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I took this course in Spring 2009 at CSUF. Not part of a degree program

1.1 course description
course description from catalog:

Figure 1.1: class info

1.2 Textbook

Figure 1.2: Text book



Chapter 2
sheetsheet

∫ b

a

ecτ sin (t− τ) dτ =
c[ecτ sin (t− τ)]ba + [ecτ cos (t− τ)]ba

(1 + c2)

∫ b

a

ecτ cos (t− τ) dτ =
c[ecτ cos (t− τ)]ba − [ecτ sin (t− τ)]ba

1 + c2∫
cos at = sin at

a∫
sin at = − cos at

a

F(t) Guess
kebt Aebt

ktn Ant
n + · · ·+A0

cosωt or sinω c1 cosωt+ c2 sinωt
keat cosωt eat(c1 cosωt+ c2 sinωt)
x′′ + x′ + x = f(t)

[
s2X − sx(0)− x′(0)

]
L(t) =

∫∞
0 x(t) e−stdt +[sX − x(0)] +X = F

roots
∫
udv = uv −

∫
vdu x(t)

real and distinct Aeλ1t +Beλ2t

double real Aeλt +Bteλt

complex α± jβ eαt(A cosβt+B sin βt)
x(t) = A cosωnt+B sinωnt x(t) = C sin (ωnt+ θ)
A = u(0)B = v(0)

ωn
, θ = arctan

(
A
B

)
C =

√
A2 +B2 P = [v1v2](

∂g
∂x1

∂g
∂x2

∂f
∂x1

∂f
∂x2

)
modal: x = M− 1

2 q

Find eigenvalus of
k̃ = M− 1

2 kM− 1
2

r′′ = Λr, q = P r,

PT = P−1(orthon.)
r(0) = PTM

1
2x(0)

x(t) = M− 1
2P r(t)

ω2
n = k

m

r = ω
ωn

ζ = c
ccr

ccr = 2
√
km = 2ωnm

ωd = ωn

√
1− ζ2 ζ < 1

5
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mx′′(t) + kx(t) = 0 → x(t) = e−ζωnt(A cosωdt+B sinωdt) or x(t) = Ce−ζωnt sin (ωdt− θ)
A = u(0) , B = v(0)+x(0)ζωn

ωd
, C =

√
A2 +B2, θ = tan−1 (B

A

)
L = T − U , d

dt
∂L
∂q′i

− ∂L
∂qi

= Qi,
Rayleigh d

dt
∂L
∂q′ −

∂L
∂q + ∂R

∂q′ = 0 where R = 1
2c(q

′)2 δW = Qiδqi

mx′′(t) + kx(t) = F0 sinωt → x(t) = A cosωnt+B sinωnt+ F0
k

1
1−r2 sinωt,A = x(0) , B = v(0)

ωn
− r

1−r2

mx′′(t) + cx′(t) + kx(t) = F0 sinωt → x(t) = e−ζωnt(A cosωdt+B sinωdt) + F0
k

1√
(1−r2)2+(2ζr)2

sin (ωt− θ)

θ = arctan
(

2ζr
1−r2

)
, λ1,2 = −b

2a ±
√
b2−4ac
2a where ax2 + bx+ c = 0,

sin 2A 2 sinA cosA
cos 2A 2 cos2 A− 1
sinA sinB 1

2 (cos (A−B)− cos (A+B))
cosA cosB 1

2 (cos (A−B) + cos (A+B))
sinA cosB 1

2 (sin (A−B) + sin (A+B))
h = vit+ 1

2gt
2 h = vi+vf

2 t

v2f = v2i + 2gh vf = vi + gt

speed is
√
2gh hu(t) = F̂

mωn
sinωnt

F̂ = F∆t = mv

phase roots λ1 and λ2 > 0 Unstable, repelling
phase roots λ1 and λ2 < 0 stable, attracting
both real, one >0 and one <0 unstable saddle point
equal roots and >0 unstable, degenrate
equal roots and <0 stable, degenrate
complex, real part>0 unstabe, spiral out
complex, real part<0 stable, spiral in
pure complex conjugrates marginaly stable, cirlce

time betwenx2
2
2 − g

l cosx1 = c
dx1
dt = ±

√
c1 + 2g

l cosx1

t = t0 +
∫ x1(t)
x1(t0)

dx1√
c1+ 2g

l cos x1

convert: x′′ + kx = 0
dx2
dt + kx1 = 0, dx2

dx1
dx1
dt = −kx1

dx2
dx1

x2 = −kx1
x2
2
2 = −k

x2
1
2 + C

hd(t) = 1
mωd

e−ζωnt sinωdt

sin (a± b) sin a cos b± cos a sin b
cos (a± b) cos a cos b∓ sin a sin b
sin2 a 1

2 (1− cos 2a)

cos2 a = 1
2 (1 + cos 2a) sin(A± 90) = cosA

cos
(
a± 900

)
= ∓ sin a sin(A± 180) = ∓ sinA

cos
(
a± 900

)
= cos a cos (A± 180) = − cosA

Figure 2.1: laws of cosine

c2 = a2 + b2 − 2ab cos (λ)
lim

t−>0+
f(t) = lim

s−>∞
sF (s)

lim
s−>0

sF (s) = lim
t−>∞

f(t)
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Mẍ+ kx = 0, assume xi = Ai cos (ωt+ φi) ,Plug in, rewrite as [sys] [A] = 0, find eigens of sys,each ωi,find r1 =
(

A
(1)
2

A
(1)
1

)
, r2 =

(
A

(2)
2

A
(2)
1

)
x1 = A

(1)
1 cos (ω1t+ φ1) +A

(2)
1 cos (ω2t+ φ2) , x2 = A

(1)
2 cos (ω1t+ φ1) +A

(2)
2 cos (ω2t+ φ2), use A

(1)
2 = r1A

(1)
1 , A

(2)
2 = r2A

(2)
1

x1 = A
(1)
1 cos (ω1t+ φ1) +A

(2)
1 cos (ω2t+ φ2) , x2 = r1A

(1)
1 cos (ω1t+ φ1) + r2A

(2)
1 cos (ω2t+ φ2)

g(t) = a0
2 +

∑∞
n=1 an cosn(2πf) t+ bn sinn(2πf) t

a0 = 1
T/2

∫ T

0 f(t) bn = 1
T/2

∫ T

0 f(t) sinn(2πf) tdt
an = 1

T/2
∫ T

0 f(t) cosn(2πf) tdt T = period of f(t)

hover(t) = 1
2mωn

√
ξ2−1

e−ξωnt
(
eωn

√
ξ2−1t − e−ωn

√
ξ2−1t

)
hcritical(t) = 1

m te−ξωnt

f(t) =impulse= F∆t = [mv(0−)−mv(0+)] δ(t)

solid disk, around center I = mr2

2

thin loop, around center I = mr3

solid sphere I = 2
5mr2

rod, axis at center of rod I = ML2

12

rod, axis at end of rod I = ML2

3

series: 1
k = 1

k1
+ 1

k2
par k = k1 + k2

b∫
a

τ sinω(t− τ) dτ = − sin(ω(t−a))−aω cos(ω(t−a))+sin(ω(t−b))+bω cos(ω(t−b))
ω
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2 equations of motions for unbalanced: (M −m) ẍ+cẋ+kx = Fr and m(ẍ+ ẍr) = −Fr, where xr = e sinωt,
eq for M is

Mẍ+ cẋ+ kx = meω2 sinωt, guess Xp = X sin (ωt− θ), we obtain X = Me
m

r2√
(1−r2)2+(2ξr)2

, θ = tan−1 2ξr
1−r2

perturbation: x′′ + ω2
0x+ αx3 = 0 → x = x0 + αx1 + α2x2 + · · · , ω2 = ω2

0 + αω2
1(A) + αω2

2(A) + · · · ,hence
ω2
0 = ω2 − αω2

1(A). Sub in ODE, generate 2 ODE’s and solve for x0 and use result to find x1.watch for IC
and resonanse. For system ID, set up |G(jω)| = 1√

(cω)2+(k−mω2)2
and from the spectrum, find m, c, k
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3.1.1 Description of HW
1. Solve 2nd order ODE

2. Calculate maximum value of the peak response (magnification factor) for a system with some damping
ratio given (Quadrature peak picking method)

3. Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation

4. Discuss the stability of 2nd order ODE

5. Find range of values for PD controller in feedback for stability

6. Compute a feedback law with full state feedback

7. Find the equilibrium points of the nonlinear pendulum equation

3.1.2 Problem 1.4
Solve ẍ− ẋ+ x = 0 with x0 = 1 and v0 = 0 for x(t) and sketch the solution

Answer
x = xh + xp

Since there is no forcing function, xp do not exist, hence x = xh. To determine xh we first find the characteristic
equation and find its root. The characteristic equation is λ2 − λ+ 1 = 0 which has solutions

λ1 = 1
2 + j

√
3
2

λ2 = 1
2 − j

√
3
2

This is of the form λ = α± βj (complex conjugates) which has the solution

x(t) = eαt(A cosβt+B sin βt)

Hence
x(t) = e

1
2 t
(
A cos

√
3
2 t+B sin

√
3
2 t
)

To find A and B we use the initial conditions. At t = 0, x(0) = 1, hence

A = 1

Now

ẋ(t) = 1
2e

1
2 t

(
A cos

√
3
2 t+B sin

√
3
2 t

)
+ e

1
2 t

(
−A

√
3
2 sin

√
3
2 t+B

√
3
2 cos

√
3
2 t

)
At t = 0, v0 = 0, hence the above becomes

0 = 1
2A+B

√
3
2

But A = 1, hence
B = − 1√

3

Then the solution is
x(t) = e

1
2 t
(
cos

√
3
2 t− 1√

3 sin
√
3
2 t
)

The solution will blow up in oscillatory fashion due to the exponential term at the front. This is a plot for
up to t = 10
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3.1.3 Problem 1.9
Calculate the maximum value of the peak response (magnification factor) for the system in figure 1.18 with
ζ = 1√

2

Solution

In this figure, the y-axis is the magnitude of the frequency response of the second order system. Hence we
must first calculate the frequency response of the system

mẍ+ cẋ+ kx = u(t)

or
ẍ+ 2ξωnẋ+ ω2

nx = u(t)
m
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Take Laplace transform

s2X(s) + 2ξωnsX(s) + ω2
nX(s) = 1

m
U(s)

X(s)
(
s2 + 2ξωns+ ω2

n

)
= 1

m
U(s)

Hence the transfer function is
Z(s) = X(s)

U (s) = 1
m

1
s2 + 2ξωns+ ω2

n

Let s = jω, the above becomes the frequency response

Z(jω) = 1
m

(
1

−ω2 + 2jξωnω + ω2
n

)
= 1

mω2
n

(
1− ω2

ω2
n
+ 2jξ ω

ωn

)
But ω2

n = k
m , hence

Z(jω) = 1/k
1− ω2

ω2
n
+ 2jξ ω

ωn

Introduce G(jω) ≡ kZ(jω) and let r = ω
ωn

G(jω) = 1
1−r2+2jξr

Now we can determine the magnitude of the frequency response

|G(jω)| =
√
G (jω)G∗ (jω)

=
[(

1
1− r2 + 2jξr

)(
1

1− r2 − 2jξr

)] 1
2

= 1√
(1− r2)2 + (2ξr)2

The maximum of |G(jω)| occurs when d|G(jω)|
dω = 0 But

d|G(jω)|
dω

= −1
2
2
(
1− r2

)
(−2r) + 4ξ2(2r)[

(1− r2)2 + (2ξr)2
] 3

2

Hence for the above to be zero, set the numerator to zero, we obtain

2
(
1− r2

)
(−2r) + 4ξ2(2r) = 0

−
(
1− r2

)
r + 2ξ2r = 0

−1 + r2 + 2ξ2 = 0

Hence the maximum of |G(jω)| occurs at

rmax = ω
ωn

=
√

1− 2ξ2

The above is valid only when 1− 2ξ2 > 0 which means ξ < 1√
2 .

Now substitute rmax value into |G(jω)| we obtain

|G(jω)|max =

 1√
(1− r2)2 + (2ξr)2


r=rmax

= 1√
(1− (1− 2ξ2))2 +

(
2ξ
√

1− 2ξ2
)2

= 1√
4ξ4 + 4ξ2 (1− 2ξ2)

= 1√
4ξ4 + 4ξ2 − 8ξ4

= 1√
4ξ2 − 4ξ4

= 1
2ξ

√
1−ξ2
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We are given ξ = 1√
2 , hence from the above

|G(jω)|max =
√
2

2
√
1− 1

2

=
√
2

2
√

1
2

=
√
2√
2

Hence
|G(jω)|max = 1

But G(jω) = kZ(jω), hence

|Z(jω)|max=
1
k

Note that |G(jω)|max is called the quality factor. Hence for different values of ξ there will be a different
quality factor value.

3.1.4 Problem 1.12
Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation with ξ = 1.1 and
ω2
n = 4. Plot the magnitude of the steady state response versus the driving frequency. For what values of ωn

is the response maximum?

Answer Since the excitation is harmonic, assume it has the form F sinωt where ω is the deriving frequency.
Then the equation of motion for the SDOF system is

mẍ+ cẋ+ kx = F cosωt

Dividing by m and using ω2
n =

√
k
m and ξ = c

ccr
= c

2
√
km

the above becomes

ẍ+ 2ξωnẋ+ ω2
nx = f0 cosωt (1)

Where f0 = F
m

Since this is an overdamped system (ξ > 1), then the transient solution is

xh(t) = e−ξωnt
(
Ae−ωnt

√
ξ2−1 +Beωnt

√
ξ2−1

)
But we need only consider the particular solution since we are asked to plot the steady state solution. Assume

xp(t) = c1 cosωt+ c2 sinωt

Then

ẋp(t) = −ωc1 sinωt+ c2ω cosωt
ẍp(t) = −ω2c1 cosωt− c2ω

2 sinωt

Substitute xp(t) , ẋp(t) , ẍp(t) in (1) we obtain(
−ω2c1 cosωt− c2ω

2 sinωt
)
+ 2ξωn(−ωc1 sinωt+ c2ω cosωt) + ω2

n(c1 cosωt+ c2 sinωt) = f0 cosωt(
−c2ω

2 − 2ξωnωc1 + c2ω
2
n

)
sinωt+

(
−ω2c1 + 2ξωnc2ω + ω2

nc1
)
cosωt = f0 cosωt

Hence by comparing coefficients in the LHS and RHS we obtain 2 equations to solve for c1 and c2

−c2ω
2 − 2ξωnωc1 + c2ω

2
n = 0

−ω2c1 + 2ξωnc2ω + ω2
nc1 = f0

or

c1(−2ξωnω) + c2
(
ω2
n − ω2) = 0 (2)

c1
(
ω2
n − ω2)+ c2(2ξωnω) = f0 (3)

From (2) we obtain c1 = c2
(
ω2

n−ω2)
2ξωnω

, and substitute this into (3)(
c2
(
ω2
n − ω2)

2ξωnω

)(
ω2
n − ω2)+ c2(2ξωnω) = f0

c2

[(
ω2
n − ω2)2
2ξωnω

+ 2ξωnω

]
= f0

c2
[(
ω2
n − ω2)2 + 4ξ2ω2

nω
2
]
= 2ξωnωf0
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Hence
c2 = 2ξωnωf0

(ω2
n−ω2)2+4ξ2ω2

nω
2

Substitute the above into (2) we solve for c1

c1(−2ξωnω) +
(

2ξωnωf0

(ω2
n − ω2)2 + 4ξ2ω2

nω
2

)(
ω2
n − ω2) = 0

or
c1 = f0

(
ω2

n−ω2)
(ω2

n−ω2)2+4ξ2ω2
nω

2

Hence, since
xp(t) = c1 cosωt+ c2 sinωt

Then
xp(t) =

f0
(
ω2

n−ω2)
(ω2

n−ω2)2+4ξ2ω2
nω

2 cosωt+ 2ξωnωf0
(ω2

n−ω2)2+4ξ2ω2
nω

2 sinωt

We can convert the above to the form xp(t) = c cos (ωt− θ) by using the relation

c =
√
c21 + c22 and tan θ = c2

c1
, hence

c =

√√√√( f0 (ω2
n − ω2)

