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This course part of my Masters degree in Applied Mathematics at California State University,
Fullerton.

1.1 Class meet time

o
Column Descriptions
Status Sec Sched # GE Site FootNotes Units Type Days Time BldgRoom Faculty
01 15433 3.0 Sem MW 0530PM-0645PM MH 390 Jamshidian, M.

Figure 1.1: class schedule time
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1.2 Syllabus

Math 502AB - Probability and Statistics I & II

Fall 2007 - Section 1, MH 390, MW 5:30-6:45 and 7:00-8:15

Instructor:  Mortaza (Mori) Jamshidian, Ph.D.  Office: MH 180 Phone: 714-278-2398
Office Hours: Mon. 2:20 — 3:30, Wed. 4:30-5:25 p.m., or by appointment

Homepage: http://math.fullerton.edu/mori E-mail: mori@fullerton.edu

Text: Mathematical Statistics and Data Analysis by John Rice, Third Edition, Thompson/Brooks/Cole,
2007.

Software: We will use R, Matlab, and SAS for the projects and homework assignments. Instructions
for use of these packages will be given, as necessary. R is a free software environment for statistical
computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows
and MacOS. To download R, please choose your preferred CRAN mirror. SAS and Matlab are
available to students in the Mathematics Department Computing Laboratory in MH 452. Please
download and install R on your computers as soon as possible.

Your e-mail address wanted: You are required to fill out the “Student Information Form” (click here)
and submit it to mori@fullerton.edu no later than Saturday, August 25. Do not save the pdf file and
attach to an e-mail. The file that | need is an XML file. You need to use the submit button on the form
and follow the instructions. | will send various communiqué, take home quizzes, and last minute
announcements about our class through e-mail. Please provide an e-mail address that you check
frequently. I will send a “test e-mail” on Sunday August 26 to everyone. If you do not receive this test e-
mail, please see me on Monday to resolve any problems there may be. Note: Any credits that you lose
due to not establishing your e-mail connection with me on time will be your responsibility.

Course Description: This course has two parts. In the first part we learn fundamentals of probability
theory, including random variables, joint and conditional distributions, expected values, major probability
limit theorems, and some well-known distributions. The objective in the second part is to utilize the
probability theory learnt in the first part mainly for statistical inference. We will learn topics including
survey sampling methods, parameter estimation specially maximum likelihood and method of moments,
Bayesian estimation, properties of estimators, test of hypothesis and goodness of fit, exploratory data
analysis, analysis of variance, regression analysis, and analysis of categorical data.

Course requirements and Grading Policy: Homework/projects (30%) will be assigned and graded. |
often give a quiz related to the homework problems, and use the quiz grade instead of the homework
grade. Two midterm exams (40%0) and a final exam (30%o) will be given. Portions of the exams may be
take-home. For in-class exams you will be allowed to bring in one page of information during each
midterm exam and two pages of information during the final exam. Letter grades will be assigned
according to the distribution of the overall grades. Plus-minus grading will be used.

The exam dates are as follows:
Figure 1.2: page 1
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Exam | Exam Il Final Exam

Wednesday, Oct. 3 Wednesday, Nov. 7 Monday, Dec. 10, 5:00-6:50 p.m.

Wednesday, Dec. 12, 7:30-9:20 p.m.

Late homework/projects will not be accepted. Make-up exams will be given only in extreme instances and
only with advance permission of the instructor. Any student who does not take an exam at the scheduled
time without prior consent of the instructor will receive a grade of zero on that exam. If any student feels
that a sudden illness is sufficiently extreme to warrant a make-up exam, the instructor must be provided
with documentation prepared by an appropriate authority.

Academic Integrity: Students who violate university standards of academic integrity are subject to
disciplinary sanctions, including failure in the course and suspension from the university. Since
dishonesty in any form harms the individual, other students and the university, policies on academic
integrity are strictly enforced. I expect that you will familiarize yourself with the academic integrity
guidelines found in the current student handbook (see
http://www.fullerton.edu/deanofstudents/judicial/policies.htm).

Examples of actions that constitute academic dishonesty include, but are not limited to:

1. Unacceptable examination behavior — communicating with fellow students, copying material from
another student’s exam or allowing another student to copy from an exam, possessing or using
unauthorized materials, or any behavior that defeats the intent of an exam.

2. Plagiarism — taking the work of another and offering it as one’s own without giving credit to that
source, whether that material is paraphrased or copied in verbatim or near-verbatim form.

3. Unauthorized collaboration on a project, homework or other assignment.

4. Documentary falsification including forgery, altering of campus documents or records, tampering
with grading procedures, fabricating lab assignments, or altering medical excuses.

Emergency Evacuation: In the event of an emergency such as earthquake or fire:
. Take all your personal belongings and leave the classroom. Use the stairways located at the

east, west, or center of the building.

Do not use the elevator. They may not be working once the alarm sounds.

Go to the lawn area towards Nutwood Avenue. Stay with class members for further instruction.

For additional information on exits, fire alarms and telephones, Building Evacuation Maps are
located near each elevator.

Anyone who may have difficulty evacuating the building, please see the instructor.

Some Important dates:

September 4 (Tuesday): Last day for students to drop without a grade of “W”. Students drop using
Titan.

September 28 (Friday): Last day the Math Department will be flexible on the approval of late
withdrawal requests. Beginning Monday, October 1, students must have a serious and compelling
reason for withdrawing (e.g. medical reason) and must provide supporting documentation for their
reason. Please encourage students who are considering withdrawing to do so BY September 28.

November 9 (Friday): Last day to withdraw with a truly serious and compelling reason that is
beyond the student’s control. Students must document their reason.

Figure 1.3: page 2

1.3 Instructor

Instructor and course official web site ishttp://math.fullerton.edu/mori/|

Professor Mortaza Jamshidian
Department of Mathematics
800 N. State College Blvd.
Fullerton, CA 92834

E-mail: mori@fullerton.edu

Phone: 714-278-2398 (office)
714-278-3631 (Dept.)
Fax:714-278-1431


http://math.fullerton.edu/mori/
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1.4 Textbook

Mathematical Statistics
and Data Analysis

secand Editian

Figure 1.4: Book

Amazon web page for the textbook is



http://www.amazon.com/Mathematical-Statistics-Analysis-Duxbury-Advanced/dp/0534399428
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1. Generating pseudo random numbers from a given distribution.
2. Accept/Reject Algorithm.
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4. Maximum likelihood and Bootstrap.
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2.2 Figures

L(8|x)

Farlie-Morgenstern family with margins U(0,1), and o« =0.5

f(x,y)

Figure 2.1: A bivariate distribution with uniform marginals

Figure 1: Graps of C)s( 0%(1-6)™™ (i.e. Binomial(5,0) pmf)
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Figure 2.2: Binomial(5,6) pmf
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Figure 2.3: type I and type II errors for the binomial(5,6) example

2.3 Project 1

2.3.1 Introduction

Project handout given to us by Professor Jamshidian. The following describes the project.
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Project 1: Generating pseudo random numbers from various distributions

Instructions: Submit a hard copy of your project, including the code. Send a softcopy
of your code by e-mail with subject line “code for Project 1 — Your name”. Please choose
filenames that clearly indicate which program belongs to which (part of a) problem [e.g.
“prob3bc.R” for problem 3 section c]. I will accept code in Matlab, R, or Mathematica.
However, I will provide help only to those that use R, just to encourage you to use R. In
fact the project is written with references to the R language, but you can use equivalent
commends in Matlab or Mathematica.

1. [10 points] The distribution function for the exponential distribution with parameter
A is given by

1—e ™ x>0
Fla) = { 0 Otherwise.

a. Write an R program that uses F~! and the uniform random number generator in
R (runif) to generate n numbers from the exponential distribution with A. Use
set.seed (your birthday MMDDYY).

b. Generate n = 10000 values from the exponential random variable with parameter A = 2,
using your program (don’t give me the numbers generated!). Use the hist command
in R to plot the density histogram of the relative frequencies for the generated data.
Overlay this histogram by the graph of the density of the exponential random variable
with parameter A = 2. The commands dexp and lines, or curves can be used. Select
an appropriate number of bins for your histogram. Briefly comment on the relationship
between the histogram and the density curve.

2. [20 points] Let ¢o(x) and ¢;(x) denote the density functions for two normal random
variables with ¢ = 1, and respective means 0 and 3. The density for a mixture distribution
of these is defined as

f(@) =7¢o(x) + (1 —7)p1(x) — o0 <z < o0.
for a given admixture parameter 0 < vy < 1.

a. Write an R program, using the normal random generator rnorm and the uniform random
number generator runif, to generate n random numbers from this mixture. The inputs
to your program should be n, and . Generate two sets of 10,000 data points; one
with v = .75, and another with v = .25.

b. For each of the data sets generated, graph the density histogram and superimpose it by
the density f(z) defined in the equation above. Make sure to choose the number of
bins for the histogram appropriately. In each case explain why the shape of the density
that you obtain is expected.



CHAPTER 2. PROJECTS 19

3. [30 points] Problem 42 on page 111 of your text gives the pdf for the double exponential
density with parameter A. It also suggests a method to generate random numbers from the
double exponential family using two random variables W and T, described in the problem.

a. Write a program that generates random numbers from the double exponential family.
The input to the program should be the parameter A\, and the number of random
numbers to be generated, n. The output should be n pseudo random numbers from
the double exponential with parameter A\. You are only allowed to use runif in your
program for random number generation.

b. Write a program that uses the Accept/Reject algorithm efficiently to generate n obser-
vations from the standard normal density N(0,1), using random numbers that are
generated from the uniform(0,1) and the double exponential random variate with pa-
rameter A = 1 [your program in part (a)]. Your program should also count and report
the proportion of values that are rejected. Give the density histogram of n = 10,000

numbers generated from your program and superimpose it by the standard normal
pdf.

The project contains 3 problems. To make it easier to run each problem (due to the use of
Dynamic Ul in the project), I implemented each one in a separate Mathematica notebook.

Below are the links to each problem. There are 3 links to each problem, one for the PDF file
report, second for the HTML version of the report, and one for the Mathematica notebook
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itself to run the code.

In all 3 cases, to run the Mathematica code, please do the following: Download the Mathe-
matica notebook. Open it using Mathematica. Click on the Evaluation menu option at the
top, and then select Evaluate Notebook. This will run all the code. Scroll to the bottom of
the notebook and the GUI should be UP and ready to use.

2.3.2 Report and code links

2.3.2.1 problem 1

Project one. Problem one. Mathematics 502 Probability and Statistics

Nasser Abbasi, September 26,2007. California State University, Fullerton

1. [10 peints] The distribution function for the exponential distribution with parameter

A s given by
. 1—e =0
Flz) = { 0 Otherwise.

a. Write an R program that uses £~ and the uniform random number generator in
R (runif) to generate n numbers from the exponential distribution with A. Use
set.seed(your birthday MMDDYY).

b. Generate n = 10000 values from the exponential random variable with parameter A = 2,
using yvour program (don’t give me the numbers generated!). Use the hist command
in R to plot the density histogram of the relative frequencies for the generated data.
Overlay this histogram by the graph of the density of the exponential random variable
with parameter A = 2. The commands dexp and lines, or curves can be used. Select
an appropriate number of bins for your histogram. Briefly comment on the relationship
between the histogram and the density curve.

Problem 1 part (a)

l-e™ x>0
The CDF given isdefined as F(x) = { g = Tofind F~ we need to solve for x in the equation 1 — e~ for x = 0 Hence we
w.
write
y= 1_‘,—/\x
e™M=1-y
-Ax=In(1-y)
X= ’Tl In1-y)
Therefore

Fiy) = ZInd-y)

Now to generate random numbers which belongs to an exponential distribution, we will now generate random numbers from U (0, 1)
and for each such number generated, we will apply the above function F~* on it, and the result will be arandom number which belongs
to the exponential distribution. For example, if A=2 and a uniform random number is say 0.4, then we evauate
F-1(0.4)= 2t In(1- 0.4) = 0.25541

And so thisis theideato implement. We need to first seed the uniform random number generator before we start.

Algorithm

Input: A: parameter, n: number of random numbers to generate
output: alist of n random numbers from the probability density function ~ F (x) given above.

1. Seed the uniform random number generator with (010101).
2.initialize the array d of size n which will contain the list of random numbers generated below.

Thisloop below isjust an algorithmic view. In actual code, a 'vector' operation Table[] in used for speed.
3.Foriinl.nLOOP
Generate yy which is arandom generated from uniform distribution using the build in function RandomReal[0,1]
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2 ‘ projectl_nasser_problem_one.nb

d[il= F~Y(yx) using input A.
END LOOP

4. Find histogram of d. Select an appropriate number of bins. Let f, be the histogram found.

5. Now find the relative frequency f; by dividing set f, by the number of observations n. Hence histogram now is f, = %

6. Now scale the histogram such that it is density. Total areais 1. Do this by finding total area under histogram, and divide each bin
count by this area.

7. Plot the histogram and the exponential distribution Ae~** on the same plot.

Code Implementation

Define the function F~1which was derived earlier. Thisisthe inverse of the CDF of the exponential density function Ae™>

n[1s6:= | Remove["d obal ™ %" 1;
gDebug = Fal se;

-1
in[1s8:= | i nver seCDFof Exponenti al Di stribution[x_, n_] : = Mdul e[{}, 7 Log[1l - n]]

Function below iscalled to generate N random numbersusing the above F~* function (User needsto seed before calling

n[159:= | get RandomNunber sFronExponenti al [A_, nRandonVari abl es_] : = Mbdul e[{i },
Tabl e[ i nver seCDFof Exponenti al Di stri bution[x, RandonReal []1], {i, nRandonVari abl es}]]

Printed by Mathematica for Students
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Problem 1 part(b)

Generate n = 10000 for A = 2 and overlay with relative frequency, use appropriate number of bins. See appendix for the function
postProcessForPartOne[] which generate the plots. Removed below to reduce code clutter in the main report.

This function makes a histogram which is scaled to be used to overlay density plots, or other functions.
Input: originalData: thisis an array of numbers which represents the data to bin

nBins: number of bins
output: the histogram itself but scaled such that areais ONE

in[160:= | Needs["BarCharts "]
nmaMakeDensi t yH st ogram[ori ginal Data_, nBins_] : =

I\/bdule[{freq, bi nSi ze, from to, scal eFactor, j, a, currentArea},

to = Max[original Datal;

from=Mnf[original Data];

bi nSi ze = (to -from) /nBins;

freq = Bi nCount s [ori gi nal Dat a, binSize];
current Area = Sumfbi nSi ze xfreq[i 1, {i, nBins}];

freq
freq= ——
current Area

a=from
Table[{a+ (j -1) *binSi ze, freq[j1, binSize}, {j, 1, nBins}]

This function to overlay the histogram and the PDF. It is used by the simulation program as well (that is why it is alittle larger than
needed)

Printed by Mathematica for Students
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4 | projectl_nasser_problem_one.nb

in[162):= | post ProcessFor Part One [randomNunbers _, nBins_, A_, nRandonVariables_, fromX_, toX_]:=
I\/bdule[{frequency, rel ati veFrequency, pl, p2,
x, factor, mex, inBize =300, dx, p, pCDF, pi nvCDF, gz, g},

(xfind dx which is bin size, needed by Mathematica Bi nCount functions)
dx = (toX-fronX) /nBins;

(xgenerate frequency count using the above bin sizex)
frequency = Bi nCount s [randomNunbers, {fromX, toX, dx}];

(¥xnow nornelize by total nunmber of observation to obtain the relative frequenci esx)
rel ati veFrequency = N[frequency / nRandonVari abl es];

(xNow di vide by scale factora, to scale it =x)
max = Max [rel ati veFrequency];

factor = x/max;

rel ati veFrequency =rel ati veFrequency =factor;

gz = nmaMakeDensi t yHi st ogr am[r andomNunbers, nBins];
pl = General i zedBar Chart [gz, BarStyle -» Wite,
I mageSi ze » i nBi ze, Pl otLabel »"Xx=" <>ToString[A] <>" variabl es=" <>
ToString[nRandomVari abl es] <>" bins=" <>ToString[nBins]];

p2 = Pl ot [PDF[Exponential Di stribution[a], x], {x, fromX, toX}
, PlotRange -» Al l, Frane - True, PlotStyl e - {Red (%, Thickx)}, |nageSi ze »infi ze];

p = Show[{pl, p2}];
pi nvCDF = Pl ot [i nver seCDFof Exponenti al Di stribution[a, y1, {y, 0, A}

-1
, PlotLabel -»"x=F?'(y)=—~Log[1-y]", | mageSi ze » 200, AxesLabel - {"y", "x" }];
A

pCDF = Pl ot [1 - Exp[-Ax], {x, fronX, toX}
. PlotLabel »"y=F(x)=1-e**", | nageSi ze » 200, AxesLabel - {"x", "y"}];

g=Gid[{{pi nvCDF, pCDF}}];
Gid[ {{p}, {9}}, Alignment -» {{Center}, {Center}}, Frane -» Al ]

]

now generate the needed outout for N = 10000
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n[163:= | NBins =50; A =2; nunber O Vari abl es =10000; fronX=0; toX=2.5;
post ProcessFor Part One [get RandonNunber sFr onExponenti al [x, nunber O Vari abl es],
nBi ns, A, nunber O Vari abl es, fronX, toX]

A=2 variables=10000 bins=50

Out[164] ) T L
1 2 3 4
- -1 —
x=F~(y)==—Log[1-y] y=F(x)=1-e7**
X y
10t
20¢
08}
15t
0.6
101 0.4f
05¢ 02f
: : : Ly ; ; : : - X
05 10 15 20 0.5 1.0 15 20 25

Comment and analysis

Below | show snap shots of few plots of the density overlaid with the histogram for different values of n which is the number of
random variables.

We see from the plots below, that for a fixed number of bins, fixed A, that as more random variables are generated, the histogram
overlaid on top of the actual PDF becomes closer and closer to the PDF curve. The error between the histogram and the PDF curve
becomes smaller the larger the number of random variables used. This indicates that this method of finding random numbers for
density function will converge to the density function. We need to select an appropriate bin size to see this more clearly. The smaller
the bin size the more clear thiswill become (but too small a bin size will make the histogram itself not too clear).

