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CHAPTER 1. INTRODUCTION

I took this course in Spring 2009 at CSUF. Not part of a degree program

1.1 course description

course description from catalog:

EGME 511 - 02 Advanced Mechanical Vibrations

RETURN TO RESULTS

CLASS DETAILS

Status @ Dpen

Class Number 20160

Session Regular Acadermic Session
Units 3 units

Instruction Mode  In Person

Class Components Seminar Required

Meeting Information

Days & Times Room
TuTh 7:00FPM - 3:15PM E 042 - Lecture Roam

CS5 309 - Special

TuTh 7:00PM - 8115PM Instruction

DESCRIPTIOMN

Carear
Dates
Grading
Location

Campus

Instructor

Sang June Oh

Postbaccalaure ate
1/24/2009 - 5/15/2009
Graduate Option
Fullerton Campus

Fullerton Campus

Meeting Dates

1/z4/2009 -
5/15/2009

172472009 -
5/15/2009

Prerequisite: EGME 431, Wibrations in rotating and reciprocating machines; noize and
vibration in fluid riachinery; continuous systerns; randarm vibrations; transient and

nonlinear vibration, computer applications.

Figure 1.1: class info

1.2 Textbook

Click 10 LOOK INSIDE! Vibration with Control (Hardcover)

by Daniel 1. Inman (AUthor) “In this chapter the vibration of a single-degree-

..... of-freedom system will be analyzed and reviewed..." (more)

witn conrast In Stock.

Figure 1.2: Text book

Key Phrases: combined dynarnical systerms, semidefinite darmping,
receptance matrix, Mew York, John \Wiley, New lersey (more...)

Mo customer reviews yet, Be the first,

List Price: $420.00

Price: $111.69 & this item ships for FREE with Super
Saver Shipping. Details
You Save: $18.31 (14%)

Ships from and sold by Amazon.com. Gift-wrap available.

Only 1 left in stock--order soon {more on the way).
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sheetsheet
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. cle"sin (t — 7)], + [e°" cos (t — 7))
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/a e sin (t —7)dr )
/b €7 cos (t — ) dr = cle“ cos (t — T)]Z - £e” sin (t — T)]Z
a 1+c

/ sin at
cosat =

a

/ . —cosat
sinat =

F(t) Guess
kebt Aeb?
kt" At + -+ Ay

coswt or sinw

¢1 coswt + co sin wt

ke® coswt

€% (cy coswt + cp sinwt)

'+ +z=f(t)

[$2X — s2(0) — 2'(0)]

L(t) = [, x(t) e 'dt

X —2(0)]+ X = F

roots [udv = wv — [vdy

z(t)

real and distinct

AeMt 4 Berat

double real

AeM + BteM

complex o + jf

e®*(Acos Bt + Bsin ft)

z(t) = Acoswy,t + Bsinw,t

z(t) = Csin (w,t + )

A=u(0)B= %?L),H = arctan (4)

C=+vA2+B2P= [’Ulvz]

b9 99
el el
of  of
821 822

modal: x = M_%q
Find eigenvalus of
k=M"3kM~%

" =Ar,q=Pr,
PT = P~1(orthon.)
r(0) = PTMzz(0)
z(t) = M~ 2P r(t)
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Cer

Cer = 2VEM = 2w, m
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mx” (t) + kx(t) = 0 — z(t) = e ““~*(A coswat + Bsinwgt) o Ce ¢t sin (wqt — 6)
A=u(0),B= %,c_\mum 0—tan_1 (8
d oL OR p
L=T-U, $ 8 - oL = Q,, Bavieleh 45 e(a) \BWH)M
mz' (t) + kz(t) = Fysinwt — z(t) = Acosw,t + Bsinwnt + 2oL sinwt, A = z(0), - 15
2’ (t) + ez’ (t) + kz(t) = Fysinwt — z(t) = e~ *(Acoswyt + Bsinwgt) + L2 in (wt — 6)

Ozarctan(l TQ) A2 = ;’:I:ivbzif‘w where az? + bz 4+ ¢ =0,

sin 24 2sin Acos A

cos 24 2cos? A —1

sin Asin B 2 (cos (A — B) — cos (A + B))
cos A cos B 7 (cos (A — B) + cos (A + B))
sin Acos B 3(sin (A — B) +sin (A + B))
h=uvit+ 1gt? | h= 21"

v} =} +2gh | vy =v; +gt

speed is v/2gh | h,(t) = men sin wpt

F=FAt=mv

\/(1—7“2)2+(2CT)2

phase roots A\; and A >0

Unstable, repelling

phase roots A\; and A < 0

stable, attracting

both real, one >0 and one <0

unstable saddle point

equal roots and >0

unstable, degenrate

equal roots and <0

stable, degenrate

complex, real part>0

unstabe, spiral out

complex, real part<0

stable, spiral in

pure complex conjugrates

marginaly stable, cirlce

time betwen7 — T cosxT1 =c¢
% =44/c1 + gcosacl
t=to4 [ dm

1(to) \/ei+ gcosa:l

convert: "/ + kx =0

dm2 + kz1 =0, gif % = —kx;
g;f I = —kxl

3322 — _kwl + C

ha(t) = m—we_c‘"" sin wqt

sin(a+b) | sinacosb+cosasind

cos(a+b) | cosacosbFsinasinb

sin? a (1 — cos2a)

cos?a = 3(1+cos2a) | sin(A=+90)=cosA

cos (a +90°) = Fsina | sin(A+180) = Fsin A

cos (a £90°) =cosa | cos(A=+180) = —cos A

c? = a? 4+ b% — 2abcos (N)
Jlim (8) = lim sF(s
SZZTOSF(S) = tl_zgzoof(t)

L

Figure 2.1: laws of cosine
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)
M3 + kx = 0, assume z; = A; cos (wt + ¢;) ,Plug in, rewrite as [sys| [4] = 0, find eigens of sys,each w;,find r; = % , T
1

T = Agl) cos (w1t + ¢1) + A§2) cos (wat + ¢2), T2 = Agl) cos (w1t + ¢1) + Agz) cos (wat + ¢2), use Agl) = rlAgl), Ag) =r
21 = AV cos (wit + ¢1) + AP cos (wat + ¢2), w2 = r1 AV cos (wit + ¢1) + 12 AP cos (wat + o)

gt) =% +> o ancosn(2nf)t+ bysinn(2nf)t
ap = %ﬂ fOT ft) b= %ﬂ fOT f(t)sinn(2nf) tdt
an = %p fOT f(t)cosn(2rf)tdt T = period of f(t)

hover (t) = 2mwn71 o1 e_gw"t (ew" -1t _ e Wn 62_“)

hcritical (t) = %te_ﬁwnt
f(t) =impulse= FAt = [mv(0") —mv(0%)] (1)

solid disk, around center I = mTTz

thin loop, around center I = mr3

solid sphere I = Zmr?

ML?
12

rod, axis at center of rod I =

rod, axis at end of rod I = MTLZ

ioge L — 1 4 1 _
series: ¢ = ¢ + g par k=k + ko

f}r sin w(t N 7_) dr = = sin(w(t—a))—aw cos(w(t—a))+sin(w(t—b))+bw cos(w(t—b))

a

Hq L.

X
m: ﬂ'l;-_l-“l-"l_l
1 -1

| G G

K X Ko=) Koldex4) s o
"" M -" . m?.‘}—
-'ﬂ_|_|_ﬁ'- =
C.x'y  Col's=x'y) Calx'sx's)
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iﬁl Assume y=u sinwt

e b

Mx"+c(x'-y ) +k(x-y)=0
Mx"+ cx’ + kx=cy +ky
Hence, 2 forcing functions.
Find xpy, Xp-

Vy
oL T

m — Vy
VE=(LO' (1) =(v ) +(v, )

V.=V cosB
V,=V sinB
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a 2\ Xl

o
an=r Ell’[t}E M

Force towards center L | {
F=m a,
F=m r &'(t)° sinB(t) a=r 6"(t)

F=m r w* sin{wt)

confroller plant

U(s) C(s)G(s) > X(s)

F(s)

SENS0r
(s ) Cis )Gis)
Uls) 1+F(s )C(s )G(s)

2 equations of motions for unbalanced: (M — m) &+ ci + kx = F,. and m(& + &,) = —F,., where z,. = esin wt,
eq for M is

M3 + ci + kxz = mew? sinwt, guess X, = X sin (wt — ), we obtain X = %\/ﬁ, 6 =tan! 12_5:2
perturbation: z” + wiz + az3 = 0 = z = o + az; + @?z2 + -+ ,w? = W2 + aw?(A) + aw?(A) + - - - }hence
w2 = w? — aw?(A). Sub in ODE, generate 2 ODE’s and solve for o and use result to find z;.watch for IC
and resonanse. For system ID, set up |G(jw)| = L

—— and from the spectrum, find m, ¢, k
/ (cw)?+(k—mw?2)?
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3.1.1 Description of HW
1. Solve 2nd order ODE

2. Calculate maximum value of the peak response (magnification factor) for a system with some damping
ratio given (Quadrature peak picking method)

3. Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation
4. Discuss the stability of 2nd order ODE

5. Find range of values for PD controller in feedback for stability

6. Compute a feedback law with full state feedback

7. Find the equilibrium points of the nonlinear pendulum equation

3.1.2 Problem 1.4

Solve & — & + z = 0 with o = 1 and vy = 0 for z(¢) and sketch the solution

Answer
T=xh+Tp

Since there is no forcing function, z, do not exist, hence = x. To determine x;, we first find the characteristic
equation and find its root. The characteristic equation is A2 — X + 1 = 0 which has solutions

1 3
M=5t+ig
1 V3
h=5-i%

This is of the form A = o £ 85 (complex conjugates) which has the solution
z(t) = e**(A cos Bt + Bsin t)

Hence

z(t) = e2? (A cos ?t + Bsin @t)

To find A and B we use the initial conditions. At ¢ =0, 2(0) = 1, hence

A=1]

Now

z(t) = —e2 cos—t+ Bsin—t | +e2"| —A—sin —¢t+ B—cos —t

At t =0, vg = 0, hence the above becomes

1 V3
=_-A+B-—
0 2 + 2
But A =1, hence
__1
B=-7

Then the solution is

z(t) = ez? (cos ?t - % sin ?t)

The solution will blow up in oscillatory fashion due to the exponential term at the front. This is a plot for
up tot =10
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solution to x'[t]-=Tt]+xt]==0

e e
I / g \\1
20 | / \1 ]
/ \
_ S/ \
o "*
o e ____w""/ l'nll
\
I ',II
- \ ]
'\ ]
_40 I | ]
|
0 2 4 al 8

timne

3.1.3 Problem 1.9

Calculate the maximum value of the peak response (magnification factor) for the system in figure 1.18 with
(=%
Solution

L T Tt vAAvw aviiuULA \LYWILLLS, 2

—— ())

Figure 1.18 Quadrature peak picking method.

In this figure, the y-axis is the magnitude of the frequency response of the second order system. Hence we
must first calculate the frequency response of the system

m& + cx + kx = u(t)

or

&+ 2w +wiz =

u(t)
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Take Laplace transform
2X(s) + 2wns X (s) + w2 X (s) = %U(s)
X(s) (8* + 2wps +w2) = %U(s)

Hence the transfer function is x ) .
Z(s)= X _ 1
U(s) ms?+2w,s+ w2

Let s = jw, the above becomes the frequency response

1 1
Z(jw) = —
(jeo) m(—w2+2j£wnw+w%>
1

mu? (1- 2 +2j62 )

But w2 = £ hence

. 1/k

Z(]w): w2{|-2j§w
T w2 Wn

Introduce G(jw) = kZ(jw) and let r = 2=

Wn

SN 1
G(jw) = 12 125ér

Now we can determine the magnitude of the frequency response
IG(jw)| = VG (jw) G* (jw)
B 1 1 5
I\ 1 =72 4+25¢r ) \1 —r2 —25¢r
1
V(1= r2)? 4 (26r)?

The maximum of |G(jw)| occurs when W =0 But
dG(jw)|  12(1—1?) (=2r) 4 4€2(2r)
dw 2 3
’ (=% + (27"

Hence for the above to be zero, set the numerator to zero, we obtain

2(1—7%) (—2r) +4€*(2r) =0
—(1-r*)r+28r=0
—1+7r*+262=0

Hence the maximum of |G(jw)| occurs at

rmax=i= \/1_2§2

The above is valid only when 1 — 262 > 0 which means ¢ < %

Now substitute rmax value into |G(jw)| we obtain

|mwmwz( - 2)
Ja-m?+een?)

1
= 2
Ja-a-2e)? + (26122
1
T A4 (1-20)
1
" Vg ag— s

1

Vag gt

1
26 /1-¢€2
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We are given £ = %, hence from the above

Hence

But G(jw) = kZ(jw), hence

12(50) nax=7%

Note that |G(jw)|,,ax
quality factor value.

is called the quality factor. Hence for different values of £ there will be a different

3.1.4 Problem 1.12

Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation with £ = 1.1 and
w2 = 4. Plot the magnitude of the steady state response versus the driving frequency. For what values of wy,
is the response maximum?

Answer Since the excitation is harmonic, assume it has the form F'sin wt where w is the deriving frequency.
Then the equation of motion for the SDOF system is

mi + ¢t + kx = F coswt

Dividing by m and using w? = \/% and £ = é = \/Can the above becomes
&+ 26wn® +wiz = focoswt (1)
Where fy = %

Since this is an overdamped system (£ > 1), then the transient solution is
zp(t) = e~ swnt (Ae_“’"t VE -1 4 Bewnt 52_1)

But we need only consider the particular solution since we are asked to plot the steady state solution. Assume

‘ zp(t) = c1 coswt + ¢ sinwt ‘

Then

Zp(t) = —wer sinwt + cow coswit

#p(t) = —w?ec;y coswt — cow? sin wt

Substitute zp(t) , p(t) , Zp(t) in (1) we obtain

2¢1 cos wt — cow? sin wt) + 2€wy, (—wey sinwt + cow cos wt) + wi (c1 coswt + cosinwt) = fo coswt

(—w
(—caw? — 28wpwer + cow?) sinwt + (—w?er + 26wpcow + wier) coswt = fo coswt
Hence by comparing coefficients in the LHS and RHS we obtain 2 equations to solve for ¢; and ¢
—cow? — 2wpwer + czwfb =0

—w?e; + 28wy cow + wflcl = fo

or
e1(=26wpw) + c2(wy, —w?) =0 (2)
c1 (wi — w2) + c2(28wnw) = fo 3)

From (2) we obtain ¢; = %, and substitute this into (3)

2 2
(M) (2 — w?) + c2(26wnw) = fo

2

— w2)?
co lw + 2§wnw] = fo

ca [(wfb - w2)2 + 4§2wfbw2} = 28wnw fo
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Hence

Co = 28wnw fo
2 (w2 —w?)2+4£2w2 w2

Substitute the above into (2) we solve for c¢;

c1(—28wnw) + < 2wnw o ) (w2 —w?) =0

(W2 — w?)? + 4620202

or

Jo(wp—w?)
(w2 —w?)2+4£2w2 w2

Cl =

Hence, since
Zp(t) = ¢1 coswt + cp sinwt

Then

fo (wp —w? 2w, .
Tp(t) = r oy oS+ e sinwt

We can convert the above to the form ,(t) = ccos (wt — 0) by using the relation

— 2 2 — C2
c=+/ci +¢; and tanf = 2, hence

o foi=wt)  \' o 2wwhe )
B (w2 — 1412)2 + 4£2w2w? (w? — w2)2 + 4&2w2 w?
(W2 — w?)® + 4620202

((w?1 — w2)2 + 4§2w,21w2>2

_ o

V(@2 —w2)? + (2ewnw)’°

= fo

The last equation can be written as

F
c= /m
2\ 2 2
w2 (1 () ) +(262)
_ F/k
VO-(2)) + ()’
And
( 2bwnwfo )
_C _ (w2 —w?)?+4€2w2 w?
tanfd = 1 = ( fo(w2 —w?) )
(w2 —w?)2 +4£2w2 w?
_ 28wnw
 (wE-w?)
R
=
(=)
Hence

zp(t) = ccos (wt — 6)
magnitude

. il e 0
(=) ) (1))

Let r = :7’ then the above becomes

F/k

zp(t) = \/W cos (wt —tan™! ((12_512)))

For the supplied values for w? = 4 and £ = 1.1then the above steady state solution becomes
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X

0 - ()

4

To plot the magnitude, use a normalized F' = 1, and let k¥ = 1, use the supplied values for w2 = 4 and ¢ = 1.1,
hence magnitude X of steady state response is

1

V=) 11,2102

Plot the expression for the magnitude X against the driving frequency w

X =

Steady state solution
tof~. ~— ]

ol O\ ]

061 ]

Magnitude

0.4} \ -

0.2 T _ .

To answer the final question about the resonance. Looking at the steady state solution in equation (4),
Fz/ k2 — which is maximum when the denominator is

(1-(zx)") +(2¢25)

minimum which occurs as w approaches w,,, but in this problem since the system is overdamped, hence no

oscillation will occur and | the maximum response occurs when w =0 ‘ (i-e. input is non oscillatory).

we see that the amplitude of the z, is ¢
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3.1.5 Problem 1.18
Discuss the stability of following system 2% — 3% + 8x = —34% + sin 2t

Answer

The system can be rewritten as

2% 4+ 8x = sin 2t

We need to consider only the transient response (homogeneous solution). Hence the characteristic equation is

2)24+8=0

which has roots £+/2j. Since the roots are on the j axis, then this is a | marginally unstable | system
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3.1.6 Problem 1.20

Calculate an allowable range of values for the gains K, g1, go for the system 2% + 0.8% + 8z = f(t) such that
the closed-loop system is stable and the formulae for the overshoot and peak time of an underdamped system
are valid

D)
x

PLANT G{S) »

COMTROLLER
Hi3)

Closed loop system

The transfer function of the controller (a P.D. controller) is H(s) = sg; + g2 and for the plant (the system)
the transfer function is G(s) = m, hence the closed loop transfer function, which we call C(s), is

kG(s)
14+ H (s) KG(s)
k 1

252+0.85+8
- $g1+92

1 + k282?‘1-0.898+8
_ k
2524085 +8+(sg1 +g2) k
k

T 2% + (0.8 + kg1) s + 8 + kga

The characteristic equation is the denominator of the above transfer function. Hence

C(s) =

a b c
=~ —— —~
f(s)="2 s®+(0.8+kg1)s + 8+kgo

This has roots at

—b b2 — 4ac
=4 ¥
A 2a 2a
2
—0.8 — kg1 \/(0~8 +kg1)” —8(8 + kg2)
- 4 + 4

09— @ VE g+ 1. 6k91 8kgz — 15. 36

- 02— @ \/kgl +0.1kg1 — 0.5kgs — 0.96

The system is stable if the real part of the roots is in the left hand side of the imaginary axis. Hence we
require that

kg1
—02— %
0. 1 <0
Which implies kgl < 0.2 or kgl > —0.2 or
kg > —0.8 (1)
and we require that
k2
lgl +0.1kg1 — 0.5kgs — 0.96 < 0 2)

Using the minimum value for kg; which is —0.8 and substitute that in above equation,

0.82

g+ 0-1(0.8) ~ 0.5kgz — 0.96 < 0

0.04 + 0.08 — 0.96 — 0.5kgs < 0
—0.84 — 0.5kgy < 0
—0.5kgo < 0.84
0.5kgy > —0.84
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Hence

kgs > —0.42

And k > 0 (positive gain is assumed). In summary, these are the allowed ranges

kgs > —0.42
kg1 > —0.8
k>0

3.1.7 Problem 1.21

Compute a feedback law with full state feedback (of the form given in equation 1.62 in the book that stabilizes
the system 4% + 16z = 0 and causes the closed loop setting time to be 1 second.