(ω2
n − ω2)2 + 4ξ2ω2

nω
2

)2

+
(

2ξωnωf0

(ω2
n − ω2)2 + 4ξ2ω2

nω
2

)2

= f0

√√√√√ (ω2
n − ω2)2 + 4ξ2ω2

nω
2(

(ω2
n − ω2)2 + 4ξ2ω2

nω
2
)2

= f0√
(ω2

n − ω2)2 + (2ξωnω)2

The last equation can be written as

c = F/m

ω2
n

√(
1−

(
ω
ωn

)2)2
+
(
2ξ ω

ωn

)2
= F/k√(

1−
(

ω
ωn

)2)2
+
(
2ξ ω

ωn

)2

And

tan θ = c2
c1

=

(
2ξωnωf0

(ω2
n−ω2)2+4ξ2ω2

nω
2

)
(

f0(ω2
n−ω2)

(ω2
n−ω2)2+4ξ2ω2

nω
2

)
= 2ξωnω

(ω2
n − ω2)

=
2ξ ω

ωn(
1−

(
ω
ωn

)2)
Hence

xp(t) = c cos (ωt− θ)

=

magnitude︷ ︸︸ ︷
F/k√(

1−
(

ω
ωn

)2)2
+
(
2ξ ω

ωn

)2 cos

ωt− tan−1

 2ξ ω
ωn(

1−
(

ω
ωn

)2)

 (4)

Let r = ω
ωn

, then the above becomes

xp(t) = F/k√
(1−r2)2+(2ξr)2

cos
(
ωt− tan−1

(
2ξr

(1−r2)

))

For the supplied values for ω2
n = 4 and ξ = 1.1then the above steady state solution becomes
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xp(t) =

X︷ ︸︸ ︷
F/k√(

1−ω2

4
)2 +1. 21ω2

cos
(
ωt− tan−1

(
1.1ω(
1−ω2

4

)))

To plot the magnitude, use a normalized F = 1, and let k = 1, use the supplied values for ω2
n = 4 and ξ = 1.1,

hence magnitude X of steady state response is

X = 1√(
1− ω2

4
)2 + 1. 21ω2

Plot the expression for the magnitude X against the driving frequency ω

To answer the final question about the resonance. Looking at the steady state solution in equation (4),
we see that the amplitude of the xp is F/k√(

1−
(

ω
ωn

)2)2
+
(
2ξ ω

ωn

)2
which is maximum when the denominator is

minimum which occurs as ω approaches ωn, but in this problem since the system is overdamped, hence no
oscillation will occur and the maximum response occurs when ω = 0 (i.e. input is non oscillatory).
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3.1.5 Problem 1.18
Discuss the stability of following system 2ẍ− 3ẋ+ 8x = −3ẋ+ sin 2t

Answer

The system can be rewritten as

2ẍ+ 8x = sin 2t

We need to consider only the transient response (homogeneous solution). Hence the characteristic equation is

2λ2 + 8 = 0

which has roots ±
√
2j. Since the roots are on the j axis, then this is a marginally unstable system
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3.1.6 Problem 1.20
Calculate an allowable range of values for the gains K, g1, g2 for the system 2ẍ+ 0.8ẋ+ 8x = f(t) such that
the closed-loop system is stable and the formulae for the overshoot and peak time of an underdamped system
are valid

The transfer function of the controller (a P.D. controller) is H(s) = sg1 + g2 and for the plant (the system)
the transfer function is G(s) = 1

2s2+0.8s+8 , hence the closed loop transfer function, which we call C(s), is

C(s) = kG(s)
1 +H (s)KG (s)

=
k 1
2s2+0.8s+8

1 + k sg1+g2
2s2+0.8s+8

= k

2s2 + 0.8s+ 8 + (sg1 + g2) k

= k

2s2 + (0.8 + kg1) s+ 8 + kg2

The characteristic equation is the denominator of the above transfer function. Hence

f(s) =
a︷︸︸︷
2 s2 +

b︷ ︸︸ ︷
(0.8+kg1)s+

c︷ ︸︸ ︷
8+kg2

This has roots at

λ = −b

2a ±
√
b2 − 4ac
2a

= −0.8− kg1
4 ±

√
(0.8 + kg1)2 − 8 (8 + kg2)

4

= −0.2− kg1
4 ±

√
k2g21 + 1.6kg1 − 8kg2 − 15. 36

4

= −0.2− kg1
4 ±

√
k2g21
16 + 0.1kg1 − 0.5kg2 − 0.96

The system is stable if the real part of the roots is in the left hand side of the imaginary axis. Hence we
require that

−0.2− kg1
4 < 0

Which implies −kg1
4 < 0.2 or kg1

4 > −0.2 or
kg1 > −0.8 (1)

and we require that
k2g21
16 + 0.1kg1 − 0.5kg2 − 0.96 < 0 (2)

Using the minimum value for kg1 which is −0.8 and substitute that in above equation,

0.82

16 + 0.1(0.8)− 0.5kg2 − 0.96 < 0

0.04 + 0.08− 0.96− 0.5kg2 < 0
−0.84− 0.5kg2 < 0

−0.5kg2 < 0.84
0.5kg2 > −0.84
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Hence

kg2 > −0.42

And k > 0 (positive gain is assumed). In summary, these are the allowed ranges

kg2 > −0.42
kg1 > −0.8
k > 0

3.1.7 Problem 1.21
Compute a feedback law with full state feedback (of the form given in equation 1.62 in the book that stabilizes
the system 4ẍ+ 16x = 0 and causes the closed loop setting time to be 1 second.

Answer

Equation 1.62 in the book is

mẍ+
(
c+ k̄g1

)
ẋ+

(
k + k̄g2

)
x = k̄f(t)

Notice that I modified the notation in this equation, where the lower case k is the stiffness and k̄ is the gain,
this is to reduce ambiguity in notations

Using the controller required, the equation 4ẍ+ 16x = 0 becomes

mẍ+ k̄g1ẋ+
(
k + k̄g2

)
x = 0

Notice that there is no damping in 4ẍ + 16x = 0, (c = 0), but now k̄g1term acts in place of the damping.
From the original equation m = 4 and k = 16, hence we can write the above as

4ẍ+ k̄g1ẋ+
(
16 + k̄g2

)
x = 0

The characteristic equation is
4λ2 + k̄g1λ+

(
16 + k̄g2

)
= 0

Hence

λ1,2 = −b±
√
b2 − 4ac
2a =

−k̄g1 ±
√(

k̄g1
)2 − 16

(
16 + k̄g2

)
8

= −k̄g1
8 ± 1

8

√
k̄2g21 − 256− 16k̄g2

Hence for stability, the real part of the root must be negative, hence −k̄g1
8 < 0 or k̄g1

8 > 0 or k̄g1 > 0

And we require that k̄2g21 − 256− 16k̄g2 < 0 (for oscillation to occur). This implies

k̄2g21 − 16k̄g2 < 256 (1)

Now settling time is given by

ts =
3.2
ωnζ

= 3.2
ωn

c
ccr

= 3.2
ωn

c
2ωnm

= 3.2(2m)
c
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But in this system (modified) m = 4 and c = k̄g1, hence the above becomes

ts =
3.2× 8
k̄g1

But ts = 1sec., hence
k̄g1 = 25. 6

Substitute the above into (1) we obtain

25. 62 − 16 k̄g2 < 256
655. 36− 16 k̄g2 < 256

2. 56− 0.062 5 k̄g2 < 1
−0.062 5 k̄g2 < −1.56

k̄g2 >
1.56

0.062 5

Hence

k̄g2 > 24. 96

To plot the solution, choose k̄g2 say100 and since k̄g1 = 25.6, then since the loop back equation of motion is

mẍ+ k̄g1ẋ+
(
k + k̄g2

)
x = 0

Then plugging in the above values for k̄g2 and k̄g1 we obtain

4ẍ+ 25.6ẋ+ (16 + 100)x = 0
4ẍ+ 25.6ẋ+ 116x = 0

To confirm the result, I plot the solution to the above equation (which is now stable) using some initial
condition such as v0 = 0.5 and x0 = 0 (arbitrary I.C.). The result is the following
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3.1.8 Problem 1.22

Find the equilibrium points of the nonlinear pendulum equation ml2θ̈ +mgl sin θ = 0

Answer

The equation of motion can be simplified to be

θ̈ + g

l
sin θ = 0

Convert to state space format. [
x1 = θ

x2 = θ̇

]
→
[

ẋ1 = θ̇ = x2
ẋ2 = θ̈ = − g

l sin θ = − g
l sin x1

]
Hence

Ẋ︷ ︸︸ ︷[
ẋ1
ẋ2

]
=
[

x2
− g

l sin x1

]

For equilibrium of a nonlinear system, we require that Ẋ = 0, hence x2 = 0 and − g
l sin x1 = 0

But − g
l sin x1 = 0 implies that x1 = nπ for n = 0,±1,±2, · · ·

Since x1 = θ , and θ is assumed to be zero when the pendulum is hanging in the vertical direction. Hence
the equilibrium positions are as shown below (showing the first stable and the first unstable points)

In both cases, θ̇ = 0. Notice that at θ = nπ for n = ±1,±3,±5, · · · the pendulum in a marginally stable
equilibrium position, while at n = 0,±2,±4, · · · it is at a stable equilibrium position.
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3.1.9 Key for HW1
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3.2.1 Description of HW
1. Find EQM for mass-spring with dynmaic friction on incline (this is nonlinear EQM due to columb

friction)

2. Modal analysis problem on 2 by 2 system

3. Find EQM using lagrangian, 2 pendulums attached by one spring between them

4. Another Modal analysis problem on 2 by 2 system

5. 2nd order system, subject to 2 impulses, find response using convolution

6. Convolution problem. Underdamped system, force is half sin

3.2.2 Problems to solve
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3.2.3 Problem 1
Find the equation of motion for the following system

Solution

Assume initial conditions are x(0) = x0 and ẋ(0) = 0. Assume that x0 was positive (i.e. to the right of the
static equilibrium position, and also assume that kx0 > N µstatic). This second requirement is needed to
enable the mass to undergo motion by overcoming static friction. The normal force N is given by

N = mg cos θ

And the dynamic friction force fc due to the dynamic friction is defined as follows

fc =


−µN ẋ > 0
0 ẋ = 0

µN ẋ < 0

But since N = mg cos θ, then the above becomes

fc =


−µmg cos θ ẋ > 0

0 ẋ = 0
µmg cos θ ẋ < 0

(1)

Where µ is the coefficient of dynamic friction. Now we can obtain the Lagrangian

L = T − U

T = 1
2mẋ2

U = 1
2kx

2

Hence
L = 1

2mẋ2 − 1
2kx

2

and

∂L

∂ẋ
= mẋ

d

dt

∂L

∂ẋ
= mẍ

∂L

∂x
= −kx

Then the EQM is

d

dt

∂L

∂ẋ
− ∂L

∂x
= fc

mẍ+ kx = fc

Where fc is given by (1). Since fc sign depends in the mass is moving to the left or to the right, we will
generate 2 equation of motions, one for each case.
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When mass is moving to the left, EQM 1 is

mẍ+ kx = µmg cos θ (2)

When mass is moving to the right, EQM 2 is

mẍ+ kx = −µmg cos θ (3)

So, for the first move, starting from x0 and moving to the left, we have

ẍ+ k

m
x = µg cos θ

ẍ+ ω2
nx = µg cos θ

x = xh + xp

Guess xp = X, hence ω2
nX = µg cos θ or X = µg cos θ

ω2
n

, and xh = A cosωnt+B sinωnt, therefore, the solution
to EQM 1 is

x(t) = A cosωnt+B sinωnt+
µg cos θ

ω2
n

x(0) = x0 = A+ µg cos θ
ω2

n
hence A = x0 − µg cos θ

ω2
n

, then

x(t) =
(
x0 −

µg cos θ
ω2
n

)
cosωnt+B sinωnt+

µg cos θ
ω2
n

and

ẋ(t) = −ωn

(
x0 −

µg cos θ
ω2
n

)
sinωnt+ ωnB cosωnt

ẋ(0) = v0 = 0 = ωnB

Hence B = 0, then EQM is (for 0 < t < π
ωn

)

xleft(t) =
(
x0 −

µg cos θ
ω2
n

)
cosωnt+

µg cos θ
ω2
n

(4)

The mass will move according to the above equation (4) until the velocity is zero, then it will turn and start
moving to the right. To find the time this happens:

ẋ(t) = −ωn

(
x0 −

µg cos θ
ω2
n

)
sinωnt

Now solve for t when ẋ(t) = 0, i.e.,

0 = −ωn

(
x0 −

µg cos θ
ω2
n

)
sinωnt (5)

Hence ωnt = nπ, where n = 0,±1,±2, · · ·The case for n = 0 do not apply since this implies t = 0, then
consider the next time this can happen, which is n = 1, which implies

t1 = π

ωn
(6)
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Now we need to determine x(t) at this time t1 since this will become the initial x for the second equation of
motion going to the right in the second leg of the journey. Using (4) and (6) we obtain

x

(
π

ωn

)
=
(
x0 −

µg cos θ
ω2
n

)
cosωn

π

ωn
+ µg cos θ

ω2
n

= 2µg cos θ
ω2
n

− x0

Notice that in the above equation, x0 is a positive number, since we assumed that the initial conditions x0
was to the right of the static equilibrium position, and we are assume the right of the static equilibrium
position to be positive. This also implied that x

(
π
ωn

)
will be negative number (which is what we expect, as

the mass will by the end of its first trip be on the left of the static equilibrium position).

Now we can use right equation of motion (EQM 2) to solve for the mass moving to the right. Notice that
the initial conditions for this motion are x1 = 2µg cos θ

ω2
n

− x0 and t1 = π
ωn

The equation of motion is now

mẍ+ kx = −µmg cos θ
ẍ+ ω2

nx = −µg cos θ

With the general solution
x(t) = A cosωnt+B sinωnt−

µg cos θ
ω2
n

(7)

At t = π
ωn

, x(t) = 2µg cos θ
ω2

n
− x0, hence from the above

2µg cos θ
ω2
n

− x0 = A cosωn
π

ωn
+B sinωn

π

ωn
− µg cos θ

ω2
n

= −A− µg cos θ
ω2
n

A = x0 −
3µg cos θ

ω2
n

Hence (7) becomes

x(t) =
(
x0 −

3µg cos θ
ω2
n

)
cosωnt+B sinωnt−

µg cos θ
ω2
n

And
ẋ(t) = −ωn

(
x0 −

3µg cos θ
ω2
n

)
sinωnt+ ωnB cosωnt

But ẋ(t) = 0 at t = π
ωn

, hence the above becomes

0 = −ωn

(
x0 −

3µg cos θ
ω2
n

)
sinωn

π

ωn
+ ωnB cosωn

π

ωn

= −ωnB

Hence B = 0, then the EQM for the right move is, for π
ωn

< t < 2π
ωn

xright(t) =
(
x0 − 3µg cos θ

ω2
n

)
cosωnt− µg cos θ

ω2
n

This diagram below summarize this
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Now, we would like to have one equation to express the motion with for any time instance when the mass is
moving to the left, or to the right. Looking at the above 2 equation of motion, we see immediately that we
can write the equation of motion as follows

xn(t) =
(
x0 − (2n−1)µg cos θ

ω2
n

)
cosωnt + (−1)n+1 µg cos θ

ω2
n

Where n above is the number of the trip. So, the first trip, going from x0 and moving to the left, will have
n = 1, and then second trip, moving from x1 and going to the right will have n = 2, and so on. As for the
time during which trip travels, this is found by the following equation

(n− 1)π
ωn

< tn <
nπ

ωn

What the above is saying is that for first trip (n = 1), we have

0 < t <
π

ωn

And for the second trip, we have
π

ωn
< t <

2π
ωn

etc...