Please see appendix for additional GUI based simulation for this part of the project.
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In[165]:=

Out[168]=

nBins =40; A=2; fronX=0; toX=2.5;
SeedRandom[010 1017;

p = Tabl e [post Pr ocessFor Par t One [get RandonNunber sFr onExponenti al [A, nRandonVari abl es],

nBi ns, A, nRandonVari abl es, fronX, toX], {nRandonVari abl es, 500, 6 *500, 500}];
GaphicsGid[{ {First[p[[l, 1, 111], First[p[[2, 1, 1111}, {First[p[[3, 1, 1111,
First [p[[4, 1, 1111}, {First[p[[5 1, 1111, First[p[[6, 1, 1111}},

Frame -» Al l, |1 nageSi ze -» 600]

A=2 variables=500 bins=40 A=2 variables=1000 bins=40
20f 20
i i
15 15H
10 1.0/
0.5 05
0‘.5 1‘.0 1‘.5 2.0 215 - o‘.s 110 15 2.0 215 3‘.0
A=2 variables=1500 bins=40 A=2 variables=2000 bins=40
20k 20
15 15H
10 1.0/
05 05
05 1‘.0 1‘.5 20 25 30 3.L5 1 2 3 21
A=2 variables=2500 bins=40 A=2 variables=3000 bins=40
20f 20
15/] 151
10 1.0/
05 05/
1 2 3 s 1 2 )
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Problem 1 simulation

Define function which accepts a list of random variables from exponential distribution, and A and generates a plot of the histogram
overlaid by the exponential density plot.

in[169:= | m= Mani pul at e [ (SeedRandom[010 1017];

post Pr ocessFor Part One [get RandomNunber sFronExponenti al [A, n], nBins, A, n, 0, naxX]),
{{nBi ns, 50, "Nunmber of bins?"}, 1, 100, 1, Conti nuousActi on - True,

Appear ance - "Label ed" },

{{A, 2, "A"}, 1, 10, .01, ContinuousAction - True, Appearance - "Label ed"},

{{n, 10000, "nunber of random vari abl es?"},

10, 100000, Conti nuousAction -» True, Appearance - "Label ed"},

{{maxX, 2.5, "X Plot range?"}, 1, 100, 1, Conti nuousAction -» True, Appearance - "Label ed"},
Aut or unSequenci ng -» {{1, 15}, {2, 20}, {3, 15}}

Number of bins? D 50
A «:O 2
number of random variables? :D 10000
X Plot range? GD 2.5
A=2 variables=10000 hins=50
Out[169]=
Il L Il L L L
3 4
x=FX(y)=3Logi1-y] y=F(o=1-e"*
X y
10+
20+
081
151
0.6
10 04}
051 0.2+
. . . -y ' ' ' . - X
05 10 15 20 0.5 1.0 15 20 25
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2.3.2.2 problem 2

Project one. Problem 2. Mathematics 502 Probability and Statistics

Nasser Abbasi, September 26,2007. California State University, Fullerton

2. [20 points] Let gg(x) and & (x) denote the density functions for two normal random
variables with @ = 1, and respective means 0 and 3. The density for a mixture distribution
of these is defined as

flz) = vdo(z) + (1 = y)h(x) -0 <z < 0.
for a given admixture parameter 00 < ~ < 1.

a. Writean R program, using the normal random generator rnorm and the uniform random
number generator runif, to generate n random numbers from this mixture, The inputs
to your program should be n, and 4. Generate two sets of 10,000 ¢

with 4 = .75, and another with 4 = .25,

5, Oone

b. For each of the data sets generated, graph the density histogram and superimpose it by
the density f(z) defined in the equation above, Make sure to choose the number of
hins for the histogram appropriately. In each case explain why the shape of the density
that vou obtain is expected.

Part 2 (a)

The mixed distribution is
FO0 = y9y(X) + (L =) $2(X) —co <X =00

Where ¢y is the density function for normal distribution with 0=1,u=0, and ¢ is the density function for normal distribution with
o=1u=3

We need to generate random numbers from the above density function.

The following is the idea of how to solve this problem. Let us consider the case for y=75% .Generate ar.v. from a uniform distribution,
which will be between [0, 1]. Let this number be called ¢. If { < .76 then now we will generate arandom number from the above
Po(x) normal distribution otherwise we will generate a random number from ¢;(x) distribution. Hence thisis the algorithm
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Algorithm

Input: y,070, to, 01, 11, N (where nis number of random number to generate for mixture f (x)
output: n random numbers that belong to mixture f (x)

seed the random number generator (010101)
Initialize array d of the size of the random numbers generated

Foriin1.n LOOP
{=generate ar.v. fromU|[0, 1]
IF <y THEN
d[i]= generate a random number from ¢g~ N(0o, o)
ELSE
d[i]= generate a random number from ¢; ~N(o1, 1)
ENDIF
END LOOP

output d which will now contain n random variables drawn from the above probability density function.

Function to implement the mixture random variable algorithm

inf1o0):= | Remove["d obal ™ +"1;
gDebug = Fal se;

nf192):= | (*this function bel ow inlenents the above al gorithmk)
processPart Two[y_, u0_, oO_, pul_, ol_, n_]:=Mdule[{d={}, k, &},
¢ = Tabl e [RandonReal [], {k, 1, n}];
d=Table[|f [2[k] < ¥, RandonReal [Nornmal Di stribution[u0, o011,
RandonReal [Normal Di stributionf[ul, 01111, {k, 1, n}]

Now generate 2 sets of numbers each 10000 long, one for y = .75 and the second for y = .25

inf193)= | M0 =0; o0 =1; ul =3; ol =1; n=10000;
SeedRandom[0101017;

¥ =.75, setA=processPartTwo[y, u0, o0, ul, ol, nl;
¥ =.25;, setB-=processPartTwo[y, u0, o0, ul, ol, nJ;

Part 2 (b)

Generate 2 plots, one for y = .75 and one for y=.25 for number of random variables=10000 generated in part (a) overlaid by histo-
gram.

First define the mixture density function (the true density). Please see appendix for the code that overlays the histogram and the
mixture function called postprocessPartTwo[]. Moved below to the appendix to reduce code clutter in the main report.

In[197] m xtureDensity[x_, y_, u0_, oO_, pl_, ol_]:=
¥ PDF[Nor mal Di stribution[u0, o0], x] + (1 -vy) PDF[Normal Di stribution[ul, ol], x1;

Now call the above on the 2 sets of 10000 numbers generated in part (a) and display the result

This function makes a histogram which is scaled to be used to overlay density plots, or other functions.
Input: originalData: thisisan array of numbers which represents the data to bin

Printed by Mathematica for Students



CHAPTER 2. PROJECTS

nBins: number of bins
output: the histogram itself but scaled such that areais ONE

in[198:= | Needs["BarCharts "]
nmaMakeDensi t yH st ogram[ori gi nal Data_, nBins_] : =

Nbdule[{freq, bi nSi ze, from to, scal eFactor, j, a, currentArea},

to=Max[original Datal;

from=Mnf[original Data];

bi nSi ze = (to -from) /nBins;

freq = Bi nCount s [ori gi nal Dat a, binSize];
current Area = Sumfbi nSi ze xfreq[i 1, {i, nBins}];

freq
freg = ——m8 —;
current Area

a=from
Table[{a+ (j -1) xbinSi ze, freq[jl, binSize}, {j, 1, nBins}]

in200]:= | postprocessPartTwo[d_, ¥_, u0_, o0O_, ul_, ol_, nRandonVari abl es_, i nageSi ze_] : =
Modul e[ {freq, p, pList, xFrom xTo, scal eFactor, maxSanpl ed, sanpl ed,
gz = {}, fz0, fz1, x, maxBin, i nSi ze =i nageSi ze, nBi ns = 70, from},
xFrom=M n[d];
xTo = Max [d];
gz = nnaMakeDensi t yH st ogram[d, nBi ns];
pLi st = General i zedBar Chart [gz, BarStyle » Wite, | mageSi ze » i nSi ze];

p =Plot [m xtureDensity[X, ¥, u0, o0, ul, ol], {x, xFrom xTo},
AxesOrigin- {0, 0}, PlotRange - All, PlotLabel »"Analytical plot of f (x)",
| mageSi ze » i nBi ze, (%Pl ot Styl es»{Dashed, Red}*)PlotStyle » {Red}];

Show [ {pLi st, p},

" Nunber of random vari abl es=" <> ToString[nRandonVari ables] <>"\n", 107,
AxeslLabel - {"x", "f (x), scaled frequency"}]
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npo1)= | ¥ =.75; pl=postprocessPartTwo[setA, ¥, 10, o0, ul, ol, n, 300];
¥ =.25;, p2=postprocessPart Two[setB, ¥y, u0, o0, ul, ol, n, 3007];
Gid[{{pl, p2}}, Frame » All, Spacings -» 0, |ItenSi ze » Ful | ]

true f (x) vs. random variables generated true f (x) vs. random variables generated
y=0.75 Number of random variables=10000 y=0.25 Number of random variables=10000
f(x), scaled frequency f(x), scaled frequency
03l 0.30fF Py
32} r \\
ATHTN : i
715‘ 3 025 Z iy
out[203]= 7{7 020 7\ 0.20f 1 \
01! 015
0.10|f
0 [l
L A L TT : L L L
-2 - 2 4 6 2 4 6

Comment and analysis on result of part 2 (b) plots

In the left plot, y=.75, hence 75% of the mixture comes from ¢ which has a mean of 0, hence we would expect that at zero the bulk of
the concentration, which what the plots shows to be the case (since both concentration have the same variance). Hence there should be
more random numbers generated from this mixture around x=0 as well, and we see from the histogram that thisis the case.

In the right plot, now y=.25, hence 75% of the concentration will come the ¢, distribution which has mean of 3. Hence again, we see
that more random numbers are generated around 3 than anywhere else. These plots also show that the random numbers generated will
have a probability density which will converge to the f(x) given as more and more random variables are generated.

Simulation program for problem 2

GUI to simulate part 2(b) of the project
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In[204]:=

Out[204]=

In[205]:=

m= Mani pul at e[
post processPart Two [processPart Two [y, 10, o0, ul, o1, nl, ¥, u0, o0, ul, o1, n, 400],
{{y, .75, "Select ¥"}, 0, 1, .1, Appearance - "Label ed"}
, {{u0, 0, "Select u for ¢o"}, -30, 30, .1, Appearance - "Label ed"}
, {{ul, 3, "Select u for ¢1"}, -30, 30, .1, Appearance - "Label ed"}
, {{00, 1, "Select o for ¢o"}, 0.1, 6, .1, Appearance - "Label ed"}
, {{ol, 1, "Select o for ¢1"}, 0.1, 6, .1, Appearance - "Label ed"}
, {{n, 10000, "Sel ect n, nunmber of r.v. to generate"}, 10000, 100000, 10000,
Appear ance - "Label ed"}, AutorunSequencing -» {{1, 15}, {2, 25}, {3, 25}, {4, 25}, {5, 25}}

Select y D 0.75
Select p for ¢g D 0
Select p for ¢; U 3
Select o for ¢g G 1
Select o for ¢, G 1
Select n, number of r.v. to generate GD 10000

true f (x) vs. random variables generated
y=0.75 Number of random variables=10000

f(x), scaled frequency

0.30+

=

[0.25

T T [ T T T T T T T T T T T T [ T T T T T T T T

|
N
r

(xExport ["m swf", m " Repeat Ani mati on" -»Tr ue, " Conpr essi onMet hod" ->None] x)
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2.3.2.3 problem 3

Project one. Problem Three. Mathematics 502 Probability and Statistics

Nasser Abbasi, September 26,2007. California State University, Fullerton

3. [30 points] Problem 42 on page 111 of vour text gives the pdf for the double exponential
density with parameter A. It also suggests a method to generate random numbers from the
double exponential family using two random variables W and T, described in the problem.

a. Write a program that generates random numbers from the double exponential family.
The input to the program should be the parameter A, and the number of random
numbers to be generated, n. The output should be n pseudo random numbers from
the double exponential with parameter A. You are only allowed to use runif in your
program for random mumber generation.

b. Write a program that uses the Accept /Reject algorithm efficiently to generate n obser-
vations from the standard normal density N(0,1), using random numbers that are
generated from the uniform(0,1) and the double exponential random variate with pa-
rameter A = 1 [your program in part (a)]. Your program should also count and report
the proportion of values that are rejected. Give the density histogram of n = 10, 000
numbers generated from vour program and superimpose it by the standard normal

pdf.

Problem 3 part (a)

We are asked to generate R.V's from f(x) = % =™, We note as shown in the problem itself, that R.V. X can be written as product of 2
R.V WT where Wis %1 with probability %ea:h. Hence to generate R.V. we do the following. We generate n R.V. from uniform

distribution [0,1] using Mathematica random number generator. Then we check if each number is < % or not, and we generate 1 or —1
as the case may be. We then generate n random variables from the exponential distribution, which we know how to do from part (a).

Then we multiply the above 2 vectors, element wise, with each others. The first vector being the vector of 1'sand -1's. And the second
vector being the RV's from the exponential distribution. Thisis the algorithm

Algorithm
Input: A,n (number of random variables to generate)

output: list of random numbers which belong to density f(x) = % e~

Seed the random number generator with unique value for us.

A = Generate n random numbers from the exponential distribution with parameter A (CALL problem 1 part(a) with the input A,n) This
uses F~*method and uniform random number generator as well.

B = Generate n random numbers from uniform random number generator [0,1]

FORiin1..nLOOP -- Note: Thisisalgorithm view. In code ‘vectored' operation is used.
IF B(i)<.5 THEN
B(i)=1
ELSE
B(i)=-1
END IF
END LOOP

result=B* A
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Now generate a histogram from the result above.
The following function implements the above algorithm

Code Implementation

Define the function F~1which was derived earlier. Thisisthe inverse of the CDF of the exponential density function Ae™™

Rermove ["d obal © %" 1;
gDebug = Fal se;

-1
i nver seCDFof Exponenti al Di stribution[Ax_, n_]:=Mdule [{}, — Log[1 - n]]
A

Function below iscalled to generate N random numbersusing the above F~* function (User needsto seed before calling

get RandonmNunber sFr onExponenti al [A_, nRandonVari abl es_] : = Mdul e[{i },
Tabl e[ i nver seCDFof Exponenti al Di stri bution[x, RandonReal []], {i, nRandonVari abl es}]]

get RandomNunber sFr onDoubl eExponenti al [x_, nunber Of RandonVari abl es _] : = Modul e[{W T},
W= get RandomNunber sFr onExponenti al [A, nunber Of RandonVari abl es];

T =Tabl e[l f [RandonReal [] <.5, 1, -1], {i, nunber O RandonVari abl es}];
WT]

Test the above function by plotting the histogram generated for say n = 10000 overlaid by the true double exponential density func-
tion.
First, define the double exponential function

A
doubl eExponential [A_, x_]: = E Exp[-X Abs [x]]

Now do the overlay plot

This function makes a histogram which is scaled to be used to overlay density plots, or other functions.
Input: originalData: thisis an array of numbers which represents the data to bin

nBins: number of bins
output: the histogram itself but scaled such that areais ONE

Needs ["Bar Charts™ "]
nnmaMakeDensi t yH st ogramforiginal Data_, nBins_] : =
Nbdule[{freq, bi nSi ze, from to, scal eFactor, j, a, currentArea},
to = Max[ori gi nal Datal;
from=Mnforiginal Data];
bi nSi ze = (to -from) /nBins;
freq = Bi nCount s [ori gi nal Data, binSize];
current Area = Sum[bi nSi ze xfreq[i 1, {i, nBins}];

freq
freg = ——;
current Area

a=from
Table[{a+ (j -1) *binSi ze, freq[j I, binSize}, {j, 1, nBins}]
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SeedRandom[010 1017;
n=10000; A=1; nBins =100; inageSi ze = 400;

post processPart ThreeA[l i st Of RandomNunbers _, x_, nBins_, i nageSi ze_] : =
Modul e [{gz, pList, xFrom xTo},
xFrom= M n[li st Of RandonNunbers;
xTo = Max [l i st OF RandomNunber s 1;
gz = nmaMakeDensi t yH st ogram[l i st Of RandonNunber s, nBins];
pLi st = General i zedBar Chart [gz, BarStyle -» Wite, | mageSi ze » i nageSi ze];
p = Pl ot [doubl eExponenti al [A, x], {x, xFrom xTo}, AxesOrigin - {0, 0}, PlotRange - Al |,
| mageSi ze - i nageSi ze, (%Pl ot Styl e»{Dashed, Red}*)PlotStyle » {Red}];

Show[ {pLi st, p},
Pl ot Label -» Style["true f (x) vs. random vari abl es generated\n" <>" =" <>ToString[ ] <>
" Nunber of random vari abl es=" <> ToString[Length[listO RandomNunbers]] <>"\n", 147,
AxesLabel - {"x", "f (x), scaled frequency"}]

Framed [
post processPart Thr eeA[get RandomNunber sFr onDoubl eExponenti al [ A, n], A, nBins, i mageSi ze]]

truef (x) vs. random variables generated
A=1 Number of random variables=10000

f(x), scaled frequency

0.5
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Problem 3 part(b)

In this part, we need to generate alist of r.v'sthat belong to normal distribution N(0,1), using uniform random number generator U[0,1]
and using the random numbers generated from the double exponential density function in part (a) above. We are asked to use the
accept/reject method.

First the method is explained, then the algorithm outlined, then the implementation shown and atest case given, then a GUI interface
written to test the algorithm for different parameters values.

