EGEE 443
Electronic Communication systems

California State University, Fullerton
Fall 2008

Nasser M. Abbasi

Fa].]. 2008 Compiled on October 14, 2025 at 5:17pm [public]


mailto:nma@12000.org

Contents

1 introduction 1
2 Final project 3l
3 Study notes
31 DSPmnotes . ... ... . . . . e
4 HWs 9
4.1 HW2 . . e 101
42 HW3 . . e 17
4.3 HW4, Some floating points computation . . . . .. ... ... .. ... ...
4.4 HWS . . e 43]



Chapter 1

introduction

I took this course in Fall 2008 at CSUF to learn more about DSP.

This course was hard. The textbook was not too easy, The instructor Dr Shiva has tremendous
experience in this subject, and he would explain some difficult things with examples on the
board which helped quite a bit. The final exam was hard, it was 7 questions and I had no
time to finish them all. It is a very useful course to take to learn about signal processing.
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Figure 1.1: Book

Instructor is professor Shiva, Mostaf, Dept Chair, EE, CSUF. One of the best teachers in
signal processing.
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Final project

Large project. Moved to its own page at


/my_notes/EE518_CT_project/index.htm
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Chapter 3

Study notes

3.1 DSP notes

For fourier transform in mathematica, use these options

In[g]= FourierTransform[l, t, s, FourierParameters » {-1, 1}]

out[g}= DiracDeltal[s]

From Wikipedia. Discrete convolution

Discrete convolution e

For complex-valued functions f, o dafned on the setofntegers, the discrete convolution of { and ¢

Ovenby:
X
(ef
gl = Z g -m
==X
X
- Z f [n - nd . g[ml, (commutaty)
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energy. Signals that "last forever" are treated instead as random processes, in which case different
definitions are needed, based on expected values. For wide-sense-stationary random processes, the
autocorrelations are defined as

Ryf(r)=E[f(t)f(t-7)]
RII(]) E [In-rn ]]
For processes that are not stationary, these will also be functions of f, or n.

For processes that are also ergodic, the expectation can be replaced by the limit of a time average. The
autocorrelation of an ergodic process is sometimes defined as or equated tol”

Rys(7) llmT/ftIT?)

R..(j) = llm —Za T

—‘IJ

These definitions have the advantage that they give sensible well-defined single-parameter results for
periodic functions, even when those functions are not the output of stationary ergodic processes.

Matlab code

function nma_show_fourier

plot(t,y(t,-N,N,T));

end

function v=c(k,T)
term=pi*k/2;
v=(1/T)*sin(term)/term;
end

function v=y(t,from,to,T)

coeff=zeros(to-from+1,1);
k=0;
for i=from:to
k=k+1;
coeff(k)=c(i,T);
end

v=zeros(length(t),1);
for i=1:length(t)
v(i)=0;
for k=from:to
v(i)=v(i)+coeff (k)*exp(sqrt (-1)*2*pi/T*k*t (i));
end
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‘ end
‘ end
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4.1 HW2
Local contents
4.1.1 Problem 1 . . . . . . . . 10
4.1.2 Problem 2 . . . . . .. 10
413 graded HW2 . . . . . .. [13]

4.1.1 Problem 1

Compute an appropriate sampling rate and DFT size N = 2% to analyze a signal with no
significant frequency content above 10khz and with a minimum resolution of 100 hz

4.1.1.1 Solution

From Nyquist sampling theory we obtain that sampling frequency is

£, = 20000 hz

Now, the frequency resolution is given by

Js
Af ==
f N
where N is the number of FFT samples. Now since the minimum A f is 100 hz then we write

fs

Z=Af>1
N f =100
or
fs
2>
N2 00
Hence
< 20,000
- 100

< 200 samples
Therefore, we need the closest N below 200 which is power of 2, and hence

N =128

4.1.2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for M = 8, W, =
2,60 = 15, Ay=2,00=1

162

Answer:

Chirp Z transform is defined as

N-1
X(zk):Zx[n]zk_” k=0,1,--- ,M—1 (1)
n=0

Where
2 = AW_k

10
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Chapter 4. HWs

and A - Aoejoo and W = Woe_j¢0

Hence
2, = (Aoejoo) (Woe_j¢0)_k
_ Ao io+koo)
W
Hence
ol = 0
k| = =%
W
2
T ok
and
phase of z, = 0y + koo
=Tk
4716
Hence
k |Zk|=2lk phase of zy = 7 + k{; | phase of z, in degrees
0|2=2 T+0x £ =17 45
1[2=1 T+1xZ=2m 56.25
2|2=3 |F42xfE=ir 67.5
3|2=1 |543xfE=4Fn 78.75
4| 2=% |T4+4xZ=1m 90
5lE=5% |Z+5xE=2n 101.25
6| 2=4 |T+6x L =1 112.5
T =5 | 5+TXE=5n 123.75

11
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z[k , W6 _, A6 _, 60 , #0_ ] :=AOEXp[I 69] (WOEXp[-I #9]) -k

Wo =2;

O =2;

60 =Pi/4;

¢0 = Pi/16;

m=8;

zValues = Table[z[k, WO, A@, 60, ¢0], {k, @, m-1}1;

arg = Arg[zValues]

abs = Abs [zValues]

data = Transpose[ {arg, abs}];

pl = ListPolarPlot[data, AxesOrigin - {0, 0}, PlotRange -» All, Joined -» False, PlotMarkers - Automatic,
PlotStyle » Red] ;

p2 = ListPolarPlot[data, AxesOrigin - {0, 0}, PlotRange -» All, Joined - True];

p3 = PolarPlot[1, {t, @, 2Pi}];

Show[p1, p2, p3]

{ESJMMELNSJM”}
4’ 16° 8’ 16”7 2° 16 8’ 16
111 1 1 1
2n e i 52wl

15
0.5

Figure 4.1: plot of the above contour

This is [Mathematica notebook] used to make plot of the Chirp Z transform contour.

12


HWs/HW2/code/second_prob.nb

4.1. HW2 Chapter 4. HWs

4.1.3 graded HW2

HW2, EGEE 518. CSUF, Fall 2008
Nasser Abbasi
o October 11, 2008
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1 Problem 1

Compute an appropriate sampling rate and DFT size N = 2? to analyze a single with no significant
frequency content above 10khz and with a minimum resolution of 100kz

Solution

From Nyquist sampling theory we obtain that sampling frequency is

fs = 20000 hz

Now, the frequency resolution is given by

where N is the number of FFT samples. Now since the minimum A f is 100 Az then we write

Is _ af> 100

N

or

Hence

& 20,000
1

100
< 200 samples

Therefore, we need the closest N below 200 which is power of 2, and hence

35\{

14
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_—

2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for M = 8, Wy = 2, ¢p =

%1*’40 - 21 90 = %
Answer:

Chirp Z transform is defined as

N-1
X(zQ:Zr[n]zk_” k=0,1,--- ,M-1

n=>0

Where

2 = AW*

and A = Age?® and W = Wye ¢

Hence
Hence
o] =2
k| ='=—¢
Ws
2
Tk
and
phase of z, = Oy + kg
T ks
=—+k—
4 16
Hence
k sz|=% ahase of zx = § + k% | phase of 2 in degrees
e A .7
0 3—2 I+OXE_3 45
— m T o =
1 g—ll I"f'l)(m—:}-aﬂ' 56.25
= T G AfE
2 E_.? E—:—?XE—E?TT G7.5
= T oo =
3 gz—zl E+3X-l-(‘;—¥'ﬂ' 78.75
—.L T g O |
4 1_26_31 2"'4’(1_9_297[ 90
=4 == T = ;o — E
b 32—2—'113 3+‘)xﬁ_ﬁﬂ- 101.25
e fid s W
. T Ed
2
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Below is plot of the above contour

wis791= 2 [k, WO_, AO_, @0_, #0_] := AOExp[I ¢0] (WOExp[-I p0])~*

WO = 2;

AO = 2;

80 =Pi/4;