Now that we have one equation, and we have the time during which each equation is valid, we can now plot
the equation of motion vs. time. The following is a plot for some values for k, g,m. Please see the appendix
for the Matlab code which generated this simulation.

Observation found on this problem: Changing the angle of inclination θ causes no change in results. In other
words, the same oscillation will occur for flat plane (θ = 0) or for θ = 450 or any other angle. The reason is
because x0, the initial position, is measured from the static equilibrium position, and this static equilibrium
position will be different as the angle changes, but the effect of the angle change is already accounted for by
this change and will not be reflected in the actual displacement x(t).
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3.2.4 Problem 2

Given
[
1 0
0 4

]
Ẍ+

[
3 −1
−1 1

]
X =

[
0
0

]
, m : kg, k : N/m, use modal analysis to calculate the solution of this

given X(0) =
[
0
1

]
mm, Ẋ(0) =

[
0
0

]
mm/sec also calculate the eigenvalues of the system and the normalized

eigenvectors.

Answer

Since this is a 2 ODE’s that are coupled, we use modal analysis to de-couple the system first in order to
obtain 2 separate ODE’s which we can then solve easily.

Let

M =
[
1 0
0 4

]
and let K =

[
3 −1
−1 1

]
, then the above system becomes

MẌ+KX = 0 (1)

Let X = M− 1
2q, then Ẍ = M− 1

2 q̈ and the above equation becomes

MM− 1
2 q̈ +KM− 1

2q = 0

premultiply by M− 1
2 we obtain

M− 1
2MM− 1

2 q̈ +M− 1
2KM− 1

2q = 0
Iq̈ + K̃q = 0 (2)

Where K̃ = M− 1
2KM− 1

2

Let q = veiωt, then q̈ = −ω2veiωt and (2) becomes

−ω2eiωtIv+ K̃veiωt = 0(
K̃ − ω2I

)
v = 0

Let λ = ω2 then we have (
K̃ − λI

)
v = 0 (3)

For v 6= 0 , we requires that
∣∣K̃ − λI

∣∣ = 0 But

K̃ = M− 1
2KM− 1

2

=
[
1−1

2 0
0 4−1

2

] [
3 −1
−1 1

] [
1−1

2 0
0 4−1

2

]

=
[
3 − 1

2
− 1

2
1
4

]
Hence ∣∣K̃ − λI

∣∣ = 0∣∣∣∣[ 3 − 1
2

− 1
2

1
4

]
− λ

[
1 0
0 1

]∣∣∣∣ = 0∣∣∣∣[3− λ − 1
2

− 1
2

1
4 − λ

]∣∣∣∣ = 0

(3− λ)
(
1
4 − λ

)
− 1

4 = 0

λ2 − 13
4 λ+ 1

2 = 0

Hence

λ = −b

2a ±
√
b2 − 4ac
2a

= 13
8 ±

√( 13
4
)2 − 2
2

= 13
8 ± 1

8
√
137

Hence
λ1,2 =

{
13−

√
137

8 , 13+
√
137

8

}
= {0.161 91, 3. 088 1}
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From (3) we then have (
K̃ − λI

)
v = 0([

3 − 1
2

− 1
2

1
4

]
−
[
λ 0
0 λ

])
v = 0

When λ = λ1 = 0.161 9 we obtain([
3.0 −0.5
−0.5 0.25

]
−
[
0.161 9 0

0 0.161 9

])[
a

b

]
=
[
0
0

]
[
2. 838 1 −0.5
−0.5 0.088 1

] [
a

b

]
=
[
0
0

]
Hence

2. 838 1a− 0.5b = 0
−0.5a− 0.094 1b = 0

Let a = 1, then b = −2. 838 1
−0.5 = 5. 676 2, hence the second eigenvector is

v1 =
[

1
5. 676 2

]
‖v1‖ =

√
1 + 5. 676 22 = 5. 763 6, hence normalized v1 is

v1 = 1
5. 763 6

[
1

5. 676 2

]

v1 =
[
0.173 5
0.984 84

]
When λ = λ2 = 3. 088 1 we obtain([

3.0 −0.5
−0.5 0.25

]
−
[
3. 088 1 0

0 3. 088 1

])[
a

b

]
=
[
0
0

]
[
−0.088 1 −0.5
−0.5 −2. 838 1

] [
a

b

]
=
[
0
0

]
Hence

−0.088 1a− 0.5b = 0
−0.5a− 2. 838 1b = 0

Let a = 1 in the first equation above, then b = −0.088 1
0.5 = −0.176 2, hence the first eigenvector is

v2 =
[

1
−0.176 2

]
‖v2‖ =

√
1 + 0.176 22 = 1. 015 4, hence normalized v2 is

v2 = 1
1. 015 4

[
1

−0.176 2

]

v2 =
[
0.984 83
−0.173 53

]
Then the P matrix

[P ] =
[
v1 v2

]
=
[
0.173 5 0.984 83
0.984 84 −0.173 53

]
Now let q = Pr , then equation (2) above becomes

Iq̈ + K̃q = 0
IP r̈+ K̃Pr = 0

Premultiply by PT

PT IP r̈+ PT K̃Pr = 0
I r̈+PT K̃Pr = 0
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Let Λ = PT K̃P then the above becomes
I r̈+Λr = 0 (4)

Now find Λ1

Λ = PT K̃P

=
[
0.173 5 0.984 83
0.984 84 −0.173 53

]T [ 3.0 −0.5
−0.5 0.25

] [
0.173 5 0.984 83
0.984 84 −0.173 53

]

=
[
0.161 91 0

0 3. 088 1

]

Hence (4) becomes

I r̈+
[
0.161 91 0

0 3. 088 1

]
r = 0

Which can be written as 2 equations [
r̈1
r̈2

]
+
[
0.161 91r1
3. 088 1r2

]
=
[
0
0

]
or

r̈1 + 0.161 91r1 = 0 (5)
r̈2 + 3. 088 1r2 = 0

With IC given as

X(0) =
[
0
1

]
and

Ẋ(0) =
[
0
0

]
Now X=M− 1

2q and q=Pr, hence X=M− 1
2Pr, then

r(0) = PTM
1
2X(0)[

r1(0)
r2(0)

]
=
[
0.173 5 0.984 83
0.984 84 −0.173 53

]T [1 0
0 2

] [
0
1

]
[
r1(0)
r2(0)

]
=
[

1. 969 7
−0.347 06

]
now need to find r̈(0) ,but since Ẍ(0) = 0, then r̈(0) = 0 as well.

Now we can solve for r1(t) and r2(t) since we have the IC. From (5) above

r̈1 + 0.161 91r1 = 0
r1(t) = A cosωn1t+B sinωn1t

At t = 0, r1(0) = 1. 969 6, hence 1. 969 6 = A, then

r1(t) = 1. 969 6 cosωn1t+B sinωn1t

ṙ1(t) = −1. 969 6ωn1 sinωn1t+ ωn1B cosωn1t

At t = 0
ṙ1(t) = 0 = ωn1B

Hence B = 0, then
r1(t) = 1. 969 6 cosωn1t

But ωn1 =
√
0.161 91 = 0.402 38, hence

r1(t) = 1. 969 6 cos (0.402 38t)

Similarly we find r2(t)

r̈2 + 3. 088 1r2 = 0
r2(t) = A cosωn2t+B sinωn2t

1This can also be found more quickly by noting that Λ = diag(λ1, λ2)
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At t = 0, r2(0) = −0.346 98, hence −0.346 98 = A, then

r2(t) = −0.346 98 cosωn2t+B sinωn2t

ṙ2(t) = 0.346 98ωn2 sinωn2t+ ωn2B cosωn2t

At t = 0
ṙ2(t) = 0 = ωn2B

Hence B = 0, then
r2(t) = −0.346 98 cosωn2t

But ωn2 =
√
3. 088 1 = 1. 757 3, hence

r2(t) = −0.346 98 cos (1. 757 3t)

Now that we found the solution in the r space, we switch back to the original x space

X(t)=M− 1
2Pr(t)

Then
X(t)=

[
1 0
0 0.5

] [
0.173 5 0.984 83
0.984 84 −0.173 53

] [
1. 969 6 cos (0.402 38t)
−0.346 98 cos (1. 757 3t)

]
Hence [

x1(t)
x2(t)

]
=
[
0.341 73 cos 0.402 38t− 0.341 72 cos 1. 757 3t
0.969 87 cos 0.402 38t+ 0.03010 6 cos 1. 757 3t

]
This is a plot of the solutions

Observation on final result: Notice that power of the harmonic ωn = 1. 757 3 rad/sec. in the motion x2(t) is
small (amplitude is only 0.03) hence the dominant harmonic present in x2(t) is ωn = 0.402 38 rad/sec. and
this reflects in the plot where it appears that x2(t) contain one harmonic. In the case of x1(t) we see from
the solution that both frequencies contribute equal amount of power, hence the plot for x1(t) reflects this.
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3.2.5 Problem 3

Solution Use as generalized coordinates θ1, θ2,. Assume that the spring remain horizontal, and assume that
θ2 > θ1

L = T − U

T = 1
2m1

(
Lθ̇1

)2 + 1
2m2

(
Lθ̇2

)2
Ugravity = m1gL(1− cos θ1) +m2gL(1− cos θ2)

Uspring = 1
2k(a sin θ2 − a sin θ1)2

Hence

L = 1
2m1

(
Lθ̇1

)2 + 1
2m2

(
Lθ̇2

)2 − (m1gL(1− cos θ1) +m2gL(1− cos θ2) +
1
2k(a sin θ2 − a sin θ1)2

)
Now determine the Lagrangian equation

∂L

∂θ̇1
= m1L

2θ̇1

d

dt

∂L

∂θ̇1
= m1L

2θ̈1

∂L

∂θ̇2
= m2L

2θ̇2

d

dt

∂L

∂θ̇2
= m2L

2θ̈2

∂L

∂θ1
= −m1gL sin θ1 + ak(a sin θ2 − a sin θ1) cos θ1

∂L

∂θ2
= −m1gL sin θ2 − ak(a sin θ2 − a sin θ1) cos θ2

Hence the EQM for m1 is

d

dt

∂L

∂θ̇1
− ∂L

∂θ1
= 0

m1L
2θ̈1 +m1gL sin θ1 − ak(a sin θ2 − a sin θ1) cos θ1 = 0

Now apply small angle approximation. sin θ ≈ θ and cos θ ≈ 1hence

m1L
2θ̈1 +m1gLθ1 − ak(aθ2 − aθ1) = 0

m1L
2θ̈1 +m1gLθ1 − a2kθ2 + a2kθ1 = 0

m1L
2θ̈1 +

(
m1gL+ a2k

)
θ1 − a2kθ2 = 0 (1)

And the EQM for m2 is

d

dt

∂L

∂θ̇2
− ∂L

∂θ2
= 0

m2L
2θ̇2 +m1gL sin θ2 + ak(a sin θ2 − a sin θ1) cos θ2 = 0

Now apply small angle approximation. sin θ ≈ θ and cos θ ≈ 1hence

m2L
2θ̇2 +m1gLθ2 + ak(aθ2 − aθ1) = 0

m2L
2θ̇2 +m1gLθ2 + a2kθ2 − a2kθ1 = 0
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Therefore
m2L

2θ̈2 + θ2
(
m2gL+ a2k

)
− a2kθ1 = 0

Now we write the system as M ῭+K` = 0[
m1L

2 0
0 m2L

2

] [
θ̈1
θ̈2

]
+
[
m1gL+ a2k −a2k

−a2k m2gL+ a2k

] [
θ1
θ2

]
=
[
0
0

]
Substitute numerical values for the above quantities, we obtain[

10× 0.52 0
0 10× 0.52

] [
θ̈1
θ̈2

]
+
[
10× 9.8× 0.5 + 0.12 × 20 −a2 × 20

−0.12 × 20 10× 9.8× 0.5 + 0.12 × 20

] [
θ1
θ2

]
=
[
0
0

]
[
2. 5 0
0 2. 5

] [
θ̈1
θ̈2

]
+
[
49. 2 −0.2
−0.2 49. 2

] [
θ1
θ2

]
=
[
0
0

]
The above can be written as

M ῭+K` = 0

Let ` = M− 1
2q, then ῭ = M− 1

2 q̈ and the above equation becomes

MM− 1
2 ῭+KM− 1

2` = 0

premultiply by M− 1
2 we obtain

M− 1
2MM− 1

2 ῭+M− 1
2KM− 1

2` = 0

I῭+ K̃` = 0 (2)

Where K̃ = M− 1
2KM− 1

2

Let q = veiωt, then q̈ = −ω2veiωt and (2) becomes

−ω2eiωtIv+ K̃veiωt = 0(
K̃ − ω2I

)
v = 0

Let λ = ω2 then we have (
K̃ − λI

)
v = 0 (3)

For v 6= 0 , we requires that
∣∣K̃ − λI

∣∣ = 0 But

K̃ = M− 1
2KM− 1

2

=
[
2. 5− 1

2 0
0 2. 5− 1

2

] [
49. 2 −0.2
−0.2 49. 2

][
2. 5− 1

2 0
0 2. 5− 1

2

]

=
[
19. 68 −0.08
−0.08 19. 68

]
Hence ∣∣K̃ − λI

∣∣ = 0∣∣∣∣[19. 68 −0.08
−0.08 19. 68

]
− λ

[
1 0
0 1

]∣∣∣∣ = 0∣∣∣∣[19. 68− λ −0.08
−0.08 19. 68− λ

]∣∣∣∣ = 0

(19. 68− λ) (19. 68− λ)− 0.082 = 0

Hence the characteristic equation is

λ2 − 39. 36 λ+ 387. 30 = 0

Hence
λ1,2 = 19. 6, 19. 76

Hence the natural frequencies are

ωn =
{√

19. 6,
√
19. 76

}
= {4. 427 2, 4. 445 2} rad/sec

From (3) we then have (
K̃ − λI

)
v = 0([

19. 68 −0.08
−0.08 19. 68

]
−
[
λ 0
0 λ

])
v = 0
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When λ = λ1 = 19. 6 we obtain([
19. 68 −0.08
−0.08 19. 68

]
−
[
19. 6 0
0 19. 6

])[
a

b

]
=
[
0
0

]
[
0.08 −0.08
−0.08 0.08

] [
a

b

]
=
[
0
0

]
Hence

0.08a− 0.08b = 0
−0.08a+ 0.08b = 0

Hence a = b then
v1 = 1√

2

[
1
1

]
=
[
0.707 11
0.707 11

]
When λ = λ2 = 19. 76 we obtain([

19. 68 −0.08
−0.08 19. 68

]
−
[
19. 76 0
0 19. 76

])[
a

b

]
=
[
0
0

]
[
−0.08 −0.08
−0.08 −0.08

] [
a

b

]
=
[
0
0

]
Hence a = −b, then

v2 = 1√
2

[
−1
1

]
=
[
−0.707 11
0.707 11

]
Now that we have obtained the eigenvectors of the de-coupled system, we can plot the mode shapes2. I will
use a diagram similar to that shown in the textbook Engineering Vibration by Inman on page 313)

2The book also calls the S matrix as the shape matrix, so I better show this as well, which is defined as S = M− 1
2 P , hence

P =
[
v1 v2

]
=

1
√
2

[
1 −1
1 1

]

S =
[
2. 5 0
0 2. 5

]− 1
2 1
√
2

[
1 −1
1 1

]
=

1
√
2

[
2. 5−

1
2 0

0 2. 5−
1
2

] [
1 −1
1 1

]
=

√
2
[
0.316 23 −0.316 23
0.316 23 0.316 23

]

=
[
0.447 22 −0.447 22
0.447 22 0.447 22

]
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3.2.6 Problem 4

M ẍ+Kx = 0

Where K =
[
27 −3
−3 3

]
,M =

[
9 0
0 1

]
Let X = M− 1

2q, then Ẍ = M− 1
2 q̈ and the above equation becomes

MM− 1
2 q̈ +KM− 1

2q = 0

premultiply by M− 1
2 we obtain

M− 1
2MM− 1

2 q̈ +M− 1
2KM− 1

2q = 0
Iq̈ + K̃q = 0 (2)

