t

10
+ Heaviside

(
t− π

2

)
e−2t+π + Heaviside (t− π) (sin (t) + cos (t))

10

Verified OK.

8.8.2 Maple step by step solution

Let’s solve[
y′′ + 5y′ + 6y = Dirac

(
t− π

2

)
+ cos (t)Heaviside(t− π) , y(0) = 0, y′

∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 5r + 6 = 0

• Factor the characteristic polynomial
(r + 3) (r + 2) = 0

• Roots of the characteristic polynomial
r = (−3,−2)
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• 1st solution of the homogeneous ODE
y1(t) = e−3t

• 2nd solution of the homogeneous ODE
y2(t) = e−2t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−3t + c2e−2t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = Dirac

(
t− π

2

)
+ cos (t)Heaviside(t− π)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−3t e−2t

−3 e−3t −2 e−2t


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−5t

◦ Substitute functions into equation for yp(t)

yp(t) = −e−3t
(∫ (

Dirac
(
t− π

2

)
e 3π

2 + cos (t)Heaviside(t− π) e3t
)
dt
)
+ e−2t(∫ (Dirac(t− π

2

)
eπ + cos (t)Heaviside(t− π) e2t

)
dt
)

◦ Compute integrals

yp(t) = −Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside(t−π)e2π−2t

5 − 3Heaviside(t−π)e3π−3t

10 + Heaviside
(
t− π

2

)
e−2t+π + Heaviside(t−π)(sin(t)+cos(t))

10

• Substitute particular solution into general solution to ODE

y = c1e−3t + c2e−2t − Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside(t−π)e2π−2t

5 − 3Heaviside(t−π)e3π−3t

10 + Heaviside
(
t− π

2

)
e−2t+π + Heaviside(t−π)(sin(t)+cos(t))

10

� Check validity of solution y = c1e−3t + c2e−2t − Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside(t−π)e2π−2t

5 − 3Heaviside(t−π)e3π−3t

10 + Heaviside
(
t− π

2

)
e−2t+π + Heaviside(t−π)(sin(t)+cos(t))

10

◦ Use initial condition y(0) = 0
0 = c1 + c2

◦ Compute derivative of the solution

y′ = −3c1e−3t − 2c2e−2t − Dirac
(
t− π

2

)
e−3t+ 3π

2 + 3Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Dirac(t−π)e2π−2t

5 − 4Heaviside(t−π)e2π−2t

5 − 3Dirac(t−π)e3π−3t

10 + 9Heaviside(t−π)e3π−3t

10 + Dirac
(
t− π

2

)
e−2t+π − 2Heaviside

(
t− π

2

)
e−2t+π + Dirac(t−π)(sin(t)+cos(t))

10 + Heaviside(t−π)(cos(t)−sin(t))
10

◦ Use the initial condition y′
∣∣∣{t=0}

= 0
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0 = −3c1 − 2c2
◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = −Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside(t−π)e2π−2t

5 − 3Heaviside(t−π)e3π−3t

10 + Heaviside
(
t− π

2

)
e−2t+π + Heaviside(t−π)(sin(t)+cos(t))

10

• Solution to the IVP

y = −Heaviside
(
t− π

2

)
e−3t+ 3π

2 + 2Heaviside(t−π)e2π−2t

5 − 3Heaviside(t−π)e3π−3t

10 + Heaviside
(
t− π

2

)
e−2t+π + Heaviside(t−π)(sin(t)+cos(t))

10

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 1.047 (sec). Leaf size: 62� �
dsolve([diff(y(t),t$2)+5*diff(y(t),t)+6*y(t)=Dirac(t-1/2*Pi)+Heaviside(t-Pi)*cos(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)� �

y(t) = −Heaviside
(
t− π

2

)
e−3t+ 3π

2 − 3Heaviside (t− π) e−3t+3π

10
+ 2Heaviside (t− π) e−2t+2π

5 + Heaviside
(
t− π

2

)
e−2t+π

+ Heaviside (t− π) (cos (t) + sin (t))
10
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3 Solution by Mathematica
Time used: 0.511 (sec). Leaf size: 85� �
DSolve[{y''[t]+5*y'[t]+6*y[t]==DiracDelta[t-1/2*Pi]+UnitStep[t-Pi]*Cos[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
10e