Accept/Reject algorithm
input: n (number of random variables to generate)
A (the exponential density parameter)
f (X) the density function for random variable X which we wish to generate random variables
fm () the density which we will use to help in generating the random variables from fy (x). This density is such that it is easy to
generate random variables from. Much easier that from f(x) and that is why it was selected.
output: list of random numbers of length n from f (x)

Step 1: Find C. Wherec = sup V¥ x % To solve this, thisis the algorithm

Algorithm for step 1: Let fy(x) = %e"‘x (since double exponential is symmetric, I'll use one sided version). Let

2
e 2

fx(X) = ; ¢ . Now find the ratio r(x) = ;X((f) = Jz\qu Now find where the maximum of this ratio is using normal calculus
b.d M e

method: Take the derivative w.r.t. x and set it to zero. Solve the resulting equation for x. Evaluate the ratio at this root. This gives C.
Wefind that C = 1.31549 The following few lines of code finds C:
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A
A=1; fm=EExp[—x]; fx = PDF[Normal Di stribution[0, 1], X];

) fx
ratio = —;
fm

root = First @Sol ve[D[ratio, x] =0, X];
c=N[ratio /. root]

1. 31549

Step 2: Now that we found C in step 1, then the envelop function becomes C = fy(x) = C % e~
Step 3: seed the number random generator
initialize an array d of size nto contain al the accepted random numbers generated
initialize counter number_accepted=0
WHILE number_accepted < n DO
generate r.v. from U[0,1] call it u.
Generate r.v. from double exponential density (using part(a)) call thisx
IFu+Cxfy(X) < fx(x) THEN
di]=x
number_accepted++
END IF
END LOOP

Step 4: Now array d contains the n random numbers generated from the normal density N[0,1]. Make histogram and overlay it over
N[0,1]
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Diagram showing main steps in the algorithm

This is f(x), the density
we want to generate

random numbers for
(whose F*-1is too N

hard to find)

This is fm(x). The
c A __ajx| envelope function,
- 7" which should be

./ >= f(x) over all x

@ Evaluate fm(x) at the x
generated from double
eI exponential random
3, number generator

=~ Multiply fm(x) by u, where u is a
random number from U[0,1] to
obtain a new height for fm(x)

If this point is

Uniform U[0,1] randormr

smaller than f(x) number generator
:::: ;?:2:) ;X, Generate an x from double
1 @ exponential density function

(using part(a)) method 0 1

The 5 main steps in the accept reject algorithm
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Accept Reject Algorithm Implementation

accept Rej ect [A_, nunber Of RandonmNunber sToGenerate _, c_
(*This is for scaling the envelope with so that envel ope > f (x) everywherex)
, u_ (xmean of Nornmal Distx), o_(xstd of nornal distx*)
]:=Mdul e[{nFailed =0, nPassed =0, y, x, d, i, maxEnvel ope, fx, u},
RandonSeed [010101]; (*start from cl ean random nunber generator %)
maxEnvel ope = ¢ *doubl eExponenti al [, O];
d = Tabl e[0, {i, nunmber Of RandomNunber sToGenerate}];

Whi | e [nPassed < nunber O RandonNunber sToGener at e,
{x = get RandomNunber sFr onDoubl eExponenti al [x, 1]1[[1]];
y = ¢ »xdoubl eExponenti al [A, x] »RandonReal [{0, 1}1;
fx = PDF[Normal Di stribution[u, o], XI;
If[y =< fx, {nPassed++, d[nPassed] =x}, nFailed++];}
1

{d, nFailed}
1

Test case for n=10,000

Test the above function, and make a plot of histogram overlaid on top of density of N(0,1)
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A=1, u=0; o=1; xFrom=-4o0; xTo =40; n=10000;

c =1.315489246958914; (xsee al gorithm above on how C was foundx)
nBi ns = 120;

C ear [X];

{li st Of Nunbers, nFailed} = accept Rej ect [A, n, c, u, ol;

gz = nnaMvakeDensi t yH st ogram[l i st Of Nunbers, nBins];
pLi st = General i zedBar Chart [gz, BarStyle » Wite, | nageSi ze -» 400, Pl ot Range -» Al | ];

p = Pl ot [{c » doubl eExponenti al [1, x], PDF[Normal Di stribution[0, 1], x1},
{X, xFrom xTo}, PlotRange » All, PlotStyle - {Red, Bl ack}, | mageSi ze - 400];

Fr amed [Show([ {pLi st, p},
Pl ot Label -» "Total nunber of attenpts during process=" <>ToString[n+nFailed] <>
"\'nNunbers rejected during process=" <>ToString[nFailed] <>" %Failed =" <>
ToString[nFailed/ (n+nFailed) *100.11]

Total number of attempts during process=13137
Numbers rejected during process=3137 %Failed =23.8791

cx fy(X)

1

The above is a plot showing the histogram for random numbers generated using the accept - reject method for N=10,000. The random
numbers are very close the N[0,1] which indicates this method is working well. The larger N is, the more closely the random numbers
histogram will approach N[0,1] probability density.

| have implemented a GUI based simulation as well for the above problem, please see the appendix below to run the simulation part.

Printed by Mathematica for Students
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Problem 3 simulation

Modul e [{gnTri al sSoFar =0, gnRej ect SoFar =0, gnAccept edSoFar =0, gmaxEnvel ope, gmul tiplier,
gA, gu, go, gAccept edXSet, gnBins, gxFrom gxTo, gAcceptedPoi nt sCoor di nates, gMaxAccepted},

initializeSinulation[]:=Mdule[{},
RandonSeed [010101];
gnul tiplier =1.315489246958914;

gnBi ns = 40;
ga=1;

gu = 0;

go=1;
gxFrom= -6 go;
gxTo = 6 go;

gMaxAccept ed = 10 000;

gnTri al sSoFar = 0; gnRej ect SoFar = 0; gnAccept edSoFar = 0;
gAccept edXSet = Tabl e[0, {i, gMaxAccepted}];

gAccept edPoi nt sCoor di nat es = Tabl e[0, {i, gMaxAccepted}];
gmaxEnvel ope = grul ti pli er =doubl eExponenti al [gx, 0]
1

finalizeSinmulation[]:=Mdule[{gz, p, pList, X, res},
I f [gnTri al sSoFar > 0,
{
gz = nnaMakeDensi t yH st ogr am[gAccept edXSet [1 ;; gnAccept edSoFar ], gnBins];

pLi st = GeneralizedBarChart [gz,
BarStyle - Wi te,
| mageSi ze -» 250,
Pl ot Range -» {{-4.59g0, 4.590}, {0, 1.2}}1;

p = Pl ot [PDF[Normal Di stribution[gu, gol, X1,
{x, gxFrom gxTo},
Pl ot Styl e » Red,
Pl ot Range -» Al | 1;

res = Show[ {pLi st, p},
Pl ot Label - "Total nunmber of attenpts during process=" <>ToString[gnTrial sSoFar ] <>
"\ nNunbers accepted during process=" <> ToString[gnAccept edSoFar ] <>

%Accepted =" <>

ToString[gnAccept edSoFar / (gnTri al sSoFar ) %= 100. ] <>
"\'nNunbers rejected during process=" <>
ToString[gnRej ect SoFar ] <>" %Fai l ed =" <>
ToString[gnRej ect SoFar / (gnTri al sSoFar ) %= 100. ]

processOneAccept Rej ect []: = Mdul e[{X, y, fx, res, p, accepted, p2, pStats},
gnTri al sSoFar ++;
I f [gnTrial sSoFar < 10, Return["Ready.."]];

x = get RandomNunber sFr onDoubl eExponenti al [gx, 1]1[[1]1];

Printed by Mathematica for Students
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y =gnul tiplier »doubl eExponenti al [gA, x] * RandonReal [{0, 1}];
fx = PDF[Normal Di stribution[gu, gol, xI;
Ifly < fx
, {gnAccept edSoFar ++;
accepted = True;
gAccept edXSet [gnAccept edSoFar J = X;
gAccept edPoi nt sCoor di nat es [gnAccept edSoFar ] = {X, Yy}

h
{gnRej ect SoFar ++, accepted = Fal se}

IN

p=Plot [{gmultiplier » doubl eExponenti al [1, x], PDF[Normal Di stribution[O, 1], x1},
{X, gxFrom gxTo}, PlotRange - All, PlotStyle - {Red, Bl ack}, | mageSi ze - 250,
Pl ot Label -» Row[{"Trial [", gnTrialsSoFar, "]J\tc=[", gmultiplier, "1\n", If [y <fXx,
Style["Accepted”, Black], Style["Rejected", Red]], "\tPoint=(", x, " , ", vy, ")"}1,
Epil og » {If [accepted, {PointSize[Large], Green, Point [{X, Y}],
{Poi nt Si ze[Snal | ], Gray, Poi nt [gAccept edPoi nt sCoor di nates [1;; gnAccept edSoFar]]}},
{Poi nt Si ze[Large], Red, Point [{x, Y}], {PointSize[Small ], G ay,
Poi nt [gAccept edPoi nt sCoor di nates [1;; gnAcceptedSoFar]1]}}
1
}
1
p2 =finalizeSimulation[];
pStats = Row[{"Trial [", gnTrialsSoFar, "1\n", If [y <fx,
Styl e["Accepted", Black], Style["Rejected", Red]], "\tPoint=(", x, " , ", vy, ")"}1;
(*Gid[{ {pStats}, {Gid[{ {p,p2} }1}}, Frane-All, Alignnment->{Center}]; *)
Gid[{ {p, p2} }, Frame > All, Alignnent » {Center}]

m= Mani pul ate[res ="Ready to run..."; runlt =False; i =0;
Dynani ¢ [
Ifrunlt &% Not [stoplt] & i < 10000,
(i ++; res = processOneAccept Rej ect []),
res
]

s
{{runlt, True, ""}, Button[Style["Click to start", 10], {i =0;

initializeSinulation[]; stoplt =Fal se; runlt =True}] & ContinuousAction -> Fal se},
{{stoplt, False, ""}, Button[Style["Click to stop", 10], {stoplt =True; res}] &,
Cont i nuousAction -> Fal se}, AutorunSequencing -» {{2, 120}}

Click to start
Click to stop

Ready to run...

Printed by Mathematica for Students
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2.3.3 Simulation movies

2.3.3.1 Simulation problem 1. Random variables from exponential distribution
using F~! method

Murnber of bins? j 0
i j 2
rumnber of randarmn wariables? ] 10000
# Plat range? ] 25
A=2 variables=10000 hins =50
20k
I|
Ll
1.0 h
0.5
1 1
1 2 3 4
o -1
x=F " (7)=""Logl1-y] y=F(x)=l—e*"
x ¥
1.0 J—
an | e
| L e
|
15 / . )
fl
1.0 / !
/;, 0.4
i/
a3 - 02 l|l.l
—~
¥ b4
0.5 10 15 a0 0.5 1.0 1.5 a0 2.5

Movie swi

2.3.3.2 Simulation problem 2 (Random numbers from mixture)

Select ¥ 8 07

Select p For @y

M
W
Select x For ¢ E

Salect o for gy % i
Select o for @y —D 1

Select n, number of rav, to generate {] 10000

true 1) ve. random warigbles generated
£[], scaled frequency

AN

Movie swi


projects/project1/problemOne.swf
projects/project1/part2.swf
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2.3.3.3 Simulation Problem 3 (Accept/Reject)

Total number of attempts during process=7735
Numbers accepted during process=5846 % .Accepted =75.5785
Numbers rejected during process=1880 %Failed =24.3051

12

Trial [7735]
Accepted Point=(1.61992 , 0.0254035)

Movie swil

2.4 Project 2

Problem: Simulation for estimator to estimate population size as sample size and number of
samples taken is changed. Estimator for population size used in 2*sample_mean-1


projects/project1/part3_with_c.swf
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3.1 List of HWs to do

Math 502AB (Probability and Statistics) Homework - Fall 2007

From John Rice's book, Third Edition: Problems with an asterisk are new in the 3rd Edition, as
compared to the 2" Edition.

Ch. Sec. Exercise Numbers Due Date
1 2-3 2,6,7,9
4 11, 16, 18, 35b, 42
5 45, 53, 54, 64, 79
2 1 6, 11, 19, 21, 27, 28, 31
2 34, 39, 44, 49
3 59, 60, 62, 66, 67, 70, 71, 72 (You may use Matlab or R)
3 1,2,3 1, 3, 6, 8ab, 9a, 12ab, 15abcd

4 14a, 19, 15d
1b, 8¢, 9b, 12¢, 14b, 15e, 20, 21, 22, 24, 32*, 33a*, 34*,
37 (Problem 29 in 2" Ed., and there is an error in the

5 expression of the density. Change the value 6 to 15/16), 38
(Problem 30 of pnd Ed.), 40 (don’t do the expectation
question)

11, 42a (Problem 32a in 2" Ed.), 44(Problem 34 in 2"

6 Ed.), 47(Problem 37 in 2" Ed.), 52(Problem 42 in 2" Ed.),
55(Problem 45 in 2"d Ed.), 58(Problem 48 in 2" Ed.),
64(Problem 54 in 2" Ed.)

; 65(Problem 55 in 2" Ed.), 68(Problem 58 in 2" Ed.), 70
(Problem 60 in 2" Ed.)

4 1,2,6,8,10, 12,13, 16, 18, 22, 25, 26, 30, 32, 35,
1,2 42(Problem 38 in 2" Ed), 49(Problem 45 in 2" Ed),
50(Problem 46 in 2" Ed), 57(Problem 51 in 2" Ed)

3 43(Problem 39 in 2" Ed), 45(Problem 41 in 2" Ed),
46(Problem 42 in 2" Ed), 60(Problem 54 in 2" Ed)

Figure 3.1: page 1




CHAPTER 3. HWS

47

4,5

20, 63(Problem 57 in 2"4 Ed), 66(Problem 60 in 2" Ed),
67(Problem 61 in 2"d Ed), 68(Problem 62 in 2" Ed),
70(Problem 64 in 2" Ed), 75(Problem 69 in 2" Ed),
77(Problem 71 in 2" Ed), 83(Problem 77 in 2" Ed),
84(Problem 78 in 2"d Ed), 85(Problem 79 in 2" Ed),
90(Problem 84 in 2" Ed), 92(Problem 86 in 2" Ed),
96(Problem 90 in 2" Ed)

101(Problem 95 in 2™ Ed), 102(Problem 96 in 2"4 Eq)

13,5,6,10,12, 13, 14, 21, 25

2,5,6,7,8,10,11

8.1-8.4

4 (ab)*, 7(a) (Problem 5 in 2" Ed), 13 (Problem 11 in 2"
Ed), 14, 16a (Problem 14 in 2"d Ed), 18a(Problem 16 in 2"
Ed), 20(Problem 18 in 2" Ed), 21a(Problem 19 in 2" Eq),
23(MME only) (Problem 21 in ond Ed), 32(Problem 28 in
2" Ed), 43(a-e, MME only)*, 50a(Problem 42 in 2" Ed),
53a(Problem 45 in 2" Ed)

8.5

4 (cd)*, 6 (ac)(Problem 4 in 2nd Ed), 7(bc), 8* (except c),
11 (Problem 9 in 2" Ed), 12 (Problem 10 in 2" Ed), 16bc,
18bc(Problem 16 in 2" Ed), 21b(Problem 19 in 2™ Ed),
23(MLE only) (Problem 21 in 2nd Ed), 27(Problem 25 in
274 Ed), 30*, 43(a-e, MLE only)*, 48*, 50(bc) (Problem
42 in 2" Ed), 51, 53(b-d) (Problem 45 in 2" Ed),
60(Problem 52 in 2" Ed)

8.6

4 e*, 7d*, 62%, 63*

8.7-8.8

6b(Problem 4 in 2" Ed), 16d, 18d, 21c (Problem 19 in 2"
Ed), 68, 71, 73

3,7,9,12, 13, 24(Problem 16 in pnd Ed), 26(Problem 18 in
2" Ed), 28(Problem 20 in 2" Ed), 29(Problem 21 in 2"

Ed), 33(Problem 25 in 2"d Ed), 36(Problem 28 in 2"
Ed),41

Figure 3.2: page 2
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3.2 HW1

3.2.1 1

HW1 Mathematics 502

By Nasser Abbasi

Problem 2, page 27

= Question
= Answer

a) Thisisalist of the sample space. Simply toss one die, then make a toss of the second die. The result is as shown:

s = {1, 2, 3, 4, 5, 6};
Table[{s[[i1], s[[i11}, {i, 6}, {i, 6}I
space = Flatten[%, 1]

{1, 13, {1, 23, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6},
{3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {4 1}, {4 2}, {4 3}, {4 4}, {4 5}, {4 6},
{5, 1}, {5, 2}, {5, 3}, {5 4}, {5 5} {5 6}, {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6}}

part b)
(1) Thisisevent A. Look through each outcomein space and see if first+second die isless than or equal to 5

set A = Sel ect [space, First [#] +Last [#] <5 &]

(1, 13, {1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {4, 1}}
(2) Thisisevent B, Look through each outcome in space and see if first die larger than second die

set B = Sel ect [space, First [#] > Last [#] &]

({2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3}, (5 1},
{5, 2}, {5, 3}, {5 4}, {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}}

(3) Thisisevent C, Look through each outcome in space and see if first dieis4
set C = Sel ect [space, First [#1] == 4 &]
({4, 13}, {4, 2}, {4, 3}, {4, 4}, {4, 5}, {4 6}}
Part c)
(1) ThisisA(C, whichmeanseventisin A andinC
setA N setC
{{4, 1}}
(2) ThisisB | C, which meanseventin B or in C or in both

setB | setC

{{2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3}, {4, 4}, {4 5},
{4, 6}, {5 1}, {5 2}, {5, 3}, {5, 4}, {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}}

(3) ThisisA((BIL) whichisA intersect B unionC, i.e. eventin A and also in B union C. First find B(LC, whichiseventinB
or C or both

setB U setC

{{2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3}, {4, 4}, {4, 5},
{4, 6}, {5, 1}, {5, 2}, {5, 3}, {5, 4}, {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}}

now find event in A or in the above or in both

setA N (setB | setC)
{{2, 1}, {3, 1}, {3, 2}, {4, 1}}
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3.3 HW chapter 8

(Maple worksheet|

(Mathematica notebookl

3.4 Problem 84 chapter 8

Problem 90 chapter 4
by Nasser Abbasi 5:20 PM, oct 26, 2007
Problem:

Assuming that X ~ N(0,0?) use the mgf to show that the odd moments are zero and the
2n
even moments are %

Answer:

2,2

Mx(t)=¢€

First obtain a recursive formula for the moment generation function

t202

MP(t) = toe"

2,2 2,2
MP(t) =0%F + (t0'2)2€t 2

= 0> Mx(t) + ta>MP(¢)

MP(t) = PMP(t) + to*MP (t) + oML (t)
=20°M P (t) + ta> M P (t)

MP(t) = 20° MO (t) + to> M (t) + > MO (t)
=30>M P (t) + ta? M (¢)

Hence

MP(t) = (r = 1) > MY (1) + My (1)

Using the above, we generate odd and even moments.

E(z') = MP(0) =0
E(2?) = MY (0) = 0®Mx(0) = 0

etc...
odd moments: Proof by induction., See class notes, Math 502 lecture 10/24/07
even moments:
proof by induction.