Where K̃ = M− 1
2KM− 1

2

Let q = veiωt, then q̈ = −ω2veiωt and (2) becomes

−ω2eiωtIv+ K̃veiωt = 0(
K̃ − ω2I

)
v = 0
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Let λ = ω2 then we have (
K̃ − λI

)
v = 0 (3)

For v 6= 0 , we requires that
∣∣K̃ − λI

∣∣ = 0 But

K̃ = M− 1
2KM− 1

2

=
[
9− 1

2 0
0 1

] [
27 −3
−3 3

] [
9− 1

2 0
0 1

]
=
[
3.0 −1.0
−1.0 3.0

]
Hence ∣∣K̃ − λI

∣∣ = 0∣∣∣∣[ 3.0 −1.0
−1.0 3.0

]
− λ

[
1 0
0 1

]∣∣∣∣ = 0∣∣∣∣[3− λ −1
−1 3− λ

]∣∣∣∣ = 0

(3− λ)2 − 1 = 0

Hence the characteristic equation is
λ2 − 6λ+ 8 = 0

Hence
λ1,2 = {2, 4}

Then the natural frequencies are
ωn =

{√
2, 2
}

From (3) we then have (
K̃ − λI

)
v = 0([

3.0 −1.0
−1.0 3.0

]
−
[
λ 0
0 λ

])
v = 0

When λ = λ1 = 2 we obtain ([
3.0 −1.0
−1.0 3.0

]
−
[
2 0
0 2

])[
a

b

]
=
[
0
0

]
[
1 −1
−1 1

] [
a

b

]
=
[
0
0

]
Hence

a− b = 0
−a+ b = 0

Then a = b, hence

v1 = 1√
2

[
1
1

]
=
[
0.707 11
0.707 11

]
When λ = λ2 = 4 we obtain ([

3.0 −1.0
−1.0 3.0

]
−
[
4 0
0 4

])[
a

b

]
=
[
0
0

]
[
−1 −1
−1 −1

] [
a

b

]
=
[
0
0

]
Hence a = −b, then

v2 = 1√
2

[
1
−1

]
=
[
0.707 11
−0.707 11

]
Then the matrix

[P ] =
[
v1 v2

]
=
[
0.707 11 0.707 11
0.707 11 −0.707 11

]
Now let q = Pr , then equation (2) above becomes

Iq̈ + K̃q = 0
IP r̈+ K̃Pr = 0
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Premultiply by PT

PT IP r̈+ PT K̃Pr = 0
I r̈+PT K̃Pr = 0

Let Λ = PT K̃P then the above becomes
I r̈+Λr = 0 (4)

Now find Λ

Λ = PT K̃P

= 1
2

[
1 1
1 −1

]T [ 3 −1
−1 3

] [
1 1
1 −1

]

=
[
2 0
0 4

]

Hence (4) becomes

I r̈+
[
2 0
0 4

]
r = 0

Which can be written as 2 equations [
r̈1
r̈2

]
+
[
2r1
4r2

]
=
[
0
0

]
or

r̈1 + 2r1 = 0 (5)
r̈2 + 4r2 = 0 (6)

With IC given as X(0) = 1√
2

[ 1
3
1

]
, Ẋ(0) =

[
0
0

]
, but

X =M− 1
2q and q =Pr, hence X =M− 1

2Pr, then

r(0) = PTM
1
2X(0)

r(0) = 1√
2

[
1 1
1 −1

]T [9 1
2 0
0 1

]
1√
2

[ 1
3
1

]
[
r1(0)
r2(0)

]
=
[
1
0

]
And since Ẋ(0) = 0, then ṙ(0) = 0, now we have found IC for r(t) we can solve the ODEs

r1(t) = A1 cos
√
2t+B1 sin

√
2t

r2(t) = A2 cos 2t+B2 sin 2t

r1(0) = 1 hence A1 = 1, and B1 = 0, similarly, A2 = 0, and B1 = 0, hence

r1(t) = cos
√
2t

r2(t) = 0

But
X(t)=M− 1

2Pr(t)

Then

X(t)=
[
9− 1

2 0
0 1

]
1√
2

[
1 1
1 −1

]
r(t)

= 1√
2

[ 1
3

1
3

1 −1

] [
cos

√
2t

0

]
Hence [

x1(t)
x2(t)

]
=
[

1
3
√
2

(
cos

√
2t
)

1√
2

(
cos

√
2t
) ]

Here is a plot of the solution
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3.2.7 Problem 5 (not correct, left here to check something)

m = 3, c = 6, k = 12, hence ωn =
√

k
m =

√
12
3 = 2 rad/sec and ξ = c

ccr
= c

2ωnm
= 6

2×2×3 = 1
2 , hence the

system is underdamped and ωd = ωn

√
1− ξ2 = 2

√
1− 1

2
2 =

√
3 rad/sec

Let the response to 3δ(t) be xp1(t) and let the response to δ(t− 1) be xp2(t) hence the response of the system
becomes

x(t) = xh(t) + xp1(t)− xp2(t) (1)

Where
xh = e−ξωnt(A cosωdt+B sinωdt) (2)

And
xp1(t) =

3
mωd

e−ξωnt sinωdt (3)

and
xp2(t) =

1
mωd

e−ξωn(t−1) sinωd(t− 1)Φ(t− 1)

Hence, substitute (2),(3) into (1)

x(t) = e−ξωnt(A cosωdt+B sinωdt) +
3

mωd
e−ξωnt sinωdt

+ 1
mωd

e−ξωn(t−1) sinωd(t− 1)Φ(t− 1) (4)

Now using IC to find A,B. Note, we use only x(t) = xh(t)+xp1(t) for the purpose of finding A,B from I.C’s
since the response to the delayed impulse is not active at t = 0. We find

x(0) = 1
100 = A
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And for the derivative

ẋ(t) = ẋh(t) + ẋp1(t)
= −ξωne

−ξωnt(A cosωdt+B sinωdt) + e−ξωnt(−Aωd sinωdt+Bωd cosωdt)

+ 3
mωd

e−ξωntωd cosωdt−
3ξωn

mωd
e−ξωnt sinωdt

Hence

ẋ(0) = 1 = −ξωnA+Bωd +
3
m

1 = − 1
100 +Bωd + 1

Hence

B = 1
100

√
3

Therefore the solution is, by substituting values found for A,B into the general solution from above equation
(4), we obtain

x(t) = e−t

100

(
cos

√
3t+ 1

100
√
3
sin

√
3t
)
+ 1√

3
e−t sin

√
3t−

(
1

3
√
3
e−(t−1) sin

√
3(t− 1)Φ(t− 1)

)
(5)

The following is a plot of the solution for up to t = 6

3.2.8 Problem 5 (again, correct solution)

m = 3, c = 6, k = 12, hence ωn =
√

k
m =

√
12
3 = 2 rad/sec and ξ = c

ccr
= c

2ωnm
= 6

2×2×3 = 1
2 , hence the

system is underdamped and ωd = ωn

√
1− ξ2 = 2

√
1− 1

2
2 =

√
3 rad/sec

Let the response to 3δ(t) be xp1(t) and let the response to δ(t− 1) be xp2(t) hence the response of the system
becomes

x(t) = xh(t) + xp1(t)− xp2(t) (1)
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Where
xh = e−ξωnt(A cosωdt+B sinωdt) (2)

And
xp1(t) =

3
mωd

e−ξωnt sinωdt (3)

and
xp2(t) =

1
mωd

e−ξωn(t−1) sinωd(t− 1)Φ(t− 1)

To find A,B use only xh(t) .At t = 0. We find

x(0) = 1
100 = A

And for the derivative

ẋ(t) = ẋh(t)
= −ξωne

−ξωnt(A cosωdt+B sinωdt) + e−ξωnt(−Aωd sinωdt+Bωd cosωdt)

Hence

ẋ(0) = 1 = −ξωnA+Bωd

1 = − 1
100 +Bωd

Hence

B =
1 + 1

100√
3

= 101
100

√
3

Therefore the solution is, by substituting values found for A,B into the general solution from above equation
(4), we obtain

x(t) = e−t

100

(
cos

√
3t+ 101

100
√
3
sin

√
3t
)
+ 1√

3
e−t sin

√
3t−

(
1

3
√
3
e−(t−1) sin

√
3(t− 1)Φ(t− 1)

)
(5)

The following is a plot of the solution for up to t = 6



chapter 3. hws 51

3.2.9 Problem 6

Let the response by x(t). Hence x(t) = xh(t) + xp(t), where xp(t) is the particular solution, which is the
response due the the above forcing function. Using convolution

xp(t) =
t∫

0

f(τ)h(t− τ) dτ

Where h(t) is the unit impulse response of a second order underdamped system which is

h(t) = 1
mωd

e−ξωnt sinωdt

hence

xp(t) =
F0

mωd

t∫
0

sin (τ) e−ξωn(t−τ) sin (ωd(t− τ)) dτ

= F0e
−ξωnt

mωd

t∫
0

eξωnτ sin (τ) sin (ωd(t− τ)) dτ

Using sinA sinB = 1
2 [cos (A−B)− cos (A+B)] then

sin (τ) sin (ωd(t− τ)) = 1
2 [cos (τ − ωd(t− τ))− cos (τ + ωd(t− τ))]

Then the integral becomes

xp(t) =
F0e

−ξωnt

2mωd

 t∫
0

eξωnτ cos (τ − ωd(t− τ)) dτ −
t∫

0

eξωnτ cos (τ + ωd(t− τ)) dτ


Consider the first integral I1 where

I1 =
t∫

0

eξωnτ cos (τ − ωd(t− τ)) dτ

Integrate by parts, where
∫
udv = uv−

∫
vdu, Let dv = eξωnτ → v = eξωnτ

ξωn
and let u = cos (τ − ωd(t− τ)) →

du = −(1 + ωd) sin (τ − ωd(t− τ)), hence

I1 =
[
cos (τ − ωd(t− τ)) e

ξωnτ

ξωn

]t
0
−

t∫
0

eξωnτ

ξωn
[−(1 + ωd) sin (τ − ωd(t− τ))] dτ

=
[
cos (t− ωd(t− t)) e

ξωnt

ξωn
− cos (0− ωd(t− 0)) 1

ξωn

]
+ (1 + ωd)

ξωn

t∫
0

eξωnτ sin (τ − ωd(t− τ)) dτ

= 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

ξωn

t∫
0

eξωnτ sin (τ − ωd(t− τ)) dτ (1)

Integrate by parts again the last integral above, where
∫
udv = uv−

∫
vdu, Let dv = eξωnτ → v = eξωnτ

ξωn
and

let u = sin (τ − ωd(t− τ)) → du = (1 + ωd) cos (τ − ωd(t− τ)), hence
t∫

0

eξωnτ sin (τ − ωd(t− τ)) dτ =
[
sin (τ − ωd(t− τ)) e

ξωnτ

ξωn

]t
0
−
∫ t

0

eξωnτ

ξωn
(1 + ωd) cos (τ − ωd(t− τ)) dτ

= 1
ξωn

[
sin (t) eξωnt + sin (ωdt)

]
− (1 + ωd)

ξωn

∫ t

0
eξωnτ cos (τ − ωd(t− τ)) dτ

(2)
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Substitute (2) into (1) we obtain

I1 = 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+

(1 + ωd)
ξωn

(
1

ξωn

[
sin (t) eξωnt + sin (ωdt)

]
− (1 + ωd)

ξωn

∫ t

0
eξωnτ cos (τ − ωd(t− τ)) dτ

)

= 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

]
− (1 + ωd)2

(ξωn)2
∫ t

0
eξωnτ cos (τ − ωd(t− τ)) dτ

= 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

]
− (1 + ωd)2

(ξωn)2
I1

Hence

I1 +
(1 + ωd)2

(ξωn)2
I1 = 1

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

]
I1

(
(ξωn)2 + (1 + ωd)2

(ξωn)2

)
= 1

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

]
I1 =

(
(ξωn)2

(ξωn)2 + (1 + ωd)2

)(
1

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

])

=
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

[
sin (t) eξωnt + sin (ωdt)

]
(ξωn)2 + (1 + ωd)2

Now consider the second integral I2 where

I2 =
t∫

0

eξωnτ cos (τ + ωd(t− τ)) dτ

Integrate by parts, where
∫
udv = uv−

∫
vdu, Let dv = eξωnτ → v = eξωnτ

ξωn
and let u = cos (τ + ωd(t− τ)) →

du = −(1− ωd) sin (τ + ωd(t− τ)), hence

I2 =
[
cos (τ + ωd(t− τ)) e

ξωnτ

ξωn

]t
0
−

t∫
0

eξωnτ

ξωn
[−(1− ωd) sin (τ + ωd(t− τ))] dτ

=
[
cos (t+ ωd(t− t)) e

ξωnt

ξωn
− cos (0 + ωd(t− 0)) 1

ξωn

]
+ (1− ωd)

ξωn

t∫
0

eξωnτ sin (τ + ωd(t− τ)) dτ

= 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

ξωn

t∫
0

eξωnτ sin (τ + ωd(t− τ)) dτ (3)

Integrate by parts again the last integral above, where
∫
udv = uv−

∫
vdu, Let dv = eξωnτ → v = eξωnτ

ξωn
and

let u = sin (τ + ωd(t− τ)) → du = (1− ωd) cos (τ + ωd(t− τ)), hence

t∫
0

eξωnτ sin (τ + ωd(t− τ)) dτ =
[
sin (τ + ωd(t− τ)) e

ξωnτ

ξωn

]t
0
−
∫ t

0

eξωnτ

ξωn
(1− ωd) cos (τ + ωd(t− τ)) dτ

= 1
ξωn

[
sin (t) eξωnt − sin (ωdt)

]
− (1− ωd)

ξωn

∫ t

0
eξωnτ cos (τ + ωd(t− τ)) dτ

(4)

Substitute (4) into (3) we obtain

I2 = 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+

(1− ωd)
ξωn

(
1

ξωn

[
sin (t) eξωnt − sin (ωdt)

]
− (1− ωd)

ξωn

∫ t

0
eξωnτ cos (τ + ωd(t− τ)) dτ

)

= 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

(ξωn)2
[
sin (t) eξωnt − sin (ωdt)

]
− (1− ωd)2

(ξωn)2
∫ t

0
eξωnτ cos (τ + ωd(t− τ)) dτ

= 1
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

]
− (1− ωd)2

(ξωn)2
I2
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Hence

I2 +
(1− ωd)2

(ξωn)2
I2 = 1

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

]
I2

(
(ξωn)2 + (1− ωd)2

(ξωn)2

)
= 1

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

]
I2 =

(
(ξωn)2

(ξωn)2 + (1− ωd)2

)(
1

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

(ξωn)2
[
sin (t) eξωnt + sin (ωdt)

])

=
ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

[
sin (t) eξωnt + sin (ωdt)

]
(ξωn)2 + (1− ωd)2

Using the above expressions for I1, I2, we find (and multiplying the solution by (Φ(t)− Φ(t− π)) since the
force is only active from t = 0 to t = π, we obtain

xp(t) =
F0e

−ξωnt

2mωd
(I1 − I2) (Φ(t)− Φ(t− π))

= (Φ(t)− Φ(t− π)) ∗
F0e

−ξωnt

2mωd

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1 + ωd)

[
sin (t) eξωnt + sin (ωdt)

]
(ξωn)2 + (1 + ωd)2

− F0e
−ξωnt

2mωd

ξωn

[
cos (t) eξωnt − cos (ωdt)

]
+ (1− ωd)

[
sin (t) eξωnt + sin (ωdt)

]
(ξωn)2 + (1− ωd)2

(5)

Hence xp(t) = (Φ(t)− Φ(t− π))[
F0e

−ξωnt

2mωd

(
ξωn

[
cos(t)eξωnt−cos(ωdt)

]
+(1+ωd)

