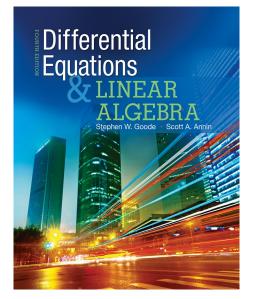
A Solution Manual For

Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition,

 $\mathbf{2015}$



Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21	3
2	Chapter 1, First-Order Differential Equations. Section 1.4, Separa- ble Differential Equations. page 43	40
3	Chapter 1, First-Order Differential Equations. Section 1.6, First- Order Linear Differential Equations. page 59	59
4	Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79	88
5	Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91	146
6	Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502	160
7	Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525	181
8	Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529	200
9	Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556	212
10	Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567	242
11	Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572	253
12	Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575	266
13	Chapter 10, The Laplace Transform and Some Elementary Applica- tions. Exercises for 10.4. page 689	282

14	Chapter 10, The Laplace Transform and Some Elementary Applica- tions. Exercises for 10.7. page 704	311
15	Chapter 10, The Laplace Transform and Some Elementary Applica- tions. Exercises for 10.8. page 710	334
16	Chapter 11, Series Solutions to Linear Differential Equations. Exer- cises for 11.2. page 739	348
17	Chapter 11, Series Solutions to Linear Differential Equations. Exer- cises for 11.4. page 758	369
18	Chapter 11, Series Solutions to Linear Differential Equations. Exer- cises for 11.5. page 771	396
19	Chapter 11, Series Solutions to Linear Differential Equations. Exer- cises for 11.6. page 783	443
20	Chapter 11, Series Solutions to Linear Differential Equations. Ad- ditional problems. Section 11.7. page 788	446

1 Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

1.1	problem Problem 7	5
1.2	problem Problem 8	6
1.3	problem Problem 9	7
1.4	problem Problem 10	8
1.5	problem Problem 11	9
1.6	problem Problem 12	10
1.7	problem Problem 13	11
1.8	problem Problem 14	12
1.9	problem Problem 15	13
1.10	problem Problem 16	14
1.11	problem Problem 17	15
1.12	problem Problem 18	16
1.13	problem Problem 19	17
1.14	problem Problem 20	18
1.15	problem Problem 21	19
1.16	problem Problem 22	20
1.17	problem Problem 23	21
1.18	problem Problem 24	22
1.19	problem Problem 25	23
1.20	problem Problem 28	24
1.21	problem Problem 29	25
1.22	problem Problem 30	26
1.23	problem Problem 31	27
1.24	problem Problem 32	28
1.25	problem Problem 33	29
1.26	problem Problem 34	30
1.27	problem Problem 35	31
1.28	problem Problem 36	32
1.29	problem Problem 37	33
1.30	problem Problem 38	34
1.31	problem Problem 39	35
1.32	problem Problem 40	36
1.33	problem Problem 45	37
1.34	problem Problem 46	38

1.35 problem Problem 47	7	•		•	•		•	•	•	•		•	•	•	•	•	•			•		•	•		•	•	•	•			•		39	9
-------------------------	---	---	--	---	---	--	---	---	---	---	--	---	---	---	---	---	---	--	--	---	--	---	---	--	---	---	---	---	--	--	---	--	----	---

1.1 problem Problem 7

Internal problem ID [2587]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 7. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 25y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-25*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{5x} + c_2 e^{-5x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

DSolve[y''[x]-25*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{5x} + c_2 e^{-5x}$$

1.2 problem Problem 8

Internal problem ID [2588]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 8. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(2x) + c_2 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

DSolve[y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(2x) + c_2 \sin(2x)$$

1.3 problem Problem 9

Internal problem ID [2589]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 9. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 20

DSolve[y''[x]+y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-2x} + c_2 e^x$$

1.4 problem Problem 10

Internal problem ID [2590]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 10.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

 $dsolve(diff(y(x),x)=-y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{c_1 + x}$$

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 18

DSolve[y'[x]==-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{x-c_1}$$

 $y(x) o 0$

1.5 problem Problem 11

Internal problem ID [2591]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 11. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)=y(x)/(2*x),y(x), singsol=all)

$$y(x) = c_1 \sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 18

DSolve[y'[x]==y[x]/(2*x),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \sqrt{x}$$

 $y(x) \to 0$

1.6 problem Problem 12

Internal problem ID [2592]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 12.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} \sin(2x) + c_2 \cos(2x) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 26

DSolve[y''[x]+2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(c_2\cos(2x) + c_1\sin(2x))$$

1.7 problem Problem 13

Internal problem ID [2593]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 13.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 9y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-9*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 22

DSolve[y''[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o e^{-3x} (c_1 e^{6x} + c_2)$$

1.8 problem Problem 14

Internal problem ID [2594]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 14.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + 5xy' + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x^2)+5*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + \frac{c_2}{x^3}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

DSolve[x²*y''[x]+5*x*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^2 + c_1}{x^3}$$

1.9 problem Problem 15

Internal problem ID [2595]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 15.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F

$$x^2y'' - 3xy' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x^2)-3*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + c_2 x^2 \ln(x)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 18

DSolve[x²*y''[x]-3*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(2c_2\log(x) + c_1)$$

1.10 problem Problem 16

Internal problem ID [2596]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 16.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 3xy' + 13y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+13*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 \sin(3\ln(x)) + c_2 x^2 \cos(3\ln(x))$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 26

DSolve[x²*y''[x]-3*x*y'[x]+13*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(c_2\cos(3\log(x)) + c_1\sin(3\log(x)))$$

1.11 problem Problem 17

Internal problem ID [2597]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 17.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^2y'' - xy' + y = 9x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=9*x^2,y(x), singsol=all)$

$$y(x) = \sqrt{x} c_2 + c_1 x + 3x^2$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 23

DSolve[2*x²*y''[x]-x*y'[x]+y[x]==9*x²,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3x^2 + c_2 x + c_1 \sqrt{x}$$

1.12 problem Problem 18

Internal problem ID [2598]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 18. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 4xy' + 6y = x^{4}\sin(x)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(x^2*diff(y(x),x\$2)-4*x*diff(y(x),x)+6*y(x)=x^4*sin(x),y(x), singsol=all)

$$y(x) = x^2 c_2 + c_1 x^3 - \sin(x) x^2$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 20

DSolve[x²*y''[x]-4*x*y'[x]+6*y[x]==x⁴*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(-\sin(x) + c_2 x + c_1)$$

1.13 problem Problem 19

Internal problem ID [2599]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 19.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - (a+b)y' + aby = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-(a+b)*diff(y(x),x)+a*b*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{ax} + c_2 \mathrm{e}^{bx}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 22

DSolve[y''[x]-(a+b)*y'[x]+a*b*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 e^{ax} + c_1 e^{bx}$$

1.14 problem Problem 20

Internal problem ID [2600]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 20.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y'a + ya^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \mathrm{e}^{ax} + c_2 \mathrm{e}^{ax} x$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 18

DSolve[y''[x]-2*a*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{ax}(c_2x + c_1)$$

1.15 problem Problem 21

Internal problem ID [2601]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 21.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y''-2y'a+\left(a^2+b^2\right)y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+(a^2+b^2)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{ax} \sin(bx) + c_2 e^{ax} \cos(bx)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 31

DSolve[y''[x]-2*a*y'[x]+(a²+b²)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{x(a-ib)} \left(c_2 e^{2ibx} + c_1\right)$$

1.16 problem Problem 22

Internal problem ID [2602]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 22. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y''-y'-6y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 22

DSolve[y''[x]-y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_2 e^{5x} + c_1)$$

1.17 problem Problem 23

Internal problem ID [2603]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 23. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-3x} + c_2 e^{-3x} x$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 18

DSolve[y''[x]+6*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x}(c_2x + c_1)$$

1.18 problem Problem 24

Internal problem ID [2604]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 24.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + xy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + c_2 x$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 16

DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1}{x} + c_2 x$$

1.19 problem Problem 25

Internal problem ID [2605]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 25.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' + 5xy' + 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x^2)+5*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = rac{c_1}{x^2} + rac{c_2 \ln (x)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 18

DSolve[x²*y''[x]+5*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2c_2\log(x) + c_1}{x^2}$$

1.20 problem Problem 28

Internal problem ID [2606]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 28. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \frac{e^x - \sin(y)}{x\cos(y)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)=(exp(x)-sin(y(x)))/(x*cos(y(x))),y(x), singsol=all)

$$y(x) = \arcsin\left(rac{-c_1 + \mathrm{e}^x}{x}
ight)$$

Solution by Mathematica

Time used: 11.572 (sec). Leaf size: 16

DSolve[y'[x]==(Exp[x]-Sin[y[x]])/(x*Cos[y[x]]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin\left(\frac{e^x + c_1}{x}\right)$$

1.21 problem Problem 29

Internal problem ID [2607]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 29.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_At

$$y'-\frac{1-y^2}{2+2yx}=0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=(1-y(x)^2)/(2*(1+x*y(x))),y(x), singsol=all)$

$$c_{1} + rac{1}{(y(x) - 1)(xy(x) + x + 2)} = 0$$

Solution by Mathematica

Time used: 0.463 (sec). Leaf size: 58

DSolve[y'[x]==(1-y[x]^2)/(2*(1+x*y[x])),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1 + \sqrt{x^2 + c_1 x + 1}}{x}$$
$$y(x) \rightarrow \frac{-1 + \sqrt{x^2 + c_1 x + 1}}{x}$$
$$y(x) \rightarrow -1$$
$$y(x) \rightarrow 1$$

1.22 problem Problem 30

Internal problem ID [2608]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 30. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$y' - \frac{(1 - y e^{yx}) e^{-yx}}{x} = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 10

dsolve([diff(y(x),x)=(1-y(x)*exp(x*y(x)))/(x*exp(x*y(x))),y(1) = 0],y(x), singsol=all)

$$y(x) = \frac{\ln\left(x\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.403 (sec). Leaf size: 11

DSolve[{y'[x]==(1-y[x]*Exp[x*y[x]])/(x*Exp[x*y[x]]), {y[1]==0}}, y[x], x, IncludeSingularSolution

$$y(x) o rac{\log(x)}{x}$$

1.23 problem Problem 31

Internal problem ID [2609]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 31. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - rac{x^2(1-y^2) + y \, \mathrm{e}^{rac{y}{x}}}{x \left(\mathrm{e}^{rac{y}{x}} + 2y x^2
ight)} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=(x^2*(1-y(x)^2)+y(x)*exp(y(x)/x))/(x*(exp(y(x)/x)+2*x^2*y(x))),y(x), sin (x,y) = (x^2+y(x)^2)+y(x)^2+y(x)+y(x)^2+$

$$y(x) = \text{RootOf} (e^{-Z} + x^3 Z^2 + c_1 - x) x$$

Solution by Mathematica

Time used: 0.293 (sec). Leaf size: 24

 $DSolve[y'[x] == (x^2*(1-y[x]^2)+y[x]*Exp[y[x]/x])/(x*(Exp[y[x]/x]+2*x^2*y[x])), y[x], x, IncludeS)$

Solve
$$\left[xy(x)^2 + e^{\frac{y(x)}{x}} - x = c_1, y(x)\right]$$

1.24 problem Problem 32

Internal problem ID [2610]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 32. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - \frac{\cos{(x)} - 2xy^2}{2yx^2} = 0$$

With initial conditions

$$\left[y(\pi) = \frac{1}{\pi}\right]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 14

 $dsolve([diff(y(x),x)=(cos(x)-2*x*y(x)^2)/(2*x^2*y(x)),y(Pi) = 1/Pi],y(x), singsol=all)$

$$y(x) = \frac{\sqrt{\sin\left(x\right) + 1}}{x}$$

 \checkmark Solution by Mathematica

Time used: 0.342 (sec). Leaf size: 17

DSolve[{y'[x]==(Cos[x]-2*x*y[x]^2)/(2*x^2*y[x]),{y[Pi]==1/Pi}},y[x],x,IncludeSingularSolutic

$$y(x) \to \frac{\sqrt{\sin(x) + 1}}{x}$$

1.25 problem Problem 33

Internal problem ID [2611]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 33. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)=sin(x),y(x), singsol=all)

$$y(x) = -\cos\left(x\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 12

DSolve[y'[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\cos(x) + c_1$$

1.26 problem Problem 34

Internal problem ID [2612]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 34. **ODE order**: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\left| \begin{array}{c} y' = \frac{1}{x^{\frac{2}{3}}} \end{array} \right|$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)=x^{(-2/3)},y(x), singsol=all)$

$$y(x) = 3x^{\frac{1}{3}} + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 15

DSolve[y'[x]==x^(-2/3),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3\sqrt[3]{x} + c_1$$

1.27 problem Problem 35

Internal problem ID [2613]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 35. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = x e^x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)=x*exp(x),y(x), singsol=all)

$$y(x) = (-2+x)e^{x} + c_{1}x + c_{2}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 19

DSolve[y''[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x-2) + c_2 x + c_1$$

1.28 problem Problem 36

Internal problem ID [2614]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 36. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = x^n$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)=x^n,y(x), singsol=all)

$$y(x) = \frac{x^{2+n}}{(2+n)(n+1)} + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 28

DSolve[y''[x]==x^n,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{x^{n+2}}{n^2+3n+2} + c_2 x + c_1$$

1.29 problem Problem 37

Internal problem ID [2615]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 37. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \ln\left(x\right)x^2$$

With initial conditions

[y(1) = 2]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve([diff(y(x),x)=x^2*ln(x),y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{x^3 \ln (x)}{3} - \frac{x^3}{9} + \frac{19}{9}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

DSolve[{y'[x]==x^2*Log[x],{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{9} \left(-x^3 + 3x^3 \log(x) + 19 \right)$$

1.30 problem Problem 38

Internal problem ID [2616]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 38. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = \cos\left(x\right)$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)=cos(x),y(0) = 2, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = -\cos\left(x\right) + x + 3$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 12

DSolve[{y''[x]==Cos[x],{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x - \cos(x) + 3$$

1.31 problem Problem 39

Internal problem ID [2617]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 39. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$y''' = 6x$$

With initial conditions

$$[y(0) = 1, y'(0) = -1, y''(0) = -4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve([diff(y(x),x^3)=6*x,y(0) = 1, D(y)(0) = -1, (D@@2)(y)(0) = -4],y(x), singsol=all)$

$$y(x) = \frac{1}{4}x^4 - 2x^2 + 1 - x$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[{y'''[x]==6*x,{y[0]==2,y'[0]==-1,y''[0]==-4}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to \frac{1}{4}(x^4 - 8x^2 - 4x + 8)$$

1.32 problem Problem 40

Internal problem ID [2618]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 40.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = x e^x$$

With initial conditions

$$[y(0) = 3, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)=x*exp(x),y(0) = 3, D(y)(0) = 4],y(x), singsol=all)

$$y(x) = (-2+x)e^x + 5x + 5$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 18

DSolve[{y''[x]==x*Exp[x],{y[0]==3,y'[0]==4}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x-2) + 5(x+1)$$

1.33 problem Problem 45

Internal problem ID [2619]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 45.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 19

DSolve[y''[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x-2) + c_2 x + c_1$$

1.34 problem Problem 46

Internal problem ID [2620]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 46. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - xy' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x^2)-x*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)$

$$y(x) = x^4 c_1 + rac{c_2}{x^2}$$

 \checkmark Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 18

DSolve[x^2*y''[x]-x*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^6 + c_1}{x^2}$$

1.35 problem Problem 47

Internal problem ID [2621]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 47.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 3xy' + 4y = \ln(x) x^{2}$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve(x^2*diff(y(x),x^2)-3*x*diff(y(x),x)+4*y(x)=x^2*ln(x),y(x), singsol=all)$

$$y(x) = x^{2}c_{2} + \ln(x)c_{1}x^{2} + \frac{\ln(x)^{3}x^{2}}{6}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 27

DSolve[x²*y''[x]-3*x*y'[x]+4*y[x]==x²*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}x^2 (\log^3(x) + 12c_2\log(x) + 6c_1)$$

2 Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

2.1	problem	Problem	1.	•		•	•	 •		•		•	•	•	•	 •	•		•	•	•	•	•	•		41
2.2	problem	Problem	2 .	•		•	•	 •		•		•	•	•	•	 •	•		•	•	•	•	•	•		42
2.3	problem	Problem	3.	•		•	•	 •	•			•	•	•	•	 •	•		•	•	•	•	•	•	•	43
2.4	problem	Problem	4.	•		•	•	 •	•			•	•	•	•	 •	•		•	•	•	•	•	•		44
2.5	problem	Problem	5 .	•		•	•	 •		•		•	•	•	•	 •	•		•	•	•	•	•	•		45
2.6	problem	Problem	6.	•		•	•	 •	•			•	•	•	•	 •	•		•	•	•	•	•	•		46
2.7	problem	Problem	7.	•		•	•	 •		•		•	•	•	•	 •	•		•	•	•	•	•	•		47
2.8	problem	Problem	8.	•		•	•	 •	•			•	•	•	•	 •	•		•	•	•	•	•	•		48
2.9	problem	Problem	9.	•		•	•	 •	•			•	•	•	•	 •	•		•	•	•	•	•	•		50
2.10	problem	Problem	10	•		•	•			•		•	•	•	•	 •			•	•	•	•	•	•		51
2.11	problem	Problem	11	•		•	•		•			•	•	•	•	 •			•	•	•	•	•	•		52
2.12	problem 2	Problem	12			•	•		•			•	•	•	•	 •			•	•	•	•	•	•	•	53
2.13	problem	Problem	13	•		•	•		•			•	•	•	•	 •			•	•	•	•	•	•		54
2.14	problem	Problem	14	•		•	•		•			•	•	•	•	 •			•	•	•	•	•	•		55
2.15	problem 2	Problem	15	•	•	•	•	 •		•	•	•	•	•	•	 •	•		•	•	•	•	•	•		56
2.16	problem [Problem	16	•	•	•	•	 •		•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•		57
2.17	problem 2	Problem	17			•	•		•			•	•	•	•	 •			•	•		•		•	•	58

2.1 problem Problem 1

Internal problem ID [2622]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 1. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{x^2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 18

DSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{x^2}$$

 $y(x) \to 0$

2.2 problem Problem 2

Internal problem ID [2623]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 2. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y^2}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)=y(x)^2/(x^2+1),y(x), singsol=all)$

$$y(x) = -\frac{1}{\arctan\left(x\right) - c_1}$$

✓ Solution by Mathematica

Time used: 0.16 (sec). Leaf size: 19

DSolve[y'[x]==y[x]^2/(x^2+1),y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -rac{1}{\arctan(x)+c_1}$$

 $y(x)
ightarrow 0$

2.3 problem Problem 3

Internal problem ID [2624]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 3. **ODE order**: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$e^{y+x}y' = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(exp(x+y(x))*diff(y(x),x)-1=0,y(x), singsol=all)

$$y(x) = \ln (c_1 e^x - 1) - x$$

✓ Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 16

DSolve[Exp[x+y[x]]*y'[x]-1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(-e^{-x} + c_1\right)$$

2.4 problem Problem 4

Internal problem ID [2625]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 4. **ODE order**: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{\ln\left(x\right)x} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(diff(y(x),x)=y(x)/(x*ln(x)),y(x), singsol=all)

$$y(x) = \ln\left(x\right)c_1$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 15

DSolve[y'[x]==y[x]/(x*Log[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log(x)$$

 $y(x) \to 0$

2.5 problem Problem 5

Internal problem ID [2626]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 5. ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - (x - 1) y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve(y(x)-(x-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1(x-1)$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 16

DSolve[y[x]-(x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1(x-1)$$

 $y(x) \to 0$

2.6 problem Problem 6

Internal problem ID [2627]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 6. **ODE order**: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2x(y-1)}{x^2 + 3} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)=(2*x*(y(x)-1))/(x^2+3),y(x), singsol=all)$

$$y(x) = 1 + (x^2 + 3) c_1$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 20

DSolve[y'[x]==(2*x*(y[x]-1))/(x^2+3),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 1 + c_1(x^2 + 3)$$

 $y(x) \rightarrow 1$

2.7 problem Problem 7

Internal problem ID [2628]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 7. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-xy' + y + 2y'x^2 = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(y(x)-x*diff(y(x),x)=3-2*x^2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \frac{\left(-\frac{3}{x} + c_1\right)x}{2x - 1}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 24

DSolve[y[x]-x*y'[x]==3-2*x^2*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{3+c_1x}{1-2x}$$

 $y(x) \rightarrow 3$

2.8 problem Problem 8

Internal problem ID [2629]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 8. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{\cos\left(-y + x\right)}{\sin\left(x\right)\sin\left(y\right)} = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve(diff(y(x),x)=cos(x-y(x))/(sin(x)*sin(y(x)))-1,y(x), singsol=all)

$$y(x) = \arccos\left(rac{1}{\sin\left(x
ight)c_{1}}
ight)$$

✓ Solution by Mathematica

Time used: 5.812 (sec). Leaf size: 47

DSolve[y'[x]==Cos[x-y[x]]/(Sin[x]*Sin[y[x]])-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\arccos\left(-\frac{1}{2}c_1 \csc(x)\right)$$
$$y(x) \to \arccos\left(-\frac{1}{2}c_1 \csc(x)\right)$$
$$y(x) \to -\frac{\pi}{2}$$
$$y(x) \to \frac{\pi}{2}$$

2.9 problem Problem 9

Internal problem ID [2630]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 9. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x(-1+y^2)}{2(x-2)(x-1)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=x*(y(x)^2-1)/(2*(x-2)*(x-1)),y(x), singsol=all)$

$$y(x) = - anh\left(\ln \left(-2 + x
ight) - rac{\ln \left(x - 1
ight)}{2} + rac{c_1}{2}
ight)$$

✓ Solution by Mathematica

Time used: 0.882 (sec). Leaf size: 51

DSolve[y'[x]==x*(y[x]^2-1)/(2*(x-2)*(x-1)),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{x + e^{2c_1}(x - 2)^2 - 1}{-x + e^{2c_1}(x - 2)^2 + 1}$$
$$y(x) \to -1$$
$$y(x) \to 1$$

2.10 problem Problem 10

Internal problem ID [2631]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 10. ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{yx^2 - 32}{-x^2 + 16} = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(diff(y(x),x)=(x^2*y(x)-32)/(16-x^2)+2,y(x), singsol=all)$

$$y(x) = \frac{e^{-x}(x^2 + 8x + 16)c_1}{(x-4)^2} + 2e^{-x}e^x$$

✓ Solution by Mathematica

Time used: 0.148 (sec). Leaf size: 40

 $DSolve[y'[x] == (x^2*y[x]-32)/(16-x^2)+2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{e^{-x}(2e^x(x-4)^2 + c_1(x+4)^2)}{(x-4)^2}$$

 $y(x) \rightarrow 2$

2.11 problem Problem 11

Internal problem ID [2632]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 11. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x-a)(x-b)y'-y=-c$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve((x-a)*(x-b)*diff(y(x),x)-(y(x)-c)=0,y(x), singsol=all)

$$y(x) = c + (x - b)^{-\frac{1}{a - b}} (x - a)^{\frac{1}{a - b}} c_1$$

 \checkmark Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 41

DSolve[(x-a)*(x-b)*y'[x]-(y[x]-c)==0,y[x],x,IncludeSingularSolutions -> True]

$$egin{aligned} y(x) &
ightarrow c + c_1(x-b)^{rac{1}{b-a}}(x-a)^{rac{1}{a-b}} \ y(x) &
ightarrow c \end{aligned}$$

2.12 problem Problem 12

Internal problem ID [2633]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 12.ODE order: 1.ODE degree: 1.

2

CAS Maple gives this as type [_separable]

$$y^2 + \left(x^2 + 1\right)y' = -1$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

dsolve([(x²+1)*diff(y(x),x)+y(x)²=-1,y(0) = 1],y(x), singsol=all)

$$y(x) = \cot\left(\arctan\left(x\right) + \frac{\pi}{4}\right)$$

✓ Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 14

 $DSolve[{(x^2+1)*y'[x]+y[x]^2==-1, {y[0]==1}}, y[x], x, IncludeSingularSolutions -> True]$

$$y(x) \to \cot\left(\arctan(x) + \frac{\pi}{4}\right)$$

2.13 problem Problem 13

Internal problem ID [2634]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 13. **ODE order**: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(1-x^2\right)y'+yx=ax$$

With initial conditions

[y(0) = 2a]

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve([(1-x^2)*diff(y(x),x)+x*y(x)=a*x,y(0) = 2*a],y(x), singsol=all)

$$y(x) = a\left(1 - i\sqrt{x-1}\sqrt{x+1}\right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 21

DSolve[{(1-x^2)*y'[x]+x*y[x]==a*x,{y[0]==2*a}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow a - ia\sqrt{x^2 - 1}$$

2.14 problem Problem 14

Internal problem ID [2635]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 14. **ODE order**: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{\sin\left(y + x\right)}{\cos\left(x\right)\sin\left(y\right)} = 1$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 11

dsolve([diff(y(x),x)=1-(sin(x+y(x)))/(sin(y(x))*cos(x)),y(1/4*Pi) = 1/4*Pi],y(x), singsol=al

$$y(x) = \arccos\left(\frac{\sec\left(x\right)}{2}\right)$$

✓ Solution by Mathematica

Time used: 6.259 (sec). Leaf size: 12

DSolve[{y'[x]==1-(Sin[x+y[x]])/(Sin[y[x]]*Cos[x]), {y[Pi/4]==Pi/4}}, y[x], x, IncludeSingularSol

$$y(x) \to \arccos\left(\frac{\sec(x)}{2}\right)$$

2.15 problem Problem 15

Internal problem ID [2636]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 15. ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y^3 \sin\left(x\right) = 0$$

With initial conditions

[y(0) = 0]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^3*sin(x),y(0) = 0],y(x), singsol=all)$

y(x) = 0

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

DSolve[{y'[x]==y[x]^3*Sin[x],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 0$$

2.16 problem Problem 16

Internal problem ID [2637]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{2\sqrt{y-1}}{3} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=2/3*(y(x)-1)^{(1/2)},y(1) = 1],y(x), singsol=all)$

$$y(x) = 1$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 17

DSolve[{y'[x]==1/3*(y[x]-1)^(1/2), {y[1]==1}}, y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{36} (x^2 - 2x + 37)$$

2.17 problem Problem 17

Internal problem ID [2638]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 17.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$mv' + kv^2 = mg$$

With initial conditions

[v(0) = 0]

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 26

 $dsolve([m*diff(v(t),t)=m*g-k*v(t)^2,v(0) = 0],v(t), singsol=all)$

$$v(t) = rac{ anh\left(rac{t\sqrt{mgk}}{m}
ight)\sqrt{mgk}}{k}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 39

DSolve[{m*v'[t]==m*g-k*v[t]^2,{v[0]==0}},v[t],t,IncludeSingularSolutions -> True]

$$v(t)
ightarrow rac{\sqrt{g}\sqrt{m} anh\left(rac{\sqrt{g}\sqrt{k}t}{\sqrt{m}}
ight)}{\sqrt{k}}$$

3 Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

3.1	problem Problem 1	60
3.2	problem Problem 2	61
3.3	problem Problem 3	62
3.4	problem Problem 4	63
3.5	problem Problem 5	64
3.6	problem Problem 6	65
3.7	problem Problem 7	66
3.8	problem Problem 8	67
3.9	problem Problem 9	68
3.10	problem Problem 10	69
3.11	problem Problem 11	70
3.12	problem Problem 12	71
3.13	problem Problem 13	72
3.14	problem Problem 14	73
3.15	problem Problem 15	74
3.16	problem Problem 16	75
3.17	problem Problem 17	76
3.18	problem Problem 18	77
3.19	problem Problem 19	78
3.20	problem Problem 20	79
3.21	problem Problem 21	81
3.22	problem Problem 22	83
3.23	problem Problem 30	84
3.24	problem Problem 31	85
3.25	problem Problem 32	86
3.26	problem Problem 33	87

3.1 problem Problem 1

Internal problem ID [2639]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 1. **ODE order**: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 4 e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)=4*exp(x),y(x), singsol=all)

$$y(x) = 2e^x + e^{-x}c_1$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 19

DSolve[y'[x]+y[x]==4*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2e^x + c_1 e^{-x}$$

3.2 problem Problem 2

Internal problem ID [2640]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 2.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2y}{x} = 5x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)+2/x*y(x)=5*x^2,y(x), singsol=all)$

$$y(x) = \frac{x^5 + c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 15

DSolve[y'[x]+2/x*y[x]==5*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^5 + c_1}{x^2}$$

3.3 problem Problem 3

Internal problem ID [2641]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 3.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x^2 - 4yx = x^7\sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x)-4*x*y(x)=x^7*sin(x),y(x), singsol=all)$

$$y(x) = (\sin(x) - \cos(x)x + c_1)x^4$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 19

DSolve[x²*y'[x]-4*x*y[x]==x⁷*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^4(\sin(x) - x\cos(x) + c_1)$$

3.4 problem Problem 4

Internal problem ID [2642]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 4.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yx = 2x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)+2*x*y(x)=2*x^3,y(x), singsol=all)$

$$y(x) = x^2 - 1 + e^{-x^2}c_1$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 20

DSolve[y'[x]+2*x*y[x]==2*x^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 + c_1 e^{-x^2} - 1$$

3.5 problem Problem 5

Internal problem ID [2643]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 5.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2xy}{1-x^2} = 4x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)+2*x/(1-x^2)*y(x)=4*x,y(x), singsol=all)$

$$y(x) = (2\ln(x-1) + 2\ln(x+1) + c_1)(x^2 - 1)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 22

DSolve[y'[x]+2*x/(1-x^2)*y[x]==4*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (x^2 - 1) (2 \log (x^2 - 1) + c_1)$$

3.6 problem Problem 6

Internal problem ID [2644]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 6.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2yx}{x^2 + 1} = \frac{4}{\left(x^2 + 1\right)^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)+2*x/(1+x^2)*y(x)=4/(1+x^2)^2,y(x), singsol=all)$

$$y(x) = \frac{4\arctan\left(x\right) + c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 20

DSolve[y'[x]+2*x/(1+x^2)*y[x]==4/(1+x^2)^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{4\arctan(x) + c_1}{x^2 + 1}$$

3.7 problem Problem 7

Internal problem ID [2645]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 7. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2\cos(x)^{2} y' + y\sin(2x) = 4\cos(x)^{4}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(2*(cos(x)^2)*diff(y(x),x)+y(x)*sin(2*x)=4*cos(x)^4,y(x), singsol=all)

$$y(x) = (2\sin(x) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 15

DSolve[2*(Cos[x]^2)*y'[x]+y[x]*Sin[2*x]==4*Cos[x]^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos(x)(2\sin(x) + c_1)$$

3.8 problem Problem 8

Internal problem ID [2646]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 8.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{\ln\left(x\right)x} = 9x^2$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x)+1/(x*ln(x))*y(x)=9*x^2,y(x), singsol=all)

$$y(x) = \frac{3x^3 \ln (x) - x^3 + c_1}{\ln (x)}$$

Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 25

DSolve[y'[x]+1/(x*Log[x])*y[x]==9*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{-x^3 + 3x^3 \log(x) + c_1}{\log(x)}$$

3.9 problem Problem 9

Internal problem ID [2647]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 9.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \tan\left(x\right) = 8\sin\left(x\right)^3$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)-y(x)*tan(x)=8*sin(x)^3,y(x), singsol=all)$

$$y(x) = \frac{-\cos(2x) + \frac{\cos(4x)}{4} + c_1}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 19

DSolve[y'[x]-y[x]*Tan[x]==8*Sin[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 2\sin^3(x)\tan(x) + c_1\sec(x)$$

3.10 problem Problem 10

Internal problem ID [2648]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 10.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$tx' + 2x = 4e^t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(t*diff(x(t),t)+2*x(t)=4*exp(t),x(t), singsol=all)

$$x(t) = \frac{4(t-1)\,\mathrm{e}^t + c_1}{t^2}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 20

DSolve[t*x'[t]+2*x[t]==4*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{4e^t(t-1) + c_1}{t^2}$$

3.11 problem Problem 11

Internal problem ID [2649]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 11.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \sin\left(x\right)\left(y\sec\left(x\right) - 2\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)=sin(x)*(y(x)*sec(x)-2),y(x), singsol=all)

$$y(x) = \frac{\frac{\cos(2x)}{2} + c_1}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 20

DSolve[y'[x]==Sin[x]*(y[x]*Sec[x]-2),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}\sec(x)(\cos(2x) + 2c_1)$$

3.12 problem Problem 12

Internal problem ID [2650]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 12.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y\sin\left(x\right) - \cos\left(x\right)y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((1-y(x)*sin(x))-cos(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (\tan(x) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 13

DSolve[(1-y[x]*Sin[x])-Cos[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + c_1 \cos(x)$$

3.13 problem Problem 13

Internal problem ID [2651]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 13.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{x} = 2\ln\left(x\right)x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)-1/x*y(x)=2*x^2*ln(x),y(x), singsol=all)$

$$y(x)=\left(\ln \left(x
ight) x^{2}-rac{x^{2}}{2}+c_{1}
ight) x$$

Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 23

DSolve[y'[x]-1/x*y[x]==2*x^2*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -rac{x^3}{2} + x^3 \log(x) + c_1 x$$

3.14 problem Problem 14

Internal problem ID [2652]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 14.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + \alpha y = \mathrm{e}^{\beta x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x)+alpha*y(x)=exp(beta*x),y(x), singsol=all)

$$y(x) = \left(rac{\mathrm{e}^{x(lpha+eta)}}{lpha+eta} + c_1
ight)\mathrm{e}^{-lpha x}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 31

DSolve[y'[x]+\[Alpha]*y[x]==Exp[\[Beta]*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{e^{lpha(-x)} \left(e^{x(lpha+eta)} + c_1(lpha+eta)
ight)}{lpha+eta}$$

3.15 problem Problem 15

Internal problem ID [2653]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 15.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{my}{x} = \ln\left(x\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

dsolve(diff(y(x),x)+m/x*y(x)=ln(x),y(x), singsol=all)

$$y(x) = \frac{\ln(x)x}{m+1} - \frac{x}{m^2 + 2m + 1} + x^{-m}c_1$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 29

DSolve[y'[x]+m/x*y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to rac{x((m+1)\log(x) - 1)}{(m+1)^2} + c_1 x^{-m}$$

3.16 problem Problem 16

Internal problem ID [2654]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 16.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2y}{x} = 4x$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

dsolve([diff(y(x),x)+2/x*y(x)=4*x,y(1) = 2],y(x), singsol=all)

$$y(x) = \frac{x^4 + 1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 12

DSolve[{y'[x]+2/x*y[x]==4*x,{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^2 + \frac{1}{x^2}$$

3.17 problem Problem 17

Internal problem ID [2655]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 17. ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\sin(x) y' - y \cos(x) = \sin(2x)$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right)=2\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([sin(x)*diff(y(x),x)-y(x)*cos(x)=sin(2*x),y(1/2*Pi) = 2],y(x), singsol=all)

 $y(x) = (2\ln(\sin(x)) + 2)\sin(x)$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 14

DSolve[{Sin[x]*y'[x]-y[x]*Cos[x]==Sin[2*x],{y[Pi/2]==2}},y[x],x,IncludeSingularSolutions ->

$$y(x) \rightarrow 2\sin(x)(\log(\sin(x)) + 1)$$

3.18 problem Problem 18

Internal problem ID [2656]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 18.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + \frac{2x}{4-t} = 5$$

With initial conditions

$$[x(0) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(x(t),t)+2/(4-t)*x(t)=5,x(0) = 4],x(t), singsol=all)

$$x(t) = -t^2 + 3t + 4$$

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 15

DSolve[{x'[t]+2/(4-t)*x[t]==5,{x[0]==4}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -t^2 + 3t + 4$$

3.19 problem Problem 19

Internal problem ID [2657]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 19.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = e^x$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([y(x)-exp(x)+diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^x}{2} + \frac{\mathrm{e}^{-x}}{2}$$

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 21

DSolve[{y[x]-Exp[x]+y'[x]==0,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^{-x}(e^{2x}+1)$$

3.20 problem Problem 20

Internal problem ID [2658]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 20.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = \begin{cases} 1 & x \le 1 \\ 0 & 1 < x \end{cases}$$

With initial conditions

[y(0) = 3]

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 27

dsolve([diff(y(x),x)-2*y(x)=piecewise(x<=1,1,x>1,0),y(0) = 3],y(x), singsol=all)

$$y(x) = \frac{7 e^{2x}}{2} - \frac{\left(\begin{cases} 1 & x < 1 \\ e^{2x-2} & 1 \le x \end{cases}\right)}{2}$$

Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 42

DSolve[{ode = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Inclu

$$y(x) \rightarrow \{ \begin{array}{cc} rac{1}{2}(-1+7e^{2x}) & x \leq 1 \\ rac{1}{2}e^{2x-2}(-1+7e^2) & \text{True} \end{array}$$

3.21 problem Problem 21

Internal problem ID [2659]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 21.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = \begin{cases} 1 - x & x < 1 \\ 0 & 1 \le x \end{cases}$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 31

dsolve([diff(y(x),x)-2*y(x)=piecewise(x<1,1-x,x>=1,0),y(0) = 1],y(x), singsol=all)

$$y(x) = \frac{5e^{2x}}{4} + \frac{\left(\begin{cases} 2x - 1 & x < 1\\ e^{2x - 2} & 1 \le x \end{cases}\right)}{4}$$

Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 45

DSolve[{y'[x] - 2*y[x] == Piecewise[{{1-x, x < 1}, {0, x >= 1}}],{y[0]==1}},y[x],x,IncludeSi

$$y(x) \rightarrow \{ \begin{array}{cc} rac{1}{4}(2x+5e^{2x}-1) & x \leq 1 \\ rac{1}{4}e^{2x-2}(1+5e^2) & \mathrm{True} \end{array}$$

3.22 problem Problem 22

Internal problem ID [2660]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 22.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + \frac{y'}{x} = 9x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)=9*x,y(x), singsol=all)

$$y(x) = x^3 + \ln(x) c_1 + c_2$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 16

DSolve[y''[x]+1/x*y'[x]==9*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^3 + c_1 \log(x) + c_2$$

3.23 problem Problem 30

Internal problem ID [2661]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 30.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{x} = \cos\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)+1/x*y(x)=cos(x),y(x), singsol=all)

$$y(x) = \frac{\sin(x)x + \cos(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 18

DSolve[y'[x]+1/x*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x\sin(x) + \cos(x) + c_1}{x}$$

3.24 problem Problem 31

Internal problem ID [2662]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 31.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+y(x)=exp(-2*x),y(x), singsol=all)

$$y(x) = (-e^{-x} + c_1) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 19

DSolve[y'[x]+y[x]==Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(-1+c_1e^x)$$

