
HW2, Math 228A
Date due 10/22/2010

UC Davis, California Fall 2010

Nasser M. Abbasi

Fall 2010 Compiled on September 29, 2019 at 12:00am

Contents
1 Problem description 2

2 Problem 1 2
2.1 part (a) . 2
2.2 Part (b) . 6
2.3 Finding analytical solution . 6

3 Problem 2 12
3.1 First scheme . 12
3.2 Second scheme . 13
3.3 Third scheme . 13
3.4 Order of accuracy . 14
3.5 Refinement study for the third scheme . 14
3.6 Conclusion . 15

4 Problem 3 16
4.1 Part (a) . 16
4.2 Part (b) . 17
4.3 Part (c) . 17

5 Source code written for this HW 20

1

mailto:nma@12000.org

2

1 Problem description

Math 228A
Homework 2
Due Friday, 10/22/08, 4:00

1. Use the standard 3-point discretization of the Laplacian on a regular mesh to find a numerical
solution to the PDEs below. Perform a refinement study using the exact solution to compute
the error that shows the rate of convergence for both the 1-norm and the max norm.

(a) uxx = exp(x), u(0) = 0, u(1) = 1

(b) uxx = 2 cos2(πx), ux(0) = 0, ux(1) = 1

2. Propose a discretization scheme for

uxx = f, ux(0) − αu(0) = g, u(1) = b.

What is the form of the matrix and right hand side in your discrete equations? What order
of accuracy do you expect?

3. As a general rule, we usually think that an O(hp) local truncation error (LTE) leads to an
O(hp) error. However, in some cases the LTE can be lower order at some points without low-
ering the order of the error. Consider the standard second-order discretization of the Poisson
equation on [0, 1] with homogeneous boundary conditions. The standard discretization of this
problem gives an O(h2) LTE provided the the solution is at least C4. The LTE may be lower
order because the solution is not C4 or because we use a lower order discretization at some
points.

(a) Suppose that the LTE is O(hp) at the first grid point (x1 = h). What effect does this
have on the error? What is the smallest value of p that gives a second order accurate
error? Hint: Use equation (2.46) from LeVeque to aid in your argument.

(b) Suppose that the LTE is O(hp) at an interior point (i.e. a point that does not limit to
the boundary as h → 0). What effect does this have on the error? What is the smallest
value of p that gives a second order accurate error?

(c) Verify the results of your analysis from parts (a) and (b) using numerical tests.

1

Figure 1: problem description

2 Problem 1
Use standard 3-point discretization of the Laplacian on a regular mesh to find numerical
solution to the PDE below and perform refinement study to compute the error that shows
the rate of convergence for both the 1-norm and the max-norm.

2.1 part (a)
The differential equation with its boundary conditions is uxx = ex with u (0) = 0, u (1) = 1.

Finding the analytical solution

Let D be a differential operator D ≡ d
dx

. Since (D − 1) ex = 0, then applying (D − 1) to
both sides of the differential equation results in[

(D − 1) D2
]

(u) = 0

Thus the characteristic equation is (r − 1) r2 = 0 with roots r1 = 1, r2 = 0 and r3 = 0.
Therefore the complete solution is

u (x) = c1e
r1x + c2e

r2x + xc3e
r3x

It helps to designate in the above which part is the particular solution and which is the
homogeneous

u (x) =
up︷︸︸︷

c1e
x +

yh︷ ︸︸ ︷
c2 + c3x

c1 is found by substituting the particular solution in the original differential equation

3

giving c1 = 1. The solution becomes1

u (x) = ex + c2 + xc3

The remaining constants c2 and c3 are found by satisfying the boundary conditions on the
above solution. Applying u (0) = 0 gives c2 = −1 and applying u (1) = 1 gives c3 = 2 − e.
The solution becomes

u (x) = 2x − exp (1) x + exp (x) − 1

Scheme to use for the numerical solution

The numbering used is the one described in the class. The first grid point has an index
j = 0, and the last grid point has an index j = N + 1. U is the unknown to solve for. It is
the numerical solution of the differential equation at the grid points. Lower case u is the
exact analytical solution found earlier.

Because this problem has Dirichlet boundary conditions, U is known at j = 0 and at
j = N +1, therefore only internal grid points are used to solve for U . These internal points
are numbered 1 · · · N . The spacing between each grid point is h = len

N+1 where the length
of the domain len is always taken to have value 1.

The physical x-coordinate of each grid point is given by xj = jh. For example, when j = 0,
the first point will have a physical x-coordinate of 0, and when j = N + 1, the last grid
point will have a physical x-coordinate of 1.

The diagram below helps illustrate these relations and the notations used.

J=1J=0 J=2 J=N+1J=N...

Internal grid points

Domain over which the problem is defined

...

U1 U2 UN

u(x=h) u(x=2h) u(x=Nh)α=u(x=0) β=u(1)

h

U is the numerical solution vector to solve for

u is the known exact analytical

solution evaluated at grid points

Left

boundary

condition
Right

boundary

condition

...

F is the forcing vector evaluated at each internal point

F1=f(h)-α/h
2

F2=f(2h) FN=f(Nh)-β/h
2

J=1 J=2 J=N

AU=F

Solve for U

Solving uxx=f(x)

u(0)=α

u(1)=β

By Nasser M. Abbasi

10/16/2010

Figure 2: problem 1 part a scheme
1another way to solve this is to integrate the original differential equation twice to obtain this general

solution.

4

The standard 3-point central difference formula Uj−1−2Uj+Uj+1
h2 was used to approximate

uxx on each internal grid point. This approximation has local truncation error (LTE) of
O (h2). Therefore, at each internal grid point j the equation uxx = f (x) is approximated
by Uj−1−2Uj+Uj+1

h2 = fx=jh.

J=0 J=N+1...

Solving uxx=f(x)

u(0)=α

u(1)=β

By Nasser M. Abbasi

10/16/2010

Uj

Uj12UjUj1

h2
 FJ

u(x=h*j)

uxx fxxjh

Converting a differential

equation to an algebraic

equation to solve numerically

Figure 3: problem 1 part a scheme 2

For the special case of j = 1 (the first internal grid point on left side), the above formula
was modified by replacing Uo by its given value (U0 is on the boundary and its value is
known). Therefore, for j = 1 the discrete equation becomes

α − 2U0 + U1

h2 = F1

−2U0 + U1

h2 = F1 − α

h2 (2)

The same was done for j = N (the last internal grid point on right side). The standard 3
points formula was modified by replacing UN+1 by its given value. Therefore, for j = N
the discrete equation becomes

UN−1 − 2UN + β

h2 = FN

UN−1 − 2UN

h2 = FN − β

h2 (3)

The above equations are collected and put in the form Au = f resulting in

1
h2

−2 1 0 0 0 0 0
1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 · · · 0
0 0 0 0 1 −2 1
0 0 0 0 0 1 −2

U1

U2

U3

·
·
·

UN

=

fh − α
h2

f2h

f3h

·
·

f(N−1)h

FNh − β
h2

The above system is solved for the unknown vector U . These are the values of the numerical
solution at the internal grid points. The A matrix above is symmetric and tridiagonal and
of size N × N where N is the number of internal grid points.

Error norm calculation

The total error at a grid point j is given by
ej= Uj−u (xj)

Where Uj is the numerical solution at the jth grid point and u (xj) is the exact solution
sampled at the same grid point location. e is a vector of length N and represents the
difference between U and u at each point.

To measure the size of the error vector e, a grid norm is used in place of the standard
vector norm. The following are the definitions of the norms used.

1. max-norm
∥∥∥eh

∥∥∥
max

= max
j

|ej|

5

2. 1-norm
∥∥∥eh

∥∥∥
1

= h
N∑

j=1
|ej|

3. 2-norm
∥∥∥eh

∥∥∥
2

=
√√√√h

N∑
j=1

|ej|2

Description of method used in Refinement study

The goal of the refinement study is to check that the scheme selected is stable. Since the
scheme selected is consistent (it has an LTE of order O (h2) therefore ‖τ‖ → 0 as h → 0),
this implies that the scheme will be stable if it can be shown that the numerical solution
converges to the exact solution2.

For a stable scheme the following relation must hold
‖e‖ ≤

∥∥∥A−1
∥∥∥ ‖τ‖

therefore stability can be established by verifying that error norm ‖e‖ is also of order
O (h2). This implies that ‖A−1‖ is O (1). In addition, showing that ‖e‖ is of order O (h2)
implies that ‖e‖ → 0 as h → 0, which means convergence.