Answer

Equation 1.62 in the book is

mi + (c+kg1) & + (k +kgz) = kf(t)

Notice that I modified the notation in this equation, where the lower case k is the stiffness and k is the gain,
this is to reduce ambiguity in notations

K PLANT G(S) »

o
\( CONTROLLER

HIS)

Closed loop system

Using the controller required, the equation 4% + 16x = 0 becomes
mi—i—l_cgla':—}— (k'+l_cg2)x:0

Notice that there is no damping in 4% + 16z = 0, (¢ = 0), but now kg;term acts in place of the damping.
From the original equation m = 4 and k = 16, hence we can write the above as

4i + kg3 + (16 + kga) 2 =0

The characteristic equation is
AN + kg1 A + (16 + kga) =0

Hence

b+ VB2 —dac ko £ \/(I_cgl)2 — 16 (16 + kg2)
2a N 8

1 /= -
+ §\/k2g.?( — 256 — 16kgs

A2 =

_ —];?91
8

Hence for stability, the real part of the root must be negative, hence % <0Oor k‘% >0 or

And we require that k?g? — 256 — 16kg, < 0 (for oscillation to occur). This implies
k%g? — 16kgy < 256 (1)

Now settling time is given by

32 32 32  32(2m)

s — T c c
wn Wnge  Wnagom c
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But in this system (modified) m = 4 and ¢ = kg;, hence the above becomes

_32x8
’_991

ts

But t; = 1sec., hence

Substitute the above into (1) we obtain

25.6% — 16 kgy < 256
655.36 — 16 kgy < 256
2.56 — 0.0625 kgs < 1
—0.0625 kgs < —1.56
- 1.56

Hence

kgo > 24.96

To plot the solution, choose kg, say100 and since kg; = 25.6, then since the loop back equation of motion is

m3 + kg1 + (k+kga) 2 =0
Then plugging in the above values for kg, and kg; we obtain

4% + 25.60 + (16 + 100) z = 0
4 + 25.6& + 1162 =0

To confirm the result, I plot the solution to the above equation (which is now stable) using some initial

condition such as vy = 0.5 and zo = 0 (arbitrary I.C.). The result is the following

0.0230879 247 5in[4.33128 )

IIII.-'I'“\."IIIIIIIIIIIIIIIIIIII T
ooogk [\
L III I|III
L i
0.006 - |
[
—_ [ \
0004t |
| \
ooz [ ||
|
0.000 |- L _
0.0 0.5 1.0 15 210 25
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3.1.8 Problem 1.22

Find the equilibrium points of the nonlinear pendulum equation mi20 + mglsinf = 0
Answer

The equation of motion can be simplified to be

6+ ?Sin0 =0
Convert to state space format.
1,'1—0 S .'L'1=.0=£L'2 ‘
Ty =0 9 =0=—9sinf =—9Isinz;
Hence
X
~

T1| T2
T —9sinx;

For equilibrium of a nonlinear system, we require that X = 0, hence z, = 0 and —9sinz; =0
But —¥ sinz; = 0 implies that 2, = nm for n = 0,%1,+£2,---

Since x; = 6 , and 0 is assumed to be zero when the pendulum is hanging in the vertical direction. Hence
the equilibrium positions are as shown below (showing the first stable and the first unstable points)

6= 180"
@

Equilibrium positions of nonlinear
pendulum. In both cases,
angular speed is zero

O
g =0

In both cases, § = 0. Notice that at § = n« for n = +1,43, +5,--- the pendulum in a marginally stable
equilibrium position, while at n = 0,£2,+4, - - - it is at a stable equilibrium position.
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3.1.9 Key for HW1

-~

' EGME 511
o HW1 SOLUTION
1.4)
Solution:
¥-x+x=0 x,=1, v,=0 (03]
Let x(f) = Ce™

CeM(A-A+1)=0
1
Ay =5(1£43)

x(t)=A,'e”2"”"5”+A;e”m" i o))
Using Euler’s equation,

1
x(t)= e? (A, cos 3t + 4, sin \/§t)

Apply the initial conditions and obtain,
1=4,

( 1 1
0=t g+ ia, 4=-r
- A ¥

To obtain the solution in the form of Eq.(3),
)
x(t) = A,ezl sin («/Et + ¢)

Using the trigonometric identities from problem (1) and get,
A3 =1.041
$#=0.281 rad.

x(£) =1.041e** sin(ﬁt +0.281))
The graph of the response of the system is shown below.

Problem 1.4 Time vs x(t) Hr 10 seconds

100

0

-100}

-200
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1.9)

Solution: Using equation (1.22) directly yields:

1.12)

1
§=—’ r_
V2 IJI (1Y
|

Solutions: mi+cx+kx=Fsinot, { =1.1 and o} =4
Assume x,(f) = Xsin(at - ¢) and substitute into (1),

X = Flk
2\? 2
2] (=)
a)ﬂ a)”
o %vle )
kl—(a)/a}n)z
The particular solution is
x,(6)= Fik sin(wf - ¢) .
J(l—o.zsmzj +1210°
where
([ 110 )
=tan”'| ———
¢ t1—0.25ang

The response is plotted in the figure shown below, where the y-axis represents %

30T WOX

0.5

Magnitude of steady state Response vs Frequency

Driving frequency (Hz.)

Resonance does not occur because the system is overdamped.

0 2 4 6 8 10

)
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‘_ 1.18)
Solution: Gathering up terms, the equation of motion can be written as
#(t)+4x(t)=0.5sin2t
In this form it is clear that the natural frequency and the driving frequency are
both 2 rad/s, hence the system is in resonance. The homogeneous form is
undamped, hence stable. However, with a bounded input of 0.5sin2¢, the response
becomes unbounded and, hence the forced response is unstable. The solution can
be computed as (see Inman 2001, page 96):
() = "2—°sin2: +x, 082t +0.125¢ sin 2t
which clearly grows without bound as it oscillates.
1.20)
Solution:
The equation of motion with controller is:
2%+(0.8+ Kg,)x+(8+ Kg,)x = Ku(t) 1)
m=2,c=0.8+Kg, k=8 + Kg» )
The design expressions for overshoot and settling time are only valid for
underdamped systems, if 1 -2 > 0. Substitution for the value of § yields that
“ cz
1- 0= 4km > c? 3
dkm ¢ ®)
Substituting (2) into (3) and simplifying,
64 + 8Kg, > (0.8 + Kg, )’

To insure BIBO stability of the closed loop system, the equivalent open loop
system must be asymptotically stable. This requires the coefficients to be
positive: Kg> > -8 and Kg > -0.8. Note that in general, negative feedback is used
so that Kg; and Kg, are usually positive. However, in order to obtain a specified
settling time and overshoot, it may be that the gains g; could be negative, hence
stability must be checked.
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1.21)

Solution: Since the open loop system is already stable, only a damping term
needs to be added by the controller. Choosing, K =1, and g> = 0 yields:

4%(t) + g x() +16x(t) = £ (1)
This yields that ®,, =2 and

2w, = 5= g, =16¢

However from equation (1.34) the settling time is

(=22 mg=22

a,& 2t,
Combining these last two expression yields

3.2
=16——=25.6
& o =22

5

1.22) Compute the equilibrium positions of the pendulum equation:
me24(t) + mglsinO(t) = 0.

Solution: First put the system into first order form by defining the two states of

position and velocity: x, =6, x, =@ =1%,, and writing the equations of motion in

state space, or first order form (diving through by the leading coefficient): W
%, (1) =x,(1)

%, ()= —%sin (x®)

X2
=>F0=| .
sin x,
Setting F = 0 yields the equilibrium points:

TR
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0/'. W

-

Example of Lagrangian Dynamics .
| \Y <

« -

. Gear  Foblem

N Assmﬁ'l:ions

Outer gear is fixed

Inner aeor rolls due o 8mw-l.a fora
Rodius  of ayration  of  small Sear =K
One degree of freedom System [ 6]

: E P Y hE
wmetie Ener : T= zmv *+ JE.I‘P ¥
Knetie Energy Y2

ng X where Y = ineor Ve.lo‘c;'tg. of cerier of ™mass = (B'O&\é Lo
1= nstationad Tnertio- of  aenter of wmass = mk* e W‘VM%
the T= smlGagl® + ¥me)[ 58] »
us zmlrg] 2 = > vie SLPYE
\

Fotential Enerayu

= ma.(b—a)(l—c;séﬁ ,/

vV
__3_;_ = — Mj&(bﬁ*q) Sin®
From Laam,nae /s Ez.ua;tion for  conservative system ,
4T _ I = N
dt. 26 36 FYES
) 4 . >
: aT _ _l_ _ 2 ." » J_'/ 2 b_a. ‘,/o
5= Tm (b-a) () + ) mK T) 29
k .-al 3 b‘a- z’
o 96 = m(b-a)é + mk’ <“07)9
:-.. t l X
& 3T = an(b-a)§ + mk (Lﬂ) &
o
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) 0

ST 3 _
o\

4 4 .
Hence at 38 = 06 T 3B becomes

}/(}, a,) & + y{ﬁ ( )zg _ + %(b-q) sind = O

% dwdmé ba (b-—a.) .

 ..<.@%4.>,@.,+..1§£'_&>;°‘_> 5 gsn® = O
6.8

: .. ’ k* ) -
G 't togme = o
o] 6 + gwe O

= — ’V'\&(b—a\ Sin&

9 s ¢ - — sne = 0O
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3.2 HW2
Local contents
3.2.1 Description of HW . . . . . . . . . L L e
3.22 Problemstosolve. . . . . . . . e
323 Problem 1. . .. . . . . e e
3.24 Problem 2 . . . . . L e e e e
3.25 Problem 3. . . . . . . e e e e
3.2.6 Problem 4 . . . . . . . . e e e
3.2.7 Problem 5 (not correct, left here to check something) . . . . ... .. ... ... ....
3.2.8 Problem 5 (again, correct solution) . . . . . .. .. ... L L o
3.29 Problem 6 . . . . . . . e e e e e
3.2.10 Solving problem shown in class for Vibration 431, CSUF, Spring 2009 . . ... .. ..

3.2.11 Solving problem shown in class for Vibration 431, CSUF, Spring 2009. Version 2 . . .
3.212 Key for HW2 . . . . . . o . e e



CHAPTER 3. HWS 31

3.2.1 Description of HW

1. Find EQM for mass-spring with dynmaic friction on incline (this is nonlinear EQM due to columb
friction)

2. Modal analysis problem on 2 by 2 system

3. Find EQM using lagrangian, 2 pendulums attached by one spring between them
4. Another Modal analysis problem on 2 by 2 system

5. 2nd order system, subject to 2 impulses, find response using convolution

6. Convolution problem. Underdamped system, force is half sin

3.2.2 Problems to solve

Hl/\) :“:2- /L\C\Vz(‘nt‘c’al E"‘&“’“‘.‘L' Vibibren St

ctue.  Mavch \fﬁ 2c0

Re < = ‘L?

e((ﬂ% 2 - Coulowmb Awm{ama i
X (o) =
& Ktﬂvhf-.

; Friction

C.;anu:te +he egua:t('cw o’f mot (oin JCDY -{;lne Sas—t@w.

2. Gem
| o] X +[ 3 -t]Xx =0
o 4 -1 1
- wm o K
K Naqw

Use modal analysic 1o colenlate +the Solwtio~ of  Has

Ve ) =07 mm X)) =[O mm
8 X | :l / [D} Acc_

Also  caleulate the ewsenvalues of  Hhe systes .
And  calcdate the aaenuccﬁor-f ondd  normeldize .

-
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3. Liss sl o

K= 20 N/ L= 0.5m
M) = M = [Dka A= o.f'lm. a(u\a the F&nc!klum

Determine the }'lﬂd:b(rai %rebuwa’es ahol Wodke Shdfeﬁ .

b [T R 2] me
Lo 3 W

. Caladate +he resronse o‘Jl the .Sa;tw + TC

o=t & Xo= o
l >
5 Calewlate  the l‘c.SanSe of the SHS'!:EAN\-

Xt LXW4 12Xxw = 3§ — §it-0)

CSipject b TC X(9)= 0.01m V)= | "aee
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Q«y é Cal cud ke -t:kq Ves ponse O‘F an unalerala.m’peal sas-(.—m
4 4n  the exc{'l:’aﬂ?w ?f'lww below>

T Pty = Fosint

e e e a v b
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3.2.3 Problem 1

Find the equation of motion for the following system

/
o

Coefficient of
; kinetic friction

Solution

Assume initial conditions are z(0) = z¢ and £(0) = 0. Assume that xy was positive (i.e. to the right of the
static equilibrium position, and also assume that kzg > N psiatic)- This second requirement is needed to

enable the mass to undergo motion by overcoming static friction. The normal force N is given by

N =mgcosf

And the dynamic friction force f. due to the dynamic friction is defined as follows

—uN >0
fc: 0 =0
uN  £<0

But since N = mg cos 6, then the above becomes

—pumg cos 6 >0
fe= 0 &=0
pmg cos <0

Where p is the coefficient of dynamic friction. Now we can obtain the Lagrangian

Hence

and

oL
—
d oL
dtoi
oL
=

mi
ma
—kx

Then the EQM is

dor_oL_,
dtox Ox ¢
mi + kr = f.

1)

Where f. is given by (1). Since f. sign depends in the mass is moving to the left or to the right, we will

generate 2 equation of motions, one for each case.
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Static equilibrium position

:—-— +x
Mass moving to the left EQM 1 where dxidt <0

‘ o

Mass moving o the right EQM 2 where dxfdt = 0

I
I
I
I
: -
I
foa—
I
I
I
I
|
When mass is moving to the left, EQM 1 is
m& + kx = pmgcos (2)
When mass is moving to the right, EQM 2 is
mi + kx = —pumg cos o 3)

So, for the first move, starting from xy and moving to the left, we have

.,k
Z+ —z = pgcosf
m

i+ wlz = pgcosh

T=2h+Tp

Guess 7, = X, hence w2 X = pugcosd or X = %ﬁso, and zj; = Acoswyt + Bsinw,t, therefore, the solution
to EQM 1 is
0
z(t) = Acoswpt + Bsinw,t + H9 C;)s
w'n,

z(0)=zog=A+ “95%0 hence A = z¢ — '“g:%o, then

0 0
z(t) = <a;0 - ,ug(j;)s ) coswnpt + Bsinwyt + Hgcos

n

n

and

2
n

0
#(t) = —wy (mo - ,ug:os ) sin wyt + wp B cos wyt
z(0) =v9=0=w,B

Hence B = 0, then EQM is (for 0 <t < )

cos @ cos 0
Tieft(t) = <x0 — Nng ) cos wyt + acl 5 4)

n n

The mass will move according to the above equation (4) until the velocity is zero, then it will turn and start
moving to the right. To find the time this happens:

0
I(t) = —Wn (.’EO — 19 C;)S ) sin wnt
w.

n

Now solve for ¢t when %(t) = 0, i.e.,

0
0=—w, (:cg - uguc)gs ) sin wnt (5)

n

Hence w,t = nm, where n = 0,+1,+£2,.--The case for n = 0 do not apply since this implies ¢ = 0, then
consider the next time this can happen, which is n = 1, which implies

™
t = —
1= (6)
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Now we need to determine z(t) at this time ¢; since this will become the initial z for the second equation of
motion going to the right in the second leg of the journey. Using (4) and (6) we obtain

0 0
m<w> = (xo - ,ugc;)s ) coswn1 + 'u‘chs
Wn, ws Wn, wy

21g cos 6

Notice that in the above equation, x( is a positive number, since we assumed that the initial conditions xg
was to the right of the static equilibrium position, and we are assume the right of the static equilibrium
position to be positive. This also implied that x(ﬁ) will be negative number (which is what we expect, as
the mass will by the end of its first trip be on the left of the static equilibrium position).

Now we can use right equation of motion (EQM 2) to solve for the mass moving to the right. Notice that

the initial conditions for this motion are z; = 2“&*50 —xgand t; = =
The equation of motion is now
m& + kxr = —umgcos 6
& +wx = —pgcosh
With the general solution
0
z(t) = Acoswpt + Bsinwpt — a C;)S (7
wn
Att= T 2(t) = 2“5;%59 — xg, hence from the above
2 0 0
7ugczos —x9 = Acoswnl + Bsinwnl — ,ugc;)s
wr, Wn, Wn Wn
g cos
—_A—
wy,
3ugcosd
A=z —
0 2
Hence (7) becomes
3 0 0
z(t) = <x0 — ;Lgczos> coswpt + Bsinw,t — H9 c;)s
wTL n
And 3 0
&(t) = —wn | o — OHg 08T sin wpt 4+ wy, B cos wyt
wy,
But i(t) = 0 at t = -, hence the above becomes
3 0
0=—w, <x0 — ugczos> sinwnl +w,B coswnl
Wn, n Wn
= —w,B

Hence B = 0, then the EQM for the right move is, for oo <t< i—:

3ug cos @ cos 6
Tright(t) = (wo - “"T) coswnt — BI5E

This diagram below summarize this

e cosd . cosd
i Tl @ o
JL = | n n
DLl |
| % |
|
|
|
I < 2 ! -
Wx . W s :3ugcusn§' . Lgcosd
Xright(l ) = { X0 — ——— }COS@nl — ——
| @O
|
|
| *1 |
| Jugcosd |
E —

Wh



CHAPTER 3. HWS 37

Now, we would like to have one equation to express the motion with for any time instance when the mass is
moving to the left, or to the right. Looking at the above 2 equation of motion, we see immediately that we
can write the equation of motion as follows

2 2
wn wa,

T, (t) = (170 - M) coswnt + (—1)"T" Hacost

Where n above is the number of the trip. So, the first trip, going from zy and moving to the left, will have
n = 1, and then second trip, moving from z; and going to the right will have n = 2, and so on. As for the
time during which trip travels, this is found by the following equation

(n—-1= nw
— <ty < —

Wn, Wn,

What the above is saying is that for first trip (n = 1), we have

™
O0<t< —

n

And for the second trip, we have

etc...

Now that we have one equation, and we have the time during which each equation is valid, we can now plot
the equation of motion vs. time. The following is a plot for some values for k, g, m. Please see the appendix
for the Matlab code which generated this simulation.

=495 xt=3.9 vi)=00

50 | —
position
* -
g0k Ir." | “ speed
P -y A
Pl o P
a0 b Py i
P by i
r S P
20t I r ;o
oo LA b

#t) &)
i
I
I
[
I
I
|
I
|
I
'

|
20 I IH [I
] I b
A0 _l.I | I [N
Lo
o Vo
I L |
| Vo uf
B0y y
Y.
B0 | | 1 | | |

|
a 5 10 15 20 24 30 34 40 45
time (sec)

Observation found on this problem: Changing the angle of inclination  causes no change in results. In other
words, the same oscillation will occur for flat plane (# = 0) or for § = 45° or any other angle. The reason is
because xg, the initial position, is measured from the static equilibrium position, and this static equilibrium
position will be different as the angle changes, but the effect of the angle change is already accounted for by
this change and will not be reflected in the actual displacement z(t).
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3.2.4 Problem 2

Given [(1) ﬂ X+ [ 3 1 _11] X = [8} , m: kg, k: N/m, use modal analysis to calculate the solution of this

given X(0) = [O

J mm, X(0) = B} mm/sec also calculate the eigenvalues of the system and the normalized

eigenvectors.
Answer

Since this is a 2 ODE’s that are coupled, we use modal analysis to de-couple the system first in order to
obtain 2 separate ODE’s which we can then solve easily.