3.25 problem Problem 32

Internal problem ID [2663]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 32.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y \cot(x) = 2\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+y(x)*cot(x)=2*cos(x),y(x), singsol=all)

$$y(x) = \frac{-\frac{\cos(2x)}{2} + c_1}{\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 20

DSolve[y'[x]+y[x]*Cot[x]==2*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1}{2}\csc(x)(\cos(2x) - 2c_1)$$

3.26 problem Problem 33

Internal problem ID [2664]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 33.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' - y = \ln\left(x\right)x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x*diff(y(x),x)-y(x)=x^2*ln(x),y(x), singsol=all)$

$$y(x) = (x \ln (x) - x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 17

DSolve[x*y'[x]-y[x]==x^2*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(-x + x\log(x) + c_1)$$

4 Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

4.1	problem Problem 9	90
4.2	problem Problem 10	91
4.3	problem Problem 11	92
4.4	problem Problem 12	93
4.5	problem Problem 13	94
4.6	problem Problem 14	95
4.7	problem Problem 15	96
4.8	problem Problem 16	97
4.9	problem Problem 17	98
4.10	problem Problem 18	100
4.11	problem Problem 19	101
4.12	problem Problem 20	102
4.13	problem Problem 21	103
4.14	problem Problem 22	104
4.15	problem Problem 23	105
4.16	problem Problem 25	106
4.17	problem Problem 26	108
4.18	problem Problem 27	109
4.19	problem Problem 28	111
4.20	problem Problem 29(a)	112
4.21	problem Problem 29(b)	113
4.22	problem Problem 38	114
4.23	problem Problem 39	115
4.24	problem Problem 40	117
4.25	problem Problem 41	118
4.26	problem Problem 42	119
4.27	problem Problem 43	120
4.28	problem Problem 44	121
4.29	problem Problem 45	122
4.30	problem Problem 46	123
4.31	problem Problem 47	124
4.32	problem Problem 48	126
4.33	problem Problem 49	127
4.34	problem Problem 50	128
4.35	problem Problem 51	130
4.36	problem Problem 52	131

4.37	problem	Problem 5	54													•		•										•	•	132
4.38	problem	Problem 5	55					•			•					•	•						•			•		•	•	133
4.39	problem	Problem 5	56			•					•					•	•	•					•			•		•	•	134
4.40	problem	Problem 5	58			•					•					•	•	•					•			•		•	•	135
4.41	problem	Problem 5	59	•						•						•	•	•					•			•	•	•	•	136
4.42	problem	Problem 6	60		•		•	•			•	•				•	•	•	•	•			•		•	•		•	•	137
4.43	problem	Problem 6	61		•		•	•			•	•				•	•	•	•	•			•		•	•		•	•	138
4.44	problem	Problem 6	62		•	•	•	•	•	•	•	•		•		•	•	•		•			•	•	•	•		•	•	139
4.45	problem	Problem 6	63		•		•	•			•	•				•	•	•	•	•			•		•	•		•	•	140
4.46	problem	Problem 6	64		•		•	•	•	•	•	•	•		•	•	•	•	•		•	•	•		•	•		•	•	141
4.47	problem	Problem 6	65		•	•	•	•	•	•	•	•		•		•	•	•		•			•	•	•	•		•	•	143
4.48	problem	Problem 6	67	•	•	•	•	•	•	•	•			•		•	•	•	•				•	•		•		•		144

4.1 problem Problem 9

Internal problem ID [2665]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 9. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y' - \frac{x^2 + yx + y^2}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)=(y(x)^2+x*y(x)+x^2)/x^2,y(x), singsol=all)$

$$y(x) = \tan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 13

DSolve[y'[x]==(y[x]^2+x*y[x]+x^2)/x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \tan(\log(x) + c_1)$$

4.2 problem Problem 10

Internal problem ID [2666]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables.
page 79
Problem number: Problem 10.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$(3x-y)y'-3y=0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve((3*x-y(x))*diff(y(x),x)=3*y(x),y(x), singsol=all)

$$y(x) = \mathrm{e}^{\mathrm{LambertW}(-3x\,\mathrm{e}^{-3c_1})+3c_1}$$

✓ Solution by Mathematica

Time used: 6.103 (sec). Leaf size: 25

DSolve[(3*x-y[x])*y'[x]==3*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{3x}{W(-3e^{-c_1}x)}$$

 $y(x) \rightarrow 0$

4.3 problem Problem 11

Internal problem ID [2667]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 11.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y'-\frac{\left(y+x\right)^2}{2x^2}=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)=(x+y(x))^2/(2*x^2),y(x), singsol=all)$

$$y(x) = an\left(rac{\ln(x)}{2} + rac{c_1}{2}
ight)x$$

✓ Solution by Mathematica

Time used: 0.236 (sec). Leaf size: 17

DSolve[y'[x] == (x+y[x])^2/(2*x^2),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \tan\left(\frac{\log(x)}{2} + c_1\right)$$

4.4 problem Problem 12

Internal problem ID [2668]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 12.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$\sin\left(\frac{y}{x}\right)(xy'-y) - x\cos\left(\frac{y}{x}\right) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(sin(y(x)/x)*(x*diff(y(x),x)-y(x))=x*cos(y(x)/x),y(x), singsol=all)

$$y(x) = x \arccos\left(\frac{1}{c_1 x}\right)$$

✓ Solution by Mathematica

Time used: 25.367 (sec). Leaf size: 56

DSolve[Sin[y[x]/x]*(x*y'[x]-y[x])==x*Cos[y[x]/x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x \arccos\left(\frac{e^{-c_1}}{x}\right)$$

 $y(x) \to x \arccos\left(\frac{e^{-c_1}}{x}\right)$
 $y(x) \to -\frac{\pi x}{2}$
 $y(x) \to \frac{\pi x}{2}$

4.5 problem Problem 13

Internal problem ID [2669]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 13. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy' - \sqrt{16x^2 - y^2} - y = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)=sqrt(16*x^2-y(x)^2)+y(x),y(x), singsol=all)$

$$-\arctan\left(rac{y(x)}{\sqrt{16x^2-y\left(x
ight)^2}}
ight)+\ln\left(x
ight)-c_1=0$$

✓ Solution by Mathematica

Time used: 0.398 (sec). Leaf size: 18

DSolve[x*y'[x]==Sqrt[16*x^2-y[x]^2]+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -4x \cosh(i \log(x) + c_1)$$

4.6 problem Problem 14

Internal problem ID [2670]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 14.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'-y-\sqrt{9x^2+y^2}=0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(9*x^2+y(x)^2),y(x), singsol=all)$

$$rac{y(x)}{x^2} + rac{\sqrt{9x^2 + y(x)^2}}{x^2} - c_1 = 0$$

Solution by Mathematica

Time used: 0.35 (sec). Leaf size: 27

DSolve[x*y'[x]-y[x]==Sqrt[9*x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{9e^{c_1}x^2}{2} - rac{e^{-c_1}}{2}$$

4.7 problem Problem 15

Internal problem ID [2671]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 15.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y(x^2 - y^2) - x(x^2 - y^2) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(y(x)*(x^2-y(x)^2)-x*(x^2-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

 $egin{aligned} y(x) &= -x \ y(x) &= x \ y(x) &= c_1 x \end{aligned}$

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 33

DSolve[y[x]*(x^2-y[x]^2)-x*(x^2-y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow -x$ $y(x) \rightarrow x$ $y(x) \rightarrow c_1 x$ $y(x) \rightarrow -x$ $y(x) \rightarrow x$

4.8 problem Problem 16

Internal problem ID [2672]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 16. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' + y\ln(x) - \ln(y)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(x*diff(y(x),x)+y(x)*ln(x)=y(x)*ln(y(x)),y(x), singsol=all)

$$y(x) = x e^{-c_1 x} e$$

✓ Solution by Mathematica

Time used: 0.257 (sec). Leaf size: 24

DSolve[x*y'[x]+y[x]*Log[x]==y[x]*Log[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to xe^{1+e^{c_1x}}$$

 $y(x) \to ex$

4.9 problem Problem 17

Internal problem ID [2673]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 17.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y' - \frac{y^2 + 2yx - 2x^2}{x^2 - yx + y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 79

 $dsolve(diff(y(x),x)=(y(x)^{2}+2*x*y(x)-2*x^{2})/(x^{2}-x*y(x)+y(x)^{2}),y(x), singsol=all)$

$$y(x) = -\frac{x \left(\text{RootOf} \left(2_Z^6 + (9c_1x^2 - 1)_Z^4 - 6x^2c_1_Z^2 + c_1x^2 \right)^2 - 1 \right)}{\text{RootOf} \left(2_Z^6 + (9c_1x^2 - 1)_Z^4 - 6x^2c_1_Z^2 + c_1x^2 \right)^2}$$

Solution by Mathematica

Time used: 60.187 (sec). Leaf size: 373

DSolve[y'[x]==(y[x]^2+2*x*y[x]-2*x^2)/(x^2-x*y[x]+y[x]^2),y[x],x,IncludeSingularSolutions ->

$$\begin{split} y(x) & \rightarrow \frac{\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{3\sqrt[3]{2}} \\ & -\frac{\sqrt[3]{2}(-3x^2 + e^{2c_1})}{\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \\ y(x) & \rightarrow \frac{(-1 + i\sqrt{3})\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{6\sqrt[3]{2}} \\ & +\frac{(1 + i\sqrt{3})(-3x^2 + e^{2c_1})}{2^{2/3}\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \\ y(x) & \rightarrow -\frac{(1 + i\sqrt{3})\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{6\sqrt[3]{2}} \\ & +\frac{(1 - i\sqrt{3})\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{6\sqrt[3]{2}} \\ & +\frac{(1 - i\sqrt{3})(-3x^2 + e^{2c_1})}{2^{2/3}\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \end{split}$$

4.10 problem Problem 18

Internal problem ID [2674]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 18. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A']]

$$2y'yx - x^2 e^{-\frac{y^2}{x^2}} - 2y^2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(2*x*y(x)*diff(y(x),x)-(x²*exp(-y(x)²/x²)+2*y(x)²)=0,y(x), singsol=all)

$$y(x) = \sqrt{\ln(\ln(x) + c_1)x}$$
$$y(x) = -\sqrt{\ln(\ln(x) + c_1)x}$$

✓ Solution by Mathematica

Time used: 2.17 (sec). Leaf size: 38

DSolve[2*x*y[x]*y'[x]-(x^2*Exp[-y[x]^2/x^2]+2*y[x]^2)==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \rightarrow -x\sqrt{\log(\log(x) + 2c_1)}$$

 $y(x) \rightarrow x\sqrt{\log(\log(x) + 2c_1)}$

4.11 problem Problem 19

Internal problem ID [2675]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 19.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y'x^2 - y^2 - 3yx = x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x)=y(x)^2+3*x*y(x)+x^2,y(x), singsol=all)$

$$y(x) = -\frac{x(\ln(x) + c_1 + 1)}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 28

DSolve[x²*y'[x]==y[x]²+3*x*y[x]+x²,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x(\log(x) + 1 + c_1)}{\log(x) + c_1}$$

 $y(x) \rightarrow -x$

4.12 problem Problem 20

Internal problem ID [2676]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 20.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'y - \sqrt{y^2 + x^2} = -x$$

Solution by Maple

Time used: 0.063 (sec). Leaf size: 28

 $dsolve(y(x)*diff(y(x),x)=sqrt(x^2+y(x)^2)-x,y(x), singsol=all)$

$$-c_{1}+rac{\sqrt{x^{2}+y\left(x
ight)^{2}}}{y\left(x
ight)^{2}}+rac{x}{y\left(x
ight)^{2}}=0$$

✓ Solution by Mathematica

Time used: 0.409 (sec). Leaf size: 57

DSolve[y[x]*y'[x]==Sqrt[x^2+y[x]^2]-x,y[x],x,IncludeSingularSolutions -> True]

$$egin{aligned} y(x) &
ightarrow -e^{rac{c_1}{2}}\sqrt{2x+e^{c_1}}\ y(x) &
ightarrow e^{rac{c_1}{2}}\sqrt{2x+e^{c_1}}\ y(x) &
ightarrow 0 \end{aligned}$$

4.13 problem Problem 21

Internal problem ID [2677]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables.
page 79
Problem number: Problem 21.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$2x(y+2x) y' - y(-y+4x) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(2*x*(y(x)+2*x)*diff(y(x),x)=y(x)*(4*x-y(x)),y(x), singsol=all)

$$y(x) = e^{\text{LambertW}\left(2e^{rac{3c_1}{2}}x^{rac{3}{2}}
ight) - rac{3c_1}{2} - rac{3\ln(x)}{2}}x$$

Solution by Mathematica

Time used: 5.346 (sec). Leaf size: 29

DSolve[2*x*(y[x]+2*x)*y'[x]==y[x]*(4*x-y[x]),y[x],x,IncludeSingularSolutions +> True]

$$y(x)
ightarrow rac{2x}{W\left(2e^{-c_1}x^{3/2}
ight)}$$

 $y(x)
ightarrow 0$

4.14 problem Problem 22

Internal problem ID [2678]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 22.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - \tan\left(\frac{y}{x}\right)x - y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve(x*diff(y(x),x)=x*tan(y(x)/x)+y(x),y(x), singsol=all)

$$y(x) = \arcsin\left(c_1 x\right) x$$

✓ Solution by Mathematica

Time used: 4.357 (sec). Leaf size: 19

DSolve[x*y'[x]==x*Tan[y[x]/x]+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \arcsin(e^{c_1}x)$$

 $y(x) \to 0$

4.15 problem Problem 23

Internal problem ID [2679]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 23.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'-\frac{x\sqrt{y^2+x^2}+y^2}{yx}=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)=(x*sqrt(y(x)^2+x^2)+y(x)^2)/(x*y(x)),y(x), singsol=all)$

$$-\frac{\sqrt{x^{2}+y(x)^{2}}}{x}+\ln (x)-c_{1}=0$$

✓ Solution by Mathematica

Time used: 0.318 (sec). Leaf size: 54

DSolve[y'[x]==(x*Sqrt[y[x]^2+x^2]+y[x]^2)/(x*y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x\sqrt{\log^2(x) + 2c_1\log(x) - 1 + c_1^2}$$

 $y(x) \to x\sqrt{\log^2(x) + 2c_1\log(x) - 1 + c_1^2}$

4.16 problem Problem 25

Internal problem ID [2680]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables.
page 79
Problem number: Problem 25.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{2(-x+2y)}{y+x} = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.859 (sec). Leaf size: 273

dsolve([diff(y(x),x)=2*(2*y(x)-x)/(x+y(x)),y(0) = 2],y(x), singsol=all)

$$y(x) = \frac{\left(3\sqrt{3}x\sqrt{x(27x+8)} + 27x^2 + 36x + 8\right)^{\frac{1}{3}}}{3} + \frac{4x + \frac{4}{3}}{\left(3\sqrt{3}x\sqrt{x(27x+8)} + 27x^2 + 36x + 8\right)^{\frac{1}{3}}} + 2x + \frac{2}{3}$$

✓ Solution by Mathematica

Time used: 60.289 (sec). Leaf size: 121

DSolve[{y'[x]==2*(2*y[x]-x)/(x+y[x]),{y[0]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3} \left(x \left(\frac{12}{\sqrt[3]{3\sqrt{3}\sqrt{x^3(27x+8)} + 27x^2 + 36x + 8}} + 6 \right) + \sqrt[3]{3\sqrt{3}\sqrt{x^3(27x+8)} + 27x^2 + 36x + 8}} + \frac{4}{\sqrt[3]{3\sqrt{3}\sqrt{x^3(27x+8)} + 27x^2 + 36x + 8}} + 2 \right)$$

4.17 problem Problem 26

Internal problem ID [2681]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables.
page 79
Problem number: Problem 26.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{2x - y}{x + 4y} = 0$$

With initial conditions

$$[y(1) = 1]$$

Solution by Maple

Time used: 0.156 (sec). Leaf size: 19

dsolve([diff(y(x),x)=(2*x-y(x))/(x+4*y(x)),y(1) = 1],y(x), singsol=all)

$$y(x) = -\frac{x}{4} + \frac{\sqrt{9x^2 + 16}}{4}$$

Solution by Mathematica

Time used: 0.472 (sec). Leaf size: 24

DSolve[{y'[x]==(2*x-y[x])/(x+4*y[x]),{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4} \left(\sqrt{9x^2 + 16} - x \right)$$

4.18 problem Problem 27

Internal problem ID [2682]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 27.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y - \sqrt{y^2 + x^2}}{x} = 0$$

With initial conditions

$$[y(3) = 4]$$

✓ Solution by Maple

Time used: 0.422 (sec). Leaf size: 21

 $dsolve([diff(y(x),x)=(y(x)-sqrt(x^2+y(x)^2))/x,y(3) = 4],y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} - \frac{1}{2}$$
$$y(x) = -\frac{x^2}{18} + \frac{9}{2}$$

Solution by Mathematica

Time used: 0.248 (sec). Leaf size: 29

DSolve[{y'[x]==(y[x]-Sqrt[x²+y[x]²])/x,{y[3]==4}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{9}{2} - \frac{x^2}{18}$$
$$y(x) \rightarrow \frac{1}{2}(x^2 - 1)$$

4.19 problem Problem 28

Internal problem ID [2683]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 28. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'-y-\sqrt{4x^2-y^2}=0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(4*x^2-y(x)^2),y(x), singsol=all)$

$$- \arctan \left(rac{y(x)}{\sqrt{4x^2 - y\left(x
ight)^2}}
ight) + \ln \left(x
ight) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.416 (sec). Leaf size: 18

DSolve[x*y'[x]-y[x]==Sqrt[4*x^2-y[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2x \cosh(i \log(x) + c_1)$$

4.20 problem Problem 29(a)

Internal problem ID [2684]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables.
page 79
Problem number: Problem 29(a).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{x + ya}{ax - y} = 0$$

✓ Solution by Maple

Time used: 0.296 (sec). Leaf size: 25

dsolve(diff(y(x),x)=(x+a*y(x))/(a*x-y(x)),y(x), singsol=all)

$$y(x) = \tan\left(\operatorname{RootOf}\left(-2a_Z + \ln\left(\frac{x^2}{\cos\left(_Z\right)^2}\right) + 2c_1\right)\right)x$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 34

DSolve[y'[x]==(x+a*y[x])/(a*x-y[x]),y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[a \arctan\left(\frac{y(x)}{x}\right) - \frac{1}{2}\log\left(\frac{y(x)^2}{x^2} + 1\right) = \log(x) + c_1, y(x)\right]$$

4.21 problem Problem 29(b)

Internal problem ID [2685]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables.
page 79
Problem number: Problem 29(b).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{x + \frac{y}{2}}{\frac{x}{2} - y} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 30

dsolve([diff(y(x),x)=(x+1/2*y(x))/(1/2*x-y(x)),y(1) = 1],y(x), singsol=all)

$$y(x) = \tan \left(\text{RootOf} \left(4_Z - 4\ln \left(\sec \left(_Z\right)^2 \right) - 8\ln \left(x \right) + 4\ln \left(2 \right) - \pi \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 42

DSolve[{y'[x]==(x+1/2*y[x])/(1/2*x-y[x]), {y[1]==1}}, y[x], x, IncludeSingularSolutions -> True]

$$\operatorname{Solve}\left[\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = \frac{1}{4}(4\log(2) - \pi) - 2\log(x), y(x)\right]$$

4.22 problem Problem 38

Internal problem ID [2686]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 38. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _Bernoulli]

$$y' - \frac{y}{x} - \frac{4x^2\cos\left(x\right)}{y} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve(diff(y(x),x)-1/x*y(x)=4*x^2/y(x)*cos(x),y(x), singsol=all)$

$$y(x) = \sqrt{8\sin(x) + c_1 x}$$
$$y(x) = -\sqrt{8\sin(x) + c_1 x}$$

✓ Solution by Mathematica

Time used: 0.298 (sec). Leaf size: 36

DSolve[y'[x]-1/x*y[x]==4*x^2/y[x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -x\sqrt{8\sin(x)+c_1}$$

 $y(x)
ightarrow x\sqrt{8\sin(x)+c_1}$

4.23 problem Problem 39

Internal problem ID [2687]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 39.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \frac{y \tan{(x)}}{2} - 2y^3 \sin{(x)} = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 66

 $dsolve(diff(y(x),x)+1/2*tan(x)*y(x)=2*y(x)^3*sin(x),y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-(2\sin(x)^2 - c_1)\cos(x)}}{2\sin(x)^2 - c_1}$$
$$y(x) = -\frac{\sqrt{-(2\sin(x)^2 - c_1)\cos(x)}}{2\sin(x)^2 - c_1}$$

Solution by Mathematica

Time used: 5.32 (sec). Leaf size: 227

DSolve[y'[x]+1/2*Tan(x)*y[x]==2*y[x]^3*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{e^{\frac{1}{4}/\operatorname{Tan}}\sqrt[4]{\operatorname{Tan}}}{\sqrt{e^{\frac{\operatorname{Tan}x^2}{2}}\left(-i\sqrt{2\pi}\mathrm{erf}\left(\frac{\operatorname{Tan}x+i}{\sqrt{2}\sqrt{\operatorname{Tan}}}\right) + \sqrt{2\pi}\mathrm{erfi}\left(\frac{1+i\operatorname{Tan}x}{\sqrt{2}\sqrt{\operatorname{Tan}}}\right) + c_1e^{\frac{1}{2}/\operatorname{Tan}}\sqrt{\operatorname{Tan}}\right)}}{y(x) \to \frac{e^{\frac{1}{4}/\operatorname{Tan}}\sqrt[4]{\operatorname{Tan}}}{\sqrt{e^{\frac{\operatorname{Tan}x^2}{2}}\left(-i\sqrt{2\pi}\mathrm{erf}\left(\frac{\operatorname{Tan}x+i}{\sqrt{2}\sqrt{\operatorname{Tan}}}\right) + \sqrt{2\pi}\mathrm{erfi}\left(\frac{1+i\operatorname{Tan}x}{\sqrt{2}\sqrt{\operatorname{Tan}}}\right) + c_1e^{\frac{1}{2}/\operatorname{Tan}}\sqrt{\operatorname{Tan}}\right)}}}{y(x) \to 0} \end{split}$$

4.24 problem Problem 40

Internal problem ID [2688]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 40.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - \frac{3y}{2x} - 6y^{\frac{1}{3}}x^{2}\ln{(x)} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)-3/(2*x)*y(x)=6*y(x)^{(1/3)}*x^{2}*ln(x),y(x), singsol=all)$

$$-2x^{3}\ln(x) + x^{3} + y(x)^{\frac{2}{3}} - c_{1}x = 0$$

Solution by Mathematica

Time used: 0.795 (sec). Leaf size: 26

DSolve[y'[x]-3/(2*x)*y[x]==6*y[x]^(1/3)*x^2*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (x(-x^2+2x^2\log(x)+c_1))^{3/2}$$

4.25 problem Problem 41

Internal problem ID [2689]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 41. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \frac{2y}{x} - 6\sqrt{x^2 + 1}\sqrt{y} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)+2/x*y(x)=6*sqrt(1+x^2)*sqrt(y(x)),y(x), singsol=all)$

$$\sqrt{y(x)} - rac{(x^2+1)^{rac{3}{2}} + c_1}{x} = 0$$

Solution by Mathematica

Time used: 0.228 (sec). Leaf size: 55

DSolve[y'[x]+2/x*y[x]==6*Sqrt[1+x^2]*Sqrt[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^6 + 3x^4 + x^2(3 + 2c_1\sqrt{x^2 + 1}) + 2c_1\sqrt{x^2 + 1} + 1 + c_1^2}{x^2}$$

4.26 problem Problem 42

Internal problem ID [2690]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 42.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{2y}{x} - 6y^2x^4 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+2/x*y(x)=6*y(x)^2*x^4,y(x), singsol=all)

$$y(x) = \frac{1}{(-2x^3 + c_1) x^2}$$

Solution by Mathematica

Time used: 0.131 (sec). Leaf size: 24

DSolve[y'[x]+2/x*y[x]==6*y[x]^2*x^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{-2x^5 + c_1 x^2}$$

 $y(x) \rightarrow 0$

4.27 problem Problem 43

Internal problem ID [2691]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 43. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$2x(y'+y^3x^2)+y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(2*x*(diff(y(x),x)+y(x)^3*x^2)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{x^3 + c_1 x}}$$
$$y(x) = -\frac{1}{\sqrt{x^3 + c_1 x}}$$

✓ Solution by Mathematica

Time used: 0.326 (sec). Leaf size: 40

DSolve[2*x*(y'[x]+y[x]^3*x^2)+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1}{\sqrt{x (x^2 + c_1)}}$$
$$y(x) \rightarrow \frac{1}{\sqrt{x (x^2 + c_1)}}$$
$$y(x) \rightarrow 0$$

4.28 problem Problem 44

Internal problem ID [2692]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 44. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$(x-a)(x-b)(y'-\sqrt{y}) - 2(-a+b)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 80

dsolve((x-a)*(x-b)*(diff(y(x),x)-sqrt(y(x)))=2*(b-a)*y(x),y(x), singsol=all)

$$\sqrt{y(x)} - \frac{x(x-b)}{2(x-a)} + \frac{a\ln(x-b)(x-b)}{2x-2a} - \frac{b\ln(x-b)(x-b)}{2(x-a)} - \frac{c_1(x-b)}{x-a} = 0$$

Solution by Mathematica

Time used: 0.478 (sec). Leaf size: 43

DSolve[(x-a)*(x-b)*(y'[x]-Sqrt[y[x]])==2*(b-a)*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{(b-x)^2((b-a)\log(x-b) + x + 2c_1)^2}{4(a-x)^2}$$

4.29 problem Problem 45

Internal problem ID [2693]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 45.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \frac{6y}{x} - \frac{3y^{\frac{2}{3}}\cos{(x)}}{x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)+6/x*y(x)=3/x*y(x)^{(2/3)}*\cos(x),y(x), singsol=all)$

$$y(x)^{\frac{1}{3}} - \frac{\sin(x)x + \cos(x) + c_1}{x^2} = 0$$

Solution by Mathematica

Time used: 0.194 (sec). Leaf size: 20

DSolve[y'[x]+6/x*y[x]==3/x*y[x]^(2/3)*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to rac{(x\sin(x) + \cos(x) + c_1)^3}{x^6}$$

4.30 problem Problem 46

Internal problem ID [2694]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 46.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + 4yx - 4x^3\sqrt{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)+4*x*y(x)=4*x^3*sqrt(y(x)),y(x), singsol=all)$

$$-x^{2} + 1 - e^{-x^{2}}c_{1} + \sqrt{y(x)} = 0$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 29

DSolve[y'[x]+4*x*y[x]==4*x^3*Sqrt[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x^2} \left(e^{x^2} (x^2 - 1) + c_1 \right)^2$$

4.31 problem Problem 47

Internal problem ID [2695]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 47.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - \frac{y}{2\ln(x)x} - 2y^3x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 90

dsolve(diff(y(x),x)-1/(2*x*ln(x))*y(x)=2*x*y(x)^3,y(x), singsol=all)

$$y(x) = \frac{\sqrt{-(2\ln(x) x^2 - x^2 - c_1)\ln(x)}}{2\ln(x) x^2 - x^2 - c_1}$$
$$y(x) = -\frac{\sqrt{-(2\ln(x) x^2 - x^2 - c_1)\ln(x)}}{2\ln(x) x^2 - x^2 - c_1}$$

Solution by Mathematica

Time used: 0.274 (sec). Leaf size: 63

DSolve[y'[x]-1/(2*x*Log[x])*y[x]==2*x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{\sqrt{\log(x)}}{\sqrt{x^2 - 2x^2 \log(x) + c_1}}$$
$$y(x) \rightarrow \frac{\sqrt{\log(x)}}{\sqrt{x^2 - 2x^2 \log(x) + c_1}}$$
$$y(x) \rightarrow 0$$

4.32 problem Problem 48

Internal problem ID [2696]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 48. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' - \frac{y}{(\pi - 1)x} - \frac{3xy^{\pi}}{1 - \pi} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x)-1/((Pi-1)*x)*y(x)=3/(1-Pi)*x*y(x)^Pi,y(x), singsol=all)

$$y(x) = \left(\frac{x^3 + c_1}{x}\right)^{-\frac{1}{\pi - 1}}$$

✓ Solution by Mathematica

Time used: 1.02 (sec). Leaf size: 28

DSolve[y'[x]-1/((Pi-1)*x)*y[x]==3/(1-Pi)*x*y[x]^Pi,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow \left(rac{x^3 + c_1}{x}
ight)^{rac{1}{1-\pi}}$$

 $y(x)
ightarrow 0$

4.33 problem Problem 49

Internal problem ID [2697]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 49. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2y' + y \cot(x) - \frac{8\cos(x)^3}{y} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 64

 $dsolve(2*diff(y(x),x)+y(x)*cot(x)=8/y(x)*cos(x)^3,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-\sin(x) \left(2\sin(x)^4 - 4\sin(x)^2 - c_1 + 2\right)}}{\sin(x)}$$
$$y(x) = -\frac{\sqrt{-\sin(x) \left(2\sin(x)^4 - 4\sin(x)^2 - c_1 + 2\right)}}{\sin(x)}$$

Solution by Mathematica

Time used: 3.971 (sec). Leaf size: 47

DSolve[2*y'[x]+y[x]*Cot[x]==8/y[x]*Cos[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sqrt{-2\cos^3(x)\cot(x) + c_1\csc(x)}$$
$$y(x) \rightarrow \sqrt{-2\cos^3(x)\cot(x) + c_1\csc(x)}$$

4.34 problem Problem 50

Internal problem ID [2698]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 50.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1 - \sqrt{3}) y' + y \sec(x) - y^{\sqrt{3}} \sec(x) = 0$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 54

 $dsolve((1-sqrt(3))*diff(y(x),x)+y(x)*sec(x)=y(x)^sqrt(3)*sec(x),y(x), singsol=all)$

$$y(x) = \frac{\left(\frac{c_1 \cos(x) + \sin(x) + 1}{\sin(x) + 1}\right)^{-\frac{\sqrt{3}}{2}}}{\sqrt{\frac{\cos(x)c_1}{\sin(x) + 1} + \frac{\sin(x)}{\sin(x) + 1} + \frac{1}{\sin(x) + 1}}}$$

Solution by Mathematica

Time used: 0.608 (sec). Leaf size: 76

DSolve[(1-Sqrt[3])*y'[x]+y[x]*Sec[x]==y[x]^Sqrt[3]*Sec[x],y[x],x,IncludeSingularSolutions ->

y(x)

 $y(x) \to 1$

4.35 problem Problem 51

Internal problem ID [2699]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 51.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$y' + \frac{2yx}{x^2 + 1} - xy^2 = 0$$

With initial conditions

$$[y(0) = 1]$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 23

dsolve([diff(y(x),x)+2*x/(1+x^2)*y(x)=x*y(x)^2,y(0) = 1],y(x), singsol=all)

$$y(x) = -\frac{2}{(x^2+1)(\ln(x^2+1)-2)}$$

✓ Solution by Mathematica

Time used: 0.196 (sec). Leaf size: 24

DSolve[{y'[x]+2*x/(1+x^2)*y[x]==x*y[x]^2, {y[0]==1}}, y[x], x, IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{2}{(x^2+1)(\log(x^2+1)-2)}$$

4.36 problem Problem 52

Internal problem ID [2700]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 52.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + y \cot(x) - y^3 \sin(x)^3 = 0$$

With initial conditions

$$\left[y\Big(\frac{\pi}{2}\Big)=1\right]$$

Solution by Maple

Time used: 1.89 (sec). Leaf size: 34

dsolve([diff(y(x),x)+y(x)*cot(x)=y(x)^3*sin(x)^3,y(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = -\frac{\csc(x)\sqrt{(2\cos(x) - 1)^2(1 + 2\cos(x))}}{4\cos(x)^2 - 1}$$

Solution by Mathematica

Time used: 0.933 (sec). Leaf size: 20

DSolve[{y'[x]+y[x]*Cot[x]==y[x]^3*Sin[x]^3,{y[Pi/2]==1}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{\sqrt{\sin^2(x)(2\cos(x)+1)}}$$

4.37 problem Problem 54

Internal problem ID [2701]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 54.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - \left(9x - y\right)^2 = 0$$

With initial conditions

[y(0) = 0]

✓ Solution by Maple

Time used: 0.157 (sec). Leaf size: 28

 $dsolve([diff(y(x),x)=(9*x-y(x))^2,y(0) = 0],y(x), singsol=all)$

$$y(x) = \frac{(9x-3)e^{6x} + 9x + 3}{1 + e^{6x}}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 31

DSolve[{y'[x]==(9*x-y[x])^2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{9x + e^{6x}(9x - 3) + 3}{e^{6x} + 1}$$

4.38 problem Problem 55

Internal problem ID [2702]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 55. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (4x + y + 2)^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)=(4*x+y(x)+2)^2,y(x), singsol=all)$

$$y(x) = -4x - 2 - 2\tan(-2x + 2c_1)$$

✓ Solution by Mathematica

Time used: 0.16 (sec). Leaf size: 41

DSolve[y'[x] == (4*x+y[x]+2)^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -4x + \frac{1}{c_1 e^{4ix} - \frac{i}{4}} - (2+2i)$$

 $y(x) \rightarrow -4x - (2+2i)$

4.39 problem Problem 56

Internal problem ID [2703]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 56. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sin((3x - 3y + 1))^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)=(sin(3*x-3*y(x)+1))^2,y(x), singsol=all)$

$$y(x) = x + \frac{1}{3} + \frac{\arctan\left(-3x + 3c_1\right)}{3}$$

Solution by Mathematica

Time used: 0.599 (sec). Leaf size: 43

DSolve[y'[x]==(Sin[3*x-3*y[x]+1])^2,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[2y(x) - 2\left(\frac{1}{3}\tan(-3y(x) + 3x + 1) - \frac{1}{3}\arctan(\tan(-3y(x) + 3x + 1))\right) = c_1, y(x)\right]$$

4.40 problem Problem 58

Internal problem ID [2704]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 58. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$y' - \frac{y(\ln{(yx)} - 1)}{x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(diff(y(x),x)=y(x)/x*(ln(x*y(x))-1),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{\frac{x}{c_1}}}{x}$$

 \checkmark Solution by Mathematica

Time used: 0.233 (sec). Leaf size: 24

DSolve[y'[x]==y[x]/x*(Log[x*y[x]]-1),y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{e^{e^{c_1}x}}{x}$$
 $y(x)
ightarrow rac{1}{x}$

4.41 problem Problem 59

Internal problem ID [2705]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 59.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Riccati]

$$y' - 2x(y+x)^2 = -1$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.234 (sec). Leaf size: 20

 $dsolve([diff(y(x),x)=2*x*(x+y(x))^2-1,y(0) = 1],y(x), singsol=all)$

$$y(x) = \frac{-x^3 + x - 1}{x^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 21

DSolve[{y'[x]==2*x*(x+y[x])^2-1, {y[0]==1}}, y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to \frac{-x^3 + x - 1}{x^2 - 1}$$

4.42 problem Problem 60

Internal problem ID [2706]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables.
page 79
Problem number: Problem 60.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{x + 2y - 1}{2x - y + 3} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 31

dsolve(diff(y(x),x)=(x+2*y(x)-1)/(2*x-y(x)+3),y(x), singsol=all)

$$y(x) = 1 - \tan\left(\operatorname{RootOf}\left(4\underline{Z} + \ln\left(\frac{1}{\cos\left(\underline{Z}\right)^2}\right) + 2\ln\left(x+1\right) + 2c_1\right)\right)(x+1)$$

Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 68

DSolve[y'[x]==(x+2*y[x]-1)/(2*x-y[x]+3),y[x],x,IncludeSingularSolutions -> True]

Solve
$$\begin{bmatrix} 32 \arctan\left(\frac{-2y(x) - x + 1}{-y(x) + 2x + 3}\right) \\ + 8 \log\left(\frac{x^2 + y(x)^2 - 2y(x) + 2x + 2}{5(x+1)^2}\right) + 16 \log(x+1) + 5c_1 = 0, y(x) \end{bmatrix}$$

4.43 problem Problem 61

Internal problem ID [2707]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' + p(x) y + q(x) y^2 = r(x)$$

X Solution by Maple

 $dsolve(diff(y(x),x)+p(x)*y(x)+q(x)*y(x)^2=r(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]+p[x]*y[x]+q[x]*y[x]^2==r[x],y[x],x,IncludeSingularSolutions -> True]

Not solved

4.44 problem Problem 62

Internal problem ID [2708]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 62.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Riccati]

$$y' + \frac{2y}{x} - y^2 = -\frac{2}{x^2}$$

Solution by Maple

Time used: 0.469 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)+2/x*y(x)-y(x)^2=-2/x^2,y(x), singsol=all)$

$$y(x) = \frac{x^3 + 2c_1}{\left(-x^3 + c_1\right)x}$$

Solution by Mathematica

Time used: 0.175 (sec). Leaf size: 35

DSolve[y'[x]+2/x*y[x]-y[x]^2==-2/x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{2 + 3c_1 x^3}{x - 3c_1 x^4}$$
$$y(x) \rightarrow -\frac{1}{x}$$

4.45 problem Problem 63

Internal problem ID [2709]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 63. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Riccati]

$$y' + \frac{7y}{x} - 3y^2 = \frac{3}{x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x)+7/x*y(x)-3*y(x)^2=3/x^2,y(x), singsol=all)$

$$y(x) = \frac{3\ln(x) - 3c_1 - 1}{3x(\ln(x) - c_1)}$$

Solution by Mathematica

Time used: 0.157 (sec). Leaf size: 15

DSolve[y'[x]+7/x*y[x]-3*y[x]^2==3/x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{x}$$

 $y(x) \to \frac{1}{x}$

4.46 problem Problem 64

Internal problem ID [2710]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 64.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$p(x)\ln\left(y\right) = -\frac{y'}{y} + q(x)$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 36

dsolve(diff(y(x),x)/y(x)+p(x)*ln(y(x))=q(x),y(x), singsol=all)

$$y(x) = \mathrm{e}^{\mathrm{e}^{\int -p(x)dx} \left(\int q(x)\mathrm{e}^{\int p(x)dx}dx\right)} \mathrm{e}^{-\mathrm{e}^{\int -p(x)dx}c_1}$$

✓ Solution by Mathematica

Time used: 0.201 (sec). Leaf size: 109

DSolve[y'[x]/y[x]+p[x]*Log[y[x]]==q[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\int_{1}^{x} \exp\left(-\int_{1}^{K[2]} -p(K[1])dK[1]\right) (\log(y(x))p(K[2]) - q(K[2]))dK[2] + \int_{1}^{y(x)} \left(\frac{\exp\left(-\int_{1}^{x} -p(K[1])dK[1]\right)}{K[3]} - \int_{1}^{x} \frac{\exp\left(-\int_{1}^{K[2]} -p(K[1])dK[1]\right)p(K[2])}{K[3]}dK[2]\right)dK[3] = c_{1}, y(x)\right]$$