[
sin(t)eξωnt+sin(ωdt)

]
(ξωn)2+(1+ωd)2

−
ξωn

[
cos(t)eξωnt−cos(ωdt)

]
+(1−ωd)

[
sin(t)eξωnt+sin(ωdt)

]
(ξωn)2+(1−ωd)2

)]
And

xh(t) = e−ξωnt(A cosωdt+B sinωdt)

Hence the overall solution is

x(t) = e−ξωnt(A cosωdt+B sinωdt) + xp(t)

The above solution is a bit long due to integration by parts. I will not solve the same problem using Laplace
transformation method. The differential equation is

ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) = f(t)

Take Laplace transform, we obtain (assuming x(0) = x0 and ẋ(0) = v0)(
s2X − sx(0)− ẋ(0)

)
+ 2ξωn(sX − x(0)) + ω2

nX = F (s)(
s2X − sx0 − v0

)
+ 2ξωn(sX − x0) + ω2

nX = F (s) (7)

Now we find Laplace transform of f(t)

F (s) =
∞∫
0

e−stf(t) dt

=
π∫

0

e−stF0 sin t dt

= F0

 π∫
0

e−st sin t dt


Integration by parts gives

F (s) = F0

[
1 + e−πs

1 + s2

]
(8)

Substitute (8) into (7) we obtain

(
s2X − sx0 − v0

)
+ 2ξωn(sX − x0) + ω2

nX = F0

[
1 + e−πs

1 + s2

]
X
(
s2 + 2ξωns+ ω2

n

)
− sx0 − v0 − 2ξωnx0 = F0(1 + e−πs)

1 + s2

X
(
s2 + 2ξωns+ ω2

n

)
= F0(1 + e−πs)

1 + s2
+ sx0 + v0 + 2ξωnx0

=
F0(1 + e−πs) +

(
1 + s2

)
sx0 + v0

(
1 + s2

)
+ 2ξωnx0

(
1 + s2

)
1 + s2



chapter 3. hws 54

Hence

X =
F0(1 + e−πs) +

(
1 + s2

)
sx0 + v0

(
1 + s2

)
+ 2ξωnx0

(
1 + s2

)
(1 + s2) (s2 + 2ξωns+ ω2

n)

=
F0 + v0 + F0

eπs + sx0 + s2v0 + s3x0 + 2ξωnx0 + 2s2ξωnx0

(1 + s2) (s2 + 2ξωns+ ω2
n)

Now we can use inverse Laplace transform on the above. It is easier to do partial fraction decomposition and
use tables. I used CAS to do this and this is the result. I plot the solution x(t). I used the following values
to be able to obtain a plot ξ = 0.5, ωn = 2, F0 = 10, x0 = 1, v0 = 0

3.2.10 Solving problem shown in class for Vibration 431, CSUF, Spring 2009
Problem

Solve ẍ+ 2ẋ+ 4x = δ(t)− δ(t− 4) with the IC’s x(0) = 1mm, ẋ(0) = −1mm

Answer

m = 1, c = 2, k = 4, hence ωn =
√

k
m =

√
4 = 2 rad/sec and ξ = c

ccr
= c

2ωnm
= 2

2×2×1 = 1
2 , hence the system

is underdamped and ωd = ωn

√
1− ξ2 = 2

√
1− 1

2
2 =

√
3 rad/sec

Let the response to δ(t) be x1(t) and let the response to δ(t− 4) be x2(t) hence the response of the system
becomes

x(t) = xh(t) + x1(t)− x2(t) (1)

Where
xh = e−ξωnt(A cosωdt+B sinωdt) (1)

And
x1(t) =

1
mωd

e−ξωnt sinωdt (3)

and
x2(t) =

1
mωd

e−ξωn(t−4) sinωd(t− 4)Φ(t− 4)

Hence, substitute (2),(3) ,(4) into (1)

x(t) = e−ξωnt(A cosωdt+B sinωdt) +
1

mωd
e−ξωnt sinωdt−

1
mωd

e−ξωn(t−4) sin (ωd(t− 4))Φ(t− 4) (4)

Now using IC to find A,B

x(0) = 1 = A
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and

ẋ(t) = −ξωne
−ξωnt(A cosωdt+B sinωdt) + e−ξωnt(−Aωd sinωdt+Bωd cosωdt)+

1
mωd

(
−ξωne

−ξωnt sinωdt+ ωde
−ξωnt cosωdt

)
−

e−ξωn(t−4)

mωd
(ωd cos (ωd(t− 4))Φ(t− 4) + δ(t− 4) sin (ωd(t− 4))− ξωnωd sin (ωd(t− 4))Φ(t− 4))

At t = 0, ẋ(0) = −1, Hence the above becomes (terms with δ(t− 4) and Φ(t− 4) vanish at t = 0 by definition)

−1 = −ξωnA+Bωd +
1
m

B = −1√
3

Hence (1) becomes

x(t) = e−ξωnt

(
cosωdt−

1√
3
sinωdt

)
+ 1

mωd
e−ξωnt sinωdt−

1
mωd

e−ξωn(t−4) sin (ωd(t− 4))Φ(t− 4)

If we substitute the numerical values for the problem parameters, the above becomes

x(t) = e−t

(
cos

√
3t− 1√

3
sin

√
3t
)
+ e−t

√
3
sin

√
3t− 1√

3
e−(t−4) sin

(√
3(t− 4)

)
Φ(t− 4)

= e−t cos
√
3t− 1√

3e
−(t−4) sin

(√
3(t− 4)

)
Φ(t− 4)

Compare the above with the solution given in class, which is

x(t) = e−t
(
cos

√
3t+ 1√

3 sin
√
3t
)
− 1√

3e
−(t−4) sin

(√
3(t− 4)

)
Φ(t− 4)

3.2.11 Solving problem shown in class for Vibration 431, CSUF, Spring 2009.
Version 2

Problem

Solve ẍ+ 2ẋ+ 4x = δ(t)− δ(t− 4) with the IC’s x(0) = 1mm, ẋ(0) = −1mm

Answer

m = 1, c = 2, k = 4, hence ωn =
√

k
m =

√
4 = 2 rad/sec and ξ = c

ccr
= c

2ωnm
= 2

2×2×1 = 1
2 , hence the system

is underdamped and ωd = ωn

√
1− ξ2 = 2

√
1− 1

2
2 =

√
3 rad/sec

Let the response to δ(t) be xp1(t) and let the response to δ(t− 4) be xp2(t) hence the response of the system
becomes

x(t) = xh(t) + xp1(t)− xp2(t) (1)

Where
xh = e−ξωnt(A cosωdt+B sinωdt) (1)

And
xp1(t) =

1
mωd

e−ξωnt sinωdt (3)

and
xp2(t) =

1
mωd

e−ξωn(t−4) sinωd(t− 4)Φ(t− 4)

Hence, substitute (2),(3) ,(4) into (1)

x(t) = e−ξωnt(A cosωdt+B sinωdt) +
1

mωd
e−ξωnt sinωdt−

1
mωd

e−ξωn(t−4) sin (ωd(t− 4))Φ(t− 4) (4)

Now using IC to find A,B

x(0) = 1

Hence
A = 1

Now take the derivative of the above and evaluate at zero to find B. In doing so, we need to consider only
the xh. The reason is that the particular solution xp2(t) of the delayed pulse (the second pulse) will have no
effect at t = 0 and the first pulse particular solution xp1(t) will also have no contribution, since its response
is assume to occur at 0+, i.e. an infitismal time after t = 0. Therefore, since we intend to evaluate ẋ(t) at
t = 0, we only need to take xh derivative at this point
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ẋ(t) = −ξωne
−ξωnt(A cosωdt+B sinωdt) + e−ξωnt(−Aωd sinωdt+Bωd cosωdt)

At t = 0, ẋ(0) = −1, Hence the above becomes

−1 = −ξωnA+Bωd

−1 = −1 +B
√
3

B = 0

Hence (1) becomes

x(t) = e−ξωnt cosωdt+
1

mωd
e−ξωnt sinωdt−

1
mωd

e−ξωn(t−4) sin (ωd(t− 4))Φ(t− 4)

If we substitute the numerical values for the problem parameters, the above becomes

x(t) = e−t cos
√
3t+ e−t

√
3
sin

√
3t− 1√

3
e−(t−4) sin

(√
3(t− 4)

)
Φ(t− 4)

= e−t
(
cos

√
3t+ 1√

3 sin
√
3t
)
− 1√

3e
−(t−4) sin

(√
3(t− 4)

)
Φ(t− 4)

Which now matches the solution given in class

3.2.12 Key for HW2
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3.3.1 Description of HW
1. Find EQM, one mass, 2 springs, different k, springs only attached when hit

2. Find EQM using Lagrangian, pendulum, but string is rubber band with some stiffness.

3. Find exact solution to nonlinear pendulum EQM

4. nonlinear second order ODE. Find equilibrium points and stability at these.

5. nonlinear 2nd order. Find stability around equilibrium

6. similar to above, but find stability conditions based on damping sign

7. columb damping and phase plane

8. Given phase plane equation (i.e. dy/dx), determine stability. i.e. go back from phase plane to the system
matrix

9. Solve Van Der Pol using perurbation

3.3.2 Problem 1

3.3.2.1 Part (a)

Initially, when mass is given velocity v0 then the equation of motion is

mẍ+ k2x = 0

with IC ẋ(0) = v0, x(0) = 0, hence the solution is

x(t) = A cosωnt+B sinωnt

Where ωn =
√

k2
m in this case.

From IC x(0) = 0 we obtain that A = 0 and now

ẋ(t) = B

√
k2
m

cos
√

k2
m

t

Hence from IC ẋ(0) = v0 we obtain that B = v0√
k2
m

and then we write the solution as

x(t) =
√

m

k2
v0 sin

√
k2
m

t

The above is the solution for EQM of the mass when it is attached to k2spring .

Now the mass will move to the right, losing its kinetic energy to the potential energy of the spring until it
stops at the maximum displacement on the right, which will be

√
m
k2
v0. Then the mass will starts to move to

the left again towards the static equilibrium position, gaining speed as it does and the spring losing potential
energy until the mass is back to x = 0 where it will have speed of v0 but in the left direction. When it hits
the left spring k1, it will move in an EQM given by

mẍ+ k1x = 0

With initial x given by static equilibrium position (i.e. x = 0) and initial velocity of v0 but to the left direction.
Hence as before, we obtain

x(t) =
√

m

k1
v0 sin

√
k1
m

t
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The above is the solution for EQM of the mass when it is attached to spring k1 . We see that the maximum

displacement will be x(t) =
√

m
k1
v0 in this case.

Therefore, we conclude the following:

Mass will move to the right of the static equilibrium position a maximum distance of
√

m
k2
v0

and

Mass will move to the left of the static equilibrium position a maximum distance of
√

m
k1
v0

And since k2 > k1, then it will move the left a longer distance than to the right.

3.3.2.2 Part(b)

From above, the period of motion when the mass is attached to k2 is found by setting
√

k2
m t = 2πft hence

f = 1
2π

√
k2
m , therefore T = 2π

√
m
k2

sec

The period of motion when the mass is attached to k1 is found by setting
√

k1
m t = 2πft hence f = 1

2π

√
k1
m ,

therefore T = 2π
√

m
k1

sec

We see that the period when the mass is attached to k1 is longer than the period when the mass is attached
to k2.

3.3.3 Problem 2

The Lagrangian which I will call Γ (since I am using L for the current length of the band) is given by T −U ,
where T is the kinetic energy of the system and U is the potential energy of the system.

We take x to be from the unstretched length of the rubber band along the length of the band.

First, we determine the velocity of mass m. Assume that the length of the rubber band at any point time is
given by L(t), then

v2 = v2horizontal + v2vertical

=
[
d

dt
(shorizontal)

]2
+
[
d

dt
(svertical)

]2
=
[
d

dt
(L(t) sin θ)

]2
+
[
d

dt
(L(t) cos θ)

]2
=
[
L̇(t) sin θ + L(t) cos (θ) θ̇

]2 + [L̇(t) cos θ − L(t) sin (θ) θ̇
]2

= L̇2(t) sin2 θ + L2(t) cos2 (θ) θ̇2 + 2L̇(t) sin (θ)L(t) cos (θ) θ̇
+ L̇2(t) cos2 θ + L2(t) sin2 (θ) θ̇2 − 2L̇(t) cos (θ)L(t) sin (θ) θ̇
= L̇2(t)

[
sin2 θ + cos2 θ

]
+ L2(t) θ̇2

[
cos2 (θ) + sin2 (θ)

]
= L̇2(t) + L2(t) θ̇2
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Therefore, the system kinetic energy is

T = 1
2mv2

= 1
2m
(
L̇2(t) + L2(t) θ̇2

)
Now we find U , the potential energy for the mass, with the help of this diagram

Umass = −mg(L cos θ − l)

Where the minus sign at the front since the mass has lost PE as it is assume x has stretched the band and
hence the mass is lower than its static position.

And the potential energy for the band is
Uband = 1

2kx
2(t)

Hence, the Lagrangian Γ is

Γ = T − U

= 1
2m
(
L̇2(t) + L2(t) θ̇2

)
−
(
1
2kx

2(t)−mg(L cos θ − l)
)

But L = l + x(t), hence the above becomes

Γ = 1
2m
[(

d

dt
(l + x(t))

)2
+ (l + x(t))2 θ̇2

]
−
(
1
2kx

2(t)−mg[(l + x(t)) cos θ − l]
)

Hence
Γ = 1

2m
[
ẋ2(t) +

(
l2 + x2(t) + 2lx(t)

)
θ̇2
]
− 1

2kx
2(t) +mg[l(cos θ − 1) + x(t) cos θ]

Hence EQM is now found. For θ we have

d

dt

∂Γ
∂θ̇

− ∂Γ
∂θ

= 0

d

dt

(
1
2m
[
2
(
l2 + x2(t) + 2lx(t)

)
θ̇
])

−mg[−l sin θ − x(t) sin θ] = 0

m
[
(2x(t) ẋ(t) + 2lẋ(t)) θ̇ +

(
l2 + x2(t) + 2lx(t)

)
θ̈
]
+mg[l sin θ + x(t) sin θ] = 0(

l2 + x2(t) + 2lx(t)
)
θ̈ + (2x(t) ẋ(t) + 2lẋ(t)) θ̇ + g sin θ[l + x(t)] = 0(

l2 + x2(t) + 2lx(t)
)
θ̈ + (l + x(t)) 2ẋ(t) θ̇ + g sin θ[l + x(t)] = 0

The above can be simplified more if we observer that
(
l2 + x2(t) + 2lx(t)

)
= [l + x(t)]2 = L2 and l+x(t) = L,

hence EQM becomes
L2θ̈ + 2Lẋθ̇ + gL sin θ = 0
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Or
Lθ̈ + 2ẋθ̇ + g sin θ = 0

Using small angle approximation, sin θ ' θ and θ̇ can be neglected, we obtain

Lθ̈ + gθ = 0

θ̈ + g

L
θ = 0

Hence, the effective stiffness is g
L and ωnθ

=
√

g
L =

√
g

l+x(t)Hence we observe that as the band is stretched
more, ωn becomes smaller and the period becomes longer. Now we derive the EQM in the x direction

1
2m
[
ẋ2(t) +

(
l2 + x2(t) + 2lx(t)

)
θ̇2
]
− 1

2kx
2(t) +mg[l(cos θ − 1) + x(t) cos θ]

d

dt

∂Γ
∂ẋ

− ∂Γ
∂x

= 0

d

dt
(mẋ(t)) + kx(t) = 0

Hence EQM is
ẍ(t) + k

mx(t) = 0

Hence, the effective stiffness is k
m and ωnx =

√
k
m The solutions can now be given easily as

θ(t) = A cosωnθ
t+B sinωnθ

t

x(t) = C cosωnxt+D sinωnxt

or

θ(t) = A cos
√

g

l + x (t) t+B sin
√

g

l + x (t) t

L(t) = l + C cos
√

k

m
t+D sin

√
k

m
t

Where A,B,C,D can be obtained from initial conditions.