$0=Pi/16;

m=8;

zValues = Table [z [k, WO, A0, 80, ¢0], {k. 0O, m=1}]:

arg = Arg[zValues]

abs = Abz [zValuesz]

data = Transpose [{arg, abs}]:

pl = ListPolarPlot [data, AxesOrigin - {0, 0},
PlotRange = All, Joined - False,
PlotMarkers - {Automatic, Automatic}]:

p2 = ListPolarPlot [data, AxesOrigin - {0,6 0},
PlotRange —» All, Joined = True] ;

p3 = PolarPlot[l, {t, 0, 2Pi}):

Show[pl, p2, p3]

b 9 5= 11w
% 3 T8

- . | 1 1
oulseT = [2, 1, =/ = = —¢ = i}
2" 4" 8 16 32" 64
.
.
»
DniES2E | / \
I‘ L
-10 -05 0s 10
1 )
/
-05
=0t
3
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4.2 HW3

Local contents

421 mysolution . . . . . . .. L
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4.2.1 my solution
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3.
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4.3 HW4, Some floating points computation

Local contents

4.3.1 my solution, First Problem . . . . . ... ... ... ... ......
4.3.2 my solution, second problem . . . . . ... ... ... 34
4.3.3 keysolution . . . . . . ... L

4.3.1 my solution, First Problem

Looking at 2 floating points problems. The first to illustrate the problem when adding large
number to small number. The second to illustrate the problem of subtracting 2 numbers
close to each others in magnitude.

N
Investigate floating point errors generated by the following sum Z#, compare the result

n=1
to that due summation in forward and in reverse directions.

4.3.1.1 Analysis

When performing the sum in the forward direction, as in 1+ ;11 + %. +--+ % we observe that
very quickly into the sum, we will be adding relatively large quantity to a very small quantity.
Adding a large number of a very small number leads to loss of digits as was discussed in
last lecture. However, we adding in reverse order, as in % + ( Ni % + (Niz s+ -+ 1, we
see that we will be adding, each time, 2 quantities that are relatively close to each other in

magnitude. This reduces floating point errors.

The following code and results generated confirms the above. N = 20,000 was used. The
computation was forced to be in single precision to be able to better illustrate the problem.

4.3.1.2 Computation and Results

This program prints the result of the sum in the forward direction

PROGRAM main
IMPLICIT NONE
REAL :: s
INTEGER :: n,MAX

s = 0.0;
MAX = 20000;
DO n = 1,MAX
s = s + (1./n%%2);
END DO

WRITE(*,1) s

1 format('sum = ', F8.6)
END PROGRAM main

sum = 1.644725

Now compare the above result with that when performing the sum in the reverse direction

PROGRAM main
IMPLICIT NONE
REAL :: s
INTEGER :: n,MAX

s = 0.0;
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MAX = 20000;
DO n = MAX,1,-1

s =8 + (1./n*x2);
END DO

WRITE(*,1) s
1 format('sum = ', F8.6)
END PROGRAM main

sum = 1.644884

N

The result from the reverse direction sum is the more accurate result. To proof this, we can
use double precision and will see that the sum resulting from double precision agrees with
the digits from the above result when using reverse direction sum

PROGRAM main

IMPLICIT NONE

DOUBLE PRECISION :: s
INTEGER :: n,MAX

s = 0.0;
MAX = 20000;
DO n = 1,MAX
s =8 + (1./nxx2);
END DO

WRITE(*,1) s
1 format('sum = ', F18.16)
END PROGRAM main

sum = 1.6448840680982091

4.3.1.3 Conclusion

In floating point arithmetic, avoid adding a large number to a very small number as this
results in loss of digits of the small number. The above trick illustrate one way to accomplish
this and still perform the required computation.

In the above, there was 1.644884 — 1.644725 = 1.59 x 10~ error in the sum when it was done
in the forward direction as compared to the reverse direction (for 20,000 steps).In relative

term, this error is WMO which is about 0.01% relative error.

4.3.2 my solution, second problem

Investigate the problem when subtracting 2 numbers which are close in magnitude. If a, b are 2

numbers close to each others, then instead of doing a—b do the following (a — b) EZiZ; = “ergz .