4.47 problem Problem 65

Internal problem ID [2711]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 65.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$-\frac{2\ln{(y)}}{x} = -\frac{y'}{y} + \frac{1 - 2\ln{(x)}}{x}$$

With initial conditions

$$[y(1) = e]$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 10

dsolve([diff(y(x),x)/y(x)-2/x*ln(y(x))=1/x*(1-2*ln(x)),y(1) = exp(1)],y(x), singsol=all)

$$y(x) = x e^{x^2}$$

Solution by Mathematica

Time used: 0.215 (sec). Leaf size: 12

DSolve[{y'[x]/y[x]-2/x*Log[y[x]]==1/x*(1-2*Log[x]), {y[1]==Exp[1]}}, y[x], x, IncludeSingularSol

$$y(x) \to e^{x^2} x$$

4.48 problem Problem 67

Internal problem ID [2712]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 67.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sec(y)^2 y' + \frac{\tan(y)}{2\sqrt{x+1}} = \frac{1}{2\sqrt{x+1}}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(sec(y(x))^2*diff(y(x),x)+1/(2*sqrt(1+x))*tan(y(x))=1/(2*sqrt(1+x)),y(x), singsol=all)

$$y(x) = \arctan\left(\mathrm{e}^{-\sqrt{x+1}}c_1 + 1
ight)$$

Solution by Mathematica

Time used: 60.288 (sec). Leaf size: 247

DSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x])*Tan[y[x]]==1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSc

$$\begin{split} y(x) &\to -\arccos\left(-\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{-2e^{\sqrt{x+1}+2c_1}+2e^{2\sqrt{x+1}+4c_1}+1}}\right) \\ y(x) &\to \arccos\left(-\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{-2e^{\sqrt{x+1}+2c_1}+2e^{2\sqrt{x+1}+4c_1}+1}}\right) \\ y(x) &\to -\arccos\left(\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{-2e^{\sqrt{x+1}+2c_1}+2e^{2\sqrt{x+1}+4c_1}+1}}\right) \\ y(x) &\to \arccos\left(\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{-2e^{\sqrt{x+1}+2c_1}+2e^{2\sqrt{x+1}+4c_1}+1}}\right) \end{split}$$

5 Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

5.1	problem	Problem	1	•		•	•			•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	147
5.2	problem	Problem	2	•	 •	•	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	148
5.3	problem	Problem	3	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	149
5.4	problem	Problem	4	•		•	•			•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	150
5.5	problem	Problem	5	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	151
5.6	problem	Problem	6	•		•	•			•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	152
5.7	problem	Problem	7	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	153
5.8	problem	Problem	8	•		•	•			•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	155
5.9	$\operatorname{problem}$	Problem	9	•	 •	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	156
5.10	problem	Problem	10			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	157
5.11	problem	Problem	11			•	•			•	•	•	•	•	•			•		•	•	•	•	•	•	•	158
5.12	problem	Problem	12			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	159

5.1 problem Problem 1

Internal problem ID [2713]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 1. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['x=_G(y,y')']

$$y \operatorname{e}^{yx} + (2y - x \operatorname{e}^{yx}) y' = 0$$

X Solution by Maple

dsolve(y(x)*exp(x*y(x))+(2*y(x)-x*exp(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y[x]*Exp[x*y[x]]+(2*y[x]-x*Exp[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> 1

Not solved

5.2 problem Problem 2

Internal problem ID [2714]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 2. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact]

 $\cos(yx) - xy\sin(yx) - x^2\sin(yx)y' = 0$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve((cos(x*y(x))-x*y(x)*sin(x*y(x)))-x^2*sin(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = rac{\arccos\left(rac{c_1}{x}
ight)}{x}$$

Solution by Mathematica

Time used: 5.673 (sec). Leaf size: 34

DSolve[(Cos[x*y[x]]-x*y[x]*Sin[x*y[x]])-x^2*Sin[x*y[x]]*y'[x]==0,y[x],x,IncludeSingularSolut

$$y(x)
ightarrow -rac{rccos\left(-rac{c_1}{x}
ight)}{x}$$
 $y(x)
ightarrow rac{rccos\left(-rac{c_1}{x}
ight)}{x}$

5.3 problem Problem 3

Internal problem ID [2715]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 3. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' + y = -3x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((y(x)+3*x^2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-x^3 + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 17

DSolve[(y[x]+3*x^2)+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{-x^3 + c_1}{x}$$

5.4 problem Problem 4

Internal problem ID [2716]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 4.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$2x \operatorname{e}^y + \left(3y^2 + x^2 \operatorname{e}^y\right) y' = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(2*x*exp(y(x))+(3*y(x)^2+x^2*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$x^{2}e^{y(x)} + y(x)^{3} + c_{1} = 0$$

Solution by Mathematica

Time used: 0.258 (sec). Leaf size: 19

DSolve[2*x*Exp[y[x]]+(3*y[x]^2+x^2*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tr

Solve
$$[x^2 e^{y(x)} + y(x)^3 = c_1, y(x)]$$

5.5 problem Problem 5

Internal problem ID [2717]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 5. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2yx + \left(x^2 + 1\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(2*x*y(x)+(x^2+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 20

DSolve[2*x*y[x]+(x^2+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{c_1}{x^2 + 1}$$

 $y(x) \rightarrow 0$

5.6 problem Problem 6

Internal problem ID [2718]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 6.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational, _Bernoulli]

$$y^2 + 2y'yx = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve((y(x)^2-2*x)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{\sqrt{x (x^2 + c_1)}}{x}$$

 $y(x) = -rac{\sqrt{x (x^2 + c_1)}}{x}$

✓ Solution by Mathematica

Time used: 0.207 (sec). Leaf size: 42

DSolve[(y[x]^2-2*x)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{\sqrt{x^2 + c_1}}{\sqrt{x}} \\ y(x) &\to \frac{\sqrt{x^2 + c_1}}{\sqrt{x}} \end{split}$$

5.7 problem Problem 7

Internal problem ID [2719]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 7. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)]']]

$$2yx - y^{2} + (-y + x)^{2} y' = -4 e^{2x}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 117

dsolve((4*exp(2*x)+2*x*y(x)-y(x)^2)+(x-y(x))^2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (-x^3 - 6e^{2x} - 3c_1)^{\frac{1}{3}} + x$$
$$y(x) = -\frac{(-x^3 - 6e^{2x} - 3c_1)^{\frac{1}{3}}}{2} - \frac{i\sqrt{3}(-x^3 - 6e^{2x} - 3c_1)^{\frac{1}{3}}}{2} + x$$
$$y(x) = -\frac{(-x^3 - 6e^{2x} - 3c_1)^{\frac{1}{3}}}{2} + \frac{i\sqrt{3}(-x^3 - 6e^{2x} - 3c_1)^{\frac{1}{3}}}{2} + x$$

Solution by Mathematica

Time used: 1.472 (sec). Leaf size: 112

DSolve[(4*Exp[2*x]+2*x*y[x]-y[x]^2)+(x-y[x])^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> 1

$$\begin{split} y(x) &\to x + \sqrt[3]{-x^3 - 6e^{2x} + 3c_1} \\ y(x) &\to x + \frac{1}{2}i\left(\sqrt{3} + i\right)\sqrt[3]{-x^3 - 6e^{2x} + 3c_1} \\ y(x) &\to x - \frac{1}{2}\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^3 - 6e^{2x} + 3c_1} \end{split}$$

5.8 problem Problem 8

Internal problem ID [2720]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 8. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Riccati]

$$-\frac{y}{y^2+x^2} + \frac{xy'}{y^2+x^2} = -\frac{1}{x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve((1/x-y(x)/(x²+y(x)²))+x/(x²+y(x)²)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\tan\left(\ln\left(x\right) + c_1\right)x$$

Solution by Mathematica

Time used: 0.205 (sec). Leaf size: 15

DSolve[(1/x-y[x]/(x^2+y[x]^2))+x/(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tr

$$y(x) \to x \tan(-\log(x) + c_1)$$

5.9 problem Problem 9

Internal problem ID [2721]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 9.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$y\cos\left(yx\right) + x\cos\left(yx\right)y' = \sin\left(x\right)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve((y(x)*cos(x*y(x))-sin(x))+x*cos(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\arcsin\left(\cos\left(x\right) + c_1\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.628 (sec). Leaf size: 17

DSolve[(y[x]*Cos[x*y[x]]-Sin[x])+x*Cos[x*y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> 1

$$y(x) \to \frac{\arcsin(-\cos(x) + c_1)}{x}$$

5.10 problem Problem 10

Internal problem ID [2722]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 10.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

$$2y^2 e^{2x} + 2y e^{2x} y' = -3x^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 50

dsolve((2*y(x)^2*exp(2*x)+3*x^2)+2*y(x)*exp(2*x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = e^{-2x} \sqrt{e^{2x} (-x^3 + c_1)}$$
$$y(x) = -e^{-2x} \sqrt{e^{2x} (-x^3 + c_1)}$$

Solution by Mathematica

Time used: 7.702 (sec). Leaf size: 47

DSolve[(2*y[x]^2*Exp[2*x]+3*x^2)+2*y[x]*Exp[2*x]*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\sqrt{e^{-2x} (-x^3 + c_1)}$$

 $y(x) \to \sqrt{e^{-2x} (-x^3 + c_1)}$

5.11 problem Problem 11

Internal problem ID [2723]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 11. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y^{2} + (2yx + \sin(y))y' = -\cos(x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve((y(x)^2+cos(x))+(2*x*y(x)+sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$xy(x)^{2} + \sin(x) - \cos(y(x)) + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.227 (sec). Leaf size: 20

DSolve[(y[x]^2+Cos[x])+(2*x*y[x]+Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$\operatorname{Solve}[xy(x)^2 - \cos(y(x)) + \sin(x) = c_1, y(x)]$$

5.12 problem Problem 12

Internal problem ID [2724]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 12. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

 $\sin(y) + y\cos(x) + (x\cos(y) + \sin(x))y' = 0$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve((sin(y(x))+y(x)*cos(x))+(x*cos(y(x))+sin(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x)\sin(x) + x\sin(y(x)) + c_1 = 0$$

Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 17

DSolve[(Sin[y[x]]+y[x]*Cos[x])+(x*Cos[y[x]]+Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions

 $Solve[x \sin(y(x)) + y(x) \sin(x) = c_1, y(x)]$

6 Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

6.1	problem Pr	roblem 2	3.	•	•		•		•		 •	•	 •	•			•	•	 , .	•	•		161
6.2	problem Pr	roblem 2	4.				•					•					•		 , .	•	•		162
6.3	problem Pr	roblem 2	5 .				•					•					•		 , .	•	•		163
6.4	problem Pr	roblem 2	6.	•	•	•••	•		•	•	 •	•	 •				•		 •	•	•		164
6.5	problem Pr	roblem 2	7.	•	•	•••	•		•	•	 •	•	 •				•		 •	•	•		165
6.6	problem Pr	roblem 2	8.	•	•	•••	•		•	•	 •	•	 •				•		 •	•	•		166
6.7	problem Pr	roblem 2	9.	•	•	•••	•		•	•	 •	•	 •				•		 •	•	•		167
6.8	problem Pr	roblem 3	0.	•			•	• •	•		 •	•	 •	•		•	•		 •	•	•		168
6.9	problem Pr	roblem 3	1.	•	•	•••	•	• •	•	•	 •	•	 •	•		•	•		 •	•	•		169
6.10	problem Pr	roblem 3	2.	•			•	• •	•		 •	•	 •	•		•	•		 •	•	•		170
6.11	problem Pr	roblem 3	3.	•	•	•••	•		•	•	 •	•	 •	•		•	•		 •	•	•		171
6.12	problem Pr	roblem 3	4.	•	•	•••	•		•	•	 •	•	 •	•		•	•	•	 •	•	•	•••	172
6.13	problem Pr	roblem 3	5.	•	•	•••	•		•	•	 •	•	 •	•		•	•		 •	•	•		173
6.14	problem Pr	roblem 3	6.	•	•	•••	•		•	•	 •	•	 •	•		•	•	•	 •	•	•	•••	174
6.15	problem Pr	roblem 3	7.	•	•	•••	•		•	•	 •	•	 •	•		•	•		 •	•	•		175
6.16	problem Pr	roblem 3	8.	•	•	•••	•		•	•	 •	•	 •	•		•	•	•	 •	•	•	•••	176
6.17	problem Pr	roblem 3	9.	•	•	•••	•	• •	•	•	 •	•	 •	•	•••	•	•	•	 •	•	•	•••	177
6.18	problem Pr	roblem 4	0.	•	•	•••	•		•	•	 •	•	 •	•		•	•	•	 •	•	•	•••	178
6.19	problem Pr	roblem 4																				•••	179
6.20	problem Pr	roblem 4	2.	•	•	•••	•		•	•	 •	•	 •	•		•	•	•	 •	•	•	•••	180

6.1 problem Problem 23

Internal problem ID [2725]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 23.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y''-2y'-3y=0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 22

DSolve[y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(c_2 e^{4x} + c_1 \right)$$

6.2 problem Problem 24

Internal problem ID [2726]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 24. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 7y' + 10y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+7*diff(y(x),x)+10*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-5x} + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 22

DSolve[y''[x]+7*y'[x]+10*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-5x} (c_2 e^{3x} + c_1)$$

6.3 problem Problem 25

Internal problem ID [2727]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 25.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 36y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-36*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-6x} + c_2 e^{6x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 22

DSolve[y''[x]-36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{6x} + c_2 e^{-6x}$$

6.4 problem Problem 26

Internal problem ID [2728]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 26.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-4x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 19

DSolve[y''[x]+4*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 - \frac{1}{4}c_1 e^{-4x}$$

6.5 problem Problem 27

Internal problem ID [2729]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 27.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' - y' + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)-diff(y(x),x)+3*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2e^{3x} + c_3e^x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x} + c_2 e^x + c_3 e^{3x}$$

6.6 problem Problem 28

Internal problem ID [2730]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 28.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 4y' - 12y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-4*diff(y(x),x)-12*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-3x} + c_3 e^{-2x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

DSolve[y'''[x]+3*y''[x]-4*y'[x]-12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} (c_2 e^x + c_3 e^{5x} + c_1)$$

6.7 problem Problem 29

Internal problem ID [2731]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 29.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 18y' - 40y = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-18*diff(y(x),x)-40*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{4x} + c_2 e^{-5x} + c_3 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 30

DSolve[y'''[x]+3*y''[x]-18*y'[x]-40*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-5x} (c_2 e^{3x} + c_3 e^{9x} + c_1)$$

6.8 problem Problem 30

Internal problem ID [2732]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 30.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' - 2y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{2x} + c_3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 28

DSolve[y'''[x]-y''[x]-2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1(-e^{-x}) + \frac{1}{2}c_2e^{2x} + c_3$$

6.9 problem Problem 31

Internal problem ID [2733]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 31.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - 10y' + 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-10*diff(y(x),x)+8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-4x} + c_3 e^x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 28

DSolve[y'''[x]+y''[x]-10*y'[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-4x} + c_2 e^x + c_3 e^{2x}$$

6.10 problem Problem 32

Internal problem ID [2734]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 32.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y''' - y'' + 2y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$3)-diff(y(x),x\$2)+2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{2x} + c_3 e^{-x} + c_4 e^x$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 34

DSolve[y'''[x]-2*y'''[x]-y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow c_1(-e^{-x}) + c_2 e^x + rac{1}{2}c_3 e^{2x} + c_4$$

6.11 problem Problem 33

Internal problem ID [2735]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 33.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 13y'' + 36y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)-13*diff(y(x),x\$2)+36*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{3x} + c_3 e^{-3x} + c_4 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 35

DSolve[y'''[x]-13*y''[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-3x} (c_2 e^x + e^{5x} (c_4 e^x + c_3) + c_1)$$

6.12 problem Problem 34

Internal problem ID [2736]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 34.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F

$$x^2y'' + 3xy' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x^2)+3*x*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + rac{c_2}{x^4}$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 18

DSolve[x²*y''[x]+3*x*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^6 + c_1}{x^4}$$

6.13 problem Problem 35

Internal problem ID [2737]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 35.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$2x^2y'' + 5xy' + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve(2*x^2*diff(y(x),x\$2)+5*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1}{x} + \frac{c_2}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 20

DSolve[2*x²*y''[x]+5*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2\sqrt{x} + c_1}{x}$$

6.14 problem Problem 36

Internal problem ID [2738]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 36.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

$$x^{3}y''' + x^{2}y'' - 2y'x + 2y = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve(x^3*diff(y(x),x\$3)+x^2*diff(y(x),x\$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 x^2 + \frac{c_2}{x} + c_3 x$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[x^3*y'''[x]+x^2*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 x^2 + c_2 x + \frac{c_1}{x}$$

6.15 problem Problem 37

Internal problem ID [2739]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 37.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' + 3x^2y'' - 6y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(x^3*diff(y(x),x\$3)+3*x^2*diff(y(x),x\$2)-6*x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x^{\sqrt{7}} + c_3 x^{-\sqrt{7}}$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 41

DSolve[x^3*y'''[x]+3*x^2*y''[x]-6*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -rac{c_1 x^{-\sqrt{7}}}{\sqrt{7}} + rac{c_2 x^{\sqrt{7}}}{\sqrt{7}} + c_3$$

6.16 problem Problem 38

Internal problem ID [2740]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 38.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 6y = 18 e^{5x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x)+diff(y(x),x)-6*y(x)=18*exp(5*x),y(x), singsol=all)

$$y(x) = c_2 \mathrm{e}^{2x} + c_1 \mathrm{e}^{-3x} + rac{3 \, \mathrm{e}^{5x}}{4}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 31

DSolve[y''[x]+y'[x]-6*y[x]==18*Exp[5*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3e^{5x}}{4} + c_1 e^{-3x} + c_2 e^{2x}$$

6.17 problem Problem 39

Internal problem ID [2741]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 39.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 2y = 4x^2 + 5$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=4*x^2+5,y(x), singsol=all)$

$$y(x) = e^{x}c_{2} + e^{-2x}c_{1} - 2x^{2} - 2x - \frac{11}{2}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 31

DSolve[y''[x]+y'[x]-2*y[x]==4*x^2+5,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2x^2 - 2x + c_1 e^{-2x} + c_2 e^x - \frac{11}{2}$$

6.18 problem Problem 40

Internal problem ID [2742]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 40.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + 2y'' - y' - 2y = 4e^{2x}$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=4*exp(2*x),y(x), singsol=all)

$$y(x) = rac{\mathrm{e}^{2x}}{3} + c_1 \mathrm{e}^x + c_2 \mathrm{e}^{-2x} + c_3 \mathrm{e}^{-x}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 37

DSolve[y'''[x]+2*y''[x]-y'[x]-2*y[x]==4*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{e^{2x}}{3} + c_1 e^{-2x} + c_2 e^{-x} + c_3 e^{x}$$

6.19 problem Problem 41

Internal problem ID [2743]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 41.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + y'' - 10y' + 8y = 24 \,\mathrm{e}^{-3x}$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-10*diff(y(x),x)+8*y(x)=24*exp(-3*x),y(x), singsol=all)

$$y(x) = \frac{6 e^{-3x}}{5} + c_1 e^x + c_2 e^{-4x} + c_3 e^{2x}$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 37

DSolve[y'''[x]+y''[x]-10*y'[x]+8*y[x]==24*Exp[-3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{6e^{-3x}}{5} + c_1 e^{-4x} + c_2 e^x + c_3 e^{2x}$$

6.20 problem Problem 42

Internal problem ID [2744]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 42.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + 5y'' + 6y' = 6 e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$3)+5*diff(y(x),x\$2)+6*diff(y(x),x)=6*exp(-x),y(x), singsol=all)

$$y(x) = -rac{c_1 e^{-3x}}{3} - rac{c_2 e^{-2x}}{2} - 3 e^{-x} + c_3$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 37

DSolve[y'''[x]+5*y''[x]+6*y'[x]==6*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -3e^{-x} - \frac{1}{3}c_1e^{-3x} - \frac{1}{2}c_2e^{-2x} + c_3$$

7 Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

7.1	problem Problem 25	•		•		•	•	•		•		•	•	•		•	•	•	•	•	•	•		182
7.2	problem Problem 26	•					•	•		•			•					•	•	•	•			183
7.3	problem Problem 27	•	•	•		•	•	•		•	•	•	•					•	•	•	•	•		184
7.4	problem Problem 28	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•		185
7.5	problem Problem 29	•	•	•		•	•	•		•	•	•	•					•	•	•	•	•		186
7.6	problem Problem 30	•	•	•	•	•	•	•		•	•		•	•		•	•	•	•	•	•	•		187
7.7	problem Problem 31	•	•	•	•	•	•	•		•	•		•	•		•	•	•	•	•	•	•		188
7.8	problem Problem 32	•	•	•	•	•	•	•		•	•		•	•		•	•	•	•	•	•	•		189
7.9	problem Problem 33	•	•	•		•	•	•		•	•		•	•			•	•		•		•		190
7.10	problem Problem 34	•	•	•		•	•	•		•	•		•	•			•	•		•		•		191
7.11	problem Problem 35	•	•	•		•	•	•		•	•		•	•			•	•		•		•		192
7.12	problem Problem 36	•	•	•		•	•	•		•	•	•	•					•	•	•	•	•		193
7.13	problem Problem 38	•	•	•	•	•	•	•		•	•		•	•		•	•	•	•	•	•	•		194
7.14	problem Problem 39	•	•	•		•	•	•		•	•		•	•			•	•		•		•		195
7.15	problem Problem 40	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•		196
7.16	problem Problem 41	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•		197
7.17	problem Problem 46	•	•	•		•	•	•		•	•		•	•			•	•		•		•		198
7.18	problem Problem 47	•					•	•		•		•	•	•				•	•	•	•	•		199

7.1 problem Problem 25

Internal problem ID [2745]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 25.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y = 6 e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+y(x)=6*exp(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) + 3 e^x$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 21

DSolve[y''[x]+y[x]==6*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3e^x + c_1 \cos(x) + c_2 \sin(x)$$

7.2 problem Problem 26

Internal problem ID [2746]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 26.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y = 5 e^{-2x} x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=5*x*exp(-2*x),y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 + \frac{5 e^{-2x} x^3}{6}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 29

DSolve[y''[x]+4*y'[x]+4*y[x]==5*x*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to rac{1}{6}e^{-2x} (5x^3 + 6c_2x + 6c_1)$$

7.3 problem Problem 27

Internal problem ID [2747]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 27.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 8\sin\left(2x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+4*y(x)=8*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 - 2x \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 29

DSolve[y''[x]+4*y[x]==8*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x)\cos(x) + (-2x + c_1)\cos(2x) + c_2\sin(2x)$$

7.4 problem Problem 28

Internal problem ID [2748]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 28.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = 5 e^{2x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x)-diff(y(x),x)-2*y(x)=5*exp(2*x),y(x), singsol=all)

$$y(x) = c_2 \mathrm{e}^{2x} + \mathrm{e}^{-x} c_1 + rac{5 \, \mathrm{e}^{2x} x}{3}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 31

DSolve[y''[x]-y'[x]-2*y[x]==5*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x} + e^{2x} \left(\frac{5x}{3} - \frac{5}{9} + c_2\right)$$

7.5 problem Problem 29

Internal problem ID [2749]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 29.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = 3\sin(2x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=3*sin(2*x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(2x) c_2 + \cos(2x) e^{-x} c_1 + \frac{3\sin(2x)}{17} - \frac{12\cos(2x)}{17}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 45

DSolve[y''[x]+2*y'[x]+5*y[x]==3*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{17}e^{-x}((-12e^x + 17c_2)\cos(2x) + (3e^x + 17c_1)\sin(2x))$$

7.6 problem Problem 30

Internal problem ID [2750]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 30.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + 2y'' - 5y' - 6y = 4x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

 $dsolve(diff(y(x),x$3)+2*diff(y(x),x$2)-5*diff(y(x),x)-6*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = -\frac{2x^2}{3} + \frac{10x}{9} - \frac{37}{27} + c_1 e^{-3x} + e^{-x} c_2 + c_3 e^{2x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 45

DSolve[y'''[x]+2*y''[x]-5*y'[x]-6*y[x]==4*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -rac{2x^2}{3} + rac{10x}{9} + c_1 e^{-3x} + c_2 e^{-x} + c_3 e^{2x} - rac{37}{27}$$

7.7 problem Problem 31

Internal problem ID [2751]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 31.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - y'' + y' - y = 9 e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)+diff(y(x),x)-y(x)=9*exp(-x),y(x), singsol=all)

$$y(x) = -\frac{9e^{-x}}{4} + c_1 \cos(x) + e^x c_2 + c_3 \sin(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 31

DSolve[y'''[x]-y''[x]+y'[x]-y[x]==9*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -rac{9e^{-x}}{4} + c_3 e^x + c_1 \cos(x) + c_2 \sin(x)$$

7.8 problem Problem 32

Internal problem ID [2752]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 32.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 3y'' + 3y' + y = 2e^{-x} + 3e^{2x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y(x), singso

$$y(x) = rac{\mathrm{e}^{-x}x^3}{3} + rac{\mathrm{e}^{2x}}{9} + \mathrm{e}^{-x}c_1 + c_2\mathrm{e}^{-x}x + c_3x^2\mathrm{e}^{-x}$$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 41

DSolve[y'''[x]+3*y''[x]+3*y'[x]+y[x]==2*Exp[-x]+3*Exp[2*x],y[x],x,IncludeSingularSolutions -

$$y(x) \rightarrow \frac{1}{9}e^{-x}(3x^3 + 9c_3x^2 + e^{3x} + 9c_2x + 9c_1)$$

7.9 problem Problem 33

Internal problem ID [2753]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 33.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 5\cos\left(2x\right)$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)+9*y(x)=5*cos(2*x),y(0) = 2, D(y)(0) = 3],y(x), singsol=all)

$$y(x) = \sin(3x) + \cos(3x) + \cos(2x)$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 18

DSolve[{y''[x]+9*y[x]==5*Cos[2*x],{y[0]==2,y'[0]==3}},y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to \sin(3x) + \cos(2x) + \cos(3x)$$

7.10 problem Problem 34

Internal problem ID [2754]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 34.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = 9x \,\mathrm{e}^{2x}$$

With initial conditions

$$[y(0) = 0, y'(0) = 7]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 25

dsolve([diff(y(x),x\$2)-y(x)=9*x*exp(2*x),y(0) = 0, D(y)(0) = 7],y(x), singsol=all)

$$y(x) = -4e^{-x} + 8e^{x} + (3x - 4)e^{2x}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 29

DSolve[{y''[x]-y[x]==9*x*Exp[2*x],{y[0]==0,y'[0]==7}},y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to e^{2x}(3x-4) - 4e^{-x} + 8e^{x}$$

7.11 problem Problem 35

Internal problem ID [2755]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 35.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y = -10\sin(x)$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=-10*sin(x),y(0) = 2, D(y)(0) = 1],y(x), singsol=a

$$y(x) = e^{-2x} + \cos(x) + 3\sin(x)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 17

DSolve[{y''[x]+y'[x]-2*y[x]==-10*Sin[x],{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions

$$y(x) \to e^{-2x} + 3\sin(x) + \cos(x)$$

7.12 problem Problem 36

Internal problem ID [2756]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 36.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y = 4\cos(x) - 2\sin(x)$$

With initial conditions

$$[y(0) = -1, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=4*cos(x)-2*sin(x),y(0) = -1, D(y)(0) = 4],y(x), s(0) = -1, D(y)(0) =

$$y(x) = -((\cos(x) - \sin(x))e^{2x} - e^{3x} + 1)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 22

DSolve[{y''[x]+y'[x]-2*y[x]==4*Cos[x]-2*Sin[x],{y[0]==-1,y'[0]==4}},y[x],x,IncludeSingularSo

$$y(x) \to -e^{-2x} + e^x + \sin(x) - \cos(x)$$

7.13 problem Problem 38

Internal problem ID [2757]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 38.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \omega^2 y = \frac{F_0 \cos{(\omega t)}}{m}$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

$$y(t) = \cos(\omega t) + \frac{F_0 \sin(\omega t) t}{2\omega m}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 26

DSolve[{y''[t]+\[Omega]^2*y[t]==F0/m*Cos[\[Omega]*t],{y[0]==1,y'[0]==0}},y[t],t,IncludeSingu

$$y(t) \rightarrow \frac{F0t\sin(t\omega)}{2m\omega} + \cos(t\omega)$$

7.14 problem Problem 39

Internal problem ID [2758]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 39.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 6y = 7 e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+6*y(x)=7*exp(2*x),y(x), singsol=all)

$$y(x) = e^{2x} \sin\left(\sqrt{2} x\right) c_2 + e^{2x} \cos\left(\sqrt{2} x\right) c_1 + rac{7 e^{2x}}{2}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 40

DSolve[y''[x]-4*y'[x]+6*y[x]==7*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}e^{2x} \left(2c_2 \cos\left(\sqrt{2}x\right) + 2c_1 \sin\left(\sqrt{2}x\right) + 7\right)$$

7.15 problem Problem 40

Internal problem ID [2759]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 40.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + y'' + y' + y = 4x e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)+diff(y(x),x)+y(x)=4*x*exp(x),y(x), singsol=all)

$$y(x) = \frac{(2x-3)e^x}{2} + c_1\cos(x) + \sin(x)c_2 + c_3e^{-x}$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 36

DSolve[y'''[x]+y''[x]+y'[x]+y[x]==4*x*Exp[x],y[x],x,IncludeSingularSolutions +> True]

$$y(x) \to e^x x - \frac{3e^x}{2} + c_3 e^{-x} + c_1 \cos(x) + c_2 \sin(x)$$

7.16 problem Problem 41

Internal problem ID [2760]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 41.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 104y''' + 2740y'' = 5 e^{-2x} \cos(3x)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 73

dsolve(diff(y(x),x\$4)+104*diff(y(x),x\$3)+2740*diff(y(x),x\$2)=5*exp(-2*x)*cos(3*x),y(x), sing

$$y(x) = \frac{667 e^{-52x} \cos(6x) c_1}{1876900} - \frac{39c_1 e^{-52x} \sin(6x)}{469225} + \frac{39c_2 e^{-52x} \cos(6x)}{469225} + \frac{667 e^{-52x} \sin(6x) c_2}{1876900} - \frac{3475 e^{-2x} \cos(3x)}{84184477} - \frac{12240 e^{-2x} \sin(3x)}{84184477} + c_3 x + c_4 x + c_$$

✓ Solution by Mathematica

Time used: 4.755 (sec). Leaf size: 82

DSolve[y'''[x]+104*y'''[x]+2740*y''[x]==5*Exp[-2*x]*Cos[3*x],y[x],x,IncludeSingularSolution

$$\begin{split} y(x) &\to -\frac{12240e^{-2x}\sin(3x)}{84184477} - \frac{3475e^{-2x}\cos(3x)}{84184477} + c_4x \\ &+ \frac{(156c_1 + 667c_2)e^{-52x}\cos(6x)}{1876900} + \frac{(667c_1 - 156c_2)e^{-52x}\sin(6x)}{1876900} + c_3 \end{split}$$

7.17 problem Problem 46

Internal problem ID [2761]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 46.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' - 3y = \sin\left(x\right)^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)+2*diff(y(x),x)-3*y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = e^x c_2 + c_1 e^{-3x} - \frac{1}{6} - \frac{2\sin(2x)}{65} + \frac{7\cos(2x)}{130}$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 39

DSolve[y''[x]+2*y'[x]-3*y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{2}{65}\sin(2x) + \frac{7}{130}\cos(2x) + c_1e^{-3x} + c_2e^x - \frac{1}{6}$$

7.18 problem Problem 47

Internal problem ID [2762]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 47. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y = \sin\left(x\right)^2 \cos\left(x\right)^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)+6*y(x)=sin(x)^2*cos(x)^2,y(x), singsol=all)$

$$y(x) = \sin\left(\sqrt{6}\,x\right)c_2 + \cos\left(\sqrt{6}\,x\right)c_1 + \frac{\cos\left(4x\right)}{80} + \frac{1}{48}$$

✓ Solution by Mathematica

Time used: 0.756 (sec). Leaf size: 39

DSolve[y''[x]+6*y[x]==Sin[x]^2*Cos[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{80}\cos(4x) + c_1\cos\left(\sqrt{6}x\right) + c_2\sin\left(\sqrt{6}x\right) + \frac{1}{48}$$

8 Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

8.1	$\operatorname{problem}$	Problem	1	•	•		 •	•	•	•	•	•	•	•	•		•	•	•	•	•		 •	•	•	•	201
8.2	problem	Problem	2		•		 •		•				•	•	•			•	•	•	•			•		•	202
8.3	problem	Problem	3	•	•		 •		•	•			•	•	•	 •	•	•	•	•	•			•		•	203
8.4	$\operatorname{problem}$	Problem	4	•	•	•	 •	•	•	•			•	•	•		•	•	•	•	•	•		•		•	204
8.5	problem	Problem	5	•	•		 •		•	•			•	•	•	 •	•	•	•	•	•			•		•	205
8.6	$\operatorname{problem}$	Problem	6	•	•	•	 •	•	•	•			•	•	•		•	•	•	•	•	•		•		•	206
8.7	problem	Problem	7	•	•		 •		•	•			•	•	•	 •	•	•	•	•	•			•		•	207
8.8	$\operatorname{problem}$	Problem	8	•	•		 •	•	•	•			•	•	•		•	•	•	•	•			•		•	208
8.9	$\operatorname{problem}$	Problem	9	•	•	•	 •	•	•	•			•	•	•		•	•	•	•	•	•		•		•	209
8.10	$\operatorname{problem}$	Problem	10		•		 •	•	•	•			•	•	•		•	•	•	•	•			•		•	210
8.11	$\operatorname{problem}$	Problem	11		•		 •	•	•	•			•	•	•		•	•	•	•	•			•		•	211

8.1 problem Problem 1

Internal problem ID [2763]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 1. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 16y = 20\cos\left(4x\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-16*y(x)=20*cos(4*x),y(x), singsol=all)

$$y(x) = e^{4x}c_2 + c_1e^{-4x} - \frac{5\cos(4x)}{8}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 30

DSolve[y''[x]-16*y[x]==20*Cos[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{5}{8}\cos(4x) + c_1 e^{4x} + c_2 e^{-4x}$$

8.2 problem Problem 2

Internal problem ID [2764]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 2. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 50\sin(3x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=50*sin(3*x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + x e^{-x}c_1 - 3\cos(3x) - 4\sin(3x)$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 34

DSolve[y''[x]+2*y'[x]+y[x]==50*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -3\cos(3x) + e^{-x}(-4e^x\sin(3x) + c_2x + c_1)$$

8.3 problem Problem 3

Internal problem ID [2765]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 3. **ODE order**: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = 10\cos\left(x\right)e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-y(x)=10*exp(2*x)*cos(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^x + e^{2x}(2\sin(x) + \cos(x))$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 33

DSolve[y''[x]-y[x]==10*Exp[2*x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x} + e^{2x} (2\sin(x) + \cos(x)))$$

8.4 problem Problem 4

Internal problem ID [2766]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 4. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y = 169\sin(3x)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=169*sin(3*x),y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 - 12 \cos(3x) - 5 \sin(3x)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 36

DSolve[y''[x]+4*y'[x]+4*y[x]==169*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -12\cos(3x) + e^{-2x}(-5e^{2x}\sin(3x) + c_2x + c_1)$$

8.5 problem Problem 5

Internal problem ID [2767]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 5. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y = 40\sin(x)^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=40*sin(x)^2,y(x), singsol=all)$

$$y(x) = c_2 e^{2x} + e^{-x} c_1 - 10 + \sin(2x) + 3\cos(2x)$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 33

DSolve[y''[x]-y'[x]-2*y[x]==40*Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \sin(2x) + 3\cos(2x) + c_1 e^{-x} + c_2 e^{2x} - 10$$

8.6 problem Problem 6

Internal problem ID [2768]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 6. **ODE order**: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 3\cos(2x)e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+y(x)=3*exp(x)*cos(2*x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \frac{3 e^x (\cos(2x) - 2\sin(2x))}{10}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 34

DSolve[y''[x]+y[x]==3*Exp[x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{3}{10}e^{x}(\cos(2x) - 2\sin(2x)) + c_{1}\cos(x) + c_{2}\sin(x)$$

8.7 problem Problem 7

Internal problem ID [2769]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 7. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = 2e^{-x}\sin(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=2*exp(-x)*sin(x),y(x), singsol=al1)

$$y(x) = \sin(x) e^{-x} c_2 + e^{-x} \cos(x) c_1 - e^{-x} (\cos(x) x - \sin(x))$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 34

DSolve[y''[x]+2*y'[x]+2*y[x]==2*Exp[-x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}e^{-x}(\sin(x) - 2x\cos(x) + 2c_2\cos(x) + 2c_1\sin(x))$$

8.8 problem Problem 8

Internal problem ID [2770]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 8. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y = 100\sin\left(x\right)x\,\mathrm{e}^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

dsolve(diff(y(x),x\$2)-4*y(x)=100*x*exp(x)*sin(x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + e^{-2x} c_1 - 2 e^x (5 \cos(x) x + 10 \sin(x) x + 7 \cos(x) - \sin(x))$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 44

DSolve[y''[x]-4*y[x]==100*x*Exp[x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{2x} + c_2 e^{-2x} - 2e^x ((10x - 1)\sin(x) + (5x + 7)\cos(x)))$$

8.9 problem Problem 9

Internal problem ID [2771]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 9. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = 4e^{-x}\cos(2x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 43

dsolve(diff(y(x),x)+2*diff(y(x),x)+5*y(x)=4*exp(-x)*cos(2*x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(2x) c_2 + \cos(2x) e^{-x} c_1 + \frac{e^{-x} (2\sin(2x) x + \cos(2x))}{2}$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 36

DSolve[y''[x]+2*y'[x]+5*y[x]==4*Exp[-x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{4}e^{-x}((1+4c_2)\cos(2x)+4(x+c_1)\sin(2x))$$

8.10 problem Problem 10

Internal problem ID [2772]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 10. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 10y = 24 e^x \cos(3x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+10*y(x)=24*exp(x)*cos(3*x),y(x), singsol=all)

$$y(x) = \sin(3x) e^x c_2 + \cos(3x) e^x c_1 + \frac{4 e^x (3 \sin(3x) x + \cos(3x))}{3}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 36

DSolve[y''[x]-2*y'[x]+10*y[x]==24*Exp[x]*Cos[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{3}e^{x}((2+3c_2)\cos(3x)+3(4x+c_1)\sin(3x))$$