M:[l

0
0 4] andletK—[

_3 1 _11} , then the above system becomes

MX+KX=0 1)
Let X =M _%q, then X = M _%ij and the above equation becomes
MM 3§+ KM 3q=0
premultiply by M ~2 we obtain
M MM~ 3§+M KM 5q=0
Ig+Kq=0 (2)
Where K = M~ KM~z
Let q = ve™?, then § = —w?ve™? and (2) becomes
—w?e™t v + Kve™? =0
(K-w’I)v=0

Let A = w? then we have
(K-X)v=0 3)

For v # 0, we requires that ‘K’ — AI’ =0 But

Hence
K —XI|=0
3 —ﬂ 1 ﬂ‘
- A =0
15 )b
)
=0
[
1 1
s-n(2o2)-t=o
13 1
2—— _——=
A 4:/\—%2 0
Hence
—b Vb2 —4ac
A= —+ ——n——
2a 2a
2
13 /-2
8 2
13 1
= — 4+ /137
8 8
Hence

A1 = {13‘g“37,13+g137} = {0.16191,3.0881}
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From (3) we then have

PRI
— v=0
(15 7063
When A = \; =0.1619 we obtain

(155 5l [0 oasio]) (][5

2.8381 —0.5][a] [0
—0.5 0.0881] |[b]| |0

Hence
2.8381a—0.56=0
—0.5a —0.09416=0
Let a =1, then b = _2_'3358 1 — 5.6762, hence the second eigenvector is

o[ 1
1= |5.6762

|lvi]| = V1 +5.676 22 = 5. 763 6, hence normalized v; is

oo 1 1
1™ 5.7636 |5.6762

o _ [0.1735
17 10.98484

When A = Ay = 3.0881 we obtain
30 —0.5] [3.0881 0 al [0
—-0.5 0.25 0 3.0881 b| |0
—0.0881 —0.5 al [0
—-0.5 —2.8381| |b| |0
Hence

—0.0881a — 0.56 =0
—0.5a —2.8381b=10

= —0.176 2, hence the first eigenvector is

Let a = 1 in the first equation above, then b = %

. 1
27 1 -0.1762

|[v2]| = V14 0.176 22 = 1. 0154, hence normalized v is

1 1
V2= 10154 |—0.1762

_ 1 0.98483
27 1-0.17353
Then the P matrix
[P] = [Vl V2]

1101735  0.98483
~110.98484 —0.17353

Now let q = Pr, then equation (2) above becomes
Ig+Kq=0
IP¥+ KPr=0
Premultiply by PT
PTIP¥+ PTKPr=0
I#+PTKPr=0
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Let A = PTKP then the above becomes
If+Ar =0

Now find A
A=PTKP

101735  0.98483 730 —05][01735 0.98483
~10.98484 —0.17353 —0.5 0.25] [0.98484 —0.17353

_|[o.16191 0
h 0 3.0881

Hence (4) becomes
0.16191 0

IH{ 0 3.0881}r=0

Which can be written as 2 equations
71 + 0.16191r,| (O
'y 3.0881ry | |0

71 4+0.16191r; =0
7o +3.0881ry =0

or

With IC given as
0
o ]
and
. 0
X(0) = M

—n-1 _ —1f-1
Now X=M"5q and q=Pr, hence X=M "~ 5 Pr, then

r(0) = PTM2X(0)

[t et M BT
[rl(O)] _ [ 1.9697 }
ro(0)] ~ [—0.34706

now need to find ¥(0) ,but since X(0) = 0, then ¥(0) = 0 as well.
Now we can solve for r1(t) and r3(t) since we have the IC. From (5) above

71 +0.16191r; =0
r1(t) = Acoswy,t + Bsinwy, t

At t=0,71(0) = 1.9696, hence 1.9696 = A, then

r1(t) = 1.969 6 coswy,, t + Bsinwy,, t
71(t) = —1.969 6w, sinwy,, t + wp1 B coswy,, t
Att=0
F1(t) = 0 = wy, B

Hence B = 0, then
r1(t) = 1.969 6 cos wy, t

But wp, = +v/0.16191 = 0.402 38, hence

|71(t) = 1.969 6 cos (0.40238¢) |

Similarly we find ro(t)

7o +3.0881rp =0
ro(t) = Acoswp,t + Bsinwy,t

IThis can also be found more quickly by noting that A = diag(\1, A2)
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At t =0,72(0) = —0.346 98, hence —0.346 98 = A, then

ro(t) = —0.346 98 cos wy,,t + Bsinwy,t
72(t) = 0.346 98wy, Sin wp,t + wy, B coswp,t
Att=0
’f‘2(t) =0= wnZB
Hence B = 0, then
ro(t) = —0.346 98 cos wi,, t
But wy,, = +v/3.0881 = 1.7573, hence

|75() = —0.346 98 cos (1.7573¢) |

Now that we found the solution in the r space, we switch back to the original x space

X (t)=M"3Pr(t)
Then

X () = 1 0 0.1735  0.98483 1.969 6 cos (0.402 38t)
|0 0.5]||0.98484 —0.17353| |—0.346 98 cos (1.7573t)
Hence

z1(t) _ 1 0.34173 cos 0.402 38t — 0.341 72 cos 1. 757 3t
zo(t) " 10.969 87 cos 0.402 38t + 0.03010 6 cos 1. 757 3¢

This is a plot of the solutions

Second problem solution

| {14 I-I [l I'. [ I', ) a
0.5 - III II ,-”;: | I', '-I x {ﬂ [ 11 II.rlll,II -

0.0 ! L I| L Ii ra |-II i | i III 1 [ |I II'\_.III

% (.70t

. W o [ WA \
_ I:I 5 | '.II |II II|I II:L,' 'II::II- IIII| I|III III| II.'I W III IIII I| ~
\J | II". Ji \ I'u'll
—10 _ , . . . A -.I_z" , . . . . , . .L/-: , , I I I I :\__.- | _
0 10 20 30 40
¢

Observation on final result: Notice that power of the harmonic w, = 1. 7573 rad/sec. in the motion z3(t) is
small (amplitude is only 0.03) hence the dominant harmonic present in z3(¢) is w, = 0.402 38 rad/sec. and
this reflects in the plot where it appears that z3(¢) contain one harmonic. In the case of z1(t) we see from
the solution that both frequencies contribute equal amount of power, hence the plot for 1 (t) reflects this.
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3.2.5 Problem 3

3. sz

A= [anjfbv of }?WO(‘L’W

K= 10’\3/% L= o05m

A= 0. m a{op\a +he FenJu[ufu

eter wmine
D I the  natural 7£re uences  and  wmodle 514716:.

Solution Use as generalized coordinates 61, 603,. Assume that the spring remain horizontal, and assume that
0o > 01

L=T-U
]. . 2 1 o 2
T = iml (L01) + §m2 (L02)
Ugravity = m1gL(1 — cos 01) + magL(1 — cos 63)
1
Uspring = §k(asin92 - asin01)2

Hence

L= %ml (Lél)2 + %mg (L92)2 — (mlgL(l —cos 1) + magL(1 — cosfy) + %k(a sin 5 — a sin 01)2>

Now determine the Lagrangian equation

oL .
26, my1L%0,
d 0L o
—_—— = L2
dtos, ~ L0
oL .
o6, 2 L7602
d 0L ..
— == =myL?
dt 96, ma 2
oL . . .
% = —my gL sin0; + ak(asin s — asin ;) cos 6,
1
oL . . .
—— = —mygLsin 0 — ak(asinf; — asin ;) cos Oy
00,
Hence the EQM for m; is
doL oL _
dt 96, 00,

m1L?61 + migLsin 6y — ak(asinfy — asinfy) cosf; =0
Now apply small angle approximation. sin § =~ 6 and cos# = lhence

mleél +mygL6, — ak(a@z — a01) =0
m1L2é1 + migL6, — a2k02 + a2k01 =0

m1L20; + (magL + a’k) 61 — a’k6, = 0 (1)
And the EQM for my is
dor oL _
dt 86, 00y

moL20s + migLsinfs + ak(asinfs — asin ) cosfs =0
Now apply small angle approximation. sin § =~ 6 and cos§ ~ lhence

moL%6, + m1gL0s + ak(aby — ah;) =0
mngéz + mlgLHQ + a2k02 - a2k01 =0
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Therefore
maoL2%05 + 05 (ngL + azk:) —a’kt, =0

Now we write the system as M + K* =0

mL?> 0 01 + migL + ok —a’k 6] [0
0 meoL?| |6, —a%k maogL + a?k| |62] |0

Substitute numerical values for the above quantities, we obtain

10 x 0.52 0 6, 10 x 9.8 x 0.5+ 0.12 x 20 —a? x 20 6] [0
0 10 x 0.52| |6, —0.12 x 20 10 x 9.8 x 0.54+0.12 x 20| |65| ~ |0
2.5 0] [6 L [49-2 0.2 [ex] _ [0

0 2.5| |6y —0.2 49.2| |65 |0

The above can be written as
MY+K* =0

Let " =M _%q, then ¥ = M _%d and the above equation becomes
MM 3"+ KM~ =0
premultiply by M ~2 we obtain
MMM~ + M~:KM™%" =0
I"+K =0
Where K = M~ KM~3
Let q = ve™?, then § = —w?ve™! and (2) becomes

—w?e™tIv + Kve™t =0

(f(—wQI)v:O

Let A = w? then we have
(K-X)v=0

For v # 0, we requires that ‘f{ — )\I| =0 But

K=M":KM™?

_|257% 0 |[49.2 —02] [2.57F 0O
Tl 0 2573|[-02 49.2/| 0 2.5

| [19.68 —0.08
“||-0.08 19.68
Hence
|K—X|=0
19.68 —0.08 _)\1 0 —0
—0.08 19.68 0 1

‘ {19. 68 — A —0.08 } -0

—0.08  19.68 — )
(19.68 — \) (19.68 — \) — 0.08> = 0

Hence the characteristic equation is

|2 —39.36 A +387.30 = 0

Hence

\Al,z =19.6,19. 76\

Hence the natural frequencies are

Wy = {\/19.6, V19. 76}
= \ {4.4272,4. 4452} rad/sec \

From (3) we then have

(K-X)v=0

19.68 —0.08] [x 0 v=0
—0.08 19.68 0 A -
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When A = A\; = 19.6 we obtain
19.68 —0.08] [19.6 0 al _[o
—0.08 19.68 0 19.6 b| |0
0.08 —0.08] [a] _ [0
—0.08 0.08 | |b| |0

Hence

0.08a — 0.080 =0
—0.08a + 0.08b =0

Hence a = b then

e l]- o

_ 1!
V21 0.70711

When A = Ay = 19.76 we obtain
19.68 —0.08| (19.76 0 al |0
—0.08 19.68 0 19.76 b| |0

o0 Zooa) s = o

vo— L [-1] _ [~070711
2T /2l1] | o071t

Now that we have obtained the eigenvectors of the de-coupled system, we can plot the mode shapes{ﬂ I will
use a diagram similar to that shown in the textbook Engineering Vibration by Inman on page 313)

Hence a = —b, then

2The book also calls the S matrix as the shape matrix, so I better show this as well, which is defined as S = M _%P, hence

g [25 0172 11 -1
“lo 25 Bl o1

1
_ 1 (2572 0 [1 —1}
V2| o 2s573|[1 1

0.31623 —0.31623
= ﬁ[0.316 23 0.31623 ]

1 10.44722 —0.44722
71044722  0.44722
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0 0
i i
| |
| I
| |
| |
| |
| |
Xa(t) — | .
| |
| |
|
| |
| |
Xai(t) — : :
| |
| |
| |
| |
| |
Mod Mod
shape 1 shape 2

). 70711 —0.70711
). 70711 0.70711

3.2.6 Problem 4

4 [6[ © >\<+ T -3 [x =o
o | -3 3

Calodate  the reSf;pnge of +the 535-(_—0.“ 4 TC
XD é" Xo: ©
I o

Mx+Kx =0

Where K = [3,; _33} M= [?) ﬂ Let X =M _%Q, then X = M _%ii and the above equation becomes

MM~ 4+ KM 2q=0
premultiply by M ~2% we obtain

M~ MM~ 3§+M KM 5q=0
I+ Kq=0 (2)

Where K = M~ 2 KM~3
Let q = ve™?, then § = —w?ve™? and (2) becomes

—w?e™tIv + Kve™t =0
(f{ —wI)v=0
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Let A = w? then we have
(f{ — )\I) v=0

For v # 0, we requires that ‘f{ — )\I| =0 But

=[5 13 S0

Hence
|K—X|=0
3.0 -1.0 10
H—Lo 3.0] _A[o 1”_0
3—x -1
[
(B3-X?-1=0
Hence the characteristic equation is
(X2 —6XA+8=0]
Hence
)\1,2 = {274}
Then the natural frequencies are
= (12}
From (3) we then have
(K-M)v=0

(125 1= 3+
(15 3916 D=6
i

When A = A\; = 2 we obtain

Hence
a—b=0
—a+b=0
Then a = b, hence
v _ 1 (1} _]0.70711
T2 T |oro711

When A = Ay = 4 we obtain

(15 25)-[o )] =10
o

Hence a = —b, then
[ 070711

V2= \}i [—IJ = [—0.707 11]

Then the matrix

[P] = [Vl Vg]

_|[o.70711  0.70711
“|]o.70711 —0.70711

Now let q = Pr, then equation (2) above becomes

I+ Kq=0
IPf+ KPr=0
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Premultiply by PT
PTIP¢ + PTKPr=0
If++PTKPr=0
Let A = PTKP then the above becomes
If+Ar =0 (4)
Now find A

Hence (4) becomes

Which can be written as 2 equations
’Fl + 27‘1 _ 0
’Fz 47‘2 o 0

1+2rp =0 (5)
o +4re =0 (6)

or

1 .
With IC given as X(0) = % {ﬂ , X(0) = {g], but

X =M_%q and q =Pr, hence X =M_%Pr, then

r(0) = PTM2X(0)
T 1 1
(= L[P 1] 0L
V2|1 -1 0 1| 2|1
T1 (0) _ 1
r2(0)] [0
And since X(0) = 0, then #(0) = 0, now we have found IC for r(t) we can solve the ODEs

r1(t) = A cos V2t + By sin V2t
ro(t) = Az cos 2t + By sin 2t

r1(0) =1 hence A; =1, and B; = 0, similarly, A; = 0, and B; = 0, hence

r1(t) = cos v/2t

ra(t) =0
But
X(t) =M~ Pr(t)
Then
X(t)={955 ﬂ 12 B _11] r(t)
lt A
Hence

[xl(t)] _ lm ﬁt)]
% (cosv/2t)

Here is a plot of the solution
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sohition
|. . T lr.‘\l T T T
0.6t , xi ]
'ul II| I', II' | x1 l:f:l I|I ',I | |II
04+ \ | | [ i f \ | \ 1
\ | | | | | | | |
| | | | \ | |
\ | \ | \ | II I |I
-~ | | | | o | | |
02t N\ ',I | f/ ™| | /'_ \'-. I|I I,' J./f _\.\ \ f :‘/_\“\\ \ i
— .‘\ | |I "'; l~."\ I |I "I.l \-‘ I| |/ \‘. II II .l".; II
= \| / \| If |\ I/ \| I/ \\
E o \It }"f \ rl'f \ J"'lf A }f \
= \ f{ Iy | | | \ ;'{ \
— \! {1 \ | Iy /| |
bon II \.\ llr.' | |I \ ."r I| A ."ll [ II'\" ,."l I| I|\".
\ | | ] I I | "\ _’.-" | | "-__..
—02F 'II \\_/-"' II |II \\_./,fl II| III \\ /.r I'I |II \\_,/: I| |I \- 4
| | | |
I', I|I III ||I \ |II I'I I|I I|I
—04} I|I || ', |'I III III I|I || \ 1
\ | \ | | | | | |
\ III |II IIl |II | | II| |II
—06F II'. I,'I I',I I,'I \ |'I I'.I |'I ',II 1
. \J \V Y ' \
1] 5 10 15 20
!

3.2.7 Problem 5 (not correct, left here to check something)

5 Calewlate +he I"C.SfonSe of the S(\jsfezm
BXwt LXwd 12X = 385 — -0

Stbject o IC X(e)= 001w vy = | W

m:3,c:6,k:12,hencewn=\/%:,/%:2rad/secand§: £ =€ =_95 -

_ 1
oo = Zoom = 3xax3 — 3 hence the

system is underdamped and wg = wy /1 — €2 =24/1 — %2 = /3 rad/sec

Let the response to 3d(t) be z,, (t) and let the response to §(t — 1) be z, (t) hence the response of the system
becomes

z(t) = zn(t) + zp, (1) — 2, (t) (1)
Where
zp = et (A coswat + B sinwgt) (2)
And 3
Zp, () = We_g“’"t sin wgt (3)
d
and 1
Zp, () = m—(ude—&“’"(t_l) sinwg(t —1)®(t —1)

Hence, substitute (2),(3) into (1)

z(t) = e “nt(Acoswat + Bsinwgt) + e s“ntsinwgt

mwq

1
- m—%e—fw“—l) sinwg(t — 1) ®(t — 1) (4)

Now using IC to find A, B. Note, we use only z(t) = x(t) + xp, (t) for the purpose of finding A, B from I.C’s
since the response to the delayed impulse is not active at ¢t = 0. We find

1

z(0) = 100 =
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And for the derivative
E(t) = &n(t) + p, (1)
3 _
+ ——e
Hence

—fwnpe 5“’"t(A coswgt + Bsinwgt) + e 8@nt(— Awg sin wqt + Buwg cos wgt)
3w, _

oty coswgt — 3 e Ewnt

mwq

sin wgt
Wd

£(0) =

- _gwnA + BCUd + —
1= —m + de +1
Hence
1
B =
100v/3
Therefore the solution is, by substituting values found for A, B into the general solution from above equation
(4), we obtain
1
x(t cos V3t + —— sm\/_t> — _tsin\/gt—<e_(t Dsinv3(t —1 <I>t—1) 5
(0= o5 (053t + 150 e = t-Da¢-1) ©
The following is a plot of the solution for up tot =6
solution
L
oo/
r I‘I".II
000z |
F !
L %
- III
0.006

x(t)

|
A \
0.004 \
\
I \
0.002 \ .
\
0.000 - —
i N, e
L \\.,‘__\_ o -~ -
-0002 £ . . . . .
0 1 2 3 4 5 6
f
3.2.8 Problem 5 (again, correct solution)

Xt LXw4

S“}U'Cc't +H  IC

5 Calcwlate +he h:SfDnSe of the S(ys‘be/w.

[2- X(#)

38w — ft-0
X(e)= 0.0] m

V(o)

| */ee

becomes

= 3,¢ = 6,k = 12, hence w, = \/%= \/ 2 = 2rad/sec and £ =
12
system is underdamped and wg = wp/1 — €2 =24/1— 3 v/3 rad/sec
t

Cor  2wn 3393 = 3, hence the
Let the response to 3d(t) be z,, (t) and let the response to §(t — 1) be z,, (t) hence the response of the system
z(t) =

2h(t) + 2p, (£) — 2p, (1)

(1)
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Where
zp = e 5“7 (A coswqt 4+ B sinwgt) (2)
And
3
Tp, (t) = m—wde_&""t sin wgt (3)
and
1
Zp, (t) = — e~ on (=D gin wy(t — 1) d(t — 1)

To find A, B use only z(t) .At t = 0. We find

And for the derivative
&(t) = &n(t)
= —€wne 5t (A coswyt + Bsinwgt) + e84t (— Awg sin wyt + Bwg cos wgt)
Hence
#(0) =1 = —fwn, A+ Buwy

1
l1=——+1B
100 + bwqg

Hence

1+ 155
V3
101

~ 100V3

B:

Therefore the solution is, by substituting values found for A, B into the general solution from above equation
(4), we obtain

—t . 1 —(t—1) _-
z(t) = 100 <COS\/—t+ 0\/_51n\/_t> ﬁ sin v/3t — <3\/§e ( )s1n\/§(t—1)<1>(t—1)> (5)

The following is a plot of the solution for up to ¢t =6

oo | /N ]
000z - \ -

0.006 - -

x(t)

noo4 | ]

0.00z2 - \ -

0.000 ¢ " ——— —

—ooozb. oo T o
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3.2.9 Problem 6

b Calcwlake the response Ojc an Mnolera(amfea( sachm
to  Fhe eXc{{”a’fl‘ow ?T]vew b&(op

o

| T Feey = R osine

Let the response by z(t). Hence z(t) = xp(t) + z,(t), where z,(¢) is the particular solution, which is the
response due the the above forcing function. Using convolution

2,(t) = [ Fr) bt —7)dr
0

Where h(t) is the unit impulse response of a second order underdamped system which is

1
h(t) = ——e *“ntsinwgt
mwg

hence
" ¢
zp(t) = m—sd/ sin (7) e (=) sin (wq(t — 7)) dr
0

t
F —Ewnt
= 067/«35“’"7 sin (7) sin (wg(t — 7)) d7

0
Using sin Asin B = $[cos (A — B) — cos (A + B)] then

mwq

sin (1) sin (wq(t — 7)) = %[cos (T —wa(t — 7)) — cos (T + wq(t — 7))]

Then the integral becomes

2mwy
0

¢ ¢
zp(t) = M (/65“’"7 cos (T —wg(t — 7)) dr — /65“’"7 cos (T + wq(t — 7)) dT)
0
Consider the first integral I; where
¢
L = /e‘f“’"r cos (T —wq(t — 7)) dr
0

egwn

Ewn

Integrate by parts, where [udv = uv— [ vdu, Let dv = %" — v = " and let u = cos (T — wa(t — 7)) =

du = —(1 + wg) sin (T — wa(t — 7)), hence

e&wnf t p eEwnT .
[—(1 4 wq) sin (T — wq(t — 7))] dr
0

L = [cos (T —wa(t—71))

Ewn, B Ewn
0
t
B eﬁwnt 1 (1 + wd) WnT o
= [cos (t — wq(t — 1)) o~ cos (0 — wq(t — 0)) £wn] + &, 0/35 sin (7 — wq(t — 7)) dr
t
= g%n [cos (t) €5 — cos (wat)] + (15—:):)‘1) et 7 sin (1 — wa(t — 7)) dr o

0

Integrate by parts again the last integral above, where [udv = uv — [ vdu, Let dv = €™ — v = ez:’: and
let uw =sin (7 —wq(t — 7)) = du = (1 + wq) cos (T — wqa(t — 7)), hence

/ CwnT o3 t dr = |si t il t fefenT 1 t d
O/e sin (1T —wg(t — 7)) dr = {sm(T—wd( —T)) € L—/O £ (14 wqg) cos (1 — wq(t — 7)) dr

et“nT cos (T — wq(t — 7)) dr

(2)

t
= f%n [sin (t) e5~* + sin (wat)| — (1;:)d) ;
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Substitute (2) into (1) we obtain

L= &1}" [cos (t) €%~ — cos (wat) | +
M 1 Ewnt M
wn (f Wn sin (£ %" +sin (wat)] - Ewn o

- é.%n [cos (t) 5" — cos (wqt)] + ((1 I:d)

-1 [cos (t) 5" — cos (wqt)] + (L+ w;) [sin (t) e5“~* + sin (wat)| —
Wn (fwn)
Hence
(1+ wd)2 1 cos () e8¥nt — cos (w (1 +wa)
B ey a0 Ll * .,
(bwn)” + (L+wa)*) _ 1 €t (1+wa)
I B = ——|cos(t)e — cos (w,

I - ( (6wn)’
(€wn)? + (14 wa)?