These are the steps carried out in the refinement study

1. The system AU = f is formulated based on the scheme described above. These
equations contain h (the grid space) in them as a free parameter. Initially h is given
an initial starting value.

2. AU = f is solved for U.

3. The total error vector e = U − u is calculated and the error grid norm ‖e‖ found
using the the above definitions of norms.

4. The spacing h is divided by 2 and the above steps are repeated. The number of
iterations was selected so that numerical convergence can be clearly observed. It is
found that 5 or 6 iterations was sufficient to show convergence in this problem.

5. The error table and the log plots are generated. Convergence is verified by showing
from the error table results that the total error norm ‖e‖ has an order of accuracy
of O (h2) . This implies the numerical scheme selected is stable.

Results of the refinement study

This is a plot of log(h) against the log of the various error norms. The source code is in
the appendix.

2Lax-Richtmyer theorem

6

Figure 4: matlab HW2 part a logplot

The error table is the following� �
1 EDU>> nma_HW2_part_a
2 N h emax ratio e1 ratio e2 ratio
3 16 6.6667e-002 1.0444e-004 0.0000e+000 5.9816e-005 0.0000e+000 7.0865e-005 0.0000e+000
4 32 3.2258e-002 2.0983e-005 4.9772e+000 1.3040e-005 4.5870e+000 1.4799e-005 4.7886e+000
5 64 1.5873e-002 4.7448e-006 4.4223e+000 3.0536e-006 4.2706e+000 3.4030e-006 4.3488e+000
6 128 7.8740e-003 1.1299e-006 4.1992e+000 7.3937e-007 4.1300e+000 8.1708e-007 4.1648e+000
7 256 3.9216e-003 2.7583e-007 4.0964e+000 1.8194e-007 4.0637e+000 2.0025e-007 4.0802e+000
8 512 1.9569e-003 6.8147e-008 4.0476e+000 4.5130e-008 4.0316e+000 4.9573e-008 4.0396e+000
9 1024 9.7752e-004 1.6937e-008 4.0236e+000 1.1238e-008 4.0157e+000 1.2333e-008 4.0196e+000

10 2048 4.8852e-004 4.2220e-009 4.0115e+000 2.8042e-009 4.0076e+000 3.0758e-009 4.0096e+000� �
Conclusion

The study was carried out using 3 different norms (max norm,1-norm and 2-norm). It is
found that for each norm the total error ratio converged to 4, implying p = 2, hence the
total error norm was O (h2) the same as LTE. This shows that the numerical scheme is
stable and the numerical solution converges to the exact solution.

2.2 Part (b)
Solve uxx = 2 cos2 (πx) with ux (0) = 0, ux (1) = 1

2.3 Finding analytical solution
The existence of a solution is first verified. This is done in this case since for Neumann
boundary conditions a solution might not even exist if the problem is not well posed.
Integrating both sides of the PDE gives

1∫
0

uxx (x) dx =
1∫

0

2 cos2 (πx) dx

= ux (1) − ux (0)
= 1

Substituting the values of uxon the boundaries, the above becomes zero, hence the problem
is well posed. Now the analytical solution is found.

Integrating the differential equation once

ux = x + sin (2πx)
2π

+ c1 (1)

7

And Integrating again

u (x) = x2

2 − cos (2πx)
4π2 + c1x + c2 (2)

Substituting the boundary condition ux (0) = 0 in the above3 gives c1 = 0, therefore the
solution is

u (x) = x2

2 − cos (2πx)
4π2 + c2 (3)

This solution is not unique. The constant c2 is arbitrary and an infinite number of solutions
exist. A solution exist which is up to an arbitrary additive constant. To select a constant
for the purpose of the numerical analysis in the refinement study, the constant is selected
to give the solution zero mean. Hence ∫ 1

0
u (x) dx = 0∫ 1

0

(
x2

2 − cos (2πx)
4π2 + c2

)
dx = 0

1
6 + c2 = 0

Therefore c2 = −1
6 . Therefore, the exact solution used in the refinement study to compare

the numerical solution against is

u (x) = x2

2 − cos (2πx)
4π2 − 1

6

Scheme to use for the numerical solution

Two schemes formulated, both having a local truncation error ‖τ‖ of order O (h2). Hence
both schemes are consistent.

First scheme The standard 3 point centered difference formulaUj−1−2Uj+Uj+1
h2 is used for

approximating uxx on internal grid points. However in this problem Uo and UN+1are not
known at the left most and the right most grid points (grid points of index 0 and N + 1),
therefore the grid points used includes these 2 points in addition to the standard internal
grid points (1 · · · N) resulting in the A matrix having size N + 2. (A will have 2 additional
rows as compared to part (a)).

Now, two imaginary points are introduced into the domain, one to the left of j = 0, and
one to the right of j = N + 1

J=0 J=N+1...

Solving uxx=f(x)

u’(0)=α

u’(1)=β

Uj

Uj12UjUj1

h2
 FJ

u(x=h*j)J=-1 J=N+2

Internal grid points

J=1 J=N

Domain of problem

Adjusted domain to enable formulation of A

Figure 5: problem 1 part b scheme

For j = 0 the standard 3 points formulate is used to approximate uxx

U−1 − 2U0 + U1

h2 = f0 (1)

3The other condition ux (1) = 1 could also have been used, but the result would remain the same

8

And ux (0) = α the 2 points central difference scheme is used
U1 − U−1

2h
= α (2)

Now U−1 is eliminated using (1) and (2). From equation (2)
U−1 = U1 − 2hα

substituting the above into (1)
(U1 − 2hα) − 2U0 + U1

h2 = f0

−2U0 + 2U1

h2 = f0 + 2α

h
(3)

The above equation (3) is the discrete equation for node j = 0 (the first row in the A
matrix). Similarly for the right-most node j = N + 1, uxx is approximated using

UN − 2UN+1 + UN+2

h2 = fN+1 (4)

And ux (1) = β at node j = N + 1 is approximated using 2 points central difference
UN+2 − UN

2h
= β (5)

UN+2is eliminated using (4) and (5). From equation (5)
UN+2 = UN + 2hβ

substituting the above into (4)
UN − 2UN+1 + (UN + 2hβ)

h2 = fN+1

2UN − 2UN+1

h2 = fN+1 − 2β

h
(6)

The above equation (6) is the discrete equation for node j = N + 1 (the last row in the A
matrix). Au = f is now setup resulting in

1
h2

−2 2 0 0 0 0 0
1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 · · · 0
0 0 0 0 1 −2 1
0 0 0 0 0 2 −2

U0

U1

U2

·
·

NN−1

UN

UN+1

=

f0 + 2α
h

f1

f2

·
·

fN

fN+1 − 2β
h

The A matrix is tridiagonal, not symmetrical and singular since null(A) = 1T . In some
books, this matrix is called the Laplacian matrix.

Second scheme In this scheme, the first order derivative for the Neumann boundary
condition at the left point and at the right point is approximated using

α = 1
h

(3
2U0 − 2U1 + 1

2U2

)
β = 1

h

(3
2UN+1 − 2UN + 1

2UN−1

)
respectively.

The derivation of the above formulas is shown in example 1.2 in the textbook. The above
approximation has an LTE of O (h2). For the other internal grid points, the standard
3 points centred difference Uj−1−2Uj+Uj+1

h2 is used to approximate uxx. Using the above

9

approximations, the system AU = f becomes

1
h2

3
2 −2 1

2 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 · · · 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 1

2 −2 3
2

U0

U1

U2

·
·

UN−1

UN

UN+1

=

α
h

F1

F2

·
·
·

FN

β
h

The A matrix is tridiagonal, not symmetrical and is also singular since null(A) = 1T .

