AMA 542

Hos.
(16)

A disk D of radius 0.75 ft spins with an angular speed $\omega_{2}=0.5 \mathrm{r} / \mathrm{s}$ with respect to the rigid. but bent bar B. Tire angular speed ω_{2} is Increasing at a rate $\dot{\omega}_{2}=0.25 \mathrm{r} / \mathrm{s}^{2}$. Body B turns about a vertical axis through 0 at a rate $\omega_{1}-1.2 \mathrm{r} / \mathrm{s}$ which is increasing at a rate $\dot{\omega}_{1}=0.6 \mathrm{r} / \mathrm{s}^{2}$. A fly is moving on the surface of the disk D from point C to H, at a rate of 1.5 ft/sec which is increasing at a rate of $0.8 \mathrm{ft} / \mathrm{sec}^{2}$. Determine the absolute velocity and acceleration of the fly when the fly is at point Q.

AMA 542 - Homework to Hand In

3B. A gyropendulum, consisting of a disk of radius R , rotates with a constant spin rate $\dot{\psi}$ about the shaft $B G$ of length L. The shaft is pivoted to another vertical shaft at B which rotates with the constant rate $\dot{\phi}$. The pivot, angle θ changes at the constant rate $\dot{\theta}$ as shown. The Z coordinate axis is fixed in space. The xyz coordinate system is attached to the shaft BG. The 123 coordinate system is attached to the disk. At the instant shown, 123 is aligned with xyz. Compute the total angular velocity and angular acceleration of the disk and express them in terms of the 123 body coordinates. Your solution should be in terms of ψ, θ, ϕ and their corresponding time derivatives.