_ &wp[cos (t) et — cos (wat)] +

[sin (t) e5~* + sin (wat)| —

> ( §1n [cos (t) e — cos (wqt)] +

/t e5“nT cos (T — wy(t — 7)) d7'>

(1+wd)2 tegw"TCOST—w —7))dr
| (r —walt =) d

(1+wa)” "
(é.wn)2

2 [sin (t) €5~ + sin (wat)]

5~ [sin (t) €5 + sin (wat)]

((152,3‘3) [sin (£) " + sin (“’dt)]>

(14 wa) [sin () €57t + sin (wqt)|

(Ewn)® + (14 wq)?

Now consider the second integral I where

¢
I, = /ef“’"r cos (T + wq(t — 7)) dr
0

Integrate by parts, where [udv = uv— [ vdu, Let dv = %" — v = efwn”

du = —(1 — wg)sin (7 + wqa(t — 7)), hence

t
egwnT

Ewn
0

I, = [cos (T +wa(t—7)) zwm—}

’I'L

efwnt

- [cos(t+wd(t—t)) ~ cos (0 + wa(t - 0))

- o)

1 — Wq
Ewn

and let u = cos (T + wy(t — 7)) —

[—(1 — wgq) sin (T + wq(t — 7))] dr

t

/eg“’” sin (7 + wq(t — 7)) dr
0

-t [cos (t) €5 — cos (wqt)] + ﬂé;:d)/egwnr sin (7 + wa(t — 7)) dr ®3)

Ewn

Integrate by parts again the last integral above, where [udv = uv — [ vdu, Let dv = €™ — v = 62:7:: and

let uw =sin (7 4+ wq(t — 7)) = du = (1 — wq) cos (7 + wq(t — 7)), hence

t
ebwnT t t fw,T
/EW"Tsm(T—Fwd(t—T))dT— {SID(T‘*“"d(t_T)) w } _/ :
Wn, 0
0

1

 Ewn

(1

[sin (t) e~ — sin (wat)] —

Substitute (4) into (3) we obtain

L= &1}” [cos (t) 5" — cos (wqt)] +

(1 —wq) ( 1
§wn Ewn

(1 — wd)
Ewn, 0

[sin (t) e~ — sin (wat)| —

(1 —wq)

(5"-’71.)2

&lj [cos (t) 5" — cos (wat)] +

(1 — wd)

(gwn)

&1 [cos (t) 5" — cos (wat)] +

wn

— wd)
€wn

[sin () e~ — sin (wat)]| —

>~ [sin (t) €5n* + sin (wat)| —

(1 —wq)cos (T +wq(t — 7)) dr

/0 ef“nT cos (T + wq(t — 7)) dr
(4)

/t %7 cos (T + wa(t — 7)) d7'>

(l_wd)2 teg“’”cos T4+ we(t—7))dr
Y / (r +walt—7)d
(l—wd)212

(E(/Jn)2
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Hence
I + (l(ﬁ_oJ:))dQ)Q 9 = g%n [cos (t) €5 — cos (wqt)] + ((lg;:;g) [sin (t) €5~ + sin (wat)]
(gwn)2 + (1 — UJd)2 _ i cos (1) ef“nt — cos (w M sin (¢) e$¥»t + sin (w
12< (wn)’ ) = (0 il + gy PO +oin at)

- (fwn)2 1 cos (1) €97t — cos (w M S (£) £t 4 sin (0
I, ((gwn)2+(1—wd)2> (gwn[ (t) (wat)] + Ewn)? [sin (¢) + sin ( dt)]>

_ &wn [cos (t) e5nt — cos (wat)] + (1 — wa) [sin (¢) e5“n* + sin (wat)]
(wn)* + (1 — wa)”

Using the above expressions for Iy, Iz, we find (and multiplying the solution by (®(t) — ®(¢t — 7)) since the
force is only active from t = 0 to ¢t = m, we obtain

e—ﬁwnt
op(t) = 5 1y - ) (8(6) — B(¢ — )

= (B(t) — B(t — ) *
Foe“nt Lwy, [cos (t) €54t — cos (wqt)| + (1 + wq) [sin (¢) €6~ + sin (wqt)

2mwa (Ewn)? + (1 +wa)?
_ Fpe=twnt £wy [cos (t) e5nt — cos (wat)] + (1 — wy) [sin (t) e¥~" + sin (wat)] %)
2muwa (wn)” + (1 — wa)”

Hence z,(t) = (®(t) — ®(t — 7))

Fye—tent [€wn [cos(t)eiw"t—cos(wdt)} +(14wq) [sin(t)eﬁw"wrsin(wdt)} Ewn [cos(t)eﬁw"t—cos(wdt)} +(1—wa) [sin(t)eﬁwnwrsin(wdt)]
(€wn)?+(1+wa)? o (€wn)*+(1—wa)?

2mwg

And
zp(t) = e~ 5t (A cos wat + B sin wgt)

Hence the overall solution is
z(t) = e (A coswat + Bsinwgt) + ,(t)

The above solution is a bit long due to integration by parts. I will not solve the same problem using Laplace
transformation method. The differential equation is

B(t) + 2wnd(t) +wna(t) = £(2)
Take Laplace transform, we obtain (assuming z(0) = zo and £(0) = vy)

(s*°X — sz(0) — £(0)) + 26wn(sX — 2(0)) + w2 X = F(s)
(8°X — s20 — v0) + 26wn(sX — 20) + W2 X = F(s) (7)

Now we find Laplace transform of f(t)
F(s) = / et £ (1) dt

0
T

= /e_StFO sint dt

0
g

= Fy /e‘“ sint dt

0
Integration by parts gives s
F(s) = Fy [111682} (®)
Substitute (8) into (7) we obtain
(szX — sxp — 'Uo) + 28wn(sX — 20) + w2 X = Fy {11-:_6;;8]
X (s + 28wns + wi) — 8209 — Vo — 2§wnTo = %
X (s* + 2wy +w2) = % + sz0 + vo + 28wn o

Fo(14+€e™) + (14 s2) szo + vo(1 + s?) + 2éwnzo (1 + 5?)
1+ 82
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Hence
X Fo(1+e ™) + (14 5%) szo +vo (1 + 8?) + 28wnzo(1 + 5?)
- (1+ 52) (82 + 2¢wns + w2)
_ Fo+u+ Lo+ sz + 200 + 5°T0 + 2w o + 25%Ewn o
o (1+ s2) (82 + 28wns + w2)

Now we can use inverse Laplace transform on the above. It is easier to do partial fraction decomposition and
use tables. I used CAS to do this and this is the result. I plot the solution z(¢). I used the following values

to be able to obtain a plot £ = 0.5,w, = 2,Fy = 10,29 = 1,99 =0
Solution by Laplace Transform

wf—

4 il 8 10

tine

3.2.10 Solving problem shown in class for Vibration 431, CSUF, Spring 2009

Problem
Solve & + 2& + 4 = §(t) — 6(t — 4) with the IC’s z(0) = lmm, &(0) = —1mm

Answer
hence the system

c __ c _ 2 —

m=1,c=2,k=4,hencewn=,/£=\/Z=2rad/secand§=a—2w"m—m—%,

is underdamped and wg = wy /1 — €2 =24/1 — %2 = /3 rad/sec

Let the response to §(t) be z1(t) and let the response to §(t — 4) be z5(t) hence the response of the system

becomes
z(t) = zp(t) + 21(t) — 72(2) (1)
Where
xp = e (A coswqt 4+ B sinwgt) (1)
And 1
z1(t) = m—w[je_g“’"tsinwdt (3)
and 1
= — —€wn (t—4) g —4)®(t—4
z2(t) — e sinwg(t —4) ®(t — 4)

Hence, substitute (2),(3) ,(4) into (1)

1 1
z(t) = e ¢t (A coswyt + Bsinwgt) + ——e $“ntsinwgt — ——e Y gin (wy(t — 4)) Bt — 4) (4)
mwq mwq

Now using IC to find A, B
z(0)=1=A4
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and

z(t) = —fwne_'s‘*’"t(A coswgt + Bsinwgt) + e_f“’"t(—Awd sinwgt + Bwg cos wgt) +

1
[ (—§wne_§“’"t sinwgt + wge 9t cos wqt) —
mwq
e_gwn (t_4)
Tw(wd cos (wa(t —4)) @t —4) + 6(t — 4) sin (wa(t — 4)) — Ewpwg sin (wa(t — 4)) D(t — 4))

At t =0,%(0) = —1, Hence the above becomes (terms with §(¢ — 4) and ®(¢ — 4) vanish at ¢ = 0 by definition)

—1=—¢wpA+ Bwg + 1
m
-1
B=_-
V3
Hence (1) becomes

1
et ginwgt — ——e =Y gin (wa(t —4)) 2(t —4)
mwgq mWad

1
x(t) = e~ snt (cos wgt — —= sin wdt> +

V3

If we substitute the numerical values for the problem parameters, the above becomes

z(t) = et (cos V3t — \}g sin \/§t> + e\;; sin v/3t — \}ge‘(t“‘) sin (\/5(15 = 4)) ot —4)

=|e"tcos /3t — %e_(t“l) sin (V3(t —4)) ®(t —4)

Compare the above with the solution given in class, which is

z(t) =|et (cos V3t + % sin \/gt) - %e‘““g sin (V3(t — 4)) ®(t — 4)

3.2.11 Solving problem shown in class for Vibration 431, CSUF, Spring 2009.
Version 2

Problem
Solve & + 2& + 4z = §(t) — §(t — 4) with the IC’s z(0) = 1mm, £(0) = —1mm
Answer

m=1,c=2,k =4, hence w, = ,/% =+/4=2rad/secand £ = & = ;¢ 2 __ — %,hencethe system

Cor  2wpm . 2x2xX1
is underdamped and wq = wy+/1 — €2 =24/1 — %2 = /3 rad/sec

Let the response to §(t) be zp, (t) and let the response to d(t — 4) be zp, (t) hence the response of the system
becomes

z(t) = zn(t) + zp, (1) — 2p, (1) 1)
Where
zp = e (A cos wqt 4+ B sinwgt) (1)
And 1
Zp, () = m—wde_g“’"t sin wgt (3)
and 1

e~ 8on (=) gin wy(t — 4) (t — 4)

Tp, (t) =

Hence, substitute (2),(3) ,(4) into (1)

mwq

1 1
t) = e rt(4 t+ Bsinwgt) + ——e “ntsinwgt — ——e Wn (=g t—4)et—4) (4
z(t)=e (Acoswy sin wgt) Wde sin wy Wde sin (wa( )) ®( ) (4)
Now using IC to find A, B
z(0)=1

Hence
A=1

Now take the derivative of the above and evaluate at zero to find B. In doing so, we need to consider only
the xp,. The reason is that the particular solution x,,(t) of the delayed pulse (the second pulse) will have no
effect at ¢ = 0 and the first pulse particular solution z,, (¢) will also have no contribution, since its response
is assume to occur at 07, i.e. an infitismal time after ¢ = 0. Therefore, since we intend to evaluate &(t) at
t = 0, we only need to take z; derivative at this point
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z(t) = —§wne_§“’"t(A coswgt + Bsinwgt) + e_EW"t(—Awd sin wgqt + Bwg cos wgt)
At t =0,%(0) = —1, Hence the above becomes

-1 = —fw, A+ Bwy
-1=-1+BV3

Hence (1) becomes

e “nt gin wyt — e on(t=Y gin (wa(t —4)) 2(t —4)

z(t) = et coswgt +
mwq mwq

If we substitute the numerical values for the problem parameters, the above becomes

z(t) = et cos e—_tsin —Le_(t_‘l)sin - -
(t) V3t + 7 V3t 5 (Vat-9)er-9

=let (Cos V3t + % sin \/§t) B %6_@_4) sin (vV3(t — 4)) ®(t - 4)

Which now matches the solution given in class

3.2.12 Key for HW2

Egme SN HW 2

JoLUTIoMS

“

.

Solution: Choose the x y coordinate system to be along the incline and perpendicular to
it. Let p, denote the static friction coefficient, |, the coefficient of kinetic friction and A
the static deflection of the spring. A drawing indicating the angles and a free-body
diagram is given in the figure:

mgcosd
For the static case
Y. F,=0= kA= N+mgsin6, and Y, F,=0= N =mgcosf
For the dynamic case
S F = mf:-k(x+A)+y‘N+mgsin9—ukN-|-Jf—l
x

Combining these three equations yields
x

mi+ f,mgeosf@i+hkx=0
A

Note that as the angle 8 goes to zero the equation of motion becomes that of a spring
mass system with Coulomb friction on a flat surface as it should.
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Solution: Given:
2’ e ks=|! s+ 3 “He=0
0 4

Calculate eigenvalues:
det(K - AI)=0
E= M-'uzKMq/z =[ 3 ‘0-5]
-0.5 0.25
3-2 05
-0.5 0.25-A
4,,=0.162,3.088

|= A*-325+05=0

The spectral matrix is
0162 0
A=diagl(A )=
ORI
Calculate eigenvectors and normalize them:
A,=0.162
2838 03 W Vul_o ., =1762v,
0.5 0.088] v,
o= ¥+ 92, = J(0.1762) +2, + 2, =1.015v,, = 1
' 173
v, =0.9848 and v, =0.1735= v, = 0.1735
0.9848
A, =3.088
-0.088 05 Y1V |_, y <1762,
05 -2.838|v,
[l = i +2 = \@.676)’ Vi +v2 =5.764v, =1

—0.9848

=v,,=0.1735 and v,=-09848=v, =[ 0.1735

|
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3 Solution: Given:
k=20N/m m =m,=10kg
a=0.1m I=05m
For gravity use g =9.81 m/s%. For a mass on a pendulum, the inertia is: I = m/*
Calculate mass and stiffness matrices (for small 8). The equations of motion are:

16, = ka*(6,-6,)— mge, -~ 8, [mgr+ra  —ka &]_[0
1,8, =~ka*(6,-6,)— m,gl0, 8, -ka*  mgl+ka® )6, |0
Substitution of the given values yields:

25 0 d+ f19.05 -0.2 0=0
0 25 -0.2 49.05

Natural frequencies:
B g o] 197 008
—0.08 19.7
=1, =19.54 and A, =19.7 = o, = 4.42 rad/s and @, = 4.438 rad/s
Eigenvectors:
A,=19.54
0.08 -0.08]v,] [o 11
= = vl = —
-0.08 0.08 ||v,| [0 V2l
A, =197
—0.08 -0.08][v, | [o 11
= = vz = —
-0.08 —0.08|v, | [0 V2~

1|1 1
Now,P:[vI v’]=$|:l -—l]
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u, = My, 0.4472
v 104472
Mode shapes: 04472
u,=M"v,=|
—0.4472
A plot of the mode shapes is simply
L u,
”n — n, ——p
; : ' :
0447 | 949 oaqy | 0447
—m—b “+—— m,
2

This shows the first mode vibrates in phase and in the second mode the masses vibrate
out of phase.

0472 04472 04472
6(0)= 6(0)=0, S= M2P=
(©) [0.4472] ©) [0.4472 —0.4472]

1118 LI18 1]
yl:PTMW:[l.ns -1.118]’ r(o)=s"e(o)=[0] (0)=

o

n(f)= sin(4.42t+ %] = cos4.45t, 1,(r)=0

Convert to physical coordinates: 9(!) = Sr(t) = {0 A4T2c054.42
. cos4.42¢

0.44720054.42t} d

B{t) :=0.4472-cos(4.429-1)

a5 T

R vivive
VAR
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Solution: S o
0, =4 =144 radls, o, =4, =2 rads
1 1
p=_‘_[l 1]=>S=M.1,2P=’L§ H- S"=PTM”2=l[3 1]
valt V2|7 2
Next compute the modal initial conditions

r(0)=5"x(0)= m and ;(o) =5"%(0)=0
Modal solution .ror ’ .
r (t) _ [cos 1(.)4141‘]

Note that the second coordinate modal coordinate has zero initial conditions and is hence
not vibrating. Convert this solution back into physical coordinates:

1 1

0.236¢cos1.414¢
=x(t)=
0.707cos1.414¢

The unique feature about the solution is that both masses are vibrating at only one
frequency. That is the frequency of the first mode shape. This is because the system is
excited with a position vector equal to the first mode of vibration.
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5 Solution: First compute the natural frequency and damping ratio:
12 6 .
© =.—==2radls, {=——=05, @,=2v1-0.5" =1.73 rad/s
" \E S 62333 s
so that the system is underdamped. Next compute the responses to the two impulses:
e Vsinl.73(t —1)=0.577¢ "' sin1.731,1 >0

F .
x(f)=——2¢ @/ sing t =
mo,

3(1.73)

x,(0)= —ml;—e“"’-“"’ sina,(1-1)= 3(1]73) e'sinl.73t=0.193¢ "sin1.73(¢ - 1),1 > |

d
Now compute the response to the initial conditions

x, (t) = de* sin(co A+0)

A= J(vo + Cw"xn)z + (xowd) , 6= tan™ [_ia)_d__] =0.071rad

o) v, + L@, x,

= x,(1) = 0.5775¢" sin(¢+0.017)

Using the Heaviside function the total response is
(1) =0.577¢" sin1.73¢ +0.583¢™ sin(t +0.017)+ 0.193¢ " sin1.73(¢ - @(¢ ~ 1)

This is plotted below in Mathcad:

~C-onft =1

sin{wd-t) + A5 gin(wa-t + ¢)) + [3————]— sin[wd- (t - 1)]]- &(4-1)
3-0d

£ N

054

-L-wnt

wd

x(t) = (

t
Note the slight bump in the response at # = 1 when the second impact occurs.
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Solution: : .
6 x(t) = m;d e I[F (T)e;""" sinw, (t - r)] dt

F(f)=F,sin(f)  t<z (From FigureP3.16)

{

Fort <, x(t)= ;ZLe“"’-’ I(sin e sinw, (£ - r)) dt
d 0

x(t) = mI(:.; e"‘”-' X
d
[2[1 " ZaL " wnz]{eco.: [(wd ~1)sint - {o, cost]—(a)d —1)sinw - Ca)"cosa)dt}

1 ,{ecw.: [(“’d - ])sint—éa)"cost]+ (a)d - l)sina),t— (o, cosa)dt}:l

- +2[]+2cod+a)"z:|

For?> 7r; : jo FOK(t-T)dr = jo FOh(Et-T)dT + j (0)A(t —T)dT
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x(t) = ;i)—”:e""’" ]:(Sifl 7e”sinw, (t - 1‘)) dt
_F e
mw

[ . {ecw-'[(w,-1)san[w.,<z-n)]—c:w,cos[w.,(r—z)]]}

2[I+2cod+co"’] —(m,—l)sinmdt—gm"coswdt

, J.e‘°~'[<w,,+l)s-m[.@.,(:—r)]+cwcos[wd(r~n)]]”

+2[l+2(od+wnzﬂ +(w, - 1)sine £ - {w, cosw ¢

'Alternately, one could take a Laplace Transform approach and assume the under-damped
system is a mass-spring-damper system of the form

mi(t)+ck(t) + kx(t)=F(t)
The forcing function given can be written as

F(1)=Fy(H())- H(t - ))sin(r)
Normalizing the equation of motion yields

£(t)+ 28w, 3(1) + w2x(t) = f,(H (¢)— H(t - ))sin(r)
where f, =fl and m, c and k are such that0 <{ <1.
m

Assuming initial conditions, transforming the equation of motion into the Laplace domain
yields

iA (1+ e"’“)

s+ l)(s2 +2¢w,s+ a),f)

X(s)= (
The above expression can be converted to partial fractions

0= ) (222 o) 22

s +1 s*+ 20w, s + o}

where A, B, C, and D are found to be
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_ 20w,

(1-07) +(2w,)’

- @; -1

- (1-2) +(2w,)
2o,

(1-@?) +(2¢w,)
_ (l—co:)+(2§a),,)2

P o)+ (2,)

Notice that X(s) can be written more attractively as

X(s)= £ As+B+ Cs+D +Fem As+B+ Cs+D
\s?+1 s +2os+wd) ° s +1 s +2€ws+0?