Augmenting the systems before solving The A matrix for both schemes above is
singular. Both have u = (1, 1, 1, · · · , 1, 1)T as the null vector. Using Matlab to verify, the
null command can be used as follows� �

1 EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_1(6)
2 A =
3 -2 2 0 0 0 0
4 1 -2 1 0 0 0
5 0 1 -2 1 0 0
6 0 0 1 -2 1 0
7 0 0 0 1 -2 1
8 0 0 0 0 2 -2
9 DU>> null(A,'r')'

10 ans =
11 1 1 1 1 1 1� �

For the second scheme� �
1 EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_2(6)
2 A =
3 1.5000 -2.0000 0.5000 0 0 0
4 1.0000 -2.0000 1.0000 0 0 0
5 0 1.0000 -2.0000 1.0000 0 0
6 0 0 1.0000 -2.0000 1.0000 0
7 0 0 0 1.0000 -2.0000 1.0000
8 0 0 0 0.5000 -2.0000 1.5000
9 EDU>> null(A,'r')'

10 ans =
11 1 1 1 1 1 1� �

Since the matrix A is singular, before solving by Gaussian elimination it is augmented as
follows

A →

A v

u 0

where v is the the null of A∗ (the adjoint of A, or for a real matrix, the same as AT) and
u is the null of A.

v is found for the above 2 schemes. For the first scheme:� �
1 EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_1(6);
2 EDU>> null(A','r')'
3 ans =
4 1 2 2 2 2 1� �

10

And for the second scheme� �
1 EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_2(6);
2 EDU>> null(A','r')'
3 ans =
4 1.0000 -1.5000 -1.0000 -1.0000 -1.5000 1.0000� �

Now that v and u are found, the augmented A can be formulated.

The force vector is also augmented as follows

f →

f

0

 (7)

The augmented system is now solved for U using Gaussian elimination. In Matlab
U = A\f

The resulting solution U will have an extra element at the end, which is not used in the
solution. This element, called λ was verified to be equal v·f

v·v .

Notice that last element of f was set to 0 in (7), this is because it corresponds to having
selected an exact solution with a zero mean. When the last element of f is set to 0, this

corresponds to having
N+1∑
i=0

Ui = 0, which implies the mean of the numerical solution is

zero. This follows because null(A) was found to be 1T , meaning that, from looking atA v

1T 0

U

λ

 =
f

0

 , the dot
(
1T , U

)
= 0 , which is the same as saying that

N+1∑
i=0

Ui = 0

or the mean of the numerical solution is zero.

To summarize: A constant in the analytical solution was earlier selected which resulted
in the mean of the exact solution to be zero. This constant was found to be −1

6 . The last
entry in the augment f vector is set to be zero to cause the numerical solution to have
zero mean as well.

Now that the numerical solution is found, the error vector e = U − u is found and its
norms are calculated to complete the refinement study. Below is the result for both schemes
described above.

Refinement study results

Figure 6: nma HW2 prob1 part b solution

11

Figure 7: nma HW2 part b scheme one plot2

Scheme one The error table is the following:� �
1 EDU>> nma_HW2_part_b_scheme_one
2 N h emax ratio e1 ratio
3 3 0.5000000 4.9560e-002 0.0000e+000 4.9560e-002 0.0000e+000
4 5 0.2500000 7.1036e-003 6.9766e+000 4.7358e-003 1.0465e+001
5 9 0.1250000 1.4925e-003 4.7596e+000 9.9728e-004 4.7487e+000
6 17 0.0625000 3.4734e-004 4.2969e+000 2.2786e-004 4.3768e+000
7 33 0.0312500 8.4008e-005 4.1346e+000 5.4367e-005 4.1912e+000
8 65 0.0156250 2.0668e-005 4.0646e+000 1.3271e-005 4.0967e+000� �

Figure 8: HW2 prob1 part b scheme 2

Scheme 2 And the error table is� �
1
2 EDU>> nma_HW2_prob1_part_b(2)
3 N h emax ratio e1 ratio
4 3 0.5000000 5.9960e-003 0.0000e+000 5.9960e-003 0.0000e+000
5 5 0.2500000 6.0976e-003 9.8333e-001 6.0976e-003 9.8333e-001
6 9 0.1250000 8.1787e-004 7.4554e+000 4.3938e-004 1.3878e+001
7 17 0.0625000 1.6346e-004 5.0034e+000 8.9562e-005 4.9058e+000
8 33 0.0312500 6.0030e-005 2.7230e+000 3.6203e-005 2.4739e+000

12

9 65 0.0156250 1.7602e-005 3.4103e+000 1.0956e-005 3.3043e+000
10 129 0.0078125 4.7387e-006 3.7146e+000 2.9860e-006 3.6693e+000
11 257 0.0039063 1.2278e-006 3.8594e+000 7.7785e-007 3.8388e+000
12 513 0.0019531 3.1240e-007 3.9302e+000 1.9841e-007 3.9204e+000
13 1025 0.0009766 7.8786e-008 3.9652e+000 5.0098e-008 3.9605e+000� �

Conclusion

Two different schemes were used for solving part(b). Both schemes had an LTE of O (h2),
therefore they both were consistent numerical schemes. The result shows that ‖e‖ had
O (h2) implying ‖A−1‖ had order O (1) and that both scheme were stable.

It is observed that the second scheme required more iterations to coverage to the exact
solution compared to the first scheme. Attempt was made to find if any error was made
in the derivation of the scheme or in the code, but none found. Therefore, this showed
that when comparing 2 schemes with the same theoretical order of accuracy, this does
not necessarily imply they will have the same exact performance on the same numerical
example. Therefore, before selecting a scheme, it would be useful to always run a number
of numerical tests to compare schemes against each others on different numerical test
problems.

3 Problem 2
Propose a discretization scheme for uxx = f with ux (0) − αu (0) = g and u (1) = b

Answer:

This problem has Robin boundary conditions on the left side and Dirichlet boundary
conditions on the right side. The condition for existence of a solution implies

ux (1) − ux (0) =
1∫

0

f (x) dx

Substituting the boundary conditions into the above results in

−αu (0) − g =
1∫

0

f (x) dx

Hence any f (x) which satisfies the above will make the problem a well posed one. In
the following, 3 different schemes are presented using different methods of approximating
the Robin boundary conditions. The last scheme resulted in an A matrix with the most
desirable properties being tridiagonal and symmetric.

3.1 First scheme
ux (0) is approximated by 2 points centered difference by introducing an imaginary point
U−1 resulting in

ux (0) = U−1 − U1

2h
Substituting the above in the Robin boundary condition gives

U−1 − U1

2h
− αU0 = g (1)

uxx (0) is approximated using the standard 3 point formula
U−1 − 2U0 + U1

h2 = f0 (2)

U−1 is now eliminated From (1) and (2). From equation (1)
U−1 = 2h (g + αU0) + U1

Substituting into (2)
[2h (g + αU0) + U1] + 2U0 + U1

h2 = f0

13

And simplifying
2U0 (1 + αh) + 2U1

h2 = f0 − 2g

h
This will be the equation to use at node j = 0 which is the first row in the A matrix.

For node j = N , uxx (N) is approximated using the standard 3 point formula
UN−1 − 2UN + UN+1

h2 = fN

Since UN+1 = b, the above becomes
UN−1 + 2UN

h2 = fN − b

h2

Which is the equation for node j = N . For all the remaining internal grid point, the
standard 3 point formula is used to approximate uxx. Therefore, the system which now
contains N + 1 equations is completed

1
h2

2 (1 + αh) 2 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 · · · 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

U0

U1

U2

·
·
·

UN−1

UN

=

f0 − 2g
h

f1

f2

·
·
·

fN−1

fN − b
h2

3.2 Second scheme
Approximating ux (0) by 3 points forward difference

ux (0) = 1
h

(3
2U0 − 2U1 + 1

2U2

)
Substituting the above in the Robin boundary condition gives

1
h

(3
2U0 − 2U1 + 1

2U2

)
− αU0 = g

U0

(3
2 − αh

)
− 2U1 + 1

2U2 = hg

Dividing both sides by h2 to allow writing the matrix A with a common 1
h2 factored out

U0
(

3
2 − αh

)
− 2U1 + 1

2U2

h2 = g

h
For the right side, the same scheme is used as in the first scheme above

UN−1 + 2UN

h2 = fN − b

h2

And the system becomes

1
h2

(
3
2 − αh

)
−2 1

2 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 0 · 0 0 0 0
0 0 0 0 · 0 0 0
0 0 0 0 0 · 0 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

U0

U1

U2

·
·
·

UN−1

UN

=

g
h

f1

f2

·
·
·

fN−1

fN − b
h2

3.3 Third scheme
Approximating ux (0) by 2 points forward difference which has an LTE of O (h)

ux (0) = 1
h

(U1 − U0)

14

Substituting the above in the Robin boundary condition gives
1
h

(U1 − U0) − αU0 = g

U1 − U0 − αhU0 = hg

U0 (−1 − αh) + U1 = hg

Dividing both sides by h2 to allow writing the matrix A with a common 1
h2 factored out

[U0 (−1 − αh) + U1]
h2 = g

h
For the right side, the same scheme was used as in the first scheme above, resulting in

1
h2

(−1 − αh) 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 · · · 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

U0

U1

U2

·
·
·

UN−1

UN

=

g
h

f1

f2

·
·
·

fN−1

fN − b
h2

This scheme has an LTE of O (h) since an O (h) approximation was used for ux (0)

3.4 Order of accuracy
Each of the above 3 schemes is a consistent scheme because for the first 2 schemes the
LTE is O (h2) and for the third scheme the LTE is O (h). A consistent scheme is one in
which ‖τ‖ → 0 as h → 0. It expected that the final error norm ‖e‖ will behave as O (h2)
when using the first 2 scheme and as O (h) when using the third scheme. This is provided
A is stable. Meaning that ‖A−1‖ is of order O (1).

