A Solution Manual For

Differential equations and linear algebra, 4th ed., Edwards and Penney

Nasser M. Abbasi

October 12, 2023

Contents

1	Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear Equations. Page 288	2
2	Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300	10
3	Section 7.2, Matrices and Linear systems. Page 384	39
4	Section 7.3, The eigenvalue method for linear systems. Page 395	42
5	Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437	95
6	Section 7.6, Multiple Eigenvalue Solutions. Page 451	101
7	Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615	148
8	Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624	174

1	Section 5.2, Higher-Order Linear Differential
	Equations. General solutions of Linear Equations.
	Page 288

1.1	problem problem 38	•	•	•	•	•		•		•	•	•	•		•	•	•	•	•	•	•	•	•	3
1.2	problem problem 39																							4
1.3	problem problem 40																							5
1.4	problem problem 41																							6
1.5	problem problem 42																							7
1.6	problem problem 43																							8
17	problem problem 44																							C

1.1 problem problem 38

Internal problem ID [278]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' + y'x - 9y = 0$$

Given that one solution of the ode is

$$y_1 = x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)-9*y(x)=0,x^3],y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^3} + c_2 x^3$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]+x*y'[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x^6 + c_1}{x^3}$$

1.2 problem problem 39

Internal problem ID [279]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 4y' + y = 0$$

Given that one solution of the ode is

$$y_1 = \mathrm{e}^{\frac{x}{2}}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([4*diff(y(x),x\$2)-4*diff(y(x),x)+y(x)=0,exp(x/2)],y(x), singsol=all)

$$y(x) = c_1 e^{\frac{x}{2}} + c_2 e^{\frac{x}{2}} x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

DSolve[4*y''[x]-4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{x/2}(c_2x + c_1)$$

1.3 problem problem 40

Internal problem ID [280]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(2+x)y' + (2+x)y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x$2)-x*(x+2)*diff(y(x),x)+(x+2)*y(x)=0,x],y(x), singsol=all)$

$$y(x) = c_1 x + c_2 x e^x$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]-x*(x+2)*y'[x]+(x+2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x(c_2e^x + c_1)$$

1.4 problem problem 41

Internal problem ID [281]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x+1)y'' - (2+x)y' + y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:displace} \\ \texttt{dsolve}(\texttt{[(x+1)*diff(y(x),x\$2)-(x+2)*diff(y(x),x)+y(x)=0,exp(x)],y(x), singsol=all)} \\$

$$y(x) = c_1(2+x) + e^x c_2$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 29

 $DSolve[(x+1)*y''[x]-(x+2)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 e^{x+1} - 2c_2(x+2)}{\sqrt{2e}}$$

1.5 problem problem 42

Internal problem ID [282]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-x^2 + 1) y'' + 2y'x - 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([(1-x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,x],y(x), singsol=all)$

$$y(x) = c_1 x + c_2 (x^2 + 1)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 39

 $DSolve[(1-x^2)*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{\sqrt{x^2 - 1}(c_1(x - 1)^2 + c_2x)}{\sqrt{1 - x^2}}$$

1.6 problem problem 43

Internal problem ID [283]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 43.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(-x^2 + 1) y'' - 2y'x + 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x],y(x), singsol=all)$

$$y(x) = c_1 x + c_2 \left(-\frac{x \ln(x+1)}{2} + \frac{x \ln(x-1)}{2} + 1 \right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 19

 $DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow c_2(x\operatorname{arctanh}(x) - 1) + c_1x$$

1.7 problem problem 44

Internal problem ID [284]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 44.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{1}{4}\right)y = 0$$

Given that one solution of the ode is

$$y_1 = \frac{\cos\left(x\right)}{\sqrt{x}}$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,x^{(-1/2)*cos(x)}],y(x),\\singsol=all(x,y)=0,x^{(-1/2)*cos(x)}=0,x$

$$y(x) = \frac{c_1 \sin(x)}{\sqrt{x}} + \frac{c_2 \cos(x)}{\sqrt{x}}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 19

 $DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow c_2(x\operatorname{arctanh}(x) - 1) + c_1 x$$

2	Section 5.3,	Higher-Order Linear Differential	
	Equations. H	Homogeneous Equations with Constan	\mathbf{t}
	Coefficients.	Page 300	
2.1	problem problem 10		11
2.2	problem problem 11		12
2.3	problem problem 12		13
2.4	problem problem 13		14
2.5	problem problem 14		15
2.6	problem problem 15		16
2.7	problem problem 16		17
2.8	problem problem 17		18
2.9	problem problem 18		19
2.10	problem problem 19		20
2.11	problem problem 20		21
2.12	problem problem 24		22
2.13	problem problem 25		23
2.14	problem problem 26		24
2.15	problem problem 27		25
2.16	problem problem 28		26
2.17	problem problem 29		27
2.18	problem problem 30		28
2.19	problem problem 31		29
2.20	problem problem 32		30
2.21	problem problem 38		31
2.22	problem problem 48		32
2.23	problem problem 49		33
2.24	problem problem 54		34
2.25	problem problem 55		35
2.26	problem problem 56		36
2.27	problem problem 57		37
2.28	problem problem 58		38

2.1 problem problem 10

Internal problem ID [285]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 10.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$5y'''' + 3y''' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve(5*diff(y(x),x\$4)+3*diff(y(x),x\$3)=0,y(x), singsol=all)

$$y(x) = c_1 + xc_2 + c_3x^2 + c_4e^{-\frac{3x}{5}}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 30

DSolve[5*y'''[x]+3*y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{125}{27}c_1e^{-3x/5} + x(c_4x + c_3) + c_2$$

2.2 problem problem 11

Internal problem ID [286]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 11.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 8y''' + 16y'' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(x),x\$4)-8*diff(y(x),x\$3)+16*diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 + xc_2 + c_3e^{4x} + c_4e^{4x}x$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 34

 $DSolve[y''''[x]-8*y'''[x]+16*y''[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{32}e^{4x}(c_2(2x-1)+2c_1)+c_4x+c_3$$

2.3 problem problem 12

Internal problem ID [287]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 12.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 3y''' + 3y'' - y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(y(x),x\$4)-3*diff(y(x),x\$3)+3*diff(y(x),x\$2)-diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + e^x c_2 + c_3 e^x x + c_4 e^x x^2$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 31

 $DSolve[y''''[x]-3*y'''[x]+3*y''[x]-y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x(c_2(x-1) + c_3((x-2)x + 2) + c_1) + c_4$$

2.4 problem problem 13

Internal problem ID [288]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 13.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$9y''' + 12y'' + 4y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(9*diff(y(x),x\$3)+12*diff(y(x),x\$2)+4*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-\frac{2x}{3}} + c_3 e^{-\frac{2x}{3}} x$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 32

DSolve[9*y'''[x]+12*y''[x]+4*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 - \frac{3}{4}e^{-2x/3}(c_2(2x+3) + 2c_1)$$

2.5 problem problem 14

Internal problem ID [289]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 14.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 3y'' - 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)+3*diff(y(x),x\$2)-4*y(x)=0,y(x), singsol=all)

$$y(x) = e^{x}c_1 + e^{-x}c_2 + c_3\sin(2x) + c_4\cos(2x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 34

 $DSolve[y''''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_3 e^{-x} + c_4 e^x + c_1 \cos(2x) + c_2 \sin(2x)$$

2.6 problem problem 15

Internal problem ID [290]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 15.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 16y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 75

dsolve(diff(y(x),x\$4)-16*diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\left(-\sqrt{3}\sqrt{2} - \sqrt{2}\right)x} + c_2 e^{\left(\sqrt{3}\sqrt{2} + \sqrt{2}\right)x} + c_3 e^{\left(-\sqrt{3}\sqrt{2} + \sqrt{2}\right)x} + c_4 e^{\left(\sqrt{3}\sqrt{2} - \sqrt{2}\right)x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 70

DSolve[y'''[x]-16*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2\sqrt{2+\sqrt{3}}x} \left(c_1 e^{2\sqrt{6}x} + c_2 e^{2\sqrt{2}x} + c_3 e^{4\sqrt{2+\sqrt{3}}x} + c_4 \right)$$

2.7 problem problem 16

Internal problem ID [291]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 16.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 18y'' + 81y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)+18*diff(y(x),x\$2)+81*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(3x) + c_2 \cos(3x) + c_3 \sin(3x) x + c_4 \cos(3x) x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

 $DSolve[y''''[x]+18*y''[x]+81*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (c_2x + c_1)\cos(3x) + (c_4x + c_3)\sin(3x)$$

2.8 problem problem 17

Internal problem ID [292]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 17.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$6y'''' + 11y'' + 4y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

dsolve(6*diff(y(x),x\$4)+11*diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin\left(\frac{\sqrt{2}x}{2}\right) + c_2 \cos\left(\frac{\sqrt{2}x}{2}\right) + c_3 \sin\left(\frac{2\sqrt{3}x}{3}\right) + c_4 \cos\left(\frac{2\sqrt{3}x}{3}\right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 94

 $DSolve[y''''[x]+11*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_3 \cos\left(\sqrt{\frac{1}{2}\left(11 - \sqrt{105}\right)}x\right) + c_1 \cos\left(\sqrt{\frac{1}{2}\left(11 + \sqrt{105}\right)}x\right) + c_4 \sin\left(\sqrt{\frac{1}{2}\left(11 - \sqrt{105}\right)}x\right) + c_2 \sin\left(\sqrt{\frac{1}{2}\left(11 + \sqrt{105}\right)}x\right)$$

2.9 problem problem 18

Internal problem ID [293]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 18.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 16y = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)=16*y(x),y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-2x} + c_3 \sin(2x) + c_4 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 36

DSolve[y'''[x]==16*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{2x} + c_3 e^{-2x} + c_2 \cos(2x) + c_4 \sin(2x)$$

2.10 problem problem 19

Internal problem ID [294]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = e^x c_1 + e^{-x} c_2 + c_3 e^{-x} x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

 $DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x}(c_2x + c_1) + c_3e^x$$

2.11 problem problem 20

Internal problem ID [295]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 20.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y''' + 3y'' + 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+3*diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=0,y(x), singsol=a

$$y(x) = c_1 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) + c_2 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) x + c_4 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 52

 $DSolve[y''''[x]+2*y'''[x]+3*y''[x]+2*y'[x]+y[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x/2} \left((c_4 x + c_3) \cos \left(\frac{\sqrt{3}x}{2} \right) + (c_2 x + c_1) \sin \left(\frac{\sqrt{3}x}{2} \right) \right)$$

2.12 problem problem 24

Internal problem ID [296]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 24.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$2y''' - 3y'' - 2y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1, y''(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

$$y(x) = -\frac{7}{2} + \frac{e^{2x}}{2} + 4e^{-\frac{x}{2}}$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 50

$$y(x) o \frac{1}{33} e^{3x/4} \left(99 \cosh\left(\frac{\sqrt{33}x}{4}\right) - 13\sqrt{33} \sinh\left(\frac{\sqrt{33}x}{4}\right) \right) - 2$$

2.13 problem problem 25

Internal problem ID [297]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 25.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$3y''' + 2y'' = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 0, y''(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 15

dsolve([3*diff(y(x),x\$3)+2*diff(y(x),x\$2)=0,y(0) = -1, D(y)(0) = 0, (D@@2)(y)(0) = 1],y(x), s(x) = 1,y(x)

$$y(x) = -\frac{13}{4} + \frac{3x}{2} + \frac{9e^{-\frac{2x}{3}}}{4}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 23

DSolve[{3*y'''[x]+2*y''[x]==0,{y[0]==1,y'[0]==-1,y''[0]==3}},y[x],x,IncludeSingularSolutions

$$y(x) \to \frac{1}{4} (14x + 27e^{-2x/3} - 23)$$

2.14 problem problem 26

Internal problem ID [298]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 26.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 10y'' + 25y' = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 4, y''(0) = 5]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve([diff(y(x),x\$3)+10*diff(y(x),x\$2)+25*diff(y(x),x)=0,y(0) = 3, D(y)(0) = 4, (D@@2)(y)(0)

$$y(x) = \frac{24}{5} - \frac{9e^{-5x}}{5} - 5e^{-5x}x$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 22

$$y(x) \to e^{-5x} \left(-5x - \frac{9}{5} \right) + \frac{24}{5}$$

2.15 problem problem 27

Internal problem ID [299]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 27.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 4y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-4*y(x)=0,y(x), singsol=all)

$$y(x) = e^x c_1 + c_2 e^{-2x} + c_3 e^{-2x} x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

DSolve[y'''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(c_2x + c_1) + c_3e^x$$

2.16 problem problem 28

Internal problem ID [300]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 28.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$2y''' - y'' - 5y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(2*diff(y(x),x\$3)-diff(y(x),x\$2)-5*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-\frac{x}{2}} + c_3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

DSolve[2*y'''[x]-y''[x]-5*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (c_1 e^{x/2} + c_3 e^{3x} + c_2)$$

2.17 problem problem 29

Internal problem ID [301]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 29.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 27y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$3)+27*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-3x} + c_2 e^{\frac{3x}{2}} \sin\left(\frac{3\sqrt{3}x}{2}\right) + c_3 e^{\frac{3x}{2}} \cos\left(\frac{3\sqrt{3}x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 51

DSolve[y'''[x]+27*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{-3x} + e^{3x/2} \left(c_3 \cos\left(\frac{3\sqrt{3}x}{2}\right) + c_2 \sin\left(\frac{3\sqrt{3}x}{2}\right) \right)$$

2.18 problem problem 30

Internal problem ID [302]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 30.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y''' + y'' - 3y' - 6y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $\frac{\text{dsolve}(\text{diff}(y(x),x\$4)-\text{diff}(y(x),x\$3)+\text{diff}(y(x),x\$2)-3*\text{diff}(y(x),x)-6*y(x)=0,y(x),}{\text{singsol=all}}$

$$y(x) = c_1 e^{2x} + e^{-x} c_2 + c_3 \sin(\sqrt{3}x) + c_4 \cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44

 $DSolve[y''''[x]-y'''[x]+y''[x]-3*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_3 e^{-x} + c_4 e^{2x} + c_1 \cos(\sqrt{3}x) + c_2 \sin(\sqrt{3}x)$$

2.19 problem problem 31

Internal problem ID [303]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 31.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' + 4y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+4*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y(x) = e^x c_1 + c_2 e^{-2x} \sin(2x) + c_3 e^{-2x} \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 33

 $DSolve[y'''[x]+3*y''[x]+4*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_3 e^x + e^{-2x} (c_2 \cos(2x) + c_1 \sin(2x))$$

2.20 problem problem 32

Internal problem ID [304]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 32.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + y''' - 3y'' - 5y' - 2y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

$$y(x) = c_1 e^{2x} + e^{-x}c_2 + c_3 e^{-x}x + c_4 e^{-x}x^2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 31

 $DSolve[y''''[x]+y'''[x]-3*y''[x]-5*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{-x}(x(c_3x+c_2)+c_4e^{3x}+c_1)$$

2.21 problem problem 38

Internal problem ID [305]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 38.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 5y'' + 100y' - 500y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 10, y''(0) = 250]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x\$3)-5*diff(y(x),x\$2)+100*diff(y(x),x)-500*y(x)=0,y(0) = 0,D(y)(0) = 10,(0)

$$y(x) = 2e^{5x} - 2\cos(10x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 19

 $DSolve[\{y'''[x]-5*y''[x]+100*y'[x]-500*y[x]==0,\{y[0]==0,y'[0]==10,y''[0]==250\}\},y[x],x,Include[\{y'''[x]-5*y''[x]+100*y'[x]-500*y[x]==0,\{y[0]==0,y'[0]==10,y''[0]==250\}\},y[x],x,Include[\{y''''[x]-5*y''[x]+100*y''[x]-500*y[x]==0,\{y[0]==0,y''[0]==10,y'''[0]==250\}\},y[x],x,Include[\{y''''[x]-5*y'''[x]+100*y''[x]-500*y[x]==0,\{y[0]==0,y''[0]==10,y'''[0]==250\}\},y[x],x,Include[\{y''''[x]-5*y'''[x]+100*y''[x]-5*y''[x]==0,\{y[0]==0,y''[0]==10,y'''[0]==250\}\},y[x],x,Include[\{y''''[x]-5*y'''[x]+100*y''[x]-5*y''[x]==0,\{y[0]==0,y''[0]==10,y'''[0]==250\}\},y[x],x,Include[\{y''''[x]-5*y''[x]+100*y''[x]=0,\{y[0]==0,y''[0]==10,y'''[0]==250\}\},y[x],x,Include[\{y''''[x]-5*y''[x]=0,x$

$$y(x) \to 2(e^{5x} - \cos(10x))$$

2.22 problem problem 48

Internal problem ID [306]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 48.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 22

dsolve([diff(y(x),x\$3)=y(x),y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{e^x}{3} + \frac{2e^{-\frac{x}{2}}\cos\left(\frac{\sqrt{3}x}{2}\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 33

DSolve[{y'''[x]==y[x],{y[0]==1,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3} \left(e^x + 2e^{-x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) \right)$$

2.23 problem problem 49

Internal problem ID [307]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 49.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y''' - y'' - y' - 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 15]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(x),x\$4)=diff(y(x),x\$3)+diff(y(x),x\$2)+diff(y(x),x)+2*y(x),y(0)=0), D(y)(0)=0

$$y(x) = e^{2x} - \frac{5e^{-x}}{2} - \frac{9\sin(x)}{2} + \frac{3\cos(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 33

$$y(x) \to \frac{1}{3} \left(e^x + 2e^{-x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) \right)$$

2.24 problem problem 54

Internal problem ID [308]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 54.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' + 6x^2y'' + 4y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^3*diff(y(x),x^3)+6*x^2*diff(y(x),x^2)+4*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + c_2 \ln(x) + \frac{c_3}{x^3}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 22

DSolve[x^3*y'''[x]+6*x^2*y''[x]+4*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{c_1}{3x^3} + c_2 \log(x) + c_3$$

2.25 problem problem 55

Internal problem ID [309]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 55.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' - x^2y'' + y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve(x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + x^2 c_2 + c_3 x^2 \ln(x)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 35

 $DSolve[x^3*y'''[x]-x^2*y''[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4}(2c_1 - c_2)x^2 + \frac{1}{2}c_2x^2\log(x) + c_3$$

2.26 problem problem 56

Internal problem ID [310]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 56.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' + 3x^2y'' + y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(x^3*diff(y(x),x$3)+3*x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_3 \ln(x)^2 + c_2 \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 23

 $DSolve[x^3*y'''[x] + 3*x^2*y''[x] + x*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{1}{2}c_2 \log^2(x) + c_1 \log(x) + c_3$$

2.27 problem problem 57

Internal problem ID [311]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 57.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' - 3x^2y'' + y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + c_2 x^{3+\sqrt{3}} + c_3 x^{3-\sqrt{3}}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 52

 $DSolve[x^3*y'''[x]-3*x^2*y''[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{c_2 x^{3+\sqrt{3}} + (2+\sqrt{3}) c_1 x^{3-\sqrt{3}}}{3+\sqrt{3}} + c_3$$

2.28 problem problem 58

Internal problem ID [312]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with

Constant Coefficients. Page 300 **Problem number**: problem 58.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

$$x^3y''' + 6x^2y'' + 7y'x + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(x^3*diff(y(x),x$3)+6*x^2*diff(y(x),x$2)+7*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + \frac{c_2 \ln(x)}{x} + \frac{c_3 \ln(x)^2}{x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 23

 $DSolve[x^3*y'''[x]+6*x^2*y''[x]+7*x*y'[x]+y[x]==0, y[x], x, IncludeSingularSolutions \\ -> True]$

$$y(x) \to \frac{\log(x)(c_3\log(x) + c_2) + c_1}{x}$$

3	Section 7.2, Matrices and Linear systems. Pag	ge 384	4
3.1	problem problem 13	4	10
3.2	problem problem 14	4	11

3.1 problem problem 13

Internal problem ID [313]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.2, Matrices and Linear systems. Page 384

Problem number: problem 13.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 6x_1(t)$$

$$x'_2(t) = -3x_1(t) - x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

$$dsolve([diff(x_1(t),t)=4*x_1(t)+2*x_1(t),diff(x_2(t),t)=-3*x_1(t)-x_2(t)],[x_1(t),x_2(t),t]=-3*x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_1(t)-x_2(t),[x_1(t),x_2(t),t]=-3*x_1(t)-x_1$$

$$x_1(t) = -\frac{7c_2 e^{6t}}{3}$$

$$x_2(t) = e^{-t}c_1 + c_2e^{6t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 56

 $DSolve[\{x1'[t] == 4*x1[t] + 2*x2[t], x2'[t] == -3*x1[t] - x2[t]\}, \{x1[t], x2[t]\}, t, Include Singular Solution for the property of the prop$

$$x1(t) \to e^t(c_1(3e^t - 2) + 2c_2(e^t - 1))$$

$$x2(t) \rightarrow e^t(c_2(3-2e^t)-3c_1(e^t-1))$$

3.2 problem problem 14

Internal problem ID [314]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.2, Matrices and Linear systems. Page 384

Problem number: problem 14.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -3x_1(t) + 2x_2(t)$$

Time used: 0.016 (sec). Leaf size: 36

 $dsolve([diff(x_1(t),t)=-3*x_1(t)+2*x_2(t),diff(x_2(t),t)=-3*x_1(t)+4*x_2(t)],[x_1(t),t)=-3*x_1(t)+4*x_2(t)]$

$$x_1(t) = 2c_1 e^{-2t} + \frac{c_2 e^{3t}}{3}$$

$$x_2(t) = c_1 e^{-2t} + c_2 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 72