8.11 problem Problem 11

Internal problem ID [2773]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

 $y'' + 16y = 34 e^x + 16 \cos(4x) - 8 \sin(4x)$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

dsolve(diff(y(x),x\$2)+16*y(x)=34*exp(x)+16*cos(4*x)-8*sin(4*x),y(x), singsol=all)

$$y(x) = \sin (4x) c_2 + \cos (4x) c_1 - rac{\sin (4x)}{4} + \cos (4x) x + 2 \sin (4x) x + 2 e^x$$

✓ Solution by Mathematica

Time used: 0.623 (sec). Leaf size: 37

DSolve[y''[x]+16*y[x]==34*Exp[x]+16*Cos[4*x]-8*Sin[4*x],y[x],x,IncludeSingularSolutions -> T

$$y(x) \to 2e^x + \left(x + \frac{1}{4} + c_1\right)\cos(4x) + \left(2x - \frac{1}{8} + c_2\right)\sin(4x)$$

9 Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

9.1	problem Problem 1	213
9.2	problem Problem 2	214
9.3	problem 3	215
9.4	problem Problem 4	216
9.5	problem Problem 5	217
9.6	problem Problem 6	218
9.7	problem Problem 7	219
9.8	problem 8	220
9.9	problem Problem 9	221
9.10	problem Problem 10	222
9.11	problem Problem 11	223
9.12	problem Problem 12	224
9.13	problem Problem 13	225
9.14	problem Problem 13	226
9.15	problem Problem 15	227
9.16	problem Problem 16	228
9.17	problem Problem 17	229
9.18	problem Problem 18	230
9.19	problem Problem 19	231
9.20	problem Problem 20	233
9.21	problem Problem 21	234
9.22	problem Problem 22	235
9.23	problem Problem 23	236
9.24	problem Problem 24	237
9.25	problem Problem 25	238
9.26	problem Problem 26	239
9.27	problem Problem 27	240
9.28	problem Problem 28	241

9.1 problem Problem 1

Internal problem ID [2774]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 1. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 9y = 4e^{3x}\ln(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve(diff(y(x),x)=6*diff(y(x),x)+9*y(x)=4*exp(3*x)*ln(x),y(x), singsol=al1)

$$y(x) = c_2 e^{3x} + x e^{3x} c_1 + x^2 e^{3x} (2\ln(x) - 3)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 30

DSolve[y''[x]-6*y'[x]+9*y[x]==4*Exp[3*x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{3x} \left(-3x^2 + 2x^2 \log(x) + c_2 x + c_1 \right)$$

9.2 problem Problem 2

Internal problem ID [2775]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.Fourth edition, 2015Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 2.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y = \frac{e^{-2x}}{x^2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=x^(-2)*exp(-2*x),y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 - (\ln(x) + 1) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 23

DSolve[y''[x]+4*y'[x]+4*y[x]==x^(-2)*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(-\log(x) + c_2x - 1 + c_1)$$

9.3 problem Problem 3

Internal problem ID [2776]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 3. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 18\sec\left(3x\right)^3$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(diff(y(x),x$2)+9*y(x)=18*sec(3*x)^3,y(x), singsol=all)$

$$y(x) = \sin(3x) c_2 + \cos(3x) c_1 - 2\cos(3x) + \sec(3x)$$

✓ Solution by Mathematica

Time used: 0.139 (sec). Leaf size: 32

DSolve[y''[x]+9*y[x]==18*Sec[3*x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}\sec(3x)((-2+c_1)\cos(6x)+c_2\sin(6x)+c_1)$$

9.4 problem Problem 4

Internal problem ID [2777]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.Fourth edition, 2015Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of

Parameters Method. page 556 **Problem number**: Problem 4.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 9y = \frac{2 e^{-3x}}{x^2 + 1}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $dsolve(diff(y(x),x$2)+6*diff(y(x),x)+9*y(x)=2*exp(-3*x)/(x^2+1),y(x), singsol=all)$

$$y(x) = c_2 e^{-3x} + x e^{-3x} c_1 + (2x \arctan(x) - \ln(x^2 + 1)) e^{-3x}$$

Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 31

DSolve[y''[x]+6*y'[x]+9*y[x]==2*Exp[-3*x]/(x^2+1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} (2x \arctan(x) - \log(x^2 + 1) + c_2 x + c_1)$$

9.5 problem Problem 5

Internal problem ID [2778]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 5.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y = \frac{8}{e^{2x} + 1}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 46

dsolve(diff(y(x),x\$2)-4*y(x)=8/(exp(2*x)+1),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + e^{-2x} c_1 + (-e^{-2x} + e^{2x}) \ln(e^{2x} + 1) - 2\ln(e^x) e^{2x} - 1$$

Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 56

DSolve[y''[x]-4*y[x]==8/(Exp[2*x]+1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(2e^{4x} \operatorname{arctanh} \left(2e^{2x} + 1 \right) - e^{2x} - \log \left(e^{2x} + 1 \right) + c_1 e^{4x} + c_2 \right)$$

9.6 problem Problem 6

Internal problem ID [2779]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 6.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y = e^{2x} \tan(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve(diff(y(x),x)-4*diff(y(x),x)+5*y(x)=exp(2*x)*tan(x),y(x), singsol=all)

$$y(x) = e^{2x} \sin(x) c_2 + e^{2x} \cos(x) c_1 - e^{2x} \cos(x) \ln(\sec(x) + \tan(x))$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 29

DSolve[y''[x]-4*y'[x]+5*y[x]==Exp[2*x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{2x}(\cos(x)(-\arctan(\sin(x))) + c_2\cos(x) + c_1\sin(x)))$$

9.7 problem Problem 7

Internal problem ID [2780]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 7. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = \frac{36}{4 - \cos(3x)^2}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 59

 $dsolve(diff(y(x),x$2)+9*y(x)=36/(4-cos(3*x)^2),y(x), singsol=all)$

$$y(x) = \sin(3x) c_2 + \cos(3x) c_1 + \frac{4\sqrt{3} \arctan\left(\frac{\sqrt{3} \sin(3x)}{3}\right) \sin(3x)}{3} - (-\ln(\cos(3x) + 2) + \ln(\cos(3x) - 2))\cos(3x)$$

Solution by Mathematica

Time used: 0.227 (sec). Leaf size: 61

DSolve[y''[x]+9*y[x]==36/(4-Cos[3*x]^2),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{4\sin(3x)\arctan\left(\frac{\sin(3x)}{\sqrt{3}}\right)}{\sqrt{3}} + c_2\sin(3x) + \cos(3x)(-\log(2-\cos(3x))) + \log(\cos(3x)+2) + c_1)$$

9.8 problem Problem 8

Internal problem ID [2781]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 8.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 10y' + 25y = \frac{2e^{5x}}{x^2 + 4}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 38

dsolve(diff(y(x),x\$2)-10*diff(y(x),x)+25*y(x)=2*exp(5*x)/(4+x^2),y(x), singsol=all)

$$y(x) = e^{5x}c_2 + e^{5x}xc_1 + e^{5x}\left(-\ln(x^2+4) + x\arctan(\frac{x}{2})\right)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 34

DSolve[y''[x]-10*y'[x]+25*y[x]==2*Exp[5*x]/(4+x^2),y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow e^{5x} \Big(x \arctan\left(rac{x}{2}
ight) - \log\left(x^2 + 4
ight) + c_2 x + c_1\Big)$$

9.9 problem Problem 9

Internal problem ID [2782]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 9. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 13y = 4 e^{3x} \sec(2x)^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $dsolve(diff(y(x),x$2)-6*diff(y(x),x)+13*y(x)=4*exp(3*x)*sec(2*x)^2,y(x), singsol=all)$

$$y(x) = e^{3x} \sin(2x) c_2 + e^{3x} \cos(2x) c_1 + e^{3x} (\sin(2x) \ln(\sec(2x) + \tan(2x)) - 1)$$

✓ Solution by Mathematica

Time used: 0.122 (sec). Leaf size: 37

DSolve[y''[x]-6*y'[x]+13*y[x]==4*Exp[3*x]*Sec[2*x]^2,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow e^{3x} (c_2 \cos(2x) + \sin(2x) \coth^{-1}(\sin(2x)) + c_1 \sin(2x) - 1)$$

9.10 problem Problem 10

Internal problem ID [2783]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 10.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec\left(x\right) + 4\,\mathrm{e}^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+y(x)=sec(x)+4*exp(x),y(x), singsol=all)

$$y(x) = \sin(x)c_2 + c_1\cos(x) + \cos(x)\ln(\cos(x)) + \sin(x)x + 2e^x$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 91

DSolve[y''[x]+y[x]==4*Exp[x]*Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -4ie^x \operatorname{Hypergeometric2F1}\left(-\frac{i}{2}, 1, 1 - \frac{i}{2}, -e^{2ix}\right) \cos(x) \\ &+ \left(\frac{8}{5} + \frac{4i}{5}\right) e^{(1+2i)x} \operatorname{Hypergeometric2F1}\left(1, 1 - \frac{i}{2}, 2 - \frac{i}{2}, -e^{2ix}\right) \cos(x) \\ &+ 4e^x \sin(x) + c_1 \cos(x) + c_2 \sin(x) \end{split}$$

9.11 problem Problem 11

Internal problem ID [2784]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 11.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \csc(x) + 2x^2 + 5x + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(diff(y(x),x$2)+y(x)=csc(x)+2*x^2+5*x+1,y(x), singsol=all)$

$$y(x) = \sin(x)c_2 + c_1\cos(x) - \cos(x)x + \sin(x)\ln(\sin(x)) + 2x^2 + 5x - 3$$

✓ Solution by Mathematica

Time used: 0.208 (sec). Leaf size: 33

DSolve[y''[x]+y[x]==Csc[x]+2*x^2+5*x+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 2x^2 + 5x + (-x + c_1)\cos(x) + \sin(x)(\log(\sin(x)) + c_2) - 3$$

9.12 problem Problem 12

Internal problem ID [2785]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 12. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = 2\tanh\left(x\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-y(x)=2*tanh(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^x + 2 \arctan(e^x)(e^x + e^{-x})$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 35

DSolve[y''[x]-y[x]==2*Tanh[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (2(e^{2x}+1) \arctan(e^x) + c_1 e^{2x} + c_2)$$

9.13 problem Problem 13

Internal problem ID [2786]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 13.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2my' + m^2y = \frac{e^{mx}}{x^2 + 1}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

 $dsolve(diff(y(x),x$2)-2*m*diff(y(x),x)+m^2*y(x)=exp(m*x)/(1+x^2),y(x), singsol=all)$

$$y(x) = e^{mx}c_2 + e^{mx}xc_1 + e^{mx}\left(-\frac{\ln(x^2+1)}{2} + x \arctan(x)\right)$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 37

DSolve[y''[x]-2*m*y'[x]+m^2*y[x]==Exp[m*x]/(1+x^2),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}e^{mx} (2x \arctan(x) - \log(x^2 + 1) + 2(c_2x + c_1))$$

9.14 problem Problem 13

Internal problem ID [2787]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.Fourth edition, 2015Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 13.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = \frac{4 e^x \ln(x)}{x^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=4*exp(x)*x^{(-3)*ln(x)},y(x), singsol=all)$

$$y(x) = e^{x}c_{2} + x e^{x}c_{1} + \frac{2 e^{x} \ln (x) + 3 e^{x}}{x}$$

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 28

DSolve[y''[x]-2*y'[x]+y[x]==4*Exp[x]*x^(-3)*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x(c_2x^2 + 2\log(x) + c_1x + 3)}{x}$$

9.15 problem Problem 15

Internal problem ID [2788]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.Fourth edition, 2015Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 15.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = \frac{e^{-x}}{\sqrt{-x^2 + 4}}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 54

 $dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=exp(-x)/sqrt(4-x^2),y(x), singsol=all)$

$$y(x) = e^{-x}c_2 + x e^{-x}c_1 - \frac{e^{-x}\left(-\arcsin\left(\frac{x}{2}\right)x\sqrt{-x^2+4} + x^2 - 4\right)}{\sqrt{-x^2+4}}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 50

DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]/Sqrt[4-x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(-2x \arctan\left(\frac{\sqrt{4-x^2}}{x+2}\right) + \sqrt{4-x^2} + c_2 x + c_1 \right)$$

9.16 problem Problem 16

Internal problem ID [2789]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 16.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 17y = \frac{64 \,\mathrm{e}^{-x}}{3 + \sin\left(4x\right)^2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 73

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+17*y(x)=64*exp(-x)/(3+sin(4*x)^2),y(x), singsol=all)

$$y(x) = e^{-x} \sin(4x) c_2 + e^{-x} \cos(4x) c_1 + \frac{4\left(\sin(4x)\sqrt{3} \arctan\left(\frac{\sqrt{3}\sin(4x)}{3}\right) - \frac{3\cos(4x)(-\ln(\cos(4x)+2) + \ln(\cos(4x)-2))}{4}\right) e^{-x}}{3}$$

✓ Solution by Mathematica

Time used: 0.238 (sec). Leaf size: 72

DSolve[y''[x]+2*y'[x]+17*y[x]==64*Exp[-x]/(3+Sin[4*x]^2),y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{3}e^{-x} \left(4\sqrt{3}\sin(4x)\arctan\left(\frac{\sin(4x)}{\sqrt{3}}\right) + 3c_1\sin(4x) + 3\cos(4x)(-\log(2-\cos(4x))) + \log(\cos(4x)+2) + c_2) \right)$$

9.17 problem Problem 17

Internal problem ID [2790]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 17.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y = \frac{4e^{-2x}}{x^2 + 1} + 2x^2 - 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 46

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=4*exp(-2*x)/(1+x^2)+2*x^2-1,y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 - 2 e^{-2x} \ln (x^2 + 1) + 4 \arctan (x) e^{-2x} x + \frac{(x-1)^2}{2}$$

✓ Solution by Mathematica

Time used: 0.58 (sec). Leaf size: 59

DSolve[y''[x]+4*y'[x]+4*y[x]==4*Exp[-2*x]/(1+x^2)+2*x^2-1,y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{2}e^{-2x} \left(8x \arctan(x) + e^{2x}x^2 - 4\log\left(x^2 + 1\right) - 2e^{2x}x + e^{2x} + 2c_2x + 2c_1\right)$$

problem Problem 18 9.18

Internal problem ID [2791]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015 Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556 Problem number: Problem 18.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

 $y'' + 4y' + 4y = 15\ln(x)e^{-2x} + 25\cos(x)$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=15*exp(-2*x)*ln(x)+25*cos(x),y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 + \frac{15x^2 \left(\ln(x) - \frac{3}{2}\right) e^{-2x}}{2} + 3\cos(x) + 4\sin(x)$$

Solution by Mathematica

Time used: 0.211 (sec). Leaf size: 54

DSolve[y''[x]+4*y'[x]+4*y[x]==15*Exp[-2*x]*Log[x]+25*Cos[x],y[x],x,IncludeSingularSolutions

$$y(x) \to \frac{1}{4}e^{-2x} \left(-45x^2 + 30x^2\log(x) + 16e^{2x}\sin(x) + 12e^{2x}\cos(x) + 4c_2x + 4c_1\right)$$

9.19 problem Problem 19

Internal problem ID [2792]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 19.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 3y' - y = \frac{2e^x}{x^2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+3*diff(y(x),x)-y(x)=2*x^(-2)*exp(x),y(x), singsol=all

 $y(x) = -2e^{x}\ln(x)x + c_{1}e^{x} + c_{2}xe^{x} + c_{3}x^{2}e^{x}$

Solution by Mathematica

Time used: 0.393 (sec). Leaf size: 627

DSolve[y'''[x]-6*y''[x]+3*y'[x]-y[x]==2*x^(-2)*Exp[x],y[x],x,IncludeSingularSolutions -> Tru

y(x)

 \rightarrow —

 $2i \big(\text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 1 \big] - \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \Big] \Big) \exp$

 $2i \big(\text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 2 \big] - \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \big) \exp \big(x \text{Root} \big[\#1^3 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \big) \exp \big(x \text{Root} \big[\#1^2 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \big) \exp \big(x \text{Root} \big[\#1^2 - 6 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \Big) \exp \big(x \text{Root} \big[\#1^2 - 6 \#1^2 + 3 \#1^2 + 3 \#1 - 1 \&, 3 \Big] \Big) \exp \big(x \text{Root} \big[\#1^2 - 6 \#1^2 + 3 \#1^2 + 3 \#$

 $2i(\operatorname{Root}[\#1^3 - 6\#1^2 + 3\#1 - 1\&, 1] - \operatorname{Root}[\#1^3 - 6\#1^2 + 3\#1 - 1\&, 3]) \exp(x\operatorname{Root}[\#1^3 - 6\#1^2 + 3\#1^2 + 3\#1 - 1\&, 3]) \exp(x\operatorname{Root}[\#1^3 - 6\#1^2 + 3\#1^$

+ $c_2 \exp \left(x \operatorname{Root} \left[\#1^3 - 6\#1^2 + 3\#1 - 1\&, 2\right]\right)$ + $c_3 \exp \left(x \operatorname{Root} \left[\#1^3 - 6\#1^2 + 3\#1 - 1\&, 3\right]\right)$ + $c_1 \exp \left(x \operatorname{Root} \left[\#1^3 - 6\#1^2 + 3\#1 - 1\&, 1\right]\right)$

9.20 problem Problem 20

Internal problem ID [2793]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 20.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 6y'' + 12y' - 8y = 36 e^{2x} \ln (x)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singso

$$y(x) = 6\ln(x)e^{2x}x^3 - 11e^{2x}x^3 + c_1e^{2x} + c_2e^{2x}x + c_3e^{2x}x^2$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 36

DSolve[y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==36*Exp[2*x]*Log[x],y[x],x,IncludeSingularSolutions

$$y(x) \rightarrow e^{2x} \left(-11x^3 + 6x^3 \log(x) + c_3 x^2 + c_2 x + c_1 \right)$$

9.21 problem Problem 21

Internal problem ID [2794]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 21.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 3y'' + 3y' + y = \frac{2 e^{-x}}{x^2 + 1}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 64

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)/(1+x^2),y(x), singsol=a

$$y(x) = \arctan(x) x^2 e^{-x} - \ln(x^2 + 1) x e^{-x} - e^{-x} \arctan(x) + x e^{-x} + e^{-x} c_1 + c_2 e^{-x} x + c_3 x^2 e^{-x}$$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 42

DSolve[y'''[x]+3*y''[x]+3*y'[x]+y[x]==2*Exp[-x]/(1+x^2),y[x],x,IncludeSingularSolutions -> 1

$$y(x) \to e^{-x} ((x^2 - 1) \arctan(x) - x \log(x^2 + 1) + c_3 x^2 + x + c_2 x + c_1)$$

9.22 problem Problem 22

Internal problem ID [2795]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 22.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 6y'' + 9y' = 12 e^{3x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+9*diff(y(x),x)=12*exp(3*x),y(x), singsol=all)

$$y(x) = \frac{(3c_1x + 18x^2 - c_1 + 3c_2 - 12x + 4)e^{3x}}{9} + c_3$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 39

DSolve[y'''[x]-6*y''[x]+9*y'[x]==12*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{9}e^{3x} (18x^2 + 3(-4 + c_2)x + 4 + 3c_1 - c_2) + c_3$$

9.23 problem Problem 23

Internal problem ID [2796]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 23. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y = F(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

dsolve(diff(y(x),x\$2)-9*y(x)=F(x),y(x), singsol=all)

$$y(x) = c_2 e^{3x} + c_1 e^{-3x} + \frac{\left(\int e^{-3x} F(x) \, dx\right) e^{3x}}{6} - \frac{\left(\int e^{3x} F(x) \, dx\right) e^{-3x}}{6}$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 66

DSolve[y''[x]-y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(e^{2x} \int_1^x \frac{1}{2} e^{-K[1]} F(K[1]) dK[1] + \int_1^x -\frac{1}{2} e^{K[2]} F(K[2]) dK[2] + c_1 e^{2x} + c_2 \right)$$

9.24 problem Problem 24

Internal problem ID [2797]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 24.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 4y = F(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

dsolve(diff(y(x),x\$2)+5*diff(y(x),x)+4*y(x)=F(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^{-4x} + \frac{\left(\left(\int e^x F(x) \, dx\right) e^{3x} - \left(\int F(x) \, e^{4x} dx\right)\right) e^{-4x}}{3}$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 66

DSolve[y''[x]+5*y'[x]+4*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-4x} \left(\int_1^x -\frac{1}{3} e^{4K[1]} F(K[1]) dK[1] + e^{3x} \int_1^x \frac{1}{3} e^{K[2]} F(K[2]) dK[2] + c_2 e^{3x} + c_1 \right)$$

9.25 problem Problem 25

Internal problem ID [2798]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 25.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y = F(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

dsolve(diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=F(x),y(x), singsol=all)

$$y(x) = e^x c_2 + e^{-2x} c_1 + \frac{\left(\left(\int e^{-x} F(x) \, dx\right) e^{3x} - \left(\int F(x) \, e^{2x} dx\right)\right) e^{-2x}}{3}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 68

DSolve[y''[x]+y'[x]-2*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(\int_1^x -\frac{1}{3} e^{2K[1]} F(K[1]) dK[1] + e^{3x} \int_1^x \frac{1}{3} e^{-K[2]} F(K[2]) dK[2] + c_2 e^{3x} + c_1 \right)$$

9.26 problem Problem 26

Internal problem ID [2799]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 26.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' - 12y = F(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)-12*y(x)=F(x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + c_1 e^{-6x} + \frac{\left(\left(\int F(x) e^{-2x} dx\right) e^{8x} - \left(\int F(x) e^{6x} dx\right)\right) e^{-6x}}{8}$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 68

DSolve[y''[x]+4*y'[x]-12*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-6x} \left(\int_1^x -\frac{1}{8} e^{6K[1]} F(K[1]) dK[1] + e^{8x} \int_1^x \frac{1}{8} e^{-2K[2]} F(K[2]) dK[2] + c_2 e^{8x} + c_1 \right)$$

9.27 problem Problem 27

Internal problem ID [2800]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 27. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = 5x e^{2x}$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=5*x*exp(2*x),y(0) = 1, D(y)(0) = 0],y(x), sings

$$y(x) = \frac{e^{2x}(5x^3 - 12x + 6)}{6}$$

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 24

DSolve[{y''[x]-4*y'[x]+4*y[x]==5*x*Exp[2*x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSoluti

$$y(x) \to \frac{1}{6}e^{2x}(5x^3 - 12x + 6)$$

9.28 problem Problem 28

Internal problem ID [2801]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 28.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec\left(x\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve([diff(y(x),x\$2)+y(x)=sec(x),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = \sin(x) + \sin(x)x - \cos(x)\ln(\sec(x))$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve[{y''[x]-4*y'[x]+4*y[x]==5*x*Exp[2*x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSoluti

$$y(x) \to \frac{1}{6}e^{2x}(5x^3 - 12x + 6)$$

10 Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

10.1	$\operatorname{problem}$	Problem	14	•	•	•	•	•	•		•				•	•		•		•	•	•		•	•		243
10.2	problem	Problem	15	•	•		•	•	•	•	•		•		•		•	•	 •	•	•	•	•	•	•		244
10.3	$\operatorname{problem}$	Problem	16	•	•	•	•	•	•		•			•	•	•		•	 •	•	•	•		•	•		245
10.4	$\operatorname{problem}$	Problem	17	•	•	•	•	•	•		•				•	•		•		•	•	•		•	•		246
10.5	$\operatorname{problem}$	Problem	18	•	•	•	•	•	•		•			•	•	•		•	 •	•	•	•		•	•		247
10.6	$\operatorname{problem}$	Problem	19	•	•	•	•	•	•		•			•	•	•		•	 •	•	•	•		•	•		248
10.7	problem	Problem	20	•	•		•	•	•	•	•		•		•		•	•	 •	•	•	•	•	•	•		249
10.8	$\operatorname{problem}$	Problem	21	•	•	•	•	•	•		•			•	•	•		•	 •	•	•	•		•	•		250
10.9	$\operatorname{problem}$	Problem	22	•	•	•	•	•	•		•			•	•	•		•	 •	•	•	•		•	•		251
10.10)problem	Problem	23					•	•		•				•			•			•				•		252

problem Problem 14 10.1

Internal problem ID [2802]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 14.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' + 4xy' + 2y = 4\ln(x)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x^2)+4*x*diff(y(x),x)+2*y(x)=4*ln(x),y(x), singsol=all)$

$$y(x) = 2\ln(x) + \frac{c_1}{x} - 3 + \frac{c_2}{x^2}$$

Solution by Mathematica \checkmark

Time used: 0.016 (sec). Leaf size: 23

DSolve[x²*y''[x]+4*x*y'[x]+2*y[x]==4*Log[x],y[x],x,IncludeSingularSolutions +> True]

$$y(x) \to \frac{c_1}{x^2} + 2\log(x) + \frac{c_2}{x} - 3$$

10.2 problem Problem 15

Internal problem ID [2803]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 15.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^2y'' + 4xy' + 2y = \cos\left(x\right)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve(x^2*diff(y(x),x^2)+4*x*diff(y(x),x)+2*y(x)=cos(x),y(x), singsol=all)$

$$y(x) = rac{c_1}{x} - rac{\cos(x)}{x^2} + rac{c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 20

DSolve[x²*y''[x]+4*x*y'[x]+2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{-\cos(x) + c_2 x + c_1}{x^2}$$

10.3 problem Problem 16

Internal problem ID [2804]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 16.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + xy' + 9y = 9\ln\left(x\right)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(x^2*diff(y(x),x^2)+x*diff(y(x),x)+9*y(x)=9*ln(x),y(x), singsol=all)$

$$y(x) = \sin(3\ln(x))c_2 + \cos(3\ln(x))c_1 + \ln(x)$$

✓ Solution by Mathematica

Time used: 0.155 (sec). Leaf size: 24

DSolve[x²*y''[x]+x*y'[x]+9*y[x]==9*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \log(x) + c_1 \cos(3\log(x)) + c_2 \sin(3\log(x))$$

10.4 problem Problem 17

Internal problem ID [2805]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 17.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - xy' + 5y = 8\ln(x)^{2}x$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(x^2*diff(y(x),x^2)-x*diff(y(x),x)+5*y(x)=8*x*(ln(x))^2,y(x), singsol=all)$

$$y(x) = x \sin(2\ln(x)) c_2 + x \cos(2\ln(x)) c_1 + 2\ln(x)^2 x - x$$

✓ Solution by Mathematica

Time used: 0.154 (sec). Leaf size: 31

DSolve[x²*y''[x]-x*y'[x]+5*y[x]==8*x*(Log[x])²,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(2\log^2(x) + c_2\cos(2\log(x)) + c_1\sin(2\log(x)) - 1)$$

10.5 problem Problem 18

Internal problem ID [2806]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 18.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 4xy' + 6y = x^{4}\sin(x)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(x^2*diff(y(x),x\$2)-4*x*diff(y(x),x)+6*y(x)=x^4*sin(x),y(x), singsol=all)

$$y(x) = x^2 c_2 + c_1 x^3 - \sin(x) x^2$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 20

DSolve[x²*y''[x]-4*x*y'[x]+6*y[x]==x⁴*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(-\sin(x) + c_2 x + c_1)$$

10.6 problem Problem 19

Internal problem ID [2807]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 19.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^2y'' + 6xy' + 6y = 4e^{2x}$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve(x^2*diff(y(x),x\$2)+6*x*diff(y(x),x)+6*y(x)=4*exp(2*x),y(x), singsol=al1)

$$y(x) = \frac{-\frac{c_1}{x} - \frac{e^{2x}}{x} + e^{2x} + c_2}{x^2}$$

Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 25

DSolve[x²*y''[x]+6*x*y'[x]+6*y[x]==4*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{2x}(x-1) + c_2 x + c_1}{x^3}$$

10.7 problem Problem 20

Internal problem ID [2808]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 20.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 3xy' + 4y = \frac{x^{2}}{\ln(x)}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

 $dsolve(x^2*diff(y(x),x^2)-3*x*diff(y(x),x)+4*y(x)=x^2/ln(x),y(x), singsol=all)$

$$y(x) = x^{2}c_{2} + \ln(x)c_{1}x^{2} + \ln(x)x^{2}(-1 + \ln(\ln(x)))$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve[x²*y''[x]-3*x*y'[x]+4*y[x]==x²/Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(\log(x)(\log(\log(x))) - 1 + 2c_2) + c_1)$$

10.8 problem Problem 21

Internal problem ID [2809]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 21.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - (2m - 1)xy' + m^{2}y = x^{m}\ln(x)^{k}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(x²*diff(y(x),x\$2)-(2*m-1)*x*diff(y(x),x)+m²*y(x)=x^m*(ln(x))^k,y(x), singsol=all)

$$y(x) = x^m c_2 + \ln(x) x^m c_1 + \frac{x^m \ln(x)^{k+2}}{k^2 + 3k + 2}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 35

DSolve[x²*y''[x]-(2*m-1)*x*y'[x]+m²*y[x]==x^m*(Log[x])^k,y[x],x,IncludeSingularSolutions -

$$y(x) o x^m igg(rac{\log^{k+2}(x)}{k^2 + 3k + 2} + c_2 m \log(x) + c_1 igg)$$

10.9 problem Problem 22

Internal problem ID [2810]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 22.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - xy' + 5y = 0$$

With initial conditions

$$\left[y(1)=\sqrt{2},y'(1)=3\sqrt{2}\right]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

 $dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+5*y(x)=0,y(1) = 2^{(1/2)}, D(y)(1) = 3*2^{(1/2)}, y(x)$

$$y(x) = \sqrt{2} x(\sin(2\ln(x)) + \cos(2\ln(x)))$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 23

DSolve[{x^2*y''[x]-x*y'[x]+5*y[x]==0,{y[1]==Sqrt[2],y'[1]==3*Sqrt[2]},y[x],x,IncludeSingula

$$y(x) \rightarrow \sqrt{2}x(\sin(2\log(x)) + \cos(2\log(x)))$$

10.10 problem Problem 23

Internal problem ID [2811]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 23.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F

$$t^2y'' + ty' + 25y = 0$$

With initial conditions

$$\left[y(1) = \frac{3\sqrt{3}}{2}, y'(1) = \frac{15}{2}\right]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 22

dsolve([t²*diff(y(t),t\$2)+t*diff(y(t),t)+25*y(t)=0,y(1) = 3/2*3^(1/2), D(y)(1) = 15/2],y(t)

$$y(t) = \frac{3\sin(5\ln(t))}{2} + \frac{3\sqrt{3}\cos(5\ln(t))}{2}$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 26

DSolve[{t²*y''[t]+t*y'[t]+25*y[t]==0,{y[1]==3*Sqrt[3]/2,y'[1]==15/2}},y[t],t,IncludeSingula

$$y(t) \rightarrow \frac{3}{2} \Big(\sin(5\log(t)) + \sqrt{3}\cos(5\log(t)) \Big)$$

11 Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

11.1	$\operatorname{problem}$	Problem	1	•	•		•		•		•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	254
11.2	$\operatorname{problem}$	Problem	2	•		•			•	•	•		•	•		•				•	•	•	•	•	•						•	•	•	255
11.3	problem	Problem	3	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	256
11.4	problem	Problem	4	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	257
11.5	problem	Problem	5	•							•		•	•		•			•	•	•	•	•	•	•		•		•		•	•	•	258
11.6	problem	Problem	6	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	259
11.7	problem	Problem	10)					•	•	•		•	•		•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	260
11.8	problem	Problem	11				•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	261
11.9	problem	Problem	12	2			•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	262
11.10)problem	Problem	13	5					•	•	•		•	•		•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	263
11.11	problem	Problem	14	:			•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	264
11.12	2problem	Problem	15)	•	•	•		•		•		•	•		•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	265

11.1 problem Problem 1

Internal problem ID [2812]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order.
page 572
Problem number: Problem 1.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F

$$x^2y'' - 3xy' + 4y = 0$$

Given that one solution of the ode is

 $y_1 = x^2$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([x^2*diff(y(x),x\$2)-3*x*diff(y(x),x)+4*y(x)=0,x^2],y(x), singsol=all)

$$y(x) = c_1 x^2 + c_2 x^2 \ln(x)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 18

DSolve[x²*y''[x]-3*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(2c_2\log(x) + c_1)$$

11.2 problem Problem 2

Internal problem ID [2813]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 2. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + (1 - 2x)y' + y(x - 1) = 0$$

Given that one solution of the ode is

 $y_1 = e^x$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([x*diff(y(x),x\$2)+(1-2*x)*diff(y(x),x)+(x-1)*y(x)=0,exp(x)],y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^x + c_2 \mathrm{e}^x \ln\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 17

DSolve[x*y''[x]+(1-2*x)*y'[x]+(x-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x(c_2 \log(x) + c_1)$$

11.3 problem Problem 3

Internal problem ID [2814]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 3. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 2xy' + (x^{2} + 2)y = 0$$

Given that one solution of the ode is

$$y_1 = \sin\left(x\right)x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([x²*diff(y(x),x\$2)-2*x*diff(y(x),x)+(x²+2)*y(x)=0,x*sin(x)],y(x), singsol=all)

$$y(x) = c_1 \sin(x) x + c_2 \cos(x) x$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 33

DSolve[x²*y''[x]-2*x*y'[x]+(x²+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow c_1 e^{-ix} x - rac{1}{2} i c_2 e^{ix} x$$

11.4 problem Problem 4

Internal problem ID [2815]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 4. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(1-x^2)y''-2xy'+2y=0$$

Given that one solution of the ode is

 $y_1 = x$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve([(1-x^2)*diff(y(x),x\$2)-2*x*diff(y(x),x)+2*y(x)=0,x],y(x), singsol=all)

$$y(x) = c_1 x + c_2 \left(\frac{\ln(x-1)x}{2} - \frac{\ln(x+1)x}{2} + 1 \right)$$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 33

DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x - \frac{1}{2}c_2(x\log(1-x) - x\log(x+1) + 2)$$

11.5 problem Problem 5

Internal problem ID [2816]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order.
page 572
Problem number: Problem 5.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F

$$y'' - \frac{y'}{x} + 4yx^2 = 0$$

Given that one solution of the ode is

$$y_1 = \sin\left(x^2\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve([diff(y(x),x$2)-1/x*diff(y(x),x)+4*x^2*y(x)=0,sin(x^2)],y(x), singsol=all)$

$$y(x) = c_1 \sin(x^2) + c_2 \cos(x^2)$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 20

DSolve[y''[x]-1/x*y'[x]+4*x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos\left(x^2\right) + c_2 \sin\left(x^2\right)$$

11.6 problem Problem 6

Internal problem ID [2817]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 6. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4xy' + (4x^{2} - 1)y = 0$$

Given that one solution of the ode is

$$y_1 = \frac{\sin\left(x\right)}{\sqrt{x}}$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

 $dsolve([4*x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2-1)*y(x)=0,sin(x)/x^(1/2)],y(x), singsolve([4*x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2-1)*y(x)=0,sin(x)/x^(1/2)]$

$$y(x) = \frac{c_1 \sin\left(x\right)}{\sqrt{x}} + \frac{c_2 \cos\left(x\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 39

DSolve[4*x²*y''[x]+4*x*y'[x]+(4*x²-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{-ix}(2c_1 - ic_2e^{2ix})}{2\sqrt{x}}$$

11.7 problem Problem 10

Internal problem ID [2818]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 10.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \csc\left(x\right)$$

Given that one solution of the ode is

 $y_1 = \sin\left(x\right)$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve([diff(y(x),x\$2)+y(x)=csc(x),sin(x)],y(x), singsol=all)

 $y(x) = \sin(x) c_2 + c_1 \cos(x) - \ln(\csc(x)) \sin(x) - \cos(x) x$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 24

DSolve[y''[x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-x + c_1)\cos(x) + \sin(x)(\log(\sin(x)) + c_2)$$

11.8 problem Problem 11

Internal problem ID [2819]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - (2x+1)y' + 2y = 8x^2 e^{2x}$$

Given that one solution of the ode is

 $y_1 = e^{2x}$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([x*diff(y(x),x\$2)-(2*x+1)*diff(y(x),x)+2*y(x)=8*x^2*exp(2*x),exp(2*x)],y(x), singsol=

$$y(x) = (1+2x)c_2 + c_1e^{2x} + 2e^{2x}x^2$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 32

DSolve[x*y''[x]-(2*x+1)*y'[x]+2*y[x]==8*x^2*Exp[2*x],y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^{2x} (2x^2 - 1 + c_1) - \frac{1}{4}c_2(2x+1)$$

11.9 problem Problem 12

Internal problem ID [2820]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 12.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 3xy' + 4y = 8x^4$$

Given that one solution of the ode is

 $y_1 = x^2$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve([x²*diff(y(x),x\$2)-3*x*diff(y(x),x)+4*y(x)=8*x⁴,x²],y(x), singsol=all)

$$y(x) = x^{2}c_{2} + \ln(x)c_{1}x^{2} + 2x^{4}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 23

DSolve[x²*y''[x]-3*x*y'[x]+4*y[x]==8*x⁴,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 (2x^2 + 2c_2 \log(x) + c_1)$$

11.10 problem Problem 13

Internal problem ID [2821]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 13.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 9y = 15 e^{3x} \sqrt{x}$$

Given that one solution of the ode is

 $y_1 = e^{3x}$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=15*exp(3*x)*sqrt(x),exp(3*x)],y(x), singsol=all

$$y(x) = c_2 e^{3x} + x e^{3x} c_1 + 4x^{\frac{5}{2}} e^{3x}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 25

DSolve[y''[x]-6*y'[x]+9*y[x]==15*Exp[3*x]*Sqrt[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow e^{3x} (4x^{5/2} + c_2 x + c_1)$$

11.11 problem Problem 14

Internal problem ID [2822]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 14.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = 4e^{2x}\ln(x)$$

Given that one solution of the ode is

 $y_1 = e^{2x}$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=4*exp(2*x)*ln(x),exp(2*x)],y(x), singsol=all)

$$y(x) = c_2 e^{2x} + e^{2x} x c_1 + e^{2x} x^2 (2\ln(x) - 3)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 30

DSolve[y''[x]-4*y'[x]+4*y[x]==4*Exp[2*x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x} \left(-3x^2 + 2x^2 \log(x) + c_2 x + c_1 \right)$$

11.12 problem Problem 15

Internal problem ID [2823]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 15.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$4x^2y'' + y = \ln\left(x\right)\sqrt{x}$$

Given that one solution of the ode is

 $y_1 = \sqrt{x}$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve([4*x^2*diff(y(x),x$2)+y(x)=sqrt(x)*ln(x),sqrt(x)],y(x), singsol=all)$

$$y(x) = \sqrt{x} c_2 + \sqrt{x} \ln(x) c_1 + \frac{\ln(x)^3 \sqrt{x}}{24}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 29

