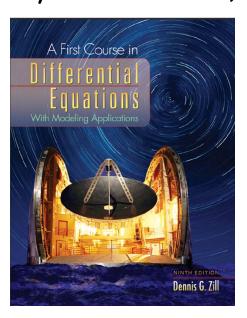
A Solution Manual For

A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.



Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2 page 230	2
2	Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239	26
3	Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page 250	66
4	Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review exercises, page 253	91

1 Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2 page 230

1.1	problem	15	(2	κ =	:0)																	3
1.2	problem	15	(2	κ =	1)																	4
1.3	problem	16	(2	κ =	0)																	5
1.4	problem	16	(2	κ =	1)																	6
1.5	$\operatorname{problem}$	17																				7
1.6	${\bf problem}$	18																				8
1.7	$\operatorname{problem}$	19																				9
1.8	${\bf problem}$	20																				10
1.9	$\operatorname{problem}$	21																				11
1.10	${\bf problem}$	22																				12
1.11	${\bf problem}$	23																				13
1.12	${\bf problem}$	24																				14
1.13	${\bf problem}$	25																				15
1.14	$\operatorname{problem}$	26				•																16
1.15	$\operatorname{problem}$	27																				17
1.16	${\bf problem}$	28																				18
1.17	$\operatorname{problem}$	29																				19
1.18	$\operatorname{problem}$	30																				20
1.19	$\operatorname{problem}$	31																				21
1.20	problem	32																				22
1.21	$\operatorname{problem}$	33																				23
1.22	$\operatorname{problem}$	34																				24
1.23	problem	39																				25

1.1 problem 15 (x=0)

Internal problem ID [5533]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 15 (x=0).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 25) y'' + 2y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2-25)*diff(y(x),x$2)+2*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{1}{50}x^2 + \frac{7}{15000}x^4\right)y(0) + \left(x + \frac{1}{50}x^3 + \frac{13}{25000}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(x^2-25)*y''[x]+2*x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{13x^5}{25000} + \frac{x^3}{50} + x\right) + c_1 \left(\frac{7x^4}{15000} + \frac{x^2}{50} + 1\right)$$

1.2 problem 15 (x=1)

Internal problem ID [5534]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 15 (x=1).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$(x^2 - 25) y'' + 2y'x + y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

Order:=6; $dsolve((x^2-25)*diff(y(x),x$2)+2*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=1);$

$$y(x) = \left(1 + \frac{(x-1)^2}{48} + \frac{(x-1)^3}{864} + \frac{(x-1)^4}{1728} + \frac{29(x-1)^5}{414720}\right)y(1)$$
$$+ \left(x - 1 + \frac{(x-1)^2}{24} + \frac{5(x-1)^3}{216} + \frac{17(x-1)^4}{6912} + \frac{41(x-1)^5}{51840}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 87

AsymptoticDSolveValue[$(x^2-25)*y''[x]+2*x*y'[x]+y[x]==0,y[x],\{x,1,5\}$]

$$y(x) \to c_1 \left(\frac{29(x-1)^5}{414720} + \frac{(x-1)^4}{1728} + \frac{1}{864}(x-1)^3 + \frac{1}{48}(x-1)^2 + 1 \right)$$

+ $c_2 \left(\frac{41(x-1)^5}{51840} + \frac{17(x-1)^4}{6912} + \frac{5}{216}(x-1)^3 + \frac{1}{24}(x-1)^2 + x - 1 \right)$

1.3 problem 16 (x=0)

Internal problem ID [5535]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 16 (x=0).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 2x + 10) y'' + y'x - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve((x^2-2*x+10)*diff(y(x),x\$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{5}x^2 + \frac{1}{75}x^3 + \frac{1}{750}x^4 - \frac{13}{75000}x^5\right)y(0) + \left(x + \frac{1}{20}x^3 + \frac{1}{200}x^4 - \frac{13}{20000}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

$$y(x) \rightarrow c_2 \left(-\frac{13x^5}{20000} + \frac{x^4}{200} + \frac{x^3}{20} + x \right) + c_1 \left(-\frac{13x^5}{75000} + \frac{x^4}{750} + \frac{x^3}{75} + \frac{x^2}{5} + 1 \right)$$

1.4 problem 16 (x=1)

Internal problem ID [5536]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 16 (x=1).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 2x + 10) y'' + y'x - 4y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

Order:=6; dsolve((x^2-2*x+10)*diff(y(x),x\$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=1);

$$y(x) = \left(1 + \frac{2(x-1)^2}{9} - \frac{2(x-1)^3}{243} + \frac{(x-1)^4}{4374} + \frac{22(x-1)^5}{98415}\right)y(1)$$
$$+ \left(x - 1 - \frac{(x-1)^2}{18} + \frac{14(x-1)^3}{243} - \frac{7(x-1)^4}{4374} - \frac{154(x-1)^5}{98415}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 87

AsymptoticDSolveValue[$(x^2-2*x+10)*y''[x]+x*y'[x]-4*y[x]==0,y[x],{x,1,5}$]

$$y(x) \to c_1 \left(\frac{22(x-1)^5}{98415} + \frac{(x-1)^4}{4374} - \frac{2}{243}(x-1)^3 + \frac{2}{9}(x-1)^2 + 1 \right)$$

+ $c_2 \left(-\frac{154(x-1)^5}{98415} - \frac{7(x-1)^4}{4374} + \frac{14}{243}(x-1)^3 - \frac{1}{18}(x-1)^2 + x - 1 \right)$

1.5 problem 17

Internal problem ID [5537]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

Order:=6;

dsolve(diff(y(x),x\$2)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{6}\right)y(0) + \left(x + \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{12} + x\right) + c_1 \left(\frac{x^3}{6} + 1\right)$$

1.6 problem 18

Internal problem ID [5538]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

 $dsolve(diff(y(x),x$2)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(x - rac{x^5}{20} \right) + c_1 \left(1 - rac{x^4}{12} \right)$$

1.7 problem 19

Internal problem ID [5539]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$y'' - 2y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{8}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{24}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]-2*x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{24} + \frac{x^3}{6} + x\right) + c_1 \left(-\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

1.8 problem 20

Internal problem ID [5540]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Hermite]

$$y'' - y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6;

dsolve(diff(y(x),x\$2)-x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(-x^2 + 1\right)y(0) + \left(x - \frac{1}{6}x^3 - \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

$$y(x) \to c_1(1-x^2) + c_2\left(-\frac{x^5}{120} - \frac{x^3}{6} + x\right)$$

1.9 problem 21

Internal problem ID [5541]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + x^2y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

 $\label{eq:decomposition} \\ \text{dsolve}(\text{diff}(y(x),x\$2) + x^2* \\ \text{diff}(y(x),x) + x*y(x) = 0, \\ y(x), \\ \text{type='series'}, \\ x=0); \\$

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{6}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{6} \right) + c_1 \left(1 - \frac{x^3}{6} \right)$$

1.10 problem 22

Internal problem ID [5542]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + 2y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)+2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 + \frac{1}{2}x^4\right)y(0) + \left(x - \frac{2}{3}x^3 + \frac{4}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

 $AsymptoticDSolveValue[y''[x]+2*x*y'[x]+2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) o c_2 \left(\frac{4x^5}{15} - \frac{2x^3}{3} + x \right) + c_1 \left(\frac{x^4}{2} - x^2 + 1 \right)$$

1.11 problem 23

Internal problem ID [5543]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(x-1)y'' + y' = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((x-1)*diff(y(x),x\$2)+diff(y(x),x)=0,y(x),type='series',x=0);

$$y(x) = y(0) + \left(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \frac{1}{5}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 39

AsymptoticDSolveValue[$(x-1)*y''[x]+y'[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{5} + \frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} + x\right) + c_1$$

1.12 problem 24

Internal problem ID [5544]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x+2)y'' + y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 29

dsolve((x+2)*diff(y(x),x\$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{4}x^2 - \frac{1}{24}x^3 + \frac{1}{480}x^5\right)y(0) + D(y)(0)x + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

AsymptoticDSolveValue[$(x+2)*y''[x]+x*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^5}{480} - \frac{x^3}{24} + \frac{x^2}{4} + 1\right) + c_2 x$$

1.13 problem 25

Internal problem ID [5545]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - y'(1+x) - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

Order:=6; dsolve(diff(y(x),x\$2)-(x+1)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{6}x^4 + \frac{1}{15}x^5\right)y(0) + \left(x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \frac{1}{4}x^4 + \frac{3}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 70

AsymptoticDSolveValue[$y''[x]-(x+1)*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_1 \left(rac{x^5}{15} + rac{x^4}{6} + rac{x^3}{6} + rac{x^2}{2} + 1
ight) + c_2 \left(rac{3x^5}{20} + rac{x^4}{4} + rac{x^3}{2} + rac{x^2}{2} + x
ight)$$