−3t((θ(π − t)− 1)
(
−4et+2π − e3t sin(t)− e3t cos(t) + 3e3π

)
− 10eπ

(
eπ/2 − et

)
θ(2t− π)

)
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8.9 problem 11
8.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 869
8.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 872

Internal problem ID [5712]
Internal file name [OUTPUT/4960_Sunday_June_05_2022_03_15_11_PM_45893023/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 5y′ + 6y = Heaviside (t− 1) + δ(−2 + t)

With initial conditions

[y(0) = 0, y′(0) = 1]

8.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 5
q(t) = 6
F = Heaviside (t− 1) + δ(−2 + t)

Hence the ode is

y′′ + 5y′ + 6y = Heaviside (t− 1) + δ(−2 + t)
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The domain of p(t) = 5 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 6 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = Heaviside (t− 1) +
δ(−2 + t) is

{1 ≤ t ≤ 2, 2 ≤ t ≤ ∞,−∞ ≤ t ≤ 1}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 5sY (s)− 5y(0) + 6Y (s) = e−s

s
+ e−2s (1)

But the initial conditions are

y(0) = 0
y′(0) = 1

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 1 + 5sY (s) + 6Y (s) = e−s

s
+ e−2s

Solving the above equation for Y (s) results in

Y (s) = e−2ss+ e−s + s

s (s2 + 5s+ 6)
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
e−2ss+ e−s + s

s (s2 + 5s+ 6)

)
= −e−3t + e−2t +Heaviside (−2 + t)

(
−e6−3t + e−2t+4)+ Heaviside (t− 1) (1 + 2 e−3t+3 − 3 e−2t+2)

6
Hence the final solution is

y = −e−3t + e−2t +Heaviside (−2 + t)
(
−e6−3t + e−2t+4)

+ Heaviside (t− 1) (1 + 2 e−3t+3 − 3 e−2t+2)
6

Simplifying the solution gives

y = −e−3t + e−2t − Heaviside (−2 + t) e6−3t +Heaviside (−2 + t) e−2t+4

+ Heaviside (t− 1) e−3t+3

3 − Heaviside (t− 1) e−2t+2

2 + Heaviside (t− 1)
6

Summary
The solution(s) found are the following

(1)
y = −e−3t + e−2t − Heaviside (−2 + t) e6−3t +Heaviside (−2 + t) e−2t+4

+ Heaviside (t− 1) e−3t+3

3 − Heaviside (t− 1) e−2t+2

2 + Heaviside (t− 1)
6

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = −e−3t + e−2t − Heaviside (−2 + t) e6−3t +Heaviside (−2 + t) e−2t+4

+ Heaviside (t− 1) e−3t+3

3 − Heaviside (t− 1) e−2t+2

2 + Heaviside (t− 1)
6

Verified OK.

8.9.2 Maple step by step solution

Let’s solve[
y′′ + 5y′ + 6y = Heaviside(t− 1) + Dirac(−2 + t) , y(0) = 0, y′

∣∣∣{t=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 5r + 6 = 0

• Factor the characteristic polynomial
(r + 3) (r + 2) = 0

• Roots of the characteristic polynomial
r = (−3,−2)

• 1st solution of the homogeneous ODE
y1(t) = e−3t

• 2nd solution of the homogeneous ODE
y2(t) = e−2t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1e−3t + c2e−2t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = Heaviside(t− 1) + Dirac(−2 + t)

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(t) , y2(t)) =

 e−3t e−2t

−3 e−3t −2 e−2t


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−5t

◦ Substitute functions into equation for yp(t)
yp(t) = −e−3t(∫ (Dirac(−2 + t) e6 + Heaviside(t− 1) e3t) dt

)
+ e−2t(∫ (Dirac(−2 + t) e4 + Heaviside(t− 1) e2t) dt

)
◦ Compute integrals

yp(t) = −Heaviside(−2 + t) e6−3t + Heaviside(t−1)
6 + Heaviside(t−1)e−3t+3

3 + Heaviside(−2 + t) e−2t+4 − Heaviside(t−1)e−2t+2

2

• Substitute particular solution into general solution to ODE

y = c1e−3t + c2e−2t − Heaviside(−2 + t) e6−3t + Heaviside(t−1)
6 + Heaviside(t−1)e−3t+3