= £,(G(s)+ €™ G(s))

Performing the inverse Laplace Transform yields
x(t)= f,(g(t)+ H(t - 7)g(t— 7))

where g(#) is given below

g(t) = Acos(2)+ Bsin(t)+ Ce™ cos(w,t) + {D——ch") e sin(w,t)

wd
@, is the damped natural frequency, ®, = a),,\fl -,

Let m=1 kg, c=2 kg/sec, k=3 N/m, and F=2 N. The system is solved numerically. Both
exact and numerical solutions are plotted below
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07 T T T T

" [— Exact Soution
—  Numerical Solution

Response

Tima{sec)
Figure 1 Analytical vs. Numerical Solutions

Below is the code used to solve this problem

% Establish a time vector

t=[0:0.001:10};

% Define the mass, spring stiffness and damping coefficient
m=1;

c=2;

k=3;

% Define the amplitude of the forcing function
F0=2;

% Calculate the natural frequency, damping ratio and normalized force amplitude
zeta=c/(2*sqrt(k*m));

wn=sqrt(k/m);

f0=F0/m;

% Calculate the damped natural frequency
wd=wn*sqrt(1-zeta’2);

% Below is the common denominator of A, B, C and D (partial fractions
% coefficients)
dummy=(1-wnA2)*2+(2*zeta*wn)A2;

% Hence, A, B, C, and D are given by

A=-2*zeta*wn/dummy;
=(wn”2-1)/dummy;

C=2*zeta*wn/dummy;
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D=((1-wn*2)+(2*zeta*wn)*2)/dummy;

% EXACT SOLUTION
%

skkkkok deskokk ¥ ke ok sk sk sk ok ok ok ok e sk sk sk ok ok ok ok ok skok ok ke sk sk sk skok skeok sk ok ok sk ke skok sk ke sk sk sk sk sk sk sk sk sk ok sk sk ok ok ok sk sk ok
*

%
sk ok sk ok s ke sk ok sk sk sk sk sl sk sk sk ok ok sk ol o ke ok o s kol sk ook sk ok sk sk ok sk ke ok sk skesk sk sk sk sk sk sk sk sk sk ko sk ok sk ok sk sk ok ok sk ok ok kR Rk K
*
for i=1:length(t)
% Start by defining the function g(t)
g(i)=A*cos(t(i))+B*sin(t(i))+C*exp(-zeta* wn*t(i)) *cos(wd*t(i))+((D-
C*zeta*wn)/wd)*exp(-zeta*wn*t(i))*sin(wd*t(i));
% Before t=pi, the response will be only g(t)
if t(i)<pi
xe(i)=f0*g(1);
% d is the index of delay that will correspond to t=pi
d=i;
else
% After t=pi, the response is g(t) plus a delayed g(t). The amount
% of delay is pi seconds, and it is d increments
xe(D)=F0*(g(i)+g(i-d)); '

end;
L%r end;

% NUMERICAL SOLUTION

%

sk e ok e st sk ot s e s sk sk sk e e sk ok e ok sk ok sk ok ok ok sk skeok sk ek sk ek o sk ok sk st sk e sk sk sk ok sk ok sk ok ok sk ok sk sk sk sk sk sk ok ok sk skeok sk ke okok
*

%

skkkRkk £ e sk s ok sk sk sk sk sk ok ok s sk sk sk ok ook ok ok ok ok e sk ke sk e sk ok sk sk sk sk o ok ok ok ok ke skl sk sk sk sk sk ok ok ok ok

*

% Start by defining the forcing function
for i=1:length(t)
if t(i)<pi
1(i)=f0*sin(t(i));
else
f(i)=0;
end;
end;

% Define the transfer functions of the system

% This is given below
% 1
%o
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% sh2+2%zeta*wn+wnA2

% Define the numerator and denominator
num=[1];

den=[1 2*zeta*wn wn*2];

9% Establish the transfer function
sys=tf(num,den);

% Obtain the solution using Isim
xn=lsim(sys.,f,t);

% Plot the results

figure;

set(gcf,'Color','White');

pIOt(tsxevt’xnv"");

xlabel('Time(sec)");

ylabel('Response”);

legend(‘Forcing Function', Exact Solution', Numerical Solution');
text(6,0.05,\uparrow', FontSize',18);

axes("Position',[0.55 0.3/0.8 0.25 0.25])
plot(t(6001:6030),xe(6001:6030),t(6001:6030),xn(6001 :6030),'--Y;
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3.3.1 Description of HW
1. Find EQM, one mass, 2 springs, different k, springs only attached when hit

2. Find EQM using Lagrangian, pendulum, but string is rubber band with some stiffness.
3. Find exact solution to nonlinear pendulum EQM

4. nonlinear second order ODE. Find equilibrium points and stability at these.

5. nonlinear 2nd order. Find stability around equilibrium

6. similar to above, but find stability conditions based on damping sign

7. columb damping and phase plane

8. Given phase plane equation (i.e. dy/dx), determine stability. i.e. go back from phase plane to the system
matrix

9. Solve Van Der Pol using perurbation

3.3.2 Problem 1

Two springs, having different stiffnesses k; and k; with &z > k,, are placed on either si‘i:le of

\ & mass n1, as shown When the mass is in its equilibrium position, no spring 1§
in contact with the mass, However, when the mass is displaced from its equilibrium position,
only one spring will be compressed. If the mass is given an initial velocity Xp at¢ = {, deter-
mine (a) the maximum deflection and (b) the period of vibration of the mass.

|_..» x(f)

ki kz = kl ”
B
v

T TS A e ///5}////////////1’///

SRR

3.3.2.1 Part (a)

Initially, when mass is given velocity vg then the equation of motion is
mE+ kex =0
with IC z(0) = vg, z(0) = 0, hence the solution is
z(t) = Acoswyt + Bsinw,t
Where w,, = \/’%2 in this case.

From IC z(0) = 0 we obtain that A =0 and now

z(¢) =B\/@cosw@t
m m

Hence from IC #(0) = vy we obtain that B = \/”—%2 and then we write the solution as

z(t) = 4 /kﬂzvo sin 4/ %t

The above is the | solution for EQM of the mass when it is attached to kespring |.

Now the mass will move to the right, losing its kinetic energy to the potential energy of the spring until it
stops at the maximum displacement on the right, which will be \/%'00. Then the mass will starts to move to
the left again towards the static equilibrium position, gaining speed as it does and the spring losing potential
energy until the mass is back to z = 0 where it will have speed of vg but in the left direction. When it hits

the left spring ki, it will move in an EQM given by
mi+kix=0

With initial  given by static equilibrium position (i.e. z = 0) and initial velocity of vy but to the left direction.

Hence as before, we obtain
k
z(t) =,/ kﬂlvo sin 4/ Elt
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The above is the ‘ solution for EQM of the mass when it is attached to spring k; | We see that the maximum

displacement will be z(t) = | /7*vo in this case.

Therefore, we conclude the following;:

Mass will move to the right of the static equilibrium position a maximum distance of , /%vo

and

Mass will move to the left of the static equilibrium position a maximum distance of vo

And since k2 > ki, then it will move the left a longer distance than to the right.

3.3.2.2 Part(b)

From above, the period of motion when the mass is attached to ks is found by setting %t = 2m ft hence
T =2m, /1= sec
2

The period of motion when the mass is attached to k; is found by setting, /%t -t = 27 ft hence f = 1 -1/ ’fﬁ ,

— 1 ke
[ =35-1/2, therefore

therefore | T' = 2, / 7+ " sec

We see that the period when the mass is attached to k; is longer than the period when the mass is attached
to kz.

3.3.3 Problem 2

2. Amassm, comected to an elastic rubber band of unstretched length | and stiffpeg k
mitted to swing as a pendubuin bob, as shown, - Detive the nonlineyy f-Qiaatm
motion-of the system using x and @ as coordipates. winearize the equations of mmidnu;s’ °f
determine the natural frequencies of vibration of the system. ' and.

Rubber band,
stiffness &

The Lagrangian which I will call T' (since I am using L for the current length of the band) is given by T — U,
where T is the kinetic energy of the system and U is the potential energy of the system.

We take z to be from the unstretched length of the rubber band along the length of the band.

First, we determine the velocity of mass m. Assume that the length of the rubber band at any point time is
given by L(t), then

2 _ .2 2
V" = Uhorizontal + Uyertical

d > [d ?
= |:dt(3horizontal):| + |:dt(sve7‘tical):|

= L;i(L(t) sin 0)} + [jt(L(t) cos 0)}

= [L(t)sin 6 + L(t) cos (6) 6] + [L(¢) cos 6 — L(t) sin (6) 6]
= L2(t)sin® @ 4 L2(t) cos® (9) 6% + 2L(t) sin (9) L(t) cos ()
+ L2(t) cos® O + L2(t) sin? () 62 — 2L(t) cos (A) L(t) sin (9) 8
= L*(t) [sin® 0 + cos® 8] + L?(t) 6% [cos® () + sin? (9)]

= L2(t) + L*(t) 6
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Therefore, the system kinetic energy is

1
T = §mv2

_ %m(iﬂ(t) +L2()6?)

Now we find U, the potential energy for the mass, with the help of this diagram

Current
length
L{t)=l+x(t)
Original
length

Stretch

'// amount

(+x)cos® _}

F————=
.f"L‘ I
T
—
Y b e

Umnass = —mg(Lcosd — 1)

Where the minus sign at the front since the mass has lost PE as it is assume z has stretched the band and
hence the mass is lower than its static position.

And the potential energy for the band is
1
Uvand = 5kx2(t)

Hence, the Lagrangian T is
r=7-U

- %m(LQ(t) + L2(t)6%) — (;k:ﬁ(t) — mg(L cosf — l))

But L =1+ z(t), hence the above becomes

r=1m [(jt(z #a()) + 0+ 2(0) 92] - (k@ — mal(t+ o0 cos6 -1

Hence

T = Im[22(t) + (12 + 2%(t) + 2l2(t)) %] — Lk2?(t) + mg[l(cos @ — 1) + z(t) cos 6]

Hence EQM is now found. For 6 we have

aor_or_
dtod 00
% (;m[2(l2 + 22 (t) + 2lz(t)) 9]) —mg[—Isinf — z(t)sinf] =0

m[(2z(t) &(t) + 2l () 6 + (1% + 2%(t) + 2lz(t)) 6] + mg[lsin O + z(t)sinf] = 0
(12 4+ 22(t) + 20z(t)) 6 + (22(t) £(t) + 212(t)) 0 + gsin [l + z(t)] = 0
(1 + 22(t) + 20x(t)) 6 + (I + z(t)) 22(t) § + gsin [l + (t)] = 0
The above can be simplified more if we observer that (I + z2(t) + 2iz(t)) = [l + z(t)]> = L% and I+z(t) = L,

hence EQM becomes
L?0 + 2Li6 + gLsinf =0
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Or

Lo+ 20 + gsind = 0

Using small angle approximation, sin 6 ~ 6 and 6 can be neglected, we obtain
LO+g0=0
. g
0+=6=0
+ L

Hence, the effective stiffness is £ and wy, = /< =, /; +w( 7 Hence we observe that as the band is stretched

more, w, becomes smaller and the period becomes longer. Now we derive the EQM in the z direction

Im[E2(t) + (12 + 22(t) + 2lx(t)) 62] — 1ka?(t) + mg[l(cos O — 1) + z(t) cos f]
dor or

dtoz ~ oz
d, . .
a(mm(t)) +kz(t)=0
Hence EQM is

i(t)+ La(t) =0

Hence, the effective stiffness is % and wp, =4/ % The solutions can now be given easily as

0(t) = Acoswy,t + Bsinwy,,t
z(t) = C coswy, t + Dsinwy,t

_ g . g
O(t)—Ac0s1/l+x(t)t+Bs1n,/7l+x(t)t
L(t)=l+Ccosw£t+Dsin\/£t

m m

Where A, B,C, D can be obtained from initial conditions.

or

3.3.4 Problem 3

3 Find the exact solution of the nonlinear pendulum equation

. g
RECOR

with @ = 0 when 8 == 8, where 9y denotes the maximum angular displacement.

EQM is given by

The above can be put in the form

Where

76 _wo(g?: —0)

Hence, this is an autonomous differential equation since f(0) does not depend on the independent variable ¢
explicitly.

Now, Let 1 = 0 and x5 = 9, then dd% = x2 and using the new state variables we can rewrite the differential
equation as

doadry _ _ of
dey dt o\
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Integrate both side

x2 m3
72 = —wg/ (ml 61) dx1 + Ch

2 2 93% 411
332 = —2w0 ? ﬁ + C
But z5 = 6 and x1 = 6, then the above becomes
. 02 04
2 = 9,2 2

We are told that when 6 = 6, then 6 = 0, hence from the above

62 65
O=—2w§{20—2ﬂ +C
94
C = 3|63 - 3]

Then (2) becomes

2 ,[0% 6 2| p2 5
= 22— — — 20
0 wo{2 24} +wo[90 12}
or . i
2 _ 2| L 2 20p2 Y
0 _w0[129 0}—% 0{00 12}
Therefore
. 1 63
— = P4 _ P2 2 _ 70
0 wo\/129 02 + 65 19

d‘)_ﬂ

= W’“ — 1262 + 1263 — 62

\/92 2 12) + 62 (12 — 62)

Hence integrating the above we obtain
1 wWo /
df = dt + C
V22 —12)+02(12—63)  2V3 2

1 wWo
dg=t40
VRO —12) + (12— 23

We can stop here. What remains is to evaluate the integral above by some analytical method to obtain an
expression for 0(t). The constant Cs can be found if we are given the position initial condition.

3.3.5 Problem 3, different method
EQM is given by

The above can be put in the form

Where 5
£0) = w? (9 _ 9>

Hence, this is an autonomouse differential equation since f(#) does not depend on the independent variable
t explicility.

To solve (1), we first write

wla)]w
-[5((&) )] (&)
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But
d (a7t aey
do do - do do? \ do

Substitute the above into (2) we obtain

()T L
- do dez \ do

_ (@
- do d6?

Ld ((de)\P)__(ar) Tt
2do\ \ do - do d6?

Compare (4) and (3) we see that (3) can be written as

(@)

THerefore, we use this expression for § in (1) and obtain

5 ((2)7)-0

Substitute the expression for f(6) we obtain

But

N[ =
&=

((4)7%) =ut

Integrate we obtain

-2 3
;(3;) =/w§<06—9>d0+01
2

(@) =sra-
) 2 [wi (% —0)do+C,

2“’0 (40:6 ) +C
Hence

dt 1

o~ Wwo (i5-%)+C

Integrate again, we obtain

04 62 %1
/ 8
\/2(4) 74_7 + 4

=02+/ = do
\/"——w302+01

=C. +/ do
S N/ T 12w262 +Cs

=Cs +
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Where C3 = 12C", a new constant. Hence

t=02+2\/§f 1

04—12w2024Cj

second approach

Let F1=0 } Ty = T2

2o — 0 mg) , hence using the new state variables we can rewrite the differential
2 =

., 2
To = —Wy (1‘1 — %
equation as

Integrate both side

] +C 2)

We are told that when 6 = 6, then 6 = 0, hence from the above

02 65
O:—ng{; - 2?1} +C

2| p2 93

Then (2) becomes

: 0> 6 %
6? = —2w?2 [2 - 24} +w? [93 - 0}

or

0* = —wj {02 - 104] +wp [02 - 93]
- 0 12 01%0

0‘_ 2 i94_92 + 2 92_%
— 40|12 “o 1707 79
1 04

— = p4_p2 2 _ 20
wg\/129 9 +90 12

_ wo 4 _ 1902 2 _ pd
_2\/5\/9 1262 + 1262 — 6

Hence integrating the above we obtain
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o(t) = V64 — 1262 + 1203 — 3

o
2v/3
— (Y0 g1 _ 19p2 2 _ pd

_<2\/§\/9 1262 + 1263 00>t+02

3.3.6 Problem 4

Find the equilibriuvm position and plot the trajectories in the neighbothood of the equilibtium
position corresponding to the following equation:

F+0L(*-Nx+x=0

The nonlinear equation is
i+01(z*-1)i+z=0

Let

1= T =T Tl = T2
zy=4 | dp=-01(>-1)d—z [ &2=-01(zf 1)z — 11

(- Care )23

Solve for (il) = <8) for equilibrium. Hence x2 = 0 and therefore z; = 0 as well. Now we obtain the
2

linearized state matrix A at the equilibrium point found. First we note that 83791 =0, 59792 =1, ngl =
52 (—0.12%wy + 0.1z — 71) = —0.2z175 — 1 and 2L = —0.12% 4 0.1, hence

089 09

8%1 8%2 :E1:O,£EQ:0
(cozer Fo1)
—0.2z122 — 1 —O.lx% + 0.1 £120,22=0

(i o)

-A 1
-1 01-A

—0.IA+ X 4+1=0

Hence

A

Find the eigenvalues, we obtain

-

Hence
A1,2 = {0.05 + 0.998 75¢,0.05 — 0.998 753}

This is of the form
A=axbi

With a > 0, hence | unstable, and spiral out. ‘ So. now we can draw the phase portrait near (0,0) as shown
below.
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0,0)

Side QUESTION:
If I wanted to draw the phase plot itself, I am getting this. How to finish this last step? It is not separable?

To obtain phase plane plot, we need to express zs as function of x;. Looking at the original nonlinear
differential equation again and rewrite using the state variables, we obtain

i4+01(z° - 1)z +2=0

d.
%+0.1(w% —1)azy+2,=0
d.’l)g d.’El 2
— 1 -1 =
o, dt +01(zi —1)z2+21 =0
dx
Tﬂij +0.1(£L‘% — 1) To +T1 = 0
d.
ﬂxg + O.la:%mz —01lzo4+ 21 =0
d.’El

d1‘2 2 I
—2=01-0122 -2
di; 0 0.1z7 .
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3.3.7 Problem 5

5 The equatjon of motion of a sim;ﬁ]e pendulum, subjected to external force, IS gl‘-’ﬂ“—f‘};

5-1-0,53 + sind = 0.8

Find the nature of singularity at § = sin™(0.8).

The equation is
0+ 0.50 +sinf = 0.8

Let

=10 =10 1 = T2
To =0 To = 0.8 —0.50 —sin @ Ty = 0.8 — 0.525 —sinz;

() = (05— 057 - guey ) = (22%2)

Solve for (?) = (g) for equilibrium. Hence z, = 0 and therefore z; = sin™! (0.8).
2

Hence

Now we obtain the linearized state matrix A at the equilibrium point found. First we note that ag =
0, 3679; =1, ;—jl = Bac (0.8 —0.5x2 —sinz;) = —cosz; and 3 f = —0.5, hence

89 b9
A= (% %
Oz1 Oz z1=sin=1(0.8),22=0

cosz; —0. 5)

z1=sin—1(0.8),22=0

1
cos (sin™* (0.8)) —0.5)

(e

(-

( cos(0.927295) —3-5)
(06 -o3)

—-A 1
—-0.6 —0.5—2AX

A2 4+0504+06=0

Hence find the eigenvalues, we obtain

-

Hence
A1,2 = {—0.25 + 0.733 143, —0.25 — 0.733 144}

This is of the form
A=axpbi

With a < 0, ,‘ Hence stable, spiral in. ‘

3.3.8 Problem 6

S
é The equanon of Toonion of a simple pendulum subject to viscous damping can be expre

g+ cH+ sin@=0

T the initial conditions are #(0) = 8, and 9({)) = 0}, show that the origin in thefgasi
diagram represents (a) & stable focus for ¢ > 0 and (b) an unstable focus forc < B

The equation is
0+ ch+sinf=0
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With IC 6(0) = 6p,and 6(0) = 0 Let

.’L‘1:9} .’i‘lzé }$1:$2

To =10 L9 = —cf —sinb T9 = —cxy — Sinx

() = (Lo, ™) = (S52))

Now, we are told to consider the initial condition § = 0, but this is the same as &; = 0. But if speed is zero,

Hence

. i 0
then acceleration must also be zero, hence § = 0 or #5 = 0. Therefore we need to solve for (wl) = < ) or

Z2
[ i) _ 0
—cxg—sinzy/)  \O

Therefore zo = 0 and then sinz; =0 or z; = nw forn =0,+1,£2,---.

Now we obtain the linearized state matrix A at the equilibrium point found. First we note that B9 —

oz
dg __ of __ of _
0, 52 =1, 557 = —coszy and Do = G hence

99 99
— | o 0
A=|%7 oF
Oz1 922/ gy —nm pa=0
_ ( 0 1 )
—coszy —¢) .o,

- (- cog (n) —10>

-A 1
—cos(nm) —c—A

Hence find the eigenvalues, we obtain

=0
—A(=c—=A) +cos(nm) =0
A%+ ¢+ cos (nm) = 0

Now, we are asked to evaluate this at the center of the phase portrait, which means at z; =0 and 23 = 0, in
other words, when n = 0 (since when n = 0, then z; = 0). Hence, when n = 0, the characteristic equation
becomes

AN4ed+1=0
Hence
A2 =
’ c_ [ _
2 4

We now consider all the possible values of ¢ and see its effect on the roots of the characteristic equation. This
is done using a table

c value roots form Location of roots type of stability at (0, 0)
c<0and || <2 | aatiB where a >0 In RHS complex plane | Spiral out, UNSTABLE
c<0and |c|] >2 | o+ B where @ > 0 and 8 < @ | In RHS on the real line | Repelling, UNSTABLE
c>0and |c|] <2 | a+if where a <0 In LHS complex plane | Spiral in, STABLE
c>0and |¢| >2 | o+ B where a <0 and 8 < o | In LHS on the real line | Attracting, STABLE

Therefore, we conclude that for ¢ < 0 the system is unstable at equilibrium point (0,0) and for ¢ > 0 the
system is stable at equilibrium point (0,0) .