 $DSolve[{x1'[t] == -3*x1[t] + 2*x2[t], x2'[t] == -3*x1[t] + 4*x2[t]}, {x1[t], x2[t]}, t, Include Singular Solve [{x1'[t] == -3*x1[t] + 2*x2[t]}, {x1[t], x2[t]}, t, Include Singular Solve [{x1'[t] == -3*x1[t] + 2*x2[t]}, {x1[t], x2[t]}, {x2[t], x2[t]}, {x2[t], x2[t]}, {x2[t], x2[t]}, {x3[t], x2[t]}, {x3[t], x3[t]}, {x3[t], x3[t]},$

$$x1(t) \rightarrow \frac{1}{5}e^{-2t}(2c_2(e^{5t}-1)-c_1(e^{5t}-6))$$

$$x2(t) \to \frac{1}{5}e^{-2t} \left(-3(c_1 - 2c_2)e^{5t} + 3c_1 - c_2\right)$$

4 Section 7.3, The eigenvalue method for linear systems. Page 395

4.1	problem problem 1 .																44
4.2	problem problem 2 .											•					45
4.3	problem problem 3 .											•					46
4.4	problem problem 4 .																47
4.5	problem problem 5 .											•					48
4.6	problem problem 6 .											•					49
4.7	problem problem 7 .											•					50
4.8	problem problem 8 .																51
4.9	problem problem 9 .																52
4.10	problem problem 10											•					53
4.11	problem problem 11																54
4.12	problem problem 12											•					55
4.13	problem problem 13																56
4.14	problem problem 14																57
4.15	problem problem 15																58
4.16	problem problem 16																59
4.17	problem problem 17											•					60
4.18	problem problem 18																61
4.19	problem problem 19																62
4.20	problem problem 20																63
4.21	problem problem 21																64
4.22	problem problem 22																65
4.23	problem problem 23																66
4.24	problem problem 24																67
4.25	problem problem 25																68
4.26	problem problem 26																69
4.27	problem problem 38																70
4.28	problem problem 39																72
4.29	problem problem 40																74
4.30	problem problem 41																76
4.31	problem problem 42																78
4.32	problem problem 43																79
4.33	problem problem 44																81
4.34	problem problem 45																83
4.35	problem problem 46																85
4.36	problem problem 47																87
4.37	problem problem 48																89
4.38	problem problem 49																91

1	ี
4	1

4.39 problem problem 50	4.39	problem problem 50																																			93	3
-------------------------	------	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

4.1 problem problem 1

Internal problem ID [315]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney **Section**: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 1.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) + 2x_2(t)$$

$$x_2'(t) = 2x_1(t) + x_2(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

dsolve([diff(x_1(t),t)=x_1(t)+2*x_2(t),diff(x_2(t),t)=2*x_1(t)+x_2(t)],[x_1(t), x_2(t)]

$$x_1(t) = -e^{-t}c_1 + c_2e^{3t}$$

$$x_2(t) = e^{-t}c_1 + c_2e^{3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 46

DSolve[{x1'[t]==x1[t]+2*x2[t],x2'[t]==2*x1[t]+x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions

$$x1(t) \rightarrow e^t(c_1 \cosh(2t) + c_2 \sinh(2t))$$

$$x2(t) \rightarrow e^t(c_2 \cosh(2t) + c_1 \sinh(2t))$$

4.2 problem problem 2

Internal problem ID [316]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 2.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 2x_1(t) + 3x_2(t)$$

$$x_2'(t) = 2x_1(t) + x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

$$x_1(t) = \frac{3c_1 e^{4t}}{2} - c_2 e^{-t}$$

$$x_2(t) = c_1 e^{4t} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 68

$$x1(t) \rightarrow \frac{1}{5}e^{-t}(3(c_1+c_2)e^{5t}+2c_1-3c_2)$$

$$x2(t) \rightarrow \frac{1}{5}e^{-t}(2(c_1+c_2)e^{5t}-2c_1+3c_2)$$

4.3 problem problem 3

Internal problem ID [317]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) + 4x_2(t)$$

$$x_2'(t) = 3x_1(t) + 2x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

 $dsolve([diff(x_1(t),t) = 3*x_1(t)+4*x_2(t), diff(x_2(t),t) = 3*x_1(t)+2*x_2(t), x_1(0))$

$$x_1(t) = -\frac{e^{-t}}{7} + \frac{8e^{6t}}{7}$$

$$x_2(t) = \frac{e^{-t}}{7} + \frac{6e^{6t}}{7}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 44

 $DSolve[{x1'[t] == 3*x1[t] + 4*x2[t], x2'[t] == 3*x1[t] + 2*x2[t]}, {x1[0] == 1, x2[0] == 1}, {x1[t], x2[t]}, t,$

$$x1(t) \to \frac{1}{7}e^{-t}(8e^{7t} - 1)$$

$$x2(t) \to \frac{1}{7}e^{-t}(6e^{7t}+1)$$

4.4 problem problem 4

Internal problem ID [318]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 4.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 4x_1(t) + x_2(t)$$

$$x_2'(t) = 6x_1(t) - x_2(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

$$x_1(t) = -\frac{c_1 e^{-2t}}{6} + c_2 e^{5t}$$

$$x_2(t) = c_1 e^{-2t} + c_2 e^{5t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 68

$$x1(t) \rightarrow \frac{1}{7}e^{-2t}((6c_1+c_2)e^{7t}+c_1-c_2)$$

$$x2(t) \to \frac{1}{7}e^{-2t} (6c_1(e^{7t} - 1) + c_2(e^{7t} + 6))$$

4.5 problem problem 5

Internal problem ID [319]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 5.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 6x_1(t) - 7x_2(t)$$

$$x_2'(t) = x_1(t) - 2x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

$$x_1(t) = 7c_1 e^{5t} + c_2 e^{-t}$$

$$x_2(t) = c_1 e^{5t} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 71

$$x1(t) \to \frac{1}{6}e^{-t}(7(c_1 - c_2)e^{6t} - c_1 + 7c_2)$$

$$x2(t) \to \frac{1}{6}e^{-t}((c_1 - c_2)e^{6t} - c_1 + 7c_2)$$

4.6 problem problem 6

Internal problem ID [320]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 6.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 9x_1(t) + 5x_2(t)$$

$$x'_2(t) = -6x_1(t) - 2x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 0]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

$$dsolve([diff(x_1(t),t) = 9*x_1(t)+5*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2(t), x_1(t)+5*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2(t)-2*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2(t)-2*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2($$

$$x_1(t) = 6 e^{4t} - 5 e^{3t}$$

$$x_2(t) = -6e^{4t} + 6e^{3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 33

$$DSolve[{x1'[t] == 9*x1[t] + 5*x2[t], x2'[t] == -6*x1[t] - 2*x2[t]}, {x1[0] == 1, x2[0] == 0}, {x1[t], x2[t]}, t= -6*x1[t] - 2*x2[t], {x1[0] == 1, x2[0] == 0}, {x1[t], x2[t]}, t= -6*x1[t] - 2*x2[t], {x1[0] == 1, x2[0] == 0}, {x1[t], x2[t]}, t= -6*x1[t] - 2*x2[t], {x1[0] == 1, x2[0] == 0}, {x1[t], x2[t]}, t= -6*x1[t] - 2*x2[t], {x1[0] == 1, x2[0] == 0}, {x1[t], x2[t]}, t= -6*x1[t] - 2*x2[t], {x1[0] == 1, x2[0] == 0}, {x1[t], x2[t]}, t= -6*x1[t], {x2[t], x2[t]}, {x2[t], x2[t]}, t= -6*x1[t], {x2[t], x2[t]}, {x2[t],$$

$$x1(t) \to e^{3t} (6e^t - 5)$$

$$x2(t) \to -6e^{3t} \left(e^t - 1 \right)$$

4.7 problem problem 7

Internal problem ID [321]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 7.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -3x_1(t) + 4x_2(t)$$

$$x_2'(t) = 6x_1(t) - 5x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

$$x_1(t) = -\frac{2c_1 e^{-9t}}{3} + c_2 e^t$$

$$x_2(t) = c_1 e^{-9t} + c_2 e^t$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 74

 $DSolve[\{x1'[t] == -3*x1[t] + 4*x2[t], x2'[t] == 6*x1[t] - 5*x2[t]\}, \{x1[t], x2[t]\}, t, Include Singular Solution (a) and the property of th$

$$x1(t) \rightarrow \frac{2}{5}(c_1 - c_2)e^{-9t} + \frac{1}{5}(3c_1 + 2c_2)e^t$$

$$x2(t) \rightarrow \frac{1}{5}e^{-9t}((3c_1 + 2c_2)e^{10t} - 3c_1 + 3c_2)$$

4.8 problem problem 8

Internal problem ID [322]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney **Section**: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) - 5x_2(t)$$

$$x'_2(t) = x_1(t) - x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 48

$$dsolve([diff(x_1(t),t)=x_1(t)-5*x_2(t),diff(x_2(t),t)=x_1(t)-x_2(t)],[x_1(t),x_2(t)]$$

$$x_1(t) = 2c_1 \cos(2t) - 2c_2 \sin(2t) + c_1 \sin(2t) + c_2 \cos(2t)$$

$$x_2(t) = c_1 \sin\left(2t\right) + c_2 \cos\left(2t\right)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 48

$$x1(t) \to c_1 \cos(2t) + (c_1 - 5c_2) \sin(t) \cos(t)$$

$$x2(t) \to c_2 \cos(2t) + (c_1 - c_2) \sin(t) \cos(t)$$

4.9 problem problem 9

Internal problem ID [323]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 9.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 2x_1(t) - 5x_2(t)$$

$$x_2'(t) = 4x_1(t) - 2x_2(t)$$

With initial conditions

$$[x_1(0) = 2, x_2(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

 $dsolve([diff(x_1(t),t) = 2*x_1(t)-5*x_2(t), diff(x_2(t),t) = 4*x_1(t)-2*x_2(t), x_1(0))$

$$x_1(t) = 2\cos(4t) - \frac{11\sin(4t)}{4}$$

$$x_2(t) = \frac{\sin(4t)}{2} + 3\cos(4t)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 34

 $DSolve[{x1'[t]==x1[t]-5*x2[t],x2'[t]==x1[t]-x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Include {x1'[t]==x1[t]-5*x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Include {x1'[t]==x1[t]-5*x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Include {x1'[t]==x1[t]-x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Include {x1'[t]==x1[t]-x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Include {x1'[t]==x1[t]-x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Include {x1'[t]==x1[t]-x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Include {x1'[t]==x1[t]-x2[t]},{x1[t]==x1[t]-x2[t]-x2[t]},{x1[t]=x1[t]-x2[t]-x2[t]},{x1[t]=x1[t]-x2[t]-x2[t]},{x1[t]=x1[t]-x2[t]-x2[t]},{x1[t]=x1[t]-x2[t]-x2[t]-x2[t]},{x1[t]=x1[t]-x2[t]-x2[t]-x2[t]},{x1[t]=x1[t]-x2[t]-x$

$$x1(t) \rightarrow 2\cos(2t) - 13\sin(t)\cos(t)$$

$$x2(t) \rightarrow 3\cos(2t) - \sin(t)\cos(t)$$

4.10 problem problem 10

Internal problem ID [324]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 10.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -3x_1(t) - 2x_2(t)$$

$$x'_2(t) = 9x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 50

$$dsolve([diff(x_1(t),t)=-3*x_1(t)-2*x_2(t),diff(x_2(t),t)=9*x_1(t)+3*x_2(t)],[x_1(t),x_2(t),x_3(t)]$$

$$x_1(t) = \frac{c_1 \cos(3t)}{3} - \frac{c_2 \sin(3t)}{3} - \frac{c_1 \sin(3t)}{3} - \frac{c_2 \cos(3t)}{3}$$

$$x_2(t) = c_1 \sin(3t) + c_2 \cos(3t)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 53

$$x1(t) \to c_1 \cos(3t) - \frac{1}{3}(3c_1 + 2c_2)\sin(3t)$$

 $x2(t) \to c_2 \cos(3t) + (3c_1 + c_2)\sin(3t)$

4.11 problem problem 11

Internal problem ID [325]

 $\bf Book:$ Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 11.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) - 2x_2(t)$$

$$x_2'(t) = 2x_1(t) + x_2(t)$$

With initial conditions

$$[x_1(0) = 0, x_2(0) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

$$x_1(t) = -4 e^t \sin(2t)$$

$$x_2(t) = 4 e^t \cos(2t)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

$$DSolve[{x1'[t] == x1[t] - 2*x2[t], x2'[t] == 2*x1[t] + x2[t]}, {x1[0] == 0, x2[0] == 4}, {x1[t], x2[t]}, t, Inclear = 0.$$

$$x1(t) \to -4e^t \sin(2t)$$

$$x2(t) \to 4e^t \cos(2t)$$

4.12 problem problem 12

Internal problem ID [326]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 12.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) - 5x_2(t)$$

$$x_2'(t) = x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 60

 $dsolve([diff(x_1(t),t)=x_1(t)-5*x_2(t),diff(x_2(t),t)=x_1(t)+3*x_2(t)],[x_1(t),x_2(t)]$

$$x_1(t) = e^{2t} (2c_1 \cos(2t) - c_2 \cos(2t) - c_1 \sin(2t) - 2c_2 \sin(2t))$$

$$x_2(t) = e^{2t}(c_1 \sin(2t) + c_2 \cos(2t))$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 67

DSolve[{x1'[t]==x1[t]-5*x2[t],x2'[t]==x1[t]+3*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions

$$x1(t) \rightarrow \frac{1}{2}e^{2t}(2c_1\cos(2t) - (c_1 + 5c_2)\sin(2t))$$

$$x2(t) \rightarrow \frac{1}{2}e^{2t}(2c_2\cos(2t) + (c_1 + c_2)\sin(2t))$$

4.13 problem problem 13

Internal problem ID [327]

 $\bf Book:$ Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 13.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 5x_1(t) - 9x_2(t)$$

$$x'_2(t) = 2x_1(t) - x_2(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 58

$$\frac{dsolve([diff(x_1(t),t)=5*x_1(t)-9*x_2(t),diff(x_2(t),t)=2*x_1(t)-x_2(t)],[x_1(t),x_2(t),x_3(t)]}{dsolve([diff(x_1(t),t)=5*x_1(t)-9*x_2(t),diff(x_2(t),t)=2*x_1(t)-x_2(t)],[x_1(t),x_2(t),x_3(t),x_3(t)]}{dsolve([diff(x_1(t),t)=5*x_1(t)-9*x_1(t)-9*x_1(t),diff(x_2(t),t)=2*x_1(t)-x_2(t)],[x_1(t),x_3(t),x_3(t),x_3(t),x_3(t),x_3(t),x_3(t)]}$$

$$x_1(t) = \frac{3e^{2t}(c_1\cos(3t) + c_2\cos(3t) + c_1\sin(3t) - c_2\sin(3t))}{2}$$

$$x_2(t) = e^{2t}(c_1 \sin(3t) + c_2 \cos(3t))$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 66

$$x1(t) \to e^{2t}(c_1 \cos(3t) + (c_1 - 3c_2)\sin(3t))$$
$$x2(t) \to \frac{1}{3}e^{2t}(3c_2 \cos(3t) + (2c_1 - 3c_2)\sin(3t))$$

4.14 problem problem 14

Internal problem ID [328]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 14.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - 4x_2(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

$$x_1(t) = e^{3t}(c_1 \cos(4t) - c_2 \sin(4t))$$

$$x_2(t) = e^{3t}(c_1 \sin(4t) + c_2 \cos(4t))$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 51

$$x1(t) \to e^{3t}(c_1\cos(4t) - c_2\sin(4t))$$

$$x2(t) \rightarrow e^{3t}(c_2\cos(4t) + c_1\sin(4t))$$

4.15 problem problem 15

Internal problem ID [329]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 15.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 7x_1(t) - 5x_2(t)$$

$$x'_2(t) = 4x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

$$dsolve([diff(x_1(t),t)=7*x_1(t)-5*x_2(t),diff(x_2(t),t)=4*x_1(t)+3*x_2(t)],[x_1(t),x_2(t)]$$

$$x_1(t) = \frac{e^{5t}(2c_1\cos(4t) - 2c_2\sin(4t) + c_1\sin(4t) + c_2\cos(4t))}{2}$$

$$x_2(t) = e^{5t}(c_1 \sin(4t) + c_2 \cos(4t))$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 72

$$x1(t) \rightarrow \frac{1}{4}e^{5t}(4c_1\cos(4t) + (2c_1 - 5c_2)\sin(4t))$$

$$x2(t) \rightarrow \frac{1}{2}e^{5t}(2c_2\cos(4t) + (2c_1 - c_2)\sin(4t))$$

4.16 problem problem 16

Internal problem ID [330]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 16.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -50x_1(t) + 20x_2(t)$$

$$x'_2(t) = 100x_1(t) - 60x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve([diff(x_1(t),t)=-50*x_1(t)+20*x_2(t),diff(x_2(t),t)=100*x_1(t)-60*x_2(t)],[x_1(t)=100*x_1(t)-60*x_2(t)]

$$x_1(t) = -\frac{2c_1e^{-100t}}{5} + \frac{c_2e^{-10t}}{2}$$

$$x_2(t) = c_1 e^{-100t} + c_2 e^{-10t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 74

 $DSolve [\{x1'[t] = -50*x1[t] + 20*x2[t], x2'[t] = -100*x1[t] - 60*x2[t]\}, \{x1[t], x2[t]\}, t, Include Singular (a) = -100*x1[t] - 60*x2[t]\}, t, Include Singular (a) = -100*x1[t] - 60*x2[t]], t, Include Singular (a) = -100*x1[t] - 60*x1[t]], t, Include Singular (a) = -100*x1[t]], t, Include Singular (a)$

$$x1(t) \rightarrow \frac{1}{9}e^{-100t} ((5c_1 + 2c_2)e^{90t} + 4c_1 - 2c_2)$$

$$x2(t) \rightarrow \frac{1}{9}e^{-100t} (10c_1(e^{90t} - 1) + c_2(4e^{90t} + 5))$$

4.17 problem problem 17

Internal problem ID [331]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 17.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 4x_1(t) + x_2(t) + 4x_3(t)$$

$$x_2'(t) = x_1(t) + 7x_2(t) + x_3(t)$$

$$x_3'(t) = 4x_1(t) + x_2(t) + 4x_3(t)$$

Time used: 0.031 (sec). Leaf size: 55

$$x_1(t) = c_2 e^{9t} + c_3 e^{6t} - c_1$$

$$x_2(t) = c_2 e^{9t} - 2c_3 e^{6t}$$

$$x_3(t) = c_1 + c_2 e^{9t} + c_3 e^{6t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 129

 $DSolve[{x1'[t] == 4*x1[t] + x2[t] + 4*x3[t], x2'[t] == x1[t] + 7*x2[t] + x3[t], x3'[t] == 4*x1[t] + x2[t] + 4*x3[t] + x2[t] + x3[t] + x3[t]$

$$x1(t) \rightarrow \frac{1}{6} ((c_1 - 2c_2 + c_3)e^{6t} + 2(c_1 + c_2 + c_3)e^{9t} + 3c_1 - 3c_3)$$

$$x2(t) \rightarrow \frac{1}{3} ((c_1 + c_2 + c_3)e^{9t} - (c_1 - 2c_2 + c_3)e^{6t})$$

$$x3(t) \rightarrow \frac{1}{6} ((c_1 - 2c_2 + c_3)e^{6t} + 2(c_1 + c_2 + c_3)e^{9t} - 3c_1 + 3c_3)$$

4.18 problem problem 18

Internal problem ID [332]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 18.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) + 2x_2(t) + 2x_3(t)$$

$$x_2'(t) = 2x_1(t) + 7x_2(t) + x_3(t)$$

$$x_3'(t) = 2x_1(t) + x_2(t) + 7x_3(t)$$

✓ Solution by Maple

Time used: 0.281 (sec). Leaf size: 51

 $dsolve([diff(x_1(t),t)=x_1(t)+2*x_2(t)+2*x_3(t),diff(x_2(t),t)=2*x_1(t)+7*x_2(t)+x_3(t)+2*x_3(t),diff(x_2(t),t)=2*x_1(t)+7*x_2(t)+x_3$

$$x_1(t) = \frac{c_2 e^{9t}}{2} - 4c_1$$

$$x_2(t) = c_2 e^{9t} - c_3 e^{6t} + c_1$$

$$x_3(t) = c_1 + c_2 e^{9t} + c_3 e^{6t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 128

 $DSolve[{x1'[t] == x1[t] + 2*x2[t] + 2*x3[t], x2'[t] == 2*x1[t] + 7*x2[t] + x3[t], x3'[t] == 2*x1[t] + 7*x2[t] + 7*$

$$x1(t) \to \frac{1}{9} (c_1(e^{9t} + 8) + 2(c_2 + c_3) (e^{9t} - 1))$$

$$x2(t) \to \frac{1}{18} (9(c_2 - c_3)e^{6t} + 4(c_1 + 2(c_2 + c_3))e^{9t} - 4c_1 + c_2 + c_3)$$

$$x3(t) \to \frac{1}{18} (-9(c_2 - c_3)e^{6t} + 4(c_1 + 2(c_2 + c_3))e^{9t} - 4c_1 + c_2 + c_3)$$

4.19 problem problem 19

Internal problem ID [333]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 19.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 4x_1(t) + x_2(t) + x_3(t)$$

$$x_2'(t) = x_1(t) + 4x_2(t) + x_3(t)$$

$$x_3'(t) = x_1(t) + x_2(t) + 4x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 64

$$dsolve([diff(x_1(t),t)=4*x_1(t)+1*x_2(t)+1*x_3(t),diff(x_2(t),t)=1*x_1(t)+4*x_2(t)+1*x_3(t),diff(x_2(t),t)=1*x_1(t)+4*x_2(t)+1*x_3(t)+1*x_1(t)+1*x_2(t)+1*x_3(t)+1*$$

$$x_1(t) = -2c_2e^{3t} + c_3e^{6t} - c_1e^{3t}$$

$$x_2(t) = c_2 e^{3t} + c_3 e^{6t} + c_1 e^{3t}$$

$$x_3(t) = c_2 e^{3t} + c_3 e^{6t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 112

$$x1(t) \rightarrow \frac{1}{3}e^{3t}(c_1(e^{3t}+2)+(c_2+c_3)(e^{3t}-1))$$

$$x2(t) \rightarrow \frac{1}{3}((c_1 + c_2 + c_3)e^{6t} - (c_1 - 2c_2 + c_3)e^{3t})$$

$$x3(t) \rightarrow \frac{1}{3}((c_1 + c_2 + c_3)e^{6t} - (c_1 + c_2 - 2c_3)e^{3t})$$