Considering the third scheme only since it is symmetric, and using the grid 2-norm, then
given that

‖e‖2 =
∥∥∥A−1τ

∥∥∥
2

≤
∥∥∥A−1

∥∥∥
2

‖τ‖2

And since for a symmetric matrix ‖A−1‖2 = ρ (A−1) = 1
|λmin| where |λmin| is the smallest

eigenvalue of A in absolute value, then showing that |λmin| ≥ 1 would imply that ‖e‖2
≤ ‖τ‖2 .

There two analytical methods for finding the λmin of A. By solving the eigenvalue problem
Lφ = λφ for the given boundary conditions or by using matrix algebra to solve for the
eigenvalue of A directly. Attempt are made at both of these methods, but more time is
needed to complete an analytical proof.

Therefore, to answer the question for this problem, a numerical method was used instead,
where a refinement study was done using the third scheme found above in an attempt to
show numerically that ‖e‖ is of the same order as ‖τ‖ as expected. A well formed problem
is constructed and used for the purpose of the numerical analysis part. The results and
the conclusion follows.

3.5 Refinement study for the third scheme
The following numerical problem was select. uxx = f with ux (0)−αu (0) = g and u (1) = b
with the following parameter values

α = 1
g = 1
b = 1
f = cos (x)

15

This problem is well posed, and has the following analytical solution

u (x) = 1
2(1 + b − g − x + b x + g x + cos(1) + x cos(1) − 2 cos(x))

And it satisfies the necessary condition −αu (0) − g =
1∫

0

f (x) dx

The following are the results of the refinement study. The source code is in the appendix.

Figure 9: HW2 prob2

� �
1 \begin{X301}
2 EDU>> close all; nma_HW2('hw2_prob2')
3 N h emax ratio e1 ratio
4 3 0.5000000 1.2015e-001 0.0000e+000 8.8980e-002 0.0000e+000
5 5 0.2500000 6.1299e-002 1.9601e+000 3.7962e-002 2.3439e+000
6 9 0.1250000 3.0950e-002 1.9806e+000 1.7318e-002 2.1921e+000
7 17 0.0625000 1.5550e-002 1.9904e+000 8.2379e-003 2.1023e+000
8 33 0.0312500 7.7938e-003 1.9952e+000 4.0129e-003 2.0529e+000
9 65 0.0156250 3.9016e-003 1.9976e+000 1.9798e-003 2.0269e+000

10 129 0.0078125 1.9520e-003 1.9988e+000 9.8324e-004 2.0136e+000� �

3.6 Conclusion
A scheme was implemented for Robin boundary conditions. LTE used was O (h) since this
specific scheme generated an A matrix with desirable form (symmetrical and tridiagonal)
. The expectation of total error using this scheme was to be O (h). This expectation was
confirmed by doing a refinement study on the selected test problem. This result showed
that the scheme is stable and therefore we conclude that ‖A‖ is of order O (1) based on
this test case.

16

4 Problem 3

4.1 Part (a)
From definition

‖e‖∞ = − ‖Bτ‖∞ (1)
Where B = A−1 was generated by the use of Green function as described on page 27 of
the text book. Writing the product of the matrix B with the vector τ as

Bτ = b1τ1 + b1τ1 + · · · + bN τN

where bj is the jth column of matrix B, equation (1) becomes (all norms are to be taken
as the max-norm, hence for clarify, the ∞ is dropped in what follows)

‖e‖ = − ‖b1τ1+b1τ1 + · · · + bNτN‖
≤ − (‖b1τ1‖ + ‖b2τ2‖ + · · · + ‖bNτN‖)
≤ − (‖b1‖ |τ1| + ‖b2‖ |τ2| + · · · + ‖bN‖ |τN |) (3)

‖bj‖ is the maximum element in the jth column of the matrix B. These elements are
located along the diagonal of B. Hence ‖bj‖ = |Bjj| and (3) becomes

‖e‖ ≤ − (|B11| |τ1| + |B22| |τ2| + · · · + |BNN | |τN |) (4)
From equation 2.46 in the textbook,

Bij =

 h(xj − 1)xi i = 1, 2, · · · j

h(xi − 1)xj i = j, j + 1, · · · , N
(5)

To answer the question, assume that |τ1| = O (hp), and assume for the moment, for
generality, that the LTE at all the other points was different, hence for other points let
|τj| = O (hq). Equation (4) becomes

‖e‖ ≤ −O (hp) |B11| − O (hq)
N∑

k=2
|Bkk| (6)

From (5), it is found that at point j = 1, |B11| = h (h − 1) h = h3 − h2 = O (h2), while
at the internal points, that is, at points near the middle, Bjj is approximated by O (h),
hence (6) becomes

‖e‖ ≤ −O (hp) O
(
h2
)

− O (hq)
N∑

k=2
O (h)

But
N∑

k=2
O (h) ∼ (N − 1) × O (h) = O (1) since N = 1

h
, hence the above becomes

‖e‖ ≤ −O (hp) O
(
h2
)

− O (hq)

= −O
(
hp+2

)
− O (hq) (7)

Therefore, if q = p, i.e. if the LTE was the same at each grid point, including the first, the
above simplifies to

‖e‖ ≤ −O
(
hp+2

)
− O (hp)

∼ O (hp)
Hence, having the LTE at the edge grid point be O (hp) resulted in ‖e‖∞ having an order
of accuracy O (hp) which is the expected. The smallest value of p that can be used for the
edge point while still giving overall ‖e‖ = O (h2) can be found from (7)

‖e‖ = O
(
h2
)

= −O
(
hp+2

)
− O (hq)

Setting p = 0 and q = 2 results in
‖e‖ = −O

(
h2
)

− O
(
h2
)

∼ O
(
h2
)

Hence p = 0 or O (1), is possible for the LTE at the edge while arriving at an overall
‖e‖ ∼ O (h2).

17

4.2 Part (b)
From equation 2.46 in the textbook,

Bij =

 h(xj − 1)xi i = 1, 2, · · · j

h(xi − 1)xj i = j, j + 1, · · · , N
(5)

To answer the question, assume
∣∣∣τj=N/2

∣∣∣ = O (hp), where j is the middle point, i.e. at
xj = 1

2and assume for other points |τj| = O (hq), hence starting from
‖e‖ ≤ − (|B11| |τ1| + |B22| |τ2| + · · · + |BNN | |τN |)

which was derived in part(a), then the above equation becomes

‖e‖ ≤ −O (hq)
N∑

k=1
k 6=N/2

|Bkk| − O (hp)
∣∣∣BN/2,N/2

∣∣∣ (8)

At the middle point from (5),
∣∣∣BN/2,N/2

∣∣∣ can be found to be h
(

1
2 − 1

)
1
2 = −1

4 h ∼ O (h),
while for the points away from the middle, |Bjj| is approximated by O (h2), hence (8)
becomes

‖e‖ ≤ −O (hq)
[
(N − 1) × O

(
h2
)]

− O (hp) O (h)

But (N − 1) × O (h2) is O (h) since N = 1
h
, hence the above becomes

‖e‖ ≤ −O (hq) O (h) − O
(
hp+1

)
= −O

(
hq+1

)
− O

(
hp+1

)
(9)

Therefore, if q = p, i.e. if the LTE was the same at each grid point, including the middle,
then (9) becomes

‖e‖ = −O
(
hp+1

)
− O

(
hp+1

)
= O

(
hp+1

)
Hence, having the LTE at the middle grid point be O (hp) resulted in ‖e‖∞ having an
order of accuracy O (hp+1) which is higher than the expected O (hp). The smallest value
of p that can be used while still giving ‖e‖ = O (h2) can be found from (9)

‖e‖ = O
(
h2
)

= −O
(
hq+1

)
− O

(
hp+1

)
Setting p = 1 and q = 1 results in ‖e‖ ∼ O (h2).

