## Project one. Problem Three. Mathematics 502 Probability and Statistics

Nasser Abbasi, September 26,2007. California State University, Fullerton
3. [ 30 points] Problem 42 on page 111 of your text gives the pdf for the double exponential density with parameter $\lambda$. It also suggests a method to generate random numbers from the double exponential family using two random variables $W$ and $T$, described in the problem.
a. Write a program that generates random numbers from the double exponential family.

The input to the program should be the parameter $\lambda$, and the number of random numbers to be generated, $n$. The output should be $n$ pseudo random numbers from the double exponential with parameter $\lambda$. You are only allowed to use runif in your program for random number generation.
b. Write a program that uses the Accept/Reject algorithm efficiently to generate $n$ observations from the standard normal density $N(0,1)$, using random numbers that are generated from the uniform $(0,1)$ and the double exponential random variate with parameter $\lambda=1$ [your program in part (a)]. Your program should also count and report the proportion of values that are rejected. Give the density histogram of $n=10,000$ numbers generated from your program and superimpose it by the standard normal pdf.

## Problem 3 part (a)

We are asked to generate R.V's from $f(x)=\frac{\lambda}{2} e^{-\lambda|x|}$. We note as shown in the problem itself, that R.V. $X$ can be written as product of 2 R.V WT where $W$ is $\pm 1$ with probability $\frac{1}{2}$ each. Hence to generate R.V. we do the following. We generate $n$ R.V. from uniform distribution [0,1] using Mathematica random number generator. Then we check if each number is $<\frac{1}{2}$ or not, and we generate 1 or -1 as the case may be. We then generate $n$ random variables from the exponential distribution, which we know how to do from part (a). Then we multiply the above 2 vectors, element wise, with each others. The first vector being the vector of 1's and -1 's. And the second vector being the RV's from the exponential distribution. This is the algorithm

## Algorithm

Input: $\lambda, \mathrm{n}$ (number of random variables to generate)
output: list of random numbers which belong to density $f(x)=\frac{\lambda}{2} e^{-\lambda|x|}$
Seed the random number generator with unique value for us.
$\mathrm{A}=$ Generate n random numbers from the exponential distribution with parameter $\lambda$ (CALL problem 1 part(a) with the input $\lambda, \mathrm{n}$ ) This uses $F^{-1}$ method and uniform random number generator as well.
$B=$ Generate n random numbers from uniform random number generator $[0,1]$
FOR i in 1..n LOOP -- Note: This is algorithm view. In code 'vectored' operation is used.
IF B(i)<. 5 THEN

$$
\mathrm{B}(\mathrm{i})=1
$$

ELSE
$B(i)=-1$
END IF
END LOOP
result $=\mathrm{B} * \mathrm{~A}$

Now generate a histogram from the result above.
The following function implements the above algorithm

## Code Implementation

Define the function $F^{-1}$ which was derived earlier. This is the inverse of the CDF of the exponential density function $\lambda \mathrm{e}^{-\lambda x}$

```
Remove["Global`*"];
gDebug = False;
```

inverseCDFofExponentialDistribution $\left[\lambda_{-}, n_{-}\right]:=\operatorname{Module}\left[\{ \}, \frac{-1}{\lambda} \log [1-n]\right]$

Function below is called to generate N random numbers using the above $\mathrm{F}^{-1}$ function (User needs to seed before calling

```
getRandomNumbersFromExponential [\lambda_, nRandomVariables_] := Module[{i},
    Table[ inverseCDFofExponentialDistribution[\lambda, RandomReal[]], {i, nRandomVariables}]]
```

```
getRandomNumbersFromDoubleExponential [\lambda_, numberOfRandomVariables _] := Module[{W, T},
    W = getRandomNumbersFromExponential [ }\lambda,\mathrm{ numberOfRandomVariables ];
    T = Table[If[RandomReal[] < .5, 1, -1], {i, numberOfRandomVariables }];
    W T]
```

Test the above function by plotting the histogram generated for say $n=10000$ overlaid by the true double exponential density function.
First, define the double exponential function

$$
\text { doubleExponential }\left[\lambda_{-}, x_{-}\right]:=\frac{\lambda}{2} \operatorname{Exp}[-\lambda A b s[x]]
$$