3.3.4 Problem 3

EQM is given by

θ̈ + ω2
0

(
θ − θ3

6

)
= 0

The above can be put in the form
θ̈ = f(θ) (1)

Where
f(θ) = ω2

0

(
θ3

6 − θ

)
Hence, this is an autonomous differential equation since f(θ) does not depend on the independent variable t

explicitly.

Now, Let x1 = θ and x2 = θ̇, then dx1
dt = x2 and using the new state variables we can rewrite the differential

equation as

dx2

dt
+ ω2

0

(
x1 −

x3
1
6

)
= 0

dx2

dx1

dx1

dt
= −ω2

0

(
x1 −

x3
1
6

)
dx2

dx1
x2 = −ω2

0

(
x1 −

x3
1
6

)
x2dx2 = −ω2

0

(
x1 −

x3
1
6

)
dx1
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Integrate both side

x2
2
2 = −ω2

0

∫ (
x1 −

x3
1
6

)
dx1 + C1

x2
2 = −2ω2

0

[
x2
1
2 − x4

1
24

]
+ C1

But x2 = θ̇ and x1 = θ, then the above becomes

θ̇2 = −2ω2
0

[
θ2

2 − θ4

24

]
+ C1 (2)

We are told that when θ = θ0 then θ̇ = 0, hence from the above

0 = −2ω2
0

[
θ20
2 − θ40

24

]
+ C1

C1 = ω2
0

[
θ20 −

θ40
12

]
Then (2) becomes

θ̇2 = −2ω2
0

[
θ2

2 − θ4

24

]
+ ω2

0

[
θ20 −

θ40
12

]
or

θ̇2 = ω2
0

[
1
12θ

4 − θ2
]
+ ω2

0

[
θ20 −

θ40
12

]
Therefore

θ̇ = ω0

√
1
12θ

4 − θ2 + θ20 −
θ40
12

dθ

dt
= ω0√

12

√
θ4 − 12θ2 + 12θ20 − θ40

= ω0

2
√
3

√
θ2 (θ2 − 12) + θ20 (12− θ20)

Hence integrating the above we obtain∫ 1√
θ2 (θ2 − 12) + θ20 (12− θ20)

dθ = ω0

2
√
3

∫
dt+ C2∫ 1√

θ2 (θ2 − 12) + θ20 (12− θ20)
dθ = ω0

2
√
3
t+ C2

We can stop here. What remains is to evaluate the integral above by some analytical method to obtain an
expression for θ(t). The constant C2 can be found if we are given the position initial condition.

3.3.5 Problem 3, different method
EQM is given by

θ̈ + ω2
0

(
θ − θ3

6

)
= 0

The above can be put in the form
θ̈ = f(θ) (1)

Where
f(θ) = ω2

0

(
θ3

6 − θ

)

Hence, this is an autonomouse differential equation since f(θ) does not depend on the independent variable
t explicility.

To solve (1), we first write

θ̈ = d

dt

(
dθ

dt

)
=
[
d

dθ

(
dθ

dt

)]
dθ

dt

=
[
d

dθ

((
dt

dθ

)−1
)](

dt

dθ

)−1
(2)
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But
d

dθ

((
dt

dθ

)−1
)

= −
(
dt

dθ

)−2
d2t

dθ2

(
dt

dθ

)−1

Substitute the above into (2) we obtain

θ̈ = −
(
dt

dθ

)−2
d2t

dθ2

(
dt

dθ

)−1

= −
(
dt

dθ

)−3
d2t

dθ2
(3)

But
1
2
d

dθ

((
dt

dθ

)−2
)

= −
(
dt

dθ

)−3
d2t

dθ2
(4)

Compare (4) and (3) we see that (3) can be written as

θ̈ = 1
2
d

dθ

((
dt

dθ

)−2
)

THerefore, we use this expression for θ̈ in (1) and obtain

1
2
d

dθ

((
dt

dθ

)−2
)

= f(θ)

Substitute the expression for f(θ) we obtain

1
2

d
dθ

((
dt
dθ

)−2) = ω2
0

(
θ3

6 − θ
)

Integrate we obtain

1
2

(
dt

dθ

)−2
=
∫

ω2
0

(
θ3

6 − θ

)
dθ + C1(

dt

dθ

)2
= 1

2
∫
ω2
0
(
θ3

6 − θ
)
dθ + C1

= 1
2ω2

0

(
θ4

4×6 − θ2

2

)
+ C1

Hence

dt

dθ
= 1√

2ω2
0

(
θ4

4×6 − θ2

2

)
+ C1

Integrate again, we obtain

t =
∫ (

2ω2
0

(
θ4

24 − θ2

2

)
+ C1

)−1
2

dθ + C2

= C2 +
∫ 1√

2ω2
0
(
θ4

24 − θ2

2
)
+ C1

dθ

= C2 +
∫ 1√

θ4

12 − ω2
0θ

2 + C1

dθ

= C2 +
∫ √

12√
θ4 − 12ω2

0θ
2 + C3

dθ
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Where C3 = 12C1, a new constant. Hence

t = C2 + 2
√
3
∫ 1√

θ4−12ω2
0θ

2+C3
dθ

second approach

Let x1 = θ

x2 = θ̇

}
ẋ1 = x2

ẋ2 = −ω2
0

(
x1 − x3

1
6

) , hence using the new state variables we can rewrite the differential

equation as

θ̈ + ω2
0

(
θ − θ3

6

)
= 0

dx2

dt
+ ω2

0

(
x1 −

x3
1
6

)
= 0

dx2

dx1

dx1

dt
= −ω2

0

(
x1 −

x3
1
6

)
dx2

dx1
x2 = −ω2

0

(
x1 −

x3
1
6

)
x2dx2 = −ω2

0

(
x1 −

x3
1
6

)
dx1

Integrate both side

x2
2
2 = −ω2

0

∫ (
x1 −

x3
1
6

)
dx1 + C1

x2
2 = −2ω2

0

[
x2
1
2 − x4

1
24

]
+ C1

But x2 = θ̇ and x1 = θ, then the above becomes

θ̇2 = −2ω2
0

[
θ2

2 − θ4

24

]
+ C1 (2)

We are told that when θ = θ0 then θ̇ = 0, hence from the above

0 = −2ω2
0

[
θ20
2 − θ40

24

]
+ C1

C1 = ω2
0

[
θ20 −

θ40
12

]

Then (2) becomes

θ̇2 = −2ω2
0

[
θ2

2 − θ4

24

]
+ ω2

0

[
θ20 −

θ40
12

]
or

θ̇2 = −ω2
0

[
θ2 − 1

12θ
4
]
+ ω2

0

[
θ20 −

θ40
12

]
θ̇ =

√
ω2
0

[
1
12θ

4 − θ2
]
+ ω2

0

[
θ20 −

θ40
12

]

= ω0

√
1
12θ

4 − θ2 + θ20 −
θ40
12

= ω0

2
√
3

√
θ4 − 12θ2 + 12θ20 − θ40

Hence integrating the above we obtain
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θ(t) = ω0

2
√
3

∫ √
θ4 − 12θ2 + 12θ20 − θ40dt

=
(

ω0

2
√
3

√
θ4 − 12θ2 + 12θ20 − θ40

)
t+ C2

3.3.6 Problem 4

The nonlinear equation is
ẍ+ 0.1

(
x2 − 1

)
ẋ+ x = 0

Let
x1 = x

x2 = ẋ

}
ẋ1 = ẋ

ẋ2 = −0.1
(
x2 − 1

)
ẋ− x

}
ẋ1 = x2
ẋ2 = −0.1

(
x2
1 − 1

)
x2 − x1

Hence (
ẋ1
ẋ2

)
=
(

x2
−0.1

(
x2
1 − 1

)
x2 − x1

)
=
(
g(x1, x2)
f(x1, x2)

)

Solve for
(
ẋ1
ẋ2

)
=
(
0
0

)
for equilibrium. Hence x2 = 0 and therefore x1 = 0 as well. Now we obtain the

linearized state matrix A at the equilibrium point found. First we note that ∂g
∂x1

= 0, ∂g
∂x2

= 1, ∂f
∂x1

=
∂

∂x1

(
−0.1x2

1x2 + 0.1x2 − x1
)
= −0.2x1x2 − 1 and ∂f

∂x2
= −0.1x2

1 + 0.1, hence

A =
(

∂g
∂x1

∂g
∂x2

∂f
∂x1

∂f
∂x2

)
x1=0,x2=0

=
(

0 1
−0.2x1x2 − 1 −0.1x2

1 + 0.1

)
x1=0,x2=0

=
(

0 1
−1 0.1

)
Find the eigenvalues, we obtain ∣∣∣∣−λ 1

−1 0.1− λ

∣∣∣∣ = 0

−0.1λ+ λ2 + 1 = 0

Hence
λ1,2 = {0.05 + 0.998 75i, 0.05− 0.998 75i}

This is of the form
λ = α± βi

With α > 0, hence unstable, and spiral out. So. now we can draw the phase portrait near (0, 0) as shown
below.
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Side QUESTION:

If I wanted to draw the phase plot itself, I am getting this. How to finish this last step? It is not separable?

To obtain phase plane plot, we need to express x2 as function of x1. Looking at the original nonlinear
differential equation again and rewrite using the state variables, we obtain

ẍ+ 0.1
(
x2 − 1

)
ẋ+ x = 0

dx2

dt
+ 0.1

(
x2
1 − 1

)
x2 + x1 = 0

dx2

dx1

dx1

dt
+ 0.1

(
x2
1 − 1

)
x2 + x1 = 0

dx2

dx1
x2 + 0.1

(
x2
1 − 1

)
x2 + x1 = 0

dx2

dx1
x2 + 0.1x2

1x2 − 0.1x2 + x1 = 0

dx2

dx1
= 0.1− 0.1x2

1 −
x1

x2
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3.3.7 Problem 5

The equation is
θ̈ + 0.5θ̇ + sin θ = 0.8

Let
x1 = θ

x2 = θ̇

}
ẋ1 = θ̇

ẋ2 = 0.8− 0.5θ̇ − sin θ

}
ẋ1 = x2
ẋ2 = 0.8− 0.5x2 − sin x1

Hence (
ẋ1
ẋ2

)
=
(

x2
0.8− 0.5x2 − sin x1

)
=
(
g(x1, x2)
f(x1, x2)

)

Solve for
(
ẋ1
ẋ2

)
=
(
0
0

)
for equilibrium. Hence x2 = 0 and therefore x1 = sin−1 (0.8).

Now we obtain the linearized state matrix A at the equilibrium point found. First we note that ∂g
∂x1

=
0, ∂g

∂x2
= 1, ∂f

∂x1
= ∂

∂x1
(0.8− 0.5x2 − sin x1) = − cosx1 and ∂f

∂x2
= −0.5, hence

A =
(

∂g
∂x1

∂g
∂x2

∂f
∂x1

∂f
∂x1

)
x1=sin−1(0.8),x2=0

=
(

0 1
− cosx1 −0.5

)
x1=sin−1(0.8),x2=0

=
(

0 1
− cos

(
sin−1 (0.8)

)
−0.5

)
=
(

0 1
− cos (0.927295) −0.5

)
=
(

0 1
−0.6 −0.5

)
Hence find the eigenvalues, we obtain ∣∣∣∣ −λ 1

−0.6 −0.5− λ

∣∣∣∣ = 0

λ2 + 0.5λ+ 0.6 = 0

Hence
λ1,2 = {−0.25 + 0.733 14i,−0.25− 0.733 14i}

This is of the form
λ = α± βi

With α < 0, , Hence stable, spiral in.

3.3.8 Problem 6

The equation is
θ̈ + cθ̇ + sin θ = 0
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With IC θ(0) = θ0,and θ̇(0) = 0 Let

x1 = θ

x2 = θ̇

}
ẋ1 = θ̇

ẋ2 = −cθ̇ − sin θ

}
ẋ1 = x2
ẋ2 = −cx2 − sin x1

Hence (
ẋ1
ẋ2

)
=
(

x2
−cx2 − sin x1

)
=
(
g(x1, x2)
f(x1, x2)

)
Now, we are told to consider the initial condition θ̇ = 0, but this is the same as ẋ1 = 0. But if speed is zero,

then acceleration must also be zero, hence θ̈ = 0 or ẋ2 = 0. Therefore we need to solve for
(
ẋ1
ẋ2

)
=
(
0
0

)
or

(
x2

−cx2 − sin x1

)
=
(
0
0

)
Therefore x2 = 0 and then sin x1 = 0 or x1 = nπ for n = 0,±1,±2, · · ·.

Now we obtain the linearized state matrix A at the equilibrium point found. First we note that ∂g
∂x1

=
0, ∂g

∂x2
= 1, ∂f

∂x1
= − cosx1 and ∂f

∂x2
= −c, hence

A =
(

∂g
∂x1

∂g
∂x2

∂f
∂x1

∂f
∂x2

)
x1=nπ,x2=0

=
(

0 1
− cosx1 −c

)
x1=nπ,x2=0

=
(

0 1
− cos (nπ) −c

)
Hence find the eigenvalues, we obtain ∣∣∣∣ −λ 1

− cos (nπ) −c− λ

∣∣∣∣ = 0

−λ(−c− λ) + cos (nπ) = 0
λ2 + cλ+ cos (nπ) = 0

Now, we are asked to evaluate this at the center of the phase portrait, which means at x1 = 0 and x2 = 0, in
other words, when n = 0 (since when n = 0, then x1 = 0). Hence, when n = 0, the characteristic equation
becomes

λ2 + cλ+ 1 = 0

Hence

λ1,2 =

 − c
2 +

√
c2

4 − 1

− c
2 −

√
c2

4 − 1


We now consider all the possible values of c and see its effect on the roots of the characteristic equation. This
is done using a table

c value roots form Location of roots type of stability at (0, 0)
c < 0 and |c| < 2 α± iβ where α > 0 In RHS complex plane Spiral out, UNSTABLE
c < 0 and |c| > 2 α± β where α > 0 and β < α In RHS on the real line Repelling, UNSTABLE
c > 0 and |c| < 2 α± iβ where α < 0 In LHS complex plane Spiral in, STABLE
c > 0 and |c| > 2 α± β where α < 0 and β < α In LHS on the real line Attracting, STABLE

Therefore, we conclude that for c < 0 the system is unstable at equilibrium point (0, 0) and for c > 0 the
system is stable at equilibrium point (0, 0) .

Notice that we did not use the initial condition on the position at all. i.e. knowing that θ(0) = θ0 was not
needed to solve this problem.
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3.3.9 Problem 7

EQM is
ẍ+ f

ẋ

|ẋ|
+ ω2

nx = 0

We need to determine the phase plane trajectories. The term ẋ∣∣ẋ∣∣will be either +1 or −1 depending on the
sign of ẋ

Hence for ẋ > 0 we have

ẍ+ f + ω2
nx = 0

ẍ+ ω2
nx = −f

And for ẋ < 0 we have

ẍ− f + ω2
nx = 0

ẍ+ ω2
nx = f

Analyze each case separately. For ẋ > 0 we have

d

dt
ẋ+ ω2

nx1 = −f

dx2

dt
+ ω2

nx1 = −f

dx2

dx1

dx1

dt
+ ω2

nx1 = −f

dx2

dx1
x2 + ω2

nx1 = −f

dx2

dx1
x2 = −f − ω2

nx1

dx2x2 =
(
−f − ω2

nx1
)
dx1

Integrating both sides, we obtain
x2
2
2 =

(
−fx1 −

ω2
nx

2
1

2

)
+ C

Using IC given by x1(0) = 10
(

f
ω2

n

)
and x2(0) = 0, then the above becomes

0 =

−f × 10
(

f

ω2
n

)
−

ω2
n

[
10
(

f
ω2

n

)]2
2

+ C

0 = −10f2

ω2
n

− 50ω2
n

(
f2

ω4
n

)
+ C

C = 10f2

ω2
n

+ 50 f
2

ω2
n

Hence

C = 60
(

f
ωn

)2
Therefore, the phase portrait is

x2
2 = −2fx1 − ω2

nx
2
1 + 120

(
f

ωn

)2

Hence

x2 = ±
√
120

(
f
ωn

)2
− 2fx1 − ω2

nx
2
1
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Given f and ωn we can plot the phase plane. For ẋ < 0 we have

d

dt
ẋ+ ω2

nx1 = f

dx2

dx1
x2 = f − ω2

nx1

dx2x2 =
(
f − ω2

nx1
)
dx1

Integrating both sides, we obtain
x2
2
2 =

(
fx1 −

ω2
nx

2
1

2

)
+ C

Using IC given by x1(0) = 10
(

f
ω2

n

)
and x2(0) = 0, then the above becomes

0 =

f × 10
(

f

ω2
n

)
−

ω2
n

[
10
(

f
ω2

n

)]2
2

+ C

C = −10f2

ω2
n

+ 50 f
2

ω2
n

Hence

C = 40
(

f
ωn

)2
Therefore, the phase portrait is

x2
2
2 =

(
fx1 −

ω2
nx

2
1

2

)
+ 40

(
f

ωn

)2

x2
2 = 2fx1 − ω2

nx
2
1 + 80

(
f

ωn

)2

Hence

x2 = ±
√
80
(

f
ωn

)2
+ 2fx1 − ω2

nx
2
1

Given f and ωn we can plot the phase plane.