First show it is true for the base case n = 1.(base case)

From the above we see this is indeed the case because E(z?) = o2, which is the same as
(2n)! o2

e whenn =1

saying E(z*") =


HWs/HW_chapter_8/problem_9_chapter_8.mws
HWs/HW_chapter_8/sim.nb

CHAPTER 3. HWS 72

Now assume it is true for some n > 1, i.e. assume that

2n)! o2
E 2n\ _ ( 1
Then we need to show that the relation is true for n+ 1 (the next even number), i.e. we need
to show that

n 2(n+1))! g2(n+1)
E(z2+1)) = Gt o §<n+1)>)((n+1)1) *)

Use the moment generation recursive formula to show the above. since from definition we
know that

E(z*"V) = M™(0)

But we showed that

MP () = (r—1) o> M2 (t) + to? MY V() 2)

Then replace r in (2) with 2(n + 1) we obtain (and setting t = 0)

M2 () — E(z+D)
=©2(n+1) - 1) 2MED=2(0)
=(©2n+2—1)>MP"?*2(0)
= (2n+1)>MP™(0)

But M )(?n) (0) in the above is just F(x?") which we assumed in (1) to be (2;,2'(75; ", hence the
above can be written as

2n
E(z*™V) =(@2n+1)0 )

But 020%" = 02" and (2n + 1) (2n)! = (2n + 1)! hence the above becomes

(2n + 1)! g2+

E(x2(n+1)) _ > (o) (3)

2n+2)!
But (2n +1)! = &3

Hence (3) becomes

(2n + 2)! g2+

B(a?) = (2n +2) 2" (n)

(2 + 1) g2t
~ 2n x 27 (n!) +2 x 27 (n!)

_ 2(n+ 1) g2t
~ 2ntlp (nl) + 27t (n!)

@n+1))! o2
2t (nl(n+1))
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But n! (n+ 1) = (n + 1)! hence the above becomes

(2(n + 1))! g2+

) - GOt

Compare to (*) we see it is the same. QED

3.5 Key solutions for HWs

Local contents

3.5.1 key solutions for chapter 1 . . . . . . ... ... ... ... ......
3.5.2 key solutions for chapter 2 . . . . . . ... ... oo
3.5.3 key solutions for chapter 3 . . . . . . ... ... oL
3.5.4 key solutions for chapter 4 . . . . . . ... ... L.
3.5.5 key solutions for chapter 5 . . . . . . ... ... ... L.
3.5.6 key solutions for chapter 8 . . . . . . ... ... L oL
3.5.7 key solutions for chapter 9 . . . . . . ... ... ...
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3.5.5 key solutions for chapter 5
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3.5.6 key solutions for chapter 8
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3.5.7 key solutions for chapter 9
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Quiz 1 MaTH 502AB Fall 2007
Name (please print) Nasser Abbasi

1. Consider a sequence of days, and let R; denote the event that it rains on day ¢. Let
P(Ry) = p (rain today), r”{”;|”,._|:l = ¢, and P['H‘:“a"f_lj = (3. Suppose further that
only today’s weather is relevant to predicting tomorrow’s; that is, P(R|Ri-y M-+ .NRg) =
P(R;|R;—;). What is the probabilitv that it rains n days from now? What happens as n
approaches infinity?

Figure 4.1: Problem 1

Answer:
Given:
1. R; ,Event that it rains on day ¢
2. R{ ,Event that it does not rain on day 4
3. P(Ry) = p, Probability of rain on day 0
4. P(R;|R;—1) = a ,Probability of rain on day 4 given it rained on day ¢ — 1
5. P(R¢|R:_,) = 8 ,Probability of no rain on day ¢ given it did not rain on day ¢ — 1

6. Only today’s weather is relevant to predicting tomorrow rain

211
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Find:
Probability of rain in n days and what happen as n — oo
Solution:

Consider the experiment that generates today’s weather. Hence possible outcomes can be
divided into 2 disjoint events: rain and no rain (A day can either be rainy or not, hence this
division contains all possible outcomes).

Hence
Q= {R07 RS}

Now using the law of total probability, we write

P(R,) = P(R:|Ry) P(Ro) + P(R:|Rg) P(Ry) (1)

But
P(Ri|Rj) =1 — P(R1|Ro)
=1-8 (2)

Note: To proof the above, we can utilize a simple state transition diagram as follows

Today Tomorrow

~ T

4 Rl \ These are the only 2 possible

11 state transitions path from RO to

| R1, hence the probability of
=~ being on either of them must be
~—— 1 given that we started from

e ! state R0. Hence if the probability

R1 / of being on one path is known,
/ the probability of being on the
- second path must be 1 minus
that probability of being on the
first path.

Figure 4.2: Problem 1 note

Now, substitute (2) into (1) and given that P(R;|Ry) = @ and P(Ry) = p and P(R§) = 1—p,
then (1) becomes
P(Ry) =ap+(1-5)(1-p) (3)

Now we can recursively apply the above to find probability of rain on the day after tomorrow.
Let Ry — R; and R; — Ry, hence the above (1) becomes

P(R,) = P(Rp|Ry) P(Ry) + P(Rz|R{) P(R]) (4)

Now using (3) for P(R;), and given that P(Ry|R;) = o (This probability does not change,
since we are told only today’s weather is relevant), and given that P(R$) = (1 — P(R;)) and
that P(Rz|RS) = (1 — f), then (4) becomes

P(R) P(RS)

N

P(Ry) =alap+ (1= ) (1= p)| + (1= 8) (1 ~ [ap+ (1 = B) (1 ~p)))
=p+a+ B —2pa—2p8— % —aB +pa’ + pB% + 2pap
=p(l - 20— 28 +2af) + a+ B — af + (pa® + pB* — §°)
=p(l —2a — 28 + 2ap) + a+ B — af + [terms with higher powers in a and f]
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We see that as we continue with the above process, terms will be generated with the form
(something) xa™ and (something)x ", where the powers m,r are getting larger and larger
as n gets larger. But since a, 8 < 1, hence all these terms go to zero. So we only need to look
at the terms which do not contain a product of /s and product of §'s

Hence the above reduces

P(Ry)) =p(l1—-2a—28+2aB)+a+ 5 —af

There is a pattern here, to see it more clearly, I generated more P(R;) for ¢ = 3,4,5,6,7
using a small piece of code and removed all terms of higher powers of «, 8 as described above,
and I get the following table

P(R))

p
1-B8+p(—1+a+p)
a+B—af+p(l—2a—28+2ap)
l—a—-28+3aB+p(—1+3a+ 368 —6ap)
2a+ 208 — 6aB + p(1 — 4a — 48 + 12ap)

1 —2a—38+10af + p(—1 + 5a + 58 — 20a)
3a+38 — 15a8 + p(1 — 6a — 65 + 30ap)

T W N O =

Hence the pattern can be seen as the following

P(R,) = mod (n,2) + (—1)™ LgJ a+(-1)™ [g] B+ (=1)D <n§ z) B+

i=1

p((-1)"+ (-1)"" na+ (-1)"" nB + (—1)" [n* — n] ap)

Where mod (n,2) = 0 for even n and 1 for odd n, and | %] means to round to nearest lower
integer and [%] means to round upper.

The above is valid for very large n.

As n — oo P(R,,) will reach a fixed value (I first though it will always go to 1, but that
turned out not to be the case). I could not find an exact expression for P(R,) as n — 00,
but I wrote a small program which simulates the above, and generates a table. Here is a
table for few values as n gets large, these are all for « = .3, 8 = .6, p = .4, notice that P(R,,)
fluctuates up and down from one day to the next as it converges to its limit.
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hj29= TableForm[r, TableHeadings » {None, {"n", "P(Ry)"}}]

Out[29]/MableForm=
n P(Rp)
0 0.4
1 0.28
2 0.316
3 0.3052
4 0.30844
5 0.307468
6 0.30776
T 0.307672
8 0.307698
9 0.30769
10 0.307693
11 0.307692
12 0.307692
13 0.307692
14 0.307692
15 0.307692
16 0.307692
17 0.307692
Figure 4.3: JNJYOF03
2 Show that if the conditional probabilities exist, then
PlAT Az nAp) = P(A)P(A2| Ay Ag) - P(An A m Ao Ay ).

Figure 4.4: Problem 2

Given: Conditional probabilities exist
Show: P(A1 N A2 N A3 ne--- An) = P(A1)+P(A2|A1 N A2)+ . +P(An|A1 N A2 Nn---N An—l)
Solution:

Since Conditional probabilities exist, then we know that the following is true

P(XNY) = P(X|Y)P(Y)

Let X =A,and Y = A NAyNA3N---N A,_1 hence the above becomes

P(AlﬂAzﬂAn)zP(An|AlﬂAgﬂﬂAn_l)P(AlﬂAgﬂﬂAn_l)

Now apply the same idea to the last term above. In other words, we write

P(Ai1NAsN---NA1)=P(A,_1]A1NAsN---NA, o) P(A1NAN---NA,_2)

We repeat the process until we obtain P(A; N Ay) = P(A3|A;1) P(4,)
Hence, putting all the above together, we write

P(AiNAsN---A,) =P(AJAiNAsN---NA,_1) P(Ap_1]A1N AN ---NA,s)
P(A,2|A1NAsN--- A, 3) - P(A3]|A;) P(4;)
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The above is what is required to show (terms are just rewritten is reverse order from the
problem statement, rearranging, we obtain

P(AiN Ay N+ Ay) = P(A1) P(Aa] A1) -+ P(An_1]A1 N AN -+ N An_o) P(Ap] A1 N AN -+ -0 Any)

3. Let A and B be arbitrary events. Use the three axioms of probability to show that

P(AU B) < P(A) + P(B).

[dent ifl\' the axiom(s) that you use at each step. You are not allowed to use any theorems.
[“1111: One way to show this is to first show that if € and D are events such that €' < D,
then P(C) < P(D). Then, use this result to prove the result in the above display equation.]

Figure 4.5: Problem 3

Given:
Axioms of probability:
1. P() =1
2. if A C Q then P(A) >0

3. if A, B are disjoint events (i.e. ANB = &) then P(A; UAs UAsU---UA,) =P(A))+
P(A3) +---+ P(Ay)

Show that P(AU B) < P(A) + P(B)
Solution:
There are 4 possible cases.
1. A, B are disjoint
2. ACB
3. BCA
4. A, B have some common events between them. In other words AN B =C # @

Case 1: If A, B are disjoint then AU B = A + B by set theory. Now apply the probability
operator on both sides we obtain that

P(AUB) = P(A+ B)

Now, by Axiom 3, P(A+ B) = P(A) + P(B) hence the above becomes
P(AUB) = P(A)+ P(B)
Case 2: If A C B then AU B = B by set theory. Now apply the probability operator on

both sides we obtain that
P(AuUB) = P(B)

But P(B) < P(B) + P(A) since A € Q and so P(A) > 0 by axiom 2. Hence the above
becomes

P(AU B) < P(B) + P(A) (0)

Case 3: This is the same as case 2, just exchange A and B
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case 4: Since, by set theory
A=ANB+ANB°

Then apply Probability operator on both sides

P(A)=P(ANB+ AN B°
But by set theory AN B is disjoint from A N B¢, then by axiom 3 the above becomes

P(A) = P(AN B) + P(AN B°) 1)

Similarly, by set theory

B=BNA+ BNA"°

Then apply Probability operator on both sides

P(B)=P(BNA+ Bn A°)
But B N A is disjoint from B N A€, by set theory, then by axiom 3 the above becomes

P(B) = P(BN A) + P(B N A°) 2)

Now by set theory
AUB=ANB+ANB°+ BN A°

Apply the probability operator on the above

P(AUB)=P(ANB+ANB°+ BN A

But AN B,AN B¢, and BN A€ are disjoint by set theory, then above can be written using
axiom 3 as

P(AUB) = P(ANB) + P(ANB°) + P(BN A°) (3)

Add (1)+(2)
P(A)+ P(B)=P(ANB)+ P(ANB°)+ P(BN A) + P(Bn A°)

subtract the above from (3)

P(AUB)—[P(A)+ P(B)]=[P(ANB)+ P(ANB°) + P(BN A°)] —
[P(ANB) + P(ANB°)+ P(BNA) + P(BnN A°)]

Cancel terms (Arithmetic)

P(AUB) —[P(A)+ P(B)]=—-P(BnA)
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or (algebra)

P(AUB)=P(A)+P(B)—P(BNA)

Since BN A is an event in {2 then P(B N A) > 0 by axiom 2, hence the above can be written
as

P(AUB) < P(A) + P(B) (4)
conclusion: We have looked at all 4 possible cases, and found that P(AU B) = P(A)+ P(B)
or P(AUB) < P(A) + P(B), hence P(AU B) < P(A) + P(B)

Note: I tried, really tried, to find a method which would require me to use the hint given in
the problem that if A C B, then P(A) < P(B) but I did not need to use such a relationship
in the above. But I still show a proof for this identity below

Given: A C B , Show P(A) < P(B)

proof:

B = AU A° by set theory

P(B) = P(AU A°) by applying probability to each side.

But A, A° are disjoint by set theory, hence P(AU A¢) = P(A) + P(A°) by axiom 3.
Hence P(B) = P(A) + P(A°), or P(A) = P(B) — P(A°)

But by axiom 2, P(A¢) > 0, hence P(A) < P(B), QED

4. Let X ~ binomial(n, p). Derive the mode of the probability mass function of X.

Figure 4.6: Problem 4

Given: X binomial r.v., i.e. P(X =k) = (Z) p*(1 —p)" ¥, Find the mode. This is the value
k for which P(X = k) is maximum

The mode is where P(X) is maximum. Consider 2 terms, when X = k, and X = k — 1,

hence P(X) will be increasing when % > 1
But
n _ n—(k—
PX=k-1)= <k_ 1) p* (1 —p Y
Hence

ny . n—k
1-— n n—
P(X =k) (k) 71-p) _ oo PPA—p) )

P(X=k-1) (k ﬁ 1) p=1 (1 — p)"~*D Wz(k—l)' pk=1 (1 — p)~ ¢
_(n=k+1) (E-1)! (1-p)
 (n=R)! (R p
_(n—Fk) 1-p
k p
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so P(X) is getting larger when @u;fp) >1or
(n—k)(1—p)>kp
n—np—k+kp>kp

np+p>k
p(l+n) >k

So as long as k < p(1 + n), pmf is increasing. Since k is an integer, then we need the largest
integer such that it is < p(1 4+ n), hence

k=|p(1+n)]

5. Suppose that a rare disease has an incidence of 1 in 1000. Assuming that members of the
population are affected independently, Find the probability that two individunals are affected
in a population of 100,000 by (a) using the relevant binomial random variable, and a) using
the relevant Poisson random variable. In each ecase identify the random variable and its
distribution clearly. [Leave your solutions in expression forms].

Figure 4.7: Problem 5

Given:

P(D) =1/1000

members are affected independently

Find: probability 2 individuals are affected in population of size 100,000
part(a)

In Binomial random variable we ask: How many are infected in a trial of length n given that
the probability of being infected in each trial to be p. Here we view each trial as testing an
individual. Consider it a ’hit’ if the individual is infected. The number of trials is 100, 000,
which is n, and p = 1/1000.

Therefore, | X =how many are infected in population of 100000‘

Hence the probability of getting k = 2 hits is, using binomial r.v. is (k = 2 in this case)

P =)= (})ra-n*

or numerically

P(X=2)= (1002000) 0.0012(1 — 0.001)100000-2

(b)Using Poisson r.v. Poisson is a generalization of Binomial. X is the number of successes in
infinite number of trials, but with the probability of success in each one trial going to zero
in such a way that np = A\ \We compute p(X = k) = %6_)‘ k=0,1,2,....

Hence here X = how many are infected as n gets very large and p , the probability of infection
in each individual goes very small in such a way to keep np fixed at a parameter A. Since here
n is large and p is small, we approximate binomial to Poisson using A = np = 100000 x 0.001 =
100.0
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Hence )
100 o—100

(X =2)=—;

ps. computing a numerical value for the above, shows that using Binomial model, we obtain
P(X =2)

binonial n, K| ' [1-p)"*

o LT

Figure 4.8: Binomial model

and using Poisson model
n12/= A=np;

)k
— Exp[-A]

k!

out[13= 1.86004 x 10_40

Figure 4.9: Poisson model

I am not sure, these are such small values, this means there is almost no chance of finding 2
individuals infected in a population of 100,000?7 I would have expected to see a much higher
probability than the above. I do not see what I am doing wrong if anything,.
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4.1.1 Graded
16/20

|6

el
Quiz 1 MaTH 502AB 2-0 Fall 2007

Name (please print) Nasser Abbasi

1. Consider a sequence of days, and let R; denote the event that it rains on day 7. Let
P(Ro) = p (rain today), P(RiRi-1) = o, and P(R{|Ri_;) = 3. Suppose further that
only today’s weather is relevant to predicting tomorrow’s; that is, P(R;|Ri-y 0=+ .NRy) =
P(R;|R;-y). What is the probability that it rains n days from now? What happens as n
approaches infinity?

Answer:
Given:

1. R; ,Event that it rains on day

2. R¢ Event that it does not rain on day 4

3. P(Ry) = p, Probability of rain on day 0

4. P (R;|R;—1) = o ,Probability of rain on day ¢ given it rained on day ¢ — 1

5. P (R¢|R¢_;) = B ,Probability of no rain on day 7 given it did not rain on day i — 1
6. Only today’s weather is relevant to predicting tomorrow rain

Find:

Probability of rain in n days and what happen as n — oo

Solution:

Consider the experiment that generates today’s weather. Hence possible outcomes can be
divided into 2 disjoint events: rain and no rain (A day can either be rainy or not, hence this
division contains all possible outcomes).