Hence p = 1 or O (h) is possible for the LTE at the middle point while still resulting in
an overall ‖e‖ = O (h2)

4.3 Part (c)
To perform the numerical tests to verify the above conclusion, a numerical problem is
used with a scheme which had an LTE of O (h2). The LTE at the edge point only was
then modified to test part(a) and the LTE at the middle point only was modified to test
part(b).

Refinement study was done to verify that the order of accuracy remained O (h2) after
each modification.

For the numerical test, problem 1, part (a) was used for this test. That problem had an
LTE of O (h2) at each grid point, and the standard 3-point central difference was used for
approximating uxx.

To modify the LTE at a specific grid point, given that the LTE is defined as

τj = u(j − 1) − 2u (j) + u (j + 1)
h2 − fj

Where u above is the exact solution sampled at the given grid points, then to force the
LTE to be O (h) in the middle, the above equation was modified for xj = 1

2(middle row
of the system) to become

τj = u(j − 1) − 2u (j) + u (j + 1)
h2 − fj + h

18

And to force the LTE to be O (1) at the first grid point, the LTE is modified for that
point only (i.e. xj = h, the first row of the system) to become

τj = u(j − 1) − 2u (j) + u (j + 1)
h2 − fj + 1

The refinement study which was done for problem 1, part a, is now repeated with the
above modifications. The following are the results generated.

Part (A) refinement

Before making the LTE modification for the first point, the error table generated was� �
1 EDU>> close all; nma_HW2('hw2_prob1_parta')
2 N h emax ratio e1 ratio
3 3 0.5000000 4.3295e-003 0.0000e+000 2.1647e-003 0.0000e+000
4 5 0.2500000 1.0925e-003 3.9628e+000 6.8494e-004 3.1605e+000
5 9 0.1250000 2.7377e-004 3.9906e+000 1.8036e-004 3.7977e+000
6 17 0.0625000 6.8827e-005 3.9776e+000 4.5662e-005 3.9499e+000
7 33 0.0312500 1.7234e-005 3.9937e+000 1.1451e-005 3.9875e+000
8 65 0.0156250 4.3098e-006 3.9987e+000 2.8650e-006 3.9969e+000
9 129 0.0078125 1.0776e-006 3.9995e+000 7.1640e-007 3.9992e+000� �

One can see that ‖e‖ = O (h2) as the ratio is 4. Now the f vector was modified as described
above, and here is the small code segment how this was done. Complete code listing is at
the end.� �

1 f = force(xcoordinates)';
2 f(1) = f(1) - alpha/h^2 +1 ;
3 f(end) = f(end)-beta/h^2;� �

And now the program was run again� �
1 EDU>> close all; nma_HW2('hw2_prob3_1')
2 N h emax ratio e1 ratio
3 3 0.5000000 1.2067e-001 0.0000e+000 6.0335e-002 0.0000e+000
4 5 0.2500000 4.6119e-002 2.6165e+000 2.2753e-002 2.6518e+000
5 9 0.1250000 1.3566e-002 3.3997e+000 6.6556e-003 3.4186e+000
6 17 0.0625000 3.6481e-003 3.7185e+000 1.7854e-003 3.7278e+000
7 33 0.0312500 9.4426e-004 3.8635e+000 4.6157e-004 3.8681e+000
8 65 0.0156250 2.4010e-004 3.9328e+000 1.1730e-004 3.9350e+000
9 129 0.0078125 6.0530e-005 3.9666e+000 2.9563e-005 3.9678e+000� �

Examining the second table above shows that ‖e‖∞ = O (h2) , since the ratio of the error
norm still converged to 4, implying p = 2 for ‖e‖. To compare the loglog plots, here are
plots before and after the modification is made to the LTE.

19

LTE is O(h
2
) on all points

LTE is O(h
2
) on all points, except at

first point where it is O(1)

Figure 10: prob3 part a log

Part(b) refinement study

Before making the LTE modification for the middle point, the error table generated was� �
1 EDU>> close all; nma_HW2('hw2_prob1_parta')
2 N h emax ratio e1 ratio
3 3 0.5000000 4.3295e-003 0.0000e+000 2.1647e-003 0.0000e+000
4 5 0.2500000 1.0925e-003 3.9628e+000 6.8494e-004 3.1605e+000
5 9 0.1250000 2.7377e-004 3.9906e+000 1.8036e-004 3.7977e+000
6 17 0.0625000 6.8827e-005 3.9776e+000 4.5662e-005 3.9499e+000
7 33 0.0312500 1.7234e-005 3.9937e+000 1.1451e-005 3.9875e+000
8 65 0.0156250 4.3098e-006 3.9987e+000 2.8650e-006 3.9969e+000
9 129 0.0078125 1.0776e-006 3.9995e+000 7.1640e-007 3.9992e+000� �

One can see that ‖e‖ = O (h2) because the ratio is 4. Now the f vector was modified as
described above, to force the middle point to have an LTE of O (h), here is the small code
segment showing the modification.� �

1 f = force(xcoordinates)';
2 f(1) = f(1)-alpha/h^2;
3 middle_position = round(length(f)/2);
4 f(middle_position) = f(middle_position) + h;
5 f(end) = f(end)-beta/h^2;� �

And now the program was run again� �
1 EDU>> close all; nma_HW2('hw2_prob3_2')
2 N h emax ratio e1 ratio
3 3 0.5000000 5.8171e-002 0.0000e+000 2.9085e-002 0.0000e+000
4 5 0.2500000 1.4532e-002 4.0028e+000 7.1276e-003 4.0807e+000
5 9 0.1250000 3.6325e-003 4.0007e+000 1.7728e-003 4.0206e+000
6 17 0.0625000 9.0808e-004 4.0002e+000 4.4262e-004 4.0052e+000
7 33 0.0312500 2.2702e-004 4.0000e+000 1.1062e-004 4.0013e+000
8 65 0.0156250 5.6754e-005 4.0000e+000 2.7653e-005 4.0003e+000
9 129 0.0078125 1.4189e-005 4.0000e+000 6.9130e-006 4.0001e+000� �

Examining the second table above, shows that ‖e‖∞ = O (h2) , since the ratio of the error
norm still converged to 4, implying p = 2 for ‖e‖. To compare the loglog plots, here are
plots before and after the modification is made to the LTE.

20

LTE is O(h
2
) on all points

LTE is O(h
2
) on all points, except at

middle point where it is O(h)

Figure 11: prob3 part blog

This concludes the refinement study verifying results from part(a) and part(c)

5 Source code written for this HW� �
1 %---
2 % HW 2 Math 228A, UC Davis, Fall 2010
3 % by Nasser M. Abbasi
4 %
5 % This .m files contains the main functions needed to solve HW2
6 %
7 % To Run:
8 % From Matlab, type nma_HW2(problem_name)
9 %

10 % where problem_name is a string indicating which problem to run the
11 % refinment study for. The strings are
12 %
13 % hw2_prob1_parta
14 % hw2_prob1_partb_scheme_1
15 % hw2_prob1_partb_scheme_2
16 % hw2_prob2
17 % hw2_prob3_1
18 % hw2_prob3_2
19 %
20 % EXAMPLE
21 %
22 % nma_HW2('hw2_prob1_parta')
23 %
24 % make sure this m file is in your Matlab path.
25 %
26 function nma_HW2()
27 close all;
28 problems={'hw2_prob1_parta';
29 'hw2_prob1_partb_scheme_1';
30 'hw2_prob1_partb_scheme_2';
31 'hw2_prob2';
32 'hw2_prob3_1';
33 'hw2_prob3_2'};
34 for i=1:2 %length(problems)
35 nma_HW2_sub(problems(i))
36 end
37 fpritnf('completed...\n');
38
39 end
40
41 %--