Now do the overlay plot
This function makes a histogram which is scaled to be used to overlay density plots, or other functions.
Input: originalData: this is an array of numbers which represents the data to bin
nBins: number of bins
output: the histogram itself but scaled such that area is ONE

```
Needs["BarCharts`"]
nmaMakeDensityHistogram[originalData_, nBins_] :=
    Module[{freq, binSize, from, to, scaleFactor, j, a, currentArea},
    to = Max[originalData];
    from = Min[originalData];
    binSize = (to - from)/nBins;
    freq = BinCounts[originalData, binSize];
    currentArea = Sum[binSize * freq\llbracketi\rrbracket, {i, nBins}];
    freq = 年req
    a = from;
    Table[{a + (j-1) * binSize, freq\llbracketj\rrbracket, binSize}, {j, 1, nBins}]
]
```

```
SeedRandom[010 101];
n = 10 000; \lambda = 1; nBins = 100; imageSize = 400;
postprocessPartThreeA [listOfRandomNumbers_, \lambda_, nBins_, imageSize_] :=
    Module[{gz, pList, xFrom, xTo},
        xFrom = Min[listOfRandomNumbers];
        xTo = Max[listOfRandomNumbers];
    gz = nmaMakeDensityHistogram[listOfRandomNumbers, nBins];
    pList = GeneralizedBarChart [gz, BarStyle }->\mathrm{ White, ImageSize }->\mathrm{ imageSize];
    p = Plot [doubleExponential [\lambda, x], {x, xFrom, xTo}, AxesOrigin }->{0,0}, PlotRange A All
            ImageSize }->\mathrm{ imageSize, (*PlotStyle }->{\mathrm{ Dashed,Red}*)PlotStyle }->\mathrm{ {Red}];
        Show[{pList, p},
        PlotLabel }->\mathrm{ Style["true f(x) vs. random variables generated\n" <> " }\lambda=|"<> ToString[\lambda] <>
            " Number of random variables=" <> ToString[Length[listOfRandomNumbers]] <> "\n", 14],
        AxesLabel }->\mathrm{ {"x", "f(x), scaled frequency"}]
    ]
```


## Framed [

```
postprocessPartThreeA [getRandomNumbersFromDoubleExponential [ \(\lambda, \mathrm{n}\) ], \(\lambda\), nBins, imageSize]]
```

true $f(x)$ vs. random variables generated $\lambda=1$ Number of random variables $=10000$
$f(x)$, scaled frequency


## Problem 3 part(b)

In this part, we need to generate a list of r.v's that belong to normal distribution $\mathrm{N}(0,1)$, using uniform random number generator $\mathrm{U}[0,1]$ and using the random numbers generated from the double exponential density function in part (a) above. We are asked to use the accept/reject method.
First the method is explained, then the algorithm outlined, then the implementation shown and a test case given, then a GUI interface written to test the algorithm for different parameters values.

## Accept/Reject algorithm

input: $n$ (number of random variables to generate)
$\lambda$ (the exponential density parameter)
$f(x)$ the density function for random variable X which we wish to generate random variables
$f_{M}(\mathrm{x})$ the density which we will use to help in generating the random variables from $f_{X}(\mathrm{x})$. This density is such that it is easy to generate random variables from. Much easier that from $\mathrm{f}(\mathrm{x})$ and that is why it was selected.
output: list of random numbers of length $n$ from $f(x)$

Step 1: Find C. Where $c=\sup \forall x \frac{f_{X}(x)}{f_{M}(x)}$ To solve this, this is the algorithm
Algorithm for step 1: Let $f_{M}(x)=\frac{\lambda}{2} e^{-\lambda x}$ (since double exponential is symmetric, I'll use one sided version). Let
$f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}$. Now find the ratio $r(x)=\frac{f_{X}(x)}{f_{M}(x)}=\frac{\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}}{\lambda e^{-\lambda x}}$ Now find where the maximum of this ratio is using normal calculus method: Take the derivative w.r.t. $x$ and set it to zero. Solve the resulting equation for $x$. Evaluate the ratio at this root. This gives C. We find that $\boldsymbol{C}=\mathbf{1 . 3 1 5 4 9}$ The following few lines of code finds C :

```
\lambda=1; fm = = 竩[-x]; fx = PDF[NormalDistribution[0, 1], x];
ratio = fx
root = First@Solve[D[ratio, x] == 0, x];
c=N[ratio /. root]
```

```
1.31549
```

Step 2: Now that we found C in step 1, then the envelop function becomes $C * f_{M}(x)=C \frac{\lambda}{2} e^{-\lambda|x|}$
Step 3: seed the number random generator
initialize an array d of size $n$ to contain all the accepted random numbers generated
initialize counter number_accepted $=0$
WHILE number_accepted < n DO
generate r.v. from $\mathrm{U}[0,1]$ call it $u$.
Generate r.v. from double exponential density (using part(a)) call this x
IF $u * C * f_{M}(x)<f_{X}(x)$ THEN
$\mathrm{d}[\mathrm{i}]=\mathrm{x}$
number_accepted++
END IF
END LOOP
Step 4: Now array d contains the n random numbers generated from the normal density $\mathrm{N}[0,1]$. Make histogram and overlay it over $\mathrm{N}[0,1]$