DSolve[4*x^2*y''[x]+y[x]==Sqrt[x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{24}\sqrt{x} (\log^3(x) + 12c_2\log(x) + 24c_1)$$

12 Chapter 8, Linear differential equations of
order n. Section 8.10, Chapter review. page 575
12.1 problem 7
12.2 problem 8
12.3 problem 18
12.4 problem 19
12.5 problem 20
12.6 problem Problem 21
12.7 problem Problem 22
12.8 problem 27
12.9 problem Problem 28
12.10 problem Problem 29
12.11 problem 700
12.12 problem 71
12.13 problem Problem 32
12.14 problem 733
12.15 problem 74

12.1 problem Problem 7

Internal problem ID [2824]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 7. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 4y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{-2x} x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve[y'''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_2 x + c_3 e^{3x} + c_1)$$

12.2 problem Problem 8

Internal problem ID [2825]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 8. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 11y'' + 36y' + 26y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)+11*diff(y(x),x\$2)+36*diff(y(x),x)+26*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2 e^{-5x} \sin(x) + c_3 e^{-5x} \cos(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 30

DSolve[y'''[x]+11*y''[x]+36*y'[x]+26*y[x]==0,y[x],x,IncludeSingularSolutions +> True]

$$y(x) \to e^{-5x} (c_3 e^{4x} + c_2 \cos(x) + c_1 \sin(x))$$

12.3 problem Problem 18

Internal problem ID [2826]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 18. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 9y = 4 e^{-3x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x)+6*diff(y(x),x)+9*y(x)=4*exp(-3*x),y(x), singsol=all)

$$y(x) = c_2 e^{-3x} + x e^{-3x} c_1 + 2 e^{-3x} x^2$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 23

DSolve[y''[x]+6*y'[x]+9*y[x]==4*Exp[-3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow e^{-3x}ig(2x^2+c_2x+c_1ig)$$

12.4 problem Problem 19

Internal problem ID [2827]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 19.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 9y = 4 e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=4*exp(-2*x),y(x), singsol=all)

$$y(x) = c_2 e^{-3x} + x e^{-3x} c_1 + 4 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 23

DSolve[y''[x]+6*y'[x]+9*y[x]==4*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x}(4e^x + c_2x + c_1)$$

12.5 problem Problem 20

Internal problem ID [2828]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 20.ODE order: 3.ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 6y'' + 25y' = x^2$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 63

 $dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+25*diff(y(x),x)=x^2,y(x), singsol=all)$

$$y(x) = \frac{6x^2}{625} + \frac{x^3}{75} + \frac{3e^{3x}\cos(4x)c_1}{25} + \frac{4c_1e^{3x}\sin(4x)}{25} - \frac{4c_2e^{3x}\cos(4x)}{25} + \frac{3e^{3x}\sin(4x)c_2}{25} + \frac{22x}{15625} + c_3$$

✓ Solution by Mathematica

Time used: 0.272 (sec). Leaf size: 71

DSolve[y'''[x]-6*y''[x]+25*y'[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{75} + \frac{6x^2}{625} + \frac{22x}{15625} - \frac{1}{25}(4c_1 - 3c_2)e^{3x}\cos(4x) + \frac{1}{25}(3c_1 + 4c_2)e^{3x}\sin(4x) + c_3$$

12.6 problem Problem 21

Internal problem ID [2829]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 21.ODE order: 3.ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 6y'' + 25y' = \sin(4x)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 62

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+25*diff(y(x),x)=sin(4*x),y(x), singsol=all)

$$y(x) = \frac{3e^{3x}\cos(4x)c_1}{25} + \frac{4c_1e^{3x}\sin(4x)}{25} - \frac{4c_2e^{3x}\cos(4x)}{25} + \frac{3e^{3x}\sin(4x)c_2}{25} + \frac{2\sin(4x)}{219} - \frac{\cos(4x)}{292} + c_3$$

✓ Solution by Mathematica

Time used: 0.686 (sec). Leaf size: 60

DSolve[y'''[x]-6*y''[x]+25*y'[x]==Sin[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{(25+292(4c_1-3c_2)e^{3x})\cos(4x)}{7300} + \frac{(50+219(3c_1+4c_2)e^{3x})\sin(4x)}{5475} + c_3$$

12.7 problem Problem 22

Internal problem ID [2830]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 22.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + 9y'' + 24y' + 16y = 8e^{-x} + 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

dsolve(diff(y(x),x\$3)+9*diff(y(x),x\$2)+24*diff(y(x),x)+16*y(x)=8*exp(-x)+1,y(x), singsol=all

$$y(x) = \frac{1}{16} - \frac{16 e^{-x}}{27} + \frac{8x e^{-x}}{9} + c_1 e^{-4x} + e^{-x} c_2 + c_3 x e^{-4x}$$

✓ Solution by Mathematica

Time used: 0.076 (sec). Leaf size: 39

DSolve[y'''[x]+9*y''[x]+24*y'[x]+16*y[x]==8*Exp[-x]+1,y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to e^{-4x}(c_2x + c_1) + e^{-x}\left(\frac{8x}{9} - \frac{16}{27} + c_3\right) + \frac{1}{16}$$

12.8 problem Problem 27

Internal problem ID [2831]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 27.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y = 5\,\mathrm{e}^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-4*y(x)=5*exp(x),y(x), singsol=all)

$$y(x) = c_2 \mathrm{e}^{2x} + \mathrm{e}^{-2x} c_1 - rac{5 \, \mathrm{e}^x}{3}$$

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 29

DSolve[y''[x]-4*y[x]==5*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -rac{5e^x}{3} + c_1 e^{2x} + c_2 e^{-2x}$$

12.9 problem Problem 28

Internal problem ID [2832]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 28. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 2x e^{-x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=2*x*exp(-x),y(x), singsol=all)

$$y(x) = \mathrm{e}^{-x} c_2 + x \, \mathrm{e}^{-x} c_1 + rac{\mathrm{e}^{-x} x^3}{3}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 27

DSolve[y''[x]+2*y'[x]+y[x]==2*x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{1}{3} e^{-x} ig(x^3 + 3c_2 x + 3c_1 ig)$$

12.10 problem Problem 29

Internal problem ID [2833]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 29. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = 4 e^x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)-y(x)=4*exp(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^x + 2xe^x$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 25

DSolve[y''[x]-y[x]==4*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(2x - 1 + c_1) + c_2 e^{-x}$$

12.11 problem Problem 30

Internal problem ID [2834]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 30.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + yx = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 49

dsolve(diff(y(x),x\$2)+x*y(x)=sin(x),y(x), singsol=all)

$$y(x) = \operatorname{AiryAi}(-x) c_{2} + \operatorname{AiryBi}(-x) c_{1} + \pi \left(\operatorname{AiryAi}(-x) \left(\int \operatorname{AiryBi}(-x) \sin(x) dx\right) - \operatorname{AiryBi}(-x) \left(\int \operatorname{AiryAi}(-x) \sin(x) dx\right)\right)$$

Solution by Mathematica

Time used: 105.448 (sec). Leaf size: 99

DSolve[y''[x]+x*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \operatorname{AiryAi}\left(\sqrt[3]{-1}x\right) \int_{1}^{x} (-1)^{2/3} \pi \operatorname{AiryBi}\left(\sqrt[3]{-1}K[1]\right) \sin(K[1]) dK[1] \\ &+ \operatorname{AiryBi}\left(\sqrt[3]{-1}x\right) \int_{1}^{x} -(-1)^{2/3} \pi \operatorname{AiryAi}\left(\sqrt[3]{-1}K[2]\right) \sin(K[2]) dK[2] \\ &+ c_1 \operatorname{AiryAi}\left(\sqrt[3]{-1}x\right) + c_2 \operatorname{AiryBi}\left(\sqrt[3]{-1}x\right) \end{split}$$

12.12 problem Problem 31

Internal problem ID [2835]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 31.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \ln\left(x\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

dsolve(diff(y(x),x\$2)+4*y(x)=ln(x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 + \frac{i\pi \cos(2x) (\operatorname{csgn}(x) - 1) \operatorname{csgn}(ix)}{8} - \frac{\cos(2x) \operatorname{Ci}(2x)}{4} + \frac{(\pi \operatorname{csgn}(x) - 2 \operatorname{Si}(2x)) \sin(2x)}{8} + \frac{\ln(x)}{4}$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 48

DSolve[y''[x]+4*y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}(-\text{CosIntegral}(2x)\cos(2x) - \text{Si}(2x)\sin(2x) + \log(x) + 4c_1\cos(2x) + 4c_2\sin(2x))$$

12.13 problem Problem 32

Internal problem ID [2836]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 32.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' - 3y = 5\,\mathrm{e}^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve(diff(y(x),x)+2*diff(y(x),x)-3*y(x)=5*exp(x),y(x), singsol=all)

$$y(x) = e^x c_2 + c_1 e^{-3x} + \frac{5x e^x}{4}$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 29

DSolve[y''[x]+2*y'[x]-3*y[x]==5*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-3x} + e^x \left(\frac{5x}{4} - \frac{5}{16} + c_2\right)$$

12.14 problem Problem 33

Internal problem ID [2837]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 33. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \tan\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=tan(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \ln(\sec(x) + \tan(x)) \cos(x)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 23

DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow \cos(x)(-\arctan(\sin(x))) + c_1\cos(x) + c_2\sin(x)$

12.15 problem Problem 34

Internal problem ID [2838]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 34.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 4\cos\left(2x\right) + 3e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=4*cos(2*x)+3*exp(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \frac{4\cos(2x)}{3} + \frac{3e^x}{2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 30

DSolve[y''[x]+y[x]==4*Cos[x]*3*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{12}{5}e^x(2\sin(x) + \cos(x)) + c_1\cos(x) + c_2\sin(x)$$

13 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

13.1 problem 1	283
13.2 problem 2	284
13.3 problem 3	285
13.4 problem 4	286
13.5 problem 7	287
13.6 problem 6	288
13.7 problem 7	289
1	290
13.9 problem Problem 9	291
1	292
13.11 problem Problem 11	293
13.12 problem Problem 12	294
13.13 problem Problem 13	295
13.14 problem Problem 14	296
13.15 problem Problem 15	297
13.16 problem Problem 16	298
13.17 problem Problem 17	299
13.18 problem 18	300
1	301
13.20 problem Problem 20	302
13.21 problem Problem 21	303
13.22 problem Problem 22	304
13.23 problem Problem 23	305
13.24 problem Problem 24	306
13.25 problem Problem 25	307
13.26 problem Problem 26	308
13.27 problem Problem 27	309
13.28 problem Problem 28	310

13.1 problem Problem 1

Internal problem ID [2839]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 1. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = 6 e^{5t}$$

With initial conditions

[y(0) = 3]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(t),t)-2*y(t)=6*exp(5*t),y(0) = 3],y(t), singsol=all)

$$y(t) = (2e^{3t} + 1)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 18

DSolve[{y'[t]-2*y[t]==6*Exp[5*t],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{2t} + 2e^{5t}$$

13.2 problem Problem 2

Internal problem ID [2840]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 2. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 8 \,\mathrm{e}^{3t}$$

With initial conditions

[y(0) = 2]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve([diff(y(t),t)+y(t)=8*exp(3*t),y(0) = 2],y(t), singsol=all)

$$y(t) = 2 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 12

DSolve[{y'[t]+y[t]==8*Exp[3*t],{y[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 2e^{3t}$$

13.3 problem Problem 3

Internal problem ID [2841]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 3. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = 2 \operatorname{e}^{-t}$$

With initial conditions

[y(0) = 3]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(t),t)+3*y(t)=2*exp(-t),y(0) = 3],y(t), singsol=all)

$$y(t) = (e^{2t} + 2) e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 18

DSolve[{y'[t]+3*y[t]==2*Exp[-t],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-3t} \left(e^{2t} + 2 \right)$$

13.4 problem Problem 4

Internal problem ID [2842]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 4. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y + y' = 4t$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(t),t)+2*y(t)=4*t,y(0) = 1],y(t), singsol=all)

$$y(t) = 2t - 1 + 2e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 17

DSolve[{y'[t]+2*y[t]==4*t,{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2t + 2e^{-2t} - 1$$

13.5 problem Problem 5

Internal problem ID [2843]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 5. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = 6\cos\left(t\right)$$

With initial conditions

[y(0) = 2]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(t),t)-y(t)=6*cos(t),y(0) = 2],y(t), singsol=all)

$$y(t) = 3\sin(t) - 3\cos(t) + 5e^{t}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 19

DSolve[{y'[t]-y[t]==6*Cos[t],{y[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 5e^t + 3\sin(t) - 3\cos(t)$$

13.6 problem Problem 6

Internal problem ID [2844]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 6. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = 5\sin\left(2t\right)$$

With initial conditions

[y(0) = -1]

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve([diff(y(t),t)-y(t)=5*sin(2*t),y(0) = -1],y(t), singsol=all)

$$y(t) = -2\cos(2t) - \sin(2t) + e^{t}$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 21

DSolve[{y'[t]-y[t]==5*Sin[2*t],{y[0]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^t - \sin(2t) - 2\cos(2t)$$

13.7 problem Problem 7

Internal problem ID [2845]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 7. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 5 e^t \sin\left(t\right)$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t)+y(t)=5*exp(t)*sin(t),y(0) = 1],y(t), singsol=all)

$$y(t) = 2e^{-t} + e^{t}(-\cos(t) + 2\sin(t))$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 27

DSolve[{y'[t]+y[t]==5*Exp[t]*Sin[t],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 2e^{-t} + 2e^t \sin(t) - e^t \cos(t)$$

13.8 problem Problem 8

Internal problem ID [2846]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 8. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)+diff(y(t),t)-2*y(t)=0,y(0) = 1, D(y)(0) = 4],y(t), singsol=all)

$$y(t) = (2e^{3t} - 1)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

DSolve[{y''[t]+y'[t]-2*y[t]==0,{y[0]==1,y'[0]==4}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2e^t - e^{-2t}$$

13.9 problem Problem 9

Internal problem ID [2847]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 9. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

With initial conditions

$$[y(0) = 5, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)+4*y(t)=0,y(0) = 5, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \frac{\sin(2t)}{2} + 5\cos(2t)$$

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 17

DSolve[{y''[t]+4*y[t]==0,{y[0]==5,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 5\cos(2t) + \sin(t)\cos(t)$$

13.10 problem Problem 10

Internal problem ID [2848]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 10.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' + 2y = 4$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=4,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 3e^{2t} - 5e^{t} + 2$$

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 19

DSolve[{y''[t]-3*y'[t]+2*y[t]==4,{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to -5e^t + 3e^{2t} + 2$$

13.11 problem Problem 11

Internal problem ID [2849]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 12y = 36$$

With initial conditions

$$[y(0) = 0, y'(0) = 12]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 12

dsolve([diff(y(t),t\$2)-diff(y(t),t)-12*y(t)=36,y(0) = 0, D(y)(0) = 12],y(t), singsol=all)

$$y(t) = 3 e^{4t} - 3$$

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 14

DSolve[{y''[t]-y'[t]-12*y[t]==36,{y[0]==0,y'[0]==12}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to 3(e^{4t} - 1)$$

13.12 problem Problem 12

Internal problem ID [2850]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 12.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 2y = 10 e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+diff(y(t),t)-2*y(t)=10*exp(-t),y(0) = 0, D(y)(0) = 1],y(t), singsol=a

$$y(t) = (2e^{3t} - 5e^{t} + 3)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

DSolve[{y''[t]+y'[t]-2*y[t]==10*Exp[-t],{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions

$$y(t) \to e^{-2t} (-5e^t + 2e^{3t} + 3)$$

13.13 problem Problem 13

Internal problem ID [2851]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 13. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y = 4 e^{3t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=4*exp(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsol

$$y(t) = -4 e^{2t} + 2 e^{2t} e^{t} + 2 e^{t}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 17

DSolve[{y''[t]-3*y'[t]+2*y[t]==4*Exp[3*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \rightarrow 2e^t (e^t - 1)^2$$

13.14 problem Problem 14

Internal problem ID [2852]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 14.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 2y' = 30 e^{-3t}$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)=30*exp(-3*t),y(0) = 1, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = (3e^{5t} - 4e^{3t} + 2)e^{-3t}$$

Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 21

DSolve[{y''[t]-2*y'[t]==30*Exp[-3*t],{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to 2e^{-3t} + 3e^{2t} - 4$$

13.15 problem Problem 15

Internal problem ID [2853]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 15. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = 12 \operatorname{e}^{2t}$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)-y(t)=12*exp(2*t),y(0) = 1, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 2e^{-t} - 5e^{t} + 4e^{2t}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 25

DSolve[{y''[t]-y[t]==12*Exp[2*t],{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to 2e^{-t} - 5e^t + 4e^{2t}$$

13.16 problem Problem 16

Internal problem ID [2854]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 16. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = 10 e^{-t}$$

With initial conditions

[y(0) = 4, y'(0) = 0]

Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+4*y(t)=10*exp(-t),y(0) = 4, D(y)(0) = 0],y(t), singsol=all)

 $y(t) = \sin(2t) + 2\cos(2t) + 2e^{-t}$

 \checkmark Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 23

DSolve[{y''[t]+4*y[t]==10*Exp[-t],{y[0]==4,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to 2e^{-t} + \sin(2t) + 2\cos(2t)$$

13.17 problem Problem 17

Internal problem ID [2855]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 17.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 6y = 12 - 6e^t$$

With initial conditions

$$[y(0) = 5, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=6*(2-exp(t)),y(0) = 5, D(y)(0) = -3],y(t), singso

$$y(t) = \frac{(8e^{5t} + 5e^{3t} - 10e^{2t} + 22)e^{-2t}}{5}$$

Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 28

DSolve[{y''[t]-y'[t]-6*y[t]==6*(2-Exp[t]),{y[0]==5,y'[0]==-3}},y[t],t,IncludeSingularSolutio

$$y(t) \rightarrow \frac{22e^{-2t}}{5} + e^t + \frac{8e^{3t}}{5} - 2$$

13.18 problem Problem 18

Internal problem ID [2856]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 18. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = 6\cos\left(t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)-y(t)=6*cos(t),y(0) = 0, D(y)(0) = 4],y(t), singsol=all)

$$y(t) = -\frac{e^{-t}}{2} + \frac{7e^{t}}{2} - 3\cos(t)$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 26

DSolve[{y''[t]-y[t]==6*Cos[t],{y[0]==0,y'[0]==4}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} \left(-e^{-t} + 7e^t - 6\cos(t) \right)$$

13.19 problem Problem 19

Internal problem ID [2857]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 19. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y = 13\sin\left(2t\right)$$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)-9*y(t)=13*sin(2*t),y(0) = 3, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 2e^{3t} + e^{-3t} - \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 24

DSolve[{y''[t]-9*y[t]==13*Sin[2*t],{y[0]==3,y'[0]==1}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to e^{-3t} + 2e^{3t} - \sin(2t)$$

13.20 problem Problem 20

Internal problem ID [2858]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 20. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = 8\sin\left(t\right) - 6\cos\left(t\right)$$

With initial conditions

$$[y(0) = 2, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)-y(t)=8*sin(t)-6*cos(t),y(0) = 2, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = -2e^{-t} + e^{t} - 4\sin(t) + 3\cos(t)$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 24

DSolve[{y''[t]-y[t]==8*Sin[t]-6*Cos[t],{y[0]==2,y'[0]==-1}},y[t],t,IncludeSingularSolutions

$$y(t) \to -2e^{-t} + e^t - 4\sin(t) + 3\cos(t)$$

13.21 problem Problem 21

Internal problem ID [2859]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 21.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y^{\prime\prime} - y^{\prime} - 2y = 10\cos\left(t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-diff(y(t),t)-2*y(t)=10*cos(t),y(0) = 0, D(y)(0) = -1],y(t), singsol=a

$$y(t) = e^{2t} + 2e^{-t} - 3\cos(t) - \sin(t)$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 26

DSolve[{y''[t]-y'[t]-2*y[t]==10*Cos[t], {y[0]==0,y'[0]==-1}},y[t],t,IncludeSingularSolutions

$$y(t) \to 2e^{-t} + e^{2t} - \sin(t) - 3\cos(t)$$

13.22 problem Problem 22

Internal problem ID [2860]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 22.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 4y = 20\sin(2t)$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+4*y(t)=20*sin(2*t),y(0) = -1, D(y)(0) = 2],y(t), sings

$$y(t) = 2e^{-t} - e^{-4t} - 2\cos(2t)$$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 27

DSolve[{y''[t]+5*y'[t]+4*y[t]==20*Sin[2*t],{y[0]==-1,y'[0]==2}},y[t],t,IncludeSingularSoluti

$$y(t) \to e^{-4t} (2e^{3t} - 1) - 2\cos(2t)$$

13.23 problem Problem 23

Internal problem ID [2861]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 23. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 4y = 20\sin(2t)$$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+4*y(t)=20*sin(2*t),y(0) = 1, D(y)(0) = -2],y(t), sings

$$y(t) = \frac{10 e^{-t}}{3} - \frac{e^{-4t}}{3} - 2\cos(2t)$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 30

DSolve[{y''[t]+5*y'[t]+4*y[t]==20*Sin[2*t],{y[0]==1,y'[0]==-2}},y[t],t,IncludeSingularSoluti

$$y(t) \rightarrow \frac{1}{3}e^{-4t} (10e^{3t} - 1) - 2\cos(2t)$$

13.24 problem Problem 24

Internal problem ID [2862]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 24. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = 3\cos(t) + \sin(t)$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=3*cos(t)+sin(t),y(0) = 1, D(y)(0) = 1],y(t), si

$$y(t) = \frac{7 e^{2t}}{5} + \frac{3 \cos(t)}{5} - \frac{4 \sin(t)}{5} - e^{t}$$

Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 29

DSolve[{y''[t]-3*y'[t]+2*y[t]==3*Cos[t]+Sin[t],{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSol

$$y(t) \to \frac{1}{5} (e^t (7e^t - 5) - 4\sin(t) + 3\cos(t))$$

13.25 problem Problem 25

Internal problem ID [2863]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 25. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 9\sin\left(t\right)$$

With initial conditions

[y(0) = 1, y'(0) = -1]

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)+4*y(t)=9*sin(t),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

 $y(t) = -2\sin(2t) + \cos(2t) + 3\sin(t)$

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 20

DSolve[{y''[t]+4*y[t]==9*Sin[t],{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to 3\sin(t) - 2\sin(2t) + \cos(2t)$$

13.26 problem Problem 26

Internal problem ID [2864]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 26. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 6\cos\left(2t\right)$$

With initial conditions

[y(0) = 0, y'(0) = 2]

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)+y(t)=6*cos(2*t),y(0) = 0, D(y)(0) = 2],y(t), singsol=a11)

 $y(t) = 2\sin(t) + 2\cos(t) - 2\cos(2t)$

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 18

DSolve[{y''[t]+y[t]==6*Cos[2*t],{y[0]==0,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2(\sin(t) + \cos(t) - \cos(2t))$$

13.27 problem Problem 27

Internal problem ID [2865]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 27. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 7\sin(4t) + 14\cos(4t)$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

dsolve([diff(y(t),t\$2)+9*y(t)=7*sin(4*t)+14*cos(4*t),y(0) = 1, D(y)(0) = 2],y(t), singsol=al

$$y(t) = 2\sin(3t) + 3\cos(3t) - \sin(4t) - 2\cos(4t)$$

Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 49

DSolve[{y''[t]+8*y[t]==7*Sin[4*t]+14*Cos[4*t],{y[0]==1,y'[0]==2}},y[t],t,IncludeSingularSolu

$$y(t) \rightarrow \frac{1}{8} \left(-7\sin(4t) + 11\sqrt{2}\sin\left(2\sqrt{2}t\right) - 14\cos(4t) + 22\cos\left(2\sqrt{2}t\right) \right)$$

13.28 problem Problem 28

Internal problem ID [2866]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 28. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With initial conditions

$$[y(0) = A, y'(0) = B]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-y(t)=0,y(0) = A, D(y)(0) = B],y(t), singsol=all)

$$y(t) = rac{(A-B)e^{-t}}{2} + rac{e^t(B+A)}{2}$$

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 33

DSolve[{y''[t]-y[t]==0, {y[0]==a,y'[0]==b}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{1}{2}e^{-t}(a(e^{2t}+1)+b(e^{2t}-1)))$$

14 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

14.1 problem 27
14.2 problem 28
14.3 problem 29
14.4 problem 30
14.5 problem 31
14.6 problem 32
14.7 problem 33
14.8 problem 34
14.9 problem 35
14.10 problem 36
14.11 problem 37
14.12 problem 38
14.13 problem 39
14.14 problem Problem 40
14.15 problem Problem 41
14.16 problem Problem 46 part a
14.17 problem Problem 46 part b

14.1 problem Problem 27

Internal problem ID [2867]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 27. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y + y' = 2$$
 Heaviside $(t - 1)$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 25

dsolve([diff(y(t),t)+2*y(t)=2*Heaviside(t-1),y(0) = 1],y(t), singsol=all)

y(t) = Heaviside (t-1) - Heaviside $(t-1) e^{-2t+2} + e^{-2t}$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 26

DSolve[{y'[t]-y[t]==2*UnitStep[t-1],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \{ \begin{array}{cc} e^t & t \leq 1 \\ -2 + 2e^{t-1} + e^t & \text{True} \end{array}$$

14.2 problem Problem 28

Internal problem ID [2868]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 28. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y =$$
 Heaviside $(t - 2) e^{t-2}$

With initial conditions

[y(0) = 2]

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

dsolve([diff(y(t),t)-2*y(t)=Heaviside(t-2)*exp(t-2),y(0) = 2],y(t), singsol=all)

$$y(t) = (-\text{Heaviside}(t-2)e^{-t-2} + \text{Heaviside}(t-2)e^{-4} + 2)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 40

DSolve[{y'[t]-2*y[t]==UnitStep[t-2]*Exp[t-2],{y[0]==2}},y[t],t,IncludeSingularSolutions -> 1

$$y(t) \rightarrow \{ \begin{array}{cc} 2e^{2t} & t \leq 2 \\ e^{t-4}(-e^2 + e^t + 2e^{t+4}) & \text{True} \end{array}$$

14.3 problem Problem 29

Internal problem ID [2869]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 29. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = 4$$
 Heaviside $\left(t - \frac{\pi}{4}\right) \sin\left(t + \frac{\pi}{4}\right)$

With initial conditions

$$[y(0) = 1]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 39

dsolve([diff(y(t),t)-y(t)=4*Heaviside(t-Pi/4)*cos(t-Pi/4),y(0) = 1],y(t), singsol=all)

$$y(t) = \left(-2\cos\left(t + \frac{\pi}{4}\right) + 2e^{t - \frac{\pi}{4}} - 2\sin\left(t + \frac{\pi}{4}\right)\right) \text{Heaviside}\left(t - \frac{\pi}{4}\right) + e^{t}$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 40

DSolve[{y'[t]-y[t]==4*UnitStep[t-Pi/4]*Cos[t-Pi/4],{y[0]==1}},y[t],t,IncludeSingularSolution

$$y(t) \rightarrow \begin{cases} e^t & 4t \le \pi \\ -2\sqrt{2}\cos(t) + e^t + 2e^{t - \frac{\pi}{4}} & \text{True} \end{cases}$$

14.4 problem Problem 30

Internal problem ID [2870]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 30. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y + y' =$$
Heaviside $(t - \pi) \sin(2t)$

With initial conditions

[y(0) = 3]

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 46

dsolve([diff(y(t),t)+2*y(t)=Heaviside(t-Pi)*sin(2*t),y(0) = 3],y(t), singsol=all)

$$y(t) = \frac{\text{Heaviside}(-\pi + t)e^{-2t+2\pi}}{4} + \frac{\text{Heaviside}(-\pi + t)(-\cos(2t) + \sin(2t))}{4} + 3e^{-2t}$$

Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 55

DSolve[{y'[t]+2*y[t]==UnitStep[t-Pi]*Sin[2*t],{y[0]==3}},y[t],t,IncludeSingularSolutions ->

$$y(t) \rightarrow \{ \begin{array}{cc} 3e^{-2t} & t \leq \pi \\ \frac{1}{4}e^{-2t}(-e^{2t}\cos(2t) + e^{2t}\sin(2t) + e^{2\pi} + 12) & \text{True} \end{array}$$

14.5 problem Problem 31

Internal problem ID [2871]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 31. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = \begin{cases} 1 & 0 \le t < 1 \\ 0 & 1 \le t \end{cases}$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 41

dsolve([diff(y(t),t)+3*y(t)=piecewise(0<=t and t<1,1,t>=1,0),y(0) = 1],y(t), singsol=all)

$$y(t) = \begin{cases} e^{-3t} & t < 0\\ \frac{2e^{-3t}}{3} + \frac{1}{3} & t < 1\\ \frac{2e^{-3t}}{3} + \frac{e^{3-3t}}{3} & 1 \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 47

DSolve[{y'[t]+3*y[t]==Piecewise[{{1,0<=t<1},{0,t >= 1}}],{y[0]==1}},y[t],t,IncludeSingularSc

$$\begin{array}{rl} e^{-3t} & t \leq 0 \\ y(t) \rightarrow & \{ & \frac{1}{3}e^{-3t}(2+e^3) & t > 1 \\ & \frac{1}{3} + \frac{2e^{-3t}}{3} & \text{True} \end{array}$$

14.6 problem Problem 32

Internal problem ID [2872]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 32.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = \begin{cases} \sin(t) & 0 \le t < \frac{\pi}{2} \\ 1 & \frac{\pi}{2} \le t \end{cases}$$

With initial conditions

[y(0) = 2]

✓ Solution by Maple

Time used: 0.235 (sec). Leaf size: 57

dsolve([diff(y(t),t)-3*y(t)=piecewise(0<=t and t<Pi/2,sin(t),t>=Pi/2,1),y(0) = 2],y(t), sing

$$y(t) = \begin{cases} 2 e^{3t} & t < 0\\ \frac{21 e^{3t}}{10} - \frac{\cos(t)}{10} - \frac{3\sin(t)}{10} & t < \frac{\pi}{2}\\ \frac{21 e^{3t}}{10} + \frac{e^{3t - \frac{3\pi}{2}}}{30} - \frac{1}{3} & \frac{\pi}{2} \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 68

DSolve[{y'[t]-3*y[t]==Piecewise[{{Sin[t],0<=t<Pi/2},{1,t >= Pi/2}}],{y[0]==2}},y[t],t,Includ

$$\begin{array}{rl} 2e^{3t} & t \leq 0 \\ y(t) \rightarrow & \left\{ & \frac{1}{30} \left(-10 + 63e^{3t} + e^{3t - \frac{3\pi}{2}} \right) & 2t > \pi \\ & \frac{1}{10} (-\cos(t) + 21e^{3t} - 3\sin(t)) & \text{True} \end{array} \right.$$

14.7 problem Problem 33

Internal problem ID [2873]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 33.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = -10 e^{-t+a} \sin(-2t+2a)$$
 Heaviside $(t-a)$

With initial conditions

$$[y(0) = 5]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 100

dsolve([diff(y(t),t)-3*y(t)=10*exp(-(t-a))*sin(2*(t-a))*Heaviside(t-a),y(0) = 5],y(t), sings

$$y(t) = -\left(\left(\left(\cos\left(2t\right) + 2\sin\left(2t\right)\right)\cos\left(2a\right) - 2\sin\left(2a\right)\left(\cos\left(2t\right) - \frac{\sin\left(2t\right)}{2}\right)\right) \text{Heaviside}\left(t - a\right) e^{4a - 4t} - \text{Heaviside}\left(t - a\right) + \left(\text{Heaviside}\left(a\right) - 1\right)e^{4a}\cos\left(2a\right) + \left(-2 \text{Heaviside}\left(a\right) + 2\right)\sin\left(2a\right)e^{4a} - 5e^{3a} - \text{Heaviside}\left(a\right) + 1\right)e^{3t - 3a}$$

Solution by Mathematica

Time used: 0.461 (sec). Leaf size: 103

DSolve[{y'[t]-3*y[t]==10*Exp[-(t-a)]*Sin[2*(t-a)]*UnitStep[t-a],{y[0]==5}},y[t],t,IncludeSin

$$y(t) \to e^{-3a-t} \left(e^{4t} \theta(-a) \left(-2e^{4a} \sin(2a) + e^{4a} \cos(2a) - 1 \right) + \theta(t-a) \left(2e^{4a} \sin(2(a-t)) - e^{4a} \cos(2(a-t)) + e^{4t} \right) + 5e^{3a+4t}$$

14.8 problem Problem 34

Internal problem ID [2874]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 34. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y =$$
 Heaviside $(t - 1)$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 33

dsolve([diff(y(t),t\$2)-y(t)=Heaviside(t-1),y(0) = 1, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\text{Heaviside}(t-1)e^{-t+1}}{2} + \frac{(e^{t-1}-2)\text{Heaviside}(t-1)}{2} + \frac{e^{-t}}{2} + \frac{e^{t}}{2}$$

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 57

DSolve[{y''[t]-y[t]==UnitStep[t-1],{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to \frac{1}{2}e^{-t-1}\Big(\left(e-e^{t}\right)^{2}\left(-\theta(1-t)\right) + e^{2t} - 2e^{t+1} + e^{2t+1} + e^{2} + e\Big)$$

14.9 problem Problem 35

Internal problem ID [2875]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 35.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y = 1 - 3$$
 Heaviside $(t - 2)$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 48

dsolve([diff(y(t),t\$2)-diff(y(t),t)-2*y(t)=1-3*Heaviside(t-2),y(0) = 1, D(y)(0) = -2],y(t),

$$y(t) = -\frac{e^{2t}}{6} + \frac{5e^{-t}}{3} + \frac{3 \text{ Heaviside } (t-2)}{2} - \frac{\text{Heaviside } (t-2)e^{2t-4}}{2} - \frac{1}{2} - \text{Heaviside } (t-2)e^{2-t}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 70

DSolve[{y''[t]-y'[t]-2*y[t]==1-3*UnitStep[t-2],{y[0]==1,y'[0]==-2}},y[t],t,IncludeSingularSo

$$y(t) \rightarrow \begin{cases} & -\frac{1}{6}e^{-t}(-10+3e^{t}+e^{3t}) & t \le 2\\ & \frac{1}{6}(6-6e^{2-t}+10e^{-t}-e^{2t}-3e^{2t-4}) & \text{True} \end{cases}$$

14.10 problem Problem 36

Internal problem ID [2876]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 36. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y =$$
 Heaviside $(t - 1) -$ Heaviside $(t - 2)$

With initial conditions

$$[y(0) = 0, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 75

dsolve([diff(y(t),t\$2)-4*y(t)=Heaviside(t-1)-Heaviside(t-2),y(0) = 0, D(y)(0) = 4],y(t), sin

$$y(t) = e^{2t} - e^{-2t} - \frac{\text{Heaviside}(t-1)}{4} + \frac{\text{Heaviside}(t-1)e^{2t-2}}{8} + \frac{\text{Heaviside}(t-2)e^{2t-4}}{4} - \frac{\text{Heaviside}(t-2)e^{2t-4}}{8} + \frac{\text{Heaviside}(t-1)e^{-2t+2}}{8} - \frac{\text{Heaviside}(t-2)e^{-2t+4}}{8} - \frac{\text{Heaviside}(t-2)e^{-2t+4}}{8} - \frac{\text{Heaviside}(t-2)e^{-2t+4}}{8} - \frac{\text{Heaviside}(t-2)e^{-2t+4}}{8} - \frac{\text{Heaviside}(t-2)e^{-2t+4}}{8} - \frac{1}{8} -$$

Solution by Mathematica Time used: 0.04 (sec). Leaf size: 113

DSolve[{y''[t]-4*y[t]==UnitStep[t-1]-UnitStep[t-2],{y[0]==0,y'[0]==4}},y[t],t,IncludeSingula

$$e^{-2t}(-1+e^{4t}) \qquad t \le 1$$

$$y(t) \to \left\{ \begin{array}{cc} \frac{1}{8}(-2+e^{2-2t}-8e^{-2t}+8e^{2t}+e^{2t-2}) & 1 < t \le 2\\ \frac{1}{8}e^{-2(t+2)}(-8e^4+e^6-e^8-e^{4t}+e^{4t+2}+8e^{4t+4}) & \text{True} \end{array} \right.$$

14.11 problem Problem 37

Internal problem ID [2877]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 37.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y'' + y = t - Heaviside(t - 1)(t - 1)

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve([diff(y(t),t\$2)+y(t)=t-Heaviside(t-1)*(t-1),y(0) = 2, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 2\cos(t) + (-t + \sin(t - 1) + 1)$$
 Heaviside $(t - 1) + t$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 31

DSolve[{y''[t]+y[t]==t-UnitStep[t-1]*(t-1), {y[0]==2, y'[0]==1}}, y[t], t, IncludeSingularSolutio

$$y(t) \rightarrow \{ \begin{array}{cc} t + 2\cos(t) & t \leq 1 \\ 2\cos(t) - \sin(1-t) + 1 & \text{True} \end{array}$$

14.12 problem Problem 38

Internal problem ID [2878]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 38.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = -10$$
 Heaviside $\left(t - \frac{\pi}{4}\right) \cos\left(t + \frac{\pi}{4}\right)$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 67

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=10*Heaviside(t-Pi/4)*sin(t-Pi/4),y(0) = 1, D(y)

$$y(t) = -2 \operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) e^{-2t + \frac{\pi}{2}} + 5 \operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) e^{-t + \frac{\pi}{4}} - 2\left(\cos\left(t\right) + \frac{\sin\left(t\right)}{2}\right)\sqrt{2} \operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) - e^{-2t} + 2e^{-t}$$

Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 87

DSolve[{y''[t]+3*y'[t]+2*y[t]==10*UnitStep[t-Pi/4]*Sin[t-Pi/4],{y[0]==1,y'[0]==0}},y[t],t,In

$$y(t) \rightarrow \{ e^{-2t}(-1+2e^t) \qquad 4t \le \pi \\ -e^{-2t} \left(2\sqrt{2}e^{2t}\cos(t) - 2e^t - 5e^{t+\frac{\pi}{4}} + \sqrt{2}e^{2t}\sin(t) + 2e^{\pi/2} + 1\right) \quad \text{True}$$

14.13 problem Problem 39

Internal problem ID [2879]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 39. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y'' + y' - 6y = 30 Heaviside $(t - 1) e^{1-t}$

With initial conditions

$$[y(0) = 3, y'(0) = -4]$$

Solution by Maple

Time used: 0.046 (sec). Leaf size: 45

dsolve([diff(y(t),t\$2)+diff(y(t),t)-6*y(t)=30*Heaviside(t-1)*exp(-(t-1)),y(0) = 3, D(y)(0) =