21

42 function nma_HW2_sub(ID)
43
44 if nargin ~= 1
45 error('one argument is required');
46 end
47
48 N = 7; %number of iterations,
49 points = arrayfun(@(i) (2^i)+1 ,1:N); % find number of grid points
50 h = arrayfun(@(i) 1/(2^i) ,1:N); % and corresponding spacings
51 data = zeros(N,6); %allocate space for error table
52
53 %
54 % Main loop. For each number of points, find error norms and ratios
55 %
56 for i = 1:N
57
58 if strcmp(ID,'hw2_prob1_partb_scheme_1')
59 [e,U,u,x] = error_vector_prob1_partb_scheme1(points(i),h(i));
60 elseif strcmp(ID,'hw2_prob1_partb_scheme_2')
61 [e,U,u,x] = error_vector_HW2_prob1_partb_scheme2(points(i),h(i));
62 elseif strcmp(ID,'hw2_prob1_parta')
63 [e,U,u,x] = error_vector_HW2_prob1_parta(points(i),h(i));
64 elseif strcmp(ID,'hw2_prob2')
65 [e,U,u,x] = error_vector_HW2_prob2(points(i),h(i));
66 elseif strcmp(ID,'hw2_prob3_1')
67 [e,U,u,x] = error_vector_HW2_prob3_1(points(i),h(i));
68 elseif strcmp(ID,'hw2_prob3_2')
69 [e,U,u,x] = error_vector_HW2_prob3_2(points(i),h(i));
70 else
71 error('invalid problem name');
72 end
73
74 % the columns of data are arranged in this order
75 % npoints h e-max ratio e-1 ratio
76 % (1) (2) (3) (4) (5) (6)
77
78 data(i,1) = points(i); % number total points
79 data(i,2) = h(i);
80 data(i,3) = norm(e,inf); % e-max
81 data(i,5) = h(i)*norm(e,1); % e-1
82
83 if i>1
84 data(i,4) = data(i-1,3)/data(i,3); %e-max ratio
85 data(i,6) = data(i-1,5)/data(i,5); %e-1 ratio
86 end
87
88 %plot exact vs. approximate solution to verification
89 plot(x,U(:),'-o',x,u(:),'r');
90 title(sprintf('exact vs. numerical(circled), number points=%d',�...
91 points(i)));
92 axis([0 1 -.3 .4]);
93 xlabel('x'); ylabel('U(x),u(x)');
94 drawnow;
95 pause(1); % to enable animation to be seen
96 end
97
98 analysis_of_result(data,ID); %generate error table/plots
99 end

100
101 %---
102 % This function process the error table, formating it.
103 % It accept the e-norm found at each spacing, the vector with the
104 % corresponding h spacing value, calculates the error ratio

22

105 % and print the result to the screen
106 %
107 function analysis_of_result(data,ID)
108 titles ={'N','h','emax','ratio','e1','ratio'};
109 fms ={'d','.7f','.4e','.4e','.4e','.4e'};
110
111 wid = 12;
112 fileID = 1;
113 nma_format_matrix(titles,data,wid,fms,fileID,false);
114
115 figure;
116 set(0,'defaultaxesfontsize',8) ;
117 set(0,'defaulttextfontsize',8);
118
119 loglog(data(:,2),data(:,5),'-d'); hold on;
120 loglog(data(:,2),data(:,3),'-.s');
121
122 xlabel('log(h)'); ylabel('log(error norm)');
123 legend('one-norm','max-norm','Location','NorthWest');
124 axis equal;
125 grid off;
126
127 % plot the correct title based on which problem is being solved
128 if strcmp(ID,'hw2_prob1_partb_scheme_1')
129 text(10^-1,10^-4,'p=2, second order accuracy')
130 title('h vs. error norms, log scale, HW2 1.b scheme1');
131 export_fig nma_HW2_prob1_part_b_scheme_1.png
132 elseif strcmp(ID,'hw2_prob1_partb_scheme_2')
133 text(10^-1,10^-4,'p=2, second order accuracy')
134 title('h vs. error norms, log scale, HW2 1.b scheme2');
135 export_fig nma_HW2_prob1_part_b_scheme_2.png
136 elseif strcmp(ID,'hw2_prob1_parta')
137 text(10^-1,10^-4,'p=2, second order accuracy')
138 title('h vs. error norms, log scale, HW2 1.a');
139 export_fig nma_HW2_prob1_part_a.png
140 elseif strcmp(ID,'hw2_prob2')
141 text(10^-1,10^-3,'p=1, first order accuracy')
142 title('h vs. error norms, log scale, HW2 prob2');
143 export_fig nma_HW2_prob2.png
144 elseif strcmp(ID,'hw2_prob3_1')
145 title('h vs. error norms, log scale, HW2 prob3 (parta)');
146 export_fig nma_HW2_prob3_1.png
147 elseif strcmp(ID,'hw2_prob3_2')
148 title('h vs. error norms, log scale, HW2 prob3 (partb)');
149 export_fig nma_HW2_prob3_2.png
150 end
151
152 end
153
154 %---
155 % Augment the A matrix
156 %
157 function [A,f] = augment_system(A,f)
158 f = f(:);
159 v = null(A'); % Null vector of adjoint of A
160 u = null(A); % Null vector of A
161
162 %lambda = dot(v,f)/dot(v,v); % used during testing to verify it is correct
163
164 % Build the A matrix the f matrix to force zero mean for the solution
165 A = [A v;
166 u' 0];
167

23

168 f = [f ;
169 0];
170 end
171
172 %--
173 % this function builds A matrix, f vector, solves for U, the
174 % approximate solution, and determines the error vector e=U-u where
175 % u is the exact solution at the grid points
176 %
177 % For HW2, prob 1 part b, second scheme
178 %
179 function [e,U,u,xcoordinates] = ...
180 error_vector_HW2_prob1_partb_scheme2(total_number_of_points,h)
181
182 function f = force(x)
183 f = 2*(cos(pi*x)).^2;
184 end
185
186 function u = exactU(x)
187 % NOTE: This solution has a -1/6 as its additive constant.
188 u = (x.^2)/2 - cos(2*pi*x)/(4*pi^2) - 1/6;
189 end
190
191 % Boundary conditions, left and right
192 alpha = 0;
193 beta = 1;
194 len = 1;
195
196 xcoordinates = 0:h:len; %xcoordinates at points
197
198 % build the A matrix
199 A = nma_FDM_matrix_laplace_1D_Neumann_scheme_2(total_number_of_points);
200 A = A/h^2;
201
202 % build the f vector, make sure to adjust the first and last entries
203 f = force(xcoordinates)';
204 f(1) = alpha/h;
205 f(end) = beta/h;
206
207 [A,f] = augment_system(A,f);
208 U = A\f(:); % solve for U, the approximate solution
209 %lambda = U(end); % save lambda for reporting
210 U = U(1:end-1); % throw away the last entry, lambda
211
212 u = exactU(xcoordinates); % find exact solution at the grid points
213
214 % U found above has a zero mean. This was by construction. Therefore, we
215 % have to shift it by the current mean of the sampled version of the exact
216 % solution which also has a zero mean, but only in the limit. Meaning as
217 % the number of grid points becomes very large.
218 % Therfore, at each iteration the mean of u will not yet be zero due to
219 % having small number of samples (grid points). The current mean of u must
220 % be used to adjust U to make the comparison between U and u applicable.
221 % When the number of grid points become very large, this adjustment become
222 % less important, since mean(u) will start to approach zero, and adding
223 % a zero to U will not affect the result.
224
225 U = U + mean(u);
226
227 % Now that we have found U, the numerical solution, we find the error
228 % vector.
229
230 u = u(:); U=U(:);