4.20 problem problem 20

Internal problem ID [334]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 20.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 5x_1(t) + x_2(t) + 3x_3(t)$$

$$x_2'(t) = x_1(t) + 7x_2(t) + x_3(t)$$

$$x_3'(t) = 3x_1(t) + x_2(t) + 5x_3(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 64

$$dsolve([diff(x_1(t),t)=5*x_1(t)+1*x_2(t)+3*x_3(t),diff(x_2(t),t)=1*x_1(t)+7*x_2(t)+1*x_3(t),diff(x_2(t),t)=1*x_1(t)+7*x_2(t)+1*x_3(t)+1*$$

$$x_1(t) = c_1 e^{9t} - c_2 e^{2t} + c_3 e^{6t}$$

$$x_2(t) = c_1 e^{9t} - 2c_3 e^{6t}$$

$$x_3(t) = c_1 e^{9t} + c_2 e^{2t} + c_3 e^{6t}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 141

$$x1(t) \to \frac{1}{6} \left(3(c_1 - c_3)e^{2t} + (c_1 - 2c_2 + c_3)e^{6t} + 2(c_1 + c_2 + c_3)e^{9t} \right)$$

$$x2(t) \to \frac{1}{3} \left((c_1 + c_2 + c_3)e^{9t} - (c_1 - 2c_2 + c_3)e^{6t} \right)$$

$$x3(t) \to \frac{1}{6} \left(-3(c_1 - c_3)e^{2t} + (c_1 - 2c_2 + c_3)e^{6t} + 2(c_1 + c_2 + c_3)e^{9t} \right)$$

4.21 problem problem 21

Internal problem ID [335]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 21.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 5x_1(t) - 6x_3(t)$$

$$x'_2(t) = 2x_1(t) - x_2(t) - 2x_3(t)$$

$$x'_3(t) = 4x_1(t) - 2x_2(t) - 4x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 54

 $dsolve([diff(x_{1}(t),t)=5*x_{1}(t)+0*x_{2}(t)-6*x_{3}(t),diff(x_{2}(t),t)=2*x_{1}(t)-1*x_{2}(t)-2*x_{3}(t),diff(x_{4}(t),t)=2*x_{4}(t)-1*x_{$

$$x_1(t) = \frac{3c_2e^t}{2} + c_3e^{-t} + \frac{6c_1}{5}$$

$$x_2(t) = \frac{c_2 e^t}{2} + \frac{c_3 e^{-t}}{2} + \frac{2c_1}{5}$$

$$x_3(t) = c_1 + c_2 e^t + c_3 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 123

$$x1(t) \rightarrow (c_1 + 12c_2 - 6c_3)\cosh(t) + (5c_1 - 6c_3)\sinh(t) + 6(c_3 - 2c_2)$$

$$x2(t) \rightarrow 5c_2 \cosh(t) - 2c_3 \cosh(t) - (-2c_1 + c_2 + 2c_3) \sinh(t) - 4c_2 + 2c_3$$

$$x3(t) \rightarrow -2(c_1 - 3c_2)e^{-t} + 2(c_1 + 2c_2 - 2c_3)e^{t} + 5(c_3 - 2c_2)e^{-t}$$

4.22 problem problem 22

Internal problem ID [336]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 22.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) + 2x_2(t) + 2x_3(t)$$

$$x'_2(t) = -5x_1(t) - 4x_2(t) - 2x_3(t)$$

$$x_3'(t) = 5x_1(t) + 5x_2(t) + 3x_3(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 55

 $dsolve([diff(x_1(t),t)=3*x_1(t)+2*x_2(t)+2*x_3(t),diff(x_2(t),t)=-5*x_1(t)-4*x_2(t)-2*x_3(t),diff(x_2(t),t)=-5*x_1(t)-4*x_2(t)-2*x_3(t),diff(x_3(t),t)=-5*x_1(t)-4*x_2(t)-2*x_3(t),diff(x_3(t),t)=-5*x_1(t)-4*x_2(t)-2*x_3(t),diff(x_3(t),t)=-5*x_3(t),diff(x_3(t),t)=-5*x_3(t),diff(x_3(t),t)=-5*x_3(t)-2*x_3(t),diff(x_3(t),t)=-5*x_3(t),diff(x_3(t),t)=-5*x_3(t),diff(x_3(t),t)=-5*x_3(t)-2*x_3(t),diff(x_3(t),t)=-5*x_3(t),diff$

$$x_1(t) = c_3 e^{3t} - c_1 e^t$$

$$x_2(t) = -e^{-2t}c_2 - c_3e^{3t} + c_1e^t$$

$$x_3(t) = e^{-2t}c_2 + c_3e^{3t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 95

DSolve[{x1'[t]==3*x1[t]+2*x2[t]+2*x3[t],x2'[t]==-5*x1[t]-4*x2[t]-2*x3[t],x3'[t]==5*x1[t]+5*x2

$$x1(t) \to (c_1 + c_2 + c_3)e^{3t} - (c_2 + c_3)e^t$$

$$x2(t) \to e^{-2t} (c_1(-e^{5t}) - 2(c_2 + c_3)e^{4t} \sinh(t) + c_1 + c_2)$$

$$x3(t) \to (c_1 + c_2 + c_3)e^{3t} - (c_1 + c_2)e^{-2t}$$

4.23 problem problem 23

Internal problem ID [337]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 23.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) + x_2(t) + x_3(t)$$

$$x'_2(t) = -5x_1(t) - 3x_2(t) - x_3(t)$$

$$x'_3(t) = 5x_1(t) + 5x_2(t) + 3x_3(t)$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 59

$$dsolve([diff(x_1(t),t)=3*x_1(t)+1*x_2(t)+1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-1*x_3(t)-3*x_2(t)-1*x_3(t)-3*x_2(t)-1*x_3(t)-3*x_2(t)-1*x_3(t)-3*x_2(t)-1*x_3(t)-3*x_2(t)-1*x_3(t)-3*x_2(t)-1*x_3(t)-1*x$$

$$x_1(t) = c_3 e^{3t} - c_1 e^{2t}$$

$$x_2(t) = -e^{-2t}c_2 - c_3e^{3t} + c_1e^{2t}$$

$$x_3(t) = e^{-2t}c_2 + c_3e^{3t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 99

$$x1(t) \to (c_1 + c_2 + c_3)e^{3t} - (c_2 + c_3)e^{2t}$$

$$x2(t) \to e^{-2t} ((c_2 + c_3)e^{4t} - (c_1 + c_2 + c_3)e^{5t} + c_1 + c_2)$$

$$x3(t) \to (c_1 + c_2 + c_3)e^{3t} - (c_1 + c_2)e^{-2t}$$

4.24 problem problem 24

Internal problem ID [338]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 24.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t) + x_2(t) - x_3(t)$$

$$x'_2(t) = -4x_1(t) - 3x_2(t) - x_3(t)$$

$$x'_3(t) = 4x_1(t) + 4x_2(t) + 2x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 77

$$dsolve([diff(x_{1}(t),t)=2*x_{1}(t)+1*x_{2}(t)-1*x_{3}(t),diff(x_{2}(t),t)=-4*x_{1}(t)-3*x_{2}(t)-1*x_{3}(t),diff(x_{4}(t),t)=-4*x_{4}(t)-3*x_{4}(t)-1*x$$

$$x_1(t) = \frac{c_2 \cos(2t)}{2} - \frac{c_3 \sin(2t)}{2} + \frac{c_2 \sin(2t)}{2} + \frac{c_3 \cos(2t)}{2} - c_1 e^t$$

$$x_2(t) = -c_2 \sin(2t) - c_3 \cos(2t) + c_1 e^t$$

$$x_3(t) = c_2 \sin(2t) + c_3 \cos(2t)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 101

$$DSolve[{x1'[t] == 2*x1[t] + 1*x2[t] - 1*x3[t], x2'[t] == -4*x1[t] - 3*x2[t] - 1*x3[t], x3'[t] == -4*x1[t] + 4*x2[t] - 1*x3[t] + 1*x2[t] + 1*x2[t$$

$$x1(t) \to (c_2 + c_3) (-e^t) + (c_1 + c_2 + c_3) \cos(2t) + (c_1 + c_2) \sin(2t)$$

$$x2(t) \to (c_2 + c_3)e^t - c_3 \cos(2t) - (2(c_1 + c_2) + c_3) \sin(2t)$$

$$x3(t) \to c_3 \cos(2t) + (2(c_1 + c_2) + c_3) \sin(2t)$$

4.25 problem problem 25

Internal problem ID [339]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 25.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 5x_1(t) + 5x_2(t) + 2x_3(t)$$

$$x'_2(t) = -6x_1(t) - 6x_2(t) - 5x_3(t)$$

$$x'_3(t) = 6x_1(t) + 6x_2(t) + 5x_3(t)$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 101

$$dsolve([diff(x_1(t),t)=5*x_1(t)+5*x_2(t)+2*x_3(t),diff(x_2(t),t)=-6*x_1(t)-6*x_2(t)-5*x_1(t)+2*x_2(t)+2*x_3(t),diff(x_2(t),t)=-6*x_1(t)+6*x_2(t)-5*x_1(t)+2*x_2(t)+2*x_1(t)+$$

$$x_1(t) = \frac{c_2 e^{2t} \sin(3t)}{2} + \frac{c_2 e^{2t} \cos(3t)}{2} + \frac{c_3 e^{2t} \cos(3t)}{2} - \frac{c_3 e^{2t} \sin(3t)}{2} - c_1$$

$$x_2(t) = -c_2 e^{2t} \sin(3t) - c_3 e^{2t} \cos(3t) + c_1$$

$$x_3(t) = e^{2t}(c_2 \sin(3t) + c_3 \cos(3t))$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 114

$$x1(t) \to e^{2t}((c_1 + c_2 + c_3)\cos(3t) + (c_1 + c_2)\sin(3t)) - c_2 - c_3$$

$$x2(t) \to e^{2t}(-c_3\cos(3t) - (2(c_1 + c_2) + c_3)\sin(3t)) + c_2 + c_3$$

$$x3(t) \to e^{2t}(c_3\cos(3t) + (2(c_1 + c_2) + c_3)\sin(3t))$$

4.26 problem problem 26

Internal problem ID [340]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 26.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) + x_3(t)$$

$$x'_2(t) = 9x_1(t) - x_2(t) + 2x_3(t)$$

$$x'_3(t) = -9x_1(t) + 4x_2(t) - x_3(t)$$

With initial conditions

$$[x_1(0) = 0, x_2(0) = 0, x_3(0) = 17]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 64

$$dsolve([diff(x_1(t),t) = 3*x_1(t)+x_3(t), diff(x_2(t),t) = 9*x_1(t)-x_2(t)+2*x_3(t), diff(x_2(t),t) = 9*x_1(t)-x_2(t)+2*x_3(t), diff(x_3(t),t) = 9*x_1(t)-x_2(t)+2*x_3(t), diff(x_3(t),t) = 9*x_1(t)-x_2(t)+2*x_3(t), diff(x_3(t),t) = 9*x_3(t)+2*x_3(t), diff(x_3(t),t) = 9*x_3(t)+2*x_3(t), diff(x_3(t),t) = 9*x_3(t)+2*x_3(t), diff(x_3(t),t) = 9*x_3(t)+2*x_3(t), diff(x_3(t),t) = 9*x_3(t)+2*x_$$

$$x_1(t) = e^{-t} \sin(t) - 4 e^{-t} \cos(t) + 4 e^{3t}$$

$$x_2(t) = -9e^{-t}\cos(t) - 2e^{-t}\sin(t) + 9e^{3t}$$

$$x_3(t) = 17 e^{-t} \cos(t)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 62

$$x1(t) \to e^{-t} (4e^{4t} + \sin(t) - 4\cos(t))$$

 $x2(t) \to e^{-t} (9e^{4t} - 2\sin(t) - 9\cos(t))$
 $x3(t) \to 17e^{-t}\cos(t)$

4.27 problem problem 38

Internal problem ID [341]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 38.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = 2x_1(t) + 2x_2(t)$$

$$x'_3(t) = 3x_2(t) + 3x_3(t)$$

$$x'_4(t) = 4x_3(t) + 4x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 75

$$x_1(t) = -\frac{c_1 \mathrm{e}^t}{4}$$

$$x_2(t) = \frac{c_1 e^t}{2} + \frac{c_2 e^{2t}}{6}$$

$$x_3(t) = -\frac{3c_1e^t}{4} - \frac{c_2e^{2t}}{2} - \frac{c_4e^{3t}}{4}$$

$$x_4(t) = c_1 e^t + c_2 e^{2t} + c_3 e^{4t} + c_4 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 128

DSolve[{x1'[t]==1*x1[t]+0*x2[t]+0*x3[t]+0*x4[t],x2'[t]==2*x1[t]+2*x2[t]+0*x3[t]+0*x4[t],x3'[t]

$$x1(t) \to c_1 e^t$$

$$x2(t) \to e^t \left(2c_1 (e^t - 1) + c_2 e^t \right)$$

$$x3(t) \to e^t \left(3c_1 (e^t - 1)^2 + e^t \left(3c_2 (e^t - 1) + c_3 e^t \right) \right)$$

$$x4(t) \to e^t \left(4c_1 (e^t - 1)^3 + e^t \left(6c_2 (e^t - 1)^2 + e^t \left((4c_3 + c_4)e^t - 4c_3 \right) \right) \right)$$

4.28 problem problem 39

Internal problem ID [342]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 39.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -2x_1(t) + 9x_4(t)$$

$$x'_2(t) = 4x_1(t) + 2x_2(t) - 10x_4(t)$$

$$x'_3(t) = -x_3(t) + 8x_4(t)$$

$$x'_4(t) = x_4(t)$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 61

$$dsolve([diff(x_1(t),t)=-2*x_1(t)+0*x_2(t)+0*x_3(t)+9*x_4(t),diff(x_2(t),t)=4*x_1(t)+2*x_1(t$$

$$x_1(t) = -c_1 e^{-2t} + 3c_4 e^t$$

$$x_2(t) = c_2 e^{2t} + c_1 e^{-2t} - 2c_4 e^t$$

$$x_3(t) = 4c_4 e^t + c_3 e^{-t}$$

$$x_4(t) = c_4 e^t$$

Time used: 0.007 (sec). Leaf size: 94

DSolve[{x1'[t]==-2*x1[t]+0*x2[t]+0*x3[t]+9*x4[t],x2'[t]==4*x1[t]+2*x2[t]+0*x3[t]-10*x4[t],x3'

$$x1(t) \to e^{-2t} \left(3c_4 \left(e^{3t} - 1 \right) + c_1 \right)$$

$$x2(t) \to \left(c_1 - 3c_4 \right) \left(-e^{-2t} \right) + \left(c_1 + c_2 - c_4 \right) e^{2t} - 2c_4 e^t$$

$$x3(t) \to c_3 \cosh(t) - \left(c_3 - 8c_4 \right) \sinh(t)$$

$$x4(t) \to c_4 e^t$$

4.29 problem problem 40

Internal problem ID [343]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 40.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t)$$

$$x'_2(t) = -21x_1(t) - 5x_2(t) - 27x_3(t) - 9x_4(t)$$

$$x'_3(t) = 5x_3(t)$$

$$x'_4(t) = -21x_3(t) - 2x_4(t)$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 61

$$dsolve([diff(x_1(t),t)=2*x_1(t)+0*x_2(t)+0*x_3(t)+0*x_4(t),diff(x_2(t),t)=-21*x_1(t)-5)$$

$$x_1(t) = -\frac{c_2 e^{2t}}{3}$$

$$x_2(t) = c_2 e^{2t} + e^{-5t} c_1 - 3c_3 e^{-2t}$$

$$x_3(t) = -\frac{c_4 \mathrm{e}^{5t}}{3}$$

$$x_4(t) = c_3 e^{-2t} + c_4 e^{5t}$$

Time used: 0.004 (sec). Leaf size: 86

DSolve[{x1'[t]==2*x1[t]+0*x2[t]+0*x3[t]+0*x4[t],x2'[t]==-21*x1[t]-5*x2[t]-27*x3[t]-9*x4[t],x3

$$\begin{aligned} & \text{x1}(t) \to c_1 e^{2t} \\ & \text{x2}(t) \to e^{-5t} \left(-3c_1 \left(e^{7t} - 1 \right) - 3(3c_3 + c_4) \left(e^{3t} - 1 \right) + c_2 \right) \\ & \text{x3}(t) \to c_3 e^{5t} \\ & \text{x4}(t) \to e^{-2t} \left(c_4 - 3c_3 \left(e^{7t} - 1 \right) \right) \end{aligned}$$

4.30 problem problem 41

Internal problem ID [344]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 41.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 4x_1(t) + x_2(t) + x_3(t) + 7x_4(t)$$

$$x'_2(t) = x_1(t) + 4x_2(t) + 10x_3(t) + x_4(t)$$

$$x'_3(t) = x_1(t) + 10x_2(t) + 4x_3(t) + x_4(t)$$

$$x'_4(t) = 7x_1(t) + x_2(t) + x_3(t) + 4x_4(t)$$

With initial conditions

$$[x_1(0) = 3, x_2(0) = 1, x_3(0) = 1, x_4(0) = 3]$$

Time used: 0.094 (sec). Leaf size: 62

$$x_1(t) = e^{15t} + 2e^{10t}$$

$$x_2(t) = 2e^{15t} - e^{10t}$$

$$x_3(t) = 2e^{15t} - e^{10t}$$

$$x_4(t) = e^{15t} + 2e^{10t}$$

Time used: 0.016 (sec). Leaf size: 70

DSolve[{x1'[t]==4*x1[t]+1*x2[t]+1*x3[t]+7*x4[t],x2'[t]==1*x1[t]+4*x2[t]+10*x3[t]+1*x4[t],x3'[

$$\mathrm{x1}(t) \to e^{10t} \big(e^{5t} + 2 \big)$$

$$x2(t) \to e^{10t} (2e^{5t} - 1)$$

$$x3(t) \to e^{10t} (2e^{5t} - 1)$$

$$x4(t) \to e^{10t} (e^{5t} + 2)$$

4.31 problem problem 42

Internal problem ID [345]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 42.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -40x_1(t) - 12x_2(t) + 54x_3(t)$$

$$x_2'(t) = 35x_1(t) + 13x_2(t) - 46x_3(t)$$

$$x_3'(t) = -25x_1(t) - 7x_2(t) + 34x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 59

$$x_1(t) = c_2 e^{2t} + 2c_3 e^{5t} + \frac{3c_1}{2}$$

$$x_2(t) = c_2 e^{2t} - 3c_3 e^{5t} - \frac{c_1}{2}$$

$$x_3(t) = c_1 + c_2 e^{2t} + c_3 e^{5t}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 160

DSolve[{x1'[t]==-40*x1[t]-12*x2[t]+54*x3[t],x2'[t]==35*x1[t]+13*x2[t]-46*x3[t],x3'[t]==-25*x1

$$x1(t) \rightarrow (5c_1 + c_2 - 7c_3)(-e^{2t}) - 2(3c_1 + c_2 - 4c_3)e^{5t} + 3(4c_1 + c_2 - 5c_3)$$

$$x2(t) \rightarrow -(5c_1 + c_2 - 7c_3)e^{2t} + 3(3c_1 + c_2 - 4c_3)e^{5t} - 4c_1 - c_2 + 5c_3$$

$$x3(t) \rightarrow (5c_1 + c_2 - 7c_3)(-e^{2t}) - (3c_1 + c_2 - 4c_3)e^{5t} + 2(4c_1 + c_2 - 5c_3)$$

4.32 problem problem 43

Internal problem ID [346]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 43.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = -20x_1(t) + 11x_2(t) + 13x_3(t)$$

$$x_2'(t) = 12x_1(t) - x_2(t) - 7x_3(t)$$

$$x_3'(t) = -48x_1(t) + 21x_2(t) + 31x_3(t)$$

Time used: 0.046 (sec). Leaf size: 72

$$x_1(t) = \frac{3c_1e^{-2t}}{5} + c_2e^{4t} + \frac{c_3e^{8t}}{3}$$

$$x_2(t) = -\frac{c_1 e^{-2t}}{5} + c_2 e^{4t} - \frac{c_3 e^{8t}}{3}$$

$$x_3(t) = c_1 e^{-2t} + c_2 e^{4t} + c_3 e^{8t}$$

Time used: 0.027 (sec). Leaf size: 554

$$\begin{split} & \times 1(t) \rightarrow c_2 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{11 \# 1e^{\# 1t} - 68e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{13 \# 1e^{\# 1t} - 64e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_1 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 30 \# 1e^{\# 1t} + 116e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \times 2(t) \rightarrow 12c_1 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1e^{\# 1t} - 3e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad - c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 296e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_2 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 51 \# 1e^{\# 1t} + 1244e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \times 3(t) \rightarrow -12c_1 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{4 \# 1e^{\# 1t} - 17e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + 3c_2 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{7 \# 1e^{\# 1t} - 316e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ & \quad + c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right]$$