1.14 problem 26

Internal problem ID [5546]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$(x^2 + 1) y'' - 6y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

Order:=6; $dsolve((x^2+1)*diff(y(x),x$2)-6*y(x)=0,y(x),type='series',x=0);$

$$y(x) = (x^4 + 3x^2 + 1) y(0) + (x^3 + x) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 25

AsymptoticDSolveValue[$(x^2+1)*y''[x]-6*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2(x^3 + x) + c_1(x^4 + 3x^2 + 1)$$

1.15 problem 27

Internal problem ID [5547]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 2)y'' + 3y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2+2)*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{1}{4}x^2 - \frac{7}{96}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{7}{120}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(x^2+2)*y''[x]+3*x*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{7x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(-\frac{7x^4}{96} + \frac{x^2}{4} + 1\right)$$

1.16 problem 28

Internal problem ID [5548]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^{2}-1)y'' + y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{8}x^4\right)y(0) + D(y)\left(0\right)x + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 27

 $AsymptoticDSolveValue[(x^2-1)*y''[x]+x*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(-\frac{x^4}{8} - \frac{x^2}{2} + 1 \right) + c_2 x$$

1.17 problem 29

Internal problem ID [5549]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y'' - y'x + y = 0$$

With initial conditions

$$[y(0) = -2, y'(0) = 6]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6;

dsolve([(x-1)*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(0) = -2, D(y)(0) = 6],y(x),type='series

$$y(x) = -2 + 6x - x^2 - \frac{1}{3}x^3 - \frac{1}{12}x^4 - \frac{1}{60}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

AsymptoticDSolveValue[$\{(x-1)*y''[x]-x*y'[x]+y[x]==0,\{y[0]==-2,y'[0]==6\}\},y[x],\{x,0,5\}$]

$$y(x) \rightarrow -\frac{x^5}{60} - \frac{x^4}{12} - \frac{x^3}{3} - x^2 + 6x - 2$$

1.18 problem 30

Internal problem ID [5550]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(1+x)y'' - (-x+2)y' + y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6; dsolve([(x+1)*diff(y(x),x\$2)-(2-x)*diff(y(x),x)+y(x)=0,y(0) = 2, D(y)(0) = -1],y(x),type='set = 0

$$y(x) = 2 - x - 2x^2 - \frac{1}{3}x^3 + \frac{1}{2}x^4 - \frac{1}{30}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

AsymptoticDSolveValue[$\{(x+1)*y''[x]-(2-x)*y'[x]+y[x]=0,\{y[0]==2,y'[0]==-1\}\},y[x],\{x,0,5\}$]

$$y(x) \rightarrow -\frac{x^5}{30} + \frac{x^4}{2} - \frac{x^3}{3} - 2x^2 - x + 2$$

1.19 problem 31

Internal problem ID [5551]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 8y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([diff(y(x),x\$2)-2*x*diff(y(x),x)+8*y(x)=0,y(0) = 3, D(y)(0) = 0],y(x),type='series',x

$$y(x) = 3 - 12x^2 + 4x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 22

AsymptoticDSolveValue[$\{y''[x]-2*x*y''[x]+8*y[x]==0,\{y[0]==3,y'[0]==0\}\},y[x],\{x,0,5\}$]

$$y(x) o \frac{16x^5}{5} - 8x^3 - 12x^2 + 3$$

1.20 problem 32

Internal problem ID [5552]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(x^2 + 1)y'' + 2y'x = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

 $dsolve((x^2+1)*diff(y(x),x$2)+2*x*diff(y(x),x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',$

$$y(x) = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[$\{(x^2+1)*y''[x]+2*x*y'[x]==0,\{y[0]==0,y'[0]==1\}\},y[x],\{x,0,5\}$]

$$y(x) \to \frac{x^5}{5} - \frac{x^3}{3} + x$$

1.21 problem 33

Internal problem ID [5553]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \sin(x) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6;
dsolve(diff(y(x),x\$2)+sin(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{6}x^3 + \frac{1}{120}x^5\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[$y''[x]+Sin[x]*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 \left(x - rac{x^4}{12}
ight) + c_1 \left(rac{x^5}{120} - rac{x^3}{6} + 1
ight)$$

1.22 problem 34

Internal problem ID [5554]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'e^x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6;

dsolve(diff(y(x),x\$2)+exp(x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 - \frac{1}{6}x^3 - \frac{1}{120}x^5\right)y(0) + \left(x - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{24}x^4 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[y''[x]+Exp[x]*y'[x]-y[x]==0,y[x],{x,0,5}]

$$y(x) o c_1 \left(-rac{x^5}{120} - rac{x^3}{6} + rac{x^2}{2} + 1
ight) + c_2 \left(rac{x^5}{120} - rac{x^4}{24} + rac{x^3}{6} - rac{x^2}{2} + x
ight)$$

1.23 problem 39

Internal problem ID [5555]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2

page 230

Problem number: 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{3}x^3 + \frac{1}{15}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

 $AsymptoticDSolveValue[y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_2 \left(\frac{x^5}{15} - \frac{x^3}{3} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

2 Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239

2.1	problem 1				 •				•	 •									•	•	27
2.2	problem 2																				28
2.3	problem 3																				30
2.4	problem 4																				31
2.5	problem 5																				32
2.6	problem 6							•													34
2.7	problem 7										•	•		•					•		36
2.8	problem 8																				37
2.9	problem 9				 •			•	•	 •											39
2.10	problem 10	•			 •			•	•	 •		•		•		•			•		40
2.11	problem 11	•			 •			•	•	 •											41
2.12	problem 12	•			 •			•	•	 •											42
2.13	problem 13	•			 •			•	•	 •											43
2.14	problem 14	•										•		•							44
2.15	problem 15	•																			45
2.16	problem 16							•													46
2.17	problem 17	•																			47
2.18	problem 18	•									•	•		•					•		48
2.19	problem 19							•													49
2.20	problem 20							•													50
2.21	problem 21	•												•							51
2.22	problem 22	•												•							52
2.23	problem 23	•												•							53
2.24	problem 24																				54
2.25	problem 25	•												•							55
2.26	problem 26	•												•							56
2.27	problem 27																				57
2.28	problem 28																				58
2.29	problem 29																				59
2.30	problem 30																				60
2.31	problem 31																				61
2.32	problem 32																				62
2.33	problem 33																				63
2.34	problem 36	(a)) .																		64
2.35	problem 36	(b))																		65