24

231 e = U - u;
232 end % end function(error_vector_HW2_prob1_partb_scheme2)
233
234 %---
235 % this function builds A matrix, f vector, solves for U, the approximate
236 % solution, and determines the error vector e=U-u where u is the exact
237 % solution at the grid points
238 %
239 % For HW2, prob 1 part b, first scheme
240 function [e,U,u,xcoordinates]=error_vector_prob1_partb_scheme1...
241 (total_number_of_points,h)
242
243 function f = force(x)
244 f = cos(pi*x).^2;
245 f = 2*f;
246 end
247
248 function u = exactU(x)
249 u = (x.^2)/2 - cos(2*pi*x)/(4*pi^2) - 1/6;
250 end
251
252 % Boundary conditions, left and right
253 alpha = 0;
254 beta = 1;
255 len = 1;
256
257 xcoordinates = 0:h:len; %xcoordinates at points
258
259 A = nma_FDM_matrix_laplace_1D_Neumann_scheme_1(total_number_of_points);
260 A = A/h^2;
261
262 % build the f vector, make sure to adjust the first and last entries
263 f = force(xcoordinates);
264 f(1) = f(1) + 2*alpha/h;
265 f(end) = f(end) - 2*beta/h;
266
267 USE_PINV = false; % for testing to verify the augmented method against
268
269 if USE_PINV
270 U = pinv(A)*f(:);
271 lambda = 0;
272 else
273 [A,f] = augment_system(A,f);
274 U = A\f(:); % solve for U, the approximate solution
275 lambda = U(end); % save lambda for reporting
276 U = U(1:end-1); % Not needed for finding error norm
277 end
278
279 u = exactU(xcoordinates); % find exact solution at the grid points
280 U = U + mean(u); % see note above
281
282 % Now that we have found U, the numerical solution, we find the error
283 % vector.
284
285 u = u(:); U=U(:);
286 e = U - u;
287 end % end function(error_vector_prob1_partb_scheme1)
288
289 %--
290 % this function builds A matrix, f vector, solves for U, the approximate
291 % solution, and determines the error vector e=U-u where u is the exact
292 % solution at the grid points
293 % HW2, prob 1, part a

25

294 %
295 function [e,U,u,xcoordinates]=error_vector_HW2_prob1_parta...
296 (total_number_of_points,h)
297
298 function f = force(x)
299 f = exp(x);
300 end
301
302 function u = exactU(x)
303 u = -1 + exp(x) + 2.*x - exp(1).*x;
304 end
305
306 % Boundary conditions, left and right
307 alpha = 0;
308 beta = 1;
309 len = 1;
310
311 number_internal_points = total_number_of_points-2;
312 xcoordinates = h:h:len-h; %xcoordinates at internal points
313
314 A = nma_FDM_matrix_laplace_1D_dirichlet(number_internal_points);
315 A = A/h^2;
316
317 % build the f vector, make sure to adjust the first and last entries
318 f = force(xcoordinates)';
319 f(1) = f(1)-alpha/h^2;
320 f(end) = f(end)-beta/h^2;
321
322 U = A\f; % solve for U, the approximate solution
323 u = exactU(xcoordinates)'; % find exact solution at the grid points
324 e = U - u; % find the total error vector e
325
326 end
327
328 %--
329 % this function builds A matrix, f vector, solves for U, the approximate
330 % solution, and determines the error vector e=U-u where u is the exact
331 % solution at the grid points
332 % HW2 prob2
333 %
334 function [e,U,u,xcoordinates] = error_vector_HW2_prob2...
335 (total_number_of_points,h)
336
337 function f = force(x)
338 f = cos(x);
339 end
340
341 function u = exactU(x,b,g)
342 u = (1/2)*(1+b-g-x+b*x+g*x+cos(1)+cos(1)*x-2*cos(x));
343 end
344
345 % Boundary conditions, left and right
346 alpha = 1;
347 b = 1;
348 g = 1;
349 len = 1;
350 xcoordinates = 0:h:len-h; %xcoordinates at points
351
352 % build the A matrix
353 A = nma_FDM_matrix_laplace_1D_robin(total_number_of_points-1,h,alpha);
354 A = A/h^2;
355
356 % build the f vector, make sure to adjust the first and last entries

26

357 f = force(xcoordinates)';
358 f(1) = g/h;
359 f(end) = f(end) - b/h^2;
360
361 U = A\f(:); % solve for U, the approximate solution
362 u = exactU(xcoordinates,b,g); % find exact solution at the grid points
363 u = u(:); U=U(:);
364 e = U - u;
365 end
366
367 %--
368 % this function builds A matrix, f vector, solves for U, the approximate
369 % solution, and determines the error vector e=U-u where u is the exact
370 % solution at the grid points
371 % HW2, prob 1, part a
372 %
373 function [e,U,u,xcoordinates]=error_vector_HW2_prob3_1...
374 (total_number_of_points,h)
375
376 function f = force(x)
377 f = exp(x);
378 end
379
380 function u = exactU(x)
381 u = -1 + exp(x) + 2.*x - exp(1).*x;
382 end
383
384 % Boundary conditions, left and right
385 alpha = 0;
386 beta = 1;
387 len = 1;
388
389 number_internal_points = total_number_of_points-2;
390 xcoordinates = h:h:len-h; %xcoordinates at internal points
391
392 A = nma_FDM_matrix_laplace_1D_dirichlet(number_internal_points);
393 A = A/h^2;
394
395 % build the f vector, make sure to adjust the first and last entries
396 f = force(xcoordinates)';
397 f(1) = f(1) - alpha/h^2 +1 ; % make LTE O(1) instead of O(h^2)
398 f(end) = f(end)-beta/h^2;
399
400 U = A\f; % solve for U, the approximate solution
401 u = exactU(xcoordinates)'; % find exact solution at the grid points
402 e = U - u; % find the total error vector e
403
404 end
405
406 %--
407 % this function builds A matrix, f vector, solves for U, the approximate
408 % solution, and determines the error vector e=U-u where u is the exact
409 % solution at the grid points
410 % HW2, prob 1, part a
411 %
412 function [e,U,u,xcoordinates]=error_vector_HW2_prob3_2...
413 (total_number_of_points,h)
414
415 function f = force(x)
416 f = exp(x);
417 end
418
419 function u = exactU(x)

27

420 u = -1 + exp(x) + 2.*x - exp(1).*x;
421 end
422
423 % Boundary conditions, left and right
424 alpha = 0;
425 beta = 1;
426 len = 1;
427
428 number_internal_points = total_number_of_points-2;
429 xcoordinates = h:h:len-h; %xcoordinates at internal points
430
431 A = nma_FDM_matrix_laplace_1D_dirichlet(number_internal_points);
432 A = A/h^2;
433
434 % build the f vector, make sure to adjust the first and last entries
435 f = force(xcoordinates)';
436 f(1) = f(1)-alpha/h^2;
437 middle_position = round(length(f)/2);
438 f(middle_position) = f(middle_position) + h; %Change LTE from O(h^2)to O(h)
439 f(end) = f(end)-beta/h^2;
440
441 U = A\f; % solve for U, the approximate solution
442 u = exactU(xcoordinates)'; % find exact solution at the grid points
443 e = U - u; % find the total error vector e
444
445 end� �� �

1 function A = nma_FDM_matrix_laplace_1D_dirichlet(N)
2 %%
3 % nma_FDM_matrix_laplace_1D_dirichlet(N)
4 %
5 % returns the A matrix, which is the system finite difference matrix for
6 % numerical solution of 1-D laplace equation Uxx = f, with dirichlet
7 % boundary conditions on both sides of the element. Based on 3 point
8 % scheme U'' = U(j-1)-2*U(j)+U(j+1)
9 % notice that spacing h between the nodes is not used. The caller must

10 % divide by h^2 this A matrix abone return.
11 %
12 % INPUT: N, the number of nodes
13 % OUTPUT: A, the matrix , see below
14 %
15 % EXAMPLE:
16 % A = nma_FDM_matrix_laplace_1D_dirichlet(6)
17 %
18 % -2 1 0 0 0 0
19 % 1 -2 1 0 0 0
20 % 0 1 -2 1 0 0
21 % 0 0 1 -2 1 0
22 % 0 0 0 1 -2 1
23 % 0 0 0 0 1 -2
24 %
25 % A = A/h^2; % h is space between points
26 % U = A\f; % solve for U, where Uxx=f, need to set f as function before.
27 %
28
29 A = zeros(N);
30
31 for i=1:N
32 for j=1:N
33 if(i==j)
34 A(i,j) = -2;
35 else
36 if(i==j+1 || i==j-1)
37 A(i,j) = 1;

28

38 end
39 end
40 end
41 end
42
43 end� �� �
1 function A = nma_FDM_matrix_laplace_1D_Neumann_scheme_1(N)
2 %---
3 % nma_FDM_matrix_laplace_1D_Neumann_scheme_1(N)
4 %
5 % returns the A matrix, which is the system finite difference matrix for
6 % numerical solution of 1-D laplace equation Uxx = f, with nuemman
7 % boundary conditions on both sides of the element. Based on 3 point
8 % scheme U'' = U(j-1)-2*U(j)+U(j+1) for middle points and based on
9 % scheme ((-2*U(0)+2*U(1))/(h^2))=f(0)+((2*a)/h) for the left most point,