4.33 problem problem 44

Internal problem ID [347]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 44.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 147x_1(t) + 23x_2(t) - 202x_3(t)$$

$$x_2'(t) = -90x_1(t) - 9x_2(t) + 129x_3(t)$$

$$x_3'(t) = 90x_1(t) + 15x_2(t) - 123x_3(t)$$

√ S

Solution by Maple

Time used: 0.047 (sec). Leaf size: 74

$$x_1(t) = \frac{5c_1e^{12t}}{3} + \frac{3c_2e^{-3t}}{2} + \frac{7c_3e^{6t}}{5}$$

$$x_2(t) = -c_1 e^{12t} - c_2 e^{-3t} + \frac{c_3 e^{6t}}{5}$$

$$x_3(t) = c_1 e^{12t} + c_2 e^{-3t} + c_3 e^{6t}$$

Time used: 0.01 (sec). Leaf size: 166

DSolve[{x1'[t]==147*x1[t]+23*x2[t]-202*x3[t],x2'[t]==-90*x1[t]-9*x2[t]+129*x3[t],x3'[t]==90*x

$$x1(t) \to \frac{1}{6}e^{-3t} \left(5(12c_1 + c_2 - 17c_3)e^{15t} + 7(c_2 + c_3)e^{9t} - 54c_1 - 12c_2 + 78c_3 \right)$$

$$x2(t) \to \frac{1}{6}e^{-3t} \left(-3(12c_1 + c_2 - 17c_3)e^{15t} + (c_2 + c_3)e^{9t} + 36c_1 + 8c_2 - 52c_3 \right)$$

$$x3(t) \to \frac{1}{6}e^{-3t} \left(3(12c_1 + c_2 - 17c_3)e^{15t} + 5(c_2 + c_3)e^{9t} - 36c_1 - 8c_2 + 52c_3 \right)$$

4.34 problem problem 45

Internal problem ID [348]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 45.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 9x_1(t) - 7x_2(t) - 5x_3(t)$$

$$x'_2(t) = -12x_1(t) + 7x_2(t) + 11x_3(t) + 9x_4(t)$$

$$x'_3(t) = 24x_1(t) - 17x_2(t) - 19x_3(t) - 9x_4(t)$$

$$x'_4(t) = -18x_1(t) + 13x_2(t) + 17x_3(t) + 9x_4(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 104

$$dsolve([diff(x_1(t),t)=9*x_1(t)-7*x_2(t)-5*x_3(t)+0*x_4(t),diff(x_2(t),t)=-12*x_1(t)+7*x_1($$

$$x_1(t) = -c_2 e^{-3t} + 2c_3 e^{3t} - c_4 e^{6t} + c_1$$

$$x_2(t) = -c_2 e^{-3t} + c_3 e^{3t} + c_4 e^{6t} + 2c_1$$

$$x_3(t) = -c_2 e^{-3t} + c_3 e^{3t} - 2c_4 e^{6t} - c_1$$

$$x_4(t) = c_1 + c_2 e^{-3t} + c_3 e^{3t} + c_4 e^{6t}$$

Time used: 0.009 (sec). Leaf size: 346

 $DSolve[{x1'[t] == 9*x1[t] - 7*x2[t] - 5*x3[t] + 0*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x3[t] + 11*x3[t] + 11$

$$x1(t) \to (-c_1 + c_2 + c_3)e^{-3t} - \frac{1}{3}(4c_2 + 5c_3 + 3c_4)e^{6t}$$

$$+ \frac{2}{3}e^{3t}(6c_1\cosh(3t) - 3c_1 + 2c_2 + 4c_3 + 3c_4) - c_2 - 2c_3 - c_4$$

$$x2(t) \to \frac{1}{3}(3(c_2 + c_3)e^{-3t} + (2c_2 + 4c_3 + 3c_4)e^{3t} + (4c_2 + 5c_3 + 3c_4)e^{6t}$$

$$- 6c_1(e^{6t} + \cosh(3t) - 2) - 6(c_2 + 2c_3 + c_4))$$

$$x3(t) \to (c_2 + c_3)e^{-3t} + \frac{1}{3}(2c_2 + 4c_3 + 3c_4)e^{3t}$$

$$- \frac{2}{3}(-6c_1 + 4c_2 + 5c_3 + 3c_4)e^{6t} - 2c_1\cosh(3t) - 2c_1 + c_2 + 2c_3 + c_4$$

$$x4(t) \to \frac{1}{3}e^{-3t}(-3(c_2 + 2c_3 + c_4)e^{3t} + (4c_2 + 5c_3 + 3c_4)e^{9t}$$

$$+ e^{6t}(-12c_1\sinh(3t) - 3c_1 + 2c_2 + 4c_3 + 3c_4) - 3(-c_1 + c_2 + c_3))$$

4.35 problem problem 46

Internal problem ID [349]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 46.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 13x_1(t) - 42x_2(t) + 106x_3(t) + 139x_4(t)$$

$$x'_2(t) = 2x_1(t) - 16x_2(t) + 52x_3(t) + 70x_4(t)$$

$$x'_3(t) = x_1(t) + 6x_2(t) - 20x_3(t) - 31x_4(t)$$

$$x'_4(t) = -x_1(t) - 6x_2(t) + 22x_3(t) + 33x_4(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 124

$$dsolve([diff(x_1(t),t)=13*x_1(t)-42*x_2(t)+106*x_3(t)+139*x_4(t),diff(x_2(t),t)=2*x_1(t)+139*x_4(t),diff(x_2(t),t)=2*x_1(t)+139*x_4(t),diff(x_2(t),t)=2*x_1(t)+139*x_4(t),diff(x_2(t),t)=2*x_1(t)+139*x_4(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+139*x_5(t)+13$$

$$x_1(t) = -c_1 e^{2t} + c_2 e^{4t} + 3c_3 e^{-4t} - c_4 e^{8t}$$

$$x_2(t) = -2c_1e^{2t} + c_2e^{4t} + 2c_3e^{-4t} + \frac{2c_4e^{8t}}{3}$$

$$x_3(t) = -2c_1e^{2t} - c_2e^{4t} - c_3e^{-4t} - c_4e^{8t}$$

$$x_4(t) = c_1 e^{2t} + c_2 e^{4t} + c_3 e^{-4t} + c_4 e^{8t}$$

Time used: 0.01 (sec). Leaf size: 339

 $DSolve[{x1'[t] == 13*x1[t] - 42*x2[t] + 106*x3[t] + 139*x4[t], x2'[t] == 2*x1[t] - 16*x2[t] + 52}*x3[t] + 70*x4[t] + 106*x3[t] + 106*x3[$

$$\begin{split} \mathbf{x}1(t) &\to (c_3+c_4)e^{2t} + \frac{3}{4}(c_1-2c_2+4c_3+5c_4)e^{8t} \\ &\quad + (c_1-3c_2+8c_3+11c_4)e^{4t} - \frac{3}{4}(c_1-6c_2+16c_3+21c_4)e^{-4t} \\ \mathbf{x}2(t) &\to 2(c_3+c_4)e^{2t} - \frac{1}{2}(c_1-2c_2+4c_3+5c_4)e^{8t} \\ &\quad + (c_1-3c_2+8c_3+11c_4)e^{4t} - \frac{1}{2}(c_1-6c_2+16c_3+21c_4)e^{-4t} \\ \mathbf{x}3(t) &\to \frac{1}{4}e^{-4t}\big(8(c_3+c_4)e^{6t}+3(c_1-2c_2+4c_3+5c_4)e^{12t}-4(c_1-3c_2+8c_3+11c_4)e^{8t}+c_1 \\ &\quad - 6c_2+16c_3+21c_4\big) \\ \mathbf{x}4(t) &\to (c_3+c_4)\left(-e^{2t}\right) - \frac{3}{4}(c_1-2c_2+4c_3+5c_4)e^{8t} \\ &\quad + (c_1-3c_2+8c_3+11c_4)e^{4t} - \frac{1}{4}(c_1-6c_2+16c_3+21c_4)e^{-4t} \end{split}$$

4.36 problem problem 47

Internal problem ID [350]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 47.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 23x_1(t) - 18x_2(t) - 16x_3(t)$$

$$x'_2(t) = -8x_1(t) + 6x_2(t) + 7x_3(t) + 9x_4(t)$$

$$x'_3(t) = 34x_1(t) - 27x_2(t) - 26x_3(t) - 9x_4(t)$$

$$x'_4(t) = -26x_1(t) + 21x_2(t) + 25x_3(t) + 12x_4(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 122

$$x_1(t) = -c_1 e^{9t} - 2c_2 e^{-3t} + c_3 e^{3t} + 2c_4 e^{6t}$$

$$x_2(t) = c_1 e^{9t} - 2c_2 e^{-3t} + 2c_3 e^{3t} + c_4 e^{6t}$$

$$x_3(t) = -2c_1e^{9t} - c_2e^{-3t} - c_3e^{3t} + c_4e^{6t}$$

$$x_4(t) = c_1 e^{9t} + c_2 e^{-3t} + c_3 e^{3t} + c_4 e^{6t}$$

Time used: 0.01 (sec). Leaf size: 369

 $DSolve[{x1'[t] == 23*x1[t] - 18*x2[t] - 16*x3[t] + 0*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 9*x4[t], x2'[t] == -8*x1[t], x2'[$

$$\begin{split} \mathbf{x}1(t) &\to 3c_1e^{3t} + \frac{8}{3}c_1e^{9t} + 2(-c_1 + c_2 + c_3)e^{-3t} \\ &\quad - \frac{2}{3}e^{6t}((6c_2 + 8c_3 + 3c_4)\cosh(3t) - c_3\sinh(3t) + 4c_1 - 3c_2 - 5c_3 - 3c_4) \\ \mathbf{x}2(t) &\to \frac{1}{3}e^{-3t}\left(6(3c_1 - 2c_2 - 3c_3 - c_4)e^{6t} + (-4c_1 + 3c_2 + 5c_3 + 3c_4)e^{9t} \right. \\ &\quad + (-8c_1 + 6c_2 + 7c_3 + 3c_4)e^{12t} + 6(-c_1 + c_2 + c_3)) \\ \mathbf{x}3(t) &\to (-c_1 + c_2 + c_3)e^{-3t} + \frac{2}{3}(8c_1 - 6c_2 - 7c_3 - 3c_4)e^{9t} \\ &\quad + \left(-\frac{4c_1}{3} + c_2 + \frac{5c_3}{3} + c_4\right)e^{6t} + (-3c_1 + 2c_2 + 3c_3 + c_4)e^{3t} \\ \mathbf{x}4(t) &\to \frac{1}{3}e^{-3t}\left(c_1\left(9e^{6t} - 4e^{9t} - 8e^{12t} + 3\right) \right. \\ &\quad + e^{9t}(-2c_3\cosh(3t) + 2(6c_2 + 8c_3 + 3c_4)\sinh(3t) + 3c_2 + 5c_3 + 3c_4) - 3(c_2 + c_3)) \end{split}$$

4.37 problem problem 48

Internal problem ID [351]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 48.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 47x_1(t) - 8x_2(t) + 5x_3(t) - 5x_4(t)$$

$$x'_2(t) = -10x_1(t) + 32x_2(t) + 18x_3(t) - 2x_4(t)$$

$$x'_3(t) = 139x_1(t) - 40x_2(t) - 167x_3(t) - 121x_4(t)$$

$$x'_4(t) = -232x_1(t) + 64x_2(t) + 360x_3(t) + 248x_4(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 125

$$x_1(t) = \frac{3c_1e^{48t}}{2} + \frac{c_2e^{16t}}{2} - \frac{c_3e^{64t}}{3} - 2c_4e^{32t}$$

$$x_2(t) = -\frac{c_1 e^{48t}}{2} + c_2 e^{16t} - \frac{c_3 e^{64t}}{3} - 5c_4 e^{32t}$$

$$x_3(t) = \frac{c_1 e^{48t}}{2} - \frac{c_2 e^{16t}}{2} - \frac{2c_3 e^{64t}}{3} - c_4 e^{32t}$$

$$x_4(t) = c_1 e^{48t} + c_2 e^{16t} + c_3 e^{64t} + c_4 e^{32t}$$

Time used: 0.009 (sec). Leaf size: 382

 $DSolve[{x1'[t] == 47*x1[t] - 8*x2[t] + 5*x3[t] - 5*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] - 2*x4[t], x2'[t] == -10*x1[t] + 32*x2[t] + 18*x3[t] + 18*x3[$

$$x1(t) \to \frac{1}{16}e^{16t} \left((27c_1 - 8c_2 - 39c_3 - 25c_4)e^{48t} - 2(19c_1 - 8c_2 - 31c_3 - 17c_4)e^{16t} - 6(c_1 - 5c_3 - 3c_4)e^{32t} + 33c_1 - 8c_2 - 53c_3 - 27c_4 \right)$$

$$x2(t) \to \frac{1}{16} \left(2(33c_1 - 8c_2 - 53c_3 - 27c_4)e^{16t} + (27c_1 - 8c_2 - 39c_3 - 25c_4)e^{64t} + 2(c_1 - 5c_3 - 3c_4)e^{48t} + (-95c_1 + 40c_2 + 155c_3 + 85c_4)e^{32t} \right)$$

$$x3(t) \to \frac{1}{16}e^{16t} \left(2(27c_1 - 8c_2 - 39c_3 - 25c_4)e^{48t} - 2(c_1 - 5c_3 - 3c_4)e^{32t} + (-19c_1 + 8c_2 + 31c_3 + 17c_4)e^{16t} - 33c_1 + 8c_2 + 53c_3 + 27c_4 \right)$$

$$x4(t) \to \frac{1}{16} \left(2(33c_1 - 8c_2 - 53c_3 - 27c_4)e^{16t} + (19c_1 - 8c_2 - 31c_3 - 17c_4)e^{32t} - 4(c_1 - 5c_3 - 3c_4)e^{48t} + (-81c_1 + 24c_2 + 117c_3 + 75c_4)e^{64t} \right)$$

4.38 problem problem 49

Internal problem ID [352]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 49.

ODE order: 1.
ODE degree: 1.

Solve

$$\begin{aligned} x_1'(t) &= 139x_1(t) - 14x_2(t) - 52x_3(t) - 14x_4(t) + 28x_5(t) \\ x_2'(t) &= -22x_1(t) + 5x_2(t) + 7x_3(t) + 8x_4(t) - 7x_5(t) \\ x_3'(t) &= 370x_1(t) - 38x_2(t) - 139x_3(t) - 38x_4(t) + 76x_5(t) \\ x_4'(t) &= 152x_1(t) - 16x_2(t) - 59x_3(t) - 13x_4(t) + 35x_5(t) \\ x_5'(t) &= 95x_1(t) - 10x_2(t) - 38x_3(t) - 7x_4(t) + 23x_5(t) \end{aligned}$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 130

$$dsolve([diff(x_1(t),t)=139*x_1(t)-14*x_2(t)-52*x_3(t)-14*x_4(t)+28*x_5(t),diff(x_2(t),t)=12*x_1(t)-14*x_2(t)+12*x_1(t)+12*x_2(t)+12*x_1(t)+12*x_2(t)+12*x_1(t)+12*x_$$

$$x_1(t) = 2c_2e^{9t} + c_3e^{-3t} + c_4e^{3t}$$

$$x_2(t) = 7c_4 e^{3t} + c_5 e^{6t} + 3c_1$$

$$x_3(t) = 5c_2e^{9t} + 3c_3e^{-3t} + c_4e^{3t}$$

$$x_4(t) = 2c_2e^{9t} + c_3e^{-3t} + c_4e^{3t} + c_5e^{6t} - c_1$$

$$x_5(t) = c_1 + c_2 e^{9t} + c_3 e^{-3t} + c_4 e^{3t} + c_5 e^{6t}$$

Time used: 0.046 (sec). Leaf size: 2676

DSolve[{x1'[t]==139*x1[t]-14*x2[t]-52*x3[t]-14*x4[t]+28*x5[t],x2'[t]==-22*x1[t]+5*x2[t]+7*x3[

Too large to display

4.39 problem problem 50

Internal problem ID [353]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 50.

ODE order: 1.
ODE degree: 1.

Solve

$$\begin{aligned} x_1'(t) &= 9x_1(t) + 13x_2(t) - 13x_6(t) \\ x_2'(t) &= -14x_1(t) + 19x_2(t) - 10x_3(t) - 20x_4(t) + 10x_5(t) + 4x_6(t) \\ x_3'(t) &= -30x_1(t) + 12x_2(t) - 7x_3(t) - 30x_4(t) + 12x_5(t) + 18x_6(t) \\ x_4'(t) &= -12x_1(t) + 10x_2(t) - 10x_3(t) - 9x_4(t) + 10x_5(t) + 2x_6(t) \\ x_5'(t) &= 6x_1(t) + 9x_2(t) + 6x_4(t) + 5x_5(t) - 15x_6(t) \\ x_6'(t) &= -14x_1(t) + 23x_2(t) - 10x_3(t) - 20x_4(t) + 10x_5(t) \end{aligned}$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 135

$$dsolve([diff(x_1(t),t)=9*x_1(t)+13*x_2(t)+0*x_3(t)+0*x_4(t)+0*x_5(t)-13*x_6(t),diff(x_1(t),t)=0*x_1(t)+13*x_2(t)+0*x_3(t)+0*x_4(t)+0*x_5(t)-13*x_6(t),diff(x_1(t),t)=0*x_1(t)+13*x_1(t)+0*x_1($$

$$x_1(t) = c_3 e^{9t} + c_5 e^{-4t}$$

$$x_2(t) = c_3 e^{9t} + c_4 e^{3t} + c_6 e^{-7t}$$

$$x_3(t) = c_6 e^{-7t} + c_2 e^{5t} - e^{11t} c_1$$

$$x_4(t) = e^{11t}c_1 + c_4e^{3t} + c_6e^{-7t}$$

$$x_5(t) = c_2 e^{5t} + e^{11t} c_1 + c_5 e^{-4t}$$

$$x_6(t) = c_3 e^{9t} + c_4 e^{3t} + c_5 e^{-4t} + c_6 e^{-7t}$$

Time used: 0.108 (sec). Leaf size: 1669

 $DSolve[{x1'[t] == 9*x1[t] + 13*x2[t] - 13*x6[t], x2'[t] == -14*x1[t] + 19*x2[t] - 10*x3[t] - 20*x4[t] + 10*x5[t] + 10*$

$$\begin{array}{c} \mathbf{x}1(t) \\ & \stackrel{e^{\frac{1}{2}\left(7-5\sqrt{57}\right)t}}{\rightarrow} \left(13\left(6c_{1}\left((665+243\sqrt{57})\,e^{5\sqrt{57}t}+15485e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}+665-243\sqrt{57}\right)-92910(c_{2}-c_{4}+c_{5})\right) \\ & \stackrel{e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}}{\rightarrow} \left(7119600390(c_{1}-c_{2}+c_{4}-c_{5})e^{\frac{5\sqrt{57}t}{2}+12t}-22474929(477c_{1}-449c_{2}+89c_{3}+388c_{4}-369c_{5}-383c_{5}\right) \\ & \stackrel{e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}}{\rightarrow} \left(-162032(c_{1}-c_{2}+c_{4}-c_{5})e^{\frac{5\sqrt{57}t}{2}+12t}+2242(77c_{1}-86c_{2}+41c_{3}+77c_{4}-26c_{5}+9c_{6})e^{\frac{5\sqrt{57}t}{2}}\right) \\ & \stackrel{e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}}{\rightarrow} \left(81117270(c_{1}-c_{2}+c_{4}-c_{5})e^{\frac{5\sqrt{57}t}{2}+12t}-275766(477c_{1}-449c_{2}+89c_{3}+388c_{4}-369c_{5}-36c_{5}+36c_{5}\right) \\ & \stackrel{e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}}{\rightarrow} \left(81117270(c_{1}-c_{2}+c_{4}-c_{5})e^{\frac{5\sqrt{57}t}{2}+12t}-275766(477c_{1}-449c_{2}+89c_{3}+388c_{4}-369c_{5}-36c_{5}+36c_{5}\right) \\ & \stackrel{e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}+171-49\sqrt{57}\right)+342(c_{2}-c_{4}+c_{5})e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}+171-49\sqrt{57}\right)+342(c_{2}-c_{4}+c_{5})e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}+171-49\sqrt{57}\right)+342(c_{2}-c_{4}+c_{5})e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\sqrt{57}\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}+171-49\sqrt{57}\right)+342(c_{2}-c_{4}+c_{5})e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\sqrt{57}\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}+171-49\sqrt{57}\right)+342(c_{2}-c_{4}+c_{5})e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\sqrt{57}\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\sqrt{57}\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\sqrt{57}\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\sqrt{57}\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}-342e^{\frac{1}{2}\left(3+5\sqrt{57}\right)t}\right) \\ & \stackrel{e^{-\left(\sqrt{57}\right)}}{\rightarrow} \left(c_{1}\left((171+49\sqrt{57})\,e^{5\sqrt{57}t}\right) \\ &$$

 $e^{-\left(\left(7+\frac{5\sqrt{57}}{2}\right)t\right)}\left(-5198438380(c_1-c_2+c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+388c_4-c_5)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+386c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+386c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+386c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+386c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+386c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+14983286(477c_1-449c_2+89c_3+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+89c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+89c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+86c_4)e^{\frac{5\sqrt{57}t}{2}+12t}+149866(477c_1-449c_2+86c_4)e^{\frac{5\sqrt{57}t}{2}+1466(477c_1-446c_4)e^{\frac{5\sqrt{57}t}{2}+1466(476c_4-46c_4)e^{\frac{5\sqrt{57}t}{2}+1466(476c_4-46c_4)e^{\frac{5\sqrt{57}t}{2}+1466(476c_4-46c_4)e^{\frac{5\sqrt{57}t}{2}+1466(476c_4-46c_4)e^{\frac{5\sqrt{57}t}{2}+1466(476c_4-46c_4)e^{\frac{5\sqrt{57}t}{2$

5	Section 7.6, Multiple Eigenvalue Solutions.
	Examples. Page 437

5.1	problem Example 1	96
5.2	problem Example 3	97
5.3	problem Example 4	98
5.4	problem Example 6	99