Notice that we did not use the initial condition on the position at all. i.e. knowing that #(0) = 6, was not
needed to solve this problem.
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3.3.9 Problem 7

7 A single degree of freedom system is subjected to Coulomb friction so that the equation cf
motion s given by :

x+f| |+w%x$0

Construct the phase plane trajectories of the system using the initial conditions x{{}}
EO(f/wZ} and (0} = :

EQM is )
E+ fo twe=0
|2
We need to determine the phase plane trajectories. The term ﬁwill be either +1 or —1 depending on the
sign of &
Hence for £ > 0 we have
i+ f+wiz=0
Ptwiz=—f
And for £ < 0 we have
i—f+wiz=0
Ft+wir=f

Analyze each case separately. | For £ > 0 we have‘

d
—x+w ry=—f

dt
d.’l,’g
E + UJ n 1 = f
d.’l,’z d:L’l 2 _
oy @t Tent= S
dx
dfi»’m + w? nt1=—f
@xz =—f- wixl
dzy

dzozs = (—f — wlz1) dzy

2 2,.2
ﬁ_ _ w:L'l

Integrating both sides, we obtain

Using IC given by z1(0) = 10(0%2) and x2(0) = 0, then the above becomes

2
0= —fxlo(ﬂ)—uw +C

2 2
0= —12;:2 — 50 ,%(Z) +C
C = 10]; +50f—z
wn n
Hence
C=60(£)2

Therefore, the phase portrait is
2
T2 = -2fx — Wizl + 120( / )

Wn

Hence

2
Ty = j:\/120 (ﬁ) — 2fx; — w2a?
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Given f and w, we can plot the phase plane. ‘ For & < 0 we have

d

ai +wiz =f
d
2y = f —wla
dwl

dzazs = (f —wiz1) dzy
Integrating both sides, we obtain
2 2,.2
T2 _ _ YnT1

Using IC given by z1(0) = 10({%) and z2(0) = 0, then the above becomes

2
o= [raio(£)- ALY o
c=-28 50l
Hence
C’=4O(£)2

Therefore, the phase portrait is

2 2,2 2
T3 _ _ WaTi il
5 —(facl 5 )+40(wn)

2
o2 =2fr) —wiax? +80<f)

Hence

2
Ty = :I:\/SO (£> +2fz1 — wiz?

Given f and w, we can plot the phase plane.

3.3.10 Problem 8
The phase plane equation of a single degree of freedem system is given by

dy —cy— (x—01x)
dx y

Investigate the nature of singularity at {x, y) = (0,0) for ¢ > 0.

dy —cy— (z—0.12%)
dz y

From the above phase plane, obtain the differential equation, and then convert back to state space and obtain
the system matrix.

Writing it in state space, where we take y = 2 and x = z;, we obtain

dzy _ —cmy — (z1 —0.123)
dl‘l - T2
dz
d—xij = —czy — (z1 — 0.123)
dxs dx
d—xjd—tl = —czy — (21 — 0.123)
% = —cxy — (z1 — 0.1z3)
&= —cxo — (wl — ().lac:f)

Hence the ODE is
i+ct+ (z—01z) =0



CHAPTER 3. HWS 82

Therefore
1 =2
iy =—ct — (x—0.12%) | &= —cxy — (z1 — 0.123)

()= (o -on) = (22

Hence, the linearized system matrix is, which we evaluate at (0, 0) is

B9 99
— | o ]
A=|37 of
01 Oxz z1=0,22=0

But 8—gl=0 B9 —1 a—f=—1+0.3a:%,g—£=—c, hence

Hence

0 1 )
2
+03z7 —c £120,22=0

A=<_1
a=(5 1)

Hence
-2 1
N
(=) (=c=XN)+1=0
M—cA+1=0
Hence
A1,2
’ c_ ./ _
2 !
We set up the following table
¢ value roots form Location of roots type of stability at (0, 0)
c¢>0and |c|] <2 | axif where a >0 In RHS complex plane | Spiral out, UNSTABLE
c>0and |c| >2 | a+ B where a >0 and 8 < a | In RHS on the real line | Repelling, UNSTABLE
c<0and |c| <2 | axif where a <0 In LHS complex plane | Spiral in, STABLE
c<0and |c|] >2 | %+ B where a < 0 and 8 < @ | In LHS on the real line | Attracting, STABLE

We see that for ¢ > 0, system is UNSTABLE and depending on value of ¢, it is either Spiral out or Repelling
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3.3.11 Key for HW3

T= kinetic energy of time 220 = m (%)
LG'L' %, = maximum displacement on right tide.

V= potential energy n fpring ok displocement

E RN ..Lg‘_x,_ ( %% zero ok %2)-

Since T=V, ’-;—\/:n;ﬁ:_\ - J—__::-‘ xo
: 2

Let %S maximum &'S'ﬂa.‘&men'b p M‘i‘ Aide

= ives ’L"_ 2\ = [m %
T=V 9 ® = k'(x‘\ J-T—‘ %,

!
@) Snce £,< Ky, maximum Jeflechon = X=
(b) Peried of vibratton for @ Apring — mass

In the Ww, T, =

x=0

(mfwm/g&m

x=0 ord nediiwe 45 x=0)t+
(ﬁ'uu.:fuf m ﬁg@'ﬁz-“zf”m
» ™
- 'U,,: T(J; +‘[;;)

netivn B x= 0)

4F
A
x4 o
H A7
....... Fy
v X

J'E
- i 'r,, an

k =% Jc"’”‘ ‘

Ke selnts o
e R )

st
glaled’

83
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e e

TR

2. S

mF
X =x+€8n 0 ; xp=%+¢0cos b
Yo =€cosf ; g =—¢&Bsind
T=2M& +%m(i:+:'r§)

=_;.Mi’+%m[(i+eécosa)’+(-eésina)’]

m.;_(M-l-m)iz-{--;—mt” bz-i-mt’iécosﬂ
‘J’==-;-kx’l +mg¢ (1L —cosf)

Q =F(t) ; Qo =Myt)
Equations of motion:

M+m)%+mébeos 0 —med sind+kx=F()

m("9'+mt’iic050—mlif95in0+mg£’sin9=Mg(t]

(1)

(2)
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Using the approximations

#

éosﬂzl-ﬁ ; sinfrg—
2 . 8

Eqs. (1) and (2) can be expressed as
w s 1 : 2 1 :
(M+m)x+m£9——2-mt’9’é—mf90’ +Fmt’9°9'+kx=.F(t) :

m{“'é+mt’x—-2—m893x méfdz4 L mfﬁ’ﬂx
+mg¢’0—-—mg¢’0“ ==Mg(t)

By neglecting the nonlinear terms, the linearized equations of motion can be wnt. ¢
M + m) X +m€é+kz=F(t)

m&e Y +meE +mgl 0 =Mt)

PS
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3.

”» 3 -
6+wi(e~-t 0) =0

- &)

- This eguation is similar to Ep- (I!-a) with

x=0, o= F(x)= F(9) = e-t o -

Eyp- () can be rewritten as

i%(éz) +20 (8-t 0 ) =0

which upon l“nl'ejra.'l:fcn gives

éz =‘zc‘s’aa feoF('q).Jtt =
e

(Ez)

6o
2 3
2es) [ (a-¢ ")
()
4
2 e 1 FN\% ar2 4 4_gt Lo
’2“‘,0(1’:'1 T )9 5690(90 56, —9 tiz )

= @, (85-0") f1-4% (6s+ o)}

Since the maximum value of @ s &

e (t) = 9, sin P ~

3

we assume

' 2 2
(4

or+e" = o (1t sin )

amd 9"'.-.. As cpf‘s_i;g

Substitution of Eps: (Ec) & (Eg) into (Ey) 9ives

9: (nSzP (%é)z - 69: 9:' cﬂ’.P {'__i.ie: ({_‘_.scnzP)}

o 's:'n"P }
iz (1- % &)

1o @oy
(G2 = o (- he){1-
Defining 2

> 6o

12 (t—-,';_ 62 )

. ¢ 2 1} ao‘t )
Eg- (B9) can be used to express (teking pesitive « )

S‘l'nzp)t

e
él% = &, (I- T ) (s-

*

e

G’o('— T‘i 9: )—4: dt =
Infejra.'l:fon of (Ew) yields
o, (1 % o2)E (2 =

2
a

4
f\]T.- & A B

[t
Po 1= & sin (3

s PRI RS
S0 ¥ i, e Al G2 TR SRCLE ST P N AT ML XA
e s e A sy L et tiay

86

(G 3)
(Ey)

&s)
(&)
(&)
(Ea)

(&s)

(Bi0)

(En)
(En.)

(Eta)




CHAPTER 3. HWS 87

Using the i‘nitial conditions f,=0 at ¢t,=o0, Ej. (E,-,) can be

reduced to 8
+ _ dg
& (1-% o) t = j;m .= Fa.p) (Ew)

where F (o, ‘5) is an incomplete -elliptic integral of the

Fiest pind - Using A= when 0= 6, awd B =0 When os
we get for one- guarter period, J

T i
-, B2 = \ w
* a(-f )t ) (e
Thus the time rerrocl of the Pendulum is SfVEn LJ
4
T= . r
......... & (-5 9:)'{ Flo. £ ) (&)



CHAPTER 3. HWS

88

X 404 (%‘-1)7.‘ + X = °

or  x= = [ort(x*-1)% +x]

Let = x4. ‘:;., = Hp= §(%g,%X2)

° ‘ilz ‘EO"- (x;"-i) X2 4 x‘_] = ;L(xl) xﬂ.)
For 88uifa‘£rium ,
fizo » x=0; H=o P xg=0
{ii} _ [n “rz]{xt}
%) Lea @ dl™
.WLere 3‘;' _ _ 3—;-'\ -,
o= 30" ©7 U1 Fxi(ee) T T
= 3% = (02 X, 2+ 8 = -1,
a‘z‘ ‘5;7‘(0; O) (o 1% )\ (e.0)
= 3;' = e . I.-_ = o+l
Qugg 'nﬁ (0.0) Lot (e 1)1\(0,03
we ;l.na P: Q—..i . &7_ i
AMsde= (oot Jooi—4 ) =complex with positive real parts
Since ?)o , the &33&8!7\ is unstable at the e&ui'c'larbmﬁ po:’iﬂ;—
(x,%) = (0,0)° X
tence the phase- pane ’L'ra.g'ec.{‘:cry in the .
neighbor hoed of the ezu.'h‘brc‘um position N\ X
afpears ol shoun i the Fgure. _ \ )
[Ea 4A] : : .

ea 481

[Es 4C])
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89

5 _ Ezud:.‘o., of motion: x + f —-F' + @, = =o
: x
. P e &~
. re %+ 6y, (n+a) =g for % >0
amd

.;5-1-(.9,3'{:-“—) =0 for = <o
Wllel'e Q= Jywz
n
Mu'.h'r']-'n’ ],’ 2x and -‘ni:egra.i:u‘ng ,(5,_)"'\‘9 (E!) 3‘.3“2
25+ 0) (xed = R gy % >0

o2
24wy (x-a) = Ry fr % <o

(E4)

Er)
(E3)

(&)

(es)
(e.-)

P
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where R; and ‘R;'H ate tnkejrn,h‘on constants which are to be

R computed ok each Awitching of sign of x .
{ We can plot the trajectories of representative point
& whose coordinates are

*=,x , X= x ‘ (57)
Eps- (Es) amd (Eg) Show that the trajectory is made of
semiciveles whose centers ave focated of x= —a (or %)= - a:6dy,)
and x=+o (or = +¢o(.9,,3 as shown in the ﬁ;“owc'na §a‘gur=.

e Y

Ld

SRt

Ry tan be obtained from the
imitial conditions using Ep. (Es)wl:
2_ a2 Trwof  §\2 5F \* . . 9F &
Ry = 0+ Wy, (-5'% E":,") :(a-:) 3 Ry @, ( B)
Netice that the radii of the circles Ry, Rz, decrease accordihg

+o the Y&lﬂc‘hbn .
R’-= R,._| -2y 5 4 =602,

and the system will stop when

. 2 55
Here R;= of , Ry = R~ %‘ = —--; » Rz= Rz-_‘;; = ?5; »
n
2§ _ 3% = 2F _
Rq?R;'-;’-;—-a: ) RQ*R;"— ﬁ’"—.-w—n’

and the motion stops ot this J:oin‘l': (ofter five
half - cycles) since R, < 2a @, = LF 2

n




CHAPTER 3. HWS o1

'e'+ce.+st‘ne=o or @ =—-c@ —sin

let x=0 omd y= 4% =

%24 3 > _4__’_ = —C}—- Sin X . (E‘\

Egu;‘“bl’ium or critical Poin‘!: (where :t—‘::a and %za) of this

system i (x=0, ¥=0), Linearization of Egs- (ED about the
eguilibriam point (origin) leads ta

dx ., 4y
de ~ 9 aE T

R ot R g By, =

The eigenvalues of this system are given by

—-cYy -

RN
-1 -C 0 |
2 2
le- l -A t = o ies A4 Act A +Prty=0
- . ]
ber  dp=-gE £) - (&)

If c=0: g=o5g=13 A,2= £ -1
The oryin will be a center.
-I§ o<c<2: p>0s 2>0° 5\ k.’;-;,- t_om‘o‘ex c.onjuga.fes
The arigfn will be o stable :Foca} J?o-‘vd: (Spt‘ra.l )nou‘n{:).
If c=2: pr05 5703 Mo = negplive and
The origin will be @ stable nodal point-
If ¢ >2: pros g >0; I Az = né.ja.l'l‘ve real , the
igin will be a stable nodal rainf:.

eguel -

ord .
I; -2 < €<O0: d,.;o; g >05 )“ﬂ= comrlex conju;wl-e.v.
The origin will be an unstable ;Fcaal a”""'}"
(&P;‘ral point). I
E&ua’h‘on of motion: @ +056 + sin & =03 €D
Let xz@ ond Y= Jz/‘u:
L % =% %z-'_- = —sin x =05y +08 Pc] @‘)
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.Ji _ =Sin % =05 ¥ + o8 .(53)
de 2
At (K"' Stn—.o-?, —°).- %—y— L and flence F will be an

eﬂukbu.m point. T mveshga.l'e the nature of singularity,
we r:wr»te Egs- (E2) in finearized form as :

ax _ (o)x + () }
4 = -—o0-5 "
?}t_-' (o) —o

(E4)

Thus the en‘genva.l.ue_: of the system are given by

H S s T]\=é o [0l

Al4050 = A +1,A+z

A, =0, da= nega.tfve

Here f: rosi-h‘ve, =9, AT o
and Ag = megative.
Thus the. eguilf&n'um point
~ folls on the border of
) saddle Pofni'.? and stable
nodal points as Ahown in
the adjacent fc‘gure.

8 ‘ dx _ ©)x+ ()% (D)

B %)

= =gk —CY¥ +(0) xa (E,)
Eps (gD omd (Ev) are 3ero at (x=o, #=0) . Hence the origin

(0,0) will be eguth‘ﬁn‘um point (su‘ngula..rifg). The
e.genva.lu.es are given by

IR \:? .

e, A +Xc+‘ = N+ prtp =

te- N,z‘{—‘:t Ver- ¢4 }
2

i
o

;;.:g;éi;f?\'—-.m«.a»z, o

A0

2 k=

3
22

ikt ey T
PR R T 2 2o

w2

2

R TN A
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For ¢>0 and c¢c< 2:

>0, g>0 amd ) ,= complex conjugates.
Hence the origin will be as stable focus (or spivad peint)) .
For c>2:
£>0, ¥>0;5 A ,= negative real.
E?nce the or_l'gc‘n will I:.;e a stable nedal point.

>
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Van der Fol’s eguation x-q(l-x) x4+ x =09, «>O0 (&)

Assume  Lky= x,(E) +a 7, (E) 4 < % (8) (&)
2

W, =1 =69:'_a¢ay'_ 0(169‘ (53)

¥
v

where (.’:'=|= coefficient of = in Ep-. (E0).
Substitution of (Ep) and (E3) into (Ey) gives

% [;o-l"-”"‘o]'l' «* [;l""‘o‘*'"‘o ":-”,"o-i-@z*uj

2 . . ° [ 3 L 2
+d [it-*|+x‘ x°+zx°x° xl-uzzo.—wi&‘-&@ *&]

+ L)+~ =0 €
Setting coefficient of «° in (E,) to 3ere, we obfain
'20 + " %, =0 » ey x, t) = A, ws ot + Ay sh ot (B5) b

Assuming the initlal conditions 5 (o)a A amd x(0) =0, We get
A= A omd Ar=o0. Thus (E‘? reduces to
o () = A cos ot

Ty L ‘-“ h"-_--?."-' . 5.,- ‘I-".,' T" ’ .-'"'-' é-'-;‘_"—,":_f

(&)
Scbkms coef-facm.nl’ of c(" t 3ero, n &. (Ey),

R

u,-'l'(.s ”n = xa-x,x,-fa,lga ;‘

¢ f

= AW sinwt + A0 A wt. costt + @ A cos @ ‘;':

(N“ =(_.Au+q,t\0)"“wt+°’l" msut-;—_ﬁz_“!s‘_niw‘té—— {‘k‘
& kA

The cae.ff.c-ent's of sinwt omd cof wt wmust be 3eve in %((&‘7;) I.I
to owoid secular bteems. This Blves '-j"*
‘ : [+ B
A=t2, w=o )]

Thus the Pa.rhcula.r solution of (Ey) can be er.press'eal as ;
2(t) = A3 sin 30t + Ay cos st - (Es) -
substitution of (Ep)omd (Eg) inte & 9ives ’
Ay = 3'2'. 2: amd Ay =0 (79 .
Thus 'x,(t) = 3’_ _c%,_ Sin 3&9'& . (Eu) 'j“.l.;i

Finally, setting coefficient of x% n (E,,) 4 zero, we get
;:,.4' o xy = ;t,-;:, x,z-r:,';t, X+ @, x5 + 69X (Efz)
substitution of (E,), (Bs) amd (Eg) into (Ey) feads &

%y + & Xy = 5o K cos 30t - (3:. A? cos 3 t) A* cos” 0T

-2(A cos 0t (-AW s.nwt) (— Sin u.st)-q. Wy A cos ot
~ .—( ‘“A+ A+Ans)caswt+(,z -‘-‘TA ) ces 3wt

+ (- a7 A ~G A" ) cos 50t | &) F/l
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To avoid secular terms, the coefficient of cos ot in (Enn) wust

be gero. This gives W, = Tz!.T At (Ew)
with this, and using A=2, BEp. (Ej3) reduces to
Siza- w’xz = —% cos 3t — % cos St (Ei)
A“u“‘"‘j '&z[t) = A; wsast + A¢ ot st (E“)
WB_S:"'J. from EB (E.g))
'
As= 55 T As = fz"a'i : (&)
. - 3 5
o Ak (B) = vl 3wt 4 Pyt tos st (eig)
Thus the Cvm&-zlh polulion , Eps. (E2) amd (Es), become
% E
= t 4+ X gnzot4 3% 3=
x(t)= 2 wt Wt + 2o St oo e 3wi:+%wz cos swt

:
amd ul=l+5§'-
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co & Usmg x eg:id 8 as the co‘;fainataa, the kineﬁé andpaezgal
e expressed as

Z -

where Jp = m (£ +x)* and

.2 1 »2 ’
mX +'§'~J0 9 (1)

I

V=—._;_k(x+6st)2-mg(6’+x)cose ()

where §g = Eig— Equations (1) and (2) give ™

ﬂ:m)‘( . 4 ia:r—- v

a)'[ 3 dt ax mx

o1 ; d |oT

-55—=J09 ; dt[ ]-—J09+J0 -—2m(€+x)x0+309
aT 2 o

~a—;——m(6’+x)6 H -5-6;-—-0

Al

=k (x+8y) ~mgeos b ; =mg (£ +x)sin §

89

The equations of motion can be derived using Lagrange’s equations, Eq. (6.44), a3

mi{'—-m(f-{-x)éz+kx+mg—mgcoa@=0

o +xPi42m(f+x)x0+mg(f+x)sinf=0

Usmg sin §~6, ecosf~1, and neglecting nonlinear ferms involving
< 4, f) x 8, and 1 4, Egs. (3) and (4) can be reduced {linearized) to obtain:

m¥-+kx=0 . (5)

mfitmglf=0 (6)

Fquations (5) and {6) correspond to the natural frequencies:
k
/\ . Wy = '1;; ) . L (7)
- = E g
iz ‘\/:,- ®

(1-&- x/cos 9!
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1.