Hence

Q = {Ry, R}

Now using the law of total probability, we write

P (Ry) = P (Ri|Ro) P (Ro) + P (Ru| R5) P (R5) (1)
But
P(R1|R3) =1- P (Ri|Ry)
=1-8 @

Note: To proof the above, we can utilize a simple state transition diagram as follows

Today Tomorrow

TN ST

These are the only 2 possible
state transitions path from RO to
R1, hence the probability of
being on either of them must be
1 given that we started from

" state RO. Hence if the probability

9 / Rc1 of being on one path is known,
\ 7 LN > the probability of being on the
ol New i second path must be 1 minus
that probability of being on the
first path.
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Now, substitute (2) into (1) and given that P (R;|Ry) = a and P (Ry) = p and P (R§) = 1—p,
then (1) becomes

P(R)=ap+(1-p8)(1-p) (3)

Now we can recursively apply the above to find probability of rain on the day after tomorrow.
Let Ry — R; and R; — Ry, hence the above (1) becomes

P (Rp) = P (Ry|R1) P (Ry) + P (R2| RY) P () (4)

Now using (3) for P (R;), and given that P (Rz|R;) = a (This probability does not change,
since we are told only today’s weather is relevant), and given that P (RS) = (1 — P (R;)) and that
P (Rs|R§) = (1 — ), then (4) becomes

P(JIE]) P(}i‘f)

P(Ry) =afap+(1—-B) (1-p)]+1=B)1—[ap+ (1-B) (1 -p)])
=p+a+—2pa—2p6— B%—af + pa?+pB® + 2paf
=p(l—-2a—-28+208)+a+B—af+ (pa® +pp* - %)
=p(1—2a—28+2aB)+ a+ B — af + [terms with higher powers in « and 3]

We see that as we continue with the above process, terms will be generated with the form
(something) xa™ and (something)x /", where the powers m,r are getting larger and larger as n
gets larger. But since «, 8 < 1, hence all these terms go to zero. So we only need to look at the
terms which do not contain a product of /s and product of 4's \

Hence the above reduces v W > t\] ¢

. . A<
TN 4 %ﬁav.&)ﬁ{\‘t FEia ZO‘ 1 ) !

e oS et P(Ry) ~p(l-2a—28+2aB)+a+p—af
R v S— Koo ! ) .
There is a pattern here, to see it more clearly, I generated more P (R;) for i = 3,4,5,6,7 using

a small piece of code and removed all terms of higher powers of o, 8 as described above, and I get
the following table

i P(Ry)
0 P

1 1-B8+p(-1+a+p)

2 a+pf—af+p(l—2a—28+2ap)

3 1-a-28+4+3aB8+p(—1+3a+38—6aB)
4 2a+28-6aB+p(l—4a—48+12aB)

5 1—2a—3B8+1008+p(—1+ 5a+ 58 — 20a0)
6  3a+38—15a8+p(1—6a— 68+ 30a5)

Hence the pattern can be seen as the following

P (Ra) =mod (n,2) + (-)® | 2| a+ (-1)® [ 2] B+ (-1)™*? (i z) ap+

()" + (-1)" na+ (-1)"' 0B + (-1)" [n? - n] ap)

=1
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Where mod (n,2) = 0 for even n and 1 for odd n, and |%| means to round to nearest lower
integer and f%] means to round upper.

The above is valid for very large n.

As n — co P (R,) will reach a fixed value (I first though it will always go to 1, but that turned
out not to be the case). I could not find an exact expression for P (R,) as n — oo, but I wrote
a small program which simulates the above, and generates a table. Here is a table for few values
as n gets large, these are all for a = .3, 3 = .6, p = .4, notice that P (R,,) fluctuates up and down
from one day to the next as it converges to its limit.

Ih29]= TableForm[r, TableHeadings » {None, {"n", "P(R,)"}}]

Out[29)//TableForm=
n P(Rn)
0 0.4
1 0.28 ,(/PSL
2 0.316
3 0.3052
4 0.30844
5 0.307468
6 0.30776
7 0.307672
8 0.307698 ><j*)/
9 0.30769
10 0.307693 EF \y(
11 0.307692 % ‘
12 0.307692 N\ Y
13 0.307692 '
14 0.307692
15 0.307692
16 0
17 0

.307692 )
.307692 w> ,\
'Q'SQ



CHAPTER 4. QUIZES 223

2 Show that if the conditional probabjlities exist, then

P(AinAxn---NAp) = P(4 )1(( Ag:h MA2) - P(Ap|Ar N Ag 01 Ay,

Given: Conditional probabilities exist

Show: P (A1 N A2 N A3 M- An) = P(A1)+P (A2|A1 N A2)+ -4P (AnIAl n A2 NN An—l)
Solution:

Since Conditional probabilities exist, then we know that the following is true

P(XNY)=P(X|Y)P(Y)
Let X =A4,andY = A, NAy;NA3N---NA,_1 hence the above becomes

P(A1NAyN---A,)=P(ApJA1NAN---NA, 1) P(A1NAN---NA,1)
Now apply the same idea to the last term above. In other words, we write
P(A1NAsN---NA,1)=P(An1|A1NAN---NA, 2)P(AiNAyN---NA, 5)
We repeat the process until we obtain P (A; N Ag) = P (A3]|A;) P (A1)

Hence, putting all the above together, we write

P(A1NAyN--Ay) =P (An)A1 N A3+ N Apy) P(An_1|A1 N Az N+ N Ap)
P(Ap_s]Ay N Ay - v Ap_s) -+ P (Ag|Ay) P (A))

The above is what is required to show (terms are just rewritten is reverse order from the
problem statement, rearranging, we obtain

P(AlﬂAzﬂu-An)=P(AI)P(AglAl)--~P(A,,_1|A1ﬂAzﬂ---ﬂAn_g)P(An!AlﬂAgﬂ---ﬂAn_l)

QED
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3. Let A and B be arbitrary events. Use the three axioms of probability to show that
P(Au B) < P(A) + P(B).

Identify the axiom(s) that you use at each step. You are not allowed to use any theorems.
[Hint: One way to show this is to first show that if C and D are events such that C' c D,
then P(C) < P(D). Then, use this result to prove the result in the above display equation.]

oo & & seffie

Given:
Axioms of probability: e o ¥
| LrP@=1 pedad o LU
2. if AC Qthen P(A) >0 g!‘“’e" "\A@"’k~(—\°o¢\ ﬁméM(g [

3. if A, B are disjoint events (i.e. ANB = @) then P(A; UA; UAsU---UA,) = P(A;) +
P(A3)+---+P(An)

Show that P(AUB) < P(A)+ P(B)
Solution:
There are 4 possible cases.

1. A, B are disjoint
2. ACB
3. BCA

4. A, B have some common events betwee em. In other words ANB =C # @

Case 1: If A, B are disjoint then AUB = A+ B |
operator on both sides we obtain that

9

set theory. Now apply the probability

gy, 7@
PUTBI=F (4+5) T (AUDI A

9,

Now, by Axiom 3, P (A +\ ) = P (A) + P (B) hence the above becomes

P(AUB)=P(A)+ P (B)

Case 2: If A C B then AU B = B by set theory. Now apply the probability operator on both
sides we obtain that

b\,  PAUB)=P(B)
But P(B) < P(B) + P(A) since A € Q and so P(A) > 0 by axiom 2. Hence the above
becomes R
|P(AUB) < P(B)+ P (4)] (0)

Case 3: This is the same as case 2, just exchange A and B
case 4: Since, by set theory
A=ANB+ANB°
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But by set theory AN B is disjoin axiom 3 the above becomes

P(A)=P(ANB)+ P(ANB°) (1)
Similarly, by set theory

=BNA+BNA®

Then apply Probability operator on bo P

P(B)=P(BNA+BnNA°
But B N A is disjoint from B N A°, by set theory, then by axiom 3 the above becomes

P(B) = P(BNA)+P(Bn A°) 2)

Now by set theory
AUB=ANB+ANB°+BNA°

Apply the probability operator on the ab —

P(ANB+ANB ¥ BN A°)

sjoint by set theory, then above can be written using

P(AUB)

But AN B,AN B¢ and B N A° are
axiom 3 as

P(AUB)=P(ANB)+ P(ANB% + P (BN A°) (3)
Add (1)+(2)

P(A)+P(B)=P(ANB)+P(ANB°)+ P(BNA)+ P(Bn A°
subtract the above from (3)

P(AUB)—-[P(A)+P(B)]=[P(ANB)+P(ANB°)+ P (BN A%)]—
[P(ANB)+ P(ANB°) + P(BNA)+ P(BnN A
Cancel terms (Arithmetic)

P(AUB)—[P(A)+ P(B)|=—P (BN A)
or (algebra)

P(AuB)=P(A)+P(B)—P(BNA)
Since BN A is an event in 2 then P (BN A) > 0 by axiom 2, hence the above can be written

\/ |P(AUB) < P(A)+ P (B)] (4)
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conclusion: We have looked at all 4 possible cases, and found that P (AU B) = P (A)+ P (B)
or P(AUB) < P(A)+ P(B), hence P(AUB) < P(A)+ P(B)

Note: I tried, really tried, to find a method which would require me to use the hint given in
the problem that if A C B, then P (A) < P (B) but I did not need to use such a relationship in
the above. But I still show a proof for this identity below

Given: AC B , Show P(A) < P(B)

proof:

B = AU A° by set theory

P (B) = P(AU A°) by applying probability to each side.

But A, A¢ are disjoint by set theory, hence P (AU A°) = P (A) + P (A®) by axiom 3.

Hence P(B) = P (A) + P (A°), or P(A) = P(B) — P (A°

But by axiom 2, P (A€) > 0, hence P (A) < P(B), QED
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4. Let X ~ binomial(n,p). Derive the mode of the probability mass function of X.

Given: X binomial r.v.,i.e. P(X =k) = (Z) pF(1- p)n_’c , Find the mode. This is the value

k for which P (X = k) is maximum
The mode is where P (X) is maximum. Consider 2 terms, when X = k, and X = k— 1, hence
P (X) will be increasing when —-o=t_ > 1

P(X=k—1)
But
PX=k-1= (") A-pr e
Hence
n k(1 _ . \"—Fk e
P(X=k) _ (k>p(1 P) _ ahHwmra-pT"
—_— _ - - n! L n—(k—1
P(X=k-1) (k 7_1 1) p-1) (1 —p)"“(k"l) ke p*=1 (1 — p) (k—1)
_(m=k+1)! (k—1)! 1-p)
 (n—k)! (k) P
_(n—k) (1-p)
k p

so P (X) is getting larger when (ﬂ“—:-LQ;—pl >1or

(n—k)(1—p) > kp
n—np—k+kp>kp
np+p>k
p(l+n)>k

So as long as k < p(1 + n), pmf is increasing. Since k is an integer, then we need the largest
integer such that it is < p (1 + n), hence

lk=[p(1+n)]|
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5. Suppose that a rare disease has an incidence of 1 in 1000. Assuming that members of the
population are affected independently, Find the probability that two individuals are affected
in a population of 100,000 by (a) using the relevant binomial random variable, and a) using
the relevant Poisson random variable. In each case identify the random variable and its
distribution clearly. [Leave your solutions in expression forms).

Given:
P (D) = 1/1000
members are affected independently

Find: probability 2 individuals are affected in population of size 100,000

part(a)

In Binomial random variable we ask: How many are infected in a trial of length n given that the
probability of being infected in each trial to be p. Here we view each trial as testing an individual.
Consider it a ’hit’ if the individual is infected. The number of trials is 100, 000, which is n, and

p = 1/1000.

Therefore, [X =how many are infected in population of 100000]

Hence the probability of getting k = 2 hits is, using binomial r.v. is (k = 2 in this case)

P(X=2)= (Z) PFa-p"*

or numerically

100000

P(X=2)= ( 5 ) 0.0012 (1 — 0.001)00000~2

(b)Using Poisson r.v. Poisson is a generalization of Binomial. X is the number of successes in
infinite number of trials, but with the probability of success in each one trial going to zero in such

a way that np = A .We compute p(X = k) = ’\k—l;e"\ ,k=0,1,2 ...

Hence here X = how many are infected as n gets very large and p , the probability of infection
in each individual goes very small in such a way to keep np fixed at a parameter \. Since here n is
large and p is small, we approximate binomial to Poisson using A = np = 100000 x 0.001 = 100.0

Hence

p(X=2)=

2
—100
e

ps. computing a numerical value for the above, shows that using Binomial model, we obtain

P(X=2)

n5= n=100000; k=2; p=0.001;
Binomial[n, k] p* (1-p)**

oute]= 1.77279 x 10"40

and using Poisson model
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In[12= A=np;

).k
— Exp[-A]
kl

out[13]= 1.86004 x 1o~

I am not sure, these are such small values, this means there is almost no chance of finding
2 individuals infected in a population of 100,0007 I would have expected to see a much higher
probability than the above. I do not see what I am doing wrong if anything,.
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4.2 Quiz 2
Local contents
421 Graded . . ... ... 243]
Quiz 2 Mata 502AB Fall 2007
Name (please print) Nasser Abbasi

1. Use the fact that I'(1/2) = /7 to show that if n is an odd integer, then
VTn —1)!

Figure 4.10: Problem one

I(n/2) =

By definition,

Hence

For n = 3, we have

Now do integration by parts,

But [t%e_t}:} = [0 — 0] = 0 and the above becomes

3 1 [ 1
Sl== (=3) et
F(2> 2/0 t e 'dt

But fooo t(=2)e~tdt = F(%), hence the above becomes
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Now do the same for n = 5

1

But fo t(2)e~tdt we found from above to be F(%), hence

°(3)=2r(5)

But I'(2) = iI'(3) from above, hence

5

Continuing this way, we find that T'(I) = 2211(1), and hence in general

n (m—2)(n—4)(n—6) 531
F(§>: 2 2 ERNETTAG W)

Now,

(n—1)l=n-1)(n—-2)(n—3)(n—4)(n—5)(n—6)--5x4x3x2x1

Hence from above we see that

(n—1)!
m=1)(n-3)(n—>5)---4x2x1

m—2)(n—4)(n—6)---5x3x1=
Therefore (1) can be written as

There are "Tfl such terms

n n—1)!
() - (Gvawe- s ae) Gara) 7
(n—1)! 1

:(n—l)(n—3)(n—5)---4x22("7’1)\/% (2)

But

207 = (27) (277" = zi.
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Hence (2) becomes

ny (n—1)! 1
F(§> N (ﬁ(n—l)(n—3)(n—5)---4x2) 2”—1\/%

But there are 25 terms in the expression (n — 1) (n — 3) (n — 5) - - -4 X 2 in the denominator
above and we have 25! number of 1 sitting there, which we can distribute now below each
terms to obtain

n (n—1)! 1
F(a) = ((n—l) (n=3) (n=5) .4 2) 2n_1\/7_T (3)
2 2 2 "2

2

(5 )= (157 (17 =) (557 ) oo
() () (752) e

Compare the above to the denominator term in (3) we see it is the same. Hence (3) can be

But

written as

L(3) = EE;!! =

Which is what we are asked to show.

2. If U ~ Uniform[—1,1], find the density of Z = U?.

Figure 4.11: Problem 2

forl(u)

112

pdf of U

Figure 4.12: p2PDF

Since U is continuous r.v., we start with the CDF of Z

(
(—VZ<U<V3) M
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But since F};(u) = fy(u), then we know that P(a < U <b) = fab fu(z) dz — Fy(b) — Fy(a)

Hence RHS of (1) becomes

Fy(2) = Fy(Vz) — Fy(—V2)

CDF of U

—JE U =

Figure 4.13: p2CDF

Therefore, taking derivatives with respect to z we obtain

F2(2) = o (V3) 2ov/Z ~ fu(~V3) (V)
= 227 fo(V2) + fu(~V) 577
= 327 (fu(V3) + fu(~V?))

Since U is uniform, hence fi(a) = fu(—a), hence the above becomes

Now I need to determine the limits of fz(z) and the shape. f; is defined for real arguments
from —1 to +1. i.e. fy is real valued function of real arguments. Hence if z was negative
then /z will be complex, and so this will not be allowed. Hence we have to restrict z > 0.
But now we observe that z = 0 is not possible, since we will have (l) term, so this means z is
strictly larger than zero. So

1
"V

But we know that fy(z) =  for up to z = 1, hence this means when 1/z > 1 then fy (v/z) =0,

when means when z > 1 then fy(v/z) =0

f2(2) fu(Wz)  2>0

Hence we now write
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\/i;% 0<z<1
fz(z) = 0 z>1

Here is a plot

| =
—

infrsp= £[5_] :=

o

Flotpf[z], {=, 0.00001, 1.5}, PlotRangs » {&11, {0, 103}, FrameLabel - {"=", "fz (Z)", "pdf of 2"},

pdf of Z
— —

Qut[77]=
1‘2 14
Figure 4.14: p2PDFfz
3. The following five numbers were randomly generated from the uniform random variable
on (0,1):

0.0153  0.7468  0.4451 0.9318

Using these numbers generate five random numbers from the geometric random variable
with parameter p = 1/3. Very briefly explain how you obtain your solution.

Figure 4.15: Problem 3

I explain the idea behind obtaining a discrete random number from a continues random
number by the following diagram below. We assume that the discrete random number
belongs to some distribution. In this example, we are told what the distribution is. We know
that the CDF for geometric random variable is given by

Fx(k)=1—(1-p)
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pdfw) o |eDZDIZooTootoIo i

0
We pick a random number from U, which is ', KOk ke e
uniform random number between 0,1. Then A
we lookup, on the CDF of the distribution of ~ ~_
interest, between which k's this value is i
located, and we take the upper k as the “H‘_L

new random variable
We see that u is located between k=0 and k=1 in

this example, hence we pick k=1 is the random
variable associated with this specific u

To be able to find k in this method, we will have to
know the inverse function of F(k).

Figure 4.16: CDF for geometric random variable

We see from the above diagram, that once we are given u we need to find k& which satisfy the
following identity

Fr(k—1) < u < Fg(k)

Or in other words

1-1-pf ' <u<1—(1-p)F

The specific discrete value £ which will satisfy the above, is the random variable we want,
which belong to the geometeric distribution.

F(k)

df(u) —
1 pdf(u \ -------- . —

1}
\
;‘.-.\.-.--

=
1l
(=)
=
Ll
jry
=
Ll

- .

\Jhis k is the discrete

random variable
derived from u, but
this k can be found

from F- (1 — 1 —pjk)

Figure 4.17: geometeric distribution

Now when u = 0.0153, and since p = %, we have

1 k-1 1 k
1-(1-2)] <00153<1—(1-~
(1=5) <oomsi- (1)

for kK = 1, we have
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0 < 0.0153 £0.33333 YES

|Hence k = 1 is the random variable associated with u = 0.0153]

Now let us do u = 0.7468

for kK = 1, we have

0 < 0.7468 < 0.333 33 NO
try k=2
1\' 1\?
1—-11—-2) <07468<1—(1—=
(1-5) <omms1- (1)
0.33333 < 0.7468 < 0.555 56 NO
try k=3
1\? 1\°
1-11—-2) <07468<1—(1—=
(1-5) <omms1- (1)
0.55556 < 0.7468 < 0.7037 NO
try k=14

1\3 1\*
1—(1-2) <07468<1—(1-2=
(1-5) <omes<1-(1-3)

0.7037 < 0.7468 < 0.80247 YES

|Hence k = 4 is the random variable associated with u = 0.7468|

Now let us do u = 0.4451

We see from the above, that this will have k = 2 since for k = 2 the intervals is 0.33333 <
u < 0.555 56

|Hence k = 2 is the random variable associated with u = 0.4451 |

Now let us do v = 0.9318

From above, we see that this will have a k larger than 4, so we do not need to try from the
start, we can start trying from k =5

try k=5

1\* 1\°
1-(1-2) <09318<1—(1-2=
(1-5) <osms<1-(1-5)

0.80247 < 0.9318 < 0.868 31 NO

try k=6
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1\° 1\°8
1-(1-2) <09318<1—(1-=
(1-3) <osms<1-(1-3)

0.86831 < 0.9318 < 0.91221 NO

try k=17

1\°© 1\’
1-(1-2) <09318<1—-(1-2
(1-5) <osmm<1-(1-3)

0.91221 < 0.9318 < 0.94147 YES

|Hence k = 7 is the random variable associated with u = 0.9318]

Hence result is

U k
0.0153 | 1 |
0.4451 | 2
0.7468 | 4
0.9318 | 7

of course one would write a program to do this.