5.1 problem Example 1

Internal problem ID [354]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 1.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 9x_1(t) + 4x_2(t)$$

$$x'_2(t) = -6x_1(t) - x_2(t)$$

$$x'_3(t) = 6x_1(t) + 4x_2(t) + 3x_3(t)$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 66

$$dsolve([diff(x_1(t),t)=9*x_1(t)+4*x_2(t)+0*x_3(t),diff(x_2(t),t)=-6*x_1(t)-1*x_2(t)+0*x_3(t),diff(x_2(t),t)=-6*x_1(t)-1*x_2(t)+0*x_3(t),diff(x_3(t),t)=-6*x_1(t)-1*x_2(t)+0*x_3(t),diff(x_3(t),t)=-6*x_1(t)-1*x_2(t)+0*x_3(t)+0*x_$$

$$x_1(t) = c_2 e^{5t} + \frac{2c_3 e^{3t}}{3} - \frac{2c_1 e^{3t}}{3}$$

$$x_2(t) = -c_2 e^{5t} - c_3 e^{3t} + c_1 e^{3t}$$

$$x_3(t) = c_2 e^{5t} + c_3 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 105

$$DSolve[{x1'[t] == 9*x1[t] + 4*x2[t] + 0*x3[t], x2'[t] == -6*x1[t] - 1*x2[t] + 0*x3[t], x3'[t] == -6*x1[t] + 4*x2[t] + 0*x3[t], x3'[t] == -6*x1[t] + 0*x1[t], x3'[t] == -6*x1[t] + 0*x1[t], x3'[t] == -6*x1[t] + 0*x1[t] + 0*x1[t$$

$$\begin{aligned} & \text{x1}(t) \to e^{4t}(c_1 \cosh(t) + (5c_1 + 4c_2) \sinh(t)) \\ & \text{x2}(t) \to 3(c_1 + c_2)e^{3t} - (3c_1 + 2c_2)e^{5t} \\ & \text{x3}(t) \to \int_1^t 3x(K[1])dK[1] + \frac{6}{5}c_1(e^{5t} - 1) + \frac{4}{5}c_2(e^{5t} - 1) + c_3 \end{aligned}$$

5.2 problem Example 3

Internal problem ID [355]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) - 3x_2(t)$$

$$x'_2(t) = 3x_1(t) + 7x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $dsolve([diff(x_{1}(t),t)=1*x_{1}(t)-3*x_{2}(t),diff(x_{2}(t),t)=3*x_{1}(t)+7*x_{2}(t)], [x_{1}(t),x_{2}(t),x_{3}(t)]$

$$x_1(t) = -\frac{e^{4t}(3c_2t + 3c_1 - c_2)}{3}$$

$$x_2(t) = e^{4t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 44

$$x1(t) \rightarrow e^{4t}(-3c_1t - 3c_2t + c_1)$$

$$x2(t) \rightarrow e^{4t}(3(c_1+c_2)t+c_2)$$

5.3 problem Example 4

Internal problem ID [356]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_2(t) + 2x_3(t)$$

$$x'_2(t) = -5x_1(t) - 3x_2(t) - 7x_3(t)$$

$$x'_3(t) = x_1(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 75

$$dsolve([diff(x_1(t),t)=0*x_1(t)+1*x_2(t)+2*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-7*x_1(t)+1*x_2(t)+1*x_2(t)+1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-3*x_2(t)-7*x_1(t)+1*x_2(t)+1*x_3(t)+$$

$$x_1(t) = -e^{-t}(c_3t^2 + c_2t - 2c_3t + c_1 - c_2)$$

$$x_2(t) = -e^{-t}(c_3t^2 + c_2t + 4c_3t + c_1 + 2c_2 - 2c_3)$$

$$x_3(t) = e^{-t}(c_3t^2 + c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 125

$$DSolve[{x1'[t] == 0*x1[t] + 1*x2[t] + 2*x3[t], x2'[t] == -5*x1[t] - 3*x2[t] - 7*x3[t], x3'[t] == 1*x1[t] + 0*x2[t] + 0*x2[t] - 0*$$

$$x1(t) \to \frac{1}{2}e^{-t}(2c_1(-t^2+t+1)-c_2(t-2)t+c_3(4-3t)t)$$

$$x2(t) \to \frac{1}{2}e^{-t}(2c_2-t(2c_1(t+5)+c_2(t+4)+c_3(3t+14)))$$

$$x3(t) \to \frac{1}{2}e^{-t}(t(2c_1(t+1)+c_2t)+c_3(t(3t+2)+2))$$

5.4 problem Example 6

Internal problem ID [357]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_3(t)$$

$$x'_2(t) = x_4(t)$$

$$x'_3(t) = -2x_1(t) + 2x_2(t) - 3x_3(t) + x_4(t)$$

$$x'_4(t) = 2x_1(t) - 2x_2(t) + x_3(t) - 3x_4(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 87

$$dsolve([diff(x_1(t),t)=0*x_1(t)+0*x_2(t)+1*x_3(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_2(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)+0*x_2(t)+0*x_4$$

$$x_1(t) = \frac{c_4 e^{-2t}t}{2} - \frac{e^{-2t}c_2}{2} + \frac{c_3 e^{-2t}}{2} + \frac{c_4 e^{-2t}}{4} + c_1$$

$$x_2(t) = \left(\left(-\frac{t}{2} - \frac{1}{4}\right)c_4 - \frac{c_3}{2}\right)e^{-2t} + c_1$$

$$x_3(t) = e^{-2t}(-c_4t + c_2 - c_3)$$

$$x_4(t) = e^{-2t}(c_4t + c_3)$$

Time used: 0.057 (sec). Leaf size: 174

 $DSolve[{x1'[t] == 0 * x1[t] + 0 * x2[t] + 1 * x3[t] + 0 * x4[t], x2'[t] == 0 * x1[t] + 0 * x2[t] + 0 * x3[t] + 1} * x4[t], x3'[t] + 1 * x4[t], x$

$$x1(t) \to \frac{1}{4} \left(e^{-2t} (c_1(4t+2) - 2c_2(2t+1) + c_3(2t-1) - c_4(2t+1)) + 2c_1 + 2c_2 + c_3 + c_4 \right)$$

$$x2(t) \to \frac{1}{4} \left(e^{-2t} (c_4(2t-1) - (2c_1 - 2c_2 + c_3)(2t+1)) + 2c_1 + 2c_2 + c_3 + c_4 \right)$$

$$x3(t) \to e^{-2t} \left((-2c_1 + 2c_2 - c_3 + c_4)t + c_3 \right)$$

$$x4(t) \to e^{-2t} \left((2c_1 - 2c_2 + c_3 - c_4)t + c_4 \right)$$

6 Section 7.6, Multiple Eigenvalue Solutions. Page 451

6.1	problem problem 1.		•	•	•	•	•	•	•	 •	•	 •		•	•		•	•	10	2
6.2	problem problem 2 .																		10	3
6.3	problem problem 3 .														•				. 10	4
6.4	problem problem 4 .																		10	5
6.5	problem problem 5 .																		10	6
6.6	problem problem 6 .											 •							. 10	7
6.7	problem problem 7 .																		10	8
6.8	problem problem 8 .											 •							10	9
6.9	problem problem 9 .																		11	0
6.10	problem problem 10																		. 11	1
6.11	problem problem 11																		11	2
6.12	problem problem 12																		11	3
6.13	problem problem 13																		. 11	4
6.14	problem problem 14																		11	5
6.15	problem problem 15																		11	6
6.16	problem problem 16																		. 11	7
6.17	problem problem 17											 •							11	8
6.18	problem problem 18											 •							11	9
6.19	problem problem 19																		12	0
6.20	problem problem 20																		12	2
6.21	problem problem 21																		. 12	4
6.22	problem problem 22																		12	6
6.23	problem problem 23																		12	8
6.24	problem problem 24																		12	9
6.25	problem problem 25																		. 13	1
6.26	problem problem 26																		13	2
6.27	problem problem 27																		13	3
6.28	problem problem 28																		13	5
6.29	problem problem 29																		13	6
6.30	problem problem 30																		13	8
6.31	problem problem 31																		14	0
6.32	$problem\ problem\ 32$	•											•						14	2
6.33	problem problem 33	•											•						. 14	4
6.34	problem problem 34																		14	6

6.1 problem problem 1

Internal problem ID [358]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 1.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = -2x_1(t) + x_2(t)$$

$$x_2'(t) = -x_1(t) - 4x_2(t)$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 30

 $dsolve([diff(x_1(t),t)=-2*x_1(t)+1*x_2(t),diff(x_2(t),t)=-1*x_1(t)-4*x_2(t)],[x_1(t),t)=-1*x_1(t)-4*x_2(t)]$

$$x_1(t) = -e^{-3t}(c_2t + c_1 + c_2)$$

$$x_2(t) = e^{-3t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

$$x1(t) \rightarrow e^{-3t}(c_1(t+1) + c_2t)$$

$$x2(t) \rightarrow e^{-3t}(c_2 - (c_1 + c_2)t)$$

6.2 problem problem 2

Internal problem ID [359]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 2.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - x_2(t)$$

$$x_2'(t) = x_1(t) + x_2(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 29

$$x_1(t) = e^{2t}(c_2t + c_1 + c_2)$$

$$x_2(t) = e^{2t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 44

DSolve[{x1'[t]==3*x1[t]-1*x2[t],x2'[t]==1*x1[t]+1*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolut

$$x1(t) \rightarrow e^{2t}(c_1(t+1) - c_2t)$$

$$x2(t) \rightarrow e^{2t}((c_1 - c_2)t + c_2)$$

6.3 problem problem 3

Internal problem ID [360]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) - 2x_2(t)$$

$$x'_2(t) = 2x_1(t) + 5x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

dsolve([diff(x_1(t),t)=1*x_1(t)-2*x_2(t),diff(x_2(t),t)=2*x_1(t)+5*x_2(t)], [x_1(t), x_1(t), x_2(t)]

$$x_1(t) = -\frac{e^{3t}(2c_2t + 2c_1 - c_2)}{2}$$

$$x_2(t) = e^{3t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 44

$$x1(t) \rightarrow e^{3t}(-2c_1t - 2c_2t + c_1)$$

$$x2(t) \rightarrow e^{3t}(2(c_1+c_2)t+c_2)$$

6.4 problem problem 4

Internal problem ID [361]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 4.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - x_2(t)$$

$$x_2'(t) = x_1(t) + 5x_2(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

$$x_1(t) = -e^{4t}(c_2t + c_1 - c_2)$$

$$x_2(t) = e^{4t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

DSolve[{x1'[t]==3*x1[t]-1*x2[t],x2'[t]==1*x1[t]+5*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolut

$$x1(t) \rightarrow -e^{4t}(c_1(t-1)+c_2t)$$

$$x2(t) \rightarrow e^{4t}((c_1 + c_2)t + c_2)$$

6.5 problem problem 5

Internal problem ID [362]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 5.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 7x_1(t) + x_2(t)$$

$$x'_2(t) = -4x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 33

 $\frac{dsolve([diff(x_1(t),t)=7*x_1(t)+1*x_2(t),diff(x_2(t),t)=-4*x_1(t)+3*x_2(t)]}{(t)}, [x_1(t), x_2(t)]}$

$$x_1(t) = -\frac{e^{5t}(2c_2t + 2c_1 + c_2)}{4}$$

$$x_2(t) = e^{5t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 45

 $DSolve[\{x1'[t] == 7*x1[t] + 1*x2[t], x2'[t] == -4*x1[t] + 3*x2[t]\}, \{x1[t], x2[t]\}, t, Include Singular Solution (a) and the property of th$

$$x1(t) \rightarrow e^{5t}(2c_1t + c_2t + c_1)$$

$$x2(t) \rightarrow e^{5t}(c_2 - 2(2c_1 + c_2)t)$$

6.6 problem problem 6

Internal problem ID [363]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 6.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) - 4x_2(t)$$

$$x_2'(t) = 4x_1(t) + 9x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

$$x_1(t) = -\frac{e^{5t}(4c_2t + 4c_1 - c_2)}{4}$$

$$x_2(t) = e^{5t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 44

$$x1(t) \rightarrow e^{5t}(-4c_1t - 4c_2t + c_1)$$

$$x2(t) \rightarrow e^{5t}(4(c_1+c_2)t+c_2)$$

6.7 problem problem 7

Internal problem ID [364]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t)$$

$$x'_2(t) = -7x_1(t) + 9x_2(t) + 7x_3(t)$$

$$x'_3(t) = 2x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 38

 $dsolve([diff(x_1(t),t)=2*x_1(t)+0*x_2(t)+0*x_3(t),diff(x_2(t),t)=-7*x_1(t)+9*x_2(t)+7*x_1(t)+10*x_2(t)+10*x_1(t)+1$

$$x_1(t) = e^{2t}(c_2 + c_3)$$

$$x_2(t) = c_1 e^{9t} + c_2 e^{2t}$$

$$x_3(t) = c_3 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 55

$$x1(t) \to c_1 e^{2t}$$

 $x2(t) \to e^{2t} ((-c_1 + c_2 + c_3)e^{7t} + c_1 - c_3)$
 $x3(t) \to c_3 e^{2t}$

6.8 problem problem 8

Internal problem ID [365]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 8.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 25x_1(t) + 12x_2(t)$$

$$x'_2(t) = -18x_1(t) - 5x_2(t)$$

$$x'_3(t) = 6x_1(t) + 6x_2(t) + 13x_3(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 67

 $dsolve([diff(x_1(t),t)=25*x_1(t)+12*x_2(t)+0*x_3(t),diff(x_2(t),t)=-18*x_1(t)-5*x_2(t))$

$$x_1(t) = 2c_3e^{7t} + 3c_2e^{13t} - e^{13t}c_1$$

$$x_2(t) = -3c_2e^{13t} - 3c_3e^{7t} + e^{13t}c_1$$

$$x_3(t) = c_2 e^{13t} + c_3 e^{7t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 94

 $DSolve[{x1'[t] == 25*x1[t] + 12*x2[t] + 0*x3[t], x2'[t] == -18*x1[t] - 5*x2[t] + 0*x3[t], x3'[t] == 6*x1[t] + 6*x1$

$$x1(t) \rightarrow (3c_1 + 2c_2)e^{13t} - 2(c_1 + c_2)e^{7t}$$

$$x2(t) \rightarrow 3(c_1 + c_2)e^{7t} - (3c_1 + 2c_2)e^{13t}$$

$$x3(t) \rightarrow (c_1 + c_2 + c_3)e^{13t} - (c_1 + c_2)e^{7t}$$

6.9 problem problem 9

Internal problem ID [366]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 9.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -19x_1(t) + 12x_2(t) + 84x_3(t)$$

$$x'_2(t) = 5x_2(t)$$

$$x'_3(t) = -8x_1(t) + 4x_2(t) + 33x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 52

 $dsolve([diff(x_1(t),t)=-19*x_1(t)+12*x_2(t)+84*x_3(t),diff(x_2(t),t)=0*x_1(t)+5*x_2(t)+84*x_3(t),diff(x_2(t),t)=0*x_1(t)+5*x_2(t)+84*x_3(t),diff(x_2(t),t)=0*x_1(t)+12*x_2(t)+84*x_3(t),diff(x_2(t),t)=0*x_1(t)+12*x_2(t)+84*x_3(t),diff(x_2(t),t)=0*x_1(t)+12*x_2(t)+84*x_3(t),diff(x_2(t),t)=0*x_1(t)+12*x_2(t)+84*x_3(t$

$$x_1(t) = 3c_2e^{9t} + \frac{7c_3e^{5t}}{2} + \frac{c_1e^{5t}}{2}$$

$$x_2(t) = c_1 \mathrm{e}^{5t}$$

$$x_3(t) = c_2 e^{9t} + c_3 e^{5t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 90

 $DSolve[{x1'[t] == -19*x1[t] + 12*x2[t] + 84*x3[t], x2'[t] == 0*x1[t] + 5*x2[t] + 0*x3[t], x3'[t] == -8*x1[t] + 0*x3[t], x3'[t] == -8*x1[t], x3'[t] == -8*x$

$$x1(t) \rightarrow e^{5t} (c_1(7 - 6e^{4t}) + 3(c_2 + 7c_3)(e^{4t} - 1))$$

$$x2(t) \rightarrow c_2 e^{5t}$$

$$x3(t) \rightarrow e^{5t}((-2c_1+c_2+7c_3)e^{4t}+2c_1-c_2-6c_3)$$

6.10 problem problem 10

Internal problem ID [367]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 10.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -13x_1(t) + 40x_2(t) - 48x_3(t)$$

$$x'_2(t) = -8x_1(t) + 23x_2(t) - 24x_3(t)$$

$$x'_3(t) = 3x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 52

$$dsolve([diff(x_1(t),t)=-13*x_1(t)+40*x_2(t)-48*x_3(t),diff(x_2(t),t)=-8*x_1(t)+23*x_2(t)+23*x_3(t),diff(x_2(t),t)=-8*x_1(t)+23*x_2(t)+23*x_2(t)+23*x_3(t)+$$

$$x_1(t) = \frac{5c_1 e^{3t}}{2} + 2c_2 e^{7t} - 3c_3 e^{3t}$$

$$x_2(t) = c_1 e^{3t} + c_2 e^{7t}$$

$$x_3(t) = c_3 e^{3t}$$

✓ Solution by Mathematica

$$x1(t) \to e^{3t} \left(c_1 \left(5 - 4e^{4t} \right) + 2(5c_2 - 6c_3) \left(e^{4t} - 1 \right) \right)$$

$$x2(t) \to \left(-2c_1 + 5c_2 - 6c_3 \right) e^{7t} + 2(c_1 - 2c_2 + 3c_3) e^{3t}$$

$$x3(t) \to c_3 e^{3t}$$

6.11 problem problem 11

Internal problem ID [368]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -3x_1(t) - 4x_3(t)$$

$$x'_2(t) = -x_1(t) - x_2(t) - x_3(t)$$

$$x'_3(t) = x_1(t) + x_3(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 61

$$dsolve([diff(x_1(t),t)=-3*x_1(t)+0*x_2(t)-4*x_3(t),diff(x_2(t),t)=-1*x_1(t)-1*x_2(t)-1*x_3(t),diff(x_2(t),t)=-1*x_1(t)-1*x_2(t)-1*x_3(t),diff(x_3(t),t)=-1*x_1(t)-1*x_2(t)-1*x_3(t),diff(x_3(t),t)=-1*x_3(t)-1*x$$

$$x_1(t) = -e^{-t}(2c_3t + 2c_2 - c_3)$$

$$x_2(t) = \frac{(c_3t^2 + 2c_2t - 2c_3t + 2c_1)e^{-t}}{2}$$

$$x_3(t) = e^{-t}(c_3t + c_2)$$

✓ Solution by Mathematica

$$DSolve[{x1'[t] == -3*x1[t] + 0*x2[t] - 4*x3[t], x2'[t] == -1*x1[t] - 1*x2[t] - 1*x3[t], x3'[t] == 1*x1[t] + 0*x2[t] + 0*x2[t] - 1*x3[t], x3'[t] == 1*x1[t] + 0*x2[t] + 0*x$$

$$x1(t) \to e^{-t}(-2c_1t - 4c_3t + c_1)$$

$$x2(t) \to \frac{1}{2}e^{-t}(c_1(t-2)t + 2c_3(t-1)t + 2c_2)$$

$$x3(t) \to e^{-t}((c_1 + 2c_3)t + c_3)$$

6.12 problem problem 12

Internal problem ID [369]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 12.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) + x_3(t)$$

$$x'_2(t) = -x_2(t) + x_3(t)$$

$$x'_3(t) = x_1(t) - x_2(t) - x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 62

$$dsolve([diff(x_1(t),t)=-1*x_1(t)+0*x_2(t)+1*x_3(t),diff(x_2(t),t)=0*x_1(t)-1*x_2(t)+1*x_3(t),diff(x_2(t),t)=0*x_1(t)-1*x_2(t)+1*x_3(t),diff(x_3(t),t)=0*x_1(t)+1*x_3(t)+1*x_$$

$$x_1(t) = \frac{e^{-t}(c_3t^2 + 2c_2t + 2c_1 + 2c_3)}{2}$$

$$x_2(t) = \frac{(c_3t^2 + 2c_2t + 2c_1)e^{-t}}{2}$$

$$x_3(t) = e^{-t}(c_3t + c_2)$$

Solution by Mathematica

$$DSolve[{x1'[t] == -1*x1[t] + 0*x2[t] + 1*x3[t], x2'[t] == 0*x1[t] - 1*x2[t] + 1*x3[t], x3'[t] == 1*x1[t] - 1*x2[t] + 1*x3[t] + 1*x3[t]$$

$$x1(t) \to \frac{1}{2}e^{-t}(c_1(t^2+2) + t(2c_3 - c_2t))$$

$$x2(t) \to \frac{1}{2}e^{-t}((c_1 - c_2)t^2 + 2c_3t + 2c_2)$$

$$x3(t) \to e^{-t}((c_1 - c_2)t + c_3)$$

6.13 problem problem 13

Internal problem ID [370]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 13.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -x_1(t) + x_3(t)$$

$$x_2'(t) = x_2(t) - 4x_3(t)$$

$$x_3'(t) = x_2(t) - 3x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 54

 $dsolve([diff(x_1(t),t)=-1*x_1(t)+0*x_2(t)+1*x_3(t),diff(x_2(t),t)=0*x_1(t)+1*x_2(t)-4*x_1(t)+1*x_2(t)+1*x_1(t$

$$x_1(t) = \frac{(c_3t^2 + 2c_2t + 2c_1)e^{-t}}{2}$$

$$x_2(t) = e^{-t}(2c_3t + 2c_2 + c_3)$$

$$x_3(t) = e^{-t}(c_3t + c_2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 76