3 + Heaviside(−2 + t) e−2t+4 − Heaviside(t−1)e−2t+2

2

� Check validity of solution y = c1e−3t + c2e−2t − Heaviside(−2 + t) e6−3t + Heaviside(t−1)
6 + Heaviside(t−1)e−3t+3

3 + Heaviside(−2 + t) e−2t+4 − Heaviside(t−1)e−2t+2

2

◦ Use initial condition y(0) = 0
0 = c1 + c2

◦ Compute derivative of the solution

y′ = −3c1e−3t − 2c2e−2t − Dirac(−2 + t) e6−3t + 3Heaviside(−2 + t) e6−3t + Dirac(t−1)
6 + Dirac(t−1)e−3t+3

3 − Heaviside(t− 1) e−3t+3 + Dirac(−2 + t) e−2t+4 − 2Heaviside(−2 + t) e−2t+4 − Dirac(t−1)e−2t+2

2 + Heaviside(t− 1) e−2t+2

◦ Use the initial condition y′
∣∣∣{t=0}

= 1

1 = −3c1 − 2c2
◦ Solve for c1 and c2

{c1 = −1, c2 = 1}
◦ Substitute constant values into general solution and simplify

y = −e−3t + e−2t − Heaviside(−2 + t) e6−3t + Heaviside(−2 + t) e−2t+4 + Heaviside(t−1)e−3t+3

3 − Heaviside(t−1)e−2t+2

2 + Heaviside(t−1)
6

• Solution to the IVP

y = −e−3t + e−2t − Heaviside(−2 + t) e6−3t + Heaviside(−2 + t) e−2t+4 + Heaviside(t−1)e−3t+3

3 − Heaviside(t−1)e−2t+2

2 + Heaviside(t−1)
6
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.937 (sec). Leaf size: 59� �
dsolve([diff(y(t),t$2)+5*diff(y(t),t)+6*y(t)=Heaviside(t-1)+Dirac(t-2),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)� �

y(t) = −e−3t + e−2t +Heaviside (t− 2) e−2t+4 − Heaviside (t− 2) e−3t+6

− Heaviside (t− 1) e−2t+2

2 + Heaviside (t− 1) e−3t+3

3 + Heaviside (t− 1)
6

3 Solution by Mathematica
Time used: 0.208 (sec). Leaf size: 80� �
DSolve[{y''[t]+5*y'[t]+6*y[t]==UnitStep[t-1]+DiracDelta[t-2],{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]� �
y(t) → 1

6e
−3t
(
6e4
(
et − e2

)
θ(t− 2)−

((
et + 2e

) (
e− et

)2
θ(1− t)

)
+ 6et + e3t − 3et+2

+ 2e3 − 6
)
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8.10 problem 12
8.10.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 875
8.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 878

Internal problem ID [5713]
Internal file name [OUTPUT/4961_Sunday_June_05_2022_03_15_16_PM_24343582/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT
KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 6. Laplace Transforms. Problem set 6.4, page 230
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "sec-
ond_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 2y′ + 5y = 25t− 100δ(t− π)

With initial conditions

[y(0) = −2, y′(0) = 5]

8.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(t)y′ + q(t)y = F

Where here

p(t) = 2
q(t) = 5
F = 25t− 100δ(t− π)

Hence the ode is

y′′ + 2y′ + 5y = 25t− 100δ(t− π)
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The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 25t− 100δ(t− π)
is

{t < π ∨ π < t}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving using the Laplace transform method. Let

L(y) = Y (s)

Taking the Laplace transform of the ode and using the relations that

L(y′) = sY (s)− y(0)
L(y′′) = s2Y (s)− y′(0)− sy(0)

The given ode now becomes an algebraic equation in the Laplace domain

s2Y (s)− y′(0)− sy(0) + 2sY (s)− 2y(0) + 5Y (s) = 25
s2

− 100 e−πs (1)