10 % where a = U'(0), and h is the spacing. and for for the right most point
11 % ((2*U(N)-2*U(N+1))/(h^2)) = f(N+1)-((2*b)/h) where b=U'(1)
12 %
13 % notice that spacing h between the nodes is not used. The caller must
14 % divide by h^2 this A matrix abone return.
15 %
16 % INPUT: N, the number of nodes
17 % OUTPUT: A, the matrix , see below
18 %
19 % EXAMPLE:
20 % A = nma_FDM_matrix_laplace_1D_Neumann_scheme_1(5)
21 % -2 2 0 0 0
22 % 1 -2 1 0 0
23 % 0 1 -2 1 0
24 % 0 0 1 -2 1
25 % 0 0 0 2 -2
26 %
27 %
28 % A = A/h^2; % h is space between points
29 % U = A\f; % solve for U, where Uxx=f, need to set f as function before.
30 %
31 % copyright: Nasser M. Abbasi
32 % 10/18/2010
33
34 A = zeros(N);
35 for i=1:N
36 for j=1:N
37 if(i==j)
38 A(i,j) = -2;
39 else
40 if(i==j+1 || i==j-1)
41 A(i,j) = 1;
42 end
43 end
44 end
45 end
46
47 %fix A above for Von Neumann B.C. only 1st and last rows need fixed
48 A(1,2) = 2;
49 A(end,end-1) = 2;
50 end� �� �
1 function A = nma_FDM_matrix_laplace_1D_Neumann_scheme_2(N)
2 %---
3 % A = nma_FDM_matrix_laplace_1D_Neumann_scheme_2(N)
4 %
5 % returns the A matrix, which is the system finite difference matrix for
6 % numerical solution of 1-D laplace equation Uxx = f, with nuemman

29

7 % boundary conditions on both sides of the element. Based on 3 point
8 % scheme U'' = U(j-1)-2*U(j)+U(j+1) for middle points and the left
9 % and right most points, the following scheme is used

10 % In this scheme, the Neumann boundary condition is approximated using
11 %
12 % a =(1/h)((3/2)U(0)-2*U(1)+(1/2)U(2))
13 % b =(1/h)((3/2)U(N+1)-2*U(N)+(1/2)U(N+1))
14 %
15 % where a=U'(0) and b=U'(1)
16 %
17 % notice that spacing h between the nodes is not used. The caller must
18 % divide by h^2 this A matrix abone return.
19 %
20 % INPUT: N, the number of nodes
21 % OUTPUT: A, the matrix , see below
22 %
23 % EXAMPLE:
24 % A = nma_FDM_matrix_laplace_1D_Neumann_scheme_2(5)
25 %
26 % 1.5000 -2.0000 0.5000 0 0
27 % 1.0000 -2.0000 1.0000 0 0
28 % 0 1.0000 -2.0000 1.0000 0
29 % 0 0 1.0000 -2.0000 1.0000
30 % 0 0 0.5000 -2.0000 1.5000
31 %
32 %
33 % A = A/h^2; % h is space between points
34 % U = A\f; % solve for U, where Uxx=f, need to set f as function before.
35 %
36 % copyright: Nasser M. Abbasi
37 % 10/18/2010
38
39 A = zeros(N);
40 for i=1:N
41 for j=1:N
42 % as before, part(a), Dirichlet B.C.
43 if(i==j)
44 A(i,j) = -2;
45 else
46 if(i==j+1 || i==j-1)
47 A(i,j) = 1;
48 end
49 end
50 end
51 end
52
53 %fix A above for Von Neumann B.C. only 1st and last rows need fixed
54 A(1,1) = 3/2;
55 A(1,2) = -2;
56 A(1,3) = 1/2;
57
58 A(end,end) = (3/2);
59 A(end,end-1) = -2;
60 A(end,end-2) = (1/2);
61
62 end� �� �
1 function A = nma_FDM_matrix_laplace_1D_robin(N,h,alpha)
2 %---
3 % A = nma_FDM_matrix_laplace_1D_robin(N,h)
4 %
5 % returns the A matrix, which is the system finite difference matrix for
6 % numerical solution of 1-D laplace equation Uxx = f, with nuemman
7 % boundary conditions on both sides of the element. Based on 3 point

30

8 %
9 % INPUT: N, the number of nodes

10 % h, spacing between nodes
11 %
12 % OUTPUT: A, the matrix , see below
13 %
14 %
15 % A = A/h^2; % h is space between points
16 % U = A\f; % solve for U, where Uxx=f, need to set f as function before.
17 %
18 % copyright: Nasser M. Abbasi
19 % 10/18/2010
20
21 A = zeros(N);
22 for i=1:N
23 for j=1:N
24 % as before, part(a), Dirichlet B.C.
25 if(i==j)
26 A(i,j) = -2;
27 else
28 if(i==j+1 || i==j-1)
29 A(i,j) = 1;
30 end
31 end
32 end
33 end
34
35 %fix A above
36 A(1,1) = -1-alpha*h;
37
38 end� �� �
1 function [hd,bdy] = nma_format_matrix(headings,data,wid,fms,fid,flag)
2 % nma_format_matrix()
3 %
4 % prints matrix of numerical data with headings in formatted way
5 %
6 % INPUT:
7 % headings: a cell array of strings for the headings of each column
8 % data: a matrix, contains the numerical data
9 % wid: how wide a field to use (see below for example)

10 % fms: the formating cell string array to use for the numerical data
11 % each string corresponds to formatting a field in the numberical
12 % data
13 % fid: the file id to print to. Use 1 for stdout
14 % flag: if 0, then will not print anything, just format and return
15 % result
16 %
17 % Examples calling
18 %
19 % titles={'number of projects','sales','profit'};
20 % data=[2 rand(1) rand(1);
21 % 3 rand(1) rand(1)];
22 %
23 % Suppose we want to format each numerical number above as %16.5E, then
24 % in this case 10 will be the field width, and '.5E' is what to use for
25 % the fms argument
26 %
27 % wid = 16;
28 % fms = {'d','.4E','.5E'};
29 % fileID = 1;
30 % nma_format_matrix(titles,data,wid,fms,fileID,false);
31 %
32 % version 1.0 10/15/2010

31

33 % All blame to Nasser M. Abbasi
34 % Thanks for help from matlab newsgroup: Ross W, Bruno Luong
35 %
36
37 %
38 % do some basic checking on input
39 %
40 if nargin ~= 6
41 error 'number of arguments must be 6'
42 end
43
44 if ~iscell(headings)
45 error 'headings must be cell array'
46 end
47
48 if ~iscell(fms)
49 error 'fms must be cell array'
50 end
51
52 if isempty(headings)
53 error 'headings can not be empty';
54 end
55
56 if isempty(data)
57 error 'data can not be empty';
58 end
59
60 if isempty(fms)
61 error 'fms can not be empty';
62 end
63
64 [nRowH,nColH] = size(headings);
65 if(nRowH>1)
66 error 'headings can not have more than one row';
67 end
68
69 [nRowFms,nColFms] = size(fms);
70 if(nRowFms>1)
71 error 'fms can not have more than one row';
72 end
73
74 if(nColH ~= nColFms)
75 error 'headings must have same number of columns as fms';
76 end
77
78 [~,nCol] = size(data);
79 if(nColH ~= nCol)
80 error 'data must have same number of columns as headings';
81 end
82 %
83 % end basic checking on input, now do the formating and printing
84 %
85
86 fmt = arrayfun(@(x) ['%',num2str(wid),'s'],1:nCol,'UniformOutput',false);
87 if flag
88 fprintf(fid,[fmt{:} '\n'],headings{:});
89 end
90
91 hd=sprintf([fmt{:} '\n'],headings{:});
92
93 fmt = arrayfun(@(x) ['%',num2str(wid),fms{x}],1:nCol,'UniformOutput',false);
94 if flag
95 fprintf(fid,[fmt{:} '\n'],data');

32

96 end
97 bdy=sprintf([fmt{:} '\n'],data');
98
99 end� �

	Problem description
	Problem 1
	part (a)
	Part (b)
	Finding analytical solution

	Problem 2
	First scheme
	Second scheme
	Third scheme
	Order of accuracy
	Refinement study for the third scheme
	Conclusion

	Problem 3
	Part (a)
	Part (b)
	Part (c)

	Source code written for this HW