 $DSolve[{x1'[t] == -1*x1[t] + 0*x2[t] + 1*x3[t], x2'[t] == 0*x1[t] + 1*x2[t] - 4*x3[t], x3'[t] == 0*x1[t] + 1*x2[t] + 1*x2[t]$

$$x1(t) \to \frac{1}{2}e^{-t}(t(c_2t - 2c_3(t-1)) + 2c_1)$$

$$x2(t) \rightarrow e^{-t}(2c_2t - 4c_3t + c_2)$$

$$x3(t) \rightarrow e^{-t}((c_2 - 2c_3)t + c_3)$$

6.14 problem problem 14

Internal problem ID [371]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 14.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_3(t)$$

$$x'_2(t) = -5x_1(t) - x_2(t) - 5x_3(t)$$

$$x'_3(t) = 4x_1(t) + x_2(t) - 2x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 79

$$dsolve([diff(x_1(t),t)=0*x_1(t)+0*x_2(t)+1*x_3(t),diff(x_2(t),t)=-5*x_1(t)-1*x_2(t)-5*x_1(t)+1*x_2(t)+1*x_3(t),diff(x_2(t),t)=-5*x_1(t)+1*x_2(t)+1*x_3(t),diff(x_2(t),t)=-5*x_1(t)+1*x_2(t)+1*x_3(t)+1*$$

$$x_1(t) = -e^{-t}(c_3t^2 + c_2t + 2c_3t + c_1 + c_2 + 2c_3)$$

$$x_2(t) = e^{-t} (5c_3t^2 + 5c_2t + 10c_3t + 5c_1 + 5c_2 + 8c_3)$$

$$x_3(t) = e^{-t}(c_3t^2 + c_2t + c_1)$$

✓ Solution by Mathematica

$$DSolve[{x1'[t] == 0*x1[t] + 0*x2[t] + 1*x3[t], x2'[t] == -5*x1[t] - 1*x2[t] - 5*x3[t], x3'[t] == 4*x1[t] + 1*x2[t] + 1*x2[t]$$

$$x1(t) \to \frac{1}{2}e^{-t}(c_1(t(5t+2)+2)+t(c_2t+2c_3))$$

$$x2(t) \to \frac{1}{2}e^{-t}(2c_2-5t(c_1(5t+2)+c_2t+2c_3))$$

$$x3(t) \to \frac{1}{2}e^{-t}(c_1(8-5t)t-c_2(t-2)t-2c_3(t-1))$$

6.15 problem problem 15

Internal problem ID [372]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 15.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -2x_1(t) - 9x_2(t)$$

$$x'_2(t) = x_1(t) + 4x_2(t)$$

$$x'_3(t) = x_1(t) + 3x_2(t) + x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 46

$$dsolve([diff(x_1(t),t)=-2*x_1(t)-9*x_2(t)-0*x_3(t),diff(x_2(t),t)=1*x_1(t)+4*x_2(t)-0*x_3(t),diff(x_2(t),t)=1*x_1(t)+4*x_2(t)-0*x_3(t),diff(x_3(t),t)=1*x_3(t)+4*x_3(t)-0*x_3(t)+4*x_3(t)-0*x_3(t)+4*x_3(t)-0*x_$$

$$x_1(t) = -e^t(3c_3t + 3c_1 + 3c_2 - c_3)$$

$$x_2(t) = e^t(c_3t + c_1 + c_2)$$

$$x_3(t) = e^t(c_3t + c_2)$$

✓ Solution by Mathematica

$$x1(t) \rightarrow e^t(-3c_1t - 9c_2t + c_1)$$

$$x2(t) \rightarrow e^t((c_1 + 3c_2)t + c_2)$$

$$x3(t) \rightarrow e^t((c_1 + 3c_2)t + c_3)$$

6.16 problem problem 16

Internal problem ID [373]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 16.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = -2x_1(t) - 2x_2(t) - 3x_3(t)$$

$$x'_3(t) = 2x_1(t) + 3x_2(t) + 4x_3(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

$$dsolve([diff(x_1(t),t)=1*x_1(t)+0*x_2(t)-0*x_3(t),diff(x_2(t),t)=-2*x_1(t)-2*x_2(t)-3*x_3(t),diff(x_2(t),t)=-2*x_1(t)-2*x_2(t)-3*x_3(t),diff(x_3(t),t)=-2*x_3(t)-2*x_3(t)-3*x_3(t)+3*x_3(t)-2*x_3(t)-3*x_3(t)-2*x_3(t)-3*x_3(t)-2*x_3(t)-3*x_3(t)-2*x_3(t)-3*$$

$$x_1(t) = -\frac{e^t(3c_1 - c_3)}{2}$$

$$x_2(t) = e^t(-c_3t + c_1 - c_2)$$

$$x_3(t) = e^t(c_3t + c_2)$$

✓ Solution by Mathematica

$$x1(t) \to c_1 e^t$$

 $x2(t) \to e^t(-2c_1t - 3(c_2 + c_3)t + c_2)$
 $x3(t) \to e^t(2c_1t + 3(c_2 + c_3)t + c_3)$

6.17 problem problem 17

Internal problem ID [374]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 17.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = 18x_1(t) + 7x_2(t) + 4x_3(t)$$

$$x'_3(t) = -27x_1(t) - 9x_2(t) - 5x_3(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 43

$$x_1(t) = -\frac{e^t(9c_1 + c_3)}{27}$$

$$x_2(t) = \frac{e^t(-2c_3t + 3c_1 - 2c_2)}{3}$$

$$x_3(t) = e^t(c_3t + c_2)$$

✓ Solution by Mathematica

$$x1(t) \to c_1 e^t$$

 $x2(t) \to e^t (2(9c_1 + 3c_2 + 2c_3)t + c_2)$
 $x3(t) \to e^t (c_3 - 3(9c_1 + 3c_2 + 2c_3)t)$

6.18 problem problem 18

Internal problem ID [375]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 18.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = x_1(t) + 3x_2(t) + x_3(t)$$

$$x'_3(t) = -2x_1(t) - 4x_2(t) - x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 43

 $dsolve([diff(x_{1}(t),t)=1*x_{1}(t)+0*x_{2}(t)-0*x_{3}(t),diff(x_{2}(t),t)=1*x_{1}(t)+3*x_{2}(t)+1*x_{3}(t),diff(x_{4}(t),t)=1*x_{4}(t)+3*x_{$

$$x_1(t) = -\frac{e^t(4c_1 + c_3)}{2}$$

$$x_2(t) = \frac{e^t(-c_3t + 2c_1 - c_2)}{2}$$

$$x_3(t) = e^t(c_3t + c_2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 54

DSolve[{x1'[t]==1*x1[t]+0*x2[t]-0*x3[t],x2'[t]==1*x1[t]+3*x2[t]+1*x3[t],x3'[t]==-2*x1[t]-4*x2

$$x1(t) \to c_1 e^t$$

 $x2(t) \to e^t((c_1 + 2c_2 + c_3)t + c_2)$
 $x3(t) \to e^t(c_3 - 2(c_1 + 2c_2 + c_3)t)$

6.19 problem problem 19

Internal problem ID [376]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 19.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) - 4x_2(t) - 2x_4(t)$$

$$x'_2(t) = x_2(t)$$

$$x'_3(t) = 6x_1(t) - 12x_2(t) - x_3(t) - 6x_4(t)$$

$$x'_4(t) = -4x_2(t) - x_4(t)$$

✓ Solution by Maple

$$dsolve([diff(x_{1}(t),t)=1*x_{1}(t)-4*x_{2}(t)+0*x_{3}(t)-2*x_{4}(t),diff(x_{2}(t),t)=0*x_{1}(t)+1*x_{2}(t)+1*x_{3}(t)-2*x_{4}(t),diff(x_{4}(t),t)=0*x_{4}(t)+1*x_{$$

$$x_1(t) = \frac{c_1 e^t}{3} + c_4 e^{-t}$$

$$x_2(t) = -\frac{c_3 e^t}{2}$$

$$x_3(t) = c_1 e^t + c_2 e^{-t}$$

$$x_4(t) = c_3 \mathbf{e}^t + c_4 \mathbf{e}^{-t}$$

Time used: 0.006 (sec). Leaf size: 81

DSolve[{x1'[t]==1*x1[t]-4*x2[t]+0*x3[t]-2*x4[t],x2'[t]==0*x1[t]+1*x2[t]+0*x3[t]+0*x4[t],x3'[t]

$$x1(t) \to c_1 \cosh(t) + (c_1 - 2(2c_2 + c_4)) \sinh(t)$$

 $x2(t) \to c_2 e^t$
 $x3(t) \to c_3 \cosh(t) - (-6c_1 + 12c_2 + c_3 + 6c_4) \sinh(t)$

 $x4(t) \to c_4 e^{-t} - 4c_2 \sinh(t)$

6.20 problem problem 20

Internal problem ID [377]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 20.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t) + x_2(t) + x_4(t)$$

$$x'_2(t) = 2x_2(t) + x_3(t)$$

$$x'_3(t) = 2x_3(t) + x_4(t)$$

$$x'_4(t) = 2x_4(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=2*x_1(t)+1*x_2(t)+0*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_1(t)+2*x_4(t),diff(x_2(t),t)=0*x_1(t)+2*x_4(t),diff(x_2(t),t)=0*x_1(t)+2*x_4(t),diff(x_2(t),t)=0*x_1(t)+2*x_2(t)+0*x_1(t)+1*x_2(t)+0*x_1(t)+1*x_2(t)+1*x_1(t)+1*x_2(t)+1*x_1(t)$$

$$x_1(t) = \frac{\left(c_4 t^3 + 3c_3 t^2 + 6c_2 t + 6c_4 t + 6c_1\right) e^{2t}}{6}$$

$$x_2(t) = \frac{(c_4t^2 + 2c_3t + 2c_2)e^{2t}}{2}$$

$$x_3(t) = (c_4t + c_3) e^{2t}$$

$$x_4(t) = c_4 e^{2t}$$

Time used: 0.004 (sec). Leaf size: 94

DSolve[{x1'[t]==2*x1[t]+1*x2[t]+0*x3[t]+1*x4[t],x2'[t]==0*x1[t]+2*x2[t]+1*x3[t]+0*x4[t],x3'[t]

$$x1(t) \to \frac{1}{6}e^{2t} \left(t \left(c_4 \left(t^2 + 6 \right) + 3c_3 t + 6c_2 \right) + 6c_1 \right)$$

$$x2(t) \to \frac{1}{2}e^{2t} \left(t \left(c_4 t + 2c_3 \right) + 2c_2 \right)$$

$$x3(t) \to e^{2t} \left(c_4 t + c_3 \right)$$

$$x4(t) \to c_4 e^{2t}$$

6.21 problem problem 21

Internal problem ID [378]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 21.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) - 4x_2(t)$$

$$x'_2(t) = x_1(t) + 3x_2(t)$$

$$x'_3(t) = x_1(t) + 2x_2(t) + x_3(t)$$

$$x'_4(t) = x_2(t) + x_4(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=-1*x_1(t)-4*x_2(t)+0*x_3(t)+0*x_4(t),diff(x_2(t),t)=1*x_1(t)+3*x_1(t)+3*x_2(t)+1*x_1(t)+3*x_2(t)+1*x_1(t)+1*x_2(t)+1*x_1(t)+1*x_1(t)+1*x_2(t)+1*x_1(t$$

$$x_1(t) = -2e^t(2c_4t + c_3 - c_4)$$

$$x_2(t) = e^t (2c_4 t + c_3)$$

$$x_3(t) = e^t(2c_4t + c_1 + c_3)$$

$$x_4(t) = e^t (c_4 t^2 + c_3 t + c_2)$$

Time used: 0.003 (sec). Leaf size: 89

DSolve[{x1'[t]==-1*x1[t]-4*x2[t]+0*x3[t]+0*x4[t],x2'[t]==1*x1[t]+3*x2[t]+0*x3[t]+0*x4[t],x3'[

$$x1(t) \to e^{t}(-2c_{1}t - 4c_{2}t + c_{1})$$

$$x2(t) \to e^{t}((c_{1} + 2c_{2})t + c_{2})$$

$$x3(t) \to e^{t}((c_{1} + 2c_{2})t + c_{3})$$

$$x4(t) \to \frac{1}{2}e^{t}(c_{1}t^{2} + 2c_{2}(t+1)t + 2c_{4})$$

6.22 problem problem 22

Internal problem ID [379]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 22.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) + 3x_2(t) + 7x_3(t)$$

$$x'_2(t) = -x_2(t) - 4x_3(t)$$

$$x'_3(t) = x_2(t) + 3x_3(t)$$

$$x'_4(t) = -6x_2(t) - 14x_3(t) + x_4(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=1*x_1(t)+3*x_2(t)+7*x_3(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)-1*x_1(t)+1*x_2(t)+1*x_1(t)$$

$$x_1(t) = \frac{e^t(-c_4t^2 - c_3t + 2c_1 - c_2)}{2}$$

$$x_2(t) = e^t (2c_4t + c_3 - 7c_4)$$

$$x_3(t) = -\frac{e^t(2c_4t + c_3 - 6c_4)}{2}$$

$$x_4(t) = e^t (c_4 t^2 + c_3 t + c_2)$$

/

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 97

DSolve[{x1'[t]==1*x1[t]+3*x2[t]+7*x3[t]+0*x4[t],x2'[t]==0*x1[t]-1*x2[t]-4*x3[t]+0*x4[t],x3'[t]

$$x1(t) \to \frac{1}{2}e^{t}(c_{2}t(t+6) + 2c_{3}t(t+7) + 2c_{1})$$

$$x2(t) \to e^{t}(-2c_{2}t - 4c_{3}t + c_{2})$$

$$x3(t) \to e^{t}((c_{2} + 2c_{3})t + c_{3})$$

$$x4(t) \to e^{t}(c_{2}(-t)(t+6) - 2c_{3}t(t+7) + c_{4})$$

6.23 problem problem 23

Internal problem ID [380]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 23.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 39x_1(t) + 8x_2(t) - 16x_3(t)$$

$$x'_2(t) = -36x_1(t) - 5x_2(t) + 16x_3(t)$$

$$x'_3(t) = 72x_1(t) + 16x_2(t) - 29x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 67

$$dsolve([diff(x_1(t),t)=39*x_1(t)+8*x_2(t)-16*x_3(t),diff(x_2(t),t)=-36*x_1(t)-5*x_2(t))$$

$$x_1(t) = \frac{c_2 e^{-t}}{2} + \frac{5c_3 e^{3t}}{9} - \frac{2c_1 e^{3t}}{9}$$

$$x_2(t) = -\frac{c_2 e^{-t}}{2} - \frac{c_3 e^{3t}}{2} + c_1 e^{3t}$$

$$x_3(t) = c_2 e^{-t} + c_3 e^{3t}$$

✓ Solution by Mathematica

$$x1(t) \to e^{-t} \left(c_1 \left(10e^{4t} - 9 \right) + 2(c_2 - 2c_3) \left(e^{4t} - 1 \right) \right)$$

$$x2(t) \to e^{-t} \left(-(9c_1 + c_2 - 4c_3)e^{4t} + 9c_1 + 2c_2 - 4c_3 \right)$$

$$x3(t) \to e^t \left(c_3 \cosh(2t) + (36c_1 + 8c_2 - 15c_3) \sinh(2t) \right)$$

6.24 problem problem 24

Internal problem ID [381]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 28x_1(t) + 50x_2(t) + 100x_3(t)$$

$$x'_2(t) = 15x_1(t) + 33x_2(t) + 60x_3(t)$$

$$x'_3(t) = -15x_1(t) - 30x_2(t) - 57x_3(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=28*x_1(t)+50*x_2(t)+100*x_3(t),diff(x_2(t),t)=15*x_1(t)+33*x_2(t)+100*x_3(t),diff(x_2(t),t)=15*x_1(t)+33*x_2(t)+100*x_3(t),diff(x_2(t),t)=15*x_1(t)+33*x_2(t)+100*x_3(t)+100*$$

$$x_1(t) = -\frac{5e^{-2t}c_2}{3} - 2c_3e^{3t} - 2c_1e^{3t}$$

$$x_2(t) = -e^{-2t}c_2 - c_3e^{3t} + c_1e^{3t}$$

$$x_3(t) = e^{-2t}c_2 + c_3e^{3t}$$

Time used: 0.047 (sec). Leaf size: 229

DSolve[{x1'[t]==28*x1[t]+50*x2[t]+100*x3[t],x2'[t]==15*x1[t]+33*x2[t]+60*x3[t],x3'[t]==-15*x1

$$x1(t) \to \frac{1}{57} e^{t/2} \left(19(3c_1 - 5c_2)e^{5t/2} + 95c_2 \cos\left(\frac{5\sqrt{95}t}{2}\right) + \sqrt{95}(6c_1 + 13c_2 + 24c_3) \sin\left(\frac{5\sqrt{95}t}{2}\right) \right)$$

$$x2(t) \to \frac{1}{95} e^{t/2} \left(95c_2 \cos\left(\frac{5\sqrt{95}t}{2}\right) + \sqrt{95}(6c_1 + 13c_2 + 24c_3) \sin\left(\frac{5\sqrt{95}t}{2}\right) \right)$$

$$x3(t) \to \frac{e^{t/2} \left(95(3c_1 - 5c_2)e^{5t/2} - 95(3c_1 - 5c_2 + 12c_3) \cos\left(\frac{5\sqrt{95}t}{2}\right) + \sqrt{95}(69c_1 + 197c_2 + 276c_3) \sin\left(\frac{5\sqrt{95}t}{2}\right) \right) }{1140}$$

6.25 problem problem 25

Internal problem ID [382]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 25.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -2x_1(t) + 17x_2(t) + 4x_3(t)$$

$$x'_2(t) = -x_1(t) + 6x_2(t) + x_3(t)$$

$$x'_3(t) = x_2(t) + 2x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 62

$$dsolve([diff(x_1(t),t)=-2*x_1(t)+17*x_2(t)+4*x_3(t),diff(x_2(t),t)=-1*x_1(t)+6*x_2(t)+6*x_3(t),diff(x_2(t),t)=-1*x_1(t)+6*x_2(t)+6*x_3(t),diff(x_3(t),t)=-1*x_1(t)+6*x_2(t)+6*x_3(t)+$$

$$x_1(t) = e^{2t} (c_3 t^2 + c_2 t + 8c_3 t + c_1 + 4c_2 - 2c_3)$$

$$x_2(t) = e^{2t}(2c_3t + c_2)$$

$$x_3(t) = e^{2t} (c_3 t^2 + c_2 t + c_1)$$

✓ Solution by Mathematica

$$DSolve[{x1'[t] == -2*x1[t] + 17*x2[t] + 4*x3[t], x2'[t] == -1*x1[t] + 6*x2[t] + 1*x3[t], x3'[t] == 0*x1[t] + 1*x3[t], x3'[t] + 1*x3[t], x3'[t] == 0*x1[t$$

$$x1(t) \to \frac{1}{2}e^{2t}(-(c_1(t(t+8)-2)) + c_2t(4t+34) + c_3t(t+8))$$

$$x2(t) \to e^{2t}((-c_1 + 4c_2 + c_3)t + c_2)$$

$$x3(t) \to \frac{1}{2}e^{2t}((-c_1 + 4c_2 + c_3)t^2 + 2c_2t + 2c_3)$$

6.26 problem problem 26

Internal problem ID [383]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 26.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 5x_1(t) - x_2(t) + x_3(t)$$

$$x'_2(t) = x_1(t) + 3x_2(t)$$

$$x'_3(t) = -3x_1(t) + 2x_2(t) + x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 65

$$x_1(t) = e^{3t}(2c_3t + c_2 + 4c_3)$$

$$x_2(t) = e^{3t} (c_3 t^2 + c_2 t + 4c_3 t + c_1 + 2c_2 + 6c_3)$$

$$x_3(t) = e^{3t} (c_3 t^2 + c_2 t + c_1)$$

✓ Solution by Mathematica

$$x1(t) \to e^{3t}(2c_1t - c_2t + c_3t + c_1)$$

$$x2(t) \to \frac{1}{2}e^{3t}(t(2c_1(t+1) + (c_3 - c_2)t) + 2c_2)$$

$$x3(t) \to \frac{1}{2}e^{3t}(2c_1(t-3)t - c_2(t-4)t + c_3((t-4)t + 2))$$

6.27 problem problem 27

Internal problem ID [384]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 27.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -3x_1(t) + 5x_2(t) - 5x_3(t)$$

$$x'_2(t) = 3x_1(t) - x_2(t) + 3x_3(t)$$

$$x'_3(t) = 8x_1(t) - 8x_2(t) + 10x_3(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=-3*x_1(t)+5*x_2(t)-5*x_3(t),diff(x_2(t),t)=3*x_1(t)-1*x_2(t)+3*x_3(t),diff(x_2(t),t)=3*x_1(t)-1*x_2(t)+3*x_3(t),diff(x_3(t),t)=3*x_3(t),diff(x_3(t),t)=3*x_3(t)+3*x_3(t$$

$$x_1(t) = \frac{e^{2t}(-5c_3t + 8c_1 - 5c_2 + c_3)}{8}$$

$$x_2(t) = \frac{e^{2t}(3c_3t + 8c_1 + 3c_2)}{8}$$

$$x_3(t) = e^{2t}(c_3t + c_2)$$

Time used: 0.033 (sec). Leaf size: 174

DSolve[{x1'[t]==-3*x1[t]+5*x2[t]-5*x3[t],x2'[t]==4*x1[t]-1*x2[t]+4*x3[t],x3'[t]==8*x1[t]-8*x2

$$x1(t) \to \frac{1}{3}e^{2t} \left(-5(c_1 + c_3)\cos\left(\sqrt{3}t\right) - 5\sqrt{3}(c_1 - c_2 + c_3)\sin\left(\sqrt{3}t\right) + 8c_1 + 5c_3 \right)$$

$$x2(t) \to \frac{1}{3}e^{2t} \left(3c_2\cos\left(\sqrt{3}t\right) + \sqrt{3}(4c_1 - 3c_2 + 4c_3)\sin\left(\sqrt{3}t\right) \right)$$

$$x3(t) \to \frac{1}{3}e^{2t} \left(8(c_1 + c_3)\cos\left(\sqrt{3}t\right) + 8\sqrt{3}(c_1 - c_2 + c_3)\sin\left(\sqrt{3}t\right) - 8c_1 - 5c_3 \right)$$