2.1 problem 1

Internal problem ID [5556]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^3y'' + 4x^2y' + 3y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve(x^3*diff(y(x),x$2)+4*x^2*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);
```

No solution found

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 282

AsymptoticDSolveValue[
$$x^3*y''[x]+4*x^2*y'[x]+3*y[x]==0,y[x],\{x,0,5\}$$
]

$$y(x) \\ \rightarrow \frac{c_1 e^{-\frac{2 i \sqrt{3}}{\sqrt{x}} \left(-\frac{14315125825 i x^{9/2}}{8796093022208 \sqrt{3}} + \frac{8083075 i x^{7/2}}{4294967296 \sqrt{3}} - \frac{15015 i \sqrt{3} x^{5/2}}{8388608} + \frac{385 i \sqrt{3} x^{3/2}}{8192} + \frac{930483178625 x^5}{844424930131968} - \frac{509233725 x^4}{549755813888} + \frac{42542}{268438} + \frac{2542}{268438} + \frac{2542}{268438}$$

2.2 problem 2

Internal problem ID [5557]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x(x+3)^2y''-y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 58

Order:=6; dsolve(x*(x+3)^2*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 + \frac{1}{18} x - \frac{11}{972} x^2 + \frac{277}{104976} x^3 - \frac{12539}{18895680} x^4 + \frac{893821}{5101833600} x^5 + O\left(x^6\right) \right)$$

$$+ c_2 \left(\ln\left(x\right) \left(\frac{1}{9} x + \frac{1}{162} x^2 - \frac{11}{8748} x^3 + \frac{277}{944784} x^4 - \frac{12539}{170061120} x^5 + O\left(x^6\right) \right) + \left(1 - \frac{5}{108} x^2 + \frac{167}{26244} x^3 - \frac{13583}{11337408} x^4 + \frac{1327279}{5101833600} x^5 + O\left(x^6\right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 87

AsymptoticDSolveValue[$x*(x+3)^2*y''[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x(277x^3 - 1188x^2 + 5832x + 104976) \log(x)}{944784} + \frac{3037x^4 + 864x^3 - 174960x^2 + 6298560x + 11337408}{11337408} \right) + c_2 \left(-\frac{12539x^5}{18895680} + \frac{277x^4}{104976} - \frac{11x^3}{972} + \frac{x^2}{18} + x \right)$$

2.3 problem 3

Internal problem ID [5558]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} - 9)^{2}y'' + (x + 3)y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

Order:=6; dsolve((x^2-9)^2*diff(y(x),x\$2)+(x+3)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{81}x^2 + \frac{1}{6561}x^3 - \frac{289}{708588}x^4 + \frac{304}{23914845}x^5\right)y(0) + \left(x - \frac{1}{54}x^2 - \frac{13}{2187}x^3 - \frac{131}{236196}x^4 - \frac{596}{1594323}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 70

AsymptoticDSolveValue[$(x^2-9)^2*y''[x]+(x+3)*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{304x^5}{23914845} - \frac{289x^4}{708588} + \frac{x^3}{6561} - \frac{x^2}{81} + 1 \right)$$
$$+ c_2 \left(-\frac{596x^5}{1594323} - \frac{131x^4}{236196} - \frac{13x^3}{2187} - \frac{x^2}{54} + x \right)$$

2.4 problem 4

Internal problem ID [5559]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' - \frac{y'}{x} + \frac{y}{(x-1)^3} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 52

$$y(x) = c_1 x^2 \left(1 + \frac{1}{8} x^2 + \frac{1}{5} x^3 + \frac{49}{192} x^4 + \frac{423}{1400} x^5 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 \left(\ln\left(x\right) \left(-x^2 - \frac{1}{8} x^4 - \frac{1}{5} x^5 + \mathcal{O}\left(x^6\right) \right) + \left(-2 - 2x^3 - \frac{45}{32} x^4 - \frac{34}{25} x^5 + \mathcal{O}\left(x^6\right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 71

AsymptoticDSolveValue[$y''[x]-1/x*y'[x]+1/(x-1)^3*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_1 \left(\frac{1}{16} (x^2 + 8) x^2 \log(x) + \frac{1}{64} (-5x^4 + 64x^3 - 400x^2 + 64) \right)$$
$$+ c_2 \left(\frac{49x^6}{192} + \frac{x^5}{5} + \frac{x^4}{8} + x^2 \right)$$

2.5 problem 5

Internal problem ID [5560]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^3 + 4x)y'' - 2y'x + 6y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

Order:=6; dsolve((x^3+4*x)*diff(y(x),x\$2)-2*x*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{2} x + \frac{1}{24} x^2 + \frac{1}{48} x^3 - \frac{1}{384} x^4 - \frac{5}{2304} x^5 + O\left(x^6\right) \right)$$
$$+ c_2 \left(\ln\left(x\right) \left(-\frac{3}{2} x + \frac{3}{4} x^2 - \frac{1}{16} x^3 - \frac{1}{32} x^4 + \frac{1}{256} x^5 + O\left(x^6\right) \right) + \left(1 + \frac{1}{2} x - \frac{7}{4} x^2 + \frac{31}{96} x^3 + \frac{1}{24} x^4 - \frac{67}{3072} x^5 + O\left(x^6\right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 85

$$y(x) \to c_1 \left(\frac{1}{96} \left(7x^4 + 37x^3 - 240x^2 + 192x + 96 \right) - \frac{1}{32} x \left(x^3 + 2x^2 - 24x + 48 \right) \log(x) \right) + c_2 \left(-\frac{x^5}{384} + \frac{x^4}{48} + \frac{x^3}{24} - \frac{x^2}{2} + x \right)$$

2.6 problem 6

Internal problem ID [5561]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(x-5)^{2}y'' + 4y'x + (x^{2}-25)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 1179

$$\begin{aligned} y(x) \\ &= x^{\frac{21}{50}} \left(c_1 x^{-\frac{\sqrt{2941}}{50}} \left(1 + \frac{-1166 - 4\sqrt{2941}}{-3125 + 125\sqrt{2941}} x - \frac{9}{15625} \frac{879\sqrt{2941} - 79709}{(-25 + \sqrt{2941})} x^2 \right. \\ &\quad + \frac{\frac{15291084\sqrt{2941}}{1953125} - \frac{906742764}{1953125}}{(-25 + \sqrt{2941}) \left(-50 + \sqrt{2941} \right) \left(-75 + \sqrt{2941} \right)} x^3 \\ &\quad - \frac{12}{244140625} \frac{-122814219551 + 2200649681\sqrt{2941}}{(-25 + \sqrt{2941}) \left(-75 + \sqrt{2941} \right) \left(-75 + \sqrt{2941} \right) \left(-100 + \sqrt{2941} \right)}{(-25 + \sqrt{2941}) \left(-50 + \sqrt{2941} \right) \left(-75 + \sqrt{2941} \right) \left(-100 + \sqrt{2941} \right)} x^4 \\ &\quad + \frac{-\frac{10008934775328384}{152587890625} + \frac{181292058002304\sqrt{2941}}{152587890625}} {(-25 + \sqrt{2941}) \left(-50 + \sqrt{2941} \right) \left(-75 + \sqrt{2941} \right) \left(-100 + \sqrt{2941} \right)} x^5 \\ &\quad + O\left(x^6 \right) \right) + c_2 x^{\frac{\sqrt{2941}}{50}} \left(1 + \frac{1166 - 4\sqrt{2941}}{125\sqrt{2941}} x + \frac{\frac{7911\sqrt{2941}}{15625} + \frac{717381}{15625}}{\left(\sqrt{2941} + 25 \right) \left(50 + \sqrt{2941} \right) \left(\sqrt{2941} + 75 \right)} x^3 \\ &\quad + \frac{\frac{1473770634612}{244140625} + \frac{2640779617\sqrt{2941}}{244140625}} {(\sqrt{2941} + 25) \left(50 + \sqrt{2941} \right) \left(\sqrt{2941} + 75 \right) \left(100 + \sqrt{2941} \right)} x^4 \\ &\quad + \frac{\frac{10008934775328384}{152587890625} + \frac{181292058002304\sqrt{2941}}{152587890625}} {x^4} \\ &\quad + \frac{10008934775328384}{\left(\sqrt{2941} + 25 \right) \left(50 + \sqrt{2941} \right) \left(\sqrt{2941} + 75 \right) \left(100 + \sqrt{2941} \right)} x^5 \\ &\quad + O\left(x^6 \right) \right) \right) \end{aligned}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 5384

Too large to display

2.7 problem 7

Internal problem ID [5562]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + x - 6) y'' + (x + 3) y' + (x - 2) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

Order:=6; $dsolve((x^2+x-6)*diff(y(x),x$2)+(x+3)*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{1}{6}x^2 - \frac{1}{108}x^3 - \frac{17}{2592}x^4 - \frac{7}{2160}x^5\right)y(0) + \left(x + \frac{1}{4}x^2 + \frac{1}{36}x^3 + \frac{23}{864}x^4 + \frac{13}{1440}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 70

AsymptoticDSolveValue[$(x^2+x-6)*y''[x]+(x+3)*y'[x]+(x-2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{7x^5}{2160} - \frac{17x^4}{2592} - \frac{x^3}{108} - \frac{x^2}{6} + 1 \right) + c_2 \left(\frac{13x^5}{1440} + \frac{23x^4}{864} + \frac{x^3}{36} + \frac{x^2}{4} + x \right)$$

2.8 problem 8

Internal problem ID [5563]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x(x^2+1)^2y'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 58

Order:=6; dsolve(x*(x^2+1)^2*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{2} x + \frac{1}{12} x^2 + \frac{23}{144} x^3 - \frac{167}{2880} x^4 - \frac{7993}{86400} x^5 + O(x^6) \right)$$

$$+ c_2 \left(\ln(x) \left(-x + \frac{1}{2} x^2 - \frac{1}{12} x^3 - \frac{23}{144} x^4 + \frac{167}{2880} x^5 + O(x^6) \right)$$

$$+ \left(1 - \frac{3}{4} x^2 + \frac{19}{36} x^3 + \frac{85}{1728} x^4 - \frac{21907}{86400} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 87

AsymptoticDSolveValue[$x*(x^2+1)^2*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{361x^4 + 1056x^3 - 2160x^2 + 1728x + 1728}{1728} - \frac{1}{144}x \left(23x^3 + 12x^2 - 72x + 144 \right) \log(x) \right) + c_2 \left(-\frac{167x^5}{2880} + \frac{23x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

2.9 problem 9

Internal problem ID [5564]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{3}(x^{2} - 25)(x - 2)^{2}y'' + 3x(x - 2)y' + 7y(5 + x) = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve($x^3*(x^2-25)*(x-2)^2*diff(y(x),x^2)+3*x*(x-2)*diff(y(x),x)+7*(x+5)*y(x)=0,y(x),type='$

No solution found

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 99

AsymptoticDSolveValue[$x^3*(x^2-25)*(x-2)^2*y''[x]+3*x*(x-2)*y'[x]+7*(x+5)*y[x]==0,y[x],{x,0,x}$

$$y(x) \rightarrow c_2 \left(-\frac{1337698720169782190618881x^5}{352638738432} + \frac{42840301537653264505x^4}{3265173504} \right. \\ \left. -\frac{344729362309955x^3}{7558272} + \frac{3590248795x^2}{23328} - \frac{50309x}{108} + 1 \right) x^{35/6} \\ \left. + c_1 e^{\frac{3}{50}/x} \left(-\frac{37907198008560463448473952765642999x^5}{53808401250000000000000} + \frac{27497874350326089989823180601x^4}{797161500000000000000} + \frac{10649898771731482781701x^3}{14762250000000000} + \frac{x^{1159/300}}{x^{1159/300}} \right) \right\}$$

2.10 problem 10