4. Three players play 10 independent rounds of a game, and each player has probability
1/3 of winning each round. (a) Find the joint distribution of the numbers of games won
by each of the three players. (b) Identify the distribution of the number of games won by
player one.

Figure 4.18: Problem 4

(a)
Let P(x; = n;) means probability of player ¢ winning n; rounds.

We have 3 players, and a total of 10 rounds. Let the players be called zi, x5, 3. Let the
number of games WON by z; be n{, and number of games won by z5 be ns, and number of
games won by x3 be ns.

Since we have 10 rounds, then we must have 10 wins as well. (some one must win). Hence
we have 10 wins and 3 ways to split it, where each ’bucket’ is of different size. So this is a
multi set selection. called multinomial in the book using proposition B in chapter 1, we see

1
that the total number of ways the games can be won is ( 0 )
T1MNaoNg

But we need to find the probability of each one such combination. So we need to multiply
the above by the probability each player wins the number of the games they happened to
win, which is P(z; = n;) = p™, but p = % for each player to win a round. Hence we write

10 1\™ /1\™ [1\™
P(z1=mn1,22 = ng, x3 = n3) = <n1n2n3) <§) <§) (5)
10! 1 ni+ng+n3
! ng! gl (5)

10! 1\ "
N ’I’Ll! n2! n3! (g)
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So the above is the joint probability that p; wins n; rounds and p; wins ny rounds and p3
wins ngz rounds.

(b)We need to find P(z; = n4), i.e. the probability of first player winning n; rounds.

P(J)l :7'1,1) = Z P(Il =MNy1,To :n2,$3:7l3)

n2=0,1,---10
n3=0,1,---10

To simplify, let me write P(n;,n9,n3) instead, where the position of the n implies the player.

So p(0,1,9) means player one wins zero rounds and player 2 wins 1 round and player 3 wins
9 rounds.

So the above becomes

P(.’El = nl) = Z P(nl,nQ,ng,)

n2=0,1,---10
n3=0,1,---10

But since n; = 10 — (ng + n3) we see that we only need to count those terms in the above
sum when this is true. i.e. we do not need to count a term such as p(1,0,0) since this is zero
probability of happening. Now we write

P(.’L‘l =n1):P(n1,10—n1,0)—|—P(n1,9—n1,1)+P(n1,8—n1,2)+---P(nl,O,lO—nl)

For example,
P(z, =0) = P(0,10,0) + P(0,9,1) + P(0,8,2) + P(0,7,3) + P(0,6,4) + P(0,5,5) +
P(0,4,6) + P(0,3,7) + P(0,2,8) + P(0,1,9) + P(0,0,10)

But P(0,10,0) = P(0,0,10) and P(0,9,1) = P(0,1,9), etc.. so the above can be written as

P(z; = 0) = 2P(0,10,0) + 2P(0,9, 1) + 2P(0,8,2) + 2P(0, 7, 3) + 2P(0,6,4) + P(0,5,5)

_, 10 110210! 1“’210! 1\ "
=cortoror\3) Tforou\3) Teorsralz) T

) 100 /1 1°+2 100 /1 1°+ 100 /1\"
071 31\ 3 0! 6! 4!\ 3 0! 5! 51\ 3

—[1.7342 x 102

and

P(z; =1) = P(1,9,0) + P(1,8,1) + P(1,7,2) + P(1,6,3) + P(1,5,4) + P(1,4,5)
+ P(1,3,6) + P(1,2,7) + P(1,1,8) + P(1,0,9)

=2P(1,9,0) + 2P(1,8,1) + 2P(1,7,2) + 2P(1,6,3) + 2P(1, 5, 4)

_, 10 11°+2 10! 11°+2 10! 11°+2 10! 110” 10!
“Totor\s 11811\3 117120\3 116! 31\ 3 11 5! 4!

—[8.6708 x 102

(

1

3

%
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and

P(z; =2) = P(2,8,0) + P(2,7,1) + P(2,6,2) + P(2,5,3) + P(2,4,4) + P(2,3,5) +
P(2,2,6) + P(2,1,7) + P(2,0,8)

=2P(2,8,0) + 2P(2,7,1) + 2P(2,6,2) + 2P(2,5,3) + P(2,4,4)

_, 10 (1 1°+2 10! (1 1°+2 10! /1 1°+2 10! /1 1°+ 100 /1\"
~Tarsror\3 207111\ 3 206! 21\ 3 215! 31\ 3 204141\ 3

=10.19509

and

P(z1 =3) = P(3,7,0) + P(3,6,1) + P(3,5,2) + P(3,4,3) + P(3,3,4) +
P(3,2,5) + P(3,1,6) + P(3,0,7)

=2P(3,7,0) 4+ 2P(3,6,1) + 2P(3,5,2) + 2P (3,4, 3)
100 /1\* 100 /1\" 100 /1\" 100 /1\'°
:2L _ +2L _ +2L _ _|_2—0 _
31710\ 3 316! 11\ 3 315121\ 3 3141 3!\ 3
=[0.26012

and

P(z; = 4) = P(4,6,0) + P(4,5,1) + P(4,4,2) + P(4,3,3) + P(4,2,4) + P(4,1,5) + P(4,0,6)
— 2P(4,6,0) 4+ 2P(4,5,1) + 2P(4,4,2) + P(4,3,3)

100 /1\* 100 71\ 100 /1\° 100 /1\*
=2— (2} 42— (2) 42— () +-—|(=

416! 0!\ 3 415111\ 3 41 4121\ 3 413131\ 3
—1[0.22761

and

P(z; =5) = P(5,5,0) + P(5,4,1) + P(5,3,2) + P(5,2,3) + P(5,1,4) + P(5,0,5)
=2P(5,5,0) + 2P(5,4,1) + 2P(5,3,2)

_, 10 1 1°+2 10! (1 1°+2 100 (1\%
~ UBIBIQON\ 3 5141 11\ 3 513121\ 3

=10.136 56

and

P(z; = 6) = P(6,4,0) + P(6,3,1) + P(6,2,2) + P(6,1,3) + P(6,0,4)
= 2P(6,4,0) + 2P(6,3,1) + P(6,2,2)

100 /1\% 100 /1\* 100 /1\%
=2~ (2} 42" (Z2) +-——"" (=
6! 41 0!\ 3 63! 11\ 3 6! 21 21\ 3

—[5.6902 x 102
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and
P(zy =7) = P(7,3,0) + P(7,2,1) + P(7,1,2) + P(7,0,3)
— 2P(7,3,0) + 2P(7,2,1)
10! 10 ! 10
_o 100 [IVT ., 100 /1
713101\ 3 72111\ 3
=|1.6258 x 1072
and
P(z, = 8) = P(8,2,0) + P(8,1,1) + P(8,0,2)
— 2P(8,2,0) + P(8,1,1)
100 /1\"7 100 /1\"
=2—— (2] +-—"=
8! 2! 0! (3) 8l 1! (3)
—13.0483 x 102
and
P(zy = 9) = P(9,1,0) + P(9,0,1)
—2P(9,1,0)
' 10
_, 1o (1
9r1or\3
—13.387 x 1074
and

P(z; = 10) = P(10,0,0)

100 /1\"
~ 101 0! 0! (§>

—[1.6935 x 10~?|

Here is a plot of the marginal probability for player 1 winning n rounds



CHAPTER 4. QUIZES

241

n1sp= data = {1.7342 #1077, 8.6708 1077, 0.19509, 0.260112, 0.22761, 0.13656, 5.6902+ 1077,
1.6258% 1077, 3.0483+107%, 3.3878+ 107, 1.6935+107" };

TableForm|[Table[{i -1, data[[i]]}, {i, 1, Length[data]}]|, TableHeadings - {Hone, {"n",

Total[data]

ListPlot[data, Filling —+ Axis, PlotStyle — {Red, Thick},
PlotLabel - "Probability of number of rounds wins by firstplayer",
AxesLabel - {"number of wins", "P{n)"}]

Out[1 18] TableForm=

n o opin]
0.017342
086708
19509
260112
22761
136356
056902
016258
0030483
00033878
000016935

(== B~ T, RS AU B
coooooooQo

o

ou[117]= 0.99898¢6

Probability of number of rounds wins by firstplayer
Pla)
0.25
0.20 .
oul[118]= 0.15
010
0.os y

. L L . + surtber of wins
2 4 [ ] 0

Figure 4.19: marginal probability for player 1

"pln)"}}]

5. Let (X,Y) be jointly distributed random variables with pdf

3

1,5
fle,y)= (2 —y“)e ™
JLrEy) 5! )

l<or<o0 —r<y<m

(a) Find the marginal density of Y. (b) Find P(X +Y < 1).
solution as integrals, and do not caleulate the integrals.

Figure 4.20: Problem 5

For part (b) leave vour

= [ " fay)de
— /Ooo %(mQ —y’) e %dz

Integrate by parts, dv = e ®dz,u = (2% — y?), hence du = 2z and v = —e™%, so we obtain

fry) =34 [(=*—¢?) (—6_"")}80 — /000 (2z) (—e™®) dz

— [(:c2 — yz) (e""")};o +2 /000 xe *dx

— [O + y2] + 2/ xe “dx
0

0| = 00|k 00| k=

Do integration by parts again, dv = e *dz, u = x, hence
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fely) = %{—y e [(x(—e—w));;’ - —e"”dm} }

o e o]

= {7 +2[0+ [}
= Sy el 1))
- 5{v'+2)

Hence

fry) =52-9°)

(b)The hard part is to determine the region to integrate. The following is the needed region
which satisfy P(X +Y <1l)and 0 <z <ocand -z <y <z

y

Figure 4.21: region

For the top region,

o~
Il

=1 y=1 1
/ / 3 (* — y*) e “dydz
=0 y=1—-x

and for the bottom region

r=2 y=—z 1
I, = / / 5 (z* — y?) e *dydz
z=1 y=0

Hence

P(X+Y <1)= [770 V70 Ha? —y?) e ®dyda + [ [V 77 1(2? — ¢?) e *dydz

=0 Jy=1—-x
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4.2.1 Graded
14/20

Quiz 2 Marn 502AB Fall 2007
Name {please printy Nasser Abbasi
Lo Usethe fact that FOL/20 = F 1o show that if 2 is an odd inreger. then
e E =)
I'in _’v————zu 1(_1)
By definition,

I'(z) = / t*e~tdt
0

Hence

When n = 1, we are told that

r (%) — /Doo (3 tgs — /Om t(-2)etar = v

For n = 3, we have

But [t%e“]: = [0 — 0] = 0 and the above becomes

r (g) = %/Omt(‘%)e'tdt

But [;° t(-3)e~tdt =T (%), hence the above becomes

L) =36
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Now do the same for n =5

But [;* #(3)e~tdt we found from above to be T' (3), hence

()3

But I' (3) = 1T () from above, hence

1
2

_31
—22V"
Continuing this way, we find that T' (%) =321 (3), and hence in general
n n—2 n—4 —6
P(§)=(2(2)nz) g%%ﬁ (1)

Now,
m—YN=mn-1)(n-2)(n—-3)(n—4)(n—5)(n—6)---5x4x3x2x1

Hence from above we see that

(n—1)!

m—2)(n—4)(n—6)---5x3x1= =D (n-3)(n=5) dx2x1

Therefore (1) can be written as

There are "T'l such terms

n (n—1)! 111 11
F(5):((n—1)(n—3)(n—5)---4><2x1) (555"'55) =
(n—1)! 1

:(n—1)(n—3)(n—5).-.4x22(r;—1)ﬁ (2)

But
~fn=1) Yo AN~ =1\ 271—1
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Hence (2) becomes

ny (n—1)! 1
F(E)_ (;;:;(n—l)(n—3)(n—5)---4x2> 2"'1\/7‘T

--4 x 2 in the denominator

But there are “5* terms in the expression (n — 1) (n — 3) (n — 5) -
above and we have 5! number of % sitting there, which we can distribute now below each terms

to obtain

ny (n—1)! 1
P(g)_<(n—l)(n_—3)(n—5 %X%) 2n—1‘/7_r (3)

(n;1)!:(n;1) (n;l__l) (n’2‘1_2)...><4x3x2xl
-(%7) (53) (5°) xaxe

Compare the above to the denominator term in (3) we see it is the same. Hence (3) can be

But

written as

n n 1’
2 nl'2n—i\/_

Which is what we are asked to show.

E5 o N
fyﬁf
&
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21007~ U form[=1.1]. tind the density of Z =1

fulu

112

pdf of U

Since U is continuous r.v., we start with the CDF of Z

But since F; (u) = fu (u), then we know that P (a < U < b) = f: fu (z)dz — Fy (b)
Hence RHS of (1) becomes

Fy(2) = By (V3) ~ Fu (~3)

CDF of U 1Pl )

Therefore, taking derivatives with respect to z we obtain

F2.2) = fu (V3) Sz~ fu (~V3) = (~v3)

= gz%*fU (V2) + fu (~V2) 327
—Z 7 (fr (V2) + fu (-V7))

Since U is uniform, hence fy (a) = fir (—a), hence the above becomes

f2 () = ;ﬁ* (2f (V2))

:ﬁfU(\/g)

(1)

- FU (a)

Now I need to determine the limits of fz(z) and the shape. fy is defined for real arguments
from —1 to +1. i.e. fy is real valued function of real arguments. Hence if z was negative then

4
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v/z will be complex, and so this will not be allowed. Hence we have to restrict z > 0. But now
we observe that z = 0 is not possible, since we will have (—1, term, so this means z is strictly larger
than zero. So

fe&) == o (V3) 20

But we know that fy (z) = 3 for up to z = 1, hence this means when \/z > 1 then fy (1/z) =0,
when means when z > 1 then fy (1/2) =0

Hence we now write
11
oy, 0<z<1 \/
fz(2) = 0 z>1

unde fined z <0

Here is a plot

| =

1 )
15 ] iz s eeels 2> 068G TS 1

flz]1:=04; 2»1
Flot[€[]. { .o 00001, 1 5}, FlotRange » {511, {0, 103}, FramsLibel - {* ", " ", "}.
Frae - True]

pfofZ
10 - -

Sz

0o 02 04 06 08 10 12 14
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3. The following five numbers were randomly generated from the uniform random variable
on 01
00153 07468 0151 009318

Using these munbers generate five random mumbers from the geometric random variable
with parameter p= 1,3, Verv briefly explain how you obtain vour solution.

I explain the idea behind obtaining a discrete random number from a continues random number
by the following diagram below. We assume that the discrete random number belongs to some
distribution. In this example, we are told what the distribution is. We know that the CDF for
geometric random variable is given by

Fx(k)=1-(1-p)* /

pdf(u)

0 Ul 1

k=0 k=1 k=2 o

We pick a random number from U, which is \
uniform random number between 0,1. Then

we lookup, on the CDF of the distribution of
interest, between which k's this value is X
located. and we take the upper k as the e N
new random variable -

We see that u is located between k=0 and k=1 in
this example, hence we pick k=1 is the random

variable associated with this specific u

To be able to find k in this method, we will have to
know the inverse function of F(k).

We see from the above diagram, that once we are given u we need to find k£ which satisfy the
following identity

FK(k,‘-—l) <’U,SFK(I€)
Or in other words
1-(1-pft<u<1-Q1-pF

The specific discrete value k& which will satisfy the above, is the random variable we want,
which belong to the geometeric distribution.
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F(k)
l—-l—p.-k 1 oy
pdf(u)
1 f—— \ -------- S
r SRR 17 :
s ol 2 —

“aThis k is the discrete
random variable
derived from u. but
this k can be found

from F-l (l —(1 ~p '.k)

Now when v = 0.0153, and since p = 3, we have
1\ A1 1\F
—(1=-= . <1—-(1=-2
1 (1 3) <0.0153<1 (1 3)

0 < 0.0153 < 0.33333 YES

for k = 1, we have

[Hence k = 1 is the random variable associated with u = 0.0153
Now let us do u = 0.7468
for kK =1, we have

0 < 0.7468 < 0.33333 NO
try k =2
1\ 1\?
— = 7468 <1—(1-=
1 (1 3) < 0.7468 < (1 3)
0.33333 < 0.7468 < 0.555 56 NO
try k=3
1\* 1\*
— == 7468 L1 — 1= =
(1) <onas < (1-1)
0.55556 < 0.7468 < 0.703 7 NO
try k=14

1\* 1%t
1—({1—-= 7468 <1 —(1——=
( 3) <= ( 3)

0.7037 < 0.7468 < 0.80247 YES
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|Hence k = 4 is the random variable associated with u = 0.7468|

Now let us do u = 0.4451

We see from the above, that this will have k = 2 since for £ = 2 the intervals is 0.33333 <
u < 0.555 56

|Hence k = 2 is the random variable associated with u = 0.4451 |

Now let us do u = 0.9318

From above, we see that this will have a k larger than 4, so we do not need to try from the
start, we can start trying from k =5

try k=5
1\ 1\?
1—(1—-= 09318 <1—-(1—=
( 3) <0.9318 < ( 3>
0.80247 < 0.9318 < 0.868 31 NO
try k=6
1\° 1\°
1—(1—< 09318 <1—(1—=
(1-3) <omes1-(1-3)
0.868 31 < 0.9318 < 0.91221 NO
try k=17

1\°¢ 1\’
l=ll=o} <003I8<1={1=2

0.91221 < 0.9318 < 0.94147 YES

| Hence k = 7 is the random variable associated with u = 0.9318]
Hence result is

00153 | 1 /
0.4451 | 2 i /
0.7468 | 4

0.9318 | 7

of course one would write a program to do this.
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4. Three plavers play 10 independent rounds of a game. and each plaver has probability
13 of winning each round. (a) Find the joint distribution of the mmnbers of games won
by each of the r]nu plavers. (b) Identify the distribution of the number of games won by
')l NOT ol

(a)

Let P (z; = n;) means probability of player ¢ winning n; rounds.