3.3.10 Problem 8

dy

dx
=

−cy −
(
x− 0.1x3)
y

From the above phase plane, obtain the differential equation, and then convert back to state space and obtain
the system matrix.

Writing it in state space, where we take y = x2 and x = x1, we obtain

dx2

dx1
=

−cx2 −
(
x1 − 0.1x3

1
)

x2
dx2

dx1
x2 = −cx2 −

(
x1 − 0.1x3

1
)

dx2

dx1

dx1

dt
= −cx2 −

(
x1 − 0.1x3

1
)

dx2

dt
= −cx2 −

(
x1 − 0.1x3

1
)

ẍ = −cx2 −
(
x1 − 0.1x3

1
)

Hence the ODE is
ẍ+ cẋ+

(
x− 0.1x3) = 0
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Therefore
x1 = x

x2 = ẋ

}
ẋ1 = ẋ

ẋ2 = −cẋ−
(
x− 0.1x3) } ẋ1 = x2

ẋ2 = −cx2 −
(
x1 − 0.1x3

1
)

Hence (
ẋ1
ẋ2

)
=
(

x2
−cx2 −

(
x1 − 0.1x3

1
)) =

(
g(x1, x2)
f(x1, x2)

)
Hence, the linearized system matrix is, which we evaluate at (0, 0) is

A =
(

∂g
∂x1

∂g
∂x2

∂f
∂x1

∂f
∂x2

)
x1=0,x2=0

But ∂g
∂x1

= 0, ∂g
∂x2

= 1, ∂f
∂x1

= −1 + 0.3x2
1,

∂f
∂x2

= −c, hence

A =
(

0 1
−1 + 0.3x2

1 −c

)
x1=0,x2=0

A =
(

0 1
−1 −c

)
Hence ∣∣∣∣−λ 1

−1 −c− λ

∣∣∣∣ = 0

(−λ) (−c− λ) + 1 = 0
λ2 − cλ+ 1 = 0

Hence

λ1,2 =

 c
2 +

√
c2

4 − 1
c
2 −

√
c2

4 − 1


We set up the following table

c value roots form Location of roots type of stability at (0, 0)
c > 0 and |c| < 2 α± iβ where α > 0 In RHS complex plane Spiral out, UNSTABLE
c > 0 and |c| > 2 α± β where α > 0 and β < α In RHS on the real line Repelling, UNSTABLE
c < 0 and |c| < 2 α± iβ where α < 0 In LHS complex plane Spiral in, STABLE
c < 0 and |c| > 2 α± β where α < 0 and β < α In LHS on the real line Attracting, STABLE

We see that for c > 0, system is UNSTABLE and depending on value of c, it is either Spiral out or Repelling
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3.3.11 Key for HW3
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4.1 Impulse response of second order system which is not
under-damped

Abstract

The impulse response h(t) for second order single degree of freedom system which is under-
damped is well known. In this note, the derivation to the impulse response of critically damped
and over-damped systems are given.

4.1.1 Impulse response for over-damped system
Given the system

ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) = δ(t) (1)

Where δ(t) is an impulse. We seek to find x(t), the response of the above system to this impulse.
Assume the system is initially at rest. Due to the action of this impulse, the system will obtain

an initial speed which is found as follows. Let δ(t) ≡ F̂ = F∆t where ∆t is the duration of the
impulse and F is the magnitude (in Newtons) of the impulse (hence units of F̂ is N sec). This
impulse will impart a momentum on the mass being hit which we use to determine the initial
speed

F̂ = mv0

v0 = F̂

m

Hence, the system will now have initial conditions of x(0) = 0 and ẋ(0) = v0 = F̂
m . Now, the

response of (1), when ξ > 1 is known and given by

x(t) = e−ξωnt
(
Aeωn

√
ξ2−1t +Be−ωn

√
ξ2−1t

)
(2)

Apply x(0) = 0, we obtain that 0 = A+B or B = −A. Now

ẋ(t) = −ξωne
−ξωnt

(
Aeωn

√
ξ2−1t +Be−ωn

√
ξ2−1t

)
+ e−ξωnt

(
Aωn

√
ξ2 − 1eωn

√
ξ2−1t −Bωn

√
ξ2 − 1e−ωn

√
ξ2−1t

)
Apply ẋ(0) = F̂

m to the above, we obtain

F̂

m
=
(
Aωn

√
ξ2 − 1−Bωn

√
ξ2 − 1

)
But B = −A, hence F̂

m = 2Aωn

√
ξ2 − 1 or A = F̂

2mωn

√
ξ2−1

Hence (2) becomes

x(t) = e−ξωnt

(
F̂

2mωn

√
ξ2 − 1

eωn

√
ξ2−1t − F̂

2mωn

√
ξ2 − 1

e−ωn

√
ξ2−1t

)

= F̂

2mωn

√
ξ2 − 1

e−ξωnt
(
eωn

√
ξ2−1t − e−ωn

√
ξ2−1t

)
When the magnitude of the impulse is unity, i.e. a unit impulse, hence F̂ = 1, then we obtain the
unit impulse response

h(t) = 1
2mωn

√
ξ2−1

e−ξωnt
(
eωn

√
ξ2−1t − e−ωn

√
ξ2−1t

)
4.1.2 Impulse response for critically damped system
The response of (1), when ξ = 1 is given by

x(t) = Ae−ξωnt +Bte−ξωnt (3)

Apply x(0) = 0, we obtain that 0 = A Now

ẋ(t) = Be−ξωnt − ξωnBte−ξωnt

Apply ẋ(0) = F̂
m to the above, we obtain

F̂

m
= B

Hence (3) becomes

x(t) = F̂

m
te−ξωnt

When the magnitude of the impulse is unity, i.e. a unit impulse, hence F̂ = 1, then we obtain the
unit impulse response

h(t) = 1
m
te−ξωnt
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4.2 Final Project. Stabilization of an inverted pendulum on
moving cart using feedback control

4.2.1 Introduction
Given the following system

M

θ

m

x

u(t)

L

Figure 4.1: System to control

Need to find control law u(t) to stabilize the inverted pendulum. First we need to obtain the equations of
motions.

4.2.2 Analysis
Let the Lagrangian coordinates be θ and x as shown. Let L be the Lagrangian. Let T be the kinetic energy
of the system and let U be the potential energy. Hence

L = T − U

and
T = 1

2Mẋ2 + 1
2mv2

Where v is the linear velocity of the blob m relative to the inertial system.

m

v

V cos(θ)

V sin(θ)θ

Figure 4.2: Velocity diagram

Hence, since v = lθ̇, we obtain

v2 = (ẋ+ vx)2 + v2y

= (ẋ+ v cos θ)2 + (v sin θ)2

=
(
ẋ+ lθ̇ cos θ

)2 + (lθ̇ sin θ)2
= ẋ2 + l2θ̇2 cos2 θ + 2ẋlθ̇ cos θ + l2θ̇2 sin2 θ

= ẋ2 + l2θ̇2 + 2ẋlθ̇ cos θ
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Hence T becomes
T = 1

2Mẋ2 + 1
2m
(
ẋ2 + l2θ̇2 + 2ẋlθ̇ cos θ

)
And since the blob is losing potential energy as it move downwards, we obtain U as (assuming zero potential
energy is the ground level)

U = mgl cos θ

Therefore the Lagrangian is

L = T − U

= 1
2Mẋ2 + 1

2m
(
ẋ2 + l2θ̇2 + 2ẋlθ̇ cos θ

)
−mgl cos θ

To obtain the equation of motions, we need to evaluate d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi for each Lagrangian coordinate

qi and Qi is the generalized force for that coordinate. Hence for θ we obtain

∂L

∂θ̇
= 1

2m
(
2l2θ̇ + 2ẋl cos θ

)
d

dt

(
∂L

∂θ̇

)
= 1

2m
(
2l2θ̈ + 2ẍl cos θ − 2ẋl sin (θ) θ̇

)
∂L

∂θ
= 1

2m
(
−2ẋlθ̇ sin θ

)
+mgl sin θ

Hence EQM for θ is

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= Q

1
2m
(
2l2θ̈ + 2ẍl cos θ − 2ẋl sin (θ) θ̇

)
−
(
1
2m
(
−2ẋlθ̇ sin θ

)
+mgl sin θ

)
= Q

mlθ̈ +mẍ cos θ −mẋ sin θθ̇ +mẋθ̇ sin θ −mg sin θ = Q

l

mlθ̈ +mẍ cos θ −mg sin θ = Q

l
(1)

Now we need to obtain Q for the coordinate θ. Apply a virtual displacement δθ and determine the work done
by u(t)

m

δθ

u

L δθ

Figure 4.3: virtual work for θ

Hence the work done by u is making virtual displacement δθ is zero, since u is not in the line of force along
this displacement. Therefore, the EQM for θ is from Eq (1) above

mlθ̈ +mẍ cos θ −mg sin θ = 0 (2)
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Now we find EQM for coordinate x

∂L

∂ẋ
= Mẋ+ 1

2m
(
2ẋ+ 2lθ̇ cos θ

)
d

dt

(
∂L

∂ẋ

)
= Mẍ+ 1

2m
(
2ẍ+ 2lθ̈ cos θ − 2lθ̇ sin (θ) θ̇

)
= Mẍ+m

(
ẍ+ lθ̈ cos θ − lθ̇2 sin θ

)
∂L

∂x
= 0

Hence EQM for x is
d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= Q

(M +m) ẍ+mlθ̈ cos θ −mlθ̇2 sin θ = Q

Now we need to find Q for x. Apply virtual displacement in the x direction, and find work done by u

m

θ

u

δx

Figure 4.4: virtual displacement in the x direction

δW = u(δx)
But Q = δW

δx , hence we see that Q = u, therefore, the EQM becomes

(M +m) ẍ+mlθ̈ cos θ −mlθ̇2 sin θ = u (3)

Conclusion: The two equations of motion are

mlθ̈ +mẍ cos θ −mg sin θ = 0
(M +m) ẍ+mlθ̈ cos θ −mlθ̇2 sin θ = u

Assuming small angle approximation gives

lθ̈ + ẍ− gθ = 0 (4)
(M +m) ẍ+mlθ̈ = u (5)

Now we solve for ẍ and θ̈ from Eqs (4) and (5). From Eq (5)

ẍ = u−mlθ̈

(M +m)
Substituting the above into Eq (4) gives

lθ̈ +
(

u−mlθ̈

(M +m)

)
− gθ = 0

(M +m) lθ̈ + u−mlθ̈ − (M +m) gθ = 0
θ̈Ml − (M +m) gθ = −u

θ̈ = −u+ (M +m) gθ
Ml

(6)
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Using result for θ̈ found in Eq (6) and substituting into (5) gives

ẍ = u−mlθ̈

(M +m)

ẍ =
u−ml

(
−u+(M+m)gθ

Ml

)
(M +m)

= uM +mu−mMgθ −m2gθ

M (M +m)

= −gmθ(M +m)
M (M +m) + u

M

= −gmθ

M
+ u

M

To summarize what we have so far. We have obtained two linearized equations of motion for θ and x and
they are the following

lθ̈ + ẍ− gθ = u

(M +m) ẍ+mlθ̈ = u

Now we convert the equations to state space. Let x1 = x, x2 = ẋ, x3 = θ, x4 = θ̇, hence

x1 = x

x2 = ẋ

x3 = θ

x4 = θ̇

→

ẋ1 = ẋ = x2
ẋ2 = ẍ

ẋ3 = θ̇ = x4
ẋ4 = θ̈

→

ẋ1 = ẋ = x2
ẋ2 = −gmθ

M + u
M

ẋ3 = θ̇ = x4

ẋ4 = −u+(M+m)gθ
Ml


ẋ1 = x2
ẋ2 = −gmx3

M + u
M

ẋ3 = x4

ẋ4 = x3
g(M+m)

Ml − u
Ml

Writing the above in the form Ẋ = AX +Bu we obtain
ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
0 0 −gm

M 0
0 0 0 1
0 0 g(M+m)

Ml 0



x1
x2
x3
x4

+


0
1
M

0
−1
Ml

u

y =
(
1 0 1 0

)
x1
x2
x3
x4


4.2.2.1 Stability of open loop system

To determine the stability of the above system (now that it is a linear system since we have linearized it),
we first find the equilibrium point. This is found by setting ẋ = 0, and this results in x2 = 0, x3 = 0, x4 = 0,
i.e. ẋ = 0, θ = 0, and θ̇ = 0. Notice that the value of x is not important for the equilibrium point. Now we
need to determine if this point is stable or not.

det


−λ 1 0 0
0 −λ −gm

M 0
0 0 −λ 1
0 0 g(M+m)

Ml −λ

 = 0

− 1
Ml

(
Mgλ2 −Mlλ4 + gmλ2) = 0

λ2(Mlλ2 − g(m+M)
)
= 0

Hence
λ =

{
0, 0, 1

Ml

√
Mgl (M +m),− 1

Ml

√
Mgl (M +m)

}
Since M, l,m, g are all positive, we see that one root will be in the RHS of the complex plane. Therefore the
open loop system is unstable.

To stabilize it, we need to supply a control law u to force the roots of the new A matrix to be all in the LHS
of the complex plane.