Internal problem ID [5565]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^3 - 2x^2 + 3x)^2 y'' + x(x - 3)^2 y' - (1 + x) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve((x^3-2*x^2+3*x)^2*diff(y(x),x\$2)+x*(x-3)^2*diff(y(x),x)-(x+1)*y(x)=0,y(x),type='serie

$$=\frac{c_2x^{\frac{2}{3}}\left(1+\frac{1}{45}x+\frac{149}{3240}x^2+\frac{2701}{192456}x^3+\frac{236933}{121247280}x^4-\frac{67092967}{92754169200}x^5+\mathrm{O}\left(x^6\right)\right)+c_1\left(1+\frac{13}{9}x-\frac{5}{162}x^2+\frac{1591}{30618}x^3+\frac{1}{121247280}x^3+\frac{1}{121247280}x^4-\frac{67092967}{92754169200}x^5+\mathrm{O}\left(x^6\right)\right)}{x^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 90

AsymptoticDSolveValue[$(x^3-2*x^2+3*x)^2*y''[x]+x*(x-3)^2*y'[x]-(x+1)*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_1 \sqrt[3]{x} \left(-\frac{67092967x^5}{92754169200} + \frac{236933x^4}{121247280} + \frac{2701x^3}{192456} + \frac{149x^2}{3240} + \frac{x}{45} + 1 \right) + \frac{c_2 \left(\frac{7435523x^5}{3224075400} + \frac{106583x^4}{5511240} + \frac{1591x^3}{30618} - \frac{5x^2}{162} + \frac{13x}{9} + 1 \right)}{\sqrt[3]{x}}$$

2.11 problem 11

Internal problem ID [5566]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2}-1)y'' + 5y'(1+x) + (x^{2}-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve((x^2-1)*diff(y(x),x\$2)+5*(x+1)*diff(y(x),x)+(x^2-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{6}x^3 - \frac{1}{8}x^4 - \frac{3}{10}x^5\right)y(0) + \left(x + \frac{5}{2}x^2 + 5x^3 + \frac{26}{3}x^4 + \frac{1661}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 61

AsymptoticDSolveValue[$(x^2-1)*y''[x]+5*(x+1)*y'[x]+(x^2-x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(-\frac{3x^5}{10} - \frac{x^4}{8} - \frac{x^3}{6} + 1 \right) + c_2 \left(\frac{1661x^5}{120} + \frac{26x^4}{3} + 5x^3 + \frac{5x^2}{2} + x \right)$$

2.12 problem 12

Internal problem ID [5567]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + (x+3)y' + 7yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 56

Order:=6; dsolve(x*diff(y(x),x\$2)+(x+3)*diff(y(x),x)+7*x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \left(1 - \frac{7}{15}x^3 + \frac{7}{120}x^4 - \frac{1}{150}x^5 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(\ln\left(x\right) \left(2x^2 - \frac{14}{15}x^5 + \mathcal{O}\left(x^6\right) \right) + \left(-2 + 4x - 3x^2 + 4x^3 - 4x^4 + \frac{547}{225}x^5 + \mathcal{O}\left(x^6\right) \right) \right)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 55

AsymptoticDSolveValue[$x*y''[x]+(x+3)*y'[x]+7*x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 igg(rac{7x^4}{120} - rac{7x^3}{15} + 1 igg) + c_1 igg(rac{2x^4 - 2x^3 + 2x^2 - 2x + 1}{x^2} - \log(x) igg)$$

2.13 problem 13

Internal problem ID [5568]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + \left(\frac{5}{3}x + x^{2}\right)y' - \frac{y}{3} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 39

Order:=6; dsolve(x^2*diff(y(x),x\$2)+(5/3*x+x^2)*diff(y(x),x)-1/3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{4}{3}} \left(1 - \frac{1}{7}x + \frac{1}{35}x^2 - \frac{1}{195}x^3 + \frac{1}{1248}x^4 - \frac{1}{9120}x^5 + \mathcal{O}\left(x^6\right)\right) + c_1(1 - 3x + \mathcal{O}\left(x^6\right))}{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 58

AsymptoticDSolveValue[$x^2*y''[x]+(5/3*x+x^2)*y'[x]-1/3*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_1 \sqrt[3]{x} \left(-\frac{x^5}{9120} + \frac{x^4}{1248} - \frac{x^3}{195} + \frac{x^2}{35} - \frac{x}{7} + 1 \right) + \frac{c_2(1-3x)}{x}$$

2.14 problem 14

Internal problem ID [5569]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' + 10y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 59

Order:=6;
dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+10*y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 - 10x + 25x^2 - \frac{250}{9}x^3 + \frac{625}{36}x^4 - \frac{125}{18}x^5 + O(x^6) \right)$$
$$+ \left(20x - 75x^2 + \frac{2750}{27}x^3 - \frac{15625}{216}x^4 + \frac{3425}{108}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 105

AsymptoticDSolveValue[$x*y''[x]+y'[x]+10*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{125x^5}{18} + \frac{625x^4}{36} - \frac{250x^3}{9} + 25x^2 - 10x + 1 \right) + c_2 \left(\frac{3425x^5}{108} - \frac{15625x^4}{216} + \frac{2750x^3}{27} - 75x^2 + \left(-\frac{125x^5}{18} + \frac{625x^4}{36} - \frac{250x^3}{9} + 25x^2 - 10x + 1 \right) \log(x) + 20x \right)$$

2.15 problem 15

Internal problem ID [5570]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2xy'' - y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; dsolve(2*x*diff(y(x),x\$2)-diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{3}{2}} \left(1 - \frac{2}{5}x + \frac{2}{35}x^2 - \frac{4}{945}x^3 + \frac{2}{10395}x^4 - \frac{4}{675675}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 + 2x - 2x^2 + \frac{4}{9}x^3 - \frac{2}{45}x^4 + \frac{4}{1575}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 81

AsymptoticDSolveValue[$2*x*y''[x]-y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{4x^5}{1575} - \frac{2x^4}{45} + \frac{4x^3}{9} - 2x^2 + 2x + 1 \right)$$
$$+ c_1 \left(-\frac{4x^5}{675675} + \frac{2x^4}{10395} - \frac{4x^3}{945} + \frac{2x^2}{35} - \frac{2x}{5} + 1 \right) x^{3/2}$$

2.16 problem 16

Internal problem ID [5571]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2xy'' + 5y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

Order:=6;

dsolve(2*x*diff(y(x),x\$2)+5*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 \left(1 - \frac{1}{14}x^2 + \frac{1}{616}x^4 + \mathcal{O}\left(x^6\right)\right) x^{\frac{3}{2}} + c_1 \left(1 - \frac{1}{2}x^2 + \frac{1}{40}x^4 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 47

AsymptoticDSolveValue[$2*x*y''[x]+5*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(\frac{x^4}{616} - \frac{x^2}{14} + 1 \right) + \frac{c_2 \left(\frac{x^4}{40} - \frac{x^2}{2} + 1 \right)}{x^{3/2}}$$

2.17 problem 17

Internal problem ID [5572]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4xy'' + \frac{y'}{2} + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(4*x*diff(y(x),x\$2)+1/2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{7}{8}} \left(1 - \frac{2}{15}x + \frac{2}{345}x^2 - \frac{4}{32085}x^3 + \frac{2}{1251315}x^4 - \frac{4}{294059025}x^5 + O\left(x^6\right) \right) + c_2 \left(1 - 2x + \frac{2}{9}x^2 - \frac{4}{459}x^3 + \frac{2}{11475}x^4 - \frac{4}{1893375}x^5 + O\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 83

AsymptoticDSolveValue $[4*x*y''[x]+1/2*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(-\frac{4x^5}{1893375} + \frac{2x^4}{11475} - \frac{4x^3}{459} + \frac{2x^2}{9} - 2x + 1 \right)$$
$$+ c_1 x^{7/8} \left(-\frac{4x^5}{294059025} + \frac{2x^4}{1251315} - \frac{4x^3}{32085} + \frac{2x^2}{345} - \frac{2x}{15} + 1 \right)$$

2.18 problem 18

Internal problem ID [5573]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^{2}y'' - y'x + y(x^{2} + 1) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

Order:=6; $dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2+1)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 \sqrt{x} \left(1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 + \mathcal{O}\left(x^6\right) \right) + c_2 x \left(1 - \frac{1}{10}x^2 + \frac{1}{360}x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 48

AsymptoticDSolveValue[$2*x^2*y''[x]-x*y'[x]+(x^2+1)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 x \left(\frac{x^4}{360} - \frac{x^2}{10} + 1\right) + c_2 \sqrt{x} \left(\frac{x^4}{168} - \frac{x^2}{6} + 1\right)$$

2.19 problem 19

Internal problem ID [5574]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$3xy'' + (-x+2)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

,

$$\label{eq:control} \begin{split} &\text{Order:=6;}\\ &\text{dsolve}(3*x*\text{diff}(y(x),x$$)+(2-x)*\text{diff}(y(x),x)-y(x)=0,y(x),type='series',x=0); \end{split}$$

$$y(x) = c_1 x^{\frac{1}{3}} \left(1 + \frac{1}{3}x + \frac{1}{18}x^2 + \frac{1}{162}x^3 + \frac{1}{1944}x^4 + \frac{1}{29160}x^5 + O\left(x^6\right) \right)$$
$$+ c_2 \left(1 + \frac{1}{2}x + \frac{1}{10}x^2 + \frac{1}{80}x^3 + \frac{1}{880}x^4 + \frac{1}{12320}x^5 + O\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 85

AsymptoticDSolveValue[$3*x*y''[x]+(2-x)*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \sqrt[3]{x} \left(\frac{x^5}{29160} + \frac{x^4}{1944} + \frac{x^3}{162} + \frac{x^2}{18} + \frac{x}{3} + 1 \right) + c_2 \left(\frac{x^5}{12320} + \frac{x^4}{880} + \frac{x^3}{80} + \frac{x^2}{10} + \frac{x}{2} + 1 \right)$$

2.20 problem 20

Internal problem ID [5575]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^2y'' - \left(x - \frac{2}{9}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

Order:=6; $dsolve(x^2*diff(y(x),x$2)-(x-2/9)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^{\frac{1}{3}} \left(1 + \frac{3}{2}x + \frac{9}{20}x^2 + \frac{9}{160}x^3 + \frac{27}{7040}x^4 + \frac{81}{492800}x^5 + O\left(x^6\right) \right)$$
$$+ c_2 x^{\frac{2}{3}} \left(1 + \frac{3}{4}x + \frac{9}{56}x^2 + \frac{9}{560}x^3 + \frac{27}{29120}x^4 + \frac{81}{2329600}x^5 + O\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 90

AsymptoticDSolveValue[$x^2*y''[x]-(x-2/9)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \sqrt[3]{x} \left(\frac{81x^5}{492800} + \frac{27x^4}{7040} + \frac{9x^3}{160} + \frac{9x^2}{20} + \frac{3x}{2} + 1 \right)$$
$$+ c_1 x^{2/3} \left(\frac{81x^5}{2329600} + \frac{27x^4}{29120} + \frac{9x^3}{560} + \frac{9x^2}{56} + \frac{3x}{4} + 1 \right)$$

2.21 problem 21

Internal problem ID [5576]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