6.28 problem problem 28

Internal problem ID [385]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 28.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -15x_1(t) - 7x_2(t) + 4x_3(t)$$

$$x'_2(t) = 34x_1(t) + 16x_2(t) - 11x_3(t)$$

$$x'_3(t) = 17x_1(t) + 7x_2(t) + 5x_3(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 75

$$dsolve([diff(x_1(t),t)=-15*x_1(t)-7*x_2(t)+4*x_3(t),diff(x_2(t),t)=34*x_1(t)+16*x_2(t),diff(x_2(t),t)=34*x_1(t)+16*x_2(t),diff(x_2(t),t)=34*x_1(t)+16*x_2(t),diff(x_2(t),t)=34*x_1(t)+16*x_2(t)+16$$

$$x_1(t) = -\frac{e^{2t}(-119c_3t^2 - 238c_2t + 34c_3t + 14c_1 + 6c_2 - 2c_3)}{34}$$

$$x_2(t) = \frac{(-17c_3t^2 - 34c_2t + 4c_3t + 2c_1)e^{2t}}{2}$$

$$x_3(t) = e^{2t}(c_3t + c_2)$$

✓ Solution by Mathematica

$$DSolve[{x1'[t] == -15*x1[t] - 7*x2[t] + 4*x3[t], x2'[t] == 34*x1[t] + 16*x2[t] - 11*x3[t], x3'[t] == 17*x1[t]}$$

$$x1(t) \to \frac{1}{2}e^{2t}(c_1(17t(7t-2)+2)+7c_2t(7t-2)+c_3t(21t+8))$$

$$x2(t) \to \frac{1}{2}e^{2t}(-(17c_1+7c_2)t(17t-4)-c_3t(51t+22)+2c_2)$$

$$x3(t) \to e^{2t}((17c_1+7c_2+3c_3)t+c_3)$$

6.29 problem problem 29

Internal problem ID [386]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 29.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) + x_2(t) + x_3(t) - 2x_4(t)$$

$$x'_2(t) = 7x_1(t) - 4x_2(t) - 6x_3(t) + 11x_4(t)$$

$$x'_3(t) = 5x_1(t) - x_2(t) + x_3(t) + 3x_4(t)$$

$$x'_4(t) = 6x_1(t) - 2x_2(t) - 2x_3(t) + 6x_4(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=-1*x_1(t)+1*x_2(t)+1*x_3(t)-2*x_4(t),diff(x_2(t),t)=7*x_1(t)-4*x_1(t)+1*x_2(t)+1*x_3(t)-2*x_4(t),diff(x_2(t),t)=7*x_1(t)-4*x_1(t)+1*x_2(t)+1*x_1(t)+1$$

$$x_1(t) = -\frac{e^{-t}(c_4t + c_3)}{2}$$

$$x_2(t) = -c_2 e^{2t}t + \frac{3c_4 e^{-t}t}{2} - c_1 e^{2t} + 2c_2 e^{2t} + \frac{3c_3 e^{-t}}{2} - \frac{c_4 e^{-t}}{2}$$

$$x_3(t) = c_2 e^{2t} t + c_1 e^{2t} + \frac{c_4 e^{-t} t}{2} + \frac{c_3 e^{-t}}{2}$$

$$x_4(t) = c_2 e^{2t} + c_3 e^{-t} + c_4 e^{-t}t$$

Time used: 0.01 (sec). Leaf size: 166

 $DSolve[{x1'[t] == -1*x1[t] + 1*x2[t] + 1*x3[t] - 2*x4[t], x2'[t] == 7*x1[t] - 4*x2[t] - 6*x3[t] + 11*x4[t], x3'[t] - 11*x4[t] + 11$

$$x1(t) \to e^{-t}((c_2 + c_3 - 2c_4)t + c_1)$$

$$x2(t) \to e^{-t}(-3((c_2 + c_3 - 2c_4)t + c_1) - e^{3t}(c_1(2t - 3) + c_4(t - 2) + c_3) + c_2 + c_3 - 2c_4)$$

$$x3(t) \to e^{2t}(2c_1t + c_4t + c_1 + c_3) - e^{-t}((c_2 + c_3 - 2c_4)t + c_1)$$

$$x4(t) \to (2c_1 + c_4)e^{2t} - 2e^{-t}((c_2 + c_3 - 2c_4)t + c_1)$$

6.30 problem problem 30

Internal problem ID [387]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 30.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t) + x_2(t) - 2x_3(t) + x_4(t)$$

$$x'_2(t) = 3x_2(t) - 5x_3(t) + 3x_4(t)$$

$$x'_3(t) = -13x_2(t) + 22x_3(t) - 12x_4(t)$$

$$x'_4(t) = -27x_2(t) + 45x_3(t) - 25x_4(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=2*x_1(t)+1*x_2(t)-2*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_1(t)+3*x_1(t)+1*x_2(t)+1*x_3(t)+1*x_4(t),diff(x_1(t),t)=0*x_1(t)+1*$$

$$x_1(t) = \frac{(-c_2t + 5c_1)e^{2t}}{5}$$

$$x_2(t) = -\frac{e^{-t}(3c_4t + 3c_3 + 2c_4)}{9}$$

$$x_3(t) = \frac{3c_2e^{2t}}{5} + \frac{c_3e^{-t}}{3} + \frac{c_4e^{-t}t}{3} - \frac{c_4e^{-t}}{9}$$

$$x_4(t) = c_2 e^{2t} + c_3 e^{-t} + c_4 e^{-t}t$$

Time used: 0.008 (sec). Leaf size: 157

DSolve[{x1'[t]==2*x1[t]+1*x2[t]-2*x3[t]+1*x4[t],x2'[t]==0*x1[t]+3*x2[t]-5*x3[t]+3*x4[t],x3'[t]

$$x1(t) \to e^{2t}((c_2 - 2c_3 + c_4)t + c_1)$$

$$x2(t) \to e^{-t}(4c_2t - 5c_3t + 3c_4t + c_2)$$

$$x3(t) \to e^{-t}(c_2(-4t - 3e^{3t} + 3) + c_3(5t + 6e^{3t} - 5) - 3c_4(t + e^{3t} - 1))$$

$$x4(t) \to e^{-t}(-12c_2t + 15c_3t - 9c_4t - 5(c_2 - 2c_3 + c_4)e^{3t} + 5c_2 - 10c_3 + 6c_4)$$

6.31 problem problem 31

Internal problem ID [388]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 31.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 35x_1(t) - 12x_2(t) + 4x_3(t) + 30x_4(t)$$

$$x'_2(t) = 22x_1(t) - 8x_2(t) + 3x_3(t) + 19x_4(t)$$

$$x'_3(t) = -10x_1(t) + 3x_2(t) - 9x_4(t)$$

$$x'_4(t) = -27x_1(t) + 9x_2(t) - 3x_3(t) - 23x_4(t)$$

✓ Solution by Maple

$$x_1(t) = -\frac{e^t(6c_4t^2 + 6c_3t + 2c_4t + 6c_2 + c_3 - c_4)}{6}$$

$$x_2(t) = \frac{e^t(-2c_4t^2 - 2c_3t - 10c_4t + 4c_1 - 2c_2 - 5c_3 + 6c_4)}{12}$$

$$x_3(t) = \frac{e^t(6c_4t^2 + 6c_3t - 2c_4t + 12c_1 + 6c_2 - c_3)}{12}$$

$$x_4(t) = e^t (c_4 t^2 + c_3 t + c_2)$$

Time used: 0.005 (sec). Leaf size: 187

 $DSolve[{x1'[t] == 35*x1[t] - 12*x2[t] + 4*x3[t] + 30*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t], x2'[t] == 22*x1[t] + 19*x4[t], x2'[t] + 19*x4[t], x2'[t] == 22*x1[t] + 19*x4[t], x2'[t] + 19*x4[t], x2'[t] == 22*x1[t] + 19*x4[t], x2'[t] + 19$

$$x1(t) \to e^{t}(c_{1}t(21t+34) - (3c_{2} - c_{3})t(3t+4) + 6c_{4}t(3t+5) + c_{1})$$

$$x2(t) \to \frac{1}{2}e^{t}(t(c_{1}(7t+44) + (c_{3} - 3c_{2})(t+6) + 2c_{4}(3t+19)) + 2c_{2})$$

$$x3(t) \to \frac{1}{2}e^{t}(2c_{3} - t(c_{1}(21t+20) - 3c_{2}(3t+2) + c_{3}(3t+2) + 18c_{4}(t+1)))$$

$$x4(t) \to e^{t}(c_{4} - 3t(c_{1}(7t+9) + (c_{3} - 3c_{2})(t+1) + 2c_{4}(3t+4)))$$

6.32 problem problem 32

Internal problem ID [389]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 32.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_{1}(t) = 11x_{1}(t) - x_{2}(t) + 26x_{3}(t) + 6x_{4}(t) - 3x_{5}(t)$$

$$x'_{2}(t) = 3x_{2}(t)$$

$$x'_{3}(t) = -9x_{1}(t) - 24x_{3}(t) - 6x_{4}(t) + 3x_{5}(t)$$

$$x'_{4}(t) = 3x_{1}(t) + 9x_{3}(t) + 5x_{4}(t) - x_{5}(t)$$

$$x'_{5}(t) = -48x_{1}(t) - 3x_{2}(t) - 138x_{3}(t) - 30x_{4}(t) + 18x_{5}(t)$$

✓ Solution by Maple

$$dsolve([diff(x_1(t),t)=11*x_1(t)-1*x_2(t)+26*x_3(t)+6*x_4(t)-3*x_5(t),diff(x_2(t),t)=0)$$

$$x_1(t) = 8c_2e^{2t} + \frac{25c_3e^{3t}}{3} - 3c_1e^{3t} + \frac{c_4e^{2t}}{3} + \frac{c_5e^{3t}}{3}$$

$$x_2(t) = \frac{e^{3t}(6c_1 - 16c_3 - c_5)}{3}$$

$$x_3(t) = -3c_2e^{2t} - 3c_3e^{3t} + c_1e^{3t}$$

$$x_4(t) = c_2 e^{2t} + c_3 e^{3t}$$

$$x_5(t) = c_4 e^{2t} + c_5 e^{3t}$$

Time used: 0.011 (sec). Leaf size: 202

DSolve[{x1'[t]==11*x1[t]-1*x2[t]+26*x3[t]+6*x4[t]-3*x5[t],x2'[t]==0*x1[t]+3*x2[t],x3'[t]==-9*

$$\begin{split} & \text{x1}(t) \rightarrow e^{2t} \big(c_1 \big(9e^t - 8 \big) - \big(c_2 - 26c_3 - 6c_4 + 3c_5 \big) \left(e^t - 1 \right) \big) \\ & \text{x2}(t) \rightarrow c_2 e^{3t} \\ & \text{x3}(t) \rightarrow -e^{2t} \big(9c_1 \big(e^t - 1 \big) + c_3 \big(26e^t - 27 \big) + 3 \big(2c_4 - c_5 \big) \left(e^t - 1 \big) \big) \\ & \text{x4}(t) \rightarrow e^{2t} \big(\big(3(c_1 + 3c_3 + c_4) - c_5 \big) e^t - 3c_1 - 9c_3 - 2c_4 + c_5 \big) \\ & \text{x5}(t) \rightarrow e^{2t} \big(3 \big(16c_1 + c_2 + 46c_3 + 10c_4 - 5c_5 \big) - \big(48c_1 + 3c_2 + 138c_3 + 30c_4 - 16c_5 \big) e^t \big) \end{split}$$

6.33 problem problem 33

Internal problem ID [390]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 33.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) - 4x_2(t) + x_3(t)$$

$$x'_2(t) = 4x_1(t) + 3x_2(t) + x_4(t)$$

$$x'_3(t) = 3x_3(t) - 4x_4(t)$$

$$x'_4(t) = 4x_3(t) + 3x_4(t)$$

✓ Solution by Maple

Time used: 0.75 (sec). Leaf size: 139

$$x_1(t) = \frac{e^{3t}(4\cos(4t)c_3t - 4\sin(4t)c_4t + 4c_2\cos(4t) - c_4\cos(4t) - 4c_1\sin(4t))}{4}$$

$$x_2(t) = \frac{e^{3t}(4\cos(4t)c_4t + 4\sin(4t)c_3t + 4c_1\cos(4t) + 4c_2\sin(4t) - \sin(4t)c_4)}{4}$$

$$x_3(t) = e^{3t}(\cos(4t) c_3 - \sin(4t) c_4)$$

$$x_4(t) = e^{3t}(c_4\cos(4t) + c_3\sin(4t))$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 120

DSolve[{x1'[t]==3*x1[t]-4*x2[t]+1*x3[t]+0*x4[t],x2'[t]==4*x1[t]+3*x2[t]+0*x3[t]+1*x4[t],x3'[t

$$x1(t) \to e^{3t}((c_3t + c_1)\cos(4t) - (c_4t + c_2)\sin(4t))$$

$$x2(t) \to e^{3t}((c_4t + c_2)\cos(4t) + (c_3t + c_1)\sin(4t))$$

$$x3(t) \to e^{3t}(c_3\cos(4t) - c_4\sin(4t))$$

$$x4(t) \to e^{3t}(c_4\cos(4t) + c_3\sin(4t))$$

6.34 problem problem 34

Internal problem ID [391]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 34.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t) - 8x_3(t) - 3x_4(t)$$

$$x'_2(t) = -18x_1(t) - x_2(t)$$

$$x'_3(t) = -9x_1(t) - 3x_2(t) - 25x_3(t) - 9x_4(t)$$

$$x'_4(t) = 33x_1(t) + 10x_2(t) + 90x_3(t) + 32x_4(t)$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 208

$$dsolve([diff(x_1(t),t)=2*x_1(t)+0*x_2(t)-8*x_3(t)-3*x_4(t),diff(x_2(t),t)=-18*x_1(t)$$

$$x_1(t) = e^{2t}(\cos(3t)c_3t - \sin(3t)c_4t + c_1\cos(3t) - 3\cos(3t)c_4 - c_2\sin(3t) - 3c_3\sin(3t))$$

$$x_2(t) = -e^{2t}(3\cos(3t)c_3t + 3\cos(3t)c_4t + 3\sin(3t)c_3t - 3\sin(3t)c_4t + 3c_1\cos(3t) + 3c_2\cos(3t) + 9c_3\cos(3t) - 10\cos(3t)c_4 + 3c_1\sin(3t) - 3c_2\sin(3t) - 10c_3\sin(3t)c_4 + 3c_1\sin(3t)c_4 + 3c_2\sin(3t)c_4 + 3c_1\sin(3t)c_4 + 3c_2\sin(3t)c_4 + 3c_2\cos(3t)c_4 + 3c_2\cos(3t)c_5 + 3c_3\cos(3t)c_5 + 3c_3\cos(3t)c_$$

$$x_3(t) = e^{2t}(c_3 \cos(3t) - \sin(3t) c_4)$$

$$x_4(t) = e^{2t}(\cos(3t) c_4 t + \sin(3t) c_3 t + c_2 \cos(3t) + c_1 \sin(3t))$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 223

$$DSolve[{x1'[t] == 2*x1[t] + 0*x2[t] - 8*x3[t] - 3*x4[t], x2'[t] == -18*x1[t] - 1*x2[t] + 0*x3[t] + 0*x4[t], x3'[t] + 0$$

$$\begin{aligned} \mathbf{x}1(t) &\to e^{2t}((c_3t+c_1)\cos(3t) - ((3c_1+c_2+9c_3+3c_4)t+3c_3+c_4)\sin(3t)) \\ \mathbf{x}2(t) &\to e^{2t}((c_2-3(3c_1+c_2+10c_3+3c_4)t)\cos(3t) \\ &\quad + (c_1(9t-3)+3(c_2+8c_3+3c_4)t+10c_3+3c_4)\sin(3t)) \\ \mathbf{x}3(t) &\to e^{2t}(c_3\cos(3t) - (3c_1+c_2+9c_3+3c_4)\sin(3t)) \\ \mathbf{x}4(t) &\to e^{2t}(((3c_1+c_2+9c_3+3c_4)t+c_4)\cos(3t) + (c_3(t+27)+10c_1+3c_2+9c_4)\sin(3t)) \end{aligned}$$

7	Chapter 11 Power se	eries	$\mathbf{methods.}$	Section	ı 11.1
	Introduction and Re	eview	of power	series.	Page 615
7.1	problem problem 1				149
7.2	problem problem 2				150
7.3	problem problem 3				151
7.4	problem problem $4 \ldots \ldots$				152
7.5	problem problem 5				153
7.6	problem problem 6				154
7.7	problem problem 7				155
7.8	problem problem 8				156
7.9	problem problem 9				157
7.10	0 problem problem $10 \dots \dots$				158
7.11	l problem problem 11				159
7.12	2 problem problem $12 \dots \dots$				160
7.13	3 problem problem 13				161
7.14	4 problem problem 14				162
7.15	5 problem problem 15				163
7.16	6 problem problem 16				164
7.17	7 problem problem 17 \dots				165
7.18	B problem problem 18				166
7.19	9 problem problem 19				167
7.20	0 problem problem 20 \dots				168
7.21	1 problem problem $21 \dots \dots$				169
7.22	2 problem problem $22 \dots \dots$				170
7.23	B problem problem 23				171
7.24	4 problem problem $26(a) \dots$				173

7.1 problem problem 1

Internal problem ID [392]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x)=y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 37

AsymptoticDSolveValue[$y'[x] == y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1 \right)$$

7.2 problem problem 2

Internal problem ID [393]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6;
dsolve(diff(y(x),x)=4*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + 4x + 8x^2 + \frac{32}{3}x^3 + \frac{32}{3}x^4 + \frac{128}{15}x^5\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 37

AsymptoticDSolveValue[$y'[x] == 4*y[x], y[x], \{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{128x^5}{15} + \frac{32x^4}{3} + \frac{32x^3}{3} + 8x^2 + 4x + 1 \right)$$

7.3 problem problem 3

Internal problem ID [394]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$2y' + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve(2*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{3}{2}x + \frac{9}{8}x^2 - \frac{9}{16}x^3 + \frac{27}{128}x^4 - \frac{81}{1280}x^5\right)y(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 41

AsymptoticDSolveValue $[2*y'[x]+3*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(-\frac{81x^5}{1280} + \frac{27x^4}{128} - \frac{9x^3}{16} + \frac{9x^2}{8} - \frac{3x}{2} + 1 \right)$$

7.4 problem problem 4

Internal problem ID [395]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

Order:=6; dsolve(diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 + \frac{1}{2}x^4\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 20

AsymptoticDSolveValue[$y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{2} - x^2 + 1 \right)$$

7.5 problem problem 5

Internal problem ID [396]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - x^2 y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

Order:=6; dsolve(diff(y(x),x)=x^2*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{3}\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 15

AsymptoticDSolveValue[$y'[x] == x^2*y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^3}{3} + 1\right)$$

7.6 problem problem 6

Internal problem ID [397]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(-2+x)y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve((x-2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \frac{1}{16}x^4 + \frac{1}{32}x^5\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 41

AsymptoticDSolveValue[$(x-2)*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^5}{32} + \frac{x^4}{16} + \frac{x^3}{8} + \frac{x^2}{4} + \frac{x}{2} + 1 \right)$$

7.7 problem problem 7

Internal problem ID [398]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(2x - 1)y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve((2*x-1)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (32x^5 + 16x^4 + 8x^3 + 4x^2 + 2x + 1)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 31

AsymptoticDSolveValue[$(2*x-1)*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1(32x^5 + 16x^4 + 8x^3 + 4x^2 + 2x + 1)$$

7.8 problem problem 8

Internal problem ID [399]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$2(x+1)y'-y=0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve(2*(x+1)*diff(y(x),x)=y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 41

AsymptoticDSolveValue $[2*(x+1)*y'[x]==y[x],y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{7x^5}{256} - \frac{5x^4}{128} + \frac{x^3}{16} - \frac{x^2}{8} + \frac{x}{2} + 1 \right)$$

7.9 problem problem 9

Internal problem ID [400]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x-1)y'+2y=0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

Order:=6; dsolve((x-1)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (6x^5 + 5x^4 + 4x^3 + 3x^2 + 2x + 1)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 31

AsymptoticDSolveValue[$(x-1)*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 (6x^5 + 5x^4 + 4x^3 + 3x^2 + 2x + 1)$$

7.10 problem problem 10

Internal problem ID [401]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2(x-1)y' - 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve(2*(x-1)*diff(y(x),x)=3*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{3}{2}x + \frac{3}{8}x^2 + \frac{1}{16}x^3 + \frac{3}{128}x^4 + \frac{3}{256}x^5\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 41

AsymptoticDSolveValue $[2*(x-1)*y'[x]==3*y[x],y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{3x^5}{256} + \frac{3x^4}{128} + \frac{x^3}{16} + \frac{3x^2}{8} - \frac{3x}{2} + 1 \right)$$

7.11 problem problem 11

Internal problem ID [402]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)=y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x] == y[x], y[x], \{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{120} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} + \frac{x^2}{2} + 1\right)$$

7.12 problem problem 12

Internal problem ID [403]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)=4*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + 2x^2 + \frac{2}{3}x^4\right)y(0) + \left(x + \frac{2}{3}x^3 + \frac{2}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[$y''[x] == 4*y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{2x^5}{15} + \frac{2x^3}{3} + x\right) + c_1 \left(\frac{2x^4}{3} + 2x^2 + 1\right)$$

7.13 problem problem 13

Internal problem ID [404]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+9*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{9}{2}x^2 + \frac{27}{8}x^4\right)y(0) + \left(x - \frac{3}{2}x^3 + \frac{27}{40}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+9*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{27x^5}{40} - \frac{3x^3}{2} + x\right) + c_1 \left(\frac{27x^4}{8} - \frac{9x^2}{2} + 1\right)$$

7.14 problem problem 14

Internal problem ID [405]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y - x = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

Order:=6; dsolve(diff(y(x),x\$2)+y(x)=x,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)\left(0\right) + \frac{x^3}{6} - \frac{x^5}{120} + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 56

AsymptoticDSolveValue[$y''[x]+y[x]==x,y[x],\{x,0,5\}$]

$$y(x) \rightarrow -\frac{x^5}{120} + \frac{x^3}{6} + c_2 \left(\frac{x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} - \frac{x^2}{2} + 1\right)$$