 $y(t) = (e^{5t} + 3 \text{ Heaviside} (t-1)e^3 + 2 \text{ Heaviside} (t-1)e^{-2+5t} - 5 \text{ Heaviside} (t-1)e^{1+2t} + 2)e^{-3t}$

Solution by Mathematica Time used: 0.087 (sec). Leaf size: 66

DSolve[{y''[t]+y'[t]-6*y[t]==30*UnitStep[t-1]*Exp[-(t-1)],{y[0]==3,y'[0]==-4}},y[t],t,Includ

$$y(t) \rightarrow \{ e^{-3t}(2+e^{5t}) & t \le 1 \\ e^{-3t-2}(2e^2+3e^5+2e^{5t}-5e^{2t+3}+e^{5t+2}) & \text{True} \end{cases}$$

14.14 problem Problem 40

Internal problem ID [2880]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 40.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y = 5$$
 Heaviside $(-3 + t)$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 46

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+5*y(t)=5*Heaviside(t-3),y(0) = 2, D(y)(0) = 1],y(t), s

$$y(t) = -\text{Heaviside} (t-3) (\cos (t-3) + 2\sin (t-3)) e^{-2t+6} + \text{Heaviside} (t-3) + (2\cos (t) + 5\sin (t)) e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 68

DSolve[{y''[t]+4*y'[t]+5*y[t]==5*UnitStep[t-3],{y[0]==2,y'[0]==1}},y[t],t,IncludeSingularSol

$$y(t) \rightarrow \begin{cases} e^{-2t}(2\cos(t) + 5\sin(t)) & t \le 3\\ e^{-2t}(-e^6\cos(3-t) + e^{2t} + 2\cos(t) + 2e^6\sin(3-t) + 5\sin(t)) & \text{True} \end{cases}$$

14.15 problem Problem 41

Internal problem ID [2881]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015 Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 41.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 5y = 2\sin(t) + \text{Heaviside}\left(-\frac{\pi}{2} + t\right)(\cos(t) + 1)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 68

 $dsolve([diff(y(t),t)^2)-2*diff(y(t),t)+5*y(t)=2*sin(t)+Heaviside(t-Pi/2)*(1-sin(t-Pi/2)),y(0))$

$$y(t) = \frac{\left(\left(2\cos\left(t\right)^2 - 3\cos\left(t\right)\sin\left(t\right) - 1\right)e^{t - \frac{\pi}{2}} + 2\cos\left(t\right) - \sin\left(t\right) + 2\right) \text{Heaviside}\left(t - \frac{\pi}{2}\right)}{10} - \frac{2e^t\cos\left(t\right)^2}{5} - \frac{e^t\cos\left(t\right)\sin\left(t\right)}{5} + \frac{\cos\left(t\right)}{5} + \frac{e^t}{5} + \frac{2\sin\left(t\right)}{5}$$

✓ Solution by Mathematica

Time used: 0.502 (sec). Leaf size: 98

DSolve[{y''[t]-2*y'[t]+5*y[t]==2*Sin[t]+UnitStep[t-Pi/2]*(1-Sin[t-Pi/2]),{y[0]==0,y'[0]==0}}

y(t)

$$\rightarrow \begin{cases} \frac{\frac{1}{5}(-e^t\sin(t)\cos(t) + \cos(t) - e^t\cos(2t) + 2\sin(t))}{2t \le \pi} \\ \frac{1}{20}\left(8\cos(t) + 2e^t\left(-2 + e^{-\pi/2}\right)\cos(2t) + 6\sin(t) - 2e^t\sin(2t) - 3e^{t-\frac{\pi}{2}}\sin(2t) + 4\right) \end{cases}$$
 True

14.16 problem Problem 46 part a

Internal problem ID [2882]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 46 part a.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y'-y = \begin{cases} 2 & 0 \le t < 1 \\ -1 & 1 \le t \end{cases}$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 34

dsolve([diff(y(t),t)-y(t)=piecewise(0<=t and t<1,2,t>=1,-1),y(0) = 1],y(t), singsol=all)

$$y(t) = \begin{cases} e^t & t < 0\\ 3e^t - 2 & t < 1\\ 3e^t - 3e^{t-1} + 1 & 1 \le t \end{cases}$$

Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 42

DSolve[{y'[t]-y[t]==Piecewise[{{2,0<=t<1},{-1,t>=1}}],{y[0]==1}},y[t],t,IncludeSingularSolut

$$\begin{array}{ccc} e^t & t \leq 0 \\ y(t) \rightarrow & \{ & -2 + 3e^t & 0 < t \leq 1 \\ & 1 - 3e^{t-1} + 3e^t & \text{True} \end{array} \end{array}$$

14.17 problem Problem 46 part b

Internal problem ID [2883]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 46 part b.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y'-y = \begin{cases} 2 & 0 \le t < 1 \\ -1 & 1 \le t \end{cases}$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 34

dsolve([diff(y(t),t)-y(t)=piecewise(0<=t and t<1,2,t>=1,-1),y(0) = 1],y(t), singsol=all)

$$y(t) = \begin{cases} e^t & t < 0\\ 3e^t - 2 & t < 1\\ 3e^t - 3e^{t-1} + 1 & 1 \le t \end{cases}$$

Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 42

DSolve[{y'[t]-y[t]==Piecewise[{{2,0<=t<1},{-1,t>=1}}],{y[0]==1}},y[t],t,IncludeSingularSolut

$$\begin{array}{ccc} e^t & t \leq 0 \\ y(t) \rightarrow & \{ & -2 + 3e^t & 0 < t \leq 1 \\ & 1 - 3e^{t-1} + 3e^t & \text{True} \end{array} \end{array}$$

15 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

15.1 problem 1	5
15.2 problem 2	6
15.3 problem 3	57
15.4 problem 4	8
15.5 problem 7	9
15.6 problem 6	0
15.7 problem 7	1
15.8 problem 8	2
15.9 problem 9	.3
15.10 problem 10	4
15.11 problem 11	5
15.12problem Problem 12	6
15.13problem Problem 13	7

15.1 problem Problem 1

Internal problem ID [2884]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 1. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \delta(t - 5)$$

With initial conditions

[y(0) = 3]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(y(t),t)+y(t)=Dirac(t-5),y(0) = 3],y(t), singsol=all)

 $y(t) = (e^5 \text{Heaviside}(t-5)+3) e^{-t}$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 21

DSolve[{y'[t]+y[t]==DiracDelta[t-5],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} \left(e^5 \theta(t-5) + 3 \right)$$

15.2 problem Problem 2

Internal problem ID [2885]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 2. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = \delta(t - 2)$$

With initial conditions

[y(0) = 1]

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(y(t),t)-2*y(t)=Dirac(t-2),y(0) = 1],y(t), singsol=all)

$$y(t) = (\text{Heaviside}(t-2)e^{-4}+1)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 23

DSolve[{y'[t]-2*y[t]==DiracDelta[t-2],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{2t-4} (\theta(t-2) + 3e^4)$$

15.3 problem Problem 3

Internal problem ID [2886]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 3. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 4y = 3(\delta(t-1))$$

With initial conditions

[y(0) = 2]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve([diff(y(t),t)+4*y(t)=3*Dirac(t-1),y(0) = 2],y(t), singsol=all)

 $y(t) = 3 e^{-4t}$ Heaviside $(t - 1) e^4 + 2 e^{-4t}$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 22

DSolve[{y'[t]+4*y[t]==3*DiracDelta[t-1],{y[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-4t} \left(3e^4\theta(t-1) + 2 \right)$$

15.4 problem Problem 4

Internal problem ID [2887]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 4. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 5y = 2e^{-t} + \delta(-3+t)$$

With initial conditions

[y(0) = 0]

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 24

dsolve([diff(y(t),t)-5*y(t)=2*exp(-t)+Dirac(t-3),y(0) = 0],y(t), singsol=all)

$$y(t) = rac{\mathrm{e}^{5t}}{3} + \mathrm{Heaviside}\left(t-3
ight) \mathrm{e}^{5t-15} - rac{\mathrm{e}^{-t}}{3}$$

Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 34

DSolve[{y'[t]-5*y[t]==2*Exp[-t]+DiracDelta[t-3],{y[0]==0}},y[t],t,IncludeSingularSolutions -

$$y(t) \to \frac{1}{3}e^{-t} (3e^{6t-15}\theta(t-3) + e^{6t} - 1)$$

15.5 problem Problem 5

Internal problem ID [2888]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 5. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = \delta(t-1)$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=Dirac(t-1),y(0) = 1, D(y)(0) = 0],y(t), singsol

$$y(t) = -$$
Heaviside $(t - 1)e^{t-1}$ + Heaviside $(t - 1)e^{2t-2} - e^{2t} + 2e^{t}$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 31

DSolve[{y''[t]-3*y'[t]+2*y[t]==DiracDelta[t-1],{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSol

$$y(t) \rightarrow e^t \left(\frac{(e^t - e) \,\theta(t - 1)}{e^2} - e^t + 2 \right)$$

15.6 problem Problem 6

Internal problem ID [2889]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 6. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y = \delta(-3 + t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 38

dsolve([diff(y(t),t\$2)-4*y(t)=Dirac(t-3),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \frac{e^{2t}}{4} - \frac{e^{-2t}}{4} - \frac{\text{Heaviside}(t-3)e^{-2t+6}}{4} + \frac{\text{Heaviside}(t-3)e^{2t-6}}{4}$$

Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 44

DSolve[{y''[t]-4*y[t]==DiracDelta[t-3], {y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -

$$y(t) \rightarrow \frac{1}{4}e^{-2(t+3)}((e^{4t} - e^{12})\theta(t-3) + e^{6}(e^{4t} - 1))$$

15.7 problem Problem 7

Internal problem ID [2890]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 7. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = \delta\left(-\frac{\pi}{2} + t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=Dirac(t-Pi/2),y(0) = 0, D(y)(0) = 2],y(t), sing

$$y(t) = rac{\sin(2t) \left(-\text{Heaviside}\left(t - rac{\pi}{2}\right) e^{-t + rac{\pi}{2}} + 2 e^{-t}
ight)}{2}$$

Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 34

DSolve[{y''[t]+2*y'[t]+5*y[t]==DiracDelta[t-Pi/2], {y[0]==0,y'[0]==2}}, y[t], t, IncludeSingular

$$y(t) \rightarrow -e^{-t} \left(e^{\pi/2} \theta(2t-\pi) - 2 \right) \sin(t) \cos(t)$$

15.8 problem Problem 8

Internal problem ID [2891]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 8. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 13y = \delta\left(t - \frac{\pi}{4}\right)$$

With initial conditions

$$[y(0) = 3, y'(0) = 0]$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 53

dsolve([diff(y(t),t\$2)-4*diff(y(t),t)+13*y(t)=Dirac(t-Pi/4),y(0) = 3, D(y)(0) = 0],y(t), sin

$$y(t) = -\frac{\sqrt{2}e^{2t - \frac{\pi}{2}}\operatorname{Heaviside}\left(t - \frac{\pi}{4}\right)\left(\sin\left(3t\right) + \cos\left(3t\right)\right)}{6} + 3\left(\cos\left(3t\right) - \frac{2\sin\left(3t\right)}{3}\right)e^{2t}$$

Solution by Mathematica

Time used: 0.211 (sec). Leaf size: 61

DSolve[{y''[t]-4*y'[t]+13*y[t]==DiracDelta[t-Pi/4],{y[0]==3,y'[0]==0}},y[t],t,IncludeSingula

$$y(t) \to \frac{1}{6}e^{2t} \Big(6(3\cos(3t) - 2\sin(3t)) - \sqrt{2}e^{-\pi/2}\theta(12t - 3\pi)(\sin(3t) + \cos(3t)) \Big)$$

15.9 problem Problem 9

Internal problem ID [2892]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 9. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 3y = \delta(t - 2)$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 30

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+3*y(t)=Dirac(t-2),y(0) = 1, D(y)(0) = -1],y(t), singsc

$$y(t) = e^{-t} - \frac{\text{Heaviside}(t-2)e^{6-3t}}{2} + \frac{\text{Heaviside}(t-2)e^{2-t}}{2}$$

Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 37

DSolve[{y''[t]+4*y'[t]+3*y[t]==DiracDelta[t-2],{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSo

$$y(t) \to \frac{1}{2}e^{2-3t}(e^{2t}-e^4)\theta(t-2)+e^{-t}$$

15.10 problem Problem 10

Internal problem ID [2893]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.Fourth edition, 2015Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises

for 10.8. page 710

Problem number: Problem 10. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 13y = \delta\left(t - \frac{\pi}{4}\right)$$

With initial conditions

$$[y(0) = 5, y'(0) = 5]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 42

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+13*y(t)=Dirac(t-Pi/4),y(0) = 5, D(y)(0) = 5],y(t), sin

$$y(t) = -\frac{\text{Heaviside}\left(t - \frac{\pi}{4}\right)\cos\left(2t\right)e^{\frac{3\pi}{4} - 3t}}{2} + 5e^{-3t}(\cos\left(2t\right) + 2\sin\left(2t\right))$$

✓ Solution by Mathematica

Time used: 0.287 (sec). Leaf size: 121

DSolve[{y''[t]+46*y'[t]+13*y[t]==DiracDelta[t-Pi/4],{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingu

$$\begin{split} y(t) \to \frac{1}{516} e^{-2\sqrt{129}t - 23t - \frac{\sqrt{129}\pi}{2}} \Big(2e^{\frac{\sqrt{129}\pi}{2}} \Big(\Big(129 + 11\sqrt{129} \Big) e^{4\sqrt{129}t} + 129 - 11\sqrt{129} \Big) \\ &- \sqrt{129} e^{23\pi/4} \Big(e^{\sqrt{129}\pi} - e^{4\sqrt{129}t} \Big) \theta(4t - \pi) \Big) \end{split}$$

15.11 problem Problem 11

Internal problem ID [2894]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 15\sin\left(2t\right) + \delta\left(t - \frac{\pi}{6}\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple

Time used: 0.063 (sec). Leaf size: 29

dsolve([diff(y(t),t\$2)+9*y(t)=15*sin(2*t)+Dirac(t-Pi/6),y(0) = 0, D(y)(0) = 0],y(t), singsol

$$y(t) = -2\sin(3t) + 3\sin(2t) - \frac{\cos(3t)\operatorname{Heaviside}\left(t - \frac{\pi}{6}\right)}{3}$$

Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 34

DSolve[{y''[t]+9*y[t]==15*Sin[2*t]+DiracDelta[t-Pi/6],{y[0]==0,y'[0]==0}},y[t],t,IncludeSing

$$y(t) \to -\frac{1}{3}\theta(6t - \pi)\cos(3t) + 3\sin(2t) - 2\sin(3t)$$

15.12 problem Problem 12

Internal problem ID [2895]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 12.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 16y = 4\cos\left(3t\right) + \delta\left(t - \frac{\pi}{3}\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 40

dsolve([diff(y(t),t\$2)+16*y(t)=4*cos(3*t)+Dirac(t-Pi/3),y(0) = 0, D(y)(0) = 0],y(t), singsol

$$y(t) = -\frac{4\cos(4t)}{7} + \frac{\left(\sqrt{3}\cos(4t) - \sin(4t)\right)\text{Heaviside}\left(t - \frac{\pi}{3}\right)}{8} + \frac{4\cos(3t)}{7}$$

Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 50

DSolve[{y''[t]+16*y[t]==4*Cos[3*t]+DiracDelta[t-Pi/3],{y[0]==0,y'[0]==0}},y[t],t,IncludeSing

$$y(t) \to \frac{1}{8}\theta(3t - \pi)\left(\sqrt{3}\cos(4t) - \sin(4t)\right) + \frac{4}{7}(\cos(3t) - \cos(4t))$$

15.13 problem Problem 13

Internal problem ID [2896]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 13. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = 4\sin(t) + \delta\left(t - \frac{\pi}{6}\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 69

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=4*sin(t)+Dirac(t-Pi/6),y(0) = 0, D(y)(0) = 1],y

$$y(t) = -\frac{\left(\cos\left(t\right)^{2}\sqrt{3} - \cos\left(t\right)\sin\left(t\right) - \frac{\sqrt{3}}{2}\right) \text{Heaviside}\left(t - \frac{\pi}{6}\right)e^{-t + \frac{\pi}{6}}}{2} + \frac{\left(4\cos\left(t\right)^{2} + 3\cos\left(t\right)\sin\left(t\right) - 2\right)e^{-t}}{5} - \frac{2\cos\left(t\right)}{5} + \frac{4\sin\left(t\right)}{5}$$

Solution by Mathematica

Time used: 0.644 (sec). Leaf size: 75

DSolve[{y''[t]+2*y'[t]+5*y[t]==4*Sin[t]+DiracDelta[t-Pi/6],{y[0]==0,y'[0]==1}},y[t],t,Includ

$$y(t) \to \frac{1}{20} e^{-t} \left(-5e^{\pi/6} \theta(6t - \pi) \left(\sqrt{3} \cos(2t) - \sin(2t) \right) + 16e^t \sin(t) + 6\sin(2t) - 8e^t \cos(t) + 8\cos(2t) \right)$$

16 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

6.1 problem Problem 1	349
16.2 problem Problem 2	350
16.3 problem Problem 3	351
16.4 problem Problem 4	352
6.5 problem Problem 5	353
16.6 problem Problem 6	354
16.7 problem Problem 7	355
16.8 problem Problem 8	356
6.9 problem Problem 9	357
6.10 problem Problem 10	358
6.11 problem Problem 11	359
6.12 problem Problem 12	360
6.13 problem Problem 13	361
6.14 problem Problem 14	362
6.15 problem Problem 15	363
6.16 problem Problem 17	364
6.17 problem Problem 18	365
6.18 problem Problem 19	366
6.19 problem Problem 20	367
6.20 problem Problem 21	368

16.1 problem Problem 1

Internal problem ID [2897]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 1. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]-y[x]==0, y[x], \{x,0,5\}$]

$$y(x) \to c_2\left(\frac{x^5}{120} + \frac{x^3}{6} + x\right) + c_1\left(\frac{x^4}{24} + \frac{x^2}{2} + 1\right)$$

16.2 problem Problem 2

Internal problem ID [2898]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 2. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_erf]

$$y'' + 2xy' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+2*x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - 2x^2 + \frac{4}{3}x^4\right)y(0) + \left(x - x^3 + \frac{1}{2}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[y''[x]+2*x*y'[x]+4*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2\left(rac{x^5}{2} - x^3 + x
ight) + c_1\left(rac{4x^4}{3} - 2x^2 + 1
ight)$$

16.3 problem Problem 3

Internal problem ID [2899]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 3. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - 2xy' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + x^2 + \frac{1}{2}x^4\right)y(0) + \left(x + \frac{2}{3}x^3 + \frac{4}{15}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[y''[x] $-2*x*y'[x]-2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{4x^5}{15} + \frac{2x^3}{3} + x\right) + c_1 \left(\frac{x^4}{2} + x^2 + 1\right)$$

16.4 problem Problem 4

Internal problem ID [2900]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 4. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - y'x^2 - 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x^2*diff(y(x),x)-2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{3}\right)y(0) + \left(x + \frac{1}{4}x^4\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[y''[x]-x^2*y'[x]-2*x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2\left(\frac{x^4}{4} + x\right) + c_1\left(\frac{x^3}{3} + 1\right)$$

16.5 problem Problem 5

Internal problem ID [2901]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 5. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2\left(x - \frac{x^4}{12}\right) + c_1\left(1 - \frac{x^3}{6}\right)$$

16.6 problem Problem 6

Internal problem ID [2902]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 6. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + xy' + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{3}{2}x^2 + \frac{5}{8}x^4\right)y(0) + \left(x - \frac{2}{3}x^3 + \frac{1}{5}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[y''[x]+x*y'[x]+3*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2\left(\frac{x^5}{5} - \frac{2x^3}{3} + x\right) + c_1\left(\frac{5x^4}{8} - \frac{3x^2}{2} + 1\right)$$

16.7 problem Problem 7

Internal problem ID [2903]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 7. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y'x^2 - 3yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x^2*diff(y(x),x)-3*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{2}\right)y(0) + \left(x + \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[y''[x]- $x^2*y'[x]-3*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2\left(\frac{x^4}{3} + x\right) + c_1\left(\frac{x^3}{2} + 1\right)$$

16.8 problem Problem 8

Internal problem ID [2904]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 8. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y'x^2 + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+2*x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{3}\right)y(0) + \left(x - \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[y''[x]+2*x^2*y'[x]+2*x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2\left(x - \frac{x^4}{3}\right) + c_1\left(1 - \frac{x^3}{3}\right)$$

16.9 problem Problem 9

Internal problem ID [2905]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 9. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 - 3) y'' - 3xy' - 5y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((x^2-3)*diff(y(x),x\$2)-3*x*diff(y(x),x)-5*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{5}{6}x^2 + \frac{5}{24}x^4\right)y(0) + \left(x - \frac{4}{9}x^3 + \frac{8}{135}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(x^2-3)*y''[x]-3*x*y'[x]-5*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_2 \left(\frac{8x^5}{135} - \frac{4x^3}{9} + x\right) + c_1 \left(\frac{5x^4}{24} - \frac{5x^2}{6} + 1\right)$$

16.10 problem Problem 10

Internal problem ID [2906]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 10.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2+1)y''+4xy'+2y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

Order:=6; dsolve((1+x^2)*diff(y(x),x\$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (x^4 - x^2 + 1) y(0) + (x^5 - x^3 + x) D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 30

AsymptoticDSolveValue[(1+x²)*y''[x]+4*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow c_2(x^5 - x^3 + x) + c_1(x^4 - x^2 + 1)$$

16.11 problem Problem 11

Internal problem ID [2907]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-4x^2+1)y''-20xy'-16y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((1-4*x^2)*diff(y(x),x\$2)-20*x*diff(y(x),x)-16*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + 8x^2 + \frac{128}{3}x^4\right)y(0) + \left(30x^5 + 6x^3 + x\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[(1-4*x²)*y''[x]-20*x*y'[x]-16*y[x]==0,y[x],{x,0,5}]

$$y(x)
ightarrow c_2 ig(30x^5 + 6x^3 + x ig) + c_1 igg(rac{128x^4}{3} + 8x^2 + 1 igg)$$

16.12 problem Problem 12

Internal problem ID [2908]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 12. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(x^2 - 1) y'' - 6xy' + 12y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

Order:=6; dsolve((x^2-1)*diff(y(x),x\$2)-6*x*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);

$$y(x) = (x^4 + 6x^2 + 1) y(0) + (x^3 + x) D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 25

AsymptoticDSolveValue[(x²-1)*y''[x]-6*x*y'[x]+12*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow c_2(x^3 + x) + c_1(x^4 + 6x^2 + 1)$$

16.13 problem Problem 13

Internal problem ID [2909]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 13.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + 4yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+4*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{2}{3}x^3 + \frac{1}{3}x^4 - \frac{2}{15}x^5\right)y(0) + \left(x - x^2 + \frac{2}{3}x^3 - \frac{2}{3}x^4 + \frac{7}{15}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 61

AsymptoticDSolveValue[y''[x]+2*y'[x]+4*x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(-\frac{2x^5}{15} + \frac{x^4}{3} - \frac{2x^3}{3} + 1 \right) + c_2 \left(\frac{7x^5}{15} - \frac{2x^4}{3} + \frac{2x^3}{3} - x^2 + x \right)$$

16.14 problem Problem 14

Internal problem ID [2910]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 14.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + xy' + (x+2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+(2+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 - \frac{1}{6}x^3 + \frac{1}{3}x^4 + \frac{11}{120}x^5\right)y(0) + \left(x - \frac{1}{2}x^3 - \frac{1}{12}x^4 + \frac{1}{8}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 61

AsymptoticDSolveValue[y''[x]+x*y'[x]+(2+x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow c_2\left(\frac{x^5}{8} - \frac{x^4}{12} - \frac{x^3}{2} + x\right) + c_1\left(\frac{11x^5}{120} + \frac{x^4}{3} - \frac{x^3}{6} - x^2 + 1\right)$$

16.15 problem Problem 15

Internal problem ID [2911]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 15.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - e^x y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)-exp(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{24}x^5\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{30}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[y''[x]- $Exp[x]*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2\left(\frac{x^5}{30} + \frac{x^4}{12} + \frac{x^3}{6} + x\right) + c_1\left(\frac{x^5}{24} + \frac{x^4}{12} + \frac{x^3}{6} + \frac{x^2}{2} + 1\right)$$

16.16 problem Problem 17

Internal problem ID [2912]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 17.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - (x - 1)y' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 53

Order:=6; dsolve(x*diff(y(x),x\$2)-(x-1)*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln (x) + c_1) \left(1 + \frac{1}{4}x^2 + \frac{1}{18}x^3 + \frac{5}{192}x^4 + \frac{23}{3600}x^5 + O(x^6) \right) \\ + \left(x + \frac{11}{108}x^3 + \frac{11}{1152}x^4 + \frac{883}{216000}x^5 + O(x^6) \right) c_2$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 96

AsymptoticDSolveValue[x*y''[x]-(x-1)*y'[x]-x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{23x^5}{3600} + \frac{5x^4}{192} + \frac{x^3}{18} + \frac{x^2}{4} + 1 \right) \\ + c_2 \left(\frac{883x^5}{216000} + \frac{11x^4}{1152} + \frac{11x^3}{108} + \left(\frac{23x^5}{3600} + \frac{5x^4}{192} + \frac{x^3}{18} + \frac{x^2}{4} + 1 \right) \log(x) + x \right)$$

16.17 problem Problem 18

Internal problem ID [2913]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 18. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+2x^2) y'' + 7xy' + 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([(1+2*x^2)*diff(y(x),x\$2)+7*x*diff(y(x),x)+2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type=

$$y(x) = x - \frac{3}{2}x^3 + \frac{21}{8}x^5 + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[{(1+2*x²)*y''[x]+7*x*y'[x]+2*y[x]==0,{y[0]==0,y'[0]==1}},y[x],{x,0,5}

$$y(x) \to \frac{21x^5}{8} - \frac{3x^3}{2} + x$$

16.18 problem Problem 19

Internal problem ID [2914]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 19.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$4y'' + xy' + 4y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([4*diff(y(x),x\$2)+x*diff(y(x),x)+4*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x

$$y(x) = 1 - \frac{1}{2}x^2 + \frac{1}{16}x^4 + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[{4*y''[x]+x*y'[x]+4*y[x]==0,{y[0]==1,y'[0]==0}},y[x],{x,0,5}]

$$y(x) \to \frac{x^4}{16} - \frac{x^2}{2} + 1$$

16.19 problem Problem 20

Internal problem ID [2915]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 20.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y'x^2 + yx = 2\cos\left(x\right)$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

Order:=6; dsolve(diff(y(x),x\$2)+2*x^2*diff(y(x),x)+x*y(x)=2*cos(x),y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{4}x^4\right)D(y)(0) + x^2 - \frac{x^4}{12} - \frac{x^5}{4} + O(x^6)$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 45

 $AsymptoticDSolveValue[y''[x]+2*x^2*y'[x]+x*y[x]==2*Cos[x],y[x],\{x,0,5\}]$

$$y(x) \rightarrow -\frac{x^5}{4} - \frac{x^4}{12} + c_2\left(x - \frac{x^4}{4}\right) + c_1\left(1 - \frac{x^3}{6}\right) + x^2$$

16.20 problem Problem 21

Internal problem ID [2916]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 21.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + xy' - 4y = 6 e^x$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 42

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)-4*y(x)=6*exp(x),y(x),type='series',x=0);

$$y(x) = \left(1 + 2x^2 + \frac{1}{3}x^4\right)y(0) + \left(x + \frac{1}{2}x^3 + \frac{1}{40}x^5\right)D(y)(0) + 3x^2 + x^3 + \frac{3x^4}{4} + \frac{x^5}{10} + O(x^6)$$

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 62

AsymptoticDSolveValue[y''[x]+x*y'[x]-4*y[x]==6*Exp[x],y[x],{x,0,5}]

$$y(x) \to \frac{x^5}{10} + \frac{3x^4}{4} + x^3 + 3x^2 + c_2\left(\frac{x^5}{40} + \frac{x^3}{2} + x\right) + c_1\left(\frac{x^4}{3} + 2x^2 + 1\right)$$

17 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

17.1 problem 1	1.	•	•	•	•			•	•	•	•	 •	•	•	•	•	•		•	•	•	•	•	•	•	•	 •	•	370
17.2 problem 3	3.		•	•	•		 •	•	•		•	 •	•	•	•	•	•	•		•	•	•	•		•	•			371
17.3 problem 4	4 .		•	•	•		 •	•	•		•	 •	•	•	•	•	•	•		•	•	•	•		•	•			372
17.4 problem §	5.		•	•			 •	•			•	 •	•		•	•	•			•	•	•	•	•		•			374
17.5 problem 6	6.		•	•			 •	•			•	 •	•		•	•	•			•	•	•	•	•		•			375
17.6 problem 7	7.		•	•			 •				•	 •	•	•	•	•	•	•		•	•	•		•	•	•	 •		377
17.7 problem 8	8.		•				 •	•			•	 •	•		•	•	•			•	•	•		•		•			378
17.8 problem 9	9.		•	•			 •				•	 •	•	•	•	•	•	•		•	•	•		•	•	•	 •		379
17.9 problem 2	10		•	•	•		 •	•	•		•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	381
17.10 problem	11		•	•			 •				•	 •	•	•	•	•	•	•		•	•	•		•	•	•	 •		382
17.11 problem	12	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	383
17.12 problem	13	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	385
17.13problem	14	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	386
17.14 problem	15	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	387
17.15 problem	16		•	•	•		 •	•	•		•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	388
17.16 problem	17	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	390
17.17 problem	18	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •		391
17.18 problem	19		•	•	•		 •	•	•		•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	393
17.19problem 2	20	•	•	•	•	•	 •	•	•		•	 •	•	•	•	•		•	•	•	•	•	•	•	•	•	 •	•	394
17.20 problem 2	21	•	•	•	•		 •	•	•	•	•	 •	•	•	•	•		•		•	•	•	•	•	•	•	 •		395

17.1 problem 1

Internal problem ID [2917]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 1. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{y'}{1-x} + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; dsolve(diff(y(x),x\$2)+1/(1-x)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{60}x^5\right)y(0) + \left(x - \frac{1}{2}x^2 - \frac{1}{12}x^4 + \frac{1}{24}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[y''[x]+1/(1-x)*y'[x]+x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{x^5}{60} + \frac{x^4}{24} - \frac{x^3}{6} + 1 \right) + c_2 \left(\frac{x^5}{24} - \frac{x^4}{12} - \frac{x^2}{2} + x \right)$$

17.2 problem 3

Internal problem ID [2918]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 3. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + rac{xy'}{\left(1-x^{2}
ight)^{2}} + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 45

Order:=6; dsolve(x²*diff(y(x),x\$2)+x/(1-x²)²*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-i} \left(1 + \left(-\frac{1}{4} + \frac{i}{4} \right) x^2 + \left(-\frac{1}{80} + \frac{7i}{80} \right) x^4 + \mathcal{O} \left(x^6 \right) \right) + c_2 x^i \left(1 + \left(-\frac{1}{4} - \frac{i}{4} \right) x^2 + \left(-\frac{1}{80} - \frac{7i}{80} \right) x^4 + \mathcal{O} \left(x^6 \right) \right)$$

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 70

AsymptoticDSolveValue[x²*y''[x]+x/(1-x²)²*y'[x]+y[x]==0,y[x],{x,0,5}]

$$y(x) \to \left(\frac{1}{80} + \frac{3i}{80}\right) c_2 x^{-i} \left((2+i)x^4 + (4+8i)x^2 + (8-24i)\right) \\ - \left(\frac{3}{80} + \frac{i}{80}\right) c_1 x^i \left((1+2i)x^4 + (8+4i)x^2 - (24-8i)\right)$$

17.3 problem 4

Internal problem ID [2919]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 4. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-2)^2 y'' + (x-2) e^x y' + \frac{4y}{x} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

Order:=6; dsolve((x-2)^2*diff(y(x),x\$2)+(x-2)*exp(x)*diff(y(x),x)+4/x*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x \left(1 - \frac{1}{4} x - \frac{1}{24} x^2 - \frac{13}{576} x^3 - \frac{35}{2304} x^4 - \frac{1297}{138240} x^5 + \mathcal{O}\left(x^6\right) \right) \\ &+ c_2 \left(\ln\left(x\right) \left(-x + \frac{1}{4} x^2 + \frac{1}{24} x^3 + \frac{13}{576} x^4 + \frac{35}{2304} x^5 + \mathcal{O}\left(x^6\right) \right) \\ &+ \left(1 + \frac{1}{2} x - \frac{5}{4} x^2 - \frac{41}{144} x^3 - \frac{1097}{6912} x^4 - \frac{397}{4320} x^5 + \mathcal{O}\left(x^6\right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 87

AsymptoticDSolveValue[(x-2)^2*y''[x]+(x-2)*Exp[x]*y'[x]+4/x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{1}{576} x \left(13x^3 + 24x^2 + 144x - 576 \right) \log(x) + \frac{-1097x^4 - 1968x^3 - 8640x^2 + 3456x + 6912}{6912} \right) + c_2 \left(-\frac{35x^5}{2304} - \frac{13x^4}{576} - \frac{x^3}{24} - \frac{x^2}{4} + x \right)$$