$$2xy'' - (2x+3)y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(2*x*diff(y(x),x\$2)-(3+2*x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{5}{2}} \left(1 + \frac{4}{7}x + \frac{4}{21}x^2 + \frac{32}{693}x^3 + \frac{80}{9009}x^4 + \frac{64}{45045}x^5 + \mathcal{O}\left(x^6\right) \right) + c_2 \left(1 + \frac{1}{3}x - \frac{1}{6}x^2 - \frac{1}{6}x^3 - \frac{5}{72}x^4 - \frac{7}{360}x^5 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 85

AsymptoticDSolveValue $[2*x*y''[x]-(3+2*x)*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(-\frac{7x^5}{360} - \frac{5x^4}{72} - \frac{x^3}{6} - \frac{x^2}{6} + \frac{x}{3} + 1 \right)$$

+ $c_1 \left(\frac{64x^5}{45045} + \frac{80x^4}{9009} + \frac{32x^3}{693} + \frac{4x^2}{21} + \frac{4x}{7} + 1 \right) x^{5/2}$

2.22 problem 22

Internal problem ID [5577]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{4}{9}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-4/9)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{4}{3}} \left(1 - \frac{3}{20} x^2 + \frac{9}{1280} x^4 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 - \frac{3}{4} x^2 + \frac{9}{128} x^4 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{2}{3}}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

$$y(x) \to c_1 x^{2/3} \left(\frac{9x^4}{1280} - \frac{3x^2}{20} + 1 \right) + \frac{c_2 \left(\frac{9x^4}{128} - \frac{3x^2}{4} + 1 \right)}{x^{2/3}}$$

2.23 problem 23

Internal problem ID [5578]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$9x^2y'' + 9x^2y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve(9*x^2*diff(y(x),x\$2)+9*x^2*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{3}} \left(1 - \frac{1}{2}x + \frac{1}{5}x^2 - \frac{7}{120}x^3 + \frac{7}{528}x^4 - \frac{13}{5280}x^5 + O\left(x^6\right) \right)$$
$$+ c_2 x^{\frac{2}{3}} \left(1 - \frac{1}{2}x + \frac{5}{28}x^2 - \frac{1}{21}x^3 + \frac{11}{1092}x^4 - \frac{11}{6240}x^5 + O\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 90

AsymptoticDSolveValue $[9*x^2*y''[x]+9*x^2*y'[x]+2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \sqrt[3]{x} \left(-\frac{13x^5}{5280} + \frac{7x^4}{528} - \frac{7x^3}{120} + \frac{x^2}{5} - \frac{x}{2} + 1 \right)$$
$$+ c_1 x^{2/3} \left(-\frac{11x^5}{6240} + \frac{11x^4}{1092} - \frac{x^3}{21} + \frac{5x^2}{28} - \frac{x}{2} + 1 \right)$$

2.24 problem 24

Internal problem ID [5579]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^2y'' + 3y'x + (2x - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve(2*x^2*diff(y(x),x\$2)+3*x*diff(y(x),x)+(2*x-1)*y(x)=0,y(x),type='series',x=0);

 $y(x) = \frac{c_2 x^{\frac{3}{2}} \left(1 - \frac{2}{5}x + \frac{2}{35}x^2 - \frac{4}{945}x^3 + \frac{2}{10395}x^4 - \frac{4}{675675}x^5 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 + 2x - 2x^2 + \frac{4}{9}x^3 - \frac{2}{45}x^4 + \frac{4}{1575}x^5 + \frac{2}{35}x^4 + \frac{2}{35}x^4 + \frac{4}{1575}x^5 + \frac{2}{35}x^4 + \frac{2}{35}x^4 + \frac{4}{1575}x^5 + \frac{2}{35}x^4 + \frac{2}{35}x^4 + \frac{2}{35}x^5 + \frac{2}{35$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 84

$$y(x) \to c_1 \sqrt{x} \left(-\frac{4x^5}{675675} + \frac{2x^4}{10395} - \frac{4x^3}{945} + \frac{2x^2}{35} - \frac{2x}{5} + 1 \right) + \frac{c_2 \left(\frac{4x^5}{1575} - \frac{2x^4}{45} + \frac{4x^3}{9} - 2x^2 + 2x + 1 \right)}{x}$$

2.25 problem 25

Internal problem ID [5580]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + 2y' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

Order:=6;

dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \left(1 + \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}\left(x^6\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 42

AsymptoticDSolveValue[$x*y''[x]+2*y'[x]-x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^3}{24} + \frac{x}{2} + \frac{1}{x}\right) + c_2 \left(\frac{x^4}{120} + \frac{x^2}{6} + 1\right)$$

2.26 problem 26

Internal problem ID [5581]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(-\frac{1}{4} + x^{2}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}(x^6)\right) + c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}(x^6)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 58

$$y(x) o c_1 \left(\frac{x^{7/2}}{24} - \frac{x^{3/2}}{2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{x^{9/2}}{120} - \frac{x^{5/2}}{6} + \sqrt{x} \right)$$

2.27 problem 27

Internal problem ID [5582]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']]

$$xy'' - y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

Order:=6;

dsolve(x*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x (1 + O(x^6)) + (-x + O(x^6)) \ln(x) c_2 + \left(1 + x - \frac{1}{2}x^2 - \frac{1}{12}x^3 - \frac{1}{72}x^4 - \frac{1}{480}x^5 + O(x^6)\right) c_2$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 41

AsymptoticDSolveValue[$x*y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_1 igg(rac{1}{72} ig(-x^4 - 6x^3 - 36x^2 + 144x + 72 ig) - x \log(x) igg) + c_2 x$$

2.28 problem 28

Internal problem ID [5583]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{3y'}{x} - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 46

Order:=6; dsolve(diff(y(x),x\$2)+3/x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1\left(1 + \frac{1}{4}x^2 + \frac{1}{48}x^4 + \mathcal{O}\left(x^6\right)\right)x^2 + c_2\left(\ln\left(x\right)\left((-2)x^2 - \frac{1}{2}x^4 + \mathcal{O}\left(x^6\right)\right) + \left(-2 + \frac{3}{8}x^4 + \mathcal{O}\left(x^6\right)\right)\right)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 57

AsymptoticDSolveValue[$y''[x]+3/x*y'[x]-2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{48} + \frac{x^2}{4} + 1\right) + c_1 \left(\frac{1}{4}(x^2 + 4)\log(x) - \frac{5x^4 + 8x^2 - 16}{16x^2}\right)$$

2.29 problem 29

Internal problem ID [5584]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

 ${\bf Section} :$ Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$xy'' + (1-x)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

Order:=6; dsolve(x*diff(y(x),x\$2)+(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + O(x^6) \right)$$
$$+ \left(-x - \frac{3}{4}x^2 - \frac{11}{36}x^3 - \frac{25}{288}x^4 - \frac{137}{7200}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 107

AsymptoticDSolveValue[$x*y''[x]+(1-x)*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1 \right)$$

+ $c_2 \left(-\frac{137x^5}{7200} - \frac{25x^4}{288} - \frac{11x^3}{36} - \frac{3x^2}{4} + \left(\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1 \right) \log(x) - x \right)$

2.30 problem 30

Internal problem ID [5585]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

Order:=6; dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 - x + \frac{1}{4}x^2 - \frac{1}{36}x^3 + \frac{1}{576}x^4 - \frac{1}{14400}x^5 + O(x^6) \right)$$
$$+ \left(2x - \frac{3}{4}x^2 + \frac{11}{108}x^3 - \frac{25}{3456}x^4 + \frac{137}{432000}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 111

AsymptoticDSolveValue[$x*y''[x]+y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^5}{14400} + \frac{x^4}{576} - \frac{x^3}{36} + \frac{x^2}{4} - x + 1 \right) + c_2 \left(\frac{137x^5}{432000} - \frac{25x^4}{3456} + \frac{11x^3}{108} - \frac{3x^2}{4} + \left(-\frac{x^5}{14400} + \frac{x^4}{576} - \frac{x^3}{36} + \frac{x^2}{4} - x + 1 \right) \log(x) + 2x \right)$$

2.31 problem 31

Internal problem ID [5586]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + (x - 6)y' - 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

Order:=6; dsolve(x*diff(y(x),x\$2)+(x-6)*diff(y(x),x)-3*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^7 \left(1 - \frac{1}{2}x + \frac{5}{36}x^2 - \frac{1}{36}x^3 + \frac{7}{1584}x^4 - \frac{7}{11880}x^5 + O(x^6) \right) + c_2 \left(3628800 - 1814400x + 362880x^2 - 30240x^3 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 63

 $Asymptotic DSolve Value [x*y''[x]+(x-6)*y'[x]-3*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_1 \left(-\frac{x^3}{120} + \frac{x^2}{10} - \frac{x}{2} + 1 \right) + c_2 \left(\frac{7x^{11}}{1584} - \frac{x^{10}}{36} + \frac{5x^9}{36} - \frac{x^8}{2} + x^7 \right)$$

2.32 problem 32

Internal problem ID [5587]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x(x-1)y'' + 3y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

Order:=6; dsolve(x*(x-1)*diff(y(x),x\$2)+3*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^4 (1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + O(x^6)) + c_2 (-144 - 96x - 48x^2 + 48x^4 + 96x^5 + O(x^6))$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 55

AsymptoticDSolveValue[$x*(x-1)*y''[x]+3*y'[x]-2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(-\frac{x^4}{3} + \frac{x^2}{3} + \frac{2x}{3} + 1 \right) + c_2 \left(5x^8 + 4x^7 + 3x^6 + 2x^5 + x^4 \right)$$

2.33 problem 33

Internal problem ID [5588]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^4y'' + \lambda y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve(x^4*diff(y(x),x\$2)+lambda*y(x)=0,y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 50

AsymptoticDSolveValue $[x^4*y''[x]+\[Lambda]*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) o c_1 x e^{rac{i\sqrt{\lambda}}{x}} - rac{ic_2 x e^{-rac{i\sqrt{\lambda}}{x}}}{2\sqrt{\lambda}}$$

2.34 problem 36 (a)

Internal problem ID [5589]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 36 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^3y'' + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve(x^3*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);
```