7.15 problem problem 15

Internal problem ID [406]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + y'x = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

Order:=6; dsolve(x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1}{x} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 9

AsymptoticDSolveValue[$x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o rac{c_1}{x}$$

7.16 problem problem 16

Internal problem ID [407]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

Order:=6; dsolve(2*x*diff(y(x),x)=y(x),y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 11

AsymptoticDSolveValue $[2*x*y'[x]==y[x],y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x}$$

7.17 problem problem 17

Internal problem ID [408]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x^2 + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6;
dsolve(x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

No solution found

/

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 11

 $\label{eq:asymptoticDSolveValue} AsymptoticDSolveValue[x^2*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_1 e^{\frac{1}{x}}$$

7.18 problem problem 18

Internal problem ID [409]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^3y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6;
dsolve(x^3*diff(y(x),x)=2*y(x),y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 13

 $AsymptoticDSolveValue[x^3*y'[x] == 2*y[x],y[x],\{x,0,5\}]$

$$y(x) \to c_1 e^{-\frac{1}{x^2}}$$

7.19 problem problem 19

Internal problem ID [410]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([diff(y(x),x\$2)+4*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x),type='series',x=0);

$$y(x) = 3x - 2x^3 + \frac{2}{5}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[$\{y''[x]+4*y[x]==0,\{y[0]==0,y'[0]==3\}\},y[x],\{x,0,5\}$]

$$y(x) \to \frac{2x^5}{5} - 2x^3 + 3x$$

7.20 problem problem 20

Internal problem ID [411]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)-4*y(x)=0,y(0) = 2, D(y)(0) = 0],y(x),type='series',x=0);

$$y(x) = 2 + 4x^2 + \frac{4}{3}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 17

AsymptoticDSolveValue[$\{y''[x]-4*y[x]==0,\{y[0]==2,y'[0]==0\}\},y[x],\{x,0,5\}$]

$$y(x) \to \frac{4x^4}{3} + 4x^2 + 2$$

7.21 problem problem 21

Internal problem ID [412]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Order:=6; dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);

$$y(x) = x + x^2 + \frac{1}{2}x^3 + \frac{1}{6}x^4 + \frac{1}{24}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 29

$$y(x) \rightarrow \frac{x^5}{24} + \frac{x^4}{6} + \frac{x^3}{2} + x^2 + x$$

7.22 problem problem 22

Internal problem ID [413]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

111110 db0d. 0.0 (b0c). 120df b120. 20

Order:=6; dsolve([diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(0) = 1, D(y)(0) = -2],y(x),type='series',x=0);

$$y(x) = 1 - 2x + 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{15}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

$$y(x) \rightarrow -\frac{4x^5}{15} + \frac{2x^4}{3} - \frac{4x^3}{3} + 2x^2 - 2x + 1$$

7.23 problem problem 23

Internal problem ID [414]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y'x^2 + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 907

Order:=6;

 $\label{eq:dsolve} \\ \text{dsolve}(x^2*\text{diff}(y(x),x$2)+x^2*\text{diff}(y(x),x)+y(x)=0,y(x),\\ \text{type='series',x=0)};$

$$y(x) = \sqrt{x} \left(c_2 x^{\frac{i\sqrt{3}}{2}} \left(1 - \frac{1}{2} x + \frac{i\sqrt{3} + 3}{8i\sqrt{3} + 16} x^2 + \frac{-i\sqrt{3} - 5}{48i\sqrt{3} + 96} x^3 + \frac{1}{384} \frac{(i\sqrt{3} + 5)(i\sqrt{3} + 7)}{(i\sqrt{3} + 4)(i\sqrt{3} + 2)} x^4 \right)$$

$$- \frac{1}{3840} \frac{(i\sqrt{3} + 7)(i\sqrt{3} + 9)}{(i\sqrt{3} + 4)(i\sqrt{3} + 2)} x^5 + O(x^6) \right)$$

$$+ c_1 x^{-\frac{i\sqrt{3}}{2}} \left(1 - \frac{1}{2} x + \frac{i\sqrt{3} - 3}{8i\sqrt{3} - 16} x^2 + \frac{-i\sqrt{3} + 5}{48i\sqrt{3} - 96} x^3 + \frac{1}{384} \frac{(i\sqrt{3} - 5)(i\sqrt{3} - 7)}{(i\sqrt{3} - 4)(i\sqrt{3} - 2)} x^4 \right)$$

$$- \frac{1}{3840} \frac{(i\sqrt{3} - 7)(i\sqrt{3} - 9)}{(i\sqrt{3} - 4)(i\sqrt{3} - 2)} x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 886

AsymptoticDSolveValue[$x^2*y''[x]+x^2*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow \left(\frac{(-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right) \left(4 - (-1)^{2/3} \left(1 - (-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right)\right) \left(4 - (-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right) \right) \left(1 + (3 - (-1)^{2/3}) \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right) x^4 \right)$$

$$+ \frac{(-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(1 + (2 - (-1)^{2/3}) \left(3 - (-1)^{2/3}\right)\right) \left(1 + (3 - (-1)^{2/3}) \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right) \right) }{ - \frac{(-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \right) }{ - \frac{(-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \right) }{ + \frac{(-1)^{2/3} x}{1 - (-1)^{2/3}} }$$

$$+ 1 \right) c_1 x^{-(-1)^{2/3}} + \left(- \frac{\sqrt[3]{-1} \left(1 + \sqrt[3]{-1}\right) \left(1 + \sqrt[3]{-1}\right) \left(1 + \sqrt[3]{-1}\right) \left(2 + \sqrt[3]{-1}\right) \left(3 + \sqrt[3]{-1}\right) }{ \left(1 + \sqrt[3]{-1}\right) } \right)$$

7.24 problem problem 26(a)

Internal problem ID [415]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series.

Page 615

Problem number: problem 26(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-1-y^2=0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 6

 $dsolve([diff(y(x),x)=1+y(x)^2,y(0)=0],y(x), singsol=all)$

$$y(x) = \tan(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 7

 $DSolve[\{y'[x]==1+y[x]^2,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan(x)$$

8 Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

8.1	problem problem 1	 																			175
8.2	problem problem 2	 																			176
8.3	problem problem 3	 																			177
8.4	problem problem 4	 																			178
8.5	problem problem 5	 																			179
8.6	problem problem 6	 							 •												180
8.7	problem problem 7	 																			181
8.8	problem problem 8	 			•																182
8.9	problem problem 9	 			•																183
8.10	problem problem 10				•																184
8.11	problem problem 11								 •												185
	problem problem 12								 •												186
	problem problem 13								 •				•								187
	problem problem 14				•			•	 •	•			•			•					188
	problem problem 15				•			•	 •	•			•			•					189
	problem problem 16				•	•		•		•			•		•	•	•				190
	problem problem 17			•	•	•	•		 •					 •	•	•					191
	problem problem 18				•	•															192
	problem problem 19			•	•	•	•		 •					 •	•	•					193
	problem problem 20				•	•		•		•			•		•	•	•				194
	problem problem 21				•	•															195
	problem problem 22			•	•	•	•		 •					 •	•	•					196
	problem problem 23				•	•		•		•			•		•	•	•				197
	problem problem 24			•	•	•	•		 •			 •		 •	•	•					198
	problem problem 25			•	•	•	•		 •			 •		 •	•	•					199
	problem problem 26				•	•															200
	problem problem 27			•	•	•	•	•	 •	•		 •	•	 •	•	•	•	•		•	201
	problem problem 28				•	•															202
	problem problem 29			•	•	•	•		 •			 •		 •	•	•					203
	problem problem 30			•	•	•			 •							•				•	204
	problem problem 33				•	•				•										•	205
8.32	problem problem 34																				206

8.1 problem problem 1

Internal problem ID [416]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 - 1)y'' + 4y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0); \\$

$$y(x) = (x^4 + x^2 + 1) y(0) + (x^5 + x^3 + x) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 26

AsymptoticDSolveValue[$(x^2-1)*y''[x]+4*x*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2(x^5 + x^3 + x) + c_1(x^4 + x^2 + 1)$$

8.2 problem problem 2

Internal problem ID [417]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 + 2)y'' + 4y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2+2)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{4}x^4\right)y(0) + \left(x - \frac{1}{2}x^3 + \frac{1}{4}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 68

AsymptoticDSolveValue[$(x^2+2)*y''[x]+4*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(-\frac{x^5}{30} - \frac{x^4}{12} + \frac{x^3}{3} - \frac{x^2}{2} + 1 \right) + c_2 \left(-\frac{x^5}{15} - \frac{x^4}{12} + \frac{x^3}{2} - x^2 + x \right)$$

8.3 problem problem 3

Internal problem ID [418]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + y'x + y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{3}x^3 + \frac{1}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{15} - \frac{x^3}{3} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

8.4 problem problem 4

Internal problem ID [419]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 + 1)y'' + 6y'x + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2+1)*diff(y(x),x$2)+6*x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(3x^4 - 2x^2 + 1\right)y(0) + \left(x - \frac{5}{3}x^3 + \frac{7}{3}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 60

AsymptoticDSolveValue[$(x^2+1)*y''[x]+6*y'[x]+4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(4x^5 - 5x^4 + 4x^3 - 2x^2 + 1\right) + c_2 \left(\frac{77x^5}{15} - \frac{13x^4}{2} + \frac{16x^3}{3} - 3x^2 + x\right)$$

8.5 problem problem 5

Internal problem ID [420]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing y]]

$$(x^2 + 1) y'' + 2y'x = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; $dsolve((x^2+1)*diff(y(x),x$2)+2*x*diff(y(x),x)=0,y(x),type='series',x=0);$

$$y(x) = y(0) + \left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 25

AsymptoticDSolveValue[$(x^2-3)*y''[x]+2*x*y'[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{45} + \frac{x^3}{9} + x\right) + c_1$$

8.6 problem problem 6

Internal problem ID [421]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(x^2 - 1)y'' - 6y'x + 12y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)-6*x*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);$

$$y(x) = (x^4 + 6x^2 + 1) y(0) + (x^3 + x) D(y) (0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 25

$$y(x) \rightarrow c_2(x^3 + x) + c_1(x^4 + 6x^2 + 1)$$

8.7 problem problem 7

Internal problem ID [422]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 3) y'' - 7y'x + 16y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2+3)*diff(y(x),x$2)-7*x*diff(y(x),x)+16*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{8}{3}x^2 + \frac{8}{27}x^4\right)y(0) + \left(x - \frac{1}{2}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(x^2+3)*y''[x]-7*x*y'[x]+16*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{120} - \frac{x^3}{2} + x\right) + c_1 \left(\frac{8x^4}{27} - \frac{8x^2}{3} + 1\right)$$

8.8 problem problem 8

Internal problem ID [423]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, '

$$(-x^2 + 2) y'' - y'x + 16y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=6; dsolve((2-x^2)*diff(y(x),x\$2)-x*diff(y(x),x)+16*y(x)=0,y(x),type='series',x=0);

$$y(x) = (2x^4 - 4x^2 + 1)y(0) + \left(x - \frac{5}{4}x^3 + \frac{7}{32}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue $[(2-x^2)*y''[x]-x*y'[x]+16*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{7x^5}{32} - \frac{5x^3}{4} + x\right) + c_1 (2x^4 - 4x^2 + 1)$$

8.9 problem problem 9

Internal problem ID [424]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(x^2 - 1)y'' + 8y'x + 12y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)+8*x*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);$

$$y(x) = (15x^4 + 6x^2 + 1)y(0) + \left(x + \frac{10}{3}x^3 + 7x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[$(x^2-1)*y''[x]+8*x*y'[x]+12*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(7x^5 + \frac{10x^3}{3} + x\right) + c_1\left(15x^4 + 6x^2 + 1\right)$$

8.10 problem problem 10

Internal problem ID [425]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' + y'x - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(3*diff(y(x),x\$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{2}{3}x^2 + \frac{1}{27}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{360}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$3*y''[x]+x*y'[x]-4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{360} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{27} + \frac{2x^2}{3} + 1\right)$$

8.11 problem problem 11

Internal problem ID [426]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$5y'' - 2y'x + 10y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(5*diff(y(x),x\$2)-2*x*diff(y(x),x)+10*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 + \frac{1}{10}x^4\right)y(0) + \left(\frac{4}{375}x^5 - \frac{4}{15}x^3 + x\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[$5*y''[x]-2*x*y'[x]+10*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{4x^5}{375} - \frac{4x^3}{15} + x\right) + c_1 \left(\frac{x^4}{10} - x^2 + 1\right)$$

8.12 problem problem 12

Internal problem ID [427]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y'x^2 - 3yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x^2*diff(y(x),x)-3*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{2}\right)y(0) + \left(x + \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y'[x]-3*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{3} + x\right) + c_1 \left(\frac{x^3}{2} + 1\right)$$

8.13 problem problem 13

Internal problem ID [428]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + y'x^2 + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{3}\right)y(0) + \left(x - \frac{1}{4}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{4} \right) + c_1 \left(1 - \frac{x^3}{3} \right)$$

8.14 problem problem 14

Internal problem ID [429]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{12} \right) + c_1 \left(1 - \frac{x^3}{6} \right)$$

8.15 problem problem 15

Internal problem ID [430]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^5}{20} \right) + c_1 \left(1 - \frac{x^4}{12} \right)$$

8.16 problem problem 16

Internal problem ID [431]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' + 2y'x - 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

Order:=6; $dsolve([(1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='se'$

$$y(x) = x$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 4

$$y(x) \to x$$

8.17 problem problem 17

Internal problem ID [432]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x - 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

Order:=6; dsolve([diff(y(x),x\$2)+x*diff(y(x),x)-2*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0)

$$y(x) = x^2 + 1$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

$$y(x) \to -\frac{x^5}{120} + \frac{x^3}{6} + x$$

8.18 problem problem 18

Internal problem ID [433]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + (x - 1)y' + y = 0$$

With initial conditions

$$[y(1) = 2, y'(1) = 0]$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x\$2)+(x-1)*diff(y(x),x)+y(x)=0,y(1) = 2, D(y)(1) = 0],y(x),type='series',x=0

$$y(x) = 2 - (x-1)^2 + \frac{1}{4}(x-1)^4 + O((x-1)^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 21

$$y(x) \to \frac{1}{4}(x-1)^4 - (x-1)^2 + 2$$

8.19 problem problem 19

Internal problem ID [434]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(-x^{2} + 2x) y'' - 6(x - 1) y' - 4y = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 1]$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([(2*x-x^2)*diff(y(x),x\$2)-6*(x-1)*diff(y(x),x)-4*y(x)=0,y(1) = 0, D(y)(1) = 1],y(x),ty

$$y(x) = (x-1) + \frac{5}{3}(x-1)^3 + \frac{7}{3}(x-1)^5 + O((x-1)^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 24

$$y(x) \to \frac{7}{3}(x-1)^5 + \frac{5}{3}(x-1)^3 + x - 1$$

8.20 problem problem 20

Internal problem ID [435]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 6x + 10) y'' - 4(x - 3) y' + 6y = 0$$

With initial conditions

$$[y(3) = 2, y'(3) = 0]$$

With the expansion point for the power series method at x = 3.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

Order:=6; $dsolve([(x^2-6*x+10)*diff(y(x),x$2)-4*(x-3)*diff(y(x),x)+6*y(x)=0,y(3) = 2, D(y)(3) = 0],y(x)$

$$y(x) = -6x^2 + 36x - 52$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 12

$$y(x) \to 2 - 6(x - 3)^2$$

8.21 problem problem 21

Internal problem ID [436]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(4x^2 + 16x + 17)y'' - 8y = 0$$

With initial conditions

$$[y(-2) = 1, y'(-2) = 0]$$

With the expansion point for the power series method at x = -2.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

Order:=6; dsolve([(4*x^2+16*x+17)*diff(y(x),x\$2)=8*y(x),y(-2) = 1, D(y)(-2) = 0],y(x),type='series',x=-

$$y(x) = 4x^2 + 16x + 17$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 12

AsymptoticDSolveValue[$\{(4*x^2+16*x+17)*y''[x]==8*y[x],\{y[-2]==1,y'[-2]==0\}\},y[x],\{x,-2,5\}$]

$$y(x) \to 4(x+2)^2 + 1$$

8.22 problem problem 22

Internal problem ID [437]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + 6x) y'' + (3x + 9) y' - 3y = 0$$

With initial conditions

$$[y(-3) = 1, y'(-3) = 0]$$

With the expansion point for the power series method at x = -3.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; $dsolve((x^2+6*x)*diff(y(x),x$2)+(3*x+9)*diff(y(x),x)-3*y(x)=0,y(-3) = 1, D(y)(-3) = 0],y(x),$

$$y(x) = 1 - \frac{1}{6}(x+3)^2 - \frac{5}{648}(x+3)^4 + O((x+3)^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 23

$$y(x) \to -\frac{5}{648}(x+3)^4 - \frac{1}{6}(x+3)^2 + 1$$

8.23 problem problem 23

Internal problem ID [438]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + (x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+(1+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{30}x^5\right)y(0) + \left(x - \frac{1}{6}x^3 - \frac{1}{12}x^4 + \frac{1}{120}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[$y''[x]+(1+x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{120} - \frac{x^4}{12} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^5}{30} + \frac{x^4}{24} - \frac{x^3}{6} - \frac{x^2}{2} + 1\right)$$

8.24 problem problem 24

Internal problem ID [439]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 1)y'' + 2y'x + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve((x^2-1)*diff(y(x),x\$2)+2*x*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{3}x^3 + \frac{1}{5}x^5\right)y(0) + \left(x + \frac{1}{3}x^3 + \frac{1}{6}x^4 + \frac{1}{5}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $49\,$

AsymptoticDSolveValue[$(x^2+1)*y''[x]+2*x*y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(\frac{x^5}{5} - \frac{x^3}{3} + 1 \right) + c_2 \left(\frac{x^5}{5} - \frac{x^4}{6} - \frac{x^3}{3} + x \right)$$

8.25 problem problem 25

Internal problem ID [440]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x^2 + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6; $dsolve(diff(y(x),x$2)+x^2*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{12}x^4 - \frac{1}{20}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[$y''[x]+x^2*y'[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_1 \left(1 - rac{x^4}{12}
ight) + c_2 \left(-rac{x^5}{20} - rac{x^4}{12} + x
ight)$$

8.26 problem problem 26

Internal problem ID [441]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^3 + 1) y'' + yx^4 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve((1+x^3)*diff(y(x),x\$2)+x^4*y(x)=0,y(x),type='series',x=0);

$$y(x) = y(0) + D(y)(0)x + O(x^{6})$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 10

 $AsymptoticDSolveValue[(1+x^3)*y''[x]+x^4*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_2 x + c_1$$

8.27 problem problem 27

Internal problem ID [442]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + y(2x^2 + 1) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 20

1 1 1 1

$$y(x) = 1 - x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{24}x^4 + \frac{1}{30}x^5 + O(x^6)$$

 $dsolve([diff(y(x),x$2)+x*diff(y(x),x)+(2*x^2+1)*y(x)=0,y(0) = 1, D(y)(0) = -1],y(x),type='ser'$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 49

$$y(x) \rightarrow c_1 \left(\frac{x^5}{5} - \frac{x^3}{3} + 1\right) + c_2 \left(\frac{x^5}{5} - \frac{x^4}{6} - \frac{x^3}{3} + x\right)$$

8.28 problem problem 28

Internal problem ID [443]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + e^{-x}y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(diff(y(x),x\$2)+exp(-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{40}x^5\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{12}x^4 - \frac{1}{60}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[$y''[x]+Exp[-x]*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(-\frac{x^5}{60} + \frac{x^4}{12} - \frac{x^3}{6} + x \right) + c_1 \left(-\frac{x^5}{40} + \frac{x^3}{6} - \frac{x^2}{2} + 1 \right)$$

8.29 problem problem 29

Internal problem ID [444]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\cos(x)y'' + y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

Order:=6; dsolve(cos(x)*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^2}{2}\right)y(0) + \left(x - \frac{1}{6}x^3 - \frac{1}{60}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[$Cos[x]*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_1 \left(1 - rac{x^2}{2}
ight) + c_2 \left(-rac{x^5}{60} - rac{x^3}{6} + x
ight)$$

8.30 problem problem 30

Internal problem ID [445]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 30.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + \sin(x)y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6; dsolve(x*diff(y(x),x\$2)+sin(x)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{60}x^5\right)y(0) + \left(x - \frac{1}{2}x^2 + \frac{1}{18}x^4 - \frac{7}{360}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[$x*y''[x]+Sin[x]*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(-\frac{7x^5}{360} + \frac{x^4}{18} - \frac{x^2}{2} + x \right) + c_1 \left(-\frac{x^5}{60} + \frac{x^3}{6} - \frac{x^2}{2} + 1 \right)$$

8.31 problem problem 33

Internal problem ID [446]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 2\alpha y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 63

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)+2*alpha*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \alpha x^2 + \frac{\alpha(\alpha - 2) x^4}{6}\right) y(0) + \left(x - \frac{(\alpha - 1) x^3}{3} + \frac{(\alpha^2 - 4\alpha + 3) x^5}{30}\right) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78

 $AsymptoticDSolveValue[y''[x]-2*x*y'[x]+2*\\[Alpha]*y[x]==0,y[x],\{x,0,5\}]$

$$y(x)
ightarrow c_2 \left(rac{lpha^2 x^5}{30} - rac{2lpha x^5}{15} + rac{x^5}{10} - rac{lpha x^3}{3} + rac{x^3}{3} + x
ight) + c_1 \left(rac{lpha^2 x^4}{6} - rac{lpha x^4}{3} - lpha x^2 + 1
ight)$$

8.32 problem problem 34

Internal problem ID [447]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)=x*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{6}\right)y(0) + \left(x + \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x] == x*y[x], y[x], \{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{12} + x\right) + c_1 \left(\frac{x^3}{6} + 1\right)$$