17.4 problem 5

Internal problem ID [2920]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 5. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{2y'}{x(x-3)} - \frac{y}{x^3(3+x)} = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve(diff(y(x),x$2)+2/(x*(x-3))*diff(y(x),x)-1/(x^3*(x+3))*y(x)=0,y(x),type='series',x=0);
```

No solution found

Solution by Mathematica

Time used: 0.223 (sec). Leaf size: 258

AsymptoticDSolveValue[y''[x]+2/(x*(x-3))*y'[x]-1/(x^3*(x+3))*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) & \rightarrow c_1 e^{-\frac{2}{\sqrt{3}\sqrt{x}}} \left(\frac{10879996003390494539x^{9/2}}{6059672463464202240\sqrt{3}} + \frac{64713480610417x^{7/2}}{328758271672320\sqrt{3}} + \frac{287821451x^{5/2}}{3397386240\sqrt{3}} \right. \\ & + \frac{19817x^{3/2}}{73728\sqrt{3}} - \frac{4894564486149401320457x^5}{1246561192484064460800} - \frac{116612812982297797x^4}{378729528966512640} \\ & - \frac{22160647459x^3}{587068342272} + \frac{463507x^2}{42467328} + \frac{587x}{4608} + \frac{25\sqrt{x}}{16\sqrt{3}} \\ & + 1 \right) x^{13/12} + c_2 e^{\frac{2}{\sqrt{3}\sqrt{x}}} \left(-\frac{10879996003390494539x^{9/2}}{6059672463464202240\sqrt{3}} - \frac{64713480610417x^{7/2}}{328758271672320\sqrt{3}} - \frac{287821451x^{5/2}}{3397386240\sqrt{3}} - \frac{19817x}{73728\sqrt{3}} \right) \end{split}$$

17.5 problem 6

Internal problem ID [2921]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 6. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(1-x)y' - 7y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 478

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*(1-x)*diff(y(x),x)-7*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= x^{-\sqrt{7}} c_1 \left(1 + \frac{\sqrt{7}}{-1 + 2\sqrt{7}} x + \frac{\sqrt{7}}{-4 + 8\sqrt{7}} x^2 + \frac{\sqrt{7} (\sqrt{7} - 2)}{372 - 96\sqrt{7}} x^3 + \frac{\sqrt{7} (\sqrt{7} - 3)}{2976 - 768\sqrt{7}} x^4 \right. \\ &+ \frac{\sqrt{7} (\sqrt{7} - 3) (\sqrt{7} - 4)}{48960\sqrt{7} - 128160} x^5 + \mathcal{O} \left(x^6 \right) \right) + c_2 x^{\sqrt{7}} \left(1 + \frac{\sqrt{7}}{1 + 2\sqrt{7}} x + \frac{\sqrt{7}}{4 + 8\sqrt{7}} x^2 + \frac{\sqrt{7} (\sqrt{7} + 2)}{372 + 96\sqrt{7}} x^3 + \frac{(\sqrt{7} + 3) \sqrt{7}}{2976 + 768\sqrt{7}} x^4 + \frac{(\sqrt{7} + 4) (\sqrt{7} + 3) \sqrt{7}}{48960\sqrt{7} + 128160} x^5 + \mathcal{O} \left(x^6 \right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 1066

AsymptoticDSolveValue[x²*y''[x]+x*(1-x)*y'[x]-7*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) & \qquad \sqrt{7}(1+\sqrt{7}) \left(2+\sqrt{7}\right) \left(3+\sqrt{7}\right) \left(4+\sqrt{7}\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\right) \left(-5+\sqrt{7}+(1+\sqrt{7})\left(2+\sqrt{7}\right)\right) \left(-4+\sqrt{7}+(2+\sqrt{7})\left(3+\sqrt{7}\right)\right) \left(-3+\sqrt{7}\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\right) \left(-5+\sqrt{7}+(1+\sqrt{7})\left(2+\sqrt{7}\right)\right) \left(-4+\sqrt{7}+(2+\sqrt{7})\left(3+\sqrt{7}\right)\right) \left(-3+\sqrt{7}\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\right) \left(-5+\sqrt{7}+(1+\sqrt{7})\left(2+\sqrt{7}\right)\right) \left(-4+\sqrt{7}+(2+\sqrt{7})\left(3+\sqrt{7}\right)\right) \left(-3+\sqrt{7}\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\left(2+\sqrt{7}\right)\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\left(2+\sqrt{7}\right)\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\left(2+\sqrt{7}\right)\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\left(2+\sqrt{7}\right)\right) \left(-6+\sqrt{7}+\sqrt{7}\left(1+\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right) \left(4-\sqrt{7}+\left(-\frac{\sqrt{7}(1-\sqrt{7})\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\left(4-\sqrt{7}+(2-\sqrt{7})\left(3-\sqrt{7}\right)\right)\left(-6-\sqrt{7}+(1-\sqrt{7})\left(2-\sqrt{7}\right)\right)\left(-4-\sqrt{7}+(2-\sqrt{7})\left(3-\sqrt{7}\right)\right) \left(-6-\sqrt{7}-\sqrt{7}\left(1-\sqrt{7}\right)\right)\left(-5-\sqrt{7}+(1-\sqrt{7})\left(2-\sqrt{7}\right)\right)\left(-4-\sqrt{7}+(2-\sqrt{7})\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\right)\left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(2-\sqrt{7}\right)\left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}\right)\right) \left(-3-\sqrt{7}\left(1-\sqrt{7}\right)\left(2-\sqrt{7}$$

17.6 problem 7

Internal problem ID [2922]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 7. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4x^2y'' + y'\mathrm{e}^x x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+x*exp(x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$= \frac{c_2 x^{\frac{5}{4}} \left(1 - \frac{1}{9} x - \frac{5}{468} x^2 - \frac{11}{23868} x^3 + \frac{79}{501228} x^4 + \frac{16043}{313267500} x^5 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 - \frac{1}{4} x + \frac{5}{96} x^2 + \frac{17}{8064} x^3 - \frac{313}{1419264} x^3 - \frac{313}{1419264} x^4 + \frac{16043}{313267500} x^5 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 86

AsymptoticDSolveValue $[4*x^2*y''[x]+x*Exp[x]*y'[x]-y[x]==0,y[x],{x,0,5}]$

$$y(x) \to c_1 x \left(\frac{16043x^5}{313267500} + \frac{79x^4}{501228} - \frac{11x^3}{23868} - \frac{5x^2}{468} - \frac{x}{9} + 1 \right) \\ + \frac{c_2 \left(-\frac{69703x^5}{709632000} - \frac{313x^4}{1419264} + \frac{17x^3}{8064} + \frac{5x^2}{96} - \frac{x}{4} + 1 \right)}{\sqrt[4]{x}}$$

17.7 problem 8

Internal problem ID [2923]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 8. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4xy'' - xy' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 46

Order:=6; dsolve(4*x*diff(y(x),x\$2)-x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \ln(x) \left(-\frac{1}{2}x + \frac{1}{16}x^2 + O(x^6) \right) c_2 + c_1 x \left(1 - \frac{1}{8}x + O(x^6) \right) + \left(1 + \frac{1}{4}x - \frac{3}{16}x^2 + \frac{1}{384}x^3 + \frac{1}{18432}x^4 + \frac{1}{737280}x^5 + O(x^6) \right) c_2$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 52

AsymptoticDSolveValue[4*x*y''[x]-x*y'[x]+2*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2\left(x - \frac{x^2}{8}\right) + c_1\left(\frac{x^4 + 48x^3 - 4608x^2 + 13824x + 18432}{18432} + \frac{1}{16}(x - 8)x\log(x)\right)$$

17.8 problem 9

Internal problem ID [2924]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 9. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x\cos(x) y' + 5y e^{2x} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 71

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*cos(x)*diff(y(x),x)+5*exp(2*x)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x^{1-2i} \bigg(1 + \left(-\frac{10}{17} - \frac{40i}{17} \right) x + \left(-\frac{365}{136} + \frac{13i}{17} \right) x^2 + \left(\frac{223}{1020} + \frac{1723i}{765} \right) x^3 \\ &+ \left(\frac{114911}{78336} + \frac{24835i}{78336} \right) x^4 + \left(\frac{4041077}{8029440} - \frac{1112267i}{1605888} \right) x^5 + \mathcal{O} \left(x^6 \right) \bigg) \\ &+ c_2 x^{1+2i} \bigg(1 + \left(-\frac{10}{17} + \frac{40i}{17} \right) x + \left(-\frac{365}{136} - \frac{13i}{17} \right) x^2 + \left(\frac{223}{1020} - \frac{1723i}{765} \right) x^3 \\ &+ \left(\frac{114911}{78336} - \frac{24835i}{78336} \right) x^4 + \left(\frac{4041077}{8029440} + \frac{1112267i}{1605888} \right) x^5 + \mathcal{O} \left(x^6 \right) \bigg) \end{split}$$

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 94

AsymptoticDSolveValue[x^2*y''[x]-x*Cos[x]*y'[x]+5*Exp[2*x]*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to \left(\frac{11}{391680} + \frac{7i}{391680}\right) c_1 \left((32064 - 31693i)x^4 - (30784 + 60608i)x^3 \\ &- (80352 - 23904i)x^2 + (23040 + 69120i)x + (25344 - 16128i)\right) x^{1+2i} \\ &+ \left(\frac{7}{391680} + \frac{11i}{391680}\right) c_2 \left((31693 - 32064i)x^4 + (60608 + 30784i)x^3 \\ &- (23904 - 80352i)x^2 - (69120 + 23040i)x + (16128 - 25344i)\right) x^{1-2i} \end{split}$$

17.9 problem 10

Internal problem ID [2925]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 10. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4x^2y'' + 3xy' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+3*x*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{4}} \left(1 - \frac{1}{5}x + \frac{1}{90}x^2 - \frac{1}{3510}x^3 + \frac{1}{238680}x^4 - \frac{1}{25061400}x^5 + O(x^6) \right) + c_2 \left(1 - \frac{1}{3}x + \frac{1}{42}x^2 - \frac{1}{1386}x^3 + \frac{1}{83160}x^4 - \frac{1}{7900200}x^5 + O(x^6) \right)$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 85

AsymptoticDSolveValue[4*x²*y''[x]+3*x*y'[x]+x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \sqrt[4]{x} \left(-\frac{x^5}{25061400} + \frac{x^4}{238680} - \frac{x^3}{3510} + \frac{x^2}{90} - \frac{x}{5} + 1 \right) + c_2 \left(-\frac{x^5}{7900200} + \frac{x^4}{83160} - \frac{x^3}{1386} + \frac{x^2}{42} - \frac{x}{3} + 1 \right)$$

17.10 problem 11

Internal problem ID [2926]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$6x^2y'' + x(1+18x)y' + (1+12x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 47

Order:=6; dsolve(6*x^2*diff(y(x),x\$2)+x*(1+18*x)*diff(y(x),x)+(1+12*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{3}} \left(1 - \frac{18}{5}x + \frac{324}{55}x^2 - \frac{5832}{935}x^3 + \frac{104976}{21505}x^4 - \frac{1889568}{623645}x^5 + \mathcal{O}\left(x^6\right) \right) \\ + c_2 \sqrt{x} \left(1 - 3x + \frac{9}{2}x^2 - \frac{9}{2}x^3 + \frac{27}{8}x^4 - \frac{81}{40}x^5 + \mathcal{O}\left(x^6\right) \right)$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 88

AsymptoticDSolveValue[6*x²*y''[x]+x*(1+18*x)*y'[x]+(1+12*x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \sqrt{x} \left(-\frac{81x^5}{40} + \frac{27x^4}{8} - \frac{9x^3}{2} + \frac{9x^2}{2} - 3x + 1 \right) \\ + c_2 \sqrt[3]{x} \left(-\frac{1889568x^5}{623645} + \frac{104976x^4}{21505} - \frac{5832x^3}{935} + \frac{324x^2}{55} - \frac{18x}{5} + 1 \right)$$

17.11 problem 12

Internal problem ID [2927]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 12. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + xy' - (x+2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 321

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= x^{-\sqrt{2}} c_1 \left(1 - \frac{1}{-1 + 2\sqrt{2}} x + \frac{1}{20 - 12\sqrt{2}} x^2 - \frac{1}{228\sqrt{2} - 324} x^3 + \frac{1}{8832 - 6240\sqrt{2}} x^4 \right. \\ &\quad \left. - \frac{1}{480} \frac{1}{(-1 + 2\sqrt{2}) \left(\sqrt{2} - 1\right) \left(-3 + 2\sqrt{2}\right) \left(\sqrt{2} - 2\right) \left(-5 + 2\sqrt{2}\right)} x^5 + \mathcal{O}\left(x^6\right) \right) \\ &\quad \left. + c_2 x^{\sqrt{2}} \left(1 + \frac{1}{1 + 2\sqrt{2}} x + \frac{1}{20 + 12\sqrt{2}} x^2 + \frac{1}{228\sqrt{2} + 324} x^3 + \frac{1}{8832 + 6240\sqrt{2}} x^4 \right. \\ &\quad \left. + \frac{1}{244320\sqrt{2} + 345600} x^5 + \mathcal{O}\left(x^6\right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 843

AsymptoticDSolveValue[x²*y''[x]+x*y'[x]-(2+x)*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) & \xrightarrow{x^5} \\ & \rightarrow \left(\frac{x^5}{(-1+\sqrt{2}+\sqrt{2}\left(1+\sqrt{2}\right)\right)\left(\sqrt{2}+\left(1+\sqrt{2}\right)\left(2+\sqrt{2}\right)\right)\left(1+\sqrt{2}+\left(2+\sqrt{2}\right)\left(3+\sqrt{2}\right)\right)\left(2+\sqrt{2}+\left(1+\sqrt{2}\right)\left(2+\sqrt{2}\right)\right)\left(1+\sqrt{2}+\left(2+\sqrt{2}\right)\left(3+\sqrt{2}\right)\right)\left(2+\sqrt{2}+\left(1+\sqrt{2}\right)\left(2+\sqrt{2}\right)\right)\left(1+\sqrt{2}+\left(2+\sqrt{2}\right)\left(3+\sqrt{2}\right)\right)\left(2+\sqrt{2}+\left(1+\sqrt{2}\right)\left(2+\sqrt{2}\right)\right)\right)} \\ & +\frac{x^3}{(-1+\sqrt{2}+\sqrt{2}\left(1+\sqrt{2}\right)\right)\left(\sqrt{2}+\left(1+\sqrt{2}\right)\left(2+\sqrt{2}\right)\right)} \\ & +\frac{x^2}{(-1+\sqrt{2}+\sqrt{2}\left(1+\sqrt{2}\right)\right)\left(\sqrt{2}+\left(1+\sqrt{2}\right)\left(2+\sqrt{2}\right)\right)} \\ & +\left(\frac{x^5}{(-1-\sqrt{2}-\sqrt{2}\left(1-\sqrt{2}\right)\right)\left(-\sqrt{2}+\left(1-\sqrt{2}\right)\left(2-\sqrt{2}\right)\right)\left(1-\sqrt{2}+\left(2-\sqrt{2}\right)\left(3-\sqrt{2}\right)\right)\left(2-\sqrt{2}+\sqrt{2}\right)} \\ & +\frac{x^3}{(-1-\sqrt{2}-\sqrt{2}\left(1-\sqrt{2}\right)\right)\left(-\sqrt{2}+\left(1-\sqrt{2}\right)\left(2-\sqrt{2}\right)\right)\left(1-\sqrt{2}+\left(2-\sqrt{2}\right)\left(3-\sqrt{2}\right)\right)\left(2-\sqrt{2}+\sqrt{2}+\sqrt{2}\right)} \\ & +\frac{x^2}{(-1-\sqrt{2}-\sqrt{2}\left(1-\sqrt{2}\right)\right)\left(-\sqrt{2}+\left(1-\sqrt{2}\right)\left(2-\sqrt{2}\right)\right)\left(1-\sqrt{2}+\left(2-\sqrt{2}\right)\left(3-\sqrt{2}\right)\right)} \\ & +\frac{x^2}{(-1-\sqrt{2}-\sqrt{2}\left(1-\sqrt{2}\right)\right)\left(-\sqrt{2}+\left(1-\sqrt{2}\right)\left(2-\sqrt{2}\right)} + 1\right)c_2x^{-\sqrt{2}} \end{split}$$

17.12 problem 13

Internal problem ID [2928]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 13. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2xy'' + y' - 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

Order:=6; dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)-2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 + \frac{1}{5}x^2 + \frac{1}{90}x^4 + O\left(x^6\right) \right) + c_2 \left(1 + \frac{1}{3}x^2 + \frac{1}{42}x^4 + O\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 47

AsymptoticDSolveValue[2*x*y''[x]+y'[x]-2*x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^4}{90} + \frac{x^2}{5} + 1 \right) + c_2 \left(\frac{x^4}{42} + \frac{x^2}{3} + 1 \right)$$

17.13 problem 14

Internal problem ID [2929]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 14. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3x^2y'' - x(x+8)y' + 6y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve(3*x^2*diff(y(x),x\$2)-x*(x+8)*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{2}{3}} \left(1 - \frac{1}{6}x + \frac{5}{36}x^2 + \frac{5}{81}x^3 + \frac{11}{972}x^4 + \frac{77}{58320}x^5 + O(x^6) \right) + c_2 x^3 \left(1 + \frac{3}{10}x + \frac{3}{65}x^2 + \frac{1}{208}x^3 + \frac{3}{7904}x^4 + \frac{21}{869440}x^5 + O(x^6) \right)$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 88

AsymptoticDSolveValue[3*x²*y''[x]-x*(x+8)*y'[x]+6*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{21x^5}{869440} + \frac{3x^4}{7904} + \frac{x^3}{208} + \frac{3x^2}{65} + \frac{3x}{10} + 1 \right) x^3 \\ + c_2 \left(\frac{77x^5}{58320} + \frac{11x^4}{972} + \frac{5x^3}{81} + \frac{5x^2}{36} - \frac{x}{6} + 1 \right) x^{2/3}$$

17.14 problem 15

Internal problem ID [2930]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 15. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^{2}y'' - x(2x+1)y' + 2(-1+4x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 41

Order:=6; dsolve(2*x^2*diff(y(x),x\$2)-x*(1+2*x)*diff(y(x),x)+2*(4*x-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{5}{2}} \left(1 - \frac{4}{7}x + \frac{4}{63}x^2 + O\left(x^6\right)\right) + c_1 \left(1 + 3x + \frac{21}{2}x^2 - \frac{35}{2}x^3 + \frac{35}{8}x^4 - \frac{7}{40}x^5 + O\left(x^6\right)\right)}{\sqrt{x}}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 65

AsymptoticDSolveValue[2*x²*y''[x]-x*(1+2*x)*y'[x]+2*(4*x-1)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{4x^2}{63} - \frac{4x}{7} + 1\right) x^2 + \frac{c_2 \left(-\frac{7x^5}{40} + \frac{35x^4}{8} - \frac{35x^3}{2} + \frac{21x^2}{2} + 3x + 1\right)}{\sqrt{x}}$$

17.15 problem 16

Internal problem ID [2931]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 16. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(1-x)y' - (5+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 503

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*(1-x)*diff(y(x),x)-(5+x)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x^{-\sqrt{5}} \Biggl(1 + \frac{\sqrt{5} - 1}{-1 + 2\sqrt{5}} x + \frac{-2 + \sqrt{5}}{8\sqrt{5} - 4} x^2 + \frac{(-2 + \sqrt{5})(\sqrt{5} - 3)}{276 - 96\sqrt{5}} x^3 \\ &+ \frac{(\sqrt{5} - 3)(\sqrt{5} - 4)}{2208 - 768\sqrt{5}} x^4 + \frac{(-5 + \sqrt{5})(\sqrt{5} - 3)(\sqrt{5} - 4)}{41280\sqrt{5} - 93600} x^5 + \mathcal{O}\left(x^6\right) \Biggr) \\ &+ c_2 x^{\sqrt{5}} \Biggl(1 + \frac{\sqrt{5} + 1}{1 + 2\sqrt{5}} x + \frac{\sqrt{5} + 2}{8\sqrt{5} + 4} x^2 + \frac{(\sqrt{5} + 3)(\sqrt{5} + 2)}{276 + 96\sqrt{5}} x^3 \\ &+ \frac{(\sqrt{5} + 4)(\sqrt{5} + 3)}{2208 + 768\sqrt{5}} x^4 + \frac{(5 + \sqrt{5})(\sqrt{5} + 4)(\sqrt{5} + 3)}{41280\sqrt{5} + 93600} x^5 + \mathcal{O}\left(x^6\right) \Biggr) \end{split}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 1093

AsymptoticDSolveValue[x^2*y''[x]+x*(1-x)*y'[x]-(5+x)*y[x]==0,y[x],{x,0,5}]

17.16 problem 17

Internal problem ID [2932]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 17. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$3x^{2}y'' + x(7+3x)y' + (6x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve(3*x^2*diff(y(x),x\$2)+x*(7+3*x)*diff(y(x),x)+(1+6*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 - 3x + \frac{9}{4}x^2 - \frac{27}{28}x^3 + \frac{81}{280}x^4 - \frac{243}{3640}x^5 + \mathcal{O}\left(x^6\right)\right) x^{\frac{1}{3}} + c_2 \left(1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{120}x^5 + \mathcal{O}\left(x^6\right)}{x^{\frac{4}{3}}}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 84

AsymptoticDSolveValue[3*x²*y''[x]+x*(7+3*x)*y'[x]+(1+6*x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to \frac{c_1 \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^3}{6} + \frac{x^2}{2} - x + 1\right)}{\sqrt[3]{x}} + \frac{c_2 \left(-\frac{243x^5}{3640} + \frac{81x^4}{280} - \frac{27x^3}{28} + \frac{9x^2}{4} - 3x + 1\right)}{x}$$

17.17 problem 18

Internal problem ID [2933]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 18. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + xy' + (1 - x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0);

$$\begin{aligned} y(x) &= c_1 x^{-i} \left(1 + \left(\frac{1}{5} + \frac{2i}{5} \right) x + \left(-\frac{1}{40} + \frac{3i}{40} \right) x^2 + \left(-\frac{3}{520} + \frac{7i}{1560} \right) x^3 \\ &+ \left(-\frac{1}{2496} + \frac{i}{12480} \right) x^4 + \left(-\frac{9}{603200} - \frac{i}{361920} \right) x^5 + \mathcal{O} \left(x^6 \right) \right) \\ &+ c_2 x^i \left(1 + \left(\frac{1}{5} - \frac{2i}{5} \right) x + \left(-\frac{1}{40} - \frac{3i}{40} \right) x^2 + \left(-\frac{3}{520} - \frac{7i}{1560} \right) x^3 \\ &+ \left(-\frac{1}{2496} - \frac{i}{12480} \right) x^4 + \left(-\frac{9}{603200} + \frac{i}{361920} \right) x^5 + \mathcal{O} \left(x^6 \right) \right) \end{aligned}$$

\checkmark Solution by Mathematica

Time used: $0.01~(\mathrm{sec}).$ Leaf size: 90

AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(1-x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow \left(\frac{1}{12480} + \frac{i}{2496}\right) c_2 x^{-i} \left(ix^4 + (8+16i)x^3 + (168+96i)x^2 + (1056-288i)x + (480-2400i)\right) - \left(\frac{1}{2496} + \frac{i}{12480}\right) c_1 x^i \left(x^4 + (16+8i)x^3 + (96+168i)x^2 - (288-1056i)x - (2400-480i)\right)$$

17.18 problem 19

Internal problem ID [2934]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 19. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3x^{2}y'' + x(3x^{2} + 1)y' - 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(3*x^2*diff(y(x),x\$2)+x*(1+3*x^2)*diff(y(x),x)-2*x*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x^{\frac{2}{3}} \left(1 + \frac{2}{5}x - \frac{3}{40}x^2 - \frac{43}{660}x^3 + \frac{31}{3696}x^4 + \frac{2259}{261800}x^5 + \mathcal{O}\left(x^6\right) \right) \\ &+ c_2 \left(1 + 2x + \frac{1}{2}x^2 - \frac{5}{21}x^3 - \frac{73}{840}x^4 + \frac{827}{27300}x^5 + \mathcal{O}\left(x^6\right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 83

AsymptoticDSolveValue[3*x²*y''[x]+x*(1+3*x²)*y'[x]-2*x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(\frac{827x^5}{27300} - \frac{73x^4}{840} - \frac{5x^3}{21} + \frac{x^2}{2} + 2x + 1 \right) \\ + c_1 x^{2/3} \left(\frac{2259x^5}{261800} + \frac{31x^4}{3696} - \frac{43x^3}{660} - \frac{3x^2}{40} + \frac{2x}{5} + 1 \right)$$

17.19 problem 20

Internal problem ID [2935]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 20. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' - 4y'x^2 + (2x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)-4*x^2*diff(y(x),x)+(1+2*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(\left(x + \frac{1}{4}x^2 + \frac{1}{18}x^3 + \frac{1}{96}x^4 + \frac{1}{600}x^5 + \mathcal{O}\left(x^6\right) \right) c_2 + (c_2\ln\left(x\right) + c_1)\left(1 + \mathcal{O}\left(x^6\right)\right) \right) \sqrt{x}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 60

AsymptoticDSolveValue[4*x²*y''[x]-4*x²*y'[x]+(1+2*x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(\sqrt{x} \left(\frac{x^5}{600} + \frac{x^4}{96} + \frac{x^3}{18} + \frac{x^2}{4} + x\right) + \sqrt{x} \log(x)\right) + c_1 \sqrt{x}$$

17.20 problem 21

Internal problem ID [2936]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 21. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(3 - 2x)y' + (1 - 2x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*(3-2*x)*diff(y(x),x)+(1-2*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{\left(c_2 \ln \left(x\right) + c_1\right) \left(1 + O\left(x^6\right)\right) + \left(2x + x^2 + \frac{4}{9}x^3 + \frac{1}{6}x^4 + \frac{4}{75}x^5 + O\left(x^6\right)\right) c_2}{x}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 52

AsymptoticDSolveValue[x²*y''[x]+x*(3-2*x)*y'[x]+(1-2*x)*y[x]==0,y[x],{x,0,5}]

$$y(x) o c_2 \left(rac{rac{4x^5}{75} + rac{x^4}{6} + rac{4x^3}{9} + x^2 + 2x}{x} + rac{\log(x)}{x}
ight) + rac{c_1}{x}$$

18 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

18.1 problem Example 11.5.2 page 763		•	398
18.2 problem Example 11.5.4 page 765		•	400
18.3 problem Example 11.5.5 page 768	•••	•	401
18.4 problem (a)		•	402
18.5 problem (b)		•	404
18.6 problem (c)		•	405
18.7 problem (d)		•	407
18.8 problem (e)		•	408
18.9 problem 1		•	410
18.10 problem 2		•	411
18.11 problem 3		•	413
18.12 problem 4		•	415
18.13 problem 5		•	416
18.14 problem 6		•	417
18.15 problem 7		•	418
18.16 problem 8		•	419
18.17 problem 11		•	421
18.18 problem 12		•	422
18.19 problem 13		•	423
18.20 problem 14		•	425
18.21 problem 15		•	426
18.22 problem 16		•	427
18.23 problem 17		•	429
18.24 problem 18		•	430
18.25 problem 19		•	431
18.26 problem 20		•	433
18.27 problem 21		•	434
18.28 problem 22		•	435
18.29 problem 23		•	436
18.30 problem 24		•	437
18.31 problem 25		•	438
18.32 problem 26		•	439
18.33 problem 27		•	440
18.34 problem 28			441

18.35 problem 29						•	•		•	•																									44	42
------------------	--	--	--	--	--	---	---	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	----

18.1 problem Example 11.5.2 page 763

Internal problem ID [2937]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: Example 11.5.2 page 763.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(3+x)y' + (4-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(x²*diff(y(x),x\$2)-x*(3+x)*diff(y(x),x)+(4-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{2} \left((c_{2} \ln (x) + c_{1}) \left(1 + 3x + 3x^{2} + \frac{5}{3}x^{3} + \frac{5}{8}x^{4} + \frac{7}{40}x^{5} + O(x^{6}) \right) + \left((-5)x - \frac{29}{4}x^{2} - \frac{173}{36}x^{3} - \frac{193}{96}x^{4} - \frac{1459}{2400}x^{5} + O(x^{6}) \right) c_{2} \right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 118

AsymptoticDSolveValue[x^2*y''[x]-x*(3+x)*y'[x]+(4-x)*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to c_1 \left(\frac{7x^5}{40} + \frac{5x^4}{8} + \frac{5x^3}{3} + 3x^2 + 3x + 1 \right) x^2 \\ &+ c_2 \left(\left(-\frac{1459x^5}{2400} - \frac{193x^4}{96} - \frac{173x^3}{36} - \frac{29x^2}{4} - 5x \right) x^2 \\ &+ \left(\frac{7x^5}{40} + \frac{5x^4}{8} + \frac{5x^3}{3} + 3x^2 + 3x + 1 \right) x^2 \log(x) \right) \end{split}$$

18.2 problem Example 11.5.4 page 765

Internal problem ID [2938]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: Example 11.5.4 page 765.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + x(3-x)y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 53

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*(3-x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{(c_2 \ln (x) + c_1) (1 - x + O(x^6)) + (3x - \frac{1}{4}x^2 - \frac{1}{36}x^3 - \frac{1}{288}x^4 - \frac{1}{2400}x^5 + O(x^6)) c_2}{r}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 66

AsymptoticDSolveValue[x²*y''[x]+x*(3-x)*y'[x]+y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(\frac{-\frac{x^5}{2400} - \frac{x^4}{288} - \frac{x^3}{36} - \frac{x^2}{4} + 3x}{x} + \frac{(1-x)\log(x)}{x} \right) + \frac{c_1(1-x)}{x}$$

18.3 problem Example 11.5.5 page 768

Internal problem ID [2939]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: Example 11.5.5 page 768. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + xy' - (4+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 61

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*diff(y(x),x)-(4+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^4 \left(1 + \frac{1}{5}x + \frac{1}{60}x^2 + \frac{1}{1260}x^3 + \frac{1}{40320}x^4 + \frac{1}{1814400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^4 + \frac{1}{5}x^5 + \mathcal{O}\left(x^6\right)\right) + \left(-144x^2 + \frac{1}{1260}x^2 + \frac{1}{1260}x^2 + \frac{1}{1260}x^2 + \frac{1}{1260}x^2 + \frac{1}{1814400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^4 + \frac{1}{5}x^5 + \mathcal{O}\left(x^6\right)\right) + \left(-144x^2 + \frac{1}{1260}x^2 + \frac{1}{1814400}x^5 + \frac{1}{1814400}x^5 + \frac{1}{1814400}x^5 + \frac{1}{1260}x^2 + \frac{1}{1814400}x^5 + \frac{1}{1814400}x^5 + \frac{1}{1814400}x^2 + \frac{1}{18$$

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 77

AsymptoticDSolveValue $[x^2*y''[x]+x*y'[x]-(4+x)*y[x]==0,y[x],{x,0,5}]$

$$y(x) \to c_1 \left(\frac{x^4 - 16x^3 + 48x^2 - 192x + 576}{576x^2} - \frac{1}{144}x^2 \log(x) \right) \\ + c_2 \left(\frac{x^6}{40320} + \frac{x^5}{1260} + \frac{x^4}{60} + \frac{x^3}{5} + x^2 \right)$$

18.4 problem (a)

Internal problem ID [2940]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (a). ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - (-x^{2} + x) y' + (x^{3} + 1) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 63

Order:=6; dsolve(x^2*diff(y(x),x\$2)-(x-x^2)*diff(y(x),x)+(1+x^3)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x \left((c_2 \ln (x) + c_1) \left(1 - x + \frac{1}{2}x^2 - \frac{5}{18}x^3 + \frac{19}{144}x^4 - \frac{167}{3600}x^5 + O(x^6) \right) + \left(x - \frac{3}{4}x^2 + \frac{41}{108}x^3 - \frac{89}{432}x^4 + \frac{2281}{27000}x^5 + O(x^6) \right) c_2 \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 114

AsymptoticDSolveValue[x²*y''[x]-(x-x²)*y'[x]+(1+x³)*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to c_1 x \left(-\frac{167x^5}{3600} + \frac{19x^4}{144} - \frac{5x^3}{18} + \frac{x^2}{2} - x + 1 \right) \\ &+ c_2 \left(x \left(\frac{2281x^5}{27000} - \frac{89x^4}{432} + \frac{41x^3}{108} - \frac{3x^2}{4} + x \right) \right. \\ &+ x \left(-\frac{167x^5}{3600} + \frac{19x^4}{144} - \frac{5x^3}{18} + \frac{x^2}{2} - x + 1 \right) \log(x) \right) \end{split}$$

18.5 problem (b)

Internal problem ID [2941]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (b). ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - \left(-1 + 2\sqrt{5}\right)xy' + \left(\frac{19}{4} - 3x^{2}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 325

Order:=6; dsolve(x^2*diff(y(x),x\$2)-(2*sqrt(5)-1)*x*diff(y(x),x)+(19/4-3*x^2)*y(x)=0,y(x),type='series

$$\begin{split} y(x) &= \left(\left(1 + \frac{3}{2}x^2 + \frac{3}{8}x^4 + \mathcal{O}\left(x^6\right) \right) c_1 + xc_2 \left(\ln\left(x\right) \left(1 + \frac{1}{2}x^2 + \frac{3}{40}x^4 + \mathcal{O}\left(x^6\right) \right) \right. \\ &+ \left(-\frac{5}{12}x^2 - \frac{77}{800}x^4 + \mathcal{O}\left(x^6\right) \right) \right) \right) x^{-\frac{1}{2} + \sqrt{5}} \end{split}$$

Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 94

AsymptoticDSolveValue[x²*y''[x]-(2*Sqrt[5]-1)*x*y'[x]+(19/4-3*x²)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{3}{8} x^{\frac{7}{2} + \sqrt{5}} + \frac{3}{2} x^{\frac{3}{2} + \sqrt{5}} + x^{\sqrt{5} - \frac{1}{2}}\right) + c_2 \left(\frac{3}{40} x^{\frac{9}{2} + \sqrt{5}} + \frac{1}{2} x^{\frac{5}{2} + \sqrt{5}} + x^{\frac{1}{2} + \sqrt{5}}\right)$$

18.6 problem (c)

Internal problem ID [2942]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (c). ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

 $\overline{x^2y'' + (-2x^5 + 9x)}y' + (10x^4 + 5x^2 + 25)y = 0$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 55

Order:=7; dsolve(x^2*diff(y(x),x\$2)+(9*x-2*x^5)*diff(y(x),x)+(25+5*x^2+10*x^4)*y(x)=0,y(x),type='serie

$$y(x) = c_1 x^{-4-3i} \left(1 + \left(-\frac{1}{8} - \frac{3i}{8} \right) x^2 + \left(-\frac{179}{832} - \frac{483i}{832} \right) x^4 + \left(-\frac{433}{3744} + \frac{3943i}{29952} \right) x^6 + O\left(x^7\right) \right) + c_2 x^{-4+3i} \left(1 + \left(-\frac{1}{8} + \frac{3i}{8} \right) x^2 + \left(-\frac{179}{832} + \frac{483i}{832} \right) x^4 + \left(-\frac{433}{3744} - \frac{3943i}{29952} \right) x^6 + O\left(x^7\right) \right)$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 70

AsymptoticDSolveValue[x^2*y''[x]+(9*x-2*x^5)*y'[x]+(25+5*x^2+10*x^4)*y[x]==0,y[x],{x,0,6}]

$$y(x) \to \left(\frac{1}{832} + \frac{5i}{832}\right) c_1 x^{-4+3i} \left((86+53i)x^4 + (56+32i)x^2 + (32-160i)\right) \\ - \left(\frac{5}{832} + \frac{i}{832}\right) c_2 x^{-4-3i} \left((53+86i)x^4 + (32+56i)x^2 - (160-32i)\right)$$

18.7 problem (d)

Internal problem ID [2943]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (d). ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + \left(4x + \frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)y' - \frac{7y}{4} = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

Order:=6; dsolve(x^2*diff(y(x),x\$2)+(4*x+1/2*x^2-1/3*x^3)*diff(y(x),x)-7/4*y(x)=0,y(x),type='series',x

$$y(x) = \frac{c_1 x^4 \left(1 - \frac{1}{20} x + \frac{49}{2880} x^2 - \frac{533}{241920} x^3 + \frac{277}{491520} x^4 - \frac{203759}{2388787200} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\left(\frac{8491}{768} x^4 - \frac{8491}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{8491}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^4 - \frac{1}{15360} x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\frac{1}{768} x^6 - \frac{1}{15360} x^6 + \frac{1}{15360} x^6$$

Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 93

AsymptoticDSolveValue[x²*y''[x]+(4*x+1/2*x²-1/3*x³)*y'[x]-7/4*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to c_2 \left(\frac{277x^{9/2}}{491520} - \frac{533x^{7/2}}{241920} + \frac{49x^{5/2}}{2880} - \frac{x^{3/2}}{20} + \sqrt{x} \right) + c_1 \left(\frac{65067x^4 - 124096x^3 + 209664x^2 - 258048x + 442368}{442368x^{7/2}} - \frac{8491\sqrt{x}\log(x)}{110592} \right) \end{split}$$

18.8 problem (e)

Internal problem ID [2944]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (e). ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,

$$x^2y'' + y'x^2 + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 58

Order:=6; dsolve(x²*diff(y(x),x\$2)+x²*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x \left(1 - x + \frac{1}{2} x^2 - \frac{1}{6} x^3 + \frac{1}{24} x^4 - \frac{1}{120} x^5 + \mathcal{O} \left(x^6 \right) \right) \\ &+ c_2 \left(\ln \left(x \right) \left(-x + x^2 - \frac{1}{2} x^3 + \frac{1}{6} x^4 - \frac{1}{24} x^5 + \mathcal{O} \left(x^6 \right) \right) \right) \\ &+ \left(1 - x + \frac{1}{4} x^3 - \frac{5}{36} x^4 + \frac{13}{288} x^5 + \mathcal{O} \left(x^6 \right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 80

AsymptoticDSolveValue[x^2*y''[x]+x^2*y'[x]+x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{1}{6} x \left(x^3 - 3x^2 + 6x - 6 \right) \log(x) + \frac{1}{36} \left(-11x^4 + 27x^3 - 36x^2 + 36 \right) \right) \\ + c_2 \left(\frac{x^5}{24} - \frac{x^4}{6} + \frac{x^3}{2} - x^2 + x \right)$$

18.9 problem 1

Internal problem ID [2945]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 1. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(x-3)y' + (4-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 69

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*(x-3)*diff(y(x),x)+(4-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{2} \left((c_{2} \ln (x) + c_{1}) \left(1 - x + \frac{1}{2}x^{2} - \frac{1}{6}x^{3} + \frac{1}{24}x^{4} - \frac{1}{120}x^{5} + O(x^{6}) \right) + \left(x - \frac{3}{4}x^{2} + \frac{11}{36}x^{3} - \frac{25}{288}x^{4} + \frac{137}{7200}x^{5} + O(x^{6}) \right) c_{2} \right)$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 120

AsymptoticDSolveValue[x²*y''[x]+x*(x-3)*y'[x]+(4-x)*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) \rightarrow c_1 \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^3}{6} + \frac{x^2}{2} - x + 1 \right) x^2 + c_2 \left(\left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^3}{6} + \frac{x^2}{2} - x + 1 \right) x^2 \log(x) \right) x^2 + c_2 \left(\left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{25x^4}{72} + \frac{11x^3}{72} - \frac{3x^2}{72} + x \right) x^2 + c_2 \left(\frac{137x^5}{7200} - \frac{11x^5}{7200} - \frac{11x^5}{720} + \frac{11x^5}{720} - \frac{11x^5}{720} + \frac{11x^5$$

18.10 problem 2

Internal problem ID [2946]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 2. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' + 2y'x^2 + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 67

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+2*x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(\left(c_2 \ln\left(x\right) + c_1 \right) \left(1 - \frac{1}{4}x + \frac{3}{64}x^2 - \frac{5}{768}x^3 + \frac{35}{49152}x^4 - \frac{21}{327680}x^5 + \mathcal{O}\left(x^6\right) \right) \right. \\ \left. + \left(-\frac{1}{64}x^2 + \frac{1}{256}x^3 - \frac{19}{32768}x^4 + \frac{25}{393216}x^5 + \mathcal{O}\left(x^6\right) \right) c_2 \right) \sqrt{x}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 129

AsymptoticDSolveValue[4*x²*y''[x]+2*x²*y'[x]+y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to c_1 \sqrt{x} \left(-\frac{21x^5}{327680} + \frac{35x^4}{49152} - \frac{5x^3}{768} + \frac{3x^2}{64} - \frac{x}{4} + 1 \right) \\ &+ c_2 \left(\sqrt{x} \left(\frac{25x^5}{393216} - \frac{19x^4}{32768} + \frac{x^3}{256} - \frac{x^2}{64} \right) \right. \\ &+ \sqrt{x} \left(-\frac{21x^5}{327680} + \frac{35x^4}{49152} - \frac{5x^3}{768} + \frac{3x^2}{64} - \frac{x}{4} + 1 \right) \log(x) \right) \end{split}$$

18.11 problem 3

Internal problem ID [2947]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 3. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x\cos(x) y' - 2e^{x}y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 389

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*cos(x)*diff(y(x),x)-2*exp(x)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x^{-\sqrt{2}} \Biggl(1 - 2 \frac{1}{-1 + 2\sqrt{2}} x + \frac{-5\sqrt{2} + 14}{40 - 24\sqrt{2}} x^2 + \frac{-122 + 75\sqrt{2}}{684\sqrt{2} - 972} x^3 \\ &\qquad + \frac{-1626\sqrt{2} + 2375}{52992 - 37440\sqrt{2}} x^4 \\ &\qquad + \frac{1}{7200} \frac{-75763 + 52810\sqrt{2}}{(-1 + 2\sqrt{2})(\sqrt{2} - 1)(-3 + 2\sqrt{2})(-2 + \sqrt{2})(-5 + 2\sqrt{2})} x^5 \\ &\qquad + O(x^6) \Biggr) \\ &\qquad + c_2 x^{\sqrt{2}} \Biggl(1 + 2 \frac{1}{1 + 2\sqrt{2}} x + \frac{5\sqrt{2} + 14}{40 + 24\sqrt{2}} x^2 + \frac{122 + 75\sqrt{2}}{684\sqrt{2} + 972} x^3 + \frac{1626\sqrt{2} + 2375}{52992 + 37440\sqrt{2}} x^4 \\ &\qquad + \frac{1}{7200} \frac{75763 + 52810\sqrt{2}}{(1 + 2\sqrt{2})(1 + \sqrt{2})(3 + 2\sqrt{2})(2 + \sqrt{2})(5 + 2\sqrt{2})} x^5 + O(x^6) \Biggr) \end{split}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 2210

AsymptoticDSolveValue $[x^2*y''[x]+x*Cos[x]*y'[x]-2*Exp[x]*y[x]==0,y[x],{x,0,5}]$

Too large to display

18.12 problem 4

Internal problem ID [2948]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 4. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x^{2} - (x+2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve(x²*diff(y(x),x\$2)+x²*diff(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 - \frac{1}{4}x + \frac{1}{20}x^2 - \frac{1}{120}x^3 + \frac{1}{840}x^4 - \frac{1}{6720}x^5 + O(x^6) \right) \\ + \frac{c_2 \left(12 - 12x + 6x^2 - 2x^3 + \frac{1}{2}x^4 - \frac{1}{10}x^5 + O(x^6) \right)}{x}$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 66