But the initial conditions are

y(0) = −2
y′(0) = 5

Substituting these initial conditions in above in Eq (1) gives

s2Y (s)− 1 + 2s+ 2sY (s) + 5Y (s) = 25
s2

− 100 e−πs

Solving the above equation for Y (s) results in

Y (s) = −100 e−πss2 + 2s3 − s2 − 25
s2 (s2 + 2s+ 5)
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Taking the inverse Laplace transform gives

y = L−1(Y (s))

= L−1
(
−100 e−πss2 + 2s3 − s2 − 25

s2 (s2 + 2s+ 5)

)
= −50Heaviside (t− π) eπ−t sin (2t)− 2 + 5t

Hence the final solution is

y = −50Heaviside (t− π) eπ−t sin (2t)− 2 + 5t

Simplifying the solution gives

y = −50Heaviside (t− π) eπ−t sin (2t)− 2 + 5t

Summary
The solution(s) found are the following

(1)y = −50Heaviside (t− π) eπ−t sin (2t)− 2 + 5t

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −50Heaviside (t− π) eπ−t sin (2t)− 2 + 5t

Verified OK.
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8.10.2 Maple step by step solution

Let’s solve[
y′′ + 2y′ + 5y = 25t− 100Dirac(t− π) , y(0) = −2, y′

∣∣∣{t=0}
= 5
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 5 = 0

• Use quadratic formula to solve for r

r = (−2)±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−1− 2 I,−1 + 2 I)

• 1st solution of the homogeneous ODE
y1(t) = cos (2t) e−t

• 2nd solution of the homogeneous ODE
y2(t) = sin (2t) e−t

• General solution of the ODE
y = c1y1(t) + c2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (2t) e−t + c2 sin (2t) e−t + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 25t− 100Dirac(t− π)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 cos (2t) e−t sin (2t) e−t

−2 sin (2t) e−t − cos (2t) e−t 2 cos (2t) e−t − sin (2t) e−t


◦ Compute Wronskian

W (y1(t) , y2(t)) = 2 e−2t

◦ Substitute functions into equation for yp(t)
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yp(t) = −25 e−t
(
cos(2t)

(∫
t sin(2t)etdt

)
−sin(2t)

(∫ (
−4Dirac(t−π)eπ+t cos(2t)et

)
dt
))

2

◦ Compute integrals
yp(t) = −50Heaviside(t− π) eπ−t sin (2t)− 2 + 5t

• Substitute particular solution into general solution to ODE
y = c1 cos (2t) e−t + c2 sin (2t) e−t − 50Heaviside(t− π) eπ−t sin (2t)− 2 + 5t

� Check validity of solution y = c1 cos (2t) e−t + c2 sin (2t) e−t − 50Heaviside(t− π) eπ−t sin (2t)− 2 + 5t
◦ Use initial condition y(0) = −2

−2 = −2 + c1

◦ Compute derivative of the solution
y′ = −2c1 sin (2t) e−t − c1 cos (2t) e−t + 2c2 cos (2t) e−t − c2 sin (2t) e−t − 50Dirac(t− π) eπ−t sin (2t) + 50Heaviside(t− π) eπ−t sin (2t)− 100Heaviside(t− π) eπ−t cos (2t) + 5

◦ Use the initial condition y′
∣∣∣{t=0}

= 5

5 = 5− c1 + 2c2
◦ Solve for c1 and c2

{c1 = 0, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = −50Heaviside(t− π) eπ−t sin (2t)− 2 + 5t
• Solution to the IVP

y = −50Heaviside(t− π) eπ−t sin (2t)− 2 + 5t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.875 (sec). Leaf size: 27� �
dsolve([diff(y(t),t$2)+2*diff(y(t),t)+5*y(t)=25*t-100*Dirac(t-Pi),y(0) = -2, D(y)(0) = 5],y(t), singsol=all)� �

y(t) = −50Heaviside (t− π) sin (2t) eπ−t + 5t− 2

3 Solution by Mathematica
Time used: 0.271 (sec). Leaf size: 29� �
DSolve[{y''[t]+2*y'[t]+5*y[t]==25*t-100*DiracDelta[t-Pi],{y[0]==-2,y'[0]==5}},y[t],t,IncludeSingularSolutions -> True]� �

y(t) → −50eπ−tθ(t− π) sin(2t) + 5t− 2
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