The following program attempts to illustrate this by comparing result from a — b to that
a2—b2
a+b

PROGRAM main
IMPLICIT NONE
DOUBLE PRECISION :: a,b,diff

for 2 numbers close to each others.

from

-

a = 32.000008;
b = 32.000002;
diff = a-b;

WRITE(*,1), diff
diff = (ax*2-b*x*2)/(a+b);
WRITE(*,1), diff
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1 format('diff = ', F18.16)
END PROGRAM main

diff
diff

0.0000038146972656
0.0000038146972656

I need to look more into this as I am not getting the right 2 numbers to show this problem.

4.3.3 key solution

Sol, W 4 EE 5154 &

94
- Y(hYy = & Y(h-1) +X(h)
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N
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4.4 HWS5

Local contents
441 Problem 11.1 . . . . . . . . . . . .

4.4.2 Problem 11-2 . . . . . . ... .

4.4.1 Problem 11.1

1. Let X(e') be the Fourier transform of a real Iu'nu‘.-_lc:lgl|‘. :‘C£|‘-;lflr1"~‘c -‘t‘_[-'f]j-ei:;ll:ﬁ
zero ouiside the interval 0= =2 N — L, [ he ]j‘krrmcln_gm?:j '\"”J__". 77
in Eq. (10.24) as the Fourier transform of the 2% — 1 pomnt autocorrelation
estimates

1 N—|m| 1 .
i) =— 3 xmxln 4 wi) [me] = W — L.
. N =0
i is Tel: “purier transfor the finite
Show (hat the peripdogram is related to the Fourer transiorm of the e
length sequence a3 follows:

b e dtia
o) = | X G

Figure 4.2: the Problem statement

N-1
Iy(w) = Z Caz(m) €774™
m=—(N-1)
X ()] = X () X*(e)
N-1 N-1 *
= Zx(m) g~ dwm Zx(n) g dwn
m=0 n=0
N-1 N-1
= Zx(m) g~ Jwm Zx*(n) elvn
m=0 n=0
N—1N-1
= Z Zx(m) T*(n) e~ Wmeln
m=0n=0
But
e—jwmejwn — e—jw(m—n)
and
z(m) z*(n) = z(m) *(m + (n —m))
So
N—1N-1
| X () {2 = ZZw(m) z*(m + (n —m)) e« m=n)
m=0n=0

Let n — m = 7 then above can be rewritten as

| X () |2 = Zz:z(m) T*(m + 1) T
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When n = 0,m = —7 and when n = N — 1,;m = N — 7 — 1, hence the above becomes
N—-1N—-1-1
| X (e7) ‘2 = Z z(m) z*(m + 1) "

m=0m=—1
N-1 -1 N—|r|-1

= Y am)z*(m+1)e+ ) z(m)zt(m+7)
m=0 \ m=—1 m=0
N-1 —T

= ( Z z(m) z*(m +7) &7 + N cgu(m) ej‘“7>
m=0 \m=—

I made another attempt at the end,

4.4.2 Problem 11-2

2, The smoothed spectrum estimate S,.(w) is defined as

M-1

Sez(w) = Z Cax(M)W(m)e—Tom

m=—(M—-1)

where w(m) is a window sequence of length 2M — 1, Show that

rT

E[S;2(w)] = 21—_ J E[Ixn(0)] W (e'lo—0)) 4o,

—

where W(e’®) is the Fourier transform of w(n).

Figure 4.3: the Problem statement

We see that S,,(w) is the Fourier transform of c,,(m)w(m). i.e.

Where F is the Fourier transform operator. Using modulation property

S20() = o (1 lexelm)] © F ()

But In(w) = F [czz(m)] and let W (w) = F [w(m)], then the above becomes

Suult) = 5-(In() © W(w))

:—/ IN w—9)d9

Hence, taking expectation of LHS, and since only Iy (6) is random, then the above becomes
(after moving expectation inside the integral in the RHS)

ElSunlw)] = 5 [ " E1y(6)] W(w — 6) df
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