We have 3 players, and a total of 10 rounds. Let the players be called z,, z2, 3. Let the
number of games WON by z; be n;, and number of games won by x5 be ns, and number of games
won by z3 be ns.

Since we have 10 rounds, then we must have 10 wins as well. (some one must win). Hence we
have 10 wins and 3 ways to split it, where each ’bucket’ is of different size. So this is a multi set
selection. called multinomial in the book using proposition B in chapter 1, we see that the total

. 1
number of ways the games can be won is 0
T1Na2N3

But we need to find the probability of each one such combination. So we need to multiply the
above by the probability each player wins the number of the games they happened to win, which
is P(z; =m;)=p™, but p= % for each player to win a round. Hence we write

P (21 = ny, 23 = ny, 73 = ng) = (n;l;na) (%)m (%)M <%>n3

0! 1 ni+nz+n3z
I nl' ng! ns! ( )

/\ _ 1o / A ,(vwicns .

’l’lll ’nz' n3

So the above is the joint probability that p; wins n; rounds and ps wins n rounds and ps wins
n3 rounds.
(b)We need to find P (z; = n,), i.e. the probability of first player winning n; rounds.

P(z1=n1)= Z P(xl=n1,x2=n2,x3=n3)

n2=0,1,--10
ng=0,1,--10

To simplify, let me write P (n1,ng, n3) instead, where the position of the n implies the player.
So p(0,1,9) means player one wins zero rounds and player 2 wins 1 round and player 3 wins 9

rounds.
So the above becomes

P(xl =n1) = E P(nl,ﬂz,ns)
ng=0,1,--10
na=0,1,-10

But since n; = 10 — (n2 + n3) we see that we only need to count those terms in the above
sum when this is true. i.e. we do not need to count a term such as p(1,0,0) since this is zero
probability of happening. Now we write

P(.’L’l =7’L]) =P(n1,10—n1,0)+P(n1,9—n1,1)+P(n1,8—n1,2)+---P(nl,O,10—n1)

9
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For example,

P (z, = 0) = P (0,10,0) + P(0,9,1) + P (0,8,2) + P(0,7,3) + P (0,6,4) + P (0,5,5) +
P(0,4,6) + P (0,3,7) + P (0,2,8) + P(0,1,9) + P (0,0, 10)
But P (0,10,0) = P (0,0,10) and P (0,9,1) = P (0,1,9), etc.. so the above can be written as

P (z; = 0) = 2P(0,10,0) + 2P (0,9,1) + 2P (0,8,2) + 2P (0,7,3) + 2P (0,6,4) + P (0,5, 5)
) 10! 1102 10! 1“’2 10 /1\*
- 0110!01(5) + 0!9!1!(5) * 0!8!2!(5) *
10 /1\° 100 /1\" 10 /1\Y
2— (2} +o——_ (Z}odpun® (=
07131 \ 3 06! 4! \ 3 0! 515! \ 3

=[1.7342 x 10~2]

and

P(zy=1)=P(1,9,0) + P(1,8,1) + P(1,7,2) + P(1,6,3) + P (1,5,4) + P (1,4, 5)
+P(1,3,6)+P(1,2,7) + P(1,1,8) + P(1,0,9)

=2P(1,9,0) + 2P (1,8,1) + 2P (1,7,2) + 2P (1,6,3) + 2P (1,5, 4)

_, 100 1 m+2 100 (1 m+2 100 (1 m+2 100 (1 m+2 100 /1\"
S T19tor \ 3 1181 \3 1720\3 1'6! 3! \ 3 1'5141\3/)

—18.6708 x 10~2|

and

P(z1=2)=P(2,8,0)+ P(2,7,1) + P(2,6,2) + P(2,5,3) + P(2,4,4) + P (2,3,5) +
P(2,2,6)+ P(2,1,7) + P(2,0,8)

=2P(2,8,0) + 2P (2,7,1) + 2P (2,6,2) + 2P (2,5,3) + P (2,4,4)

10 1\ 0 /1\* 100 /1\" 10 /1\*° 10 1\
=Pl pla—cf=] F0—ccl=] $2 =) i TREREs )
218100 \ 3 A7 1\ 3 216121 \ 3 215! 31 \ 3 2041 41\ 3

=10.19509

and
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P(z;=3)=P(3,7,0)+ P(3,6,1) + P(3,5,2) + P(3,4,3) + P (3,3,4) +
P(3,2,5)+ P(3,1,6) + P(3,0,7)

= 2P (3,7,0) + 2P (3,6,1) + 2P (3,5,2) + 2P (3,4, 3)
| 10 1 10 1 10 1 10
PN (VS SRS (VNS AP (LS AP (L4
37100 \ 3 316011 \ 3 315021 \3 314131 \ 3
=[0.26012

and

P(z;=4)=P(4,6,0)+ P(4,5,1) + P (4,4,2) + P(4,3,3) + P(4,2,4) + P (4,1,5) + P (4,0,6)
= 2P (4,6,0) + 2P (4,5,1) + 2P (4,4,2) + P (4,3,3)

100 /1\%° 100 1\ 1 /1\*° 100 1\
el e (=) 3B ([} e =

416! 0! \ 3 415111\ 3 414121\ 3 413131 \ 3
=[0.22761

and

P(z,=5)=P(5,50)+P(54,1) + P(53,2) + P(5,2,3) + P(51,4) + P(5,0,5)
= 2P (5,5,0) + 2P (5,4,1) + 2P (5,3,2)

100 /1\* 100 1\ 10 /1\*
=2——(2) +2——— (=) +2—— (=

515100 \ 3 5141 11 \ 3 513121 \ 3
=[0.136 56

and

P(zy =6) = P(6,4,0) + P (6,3,1) + P (6,2,2) + P (6,1,3) + P (6,0,4)
= 2P (6,4,0) + 2P (6,3,1) + P (6,2,2)

_, 100 (1 1°+2 100 (1 1°+ 100 (1\"
T 76l 4100 \ 3 613! 11 \ 3 6!2121\ 3

—15.6902 x 102

and

11
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P(z,=7)=P(7,3,0)0+ P(7,2,1) + P(7,1,2) + P (7,0, 3)
= 2P (7,3,0) + 2P (7,2,1)

_, 10 1 1°+2 100 /1"
R ETTRE! 7121 11 \ 3

={1.6258 x 102

and

P(z;=8) =P (8,2,0)+ P(8,1,1) + P (8,0,2)
=2P(8,2,0)+ P (8,1,1)

100 /1\* 100 /1\%®
:2-————— —_ +— -
8! 21 0! <3> 8I! 1! (3)

=(3.0483 x 1073

and

P(z1=9)=P(9,1,0)+ P (9,0,1)
=2P(9,1,0)

100 /1\"®
=2 -
9 11 0! (3)

=3.387 x 10~*

and

P (z; = 10) = P(10,0,0)

100 /1\"
~ 1000 0! (5)

=[1.6935 x 10-?|

Here is a plot of the marginal probability for player 1 winning n rounds

12
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rpie- data = {1.7342 #1072, 8.6708 »10°2, 0.19509, 0.260112, 0.22761, 0.13656, 5.6902% 1072,
1.6258+107%, 3.0483+107%, 3.3878+10™%, 1.6935+10°°};

TableForm[Table[{! -1, data[[i]]}, {i{, 1, Length[data]}], TableHeadings - {None, {"n", "n(n)"}}]
Total[data]
ListPlot|[data, Filling - Axis, PlotStyle —» {Red, Thick},

PlotLabel - "! unb e rounds wins | f t L

AxesLabel + {"number of wins", "P(n)"}]

n_ p(n)
0 0.017342
1 0.086708

2 0.19509

3 0.260112

4 0.22761

5 0.13656

6 0.056902

7 0.016258

8 0.0030483

9 0.00033878
10 0.000016935

out{117}= 0.999986

Probability of number of rounds wins by firstplayer
Pln)
0a2sf ‘
020} .
out[118}= 015
010

005F [

A number of wins

TS- we dre as¥ed ‘o '\Je\r\\\'%;ﬂu; Jishabin Kow
T oontd Meew have to pea Mk #is dphibaba,
s “E‘g\maw\l&' , S w B\\/\OM\SL W
ask:  Wewd e Win s An VR DS
Wi Ts prebasithy b owie o P T e«,\,t :
S0 Yeve T Ve X R asking b w«\ﬁ
— it o B L - L u\,wi\,/i)

KDS Slun @au(' v Hae \"\o-fgwﬁ K:wd‘, v (?(»f@

\ - - \;b@v\(\'é‘u R
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S Let £XOY 0 bejointly distributed random variables with pdl
: R s
fircf)==(2*=y')e” OU<r<x —2r<y<
N
(a) Find the marginal density of Y. (b) Find P(X +VY < 1). For part (b) leave vour
solution as integrals, and do not caleulate the integrals.

(a)
o= [ fene
=/001 (332——_1;2)6_“c T
o 8
Integrate by parts, dv = e *dz,u = (2% — y?), hence du/= 2z and v = —e~%, so we obtain

/O ” (22) (—e) da:}
42 /0 h xe_zdm}

Hence

(b)The hard part is to determine the region to integrate. The following is the needed region
which satisfy P(X +Y <1l)and0<z<oocand -z <y <z
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For the top region,

and for the bottom region

Hence /

PX+Y<1)=[", ) y_ _18 (z2 — 3?) "dyda:—}-fj fy—\zl (2?2 — y?) e *dydx

15
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4.3 Quiz 3

Local contents
4.3.1 short version

432 Graded . ... . .. ... 266
4.3.3 long version

4.3.1 short version

Quiz 3 MaTH 502AB Fall 2007

NASSER ABBASI

Name (please print)

1. Suppose that two components have independent exponentially distributed lifetimes T}
and T3, with parameters o and 3, respectively. Find (a) P(Ty = T3), (b) identify

the distribution of W = 273, and (¢) use the results in parts (a) and (b) to obtain
PfT-l > QTQ]

Figure 4.22: Problem 1

(a)Problem review:
T is a random variable and 75 is a random variable, where T} = ae™®* and T, = Be~ P

a and S can be thought of as the failure rate for each respective component. T; is the lifetime
of component i. Hence P(T; = t;) means to ask for the probability of the first component to
have a lifetime of ¢; given that the failure rate of this kind of components is a.

solution:

Now we know that
P(Tl > T2) = /‘/le,T2 (tl,tz) dtzdtl

Looking at the following diagram to help determine the region to integrate:
A T2=T1 A
T2 7
#
f\‘
s
ra

Integrate this region
d T1>T2
N

Figure 4.23: region to integrate

Hence

t1=00 to=t1
P(T1 > TQ) = / / le,Tg (tl, tg) dtQ dt1
t1=0 to=0
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But since T L T5, then the joint density is the product of the marginal densities.

Hence

fT1,T2(t17t2) = fT1 (tl) sz(tQ)

= a1 e Pl

Therefore

[ele] t1
P(T1 > T2) = / / ae‘“tlﬁe_5t2 dtQ dtl
0 0

e’} t1
= ﬂa/ et (/ e Pt dtg) dtq
0 0
* —aty 1 —Bta to=t1
o e _B [e } 1—0 dt,
0

et [e‘ﬁtl — 1} dt,

I
®

= —«

=—qa gh(me=h) _ g=ati gy,

({5

We take o, > 0 since we expect the lifetime to go to zero eventually. Also this is a

b
|

requirement for the integrals to not diverge.

Hence the above becomes

Hence

P(T1 > T2) @+B)
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Hence

Hence

fw(w) = 5/n(5)

(c)Need to find P(T; > 2T,) which is the same as P(T; > W), hence this is the same as
part(a) but replace To by W as show in the following diagram

w=T1 A
w ! g;’f\
#
A

d T1>W

Integrate this region

Figure 4.24: diagram

Hence

P> W)= [ [ o) fww) dw a

0

ot 1 w
/0 /0 fr(t1) |:§sz <§>} dw dt,
lo’s) t1
/ / ae Fﬁe‘f’(g)} dw dt,
o Jo 2
[e’s) t1
ﬁa/ e~ (/ e P(%) dw) dt,
0 0

o [ e (5[] an

- [(—2a2 - m@“(%f = >
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Hence
P(T, > W) = —(20‘(;052:“5 6))
(“wrn)
Then

P(T1>W):%

2. Consider a Poisson process on the real line, and denote by N(t;,%2) the number of
events in the interval (t;,t2). If to < t1 < t9, find the conditional distribution of
Nito,t1) given that N(tq,t2) = n, and identify the distribution.

Figure 4.25: Problem 2

Problem review: Poisson probability density is a discrete probability function (We normally
call it the probability mass function pmf). This means the random variable is a discrete

random variable.

The random variable X in this case is the number of success in n trials where the probability
of success in each one trial is p and the trials are independent from each others. The difference
between Poisson and Binomial is that in Poisson we are looking at the problem as n becomes
very large and p becomes very small in such a way that the product np goes to a fixed
value which is called A, the Poisson parameter. And then we write P(X = k) = %e”‘ where
k=0,1,2,--- The following diagram illustrates this problem, showing the three r.v. we need
to analyze and the time line.

/= ﬁ-r(i’foﬁfg) =N

r B 3
@, O O
fo f rl
. § 1 5 )

X = N(to.t1) I'= N(t1.t)

Figure 4.26: diagram illustrates this problem

But what is "trials" in this problem? If we divide the time line itself into very small time
intervals dt then the number of time intervals is the number of trials, and we assume that at
most one event will occur in this time interval (since it is too small). The probability p of
event occurring in this 6t is the same in the interval [ty,¢;] and in the interval [tq,t5]. Now
let us find A for X and Y and Z based on this. Since A = np where n is the number of trials,
then for X we have A\, = n,p = %p where we divided the time interval by the time

width 6t to obtain the number of time slots for X. We do the same for Y and obtain that

Ay = —(t2;"t1)p
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Similarly, Ay = (2-fo)y, = (azti)tltizto)), — (aot)yy | (b phence [\, = A, + ),
Number of trials | \ , :
forrv. Xis  —t1-to) Number of trials  (¢)—¢, )
forrv. Y is ot
( - Y - )
P e A
& i3 &
[ \
’ X Probability of an event rl Y rl
aocuring in any one of *
b theseintervals is P |
\\ 1|
\\.. !
- (fi — 1) /
= Ay = —_— ) /
or 7
(h—t)
/1},- = — 7
or
(f2 —10)
/:lz = — 7
of

Figure 4.27: delta

Let us refer to the random variable N(¢,t;) as Y and the r.v. N(to,t;) as X and the r.v.
N(to, tz) as z

The problem is then asking to find P(X = z|Z = n) and to identify pm f(X|Z2)
To help in the solution, we first draw a diagram to make it more clear.
We take A to the same for the 3 random variables X,Y, Z.

P(X=z,Z=n)

P(X =z|Z=n)= PZ=n)

But Z = n is the same as X +Y = n hence

P(X=z,(X+Y)=n)

P(X=z|Z=n)= PZ=n)
_ P(X=2z,Y=n—2)
P(Z =n)

Now r.v. X L1 Y, since the number of events in [ty,¢;] is independent from the number of

events that could occur in [ty to].

Given this, we can now write the joint probability of X,Y as the product of the marginal
probabilities. Hence the numerator in the above can be rewritten and we obtain

PX=z)P(Y =n—x)

P(Z=n) @

P(X=z|Z=n)=

Now since each of the above is a Poisson process, then
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PX=xz)= %e_)‘z
PY=n—2x)= ((:y_)n;; e
P(Z =n) = ():!)ne—*z

P(X = 2|7 =n) = (()\x)we—xz) (Me—&,) L )

Hence

n!

= (e e (e ™)

P(X=2z|Z=n)= A

But we found that A, = A\; 4+ \,, hence the exponential term above vanish and we get

o (A)" (W)
zl(n—2z)!  (\)"
(A=) (M)

(Az)n
(Az)” (M)

)
w) (A +2y)"
)
)

P(X =z|Z=n)=

(Ae)” (A)"™"
Az +2)" (Aa +A)""
M) W)

n )\Z T )\y n—x
z) \ Az + Ay Az + Ay

— _ A L1 e ety Ny .
Let k = oW then1—k=1— =7 Wil v il wrw hence the last line above can be
written as

n A:c T )\z n—x
PX =alZ =n)= ("E) (Ax +)‘y) (1 B Az +)‘y>

- (1)t -y

T

But this is a Binomial with parameters n, k, hence
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3. Suppose that the probability © of getting heads for a coin is unknown, and let the
prior opinion about © be represented by the uniform distribution on [0,1]. You spin
the coin repeatedly and record the number of times N until a heads comes up. (a)
Find the posterior density of © given N. (h) Use Matlab or any other software to plot
the posterior for cases where N =1, N = 2, and N = 6. Using your plots, explain
what you infer about the probability of heads in each circumstance.

Figure 4.28: Problem 3

part (a)
Let 6, the probability of getting heads, be the specific value that the random number © can
take.

Let g(0) be the probability density of ©, which we are told to be U[0, 1], and let pmfx(z) be
the probability mass function of the random variable X where X is the number of times until
, hence

a head first comes up. ‘X is then a geometric random variable with parameter 0

pmfx(N)=P(X=N)=(1-6)""0 N=1,23,---

The posterior density of © given N is then

— — — __pmfx(N|©=0)g(6)
MO = 01X =N) = omsxvio=ueras

But
pmfx(N|©@=0)=(1-6)""0

and g(6) = 1 since © = U[0, 1]
Hence

MO =0X=N)=— (1-6y""6

Jya—-0)""0ds

1)

But © is a random continuous variable from [0, 1], so how to evaluate the above? I can
evaluate the above for different values of © on the real line from [0, 1], and the more values I
take between 0,1 the more accurate h(© = 6|X = N) will become.