Diagram showing main steps in the algorithm


## Accept Reject Algorithm Implementation

```
acceptReject [ }\mp@subsup{\lambda}{_}{\prime}\mathrm{ , numberOfRandomNumbersToGenerate _, c_
    (*This is for scaling the envelope with so that envelope \geq f(x) everywhere*)
    , }\mp@subsup{\mu}{_}{\prime}\mathrm{ (*mean of Normal Dist*), 釷(*std of normal dist*)
] := Module[{nFailed = 0, nPassed = 0, y, x, d, i, maxEnvelope, fx, u},
    RandomSeed[010 101]; (*start from clean random number generator*)
    maxEnvelope = c * doubleExponential [ }\lambda,0]\mathrm{ ;
    d = Table[0, {i, numberOfRandomNumbersToGenerate}];
    While[nPassed < numberOfRandomNumbersToGenerate,
        {x = getRandomNumbersFromDoubleExponential [ }\lambda,1][[1]]
        y = c * doubleExponential [\lambda, x] * RandomReal [{0, 1}];
        fx = PDF[NormalDistribution[ }\mu,\sigma], x]
        If[y\leq fx, {nPassed++, d\llbracketnPassed\rrbracket] = x}, nFailed++];}
    ];
    {d, nFailed}
]
```


## Test case for $\mathbf{n}=10,000$

Test the above function, and make a plot of histogram overlaid on top of density of $\mathrm{N}(0,1)$

```
\lambda=1; }\mu=0; \sigma=1; xFrom=-4\sigma; xTO = 4\sigma; n= 10000
c = 1.315489246958914; (*see algorithm above on how C was found*)
nBins = 120;
Clear[x];
{listOfNumbers, nFailed} = acceptReject [\lambda, n, c, \mu, \sigma];
gz = nmaMakeDensityHistogram[listOfNumbers, nBins];
pList = GeneralizedBarChart [gz, BarStyle }->\mathrm{ White, ImageSize }->\mathrm{ 400, PlotRange }->\mathrm{ All];
P = Plot[{c* doubleExponential[1, x], PDF[NormalDistribution[0, 1], x]},
    {x, xFrom, xTo}, PlotRange }->\mathrm{ All, PlotStyle }->\mathrm{ {Red, Black}, ImageSize }->\mathrm{ 400];
Framed[Show[{pList, p},
    PlotLabel }->\mathrm{ "Total number of attempts during process=" <> ToString[n + nFailed] <>
        "\nNumbers rejected during process=" <> ToString[nFailed] <> " %Failed =" <>
        ToString[nFailed / (n + nFailed) * 100.]]]
```



The above is a plot showing the histogram for random numbers generated using the accept - reject method for $\mathrm{N}=10,000$. The random numbers are very close the $\mathrm{N}[0,1]$ which indicates this method is working well. The larger N is, the more closely the random numbers histogram will approach $\mathrm{N}[0,1]$ probability density.

I have implemented a GUI based simulation as well for the above problem, please see the appendix below to run the simulation part.

## Problem 3 simulation

Module [ $\{$ gnTrialsSoFar = 0, gnRejectSoFar = 0, gnAcceptedSoFar = 0, gmaxEnvelope, gmultiplier, $g \lambda, g \mu, g \sigma, g A c c e p t e d X S e t, g n B i n s, g x F r o m, g x T o, g A c c e p t e d P o i n t s C o o r d i n a t e s, ~ g M a x A c c e p t e d\}$,

```
initializeSimulation[] := Module[{}
```