No solution found

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 222

$$\label{eq:asymptoticDSolveValue} A symptoticDSolveValue[x^3*y''[x]+y[x]==0,y[x],\{x,0,5\}]$$

$$y(x) \rightarrow c_{1}e^{-\frac{2i}{\sqrt{x}}}x^{3/4} \left(-\frac{468131288625ix^{9/2}}{8796093022208} + \frac{66891825ix^{7/2}}{4294967296} - \frac{72765ix^{5/2}}{8388608} + \frac{105ix^{3/2}}{8192} \right. \\ \left. + \frac{33424574007825x^{5}}{281474976710656} - \frac{14783093325x^{4}}{549755813888} + \frac{2837835x^{3}}{268435456} - \frac{4725x^{2}}{524288} + \frac{15x}{512} - \frac{3i\sqrt{x}}{16} \right. \\ \left. + 1 \right) + c_{2}e^{\frac{2i}{\sqrt{x}}}x^{3/4} \left(\frac{468131288625ix^{9/2}}{8796093022208} - \frac{66891825ix^{7/2}}{4294967296} + \frac{72765ix^{5/2}}{8388608} - \frac{105ix^{3/2}}{8192} + \frac{33424574007825x^{5}}{281474976710656} - \frac{105ix^{5/2}}{281474976710656} \right)$$

2.35 problem 36 (b)

Internal problem ID [5590]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page

239

Problem number: 36 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^{2}y'' + (3x - 1)y' + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve(x^2*diff(y(x),x\$2)+(3*x-1)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 43

AsymptoticDSolveValue[$x^2*y''[x]+(3*x-1)*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1(120x^5 + 24x^4 + 6x^3 + 2x^2 + x + 1) + \frac{c_2e^{-1/x}}{x}$$

3 Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page 250

3.1	problem 1.												 					•		67
3.2	problem 2 .												 							68
3.3	problem 3 .												 							69
3.4	problem 4 .												 							70
3.5	problem 5 .												 							71
3.6	problem 6 .												 							72
3.7	problem 7 .											•	 							73
3.8	problem 8 .												 							74
3.9	problem 9 .											•	 							75
3.10	problem 10											•	 							76
3.11	problem 13											•	 							77
3.12	problem 14											•	 							78
3.13	problem 15											•	 							79
3.14	problem 16											•	 							80
3.15	problem 17											•	 							81
3.16	problem 18											•	 							82
3.17	problem 19											•	 							83
3.18	problem 20												 							84
3.19	problem 22($\mathbf{a})$											 						•	85
3.20	problem 22(b)										•	 							86
3.21	problem 23												 							87
3.22	problem 24											•	 							88
3.23	problem 25											•	 							89
3.24	problem 26												 							90

3.1 problem 1

Internal problem ID [5591]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{1}{9}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1/9)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{2}{3}} \left(1 - \frac{3}{16} x^2 + \frac{9}{896} x^4 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 - \frac{3}{8} x^2 + \frac{9}{320} x^4 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

$$y(x) \to c_1 \sqrt[3]{x} \left(\frac{9x^4}{896} - \frac{3x^2}{16} + 1 \right) + \frac{c_2 \left(\frac{9x^4}{320} - \frac{3x^2}{8} + 1 \right)}{\sqrt[3]{x}}$$

3.2 problem 2

Internal problem ID [5592]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Bessel]

$$x^{2}y'' + y'x + y(x^{2} - 1) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series',x=0);

$$= \frac{c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}\left(x^6\right)\right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}\left(x^6\right)\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 58

$$y(x) o c_2 \left(\frac{x^5}{192} - \frac{x^3}{8} + x \right) + c_1 \left(\frac{1}{16} x (x^2 - 8) \log(x) - \frac{5x^4 - 16x^2 - 64}{64x} \right)$$