Let

u = Fx (7)

= (f1, f2, f3, f4) (x1, x2, x3, x4)T

= f1x1 + f2x2 + f3x3 + f4x4
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Hence Eq (7) becomes
ẋ1
ẋ2
ẋ3
ẋ4

 =



0 1 0 0
0 0 −gm

M 0
0 0 0 1
0 0 g(M+m)

Ml 0

+


0
1
M

0
−1
Ml

(f1 f2 f3 f4
)


x1
x2
x3
x4



ẋ1
ẋ2
ẋ3
ẋ4

 =



0 1 0 0
0 0 −gm

M 0
0 0 0 1
0 0 g(M+m)

Ml 0

+


0 0 0 0

1
M f1

1
M f2

1
M f3

1
M f4

0 0 0 0
− 1

Mlf1 − 1
Mlf2 − 1

Mlf3 − 1
Mlf4




x1
x2
x3
x4



ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0

1
M f1

1
M f2

1
M f3 − 1

M gm 1
M f4

0 0 0 1
− 1

Mlf1 − 1
Mlf2

1
M

g
l (M +m)− 1

Mlf3 − 1
Mlf4



x1
x2
x3
x4



y =
(
1 0 1 0

)
x1
x2
x3
x4


Therefore

det


−λ 1 0 0
1
M f1

1
M f2 − λ 1

M f3 − 1
M gm 1

M f4
0 0 −λ 1

− 1
Mlf1 − 1

Mlf2
1
M

g
l (M +m)− 1

Mlf3 − 1
Mlf4 − λ

 = 0

1
Ml

(
gf1 + λ2f3 + λ3f4 + gλf2 −Mgλ2 +Mlλ4 − gmλ2 − lλ2f1 − lλ3f2

)
= 0

Hence
λ4 + λ3 (f4 − l f2)

M l
+ λ2 (f3 −M g − g m− l f1)

M l
+ λ

g f2
M l

+ g f1
M l

= 0 (8)

We now need to determine f1, f2, f3 and f4. Assume we require that the closed loop poles be located at

λ = {−1,−2,−1 + i,−1− i}

Hence, the characteristic polynomial is

∆(λ) = (λ+ 1) (λ+ 2) (λ+ 1− i) (λ+ 1 + i)
= λ4 + 5λ3 + 10λ2 + 10λ+ 4 (9)

Compare Eqs (8,9) we obtain the following

(f4 − l f2)
M l

= 5

(f3 −M g − g m− l f1)
M l

= 10

g f2
M l

= 10

g f1
M l

= 4

Or

f4 − l f2 = 5Ml

f3 − l f1 = 10Ml + g(M +m)

f2 = 10Ml

g

f1 = 4Ml

g

Hence

f4 = 5Ml

(
1 + 2l

g

)
f3 = 2Ml

(
5 + 2l

g

)
+ g(M +m)

f2 = 10Ml

g

f1 = 4Ml

g
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Therefore, given M,m, g, l we can find f1, f2, f3, f4 which will generate force u(t) which will keep the poles
of the closed loop system in the LHS of the complex plane, and keep the inverted pendulum stable. For
example, using M = 1kg,m = 0.1kg, l = 1, g = 10m/s2 gives

f4 = 5
(
1 + 2

10

)
= 6

f3 = 2
(
5 + 2

10

)
+ 10(1.1) = 21.4

f2 = 10 1
10 = 1

f1 = 4
10 = 0.4

4.2.3 Comparing solution with and without stabilizing control law
We will now generate the solution x(t) , θ(t) for some initial conditions and plot these solutions against time.
In the first case, we assume u(t) is zero. Hence we will observe that the system is unstable, i.e. θ(t) will grow
away from the marginally stable position which is θ = 00 and will not return back. Next, we will introduce
u(t) as determined in the previous section, and observe the new solution to see that it remains near or at
the θ = 00 position.

First, we need to decide on some initial conditions. These must be such that θ(0) close to zero and for x(0)
we can use zero. Hence, let

θ(0) = θ0

θ̇(0) = θ̇0

x(0) = 0
ẋ(0) = ẋ0

To determine y, which is the solution of the system, we first must solve equation (7) and (8) for the above
IC.

The solution to (7) is given by solution to
ẋ =Ax (10)

Which is
x(t) = x(0) eAt

Where

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)


And

x(0) =


x1(0)
x2(0)
x3(0)
x4(0)

 =


0
ẋ0
θ0
θ̇0


Taking Laplace transform of (10) results in

sX(s)− x(0) = AX(s)

X(s) = (sI −A)−1 x(0)

Hence
x(t) = L−1

[
(sI −A)−1

]
x(0)

Therefore, the solution to 
ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
0 0 −gm

M 0
0 0 0 1
0 0 g(M+m)

Ml 0



x1
x2
x3
x4


Is



chapter 4. projects 119

x(t) = L−1




s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 s

−


0 1 0 0
0 0 −gm

M 0
0 0 0 1
0 0 g(M+m)

Ml 0




−1


0
ẋ0
θ0
θ̇0



= L−1



s −1 0 0
0 s 1

M gm 0
0 0 s −1
0 0 − 1

M
g
l (M +m) s


−1


0
ẋ0
θ0
θ̇0



= L−1




1
s

1
s2 gl m

Mgs−Mls3+gms gl m
Mgs2−Mls4+gms2

0 1
s gl m

−Mls2+Mg+gm gl m
Mgs−Mls3+gms

0 0 −Ml s
−Mls2+Mg+gm −M l

−Mls2+Mg+gm

0 0 − Mg+gm
−Mls2+Mg+gm −Ml s

−Mls2+Mg+gm





0
ẋ0
θ0
θ̇0



=



1 t glm

(
1

Mg+gm −
cosh t

√
1

Ml (Mg+gm)
Mg+gm

)
glm

(
t

Mg+gm −
sinh t

√
1

Ml (Mg+gm)

(Mg+gm)
√

1
Ml (Mg+gm)

)

0 1 − 1
M gm

sinh t
√

1
Ml (Mg+gm)√

1
Ml (Mg+gm)

glm

(
1

Mg+gm −
cosh t

√
1

Ml (Mg+gm)
Mg+gm

)
0 0 cosh t

√
1
Ml (Mg + gm)

sinh t
√

1
Ml (Mg+gm)√

1
Ml (Mg+gm)

0 0 1
Ml

(
sinh t

√
1
Ml (Mg + gm)

)
Mg+gm√
1

Ml (Mg+gm)
cosh t

√
1
Ml (Mg + gm)




0
ẋ0
θ0
θ̇0



=



tẋ0 + glmθ0

(
1

Mg+gm −
cosh t

√
1

Ml (Mg+gm)
Mg+gm

)
+ θ̇0glm

(
t

Mg+gm −
sinh t

√
1

Ml (Mg+gm)

(Mg+gm)
√

1
Ml (Mg+gm)

)

ẋ0 + θ̇0glm

(
1

Mg+gm −
cosh t

√
1

Ml (Mg+gm)
Mg+gm

)
− 1

M gmθ0
sinh t

√
1

Ml (Mg+gm)√
1

Ml (Mg+gm)

θ0 cosh t
√

1
Ml (Mg + gm) + θ̇0

sinh t
√

1
Ml (Mg+gm)√

1
Ml (Mg+gm)

θ̇0 cosh t
√

1
Ml (Mg + gm) + 1

Mlθ0
(
sinh t

√
1
Ml (Mg + gm)

)
Mg+gm√
1

Ml (Mg+gm)


Therefore, the solution to x3(t) which is θ(t) is given by

θ(t) = θ0 cosh t
√

1
Ml

(Mg + gm) + θ̇0
sinh t

√
1
Ml (Mg + gm)√

1
Ml (Mg + gm)

Let θ0 = π
10 , θ̇0 = 1rad/sec, we plot the above solution for t = 0 up to 10 seconds

Figure 4.5: unstable θ

We plot the solution to (8), which is the state space equation with the stabilizing control law derived
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above,which is the following
ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0

1
M f1

1
M f2

1
M f3 − 1

M gm 1
M f4

0 0 0 1
− 1

Mlf1 − 1
Mlf2

1
M

g
l (M +m)− 1

Mlf3 − 1
Mlf4



x1
x2
x3
x4


Where

f4 = 5Ml

(
1 + 2l

g

)
f3 = 2Ml

(
5 + 2l

g

)
+ g(M +m)

f2 = 10Ml

g

f1 = 4Ml

g

Where the above values determined to cause the closed loop poles to be located at

{−1,−2,−1 + i,−1− i}

Hence

x(t) = L−1
[
(sI −A)−1

]
x(0)

= L−1



s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 s

−


0 1 0 0

1
M f1

1
M f2

1
M f3 − 1

M gm 1
M f4

0 0 0 1
− 1

Mlf1 − 1
Mlf2

1
M

g
l (M +m)− 1

Mlf3 − 1
Mlf4




−1
0
ẋ0
θ0
θ̇0



= L−1


s −1 0 0

− 1
M f1 s− 1

M f2
1
M gm− 1

M f3 − 1
M f4

0 0 s −1
1
Mlf1

1
Mlf2

1
Mlf3 −

1
M

g
l (M +m) s+ 1

Mlf4


−1

0
ẋ0
θ0
θ̇0


To make the computation easier, we now substitute numerical values for all the above parameters, which are
M = 1kg,m = 0.1kg, l = 1, g = 10m/s2, and we obtain

x(t) = L−1


s −1 0 0

−f1 s− f2 1− f3 −f4
0 0 s −1
f1 f2 f3 − 10(1.1) s+ f4


−1

0
ẋ0
θ0
θ̇0


And

f4 = 5
(
1 + 2

10

)
= 6

f3 = 2
(
5 + 2

10

)
+ 10(1.1) = 21.4

f2 = 10 1
10 = 1

f1 = 4
10 = 0.4

Hence

x(t) = L−1


s −1 0 0

−0.4 s− 1 1− 21.4 −6
0 0 s −1
0.4 1 21.4− 10(1.1) s+ 6


−1

0
ẋ0
θ0
θ̇0



= L−1


s −1 0 0

−0.4 s− 1 −20.4 −6
0 0 s −1
0.4 1 21.4− 10(1.1) s+ 6


−1

0
ẋ0
θ0
θ̇0


Using θ0 = π

10 , θ̇0 = 1rad/sec, ẋ0 = 1m/sec, and solving for θ(t) gives

x(t) = L−1


s −1 0 0

−0.4 s− 1 −20.4 −6
0 0 s −1
0.4 1 21.4− 10(1.1) s+ 6


−1

0
1
π
10
1


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Using CAS system to matrix inverse the above and obtain the inverse Laplace transform, and pick the θ(t)
solution and plot it, we observe that now the system becomes stable as expected.

Figure 4.6: Using CAS system to find inverse Laplace

4.2.4 Conclusion
We observe from the above plots and the plots shown in the computation section that with the control law
derived to force the poles of the closed loop to be stable, the inverted pendulum has been stabilized.

The final angle θ that the inverted pendulum makes with the vertical does go to zero.

From the plot of the position x(t), we see that the cart moves to the right and away from the x = 0 position,
then it return back to x = 0 position, while in the same time, the pendulum swings back and forth about
the θ = 0 position before it finally settles down at the stable position.

This shows the using pole placement resulted in an effective control law which stabilized the system. Small
angle approximation was used and the initial angle used was also assumed to be small.
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4.3 Eigen modal analysis

In[271]:= mMat = 88m, 0<, 80, m<<

Out[271]= K m 0
0 m

O

In[272]:= kmat = 882 k, -k<, 8-k, 2 k<<

Out[272]= K 2 k -k
-k 2 k

O

In[273]:= MatrixForm@sys = mMat.8-A1 w^2, -A2 w^2< + kmat.8A1, A2<D
Out[273]//MatrixForm=

2 A1 k - A1 m w2 - A2 k

-A1 k + 2 A2 k - A2 m w2

In[274]:= syseq = sys@@1DD � 0

Out[274]= 2 A1 k - A1 m w2 - A2 k � 0

In[275]:= eq = CoefficientArrays@sys, 8A1, A2<D �� Normal;

eq = eq@@2DD

Out[276]=
2 k - m w2 -k

-k 2 k - m w2

In[277]:= Det@eqD

Out[277]= 3 k2 - 4 k m w2 + m2 w4

In[278]:= sol = Solve@% � 0, wD

Out[278]= ::w ® -
k

m
>, :w ®

k

m
>, :w ® -

3 k

m
>, :w ®

3 k

m
>>

In[279]:= sol = 8sol@@1DD, sol@@3DD<

Out[279]= ::w ® -
k

m
>, :w ® -

3 k

m
>>

In[280]:= updatedSys = syseq �. sol@@1DD

Out[280]= A1 k - A2 k � 0

In[281]:= First@Solve@updatedSys, A1DD

Out[281]= 8A1 ® A2<

In[282]:= r1 = A2 � HA1 �. %L

Out[282]= 1

In[283]:= updatedSys = syseq �. sol@@2DD

Out[283]= -A1 k - A2 k � 0

In[284]:= First@Solve@updatedSys, A1DD

Out[284]= 8A1 ® -A2<

Printed by Mathematica for Students
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In[285]:= r2 = A2 � HA1 �. %L

Out[285]= -1

In[286]:= x1 = A11 Cos@Hw �. sol@@1DDL t + Θ1D + A12 Cos@Hw �. sol@@2DDL t + Θ2D

Out[286]= A11 cos
k t

m
- Θ1 + A12 cos

3 k t

m
- Θ2

In[287]:= x2 = A21 Cos@Hw �. sol@@1DDL t + Θ1D + A22 Cos@Hw �. sol@@2DDL t + Θ2D

Out[287]= A21 cos
k t

m
- Θ1 + A22 cos

3 k t

m
- Θ2

In[288]:= x2 = x2 �. 8A21 ® r1 A11, A22 ® r2 A12<

Out[288]= A11 cos
k t

m
- Θ1 - A12 cos

3 k t

m
- Θ2

In[289]:= icx1 = 81, 0<
icx2 = 81, 0<

Out[289]= 81, 0<

Out[290]= 81, 0<

In[291]:= eq1 = icx1@@1DD == x1 �. t ® 0

Out[291]= 1 � A11 cosHΘ1L + A12 cosHΘ2L

In[292]:= eq2 = icx1@@2DD � D@x1, tD �. t ® 0

Out[292]= 0 �

A11 k sinHΘ1L

m
+

3 A12 k sinHΘ2L

m

In[293]:= eq3 = icx2@@1DD == x2 �. t ® 0

Out[293]= 1 � A11 cosHΘ1L - A12 cosHΘ2L

In[294]:= eq4 = icx2@@2DD � D@x2, tD �. t ® 0

Out[294]= 0 �

A11 k sinHΘ1L

m
-

3 A12 k sinHΘ2L

m

In[300]:= MatrixForm@8eq1, eq2, eq3, eq4< �. 8k ® 1, m ® 1<D
Out[300]//MatrixForm=

1 � A11 cosHΘ1L + A12 cosHΘ2L
0 � A11 sinHΘ1L + 3 A12 sinHΘ2L

1 � A11 cosHΘ1L - A12 cosHΘ2L
0 � A11 sinHΘ1L - 3 A12 sinHΘ2L

2   eigen_modal_analysis.nb

Printed by Mathematica for Students
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In[301]:= Solve@8eq1, eq2, eq3, eq4< �. 8k ® 1, m ® 1<, 8A11, A12, Θ1, Θ2<D

Solve::ifun :

Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution

information. �

Solve::svars : Equations may not give solutions for all "solve" variables. �

Out[301]= 88A11 ® -1, A12 ® 0, Θ1 ® -Π<, 8A11 ® -1, A12 ® 0, Θ1 ® Π<, 8A11 ® 1, A12 ® 0, Θ1 ® 0<<

eigen_modal_analysis.nb  3

Printed by Mathematica for Students

notebook

project/simple_eigenvalue_modal_analysis/eigen_modal_analysis.nb
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5.1 possible error in key

possible error in key solution:

T = 1
2(M +m) ẋ2 + 1

2mL2θ̇2 +mLẋθ̇ cos θ

V = 1
2kx

2 +mgl(1− cos θ)

Now

1
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L = T − V

= 1
2(M +m) ẋ2 + 1

2mL2θ̇2 +mLẋθ̇ cos θ −
(
1
2kx

2 +mgl(1− cos θ)
)

= 1
2(M +m) ẋ2 + 1

2mL2θ̇2 +mLẋθ̇ cos θ − 1
2kx

2 −mgl(1− cos θ)

EQM for θ show is WRONG. Proof:

∂L

∂θ̇
= mL2θ̇ +mLẋ cos θ

d

dt

∂L

∂θ̇
= mL2θ̈ +mLẍ cos θ −mLẋθ̇ sin θ

and

∂L

∂θ
= −mLẋθ̇ sin θ −mgl(sin θ)

Hence, EQM is

d

dt

∂L

∂θ̇
− ∂L

∂θ
= Mt

mL2θ̈ +mLẍ cos θ −mLẋθ̇ sin θ −
(
−mLẋθ̇ sin θ −mgl(sin θ)

)
= Mt

mL2θ̈ +mLẍ cos θ −mLẋθ̇ sin θ +mLẋθ̇ sin θ +mgl(sin θ) = Mt

mL2θ̈ +mLẍ cos θ +mgl(sin θ) = Mt

Which is NOT the same as shown in the key solution

2
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5.2 note on solving wave equation
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5.3 note on eigenvalue modal analysis
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