T= kinetic energy ot time zevo u—...-i m(zl,)"

tet z, = maximum J,I.S'Hmrnen{' on rtg\r\f tide.

V=l potential energy i goring ok 4o >
Xy = ’4_"‘1": ( % 4 zevo ok "z)
Since T=V, xy= M%) = ’nj %,
. 2 #e 2
. - x
Let == maximum ol-'spla.czmu\‘: #o lept side. V= T
- N - ™ e \F . | *
T=V gives » = ‘—-—k—' (%)~ = ’::: %,
@) Snce g, < Ky, Waximum deflection = x;= _‘%-' Xq - .
g Tp=ow E

(b) Peried of wibration for o ApTing - mass

T the W cage, T, = (tfmz for m & P & =% :Fm

x=0 ond pebiine 15 x=0)+

- (Ere for m ‘(Eg@ﬁl:"‘z;mm‘
-

Pl
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2. "

Xy =x+€sinf ; xp=%+¢0cosd
yz =£€cos d ; izw—_t’ésinH

. 2 .2
T==Mx -+ —m (ks +7s)

to] =

2 1
2
21 ) . . g
M +~2«~m (x -+ ¢ 0 cos ) —I—(——f’@smé‘)

I
bo| =

3 =”§“(M+m)ﬁz+-%—mfzéz—{-—mf’fcécosé’
1. 2
=~§~kx +mg ¢ (1 — cos 6)

QI = F(t) i Qo = Mt(t)
Equations of motion:

3 (M—i—m)ii—{—mé"écosﬁ——mfézsin9+kXEF(t) (1)

mt’z5+m6’3ﬁcosﬁmmfitésin9+mgfsin3=Mt(t) (2)
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Using the approximations

6 P}

écsB’N“lm——z— s sin A f—

Egs. (1) and {2) can be expressed as

. s I_ . .2 1 .
(M+m)x+m€8w§-m£’329wm€69 -{—wﬁ—mffi"'l 92+kX=F(t)Z

m32é+mese—-}m€62ii—-mfeéi+-16-mfe3és{

+mg£’9———é—"—mg£’93wMt(t)

By neglecting the nonlinear terms, the linearized equations of motion can be wrﬂ;

M4 m)¥+meéb+kx=F{)

mé f+me¥+megé 8 =Myt
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GH

s+wi(e-¢ @ *y = o
This eguwﬁoon is similar to Ep- (13 3) with

xz6, =W » F@E)s Flo)= o-¢
E& (E;) Can be rewritten aof

E
J( )“'7-”0(9“ )“"0 (z)
wh.ch upon m{“egra.tnon gives

6% =205, f "F(q) -dq =wof (*z‘ 7°) -4
ot (pt - 0 )y = (el -

= 05 ar— (E‘f>
: :’(601 92‘) {i-—‘ﬁ: (9:+ ez)}
we ossume

- &)

i

Since the maximum value of @ 5 &

&)
e (‘t) = ea sin F 2 . (Eg)
Thus 92"63‘7—90*-62' SMP 8. cos™ B
(-4
E
er+ o = (t+ sin P) @ 7)
(+]

(s
wd o= h mpa.g )

Substitution of Ezg (E¢) & (Eg) into (E,O gives

9:- Casg'@ (%)2 = GS: eo MF{:-..QG (|+ sin ‘5)}

i B, sin"(® (Es)
cl 2 2 L 2 3 o R

(;—f) = o, (1 .19,,){1 NEEYD }

pedining z 902- (an)

tz2 (- - 65 ) | N
Eﬁ (Es) Can i’e used “z:o express (t’wkt‘nj Panfwe roo ) :

= G5, ((—‘f‘iﬁ) (1_; £in F‘)

()
(&z)

aHS

re.y

2 \E 5
&9(1—’,15_ 90) dt = J?,_J,;,‘J‘P
In‘tejra_{:uon of (E,z) yields

P = (Ela
65, (1= ,,pe) (t-te) = A\ﬁ”&&'}(&- )
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Uﬁnj the imitial conditions pg =0 at to = 0, EZ' (Ew) coan fe
reduced to ) 0 "
285 ;

v (' B -i!;' % > * = j; 1— at sn'nzfs - F(w’P> (E£‘1~>
where F (e, {3) is an incomplete elliptic {nflejm,[_ of the
First kind . Using ﬂ: -"21 when 8= 06, ard F =0 When o=
we get for One-wau.a.r\':e.r period , s

T 1

— 't = N F 1
* @t~ ‘,Ji 9:)% (e 3 ) (E“’")
Thus the time period of the pendulum iy given 173
4
T = . ™
W (1= 13 e,f)’?': F(O"”i"> (E'€>

V5
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;E,{,.o.j_ (‘1_1“‘1.)';(- - K = o

or  wo= = [0t (xP-1)% +x]
Let == %y . 721 = My = fi(ii:’xﬂ)
o

’;‘-z = - Eo»i (xf‘-—i) oy 4 'xi] = ;z(x,, xi)
For ezuif:‘hr{um ,

fi=o0 > %,=0 i FH=0 > x1=0

. %
{’JC.:L } - %n Qiy ]{ 1 )I
- b x

‘Wi’lE«TE ag '3;“ _
Quy, = : = O a’[g_: e [ o = 1.
H= 3x, |(0:0) 2xg.1 (0,0)
= 3__5’1 = - 'o-2xx+1>l =-1,
Ay, = = [ 8
u am,‘(o,c‘) ( (0,00

i

1 _ L
- L (xy -1 = 0
2%z |(0.0) [ons (xs ﬂ\(o,o)
we find “P-_-. o1, g= 1

Aps Ao = + (oot £ \}o-m—wl— ) = complex with Pos.‘ki-«e real ports
Sinice 1770, the sgs-{:eam s unstable ot the egu;f(l;n‘,wn }.:oz‘h"{"
3
(x,';ﬂ) = (O, 07*’
Hence the phase- plane fraajed:orj in the )
neighborhood of the egm'le‘fan‘um position N
appears Al shown m the ﬁngur%_.

T

[EG 4A] - - . |
[ex 4&] ‘

[E& 4C]]
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Ezu.a;f:(on of metion: x + f «ﬁ;—'— -+ &9: = oo (Ev)
5 | ve X+ (x+a) =o for % >0 Ex)
amd X4 @Y (2~ 2o  dor % <o (E3)
Wwheve wz £/l (&) .
Multiplying by 2% and integrating ,(Ea)&nu‘-v (Eq) yield
2Fr ) ey = R; fov % > O (es)
o (x—a} = R:,:H fr 2 <o (Ec)

Pl



CHAPTER 3. HWS 104

2 .
where Rj and 'R;',H are Integra,ﬁs‘ah constants which are To be

cornptd:ea?. ok eadh Awitching of Sigm of x .

we can r\of: the ‘f:rwjac‘horfet of rerres'ani:w{“ive point
whoese coordinates are

X = O, % ., K= X (e2)
Egs- (Es) omd (Eg) show that the trajectory is made of
semicireles  whose centers arve located at %= —a (or x,:.--'a,t&n)
ond x=+a (or %= +a ) af Show“-zzj{ the fonowing fiqure.

”"— - 'l\
"~ ~
” . ~

R, tan be cbtained from the

initiel conditions using Ep. (Es)ax;
1 2 2 ef F 2 9f N\ = 25 £
Rl-’o“‘*mh(wnz—“a:; =(EP_:) 3 Ry oy, (3)

Notice that the vadii of the circles Ry, Rz,---

to the relation

decrease cJC«C«Or‘c:Qt'ﬁj

R; o Rj.‘l -2 By, 5 jjnl,z,-..

and the system will stop when

Ry = 22y, , ; s
: 24 7§ - tf 3T
= 2 = R—- =L = -5 Ry= Ry~ = = )
here R, —m&i ,  Rem Rim 5 Gy A N~
25 3F - 23
= Py R‘(- wh ad ..E,:;

Ry = R3= 5= = o=

arnd the motion siror.r okt this Jﬁoin‘f (a,f{:er £ive
z ¥

half - cycles) smece R, < zai 09, =
: G

Py
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Exs

6 'g'+cé+5t'n9:o or g =~C6 — sn B
let =8 omd = dx _ 2
7= gL = e

d .
"2‘:7"” b d% = —cy — sino x (€))

ng‘lt'brium or critical point (w‘:era %:o and é—%’-«=03 of this
system {5 (x=0, ¥20), Linearijation of Egs: (ED about the
eﬁ“:t-tl"'i““‘ J’Oi'nf‘ (Orfﬂfn) .‘.ea,ds +

dx _
i =4

or {A'x/&k} _[o 1 (= (£

Ag/,u; -4 -c |1y
The eisehva,lues of this system ove given by

[o t]—)‘[t a]zo
-1 = o
t

z
ve: ‘ - A = o hes A+ Act t zA+PAtEEo

..%%—-:: .—cy,-—'x-

-1 A~ C

i-e }."2 - gi_ " ,(%_)1’_‘ (Es)

If c=o0 ¢ ‘3’:058“"“3 >‘h?-== + =

The origin will be a center.

I§ pLC <2 é, >0 8 - O }». A"; = Cﬂl‘ﬂr’lﬁx c_onJ'uﬁa:L'ES
The G'ri.'sx'n wiltl be o SEa,He j:qc_a/l Jao{n{: (an‘ra.[ }:oa‘nt).
Iy c= 2 f'ro;‘b?O’, A.)z"‘: he.ja-\‘:l've and 3&““1"

The origin will be a stable nodal point.

If ¢ 72 aap-o; g o5 T Az = né_ja,{:t"ve real , the
origin will be a stable nodal Jnoint.

Ip -2 <c<0: <o % 05 )“ﬂzz cornple.x Ccmju;a:h:s.
The origin will be an unstable focad [jpoint
(/Slnira.i point). -
E&ua,{'fon of wotion: 5 4+ 056 +5in 6 =03 (&)
Let x= @ amd q= J:ycu:
é‘”;“" =%, %—E— = w§in X =05 F + 08 Pﬂ @z’")
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i& - _s5in X —-05 Y% +o08 '(Eg>
dx -2
Af (x—_: g{n-“a.g R }-2 0) > % z.g_ wnﬂl ﬂgnw Z/t" Wl.tl, BE [~ %

eEwZL‘.LnCufm Jao(ni:, To investigate the nature of s:‘ngu.la.ri!:f,
we rewrite Egs- (E2) in ,Cl'nea,rt'éacf Form as

(€
dy _ (o)x —o5 F
dt

Thus the eigenvalues of the system are given by

o { l o -—A {
- = o
[a -"G'; (o] 1 o "0’5"')

Atosh = At prrg=o

1]

o or

o A, =0, Ao = ne'ga.fa'v:e

Here = pesitive . ¢ =0, Ar= o
and Ag = negative.

Thus the. eguiffbn'um point
falls on the border of
Sa,c{alle. ‘boin‘bf a_nv‘ S{:a,l:‘e

nedal points as shown in
the a_,al}'a.ce,nf: f.‘sure,.

8 dx @ x+ % G
j—%— = —f.x = CY 4-(0-!)2‘.3 (Ez)

EZS' (EO omd (E—z) are 2ero at (=0, 2= o). Hence the orz‘gs‘n
(0,0) will be eguilf}an'u.m point (s.‘ng,ula,r({:j>.~ The

Ea‘genva.lue,s are given by

4 4 o _ — A 1 N
KA R P | Y
te, AN+dett = A4 prrp =o

. || Z
E-e,) A')z = { ¢ % (¢ “"f }
2
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For ¢»>0¢ and c¢< 2:

Pro, >0 and -'.\"t,'z.:"”h comf»lex canJ'uja,be.S'.
Hence the orfge'n will be a stalble _Facus (qr SP:'ra.i Famt) .
For c=>2:

Pro0, ¥ >0 AI,2= negative real.
Hence the origin will be @ Stable nodal point.

.
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Van dey Tel’s eguation : X-x((1-x)x 4+ = =0, «»0 (&0

Assume x()= X (B) + ¢ 2, () + < =, () (gl>
2

wa .y = ng_a o CJ’ ~ O(z_ &9& (E’n‘)

where @7 = {= coefficient of x in Eg. (E).
Substffubf{m of (E a.vm‘ (E3) into (E;‘) gives
2 . '
['*04“5‘9"0]*' o ["‘-s"xa'f“o Ko =3 %o + @ "‘l] .
FA
+ « ["z""l-{—x! X¢+2"‘oxo Xy -y Xy =W X F @ xz]
? = ()
+d L)+ =0
Setting coefficient of x® in (Ey) to 3ere, we obta.in

'xo+c.9 Ky = 0O 3 -

x, [F) = A, s ot + A, i ot (E5)

PﬁSSummj ‘Hre mitial conditions x ()= A amd = (0 ) =o, We 5e_t
A\-«_-_«A a_m.sl AZ—O. T"E‘\u'a' (§5) T‘EAM.CES to

x, (£) = A cos wt &)
setting coaff.’ta‘en*-’ of i & 3ers, «m Eg. (E4),
:X'! + Cﬂz’ Ky = '.x-c - »,‘:ig x:—— + AT

-
-4

AW sinwt ¢ Ad s St coot 4 @ A cef wt

Al t
( Aw + . ‘f A c&) sim b+ w, A s wt + L2 4 Sm(;:’?)
The cce_ff,ments of sin ot amd et wt must ke 3evo i

JE
to owoid secular terms. This gives 7 (&
. E
A = i T » w’ - ( 8)
Thus the particular solution of (Er) can be expressed as
() = Ay sin 30t 4+ Ay cos 3t (Es)
substitution of (Eg)omd (Eg) inte E7 9ives
3
A3= -5’"?: __....g... DJ“A Al{, =C (EFO>
Thus x,(t) = -§L wgi Sin st } (E“>
Flﬂﬁ—\lj, Se.‘i:‘hng coe,}f‘ggenf 65‘- O( n (Eg) "66 52.'!‘0) w2 ?eft
wy + O X=X % ":—zroxa X+ @, X, + W%y (E2)
Substitution of (E,), (B¢) amd (Eg) mto (Ew) feads to

——-- 4% cos 3wt — (5“{ A? cos smt)}\ cos ot
w2 (A cos 0t (=AW smwt)(

Sin 3(.91:) 4 (3, A cos et

== ("’TEEA -+ g;A + Ac.s,)wmt»&(% Agw% A"_) cos 30t

+(~%’As—-£;,45)cos st (Eia) F/l
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To owoid secular terms , the coefficient of cos ot in (Bi3) wust

. . ! 4
be szro. T"'u‘:; gives C{%z: E-x—' (E“Q,)
with this, and using A=2, B. (E) reduces to
1] i
Xp ¥ O Xy = -2 cos 3wt - o cof St (E)
| Ascuming %, (t) = Ag w835t + A¢ ¢ S0t (&)
1 we A&f'ﬂﬁ‘, from E?. (E;g‘) >
i 5’ '
| Ag = ?._-;i- 6—;‘«5_- s A€= S % : ‘ (El‘l)
|
L SR, ) = 2 cos 3wt 4 > oS swt I
, E : 32 ™ * ocet (Eie)
| Thus the omplete polulion , Eps. (E2) emd (E3), become
i - t 4+ Y cmsot 4+ 3% st + 5% o sust
& x(t)= 2 ws @t + o Sin 39T 4 3ot cot 3 4—9‘“‘91 os
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4.1 Impulse response of second order system which is not

under-damped
Abstract

The impulse response h(t) for second order single degree of freedom system which is under-
damped is well known. In this note, the derivation to the impulse response of critically damped
and over-damped systems are given.

4.1.1 Impulse response for over-damped system

Given the system
B(t) + 26wnd(t) + wiz(t) = 6(t) (1)
Where §(¢) is an impulse. We seek to find z(t), the response of the above system to this impulse.
Assume the system is initially at rest. Due to the action of this impulse, the system will obtain
an initial speed which is found as follows. Let §(t) = F' = FAt where At is the duration of the
impulse and F is the magnitude (in Newtons) of the impulse (hence units of £ is N sec). This
impulse will impart a momentum on the mass being hit which we use to determine the initial
speed

A

F =muy
F
Vo = —
m

Hence, the system will now have initial conditions of z(0) = 0 and &(0) = vo = Z. Now, the
response of (1), when £ > 1 is known and given by

z(t) = e—&unt<Aewn €-1t | pge—wn 52_1t> )
Apply z(0) = 0, we obtain that 0 = A+ B or B = —A. Now
&(t) = —Ewne ™ (Ae‘*’" §-1t 4 pe=wn 52—1t)

+ e‘g“’"t(Awn\/f2 — 1ewnVETLt _ Bw,\/£2 —1le " 52_“)

Apply (0) = % to the above, we obtain

P (Ao /=1 Bun /@1
m

But B = —A, hence % =2Aw,\/€2 —1or A= W

Hence (2) becomes

J?(t) — e—&wnt F ewn\/§2—1t _ F e—wn\/£2—1t
2mwn /€2 — 1 2mwn /€2 — 1

— F e—fwnt (ewn\/§2—1t e wn 52—1t)
2mw, /€2 — 1
When the magnitude of the impulse is unity, i.e. a unit impulse, hence F= 1, then we obtain the
unit impulse response

_ 1 —Ewnt( pwnVE2—1t _ —wn\/E2—1t
h(t)—izm% e (e e )

4.1.2 Impulse response for critically damped system
The response of (1), when & =1 is given by
z(t) = Ae 8t 4 Bte=twnt 3)
Apply z(0) = 0, we obtain that 0 = A Now
@(t) = Be t“nt — £u, Bte~¢wnt

Apply £(0) = % to the above, we obtain

=B

3=

Hence (3) becomes
E
z(t) = —te twnt
)=
When the magnitude of the impulse is unity, i.e. a unit impulse, hence F= 1, then we obtain the
unit impulse response

1
h(t) = —te @t
() me
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4.2 Final Project. Stabilization of an inverted pendulum on
moving cart using feedback control

4.2.1 Introduction

Given the following system

M — u(t)
O
}_.x

Figure 4.1: System to control

Need to find control law u(t) to stabilize the inverted pendulum. First we need to obtain the equations of
motions.

4.2.2 Analysis

Let the Lagrangian coordinates be § and x as shown. Let L be the Lagrangian. Let T be the kinetic energy
of the system and let U be the potential energy. Hence

L=T-U

and

1 1
T= 5Ma'c2 + quﬂ

Where v is the linear velocity of the blob m relative to the inertial system.