3.3 problem 3

Internal problem ID [5593]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4y'x + (4x^{2} - 25)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+4*x*diff(y(x),x)+(4*x^2-25)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^5 \left(1 - \frac{1}{14} x^2 + \frac{1}{504} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 (2880 + 480 x^2 + 120 x^4 + \mathcal{O}\left(x^6\right))}{x^{\frac{5}{2}}}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 58

$$y(x) o c_1 igg(rac{x^{3/2}}{24} + rac{1}{x^{5/2}} + rac{1}{6\sqrt{x}} igg) + c_2 igg(rac{x^{13/2}}{504} - rac{x^{9/2}}{14} + x^{5/2} igg)$$

3.4 problem 4

Internal problem ID [5594]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$16x^{2}y'' + 16y'x + (16x^{2} - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

Order:=6; dsolve(16*x^2*diff(y(x),x\$2)+16*x*diff(y(x),x)+(16*x^2-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2\sqrt{x}\left(1 - \frac{1}{5}x^2 + \frac{1}{90}x^4 + \mathcal{O}\left(x^6\right)\right) + c_1\left(1 - \frac{1}{3}x^2 + \frac{1}{42}x^4 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

AsymptoticDSolveValue[$16*x^2*y''[x]+16*x*y'[x]+(16*x^2-1)*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_1 \sqrt[4]{x} \left(\frac{x^4}{90} - \frac{x^2}{5} + 1 \right) + \frac{c_2 \left(\frac{x^4}{42} - \frac{x^2}{3} + 1 \right)}{\sqrt[4]{x}}$$

3.5 problem 5

Internal problem ID [5595]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

Order:=6;

dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 - \frac{1}{4}x^2 + \frac{1}{64}x^4 + O(x^6)\right) + \left(\frac{1}{4}x^2 - \frac{3}{128}x^4 + O(x^6)\right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 60

AsymptoticDSolveValue[$x*y''[x]+y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) + c_2 \left(-\frac{3x^4}{128} + \frac{x^2}{4} + \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right)\log(x)\right)$$

3.6 problem 6

Internal problem ID [5596]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Bessel]

$$xy'' + y' + \left(x - \frac{4}{x}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve(diff(x*diff(y(x),x),x)+(x-4/x)*y(x)=0,y(x),type='series',x=0);

 $= \frac{c_1 x^4 \left(1 - \frac{1}{12} x^2 + \frac{1}{384} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right) \left(9 x^4 + \mathcal{O}\left(x^6\right)\right) + \left(-144 - 36 x^2 + \mathcal{O}\left(x^6\right)\right)\right)}{x^2}$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 52

 $\label{eq:local_asymptotic_DSolveValue} A symptotic_DSolveValue[D[x*D[y[x],x],x]+(x-4/x)*y[x] == 0,y[x], \{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{(x^2 + 8)^2}{64x^2} - \frac{1}{16}x^2 \log(x) \right) + c_2 \left(\frac{x^6}{384} - \frac{x^4}{12} + x^2 \right)$$

3.7 problem 7

Internal problem ID [5597]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + (9x^{2} - 4)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(9*x^2-4)*y(x)=0,y(x),type='series',x=0);

$$= \frac{c_1 x^4 \left(1 - \frac{3}{4} x^2 + \frac{27}{128} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right) \left(729 x^4 + \mathcal{O}\left(x^6\right)\right) + \left(-144 - 324 x^2 + \mathcal{O}\left(x^6\right)\right))}{x^2}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 54

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(9*x^2-4)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{(9x^2 + 8)^2}{64x^2} - \frac{81}{16}x^2 \log(x) \right) + c_2 \left(\frac{27x^6}{128} - \frac{3x^4}{4} + x^2 \right)$$

3.8 problem 8

Internal problem ID [5598]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(36x^{2} - \frac{1}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(36*x^2-1/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x \left(1 - 6x^2 + \frac{54}{5}x^4 + \mathcal{O}(x^6)\right) + c_2 (1 - 18x^2 + 54x^4 + \mathcal{O}(x^6))}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 52

$$y(x)
ightarrow c_1 igg(54x^{7/2} - 18x^{3/2} + rac{1}{\sqrt{x}} igg) + c_2 igg(rac{54x^{9/2}}{5} - 6x^{5/2} + \sqrt{x} igg)$$

3.9 problem 9

Internal problem ID [5599]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(25x^{2} - \frac{4}{9}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(25*x^2-4/9)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{4}{3}} \left(1 - \frac{15}{4} x^2 + \frac{1125}{256} x^4 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 - \frac{75}{4} x^2 + \frac{5625}{128} x^4 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{2}{3}}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

$$y(x) \to c_1 x^{2/3} \left(\frac{1125x^4}{256} - \frac{15x^2}{4} + 1 \right) + \frac{c_2 \left(\frac{5625x^4}{128} - \frac{75x^2}{4} + 1 \right)}{x^{2/3}}$$

3.10 problem 10

Internal problem ID [5600]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + (2x^{2} - 64) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(2*x^2-64)*y(x)=0,y(x),type='series',x=0);

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 46

$$y(x) o c_2 igg(rac{x^{12}}{720} - rac{x^{10}}{18} + x^8 igg) + c_1 igg(rac{1}{x^8} + rac{1}{14x^6} + rac{1}{336x^4} igg)$$

3.11 problem 13

Internal problem ID [5601]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + 2y' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 64

Order:=6; dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 - 2x + \frac{4}{3}x^2 - \frac{4}{9}x^3 + \frac{4}{45}x^4 - \frac{8}{675}x^5 + \mathcal{O}\left(x^6\right)\right)x + c_2 \left(\ln\left(x\right)\left((-4)x + 8x^2 - \frac{16}{3}x^3 + \frac{16}{9}x^4 - \frac{16}{45}x^5 + \mathcal{O}\left(x^6\right)\right)x}{x}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 85

 $AsymptoticDSolveValue[x*y''[x]+2*y'[x]+4*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{4x^4}{45} - \frac{4x^3}{9} + \frac{4x^2}{3} - 2x + 1 \right)$$

+ $c_1 \left(\frac{4}{9} \left(4x^3 - 12x^2 + 18x - 9 \right) \log(x) - \frac{188x^4 - 480x^3 + 540x^2 - 108x - 27}{27x} \right)$

3.12 problem 14

Internal problem ID [5602]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + 3y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 46

Order:=6; dsolve(x*diff(y(x),x\$2)+3*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}(x^6)\right) + c_2 \left(\ln\left(x\right) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}(x^6)\right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}(x^6)\right)\right)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 57

AsymptoticDSolveValue[$x*y''[x]+3*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{192} - \frac{x^2}{8} + 1\right) + c_1 \left(\frac{1}{16}(x^2 - 8)\log(x) - \frac{5x^4 - 16x^2 - 64}{64x^2}\right)$$

3.13 problem 15

Internal problem ID [5603]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' - y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

Order:=6;

dsolve(x*diff(y(x),x\$2)-diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}(x^6) \right)$$
$$+ c_2 \left(\ln(x) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}(x^6) \right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 59

AsymptoticDSolveValue[$x*y''[x]-y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{1}{16}(x^2 - 8) x^2 \log(x) + \frac{1}{64}(-5x^4 + 16x^2 + 64)\right) + c_2 \left(\frac{x^6}{192} - \frac{x^4}{8} + x^2\right)$$

3.14 problem 16

Internal problem ID [5604]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' - 5y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6;

dsolve(x*diff(y(x),x\$2)-5*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^6 \left(1 - \frac{1}{16} x^2 + \frac{1}{640} x^4 + \mathcal{O}\left(x^6\right) \right) + c_2 \left(-86400 - 10800 x^2 - 1350 x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 44

AsymptoticDSolveValue[$x*y''[x]-5*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{64} + \frac{x^2}{8} + 1\right) + c_2 \left(\frac{x^{10}}{640} - \frac{x^8}{16} + x^6\right)$$

3.15 problem 17

Internal problem ID [5605]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + (x^{2} - 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

Order:=6; $dsolve(x^2*diff(y(x),x$2)+(x^2-2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^2 \left(1 - \frac{1}{10} x^2 + \frac{1}{280} x^4 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(12 + 6x^2 - \frac{3}{2}x^4 + \mathcal{O}\left(x^6\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 44

AsymptoticDSolveValue[$x^2*y''[x]+(x^2-2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^3}{8} + \frac{x}{2} + \frac{1}{x} \right) + c_2 \left(\frac{x^6}{280} - \frac{x^4}{10} + x^2 \right)$$

3.16 problem 18

Internal problem ID [5606]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' + (16x^2 + 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 51

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+(16*x^2+1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left((\ln(x) c_2 + c_1) \left(1 - x^2 + \frac{1}{4} x^4 + O(x^6) \right) + \left(x^2 - \frac{3}{8} x^4 + O(x^6) \right) c_2 \right) \sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 69