    RandomSeed [010 101];
    gmultiplier = 1.315489246958914 ;
    gnBins \(=40\);
    \(g \lambda=1 ;\)
    \(\mathrm{g} \mu=0\);
    g \(\sigma=1\);
    gxFrom \(=-6 \mathrm{~g} \sigma\);
    \(\mathrm{gxTO}=6 \mathrm{~g} \sigma\);
    gMaxAccepted \(=10000\);
    gnTrialsSoFar = 0; gnRejectSoFar = 0; gnAcceptedSoFar = 0;
    gAcceptedXSet = Table[0, \{i, gMaxAccepted\}];
    gAcceptedPointsCoordinates = Table[0, \{i, gMaxAccepted\}];
    gmaxEnvelope \(=\) gmultiplier * doubleExponential [g \(\lambda, 0]\)
    ];
    finalizeSimulation [] := Module[\{gz, p, pList, x, res\},
If[gnTrialsSoFar > 0,
\{
gz = nmaMakeDensityHistogram [gAcceptedXSet $\mathbb{1}$; ; gnAcceptedSoFar $\rrbracket$, gnBins];
pList = GeneralizedBarChart [gz,
BarStyle $\rightarrow$ White,
ImageSize $\boldsymbol{\rightarrow}$ 250,
PlotRange $\rightarrow\{\{-4.5 \mathrm{~g} \sigma, 4.5 \mathrm{~g} \sigma\},\{0,1.2\}\}]$;
$\mathrm{p}=\mathrm{Plot}[\mathrm{PDF}[$ NormalDistribution $[\mathrm{g} \mu, \mathrm{g} \sigma], \mathrm{x}]$,
\{x, gxFrom, gxTo\},
PlotStyle $\rightarrow$ Red,
PlotRange $\rightarrow$ All];
res $=$ Show $[$ \{pList, p$\}$,
PlotLabel $\rightarrow$ "Total number of attempts during process=" <> ToString[gnTrialsSoFar] <>
"\nNumbers accepted during process=" <> ToString[gnAcceptedSoFar] <>
" \%Accepted = " <>
ToString [gnAcceptedSoFar / (gnTrialsSoFar) * 100.] <>
"\nNumbers rejected during process=" <>
ToString[gnRejectSoFar] <> " \%Failed =" <>
ToString[gnRejectSoFar / (gnTrialsSoFar) * 100.]
];
\}
,
res = "Ready...";
];
res
];
processOneAcceptReject [] := Module[\{x, y, fx, res, p, accepted, p2, pStats\},
gnTrialsSoFar ++;
If[gnTrialsSoFar < 10, Return["Ready.."]];
$\mathbf{x}=$ getRandomNumbersFromDoubleExponential [g $\lambda, 1][$ [1] ];

```
    y = gmultiplier * doubleExponential [g\lambda, x] * RandomReal [{0, 1}];
    fx = PDF[NormalDistribution[g}\mu,g\sigma], x]
    If[y\leq fx
        , {gnAcceptedSoFar ++;
        accepted = True;
        gAcceptedXSet \llbracketgnAcceptedSoFar\rrbracket = x;
        gAcceptedPointsCoordinates \llbracketgnAcceptedSoFar\rrbracket = {x, y}
        },
        {gnRejectSoFar ++, accepted = False}
    ];
    p = Plot [{gmultiplier * doubleExponential [1, x], PDF[NormalDistribution [0, 1], x]},
        {x, gxFrom, gxTo}, PlotRange }->\mathrm{ All, PlotStyle }->\mathrm{ {Red, Black}, ImageSize }->250\mathrm{ ,
        PlotLabel -> Row[{"Trial [", gnTrialsSoFar, "]\tc=[", gmultiplier, "]\n", If[y \leq fx,
            Style["Accepted", Black], Style["Rejected", Red]], "\tPoint=(", x, " , ", y, ") "}],
        Epilog -> {If[accepted, {PointSize[Large], Green, Point[{x, y}],
            {PointSize[Small], Gray, Point[gAcceptedPointsCoordinates \llbracket1 ; ; gnAcceptedSoFar\rrbracket]}},
            {PointSize[Large], Red, Point[{x, y}], {PointSize[Small], Gray,
                    Point[gAcceptedPointsCoordinates \llbracket1 ; ; gnAcceptedSoFar\rrbracket]}}
            ]
            }
        ];
        p2 = finalizeSimulation[];
        pStats = Row[{"Trial [", gnTrialsSoFar, "]\n", If[y\leqfx,
            Style["Accepted", Black], Style["Rejected", Red]], "\tPoint=(", x, " , ", y, ")"}];
        (*Grid[{ {pStats},{Grid[{ {p,p2} }]}},Frame->All,Alignment }->{\mathrm{ Center}];*)
        Grid[{ {p, p2} }, Frame }->\mathrm{ All, Alignment }->\mathrm{ {Center}]
    ]
]
```

```
m = Manipulate[res = "Ready to run..."; runIt = False; i = 0;
    Dynamic[
        If[runIt && Not[stopIt] && i < 10000,
            (i++; res = processOneAcceptReject []),
            res
        ]
    ],
    {{runIt, True, ""}, Button[Style["Click to start", 10], {i=0;
            initializeSimulation[]; stopIt = False; runIt = True}] &, ContinuousAction -> False},
    {{stopIt, False, ""}, Button[Style["Click to stop", 10], {stopIt = True; res}] &,
        ContinuousAction -> False}, AutorunSequencing }->{{2,120}
    ]
```

Click to start
Click to stop

```
Ready to run...
```