V cos(0)

Figure 4.2: Velocity diagram

Hence, since v = 10, we obtain
vt = (& +vg)° + vl
= (& +vcosf)® + (vsinh)?
=(¢+ léCOS@)Q + (l0'sin0)2
= &2 + 1262 cos® 0 + 2i:10 cos 0 + 126% sin? 9
= i? + 126 + 22160 cos 0
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Hence T becomes 1 1

T= §M¢2 + 5m(g'c2 + 126 + 2416 cos 6)
And since the blob is losing potential energy as it move downwards, we obtain U as (assuming zero potential
energy is the ground level)

U = mglcosf

Therefore the Lagrangian is

L=T-U
Lo o, 1 90 104 Y.
= §Mx + Qm(:v + 126% + 2416 cos §) — mgl cos §
To obtain the equation of motions, we need to evaluate % (g—;) — g—é = @Q; for each Lagrangian coordinate
¢; and @; is the generalized force for that coordinate. Hence for 8 we obtain
L 1 .
% = 5m(2l20 + 21 cos 6)
% (?95) = %m(QlZé + 2il cos — 2ilsin () 6)
oL 1

50 = 5m(—2xl0 sin@) + mglsinf

Hence EQM for 6 is
d(ory oL _
dt \ 96 06
%m(2l25 + 2il cos  — 2ilsin (0) ) — (;m(—&tlé sin @) + mglsin 9) =
mlf + mi cos @ — md sin 00 + mzfsin @ — mgsin 6 =

(1)

mlf + mi cosd — mgsinf =

o= & &

Now we need to obtain @ for the coordinate #. Apply a virtual displacement 60 and determine the work done
by u(t)

Figure 4.3: virtual work for 6

Hence the work done by u is making virtual displacement 6 is zero, since u is not in the line of force along
this displacement. Therefore, the EQM for 6 is from Eq (1) above

mlf + mi cos — mgsin@ =0 (2)
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Now we find EQM for coordinate x

oL o1 ) .
P =Mzi+ 5m(2x+2l0c039)
d (oL T .
dt(@m) = M3z + 5m(2:c+2l00059 — 210sin (9) 6)
= Mi +m(& + 1 cos 6 — 16*sin 6)
oL
% =0

Hence EQM for z is

d (0L OL

pr (893) “ar ¢
(M + m) & 4+ milf cos — mih?sinf = Q

Now we need to find @ for x. Apply virtual displacement in the x direction, and find work done by u

OX

Figure 4.4: virtual displacement in the z direction

OW = u(dz)
But Q = %’, hence we see that ) = u, therefore, the EQM becomes
(M +m) %+ mlfcosf —mlf?sinf = u (3)
Conclusion: The two equations of motion are

mlf + mi cos® — mgsinh =0
(M +m) i 4 mlf cos§ — mif?sinf = u

Assuming small angle approximation gives

0+i—gf=0 (4)
(M +m)Z+mlf=u (5)
Now we solve for # and § from Egs (4) and (5). From Eq (5)
. u—mlf
= —-
(M +m)

Substituting the above into Eq (4) gives

. u — mll
10+ ((M—I—m)) — g0 =
(M +m)l6+u—mif—(M+m)gh=0
OM1 — (M +m) gb = —u
—u+ (M +m) g

= i (6)
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Using result for § found in Eq (6) and substituting into (5) gives

u —mlf
(M +m)
u—ml ( —u+(11\\/1/1—li—m)90)
v (M +m)
uM + mu — mMgh — m2gh
- M (M +m)

—gmf(M +m) u

M (M +m) T v
—gmb  u

M M
To summarize what we have so far. We have obtained two linearized equations of motion for § and = and
they are the following

+i—gd=u
(M+m)&+milf=u

Now we convert the equations to state space. Let ©1 = x,22 = &, 23 = 0,24 = 6, hence

Xy = flszzxz z'lzi:xz
. . . . —gmb
m=d | =g | =gy
CL'3=0 .’L'3=0=.'I?4 $3:9:$4
=0 Py g = —wt (Mmoo
.’i?l = X2
b= EE
T3 = T4
. M
By = x3g( A;m) —
Writing the above in the form X = AX + Bu we obtain
I 01 0 0 1 0
T2 0 0 =0 2| ﬁ u
T3 0 0 0 1 z3 0
d M+ -1
i 0 0 am ] \g, =
Ty
z
y=(1 01 0|7
z3
Ty

4.2.2.1 Stability of open loop system

To determine the stability of the above system (now that it is a linear system since we have linearized it),
we first find the equilibrium point. This is found by setting x = 0, and this results in zo = 0,23 = 0,24 = 0,
ie. & =0,0 =0, and § = 0. Notice that the value of z is not important for the equilibrium point. Now we
need to determine if this point is stable or not.

-2 1 0 0
0 - gm0
det 0 0 Y 1 =0
M+m
0o o Mim )
1
Mi

——(Mg)\? — MIM* + gm)?) =0
A (MIN? — g(m+ M)) =0

Hence ) )
= s Yy g YT a7
A {00 Ml\/Mgl(M-l-m) Ml\/Mgl(M—l-m)

Since M, I, m, g are all positive, we see that one root will be in the RHS of the complex plane. Therefore the
open loop system is unstable.

To stabilize it, we need to supply a control law u to force the roots of the new A matrix to be all in the LHS
of the complex plane.

Let
u=Fx (7

= (fl,f27f3,f4) (11,$2,1‘37$4)T
= fiz1 + foxa + faxz + fazs
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Hence Eq (7) becomes

il 01 0 0 0 I
& 00 =g o L s
C'Eg 00 0 1 + 0 (fl f2 f3 f4) 3
N 0 o «Mim g v x4
T 01 0 0 0 0 0 0 T
& o0 =H* o0 " 5 h 5 fa 3 & fa T2
i3 00 0 1 0 0 0 0 3
Ty 0 0 «Mim) g -t —wnfe —wnfs —wnfa T4
T1 0 1 0 0 x1
Zo i i f a5 f3 — 2 gm i fa Z2
I3 0 0 0 1 T3
i) \ofah ~dat HIGCEm s~ \e
Z1
y=(1 01 0 2
T4
Therefore
-2 1 0 0
1 Y Lf _ igm Lf
det Mfl Mf2 MJI3 M M4 =0
0 0 -2 1
L —-L Lam - L — L _
i1 nfe (M +m)— 34 fs iS4
1
a7 901+ X2+ 233 fat g f2 = Mgh® + MIN — gm® — I fr = IX°f) =0
Hence
4, 3(fa=1f) o(fs—Mg—gm—1fi) 9f2 9fi
AT+ U1 + A U1 +)\Ml+Ml—0 (8)

We now need to determine f1, f2, f3 and f;. Assume we require that the closed loop poles be located at
A={-1,-2,-1+1i,—-1—1i}
Hence, the characteristic polynomial is

AN =AM+ A+2)A+1—i)(A+1+1)
=X 4523 +10A% + 101 + 4 (9)

Compare Egs (8,9) we obtain the following

(fa—1f2) _5
M
(fs—Mg—gm-Lf) _,,
M
g f2
=1
M 0
g fi
/1 1
M
Or
fa—1 fo=5Ml
M
f2=1071
g
Ml
fi=4—
g
Hence

fi= 5Ml<1 + 2;)

f3=2Ml<5+ 2;) +g(M +m)

Ml
= 10—
f2 .

Ml
=47
fi P
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Therefore, given M, m, g,1 we can find fi, fo, f3, f4 which will generate force u(t) which will keep the poles
of the closed loop system in the LHS of the complex plane, and keep the inverted pendulum stable. For
example, using M = 1kg,m = 0.1kg,l = 1,9 = 10m/s? gives

2
(i)

‘h=2G+-$>+1MLD=2L4

6

1
fo 010
4
== —04
fi 10 0

4.2.3 Comparing solution with and without stabilizing control law

We will now generate the solution z(t) ,0(¢) for some initial conditions and plot these solutions against time.
In the first case, we assume u(t) is zero. Hence we will observe that the system is unstable, i.e. 6(t) will grow
away from the marginally stable position which is # = 0° and will not return back. Next, we will introduce
u(t) as determined in the previous section, and observe the new solution to see that it remains near or at
the 6 = 0° position.

First, we need to decide on some initial conditions. These must be such that 8(0) close to zero and for z(0)
we can use zero. Hence, let

8(0) = 6o
6(0) = 6y
z(0) =0
#(0) = o

To determine y, which is the solution of the system, we first must solve equation (7) and (8) for the above
IC.

The solution to (7) is given by solution to
x =Ax (10)

Which is

Where

And

x(0) =

Taking Laplace transform of (10) results in
sX(s) —x(0) = AX(s)
X(s) = (sI — A)""x(0)

Hence
x(t) = £} [(31 - A)-l} x(0)

Therefore, the solution to

Cbl 01 0 0 T
¢2 — 0 0 % 0 )
T3 0 0 0 1 I3
. M+

Ty 0 0 % 0/ \z4

Is
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s 0 0 O 0 1 0 0 0
0 s 00 00 =gm o o
= -1 _ M
x(t) =L 00 s 0 00 0 1 0
(M+m) )
[\ 00 s/ \oo 2m g 6o
[ /s -1 0 0\ '] /0
_ 1 0 s ﬁgm 0 To
o 0 0 s -1 0o
L 0 0 —ﬁ%(M+m) S 00
r /1 1
s 82 glMgs—Mn;s3+gms glMgsz—Mnlls‘l-}—gms2 0
0o 1 gl m gl o z
=1 s —Mlsz—i-l\/s{g-l—gm Mgs—Mlsf-l—gms 0
P /i G i IRV
L 0 0 T T“Mis2+Mg+gm —Mi —Mlis2+Mg+gm 00

1t glm( L COSht”}L(Mnggm)) glm( t___ _sinhtywn(Motom) )

Mg+gm Mg+gm Matgm  (Mg+gm) /5 (Mg+gm)

1 sinh ty/ 557 (Mg+gm) glm( 1 _ cosht,/lvl”(Mg-i-gm)) 0

01 —=gm
_ M \/ﬁ (Mg+gm) Mg+gm Mg+gm o

. 6o
inht,/ -1 (Mg+gm) .

0 0 coshty /- (Mg+ gm i M
w1 (Mg + gm) \/ﬁ(Mg—i-gm) )

0 0 - (sinhtq/i Mg+ m)i Mg+gm cosht\/ L (Mg + gm
M 1 (Mg +gm) /3 (Mgtgm) a1 (Mg + gm)
cosh < (M m . sinh < (M m
t.’i,‘o glm00< 1 ty/ 37 (Mg+g )) Oogl ( gig _ t\/ 37 (Mg+gm) )

Mgtgm Mg+gm (Mg+gm) /54 (Mg-+gm)

. ; hty/ 5 (Mg+ inht,/ b (Mg+
w0+009lm< 1 cos (Mg gm)) —ﬁgmaosm 31 (Mg+gm)

Mg+gm ~— Mg+gm \/M%(Mg-i-gm)

. sinht,/ % (M m
0o cosht,/ - (Mg + gm) + 6o tm

\/ 21 (Mg+gm)
6o coshty /-1t (Mg + gm) + -0, (sinht, /-t (Mg + gm) | —24gtam
0 Ml(gg)MlO( Ml(gg))\/m
Therefore, the solution to x3(t) which is 6(¢) is given by

1 . sinh¢\/ 5 (Mg + gm)
0(t) = 6y cosh ty/ i (Mg + gm)+ 6

= (Mg + gm)

Let 6o = 75, 6 = 1rad/sec, we plot the above solution for ¢ = 0 up to 10 seconds

nE=m=0.1; M=1;1=1; g=10; 0 =Pi /10; eDot0 = 1;

Sinh [r: (M grgm) ]

(Mg +gm) Bl
o[t ] := 90Cosh[t it et ] +eDot0
M1
(Mgrgm)
Ml

Plot[e[t], {t, 0, 1}, AxesLabel = {t, "&(t)"}]

o)

4

out[3a)= /
4t e

0z 0.4 0.6 0.s 1.0

Figure 4.5: unstable 6

We plot the solution to (8), which is the state space equation with the stabilizing control law derived
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above,which is the following

i1 0 1 0 0 T
wa| _ | mh  wk i f3 = argm afs | |z
d:3 0 0 0 1 I3
T4 —wnft —anfr i Am)—gnfs —gpfi) \aa

Where
2l
fa=5MI (1 + g)

f3=2Ml(5+ 2gl> +g(M + m)

Ml

=10—
fa P
Ml
fi=4—
g

Where the above values determined to cause the closed loop poles to be located at

{-1,-2,-1+1i,-1—4}

Hence
x(t) = L71[(sI — A)—l] x(0)
s 00 0 0 1 0 0 /0
_r-1[ |0 s 0 0] wf1 5 fa > f3— 39m 2 fa Zo
0 0 s O 0 0 0 1 0o
0 00 s —wnft —nfe M +m)—g5fs —gnfa Bo
s 1 0 0o \ /o0
-t —Lfi s— ik 79m — 25 f3 — a7 Zo
0 0 s ~1 9
a1 f1 wnfe  wafs— g i(M4m) s+ 55/ )

To make the computation easier, we now substitute numerical values for all the above parameters, which are
M = 1kg,m = 0.1kg,l = 1,9 = 10m/s2, and we obtain

s -1 0 0\ /0
1| f os—fe 1—f3 —fa To
x(t) =L 0 0 s -1 fo
f fa f3—10(1.1) s+ f4 6o
And
2
fa= 5(1 + 10) =6
2
fs= 2(5 + 10) +10(1.1) = 21.4
1
—10— =1
f2 010
4
fr=15=04
Hence
s -1 0 0\ /0
04 s—1 1-214 -6 @
_ p-1 0
x(t) = £ 0 0 P -1 b0
04 1 21.4-10(1.1) s+6 fo
s -1 0 0\ /0
_ 1] 04 s ~20.4 -6 o
- 0 0 s 1 fo
04 1 21.4-10(1.1) s+6 6o

Using 6y = 7, 0y = 1rad/sec, &9 = 1m/sec, and solving for 8(t) gives

s -1 0 0 0
—04 s—1  —204 6 1

t)=L"1
x(t) 0 0 s -1 x
04 1 214-10(1.1) s+6 1
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Using CAS system to matrix inverse the above and obtain the inverse Laplace transform, and pick the 6(t)
solution and plot it, we observe that now the system becomes stable as expected.

out[101]=

—0.2

n9s;= A= {{s, -1, 0, 0}, {-.4,s-1,1-21.4, -6}, {0, 0, s, -1},

{0.4, 1, 21.4-10 (1.1), s+6}}
inv = Inverse[A]

Chop [Simplify [InverseLaplaceTransform[%, s, £]1]1];
MatrixForm[sel =%.{0, 1, Pi /10, 1}];
FullSimplify([sel[[3]11];

ExpToTrig[%]

Plot[%, {t, 0, 10}, AxesLabel

out[100j= —(2.14823 — 1.171245) sin((1. + 1. 7)) + (1.17124 + 2.14823 5) cos((1. + 1. 7)¢) —

ozt |

= {t, "e(t)"}]
g -1 0 0
-04 s-1 -204 -0
out[95]= 0 0 s 1
04 1 104 s+6
3455241045410, 24654104 20,4 5+60. fi5+20.4
s4+553+10.52+10.s+4. s4+553+10.52+10.s+4. s4+553+10.52+10.s+4. s4+553+10.52+10.s+4.
045240 5-4. sTe6sie104s 204524605 fis2+204 s
Out[ge)= s4+553+10.52+10.s+4. s4+553+10.52+10.s+4. s4+5353+120.52+10.s+4. s4+553+210.52+10.s+4.
0.-04z —s5—0.4 57455404540, s“—5-0.4
s4+553+10.52+10.s+4. s4+553+10.52+10.s+4. s4+553+10.52+10.s+4. 4 3 z
0. 5-0.4 52 —s2_04s
4 3 ]

sT+557+10 54410, s+4.
~10.452-10.5-4.
sT557+10 54410, 5+4. 4 3 z

53—52—0.45
sT4557+10 54410, 5+4. s4+553+10.52+10.s+4. s4+553+10.52+10.s+4.

(1.17124 — 2.14823 7) simh((1. + 1. 7)) + (1.17124 — 2.14823 7) cosh((1. + 1. 7)¢) -

3.5823 smh(1. t) + 5.61062 sinh(2. ) + 3.5823 cosh(1.t) — 5.61062 cosh(2.1)
a(t)

—0.4f

Figure 4.6: Using CAS system to find inverse Laplace

4.2.4 Conclusion

We observe from the above plots and the plots shown in the computation section that with the control law
derived to force the poles of the closed loop to be stable, the inverted pendulum has been stabilized.

The final angle 8 that the inverted pendulum makes with the vertical does go to zero.

From the plot of the position z(t), we see that the cart moves to the right and away from the z = 0 position,

then it return back to z = 0 position, while in the same time, the pendulum swings back and forth about

the 6 = 0 position before it finally settles down at the stable position.

This shows the using pole placement resulted in an effective control law which stabilized the system. Small

angle approximation was used and the initial angle used was also assumed to be small.
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4.3 Eigen modal analysis

in[271)= mvat = {{m 0}, {0, m}}
m 0
outj271]= (O m)
ne72)p= kmat = {{2k, -k}, {-k, 2k}}

2k —k)

out[272]= (—k 2K

in[273;= MatrixForm[sys = nvat. {-Alw 2, -A2w"2} + kmat . {Al, A2}]

out[273}//MatrixForm=

( 2A1k - Almw? — A2k )
—-Alk +2A2k - A2mw?

In[274)= syseq =sys[[1]] =0
ouz74)= 2Alk = Almw? - A2k =0

ni27s)= eq = CoefficientArrays [sys, {Al, A2}] // Nornmal ;

eq =eq[[2]]
2k — mw? -k
out[276]= ( X 2k—mwz)

inj277= Det [eq]
ouzr7- 3k% —4kmw? + mPwt

inz7s= sol = Sol ve[% =0, w]

VK. VK, VEVE, . VEVK
out[278)= {{W—>——}y {Wq _} {W_>_ , {w—» }}

Vm vm vm Ne
inz79)= sol = {sol [[1]], sol [[311}

vk V3 vk
out[279]= {{w—> ——}, {w—> _ }}

vm vm
in2go)= updat edSys = syseq /. sol [[1]]
outzs0= Alk—A2k=0
injzs1= First [Sol ve [updat edSys, Al]]
ouzs1)= {Al—- A2}
npes2p= rl=A2/7 (AL /. %)
out282= 1
in2s3)= updat edSys = syseq /. sol [[2]]
outzs3= —Alk— A2k =0
injzs4= First [Sol ve [updat edSys, Al]]

ouzs4= {Al- -A2}

Printed by Mathematica for Students
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2| eigen_modal_analysis.nb

Inzesl= r2 =A2/ (Al /. %)

out[2ss5]= —1

inf2s6:= X1 = A11 Cos[(w /. sol [[1]1])t +61] + Al2 Cos[(w /. sol [[2]])t +62]

Vit V3 vkt
out286)= A1l co —-01|+ Al2cog ——— - 62
Vi Vm

In[287:= X2 = A21 Cos[(w /. sol [[1]1])t +61] + A22 Cos[(w /. sol [[2]])t +62]

m m

vk t V3 Vkt
out[287)= A21co§ —— — 01|+ A22co§ ——— - 62
n[28g]:= X2 =x2 /. {A21 - r1All, A22 »r2 Al2}

vk t V3 Vkt
outj2sg]= Allcod —— — 01| - Al2co ——— - 62

m m
in[289):= 1 cx1 = {1, 0}
icx2 = {1, 0}

out[289= {1, O}

outze0= {1, O}

in201):= €01 =icx1[[1]] ==x1 /.t -0

out291]= 1= Allcos(61) + Al2cos(62)

n(292):= €02 =icx1[[2]] ==D[x1, t] /.t -0

ALLVK sin@) V3 A12Vk sin@©2)
vm . m

n[293= €93 =icx2[[1]] ==x2 /. t -0

out292]= 0=

out293]= 1= A11lcos(d1) — Al12cos(62)
In(294]:= €04 =icx2[[2]] =D[x2, t]1 /. t -0

AL1Vk sin@) V3 A12vVk sin@2
vm vm

in[zo0;= MatrixForm[{eql, eq2, eq3, egd4} /. {k>1, m-1}]

out[294]= 0=

Out[300]//MatrixForm=
1=A1llcos(#1) + Al2cos62)

0=Al1sn@ + V3 Al2sin®62)
1= A1l cos(91) — A12 cos(62)

0=Allsin@ - V3 Al2sin®62)

Printed by Mathematica for Students
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eigen_modal_analysis.nb |3

n3o1):= Sol ve[{eql, eqg2, eq3, eqd} /. {k>1, m-> 1}, {All, Al2, el, 62}]

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution
information. >

Solve::svars : Equations may not give solutions for all "solve" variables. >

ou301)= {{All- -1, A12-0, 01— —nx}, {All > -1, A12->0, 01— x}, {All > 1, A12 >0, 1 - 0}}

Printed by Mathematica for Students
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5.1 possible error in key

possible error in key solution:

r
;L

Xp=x+fsinb ; xp=%+&Fcoad #
ye=fcos 0 ; jpm—¢0sind
1

.1 1 " .
T-EMx +¥m{x, +y:)

-EMx +§-m[{x+tﬂmﬁ)’+[—£ﬁsinﬂ')’]
1 .2 1 H
_E{M+m]x —!—;mf’ﬁ' +m(ié:u9

1
V-ri-kx’ +mg ¢ (1—ecos f)

Qe =F(t) ; Qp =M(t)
Equations of motion:
M+ mE+mefeos§—med sind+kxmF(y)

; m& G 4meEcosf—méxfsin b+ mgesin 8 =M,(t)

—

1 1 . .
T=3M+m) i+ 5mL2«92 +mLif cos

V= %kxz + mgl(1 — cosf)

Now
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L=T-V
1 CENE STy y, L, o
=§(M-|—m)x +§mL 6% + mLi6 cosf — Ekm + mgl(1 — cosf)

= %(M +m) &% + %mLQH'2 +mLif cosf — %ka — mgl(1 — cos9)

EQM for 6 show is WRONG. Proof:

I )
8—. =mL*0 + mLicos6
00

iB_L = mL%0 + mL3 cosd — mLi0sin @

dt o6
and

L .
g—e = —mLi0sin§ — mgl(sin 6)

Hence, EQM is

doL 0L
dog a0
mL*) + mLi cos § — mLifsin 6 — (—mLié sinf — mgl(sin9)) = M,
mL*0 +mLi cos § — mLisinf + mLz6sin @ + mgl(sin ) = M,
mL*0 + mLi cos § + mgl(sin 0) = M,

Which is NOT the same as shown in the key solution
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5.2 note on solving wave equation
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5.3 note on eigenvalue modal analysis
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