AsymptoticDSolveValue $[4*x^2*y''[x]+(16*x^2+1)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^4}{4} - x^2 + 1 \right) + c_2 \left(\sqrt{x} \left(x^2 - \frac{3x^4}{8} \right) + \sqrt{x} \left(\frac{x^4}{4} - x^2 + 1 \right) \log(x) \right)$$

3.17 problem 19

Internal problem ID [5607]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + 3y' + yx^3 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

,

Order:=6; $dsolve(x*diff(y(x),x$2)+3*diff(y(x),x)+x^3*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 \left(1 - \frac{1}{24} x^4 + O(x^6) \right) + \frac{c_2 \left(-2 + \frac{1}{4} x^4 + O(x^6) \right)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 30

AsymptoticDSolveValue[$x*y''[x]+3*y'[x]+x^3*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(1 - \frac{x^4}{24}\right) + c_1 \left(\frac{1}{x^2} - \frac{x^2}{8}\right)$$

3.18 problem 20

Internal problem ID [5608]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$9x^2y'' + 9y'x + (x^6 - 36)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

Order:=6; $dsolve(9*x^2*diff(y(x),x$2)+9*x*diff(y(x),x)+(x^6-36)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^2 (1 + O(x^6)) + \frac{c_2(-144 + O(x^6))}{x^2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 16

$$y(x) \to c_2 x^2 + \frac{c_1}{x^2}$$

3.19 problem 22(a)

Internal problem ID [5609]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 22(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

dsolve(diff(y(x),x2)-x2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^4}{12}\right)y(0) + \left(x + \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(\frac{x^5}{20} + x \right) + c_1 \left(\frac{x^4}{12} + 1 \right)$$

3.20 problem 22(b)

Internal problem ID [5610]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 22(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' - 7yx^3 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

Order:=6; dsolve($x*diff(y(x),x$2)+diff(y(x),x)-7*x^3*y(x)=0,y(x),type='series',x=0)$;

$$y(x) = (\ln(x) c_2 + c_1) \left(1 + \frac{7}{16}x^4 + O(x^6)\right) + \left(-\frac{7}{32}x^4 + O(x^6)\right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 39

AsymptoticDSolveValue[$x*y''[x]+y'[x]-7*x^3*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{7x^4}{16} + 1\right) + c_2 \left(\left(\frac{7x^4}{16} + 1\right)\log(x) - \frac{7x^4}{32}\right)$$

3.21 problem 23

Internal problem ID [5611]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

 $\label{eq:asymptoticDSolveValue} AsymptoticDSolveValue[y''[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} - \frac{x^2}{2} + 1\right)$$

3.22 problem 24

Internal problem ID [5612]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 4y'x + y(x^{2} + 2) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; $dsolve(x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(x^2+2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}\left(x^6\right)\right)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 40

AsymptoticDSolveValue[$x^2*y''[x]+4*x*y'[x]+(x^2+2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^3}{120} - \frac{x}{6} + \frac{1}{x}\right) + c_1 \left(\frac{x^2}{24} + \frac{1}{x^2} - \frac{1}{2}\right)$$

3.23 problem 25

Internal problem ID [5613]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$16x^{2}y'' + 32y'x + (x^{4} - 12)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

Order:=6; dsolve(16*x^2*diff(y(x),x\$2)+32*x*diff(y(x),x)+(x^4-12)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{384} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(-2 + \frac{1}{64} x^4 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 40

$$y(x) o c_1 \left(\frac{1}{x^{3/2}} - \frac{x^{5/2}}{128} \right) + c_2 \left(\sqrt{x} - \frac{x^{9/2}}{384} \right)$$

3.24 problem 26

Internal problem ID [5614]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page

250

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' - 4y'x + (16x^{4} + 3)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

Order:=6; $dsolve(4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(16*x^4+3)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \sqrt{x} \left(x \left(1 - \frac{1}{5} x^4 + O(x^6) \right) c_1 + \left(1 - \frac{1}{3} x^4 + O(x^6) \right) c_2 \right)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 40

AsymptoticDSolveValue $[4*x^2*y''[x]-4*x*y'[x]+(16*x^4+3)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) o c_1 \left(\sqrt{x} - \frac{x^{9/2}}{3} \right) + c_2 \left(x^{3/2} - \frac{x^{11/2}}{5} \right)$$

4 Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review exercises. page 253

4.1	problem 9 .				•	•				•	•						•		•	•		92
4.2	problem 10																					93
4.3	problem 11																					94
4.4	problem 12		•																			95
4.5	problem 13																					96
4.6	problem 14		•																			97
4.7	problem 15		•																			98
4.8	problem 16																					99

4.1 problem 9

Internal problem ID [5615]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$2xy'' + y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 - \frac{1}{3}x + \frac{1}{30}x^2 - \frac{1}{630}x^3 + \frac{1}{22680}x^4 - \frac{1}{1247400}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 - x + \frac{1}{6}x^2 - \frac{1}{90}x^3 + \frac{1}{2520}x^4 - \frac{1}{113400}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 83

AsymptoticDSolveValue $[2*x*y''[x]+y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(-\frac{x^5}{1247400} + \frac{x^4}{22680} - \frac{x^3}{630} + \frac{x^2}{30} - \frac{x}{3} + 1 \right)$$
$$+ c_2 \left(-\frac{x^5}{113400} + \frac{x^4}{2520} - \frac{x^3}{90} + \frac{x^2}{6} - x + 1 \right)$$

4.2 problem 10

Internal problem ID [5616]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)-x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x + \frac{1}{3}x^3 + \frac{1}{15}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

 $\label{lem:asymptoticDSolveValue} AsymptoticDSolveValue[y''[x]-x*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_2 \left(\frac{x^5}{15} + \frac{x^3}{3} + x\right) + c_1 \left(\frac{x^4}{8} + \frac{x^2}{2} + 1\right)$$

4.3 problem 11

Internal problem ID [5617]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$(x-1)y'' + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve((x-1)*diff(y(x),x\$2)+3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{3}{2}x^2 + \frac{1}{2}x^3 + \frac{5}{8}x^4 + \frac{9}{20}x^5\right)y(0) + \left(x + \frac{1}{2}x^3 + \frac{1}{4}x^4 + \frac{9}{40}x^5\right)D(y)(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 63

AsymptoticDSolveValue[$(x-1)*y''[x]+3*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{9x^5}{40} + \frac{x^4}{4} + \frac{x^3}{2} + x\right) + c_1 \left(\frac{9x^5}{20} + \frac{5x^4}{8} + \frac{x^3}{2} + \frac{3x^2}{2} + 1\right)$$

4.4 problem 12

Internal problem ID [5618]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - x^2y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

Order:=6; $dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + D(y)(0)x + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 20

AsymptoticDSolveValue[$y''[x]-x^2*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(1 - \frac{x^3}{6} \right) + c_2 x$$

4.5 problem 13

Internal problem ID [5619]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

$$xy'' - (x+2)y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6; dsolve(x*diff(y(x),x\$2)-(x+2)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^3 \left(1 + \frac{1}{4}x + \frac{1}{20}x^2 + \frac{1}{120}x^3 + \frac{1}{840}x^4 + \frac{1}{6720}x^5 + O(x^6) \right)$$
$$+ c_2 \left(12 + 12x + 6x^2 + 2x^3 + \frac{1}{2}x^4 + \frac{1}{10}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 66

AsymptoticDSolveValue[$x*y''[x]-(x+2)*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1\right) + c_2 \left(\frac{x^7}{840} + \frac{x^6}{120} + \frac{x^5}{20} + \frac{x^4}{4} + x^3\right)$$

4.6 problem 14

Internal problem ID [5620]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\cos(x)y'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6;

dsolve(cos(x)*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(-\frac{x^2}{2} + 1\right)y(0) + \left(x - \frac{1}{6}x^3 - \frac{1}{60}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[$Cos[x]*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(1 - \frac{x^2}{2}\right) + c_2 \left(-\frac{x^5}{60} - \frac{x^3}{6} + x\right)$$

4.7 problem 15

Internal problem ID [5621]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + 2y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -2]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 20

dsolve([diff(y(x),x\$2)+x*diff(y(x),x)+2*y(x)=0,y(0) = 3, D(y)(0) = -2],y(x),type='series',x=0.

$$y(x) = 3 - 2x - 3x^{2} + x^{3} + x^{4} - \frac{1}{4}x^{5} + O(x^{6})$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 26

$$y(x) \rightarrow -\frac{x^5}{4} + x^4 + x^3 - 3x^2 - 2x + 3$$

4.8 problem 16

Internal problem ID [5622]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications.

Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.

Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review

exercises. page 253

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$(x+2)y''+3y=0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([(x+2)*diff(y(x),x\$2)+3*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);

$$y(x) = x - \frac{1}{4}x^3 + \frac{1}{16}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

$$y(x) \to \frac{x^4}{16} - \frac{x^3}{4} + x$$