AsymptoticDSolveValue[x²*y''[x]+x²*y'[x]-(2+x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{x^3}{24} - \frac{x^2}{6} + \frac{x}{2} + \frac{1}{x} - 1\right) + c_2 \left(\frac{x^6}{840} - \frac{x^5}{120} + \frac{x^4}{20} - \frac{x^3}{4} + x^2\right)$$

18.13 problem 5

Internal problem ID [2949]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 5. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + 2y'x^2 + \left(x - \frac{3}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 45

Order:=6; dsolve(x²*diff(y(x),x\$2)+2*x²*diff(y(x),x)+(x-3/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{4}{3}x + x^2 - \frac{8}{15}x^3 + \frac{2}{9}x^4 - \frac{8}{105}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(-2 + 4x^2 - \frac{16}{3}x^3 + 4x^4 - \frac{32}{15}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 77

AsymptoticDSolveValue[x²*y''[x]+2*x²*y'[x]+(x-3/4)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(-2x^{7/2} + \frac{8x^{5/2}}{3} - 2x^{3/2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{2x^{11/2}}{9} - \frac{8x^{9/2}}{15} + x^{7/2} - \frac{4x^{5/2}}{3} + x^{3/2} \right)$$

18.14 problem 6

Internal problem ID [2950]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 6. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + xy' + (2x - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*diff(y(x),x)+(2*x-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{2}{3}x + \frac{1}{6}x^2 - \frac{1}{45}x^3 + \frac{1}{540}x^4 - \frac{1}{9450}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right) + \frac{1}{x}x^{1-\frac{1}{2}} \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^2 - \frac{1}{45}x^3 + \frac{1}{540}x^4 - \frac{1}{9450}x^5 + \mathcal{O}\left(x^6\right)\right) + \frac{1}{x}x^{1-\frac{1}{2}} \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^2 - \frac{1}{45}x^3 + \frac{1}{540}x^4 - \frac{1}{9450}x^5 + \mathcal{O}\left(x^6\right)\right) + \frac{1}{x}x^{1-\frac{1}{2}} \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^2 - \frac{1}{45}x^3 + \frac{1}{540}x^4 - \frac{1}{9450}x^5 + \mathcal{O}\left(x^6\right)\right) + \frac{1}{x}x^{1-\frac{1}{2}} \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^2 - \frac{1}{45}x^3 + \frac{1}{540}x^4 - \frac{1}{9450}x^5 + \mathcal{O}\left(x^6\right)\right) + \frac{1}{x}x^{1-\frac{1}{2}} \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^2 + \frac{1}{6}x^2$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 83

AsymptoticDSolveValue[x²*y''[x]+x*y'[x]+(2*x-1)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{31x^4 - 88x^3 + 36x^2 + 72x + 36}{36x} - \frac{1}{3}x(x^2 - 4x + 6)\log(x) \right) \\ + c_2 \left(\frac{x^5}{540} - \frac{x^4}{45} + \frac{x^3}{6} - \frac{2x^2}{3} + x \right)$$

18.15 problem 7

Internal problem ID [2951]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 7. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x^{3} - (x+2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

Order:=6; dsolve(x²*diff(y(x),x\$2)+x³*diff(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^3 \left(1 + \frac{1}{4}x - \frac{7}{40}x^2 - \frac{37}{720}x^3 + \frac{467}{20160}x^4 + \frac{5647}{806400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(-x^3 - \frac{1}{4}x^4 + \frac{7}{40}x^5 + \mathcal{O}\left(x^6\right)\right) + x^2 + \frac{37}{200}x^2 + \frac{37}{20}x^2 + \frac{37}{20}x^2 + \frac{37}{200}x^2 + \frac{37}{200}x^2 + \frac{37}{20}x^2 + \frac{37}{2$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 82

AsymptoticDSolveValue[x²*y''[x]+x³*y'[x]-(2+x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{91x^4 + 160x^3 - 144x^2 - 288x + 576}{576x} - \frac{1}{48}x^2(x+4)\log(x) \right) \\ + c_2 \left(\frac{467x^6}{20160} - \frac{37x^5}{720} - \frac{7x^4}{40} + \frac{x^3}{4} + x^2 \right)$$

18.16 problem 8

Internal problem ID [2952]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 8. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

 $x^{2}(x^{2}+1) y'' + 7y' e^{x} x + 9(1 + \tan(x)) y = 0$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 75

Order:=7; dsolve(x^2*(x^2+1)*diff(y(x),x\$2)+7*x*exp(x)*diff(y(x),x)+9*(1+tan(x))*y(x)=0,y(x),type='ser

$$y(x) = \frac{(c_2 \ln (x) + c_1) \left(1 + 12x + \frac{117}{8}x^2 - \frac{67}{36}x^3 + \frac{505}{256}x^4 - \frac{262}{125}x^5 + \frac{2443637}{2304000}x^6 + O(x^7)\right) + \left((-31)x - \frac{147}{2}x^2 + \frac{37}{8}x^3 + \frac{37}{2304000}x^6\right)}{x^3}$$

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 143

AsymptoticDSolveValue[x²*(x²+1)*y''[x]+7*x*Exp[x]*y'[x]+9*(1+Tan[x])*y[x]=0,y[x],{x,0,6}]

$$y(x) \rightarrow \frac{c_1 \left(\frac{2443637x^6}{2304000} - \frac{262x^5}{125} + \frac{505x^4}{256} - \frac{67x^3}{36} + \frac{117x^2}{8} + 12x + 1\right)}{x^3} + c_2 \left(\frac{-\frac{3797765581x^6}{622080000} + \frac{5057587x^5}{480000} - \frac{44803x^4}{4608} + \frac{37x^3}{8} - \frac{147x^2}{2} - 31x}{x^3} + \frac{\left(\frac{2443637x^6}{2304000} - \frac{262x^5}{125} + \frac{505x^4}{256} - \frac{67x^3}{36} + \frac{117x^2}{8} + 12x + 1\right) \log(x)}{x^3}\right)$$

18.17 problem 11

Internal problem ID [2953]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(x+1) y'' + y'x^{2} - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

Order:=6; dsolve(x²*(1+x)*diff(y(x),x\$2)+x²*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 - x + \frac{9}{10} x^2 - \frac{4}{5} x^3 + \frac{5}{7} x^4 - \frac{9}{14} x^5 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 (12 + 6x + \mathcal{O}\left(x^6\right))}{x}$$

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 47

AsymptoticDSolveValue[x²*(1+x)*y''[x]+x²*y'[x]-2*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(\frac{5x^6}{7} - \frac{4x^5}{5} + \frac{9x^4}{10} - x^3 + x^2\right) + c_1 \left(\frac{1}{x} + \frac{1}{2}\right)$$

18.18 problem 12

Internal problem ID [2954]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 12. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 3xy' + (1-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(x²*diff(y(x),x\$2)+3*x*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{(c_2 \ln (x) + c_1) \left(1 + x + \frac{1}{4}x^2 + \frac{1}{36}x^3 + \frac{1}{576}x^4 + \frac{1}{14400}x^5 + O(x^6)\right) + \left((-2)x - \frac{3}{4}x^2 - \frac{11}{108}x^3 - \frac{25}{3456}x^4 - \frac{1}{43}x^3 - \frac{1}{43}x^3 - \frac{1}{43}x^3 - \frac{1}{108}x^3 - \frac{1}{34}x^3 - \frac{1}{108}x^3 - \frac{1}{108}x$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 118

AsymptoticDSolveValue $[x^2*y''[x]+3*x*y'[x]+(1-x)*y[x]==0,y[x],{x,0,5}]$

$$y(x) \rightarrow \frac{c_1 \left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1\right)}{x} + c_2 \left(\frac{-\frac{137x^5}{432000} - \frac{25x^4}{3456} - \frac{11x^3}{108} - \frac{3x^2}{4} - 2x}{x} + \frac{\left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1\right)\log(x)}{x}\right)$$

18.19 problem 13

Internal problem ID [2955]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 13. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6; dsolve(x*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x \left(1 + \frac{1}{2} x + \frac{1}{12} x^2 + \frac{1}{144} x^3 + \frac{1}{2880} x^4 + \frac{1}{86400} x^5 + \mathcal{O} \left(x^6 \right) \right) \\ &+ c_2 \left(\ln \left(x \right) \left(x + \frac{1}{2} x^2 + \frac{1}{12} x^3 + \frac{1}{144} x^4 + \frac{1}{2880} x^5 + \mathcal{O} \left(x^6 \right) \right) \\ &+ \left(1 - \frac{3}{4} x^2 - \frac{7}{36} x^3 - \frac{35}{1728} x^4 - \frac{101}{86400} x^5 + \mathcal{O} \left(x^6 \right) \right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 85

AsymptoticDSolveValue $[x*y''[x]-y[x]==0, y[x], \{x, 0, 5\}]$

$$y(x) \to c_1 \left(\frac{1}{144} x \left(x^3 + 12x^2 + 72x + 144 \right) \log(x) + \frac{-47x^4 - 480x^3 - 2160x^2 - 1728x + 1728}{1728} \right) + c_2 \left(\frac{x^5}{2880} + \frac{x^4}{144} + \frac{x^3}{12} + \frac{x^2}{2} + x \right)$$

18.20 problem 14

Internal problem ID [2956]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 14. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(x^{2} + 6) y' + 6y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*(6+x²)*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 + \frac{1}{3}x^2 + \mathcal{O}\left(x^6\right)\right) x + c_2 \left(1 + \frac{3}{2}x^2 + \frac{1}{8}x^4 + \mathcal{O}\left(x^6\right)\right)}{x^3}$$

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 33

AsymptoticDSolveValue[x²*y''[x]+x*(6+x²)*y'[x]+6*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1\left(\frac{1}{x^3} + \frac{x}{8} + \frac{3}{2x}\right) + c_2\left(\frac{1}{x^2} + \frac{1}{3}\right)$$

18.21 problem 15

Internal problem ID [2957]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 15. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(1-x)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 + \frac{1}{3}x + \frac{1}{12}x^2 + \frac{1}{60}x^3 + \frac{1}{360}x^4 + \frac{1}{2520}x^5 + O(x^6) \right) + \frac{c_2 \left(-2 - 2x - x^2 - \frac{1}{3}x^3 - \frac{1}{12}x^4 - \frac{1}{60}x^5 + O(x^6) \right)}{x}$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 64

AsymptoticDSolveValue[x²*y''[x]+x*(1-x)*y'[x]-y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1\left(\frac{x^3}{24} + \frac{x^2}{6} + \frac{x}{2} + \frac{1}{x} + 1\right) + c_2\left(\frac{x^5}{360} + \frac{x^4}{60} + \frac{x^3}{12} + \frac{x^2}{3} + x\right)$$

18.22 problem 16

Internal problem ID [2958]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 16. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' + (1 - 4x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+(1-4*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left((c_2 \ln (x) + c_1) \left(1 + x + \frac{1}{4}x^2 + \frac{1}{36}x^3 + \frac{1}{576}x^4 + \frac{1}{14400}x^5 + O(x^6) \right) + \left((-2)x - \frac{3}{4}x^2 - \frac{11}{108}x^3 - \frac{25}{3456}x^4 - \frac{137}{432000}x^5 + O(x^6) \right) c_2 \right) \sqrt{x}$$

Solution by Mathematica

Time used: $0.003~(\mathrm{sec}).$ Leaf size: 124

AsymptoticDSolveValue[4*x^2*y''[x]+(1-4*x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1 \right) \\ + c_2 \left(\sqrt{x} \left(-\frac{137x^5}{432000} - \frac{25x^4}{3456} - \frac{11x^3}{108} - \frac{3x^2}{4} - 2x \right) \right. \\ \left. + \sqrt{x} \left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1 \right) \log(x) \right)$$

18.23 problem 17

Internal problem ID [2959]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 17. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 59

Order:=6; dsolve(x*diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln (x) + c_1) \left(1 + 2x + x^2 + \frac{2}{9}x^3 + \frac{1}{36}x^4 + \frac{1}{450}x^5 + O(x^6) \right) \\ + \left((-4)x - 3x^2 - \frac{22}{27}x^3 - \frac{25}{216}x^4 - \frac{137}{13500}x^5 + O(x^6) \right) c_2$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101

AsymptoticDSolveValue $[x*y''[x]+y'[x]-2*y[x]==0,y[x], \{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{x^5}{450} + \frac{x^4}{36} + \frac{2x^3}{9} + x^2 + 2x + 1 \right) + c_2 \left(-\frac{137x^5}{13500} - \frac{25x^4}{216} - \frac{22x^3}{27} - 3x^2 + \left(\frac{x^5}{450} + \frac{x^4}{36} + \frac{2x^3}{9} + x^2 + 2x + 1 \right) \log(x) - 4x \right)$$

18.24 problem 18

Internal problem ID [2960]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 18. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + xy' - (x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*diff(y(x),x)-(1+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 + \frac{1}{3}x + \frac{1}{24}x^2 + \frac{1}{360}x^3 + \frac{1}{8640}x^4 + \frac{1}{302400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^2 + \frac{1}{3}x^3 + \frac{1}{24}x^4 + \frac{1}{360}x^5 + \mathcal{O}\left(x^2\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 83

AsymptoticDSolveValue[x²*y''[x]+x*y'[x]-(1+x)*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to c_1 \bigg(\frac{31x^4 + 176x^3 + 144x^2 - 576x + 576}{576x} - \frac{1}{48} x \big(x^2 + 8x + 24 \big) \log(x) \bigg) \\ &+ c_2 \bigg(\frac{x^5}{8640} + \frac{x^4}{360} + \frac{x^3}{24} + \frac{x^2}{3} + x \bigg) \end{split}$$

18.25 problem 19

Internal problem ID [2961]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 19. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(3+x)y' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(x²*diff(y(x),x\$2)-x*(x+3)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{2} \left((c_{2} \ln (x) + c_{1}) \left(1 + 2x + \frac{3}{2}x^{2} + \frac{2}{3}x^{3} + \frac{5}{24}x^{4} + \frac{1}{20}x^{5} + O(x^{6}) \right) + \left((-3)x - \frac{13}{4}x^{2} - \frac{31}{18}x^{3} - \frac{173}{288}x^{4} - \frac{187}{1200}x^{5} + O(x^{6}) \right) c_{2} \right)$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 122

AsymptoticDSolveValue[x²*y''[x]-x*(x+3)*y'[x]+4*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to c_1 \left(\frac{x^5}{20} + \frac{5x^4}{24} + \frac{2x^3}{3} + \frac{3x^2}{2} + 2x + 1 \right) x^2 \\ &+ c_2 \left(\left(-\frac{187x^5}{1200} - \frac{173x^4}{288} - \frac{31x^3}{18} - \frac{13x^2}{4} - 3x \right) x^2 \\ &+ \left(\frac{x^5}{20} + \frac{5x^4}{24} + \frac{2x^3}{3} + \frac{3x^2}{2} + 2x + 1 \right) x^2 \log(x) \right) \end{split}$$

18.26 problem 20

Internal problem ID [2962]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 20. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - y'x^2 - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

Order:=6; dsolve(x²*diff(y(x),x\$2)-x²*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 + \frac{1}{2}x + \frac{3}{20}x^2 + \frac{1}{30}x^3 + \frac{1}{168}x^4 + \frac{1}{1120}x^5 + O(x^6) \right) \\ + \frac{c_2 \left(12 + 6x - x^3 - \frac{1}{2}x^4 - \frac{3}{20}x^5 + O(x^6) \right)}{x}$$

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 63

AsymptoticDSolveValue[x²*y''[x]-x²*y'[x]-2*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(-\frac{x^3}{24} - \frac{x^2}{12} + \frac{1}{x} + \frac{1}{2} \right) + c_2 \left(\frac{x^6}{168} + \frac{x^5}{30} + \frac{3x^4}{20} + \frac{x^3}{2} + x^2 \right)$$

18.27 problem 21

Internal problem ID [2963]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 21. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x^{2} - (3x + 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

Order:=6; dsolve(x²*diff(y(x),x\$2)-x²*diff(y(x),x)-(3*x+2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^3 \left(1 + \frac{5}{4}x + \frac{3}{4}x^2 + \frac{7}{24}x^3 + \frac{1}{12}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - \frac{1}{24}x^3 + \frac{3}{4}x^2 + \frac{7}{24}x^3 + \frac{1}{12}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - \frac{1}{24}x^3 + \frac{3}{4}x^2 + \frac{7}{24}x^3 + \frac{1}{12}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - \frac{1}{24}x^3 + \frac{3}{4}x^2 + \frac{7}{24}x^3 + \frac{1}{12}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - \frac{1}{24}x^3 + \frac{3}{4}x^2 + \frac{7}{24}x^3 + \frac{1}{12}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - \frac{1}{24}x^3 + \frac{3}{4}x^2 + \frac{7}{24}x^3 + \frac{1}{12}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - \frac{1}{24}x^3 + \frac{1}{24}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + \frac{1}{18}x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - \frac{1}{24}x^4 + \frac{1}{24}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right)\left(24x^3 + 30x^4 + \frac{1}{18}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x^6\right)\left(24x^3 + \frac{1}{18}x^6 + \frac{1}{18}x^6\right) + c_2 (\ln\left(x^6\right)\left(24x^6 + \frac{1}{18}x^6 + \frac{1}{18}x^6\right) + c_2 (\ln\left(x^6\right)\left(24x^6 + \frac{1$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 84

AsymptoticDSolveValue[x²*y''[x]-x²*y'[x]-(3*x+2)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{1}{2} x^2 (5x+4) \log(x) - \frac{3x^4 - 6x^3 - 6x^2 + 4x - 4}{4x} \right) \\ + c_2 \left(\frac{x^6}{12} + \frac{7x^5}{24} + \frac{3x^4}{4} + \frac{5x^3}{4} + x^2 \right)$$

18.28 problem 22

Internal problem ID [2964]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 22. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(5-x)y' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 57

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*(5-x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{(c_2 \ln (x) + c_1) \left(1 - 2x + \frac{1}{2}x^2 + O(x^6)\right) + \left(5x - \frac{9}{4}x^2 + \frac{1}{18}x^3 + \frac{1}{288}x^4 + \frac{1}{3600}x^5 + O(x^6)\right) c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 80

AsymptoticDSolveValue[x²*y''[x]+x*(5-x)*y'[x]+4*y[x]==0,y[x],{x,0,5}]

$$y(x) \to \frac{c_1\left(\frac{x^2}{2} - 2x + 1\right)}{x^2} + c_2\left(\frac{\left(\frac{x^2}{2} - 2x + 1\right)\log(x)}{x^2} + \frac{\frac{x^5}{3600} + \frac{x^4}{288} + \frac{x^3}{18} - \frac{9x^2}{4} + 5x}{x^2}\right)$$

18.29 problem 23

Internal problem ID [2965]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 23. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4x(1-x)y' + (2x-9)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+4*x*(1-x)*diff(y(x),x)+(2*x-9)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^3 \left(1 + \frac{1}{4}x + \frac{1}{20}x^2 + \frac{1}{120}x^3 + \frac{1}{840}x^4 + \frac{1}{6720}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(12 + 12x + 6x^2 + 2x^3 + \frac{1}{2}x^4 + \frac{1}{10}x^5 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{3}{2}}}$$

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 90

AsymptoticDSolveValue[4*x²*y''[x]+4*x*(1-x)*y'[x]+(2*x-9)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{x^{5/2}}{24} + \frac{x^{3/2}}{6} + \frac{1}{x^{3/2}} + \frac{\sqrt{x}}{2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{x^{11/2}}{840} + \frac{x^{9/2}}{120} + \frac{x^{7/2}}{20} + \frac{x^{5/2}}{4} + x^{3/2} \right)$$

18.30 problem 24

Internal problem ID [2966]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 24. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 2x(x+2)y' + 2(x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 51

Order:=6; dsolve(x^2*diff(y(x),x\$2)+2*x*(2+x)*diff(y(x),x)+2*(1+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1(1 + O(x^6))x + (2x + O(x^6))\ln(x)c_2 + (1 - 2x - 2x^2 + \frac{2}{3}x^3 - \frac{2}{9}x^4 + \frac{1}{15}x^5 + O(x^6))c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 48

AsymptoticDSolveValue[x²*y''[x]+2*x*(2+x)*y'[x]+2*(1+x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{2\log(x)}{x} - \frac{2x^4 - 6x^3 + 18x^2 + 36x - 9}{9x^2} \right) + \frac{c_2}{x}$$

18.31 problem 25

Internal problem ID [2967]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 25. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(1-x)y' + (1-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

Order:=6; dsolve(x²*diff(y(x),x\$2)-x*(1-x)*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x \left(\left(c_2 \ln \left(x \right) + c_1 \right) \left(1 + \mathcal{O} \left(x^6 \right) \right) + \left(-x + \frac{1}{4}x^2 - \frac{1}{18}x^3 + \frac{1}{96}x^4 - \frac{1}{600}x^5 + \mathcal{O} \left(x^6 \right) \right) c_2 \right)$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 50

AsymptoticDSolveValue[x²*y''[x]-x*(1-x)*y'[x]+(1-x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(x \left(-\frac{x^5}{600} + \frac{x^4}{96} - \frac{x^3}{18} + \frac{x^2}{4} - x \right) + x \log(x) \right) + c_1 x$$

18.32 problem 26

Internal problem ID [2968]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 26. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

 $4x^{2}y'' + 4x(2x+1)y' + (-1+4x)y = 0$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+4*x*(1+2*x)*diff(y(x),x)+(4*x-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x \left(1 - x + \frac{2}{3}x^2 - \frac{1}{3}x^3 + \frac{2}{15}x^4 - \frac{2}{45}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(1 - 2x + 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{15}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 88

AsymptoticDSolveValue[4*x²*y''[x]+4*x*(1+2*x)*y'[x]+(4*x-1)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{2x^{7/2}}{3} - \frac{4x^{5/2}}{3} + 2x^{3/2} - 2\sqrt{x} + \frac{1}{\sqrt{x}}\right) + c_2 \left(\frac{2x^{9/2}}{15} - \frac{x^{7/2}}{3} + \frac{2x^{5/2}}{3} - x^{3/2} + \sqrt{x}\right)$$

18.33 problem 27

Internal problem ID [2969]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 27. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' - (3+4x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)-(3+4*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 + \frac{1}{3}x + \frac{1}{24}x^2 + \frac{1}{360}x^3 + \frac{1}{8640}x^4 + \frac{1}{302400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^2 + \frac{1}{3}x^3 + \frac{1}{24}x^4 + \frac{1}{360}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 101

AsymptoticDSolveValue $[4*x^2*y''[x]-(3+4*x)*y[x]==0,y[x], \{x,0,5\}]$

$$\rightarrow c_2 \left(\frac{x^{11/2}}{8640} + \frac{x^{9/2}}{360} + \frac{x^{7/2}}{24} + \frac{x^{5/2}}{3} + x^{3/2} \right) + c_1 \left(\frac{31x^4 + 176x^3 + 144x^2 - 576x + 576}{576\sqrt{x}} - \frac{1}{48}x^{3/2} (x^2 + 8x + 24) \log(x) \right)$$

18.34 problem 28

Internal problem ID [2970]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5.
page 771
Problem number: 28.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [_Laguerre, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']]

$$xy'' - xy' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

Order:=6; dsolve(x*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$egin{aligned} y(x) &= \left(-x + \mathrm{O}\left(x^6
ight)
ight) \ln\left(x
ight) c_2 + c_1 ig(1 + \mathrm{O}\left(x^6
ight)
ight) x \ &+ \left(1 + x - rac{1}{2}x^2 - rac{1}{12}x^3 - rac{1}{72}x^4 - rac{1}{480}x^5 + \mathrm{O}\left(x^6
ight)
ight) c_2 \end{aligned}$$

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 41

AsymptoticDSolveValue $[x*y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_1 \left(\frac{1}{72} \left(-x^4 - 6x^3 - 36x^2 + 144x + 72 \right) - x \log(x) \right) + c_2 x$$

18.35 problem 29

Internal problem ID [2971]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 29. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(4+x)y' + (x+2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 51

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*(4+x)*diff(y(x),x)+(2+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{(x + O(x^6))\ln(x)c_2 + c_1(1 + O(x^6))x + (1 - x - \frac{1}{2}x^2 + \frac{1}{12}x^3 - \frac{1}{72}x^4 + \frac{1}{480}x^5 + O(x^6))c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 45

AsymptoticDSolveValue[x²*y''[x]+x*(4+x)*y'[x]+(2+x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{\log(x)}{x} - \frac{x^4 - 6x^3 + 36x^2 + 144x - 72}{72x^2} \right) + \frac{c_2}{x}$$

19 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783

19.1	problem	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	444
19.2	problem	3		•		•	•		•		•	•	•	•			•		•	•		•	•			•		•	•	•	•						445

19.1 problem 2

Internal problem ID [2972]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783

Problem number: 2. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y^{\prime\prime}+xy^\prime+\left(x^2-\frac{9}{4}\right)y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-9/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = rac{c_1 x^3 ig(1 - rac{1}{10} x^2 + rac{1}{280} x^4 + \mathrm{O}\,(x^6)ig) + c_2 ig(12 + 6x^2 - rac{3}{2} x^4 + \mathrm{O}\,(x^6)ig)}{x^{rac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 58

AsymptoticDSolveValue[x²*y''[x]+x*y'[x]+(x²-9/4)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(-\frac{x^{5/2}}{8} + \frac{1}{x^{3/2}} + \frac{\sqrt{x}}{2} \right) + c_2 \left(\frac{x^{11/2}}{280} - \frac{x^{7/2}}{10} + x^{3/2} \right)$$

19.2 problem 3

Internal problem ID [2973]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783

Problem number: 3. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' - y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

Order:=6; dsolve(x*diff(y(x),x\$2)-diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + O(x^6) \right) + c_2 \left(\ln(x) \left(x^2 - \frac{1}{8} x^4 + O(x^6) \right) + \left(-2 + \frac{3}{32} x^4 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 59

 $AsymptoticDSolveValue[x*y''[x]-y'[x]+x*y[x]==0,y[x], \{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{1}{16} (x^2 - 8) x^2 \log(x) + \frac{1}{64} (-5x^4 + 16x^2 + 64) \right) + c_2 \left(\frac{x^6}{192} - \frac{x^4}{8} + x^2 \right)$$

20 Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

20.1	problem	1	•				•	•	•	•			•	 •	•	•		•		 •			•		•	•	•	•	•	•	•		447
20.2	problem	2	•	•			•		•	•		•	•		•	•		•							•	•	•	•	•	•	•		448
20.3	problem	3	•	•			•	•	•	•	•	•	•	 •	•	•	•	•		 •	•			•	•	•	•	•	•	•	•		449
20.4	$\operatorname{problem}$	4	•				•	•	•	•			•		•	•		•					•		•	•	•		•	•	•		450
20.5	$\operatorname{problem}$	5	•	•			•	•	•	•		•	•		•	•		•					•		•	•	•	•	•	•	•		451
20.6	$\operatorname{problem}$	6	•	•	•		•	•	•	•			•		•	•		•							•	•	•	•	•	•	•		452
20.7	$\operatorname{problem}$	7	•	•	•		•	•	•	•			•		•	•		•							•	•	•	•	•	•	•		453
20.8	problem	8	•	•			•	•	•	•	•	•	•	 •	•	•	•	•		 •	•			•	•	•	•	•	•	•	•		454
20.9	${\rm problem}$	9	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•		 •	•	•	•	•	•	•	•	•	•	•	•		455
20.10	problem	10		•			•	•	•	•	•	•	•	 •	•	•	•	•		 •	•		•	•	•	•	•	•	•	•	•		456
20.11	problem	11		•			•	•	•	•	•	•	•	 •	•	•	•	•		 •	•		•	•	•	•	•	•	•	•	•		457
20.12	2problem	12		•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•		 •	•	•	•	•	•	•	•	•	•	•	•		458
20.13	problem	13		•			•	•	•	•	•	•	•	 •	•	•	•	•		 •	•		•	•	•	•	•	•	•	•	•		460
20.14	problem	20		•	•	•	•	•	•	•	•	•	•		•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•		462

20.1 problem 1

Internal problem ID [2974]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 1. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x*y[x]==0, y[x], \{x,0,5\}$]

$$y(x) \to c_2\left(x - \frac{x^4}{12}\right) + c_1\left(1 - \frac{x^3}{6}\right)$$

20.2 problem 2

Internal problem ID [2975]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 2. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^4}{12}\right)y(0) + \left(x + \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2\left(\frac{x^5}{20} + x\right) + c_1\left(\frac{x^4}{12} + 1\right)$$

20.3 problem 3

Internal problem ID [2976]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 3.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$\left(1-x^2\right)y''-6xy'-4y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((1-x^2)*diff(y(x),x\$2)-6*x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(3x^4 + 2x^2 + 1\right)y(0) + \left(x + \frac{5}{3}x^3 + \frac{7}{3}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[(1-x²)*y''[x]-6*x*y'[x]-4*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2\left(\frac{7x^5}{3} + \frac{5x^3}{3} + x\right) + c_1(3x^4 + 2x^2 + 1)$$

20.4 problem 4

Internal problem ID [2977]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 4. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

Order:=6; dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln (x) + c_1) \left(1 - 2x + x^2 - \frac{2}{9}x^3 + \frac{1}{36}x^4 - \frac{1}{450}x^5 + O(x^6) \right) + \left(4x - 3x^2 + \frac{22}{27}x^3 - \frac{25}{216}x^4 + \frac{137}{13500}x^5 + O(x^6) \right) c_2$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101

AsymptoticDSolveValue[x*y''[x]+y'[x]+2*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(-\frac{x^5}{450} + \frac{x^4}{36} - \frac{2x^3}{9} + x^2 - 2x + 1 \right) + c_2 \left(\frac{137x^5}{13500} - \frac{25x^4}{216} + \frac{22x^3}{27} - 3x^2 + \left(-\frac{x^5}{450} + \frac{x^4}{36} - \frac{2x^3}{9} + x^2 - 2x + 1 \right) \log(x) + 4x \right)$$

20.5 problem 5

Internal problem ID [2978]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 5. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + 2y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \left(1 - rac{1}{6}x^2 + rac{1}{120}x^4 + \mathrm{O}\left(x^6
ight)
ight) + rac{c_2 \left(1 - rac{1}{2}x^2 + rac{1}{24}x^4 + \mathrm{O}\left(x^6
ight)
ight)}{x}$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 42

AsymptoticDSolveValue[x*y''[x]+2*y'[x]+x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1\left(\frac{x^3}{24} - \frac{x}{2} + \frac{1}{x}\right) + c_2\left(\frac{x^4}{120} - \frac{x^2}{6} + 1\right)$$

20.6 problem 6

Internal problem ID [2979]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 6.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2xy'' + 5(1 - 2x)y' - 5y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

Order:=6; dsolve(2*x*diff(y(x),x\$2)+5*(1-2*x)*diff(y(x),x)-5*y(x)=0,y(x),type='series',x=0);

$$y(x) = rac{c_2ig(1+x+rac{15}{14}x^2+rac{125}{126}x^3+rac{625}{792}x^4+rac{625}{1144}x^5+\mathrm{O}\,(x^6)ig)\,x^{rac{3}{2}}+c_1(1+10x+\mathrm{O}\,(x^6))}{x^{rac{3}{2}}}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 51

AsymptoticDSolveValue[2*x*y''[x]+5*(1-2*x)*y'[x]-5*y[x]==0,y[x],{x,0,5}]

$$y(x) \to \frac{c_2(10x+1)}{x^{3/2}} + c_1 \left(\frac{625x^5}{1144} + \frac{625x^4}{792} + \frac{125x^3}{126} + \frac{15x^2}{14} + x + 1\right)$$

20.7 problem 7

Internal problem ID [2980]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.Fourth edition, 2015Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 7. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

Order:=6; dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln (x) + c_1) \left(1 - \frac{1}{4}x^2 + \frac{1}{64}x^4 + O(x^6) \right) + \left(\frac{1}{4}x^2 - \frac{3}{128}x^4 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 60

AsymptoticDSolveValue $[x*y''[x]+y'[x]+x*y[x]==0,y[x], \{x,0,5\}]$

$$y(x) \to c_1\left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) + c_2\left(-\frac{3x^4}{128} + \frac{x^2}{4} + \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right)\log(x)\right)$$

20.8 problem 8

Internal problem ID [2981]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 8.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$\left(4x^2+1\right)y''-8y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6; dsolve((1+4*x^2)*diff(y(x),x\$2)-8*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(4x^2 + 1\right)y(0) + \left(x + \frac{4}{3}x^3 - \frac{16}{15}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

AsymptoticDSolveValue[(1+4*x²)*y''[x]-8*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow c_1(4x^2+1) + c_2\left(-\frac{16x^5}{15} + \frac{4x^3}{3} + x\right)$$

20.9 problem 9

Internal problem ID [2982]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 9.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y^{\prime\prime} + xy^\prime + \left(x^2 - \frac{1}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x²*diff(y(x),x\$2)+x*diff(y(x),x)+(x²-1/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + O\left(x^6\right)\right)x + c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O\left(x^6\right)\right)}{\sqrt{x}}$$

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 58

AsymptoticDSolveValue[x²*y''[x]+x*y'[x]+(x²-1/4)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{x^{7/2}}{24} - \frac{x^{3/2}}{2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{x^{9/2}}{120} - \frac{x^{5/2}}{6} + \sqrt{x} \right)$$

20.10 problem 10

Internal problem ID [2983]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 10. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4xy'' + 3y' + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6; dsolve(4*x*diff(y(x),x\$2)+3*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{4}} \left(1 - \frac{3}{5}x + \frac{1}{10}x^2 - \frac{1}{130}x^3 + \frac{3}{8840}x^4 - \frac{3}{309400}x^5 + O\left(x^6\right) \right) \\ + c_2 \left(1 - x + \frac{3}{14}x^2 - \frac{3}{154}x^3 + \frac{3}{3080}x^4 - \frac{9}{292600}x^5 + O\left(x^6\right) \right)$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 83

AsymptoticDSolveValue[4*x*y''[x]+3*y'[x]+3*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \sqrt[4]{x} \left(-\frac{3x^5}{309400} + \frac{3x^4}{8840} - \frac{x^3}{130} + \frac{x^2}{10} - \frac{3x}{5} + 1 \right) \\ + c_2 \left(-\frac{9x^5}{292600} + \frac{3x^4}{3080} - \frac{3x^3}{154} + \frac{3x^2}{14} - x + 1 \right)$$

20.11 problem 11

Internal problem ID [2984]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 11. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + \frac{3xy'}{2} - \frac{(x+1)y}{2} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve(x^2*diff(y(x),x\$2)+3/2*x*diff(y(x),x)-1/2*(1+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{3}{2}} \left(1 + \frac{1}{5} x + \frac{1}{70} x^2 + \frac{1}{1890} x^3 + \frac{1}{83160} x^4 + \frac{1}{5405400} x^5 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 - x - \frac{1}{2} x^2 - \frac{1}{18} x^3 - \frac{1}{360} x^4 - \frac{1}{12600} x^4 - \frac{1}{12} x^2 - \frac{1}{18} x^3 - \frac{1}{360} x^4 - \frac{1}{12600} x^4 - \frac{1}{12} x^2 - \frac{1}{18} x^3 - \frac{1}{360} x^4 - \frac{1}{12600} x^4 - \frac{1}{12} x^2 - \frac{1}{18} x^3 - \frac{1}{360} x^4 - \frac{1}{12} x^2 - \frac{1}{18} x^3 - \frac{1}{360} x^4 - \frac{1}{12} x^2 - \frac{1}{18} x^3 - \frac{1}{18} x^2 -$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 86

AsymptoticDSolveValue[x²*y''[x]+3/2*x*y'[x]-1/2*(1+x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^5}{5405400} + \frac{x^4}{83160} + \frac{x^3}{1890} + \frac{x^2}{70} + \frac{x}{5} + 1 \right) \\ + \frac{c_2 \left(-\frac{x^5}{12600} - \frac{x^4}{360} - \frac{x^3}{18} - \frac{x^2}{2} - x + 1 \right)}{x}$$

20.12 problem 12

Internal problem ID [2985]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 12.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(2 - x) y' + (x^{2} + 2) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*(2-x)*diff(y(x),x)+(2+x^2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x \left(c_1 x \left(1 - x + \frac{1}{3} x^2 - \frac{1}{36} x^3 - \frac{7}{720} x^4 + \frac{31}{10800} x^5 + \mathcal{O} \left(x^6 \right) \right) \right. \\ \left. + c_2 \left(\ln \left(x \right) \left(-x + x^2 - \frac{1}{3} x^3 + \frac{1}{36} x^4 + \frac{7}{720} x^5 + \mathcal{O} \left(x^6 \right) \right) \right. \\ \left. + \left(1 - x - \frac{1}{2} x^2 + \frac{19}{36} x^3 - \frac{53}{432} x^4 - \frac{1}{675} x^5 + \mathcal{O} \left(x^6 \right) \right) \right) \right)$$

\checkmark Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 85

AsymptoticDSolveValue[x²*y''[x]-x*(2-x)*y'[x]+(2+x²)*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{1}{36} x^2 (x^3 - 12x^2 + 36x - 36) \log(x) - \frac{1}{432} x (65x^4 - 372x^3 + 648x^2 - 432) \right) \\ + c_2 \left(-\frac{7x^6}{720} - \frac{x^5}{36} + \frac{x^4}{3} - x^3 + x^2 \right)$$

20.13 problem 13

Internal problem ID [2986]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 3xy' + 4(x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 69

Order:=6; dsolve(x²*diff(y(x),x\$2)-3*x*diff(y(x),x)+4*(x+1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{2} \left((c_{2} \ln (x) + c_{1}) \left(1 - 4x + 4x^{2} - \frac{16}{9}x^{3} + \frac{4}{9}x^{4} - \frac{16}{225}x^{5} + O(x^{6}) \right) + \left(8x - 12x^{2} + \frac{176}{27}x^{3} - \frac{50}{27}x^{4} + \frac{1096}{3375}x^{5} + O(x^{6}) \right) c_{2} \right)$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 116

AsymptoticDSolveValue[x^2*y''[x]-3*x*y'[x]+4*(x+1)*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) &\to c_1 \left(-\frac{16x^5}{225} + \frac{4x^4}{9} - \frac{16x^3}{9} + 4x^2 - 4x + 1 \right) x^2 \\ &+ c_2 \left(\left(\frac{1096x^5}{3375} - \frac{50x^4}{27} + \frac{176x^3}{27} - 12x^2 + 8x \right) x^2 \\ &+ \left(-\frac{16x^5}{225} + \frac{4x^4}{9} - \frac{16x^3}{9} + 4x^2 - 4x + 1 \right) x^2 \log(x) \right) \end{split}$$

20.14 problem 20

Internal problem ID [2987]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 20. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \left(1 - \frac{3}{4x^2}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+(1-3/(4*x^2))*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}(x^6)\right) + c_2 \left(\ln\left(x\right) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}(x^6)\right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}(x^6)\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 72

AsymptoticDSolveValue[y''[x]+(1-3/(4*x^2))*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(\frac{x^{11/2}}{192} - \frac{x^{7/2}}{8} + x^{3/2}\right) + c_1 \left(\frac{1}{16}x^{3/2}(x^2 - 8)\log(x) - \frac{5x^4 - 16x^2 - 64}{64\sqrt{x}}\right)$$