Part(b)

First let me evaluate eq (1) for N=1,N=2N=6

For N =1
0 6
h(@:9|X:1):f019d9: o _[20]
For N =2
Mo—ox -2 01=00 (=006 _ (1-60
o (=06 [y @- d  [5],-[§],

_ =98 16000

2 3
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For N =6

Ho—gx—6 - 1700 _ (=00

-0 tede [ (1-6)0do

We can use integration by parts for the denominator, where v = 0,dv = (1 — 9)5, when we
do this we obtain

h(© =0|X =6)=42(1—0)°60

Now we plot the above 3 cases on the same plot:

mas= £ [, 2] :=Which[n =1,2x, n=2,6(1-x)x, n=6, 42 (1—x)5x]
Plot[{f[1, =], £[2, =], £[6, =]}, {x, 0, 1%},
Frame -+ True, PlotStyle - {Red, Black, Blue},
FrameLabel - {Style["e", 14], Style["h(e|X=1}",6 16],
Style["Posterior probability distribution for & for different N", 16]},
ImageSize = 600]

Posterior probability distribution for 8 for different N

h(@1X=N)

]
Figure 4.29: posterior

What the above plot is saying is the following:

If it takes ’longer’ to see a head comes up (N = 6), then the coin is taken as biased towards
a tail, and the probability of getting a head becomes smaller, this is why we see that the
most likely probability in this case to be around 0.15 (looking at the N=6 curve). We say
that based on the observation of N = 6, then the coin has a higher probability of having
its probability of getting a head to be about 0.15 than any other value. (The area around
6 = 1.5 is larger than any other area for the same 46)

Now, when N = 2, i.e. we flipped the coin 2 times, and got a head on the second time, then
we see from the N = 2 curve that the coin has a most likelihood of having a probability of
getting a head to be 0.5.

This is what we would expect, since in an unbiased coin, the probability of getting a head
is %, and hence with a fair coin, we expect to see a head half of the times it is flipped, and
since we flipped 2 times, and saw a head the second time, this posterior probability has its

most likely value to be around .5 as well.
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When N = 1, this says that we got a head in the first time we flipped the coin. We see that
the posterior probability of getting a head now has it maximum around 1. This means the

posterior probability is saying this coin is biased towards a head.

The above is a method to estimate the probability distribution of the probability itself of
getting a head based on the observed events and based on the prior known probability of
getting a head. Hence the events observed allow us to estimate the probability of getting a
head. Hence the posterior probability is conditioned on each event as in this problem.

4.3.2 Graded
18/20

Quiz 3

Name (please print)

Marn 502AB Fall 2007

NASSER ABBASI

1. Suppose that two components have independent exponentially distributed lifetimes Ty

and T3, with parameters a and 3, respectively. Find (a) P(T} > T3), (b) identify
the distribution of W = 27,, and (c) use the results in parts (a) and (b) to obtain
P(Ty = 2T3).

(a)Problem review:

T, is a random variable and T is a random variable, where T}~ ce~®" and T~ fe~Pt2.

a and  can be thought of as the failure rate for each respective component. 7; is the lifetime
of component i. Hence P(T; = t1) means to ask for the probability of the first component to

have a lifetime of ¢; given that the failure rate of this kind of components is .

solution:

Now we know that

P(T,>Ty) = / / frum (t, t2) dtadty

Looking at the following diagram to help determine the region to integrate:

T2

Hence

A T2=T1 '
g /,/\
s
ra
/\*
. Integrate this region
rd
-~
g T1>T2
e
e &«
Fi
-
- T1
t1=00 to=t1
P(Ty>Ty) = / From(t t) dty dty
t1=0 t2=0

But since 77 L T5, then the joint density is the product of the marginal densities.
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Hence

frim(t,t2) = fr(t1) fr,(t2)

= qe~ % Ge Pt

Therefore

T1 > T2 = / ae‘atlﬂe_ﬂt2 dtg dtl

/ e ot ( / e Pt dtQ) dt,
= Ba/ e‘“t1< Btz]:z_tl> dt;
0

O[/ e—at1 —Bt1 __ 1] dtl
0

We take o, > 0 since we expect the lifetime to go to zero eventually. Also this is a
requirement for the integrals to not diverge.

Hence the above becomes

Hence
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= P(2T2_§ w)
-5 (3)
Hence
ot = 50(3) w2 (2
Hence

fw(w) = 3 fr,(%)

(c)Need to find P(T) > 2T5) which is the same as P(T; > W), hence this is the same as
part(a) but replace T, by W as show in the following diagram

ot TN
0

_

Integrate this region

d T1>W

Hence
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(—2a—p

_ ( 2, L
_ —a<2)[0— 1+ 20 1])
(

@h o)

Hence
P> =~ (2057
- (“ars)

Then

P(T1>W):(2a‘;+ﬁ)

2. Consider a Poisson process on the real line, and denote by N(t;,¢5) the number of
events in the interval (ty,t2). If to < #1 < t2, find the conditional distribution of

Nto,t1) given that N(to,t2) = n, and identify the distribution.
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Problem review: Poisson probability density is a discrete probability function (We normally
call it the probability mass function pmf). This means the random variable is a discrete
random variable.

The random variable X in this case is the number of success in n trials where the probability
of success in each one trial is p and the trials are independent from each others. The difference
between Poisson and Binomial is that in Poisson we are looking at the problem as n becomes
very large and p becomes very small in such a way that the product np goes to a fixed
value which is called A, the Poisson parameter. And then we write P(X = k) = %6_)‘ where
k=0,1,2,--- The following diagram illustrates this problem, showing the three r.v. we need
to analyze and the time line.

/L= ﬁ-r(fo,fg) = N

A

to £

@
C
— O -

' v

X = Nto, 1) T = N(t1,t2)

But what is "trials" in this problem? If we divide the time line itself into very small time
intervals dt then the number of time intervals is the number of trials, and we assume that at
most one event will occur in this time interval (since it is too small). The probability p of
event occurring in this 0t is the same in the interval [t,¢;] and in the interval [t1,%2]. Now
let us find A for X and Y and Z based on this. Since A = np where n is the number of trials,

then for X we have A\, = n,p = %p where we divided the time interval by the time
width §¢ to obtain the number of time slots for X. We do the same for Y and obtain that
)\y = 7(7:2(;;1)1)

Similarly, Az = (tza_tto) p= (t2_t1);t(t1_t°) D= (tzt;_ttl) D+ (tlgo)P, hence |\, = Az + Ay
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Number of trials ¢, _; , ) )
forrv. Xis et t0/ Numberoft!wals (F9—t1)
ot forrv. Yis Ot

A A
( Y )
@IIIOTIIII|IIAQIIIIIIIIIOflllllllllé
fo ; Y B

"1
X Probability of an event
accuring in any one of +

A theseintervals is P \

‘k‘“‘-,_,_‘_‘_‘_‘ (r]_ _ ro) I{J
s or L/
(—t)~
A T
(2 —to)
he= 57 P

Let us refer to the random variable N(¢1,t5) as Y and the r.v. N(¢o,t1) as X and the r.v.
N(to, tg) as Z

The problem is then asking to find P(X = z|Z = n) and to identify pm f(X|Z2)
To help in the solution, we first draw a diagram to make it more clear.

We take A to the same for the 3 random variables XY, Z.

P(X=z|Z=n)=

But Z = n is the same as X +Y = n hence

PX=z,(X+Y)=n)

P(X=z|Z=n)= P(Z=n)
_ P(X=2,Y=n-1)
P(Z =n)

Now r.v. X 1Y, since the number of events in [to, ¢;] is independent from the number of
events that could occur in [t;, ts].

Given this, we can now write the joint probability of X,Y as the product of the marginal
probabilities. Hence the numerator in the above can be rewritten and we obtain

6
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PX=z)PY =n—1z)
P(Z =n)

P(X=z|Z=n)=

Now since each of the above is a Poisson process, then

Hence (1) becomes

Hence

P(X =z|Z=n)=

(A)” ()"
Az + )"

(2
() s
(1) - Lero
(2
(2

e+ X2)" e +2,)"°
(A)® (A"
A+ X)) Qe +2)" 7"

Xt ) Doty
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— Az — — _ Az — )\m"l‘)\y_)\z — Ay ]
Let k£ = ey thenl -k =1 Ui W W W hence the last line above can be

written as

n )\a: T )\x n—x
por=sz=n =) (75) (-5

— (1) wra-ky

X

But this is a Binomial with parameters n, k, hence

3. Suppose that the probability © of getting heads for a coin is unknown, and let the
prior opinion about © be represented by the uniform distribution on [0,1]. You spin
the coin repeatedly and record the number of times N until a heads comes up. (a)
Find the posterior density of @ given N. (b) Use Matlab or any other software to plot
the posterior for cases where N = 1, N = 2, and N = 6. Using your plots, explain
what you infer about the probability of heads in each circumstance.

part (a)

Let 6, the probability of getting heads, be the specific value that the random number © can
take.

Let g(#) be the probability density of ©, which we are told to be U[0, 1], and let pm fx(z) be
the probability mass function of the random variable X where X is the number of times until

, hence

a head first comes up. ‘X is then a geometric random variable with parameter 6

pmfx(N)=P(X=N)=(1-6""6  N=1,23,-

The posterior density of © given N is then

_ _ A7 pmfx(N|©=6)g(6)
h(© =01X =N)= o pmf);(Nl@=9)g(9)d9

But
pmfx(N|© =60)=(1-0)"""0

and g(#) = 1 since ©7U|0, 1]
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Hence

(1-6)""1e

h(© =0|X = N) =

But © is a random continuous variable from [0,1], so how to evaluate the above? I can
evaluate the above for different values of © on the real line from [0, 1], and the more values I
take between 0,1 the more accurate h(© = 0|X = N) will become.

Part(b)

ffa-6""ede

First let me evaluate eq (1) for N=1,N=2,N =6

1 = 211
Jobdo 5],

(- )

For N=1
0
h(®@=0|X=1)=
For N =2
O =X =2 = =00 _
f0(1—9)9d0 fo( 62)
1—
- 0298 _[sa=a)0
273
For N =6

(1-6)°%"9

h(© =0]X =6) = —

We can use integration by parts for the denominator, where u = 6, dv = (1 — 9)5,

do this we obtain

hO =0|X =6) =

Now we plot the above 3 cases on the same plot:

N 9)619d9 fa

42(1-60)°0
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mgap= £ [, 2] :=Which[n =1, 2%, na=2, 6 (l-x)x, n=6, 42 (1 —x)“r' x]
Plot[{f[1l, =], £[2, =], £[6, =]}, {x, O, 1},
Frame = True, PlotStyle - {Red, Black, Blue},
FrameLabel - {Style["e", 14], Style["h(&|X=N)", 16],
Style["Posterior probability distribution for & for different N", 16]},
ImageSize = 600]

Posterior probability distribution for € for different N

-N)

L@ X

What the above plot is saying is the following:

If it takes ’longer’ to see a head comes up (N = 6), then the coin is taken as biased towards
a tail, and the probability of getting a head becomes smaller, this is why we see that the
most likely probability in this case to be around 0.15 (looking at the N=6 curve). We say
that based on the observation of N = 6, then the coin has a higher probability of having
its probability of getting a head to be about 0.15 than any other value. (The area around
6 = 1.5 is larger than any other area for the same 66)

Now, when N = 2, i.e. we flipped the coin 2 times, and got a head on the second time, then
we see from the N = 2 curve that the coin has a most likelihood of having a probability of
getting a head to be 0.5.

This is what we would expect, since in an unbiased coin, the probability of getting a head

is %, and hence with a fair coin, we expect to see a head half of the times it is flipped, and
since we flipped 2 times, and saw a head the second time, this posterior probability has its

most likely value to be around .5 as well.

When N = 1, this says that we got a head in the first time we flipped the coin. We see that
the posterior probability of getting a head now has it maximum around 1. This means the
posterior probability is saying this coin is biased towards a head.

The above is a method to estimate the probability distribution of the probability itself of

10
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getting a head based on the observed events and based on the prior known probability of
getting a head. Hence the events observed allow us to estimate the probability of getting a
head. Hence the posterior probability is conditioned on each event as in this problem.

11
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4.3.3 long version

Quiz 3 MaTa 502AB Fall 2007

NASSER ABBASI

Name (please print)

1. Suppose that two components have independent exponentially distributed lifetimes T}
and T3, with parameters o and 3, respectively. Find (a) P(T} = T3), (b) identify
the distribution of W = 2T, and (c) use the results in parts (a) and (b) to obtain
P[Tl = QTQ]

Figure 4.30: Problem 1

(a)
Problem review:
T is a random variable and 75 is a random variable, where T} = ae™®" and T, = Be~ P

a and B can be thought of as the failure rate for each respective component. 7; is the lifetime
of component i. Hence P(T; = t;) means to ask for the probability of the first component to
have a lifetime of ¢; given that the failure rate of this kind of components is a.

solution:

Now we know that

P(Tl > Tg) = //le,T2 (tl,tg) dtgdtl

Looking at the following diagram to help determine the region to integrate:

T2=T1 X
T2 ! <5 ,.r"f,\‘
rd
fﬁfx

d T1>T2

Integrate this region

L - T1

Figure 4.31: determine the region to integrate

Hence

t1=00 to=t1
P(Tl > T2) = / / le,T2 (tl, tz) dtg dtl
t1=0 to=0

But since T L Ts, then the joint density is the product of the marginal densites.
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Hence

frim(t,t2) = fry(t) fr(t2)

= a1 e Pt

Therefore

P(Tl > T2 :/ / ae "‘tlﬁe Btz dty dty

/ e~ ( / e P2 dtg) dit;
=5a/0 e“"tl( ﬂtﬂf:ﬁj) dt:

—1] dt

Q
o\
8

ml

S..

E

Q
o\
8

/I\

7

=

|

8

E:

We take a, 8 > 0 since we expect the lifetime to go to zero eventually. Also this is a requirment
for the integrals to not diverge.

Hence the above becomes

Hence

(a+B)
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Hence

Hence

fw(w) = 5/n(5)

(c)Need to find P(T; > 2T,) which is the same as P(T; > W), hence this is the same as
part(a) but replace To by W as show in the following diagram

w=T1 A
w ! g;’f\
#
A

d T1>W

Integrate this region

Figure 4.32: diagram

Hence

P> W)= [ [ o) fww) dw a

0

ot 1 w
/0 /0 fr(t1) |:§sz <§>} dw dt,
lo’s) t1
/ / ae Fﬁe‘f’(g)} dw dt,
o Jo 2
[e’s) t1
ﬁa/ e~ (/ e P(%) dw) dt,
0 0

o [ e (5[] an

- [(—2a2 - m@“(%f = >
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Hence
- (225)
()

Then

2. Consider a Poisson process on the real line, and denote by N{(ty,t3) the number of
events in the interval (t1,t2). If g < t1 = ta9, find the conditional distribution of
Nito.t1) given that N(tg,t2) = n, and identify the distribution.

Figure 4.33: Problem 2

Problem review: Poisson probability density is a discrete probability function (We normally
call it the probability mass function pmf). This means the random variable is a discrete
random variable.

The random varible X in this case is the number of success in n trials where the probability
of success in each one trial is p and the trials are independent from each others. The difference
between Poisson and Binomial is that in Poisson we are looking at the problem as n becomes
very large and p becomes very small in such a way that the product np goes to a fixed value
which is called A, the Poisson parameter. And then we write P(X = k) = ;‘c—’;e_’\ where
k=0,1,2,--- The following diagram illustrates this problem, showing the three r.v. we need

to analyze and the time line.

/= ﬁ-r(i’foﬁfg) =N

0 8 )
O O O
fo f [2
L y A g J

X = N(to.tr) I'=N(t.12)

Figure 4.34: illustrates this problem

But what is "trials" in this problem? If we divide the time line itself into very small time
intervals 6t then the number of time intervals is the number of trials, and we assume that at
most one event will occure in this time interval (since it is too small). The probability p of
event occuring in this 0t is the same in the interval [to, ;] and in the interval [t1,2]. Now let
us find A for X and Y and Z based on this. Since A\ = np where n is the number of trials,

then for X we have |\, = n,p = %p where we divided the time interval by the time

width 6t to obtain the number of time slots for X. We do the same for Y and obtain that

Ay = —(t2;"t1)p
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Similary, A, = {22ty = tamtttizh),, _ (aoh)y | (1ob) pohence [, = A, + ),
Number of trials | ) . :
forrv. Xis  —t1-to) Number of trials  (¢)—¢, )
ot forrv. Y is ot
( - Y - )
L EEEEEEEPNEEERRNERu ARRRRRRRN
& i &
[
’ X Probability of an event rl Y rl
aocuring in any one of *
b theseintervals is P |
\ 1|
\\.. |
e /{ _ (fl — To)p K
X ('ir-_ /,f
(—t)~
/1},- = *})
ol
(f2 —10)
/:lz = *})
ol

Figure 4.35: delta

B (t1 — to)
Ae = ot

_ (ta—t1)
Ay = ot

_ (ta — to)

Let us refer to the random variable N(¢1,t2) as Y and the r.v. N(to,t1) as X and the r.v.
N(to, tz) as Z

The problem is then asking to find P(X = z|Z = n) and to identify pmf(X|Z2)
To help in the solution, we first draw a diagram to make it more clear.
We take A to the same for the 3 random variables X,Y, Z.

P(X =z,Z =n)

P(X=z|Z=n)= PZ=n)

But Z = n is the same as X +Y = n hence

PX=2z,(X+Y)=n)

P(X =z|Z=n)= P(Z=n)
_ P(X=21,Y=n—1)
P(Z =n)

Now r.v. X L Y, since the number of events in [to,?;] is indepenent from the number of
events that could occur in [¢;, ts].
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Given this, we can now write the joint probability of X,Y as the product of the marginal
probabilitites. Hence the numerator in the above can be rewritten and we obtain

PX=z)P(Y =n—1x)

P(Z=n) @

P(X=z|Z=n)=

Now since each of the above is a poisson process, then

Hence (1) becomes

P(X = 2|Z =n) = <(A;!)we—%> (((:y_):)| e_>‘y> ﬁ 2)

n!

Now we simplify this further and try to idensity the resulting distribution. First we note

Hence (2) becomes

<—(t15_ tO)P> (t1-t) <_(t25_ tl‘)P>n ’ (t2—t1) 1

t (t1—tg) t _( (2=t

P(X = $|Z = n) = z! € ( B ) (’I’L — .’L')' € ( * p> (“2 to) ) (ta—tg)
5—6 ( ot )

n!

Let £ = ¢ then the above becomes

P(X =2|Z =n) = ((t —t0) p) o~ ((t1—t0)¢) (B2 —t1) )" o~ ((t2—11)9) n:L

E (n—z) ({t2— to) )" 9

— (t1(,0 - togo)x e—t1<p+t0<p (t%o - tl(p)n ze—tznp—i-tl(p ’I’l'
x! (n—z)! (tap — top)" e—tawttor

— ((tlcp - tOQO)Z e—t1<p+tocp) <(t2§0 - tl()o)n_ac e—tsz—i—tlgo) 'I’L' etsz—togo
x! (n—z)! (tap — to)"”

_ (tip — 75090)ac (tap — tl‘P)n_z n! e(tggo top—t1pt+top—tap+tip)
z! (n—z)! (t2p — to‘P)

(tip —top)”\ ( (tap — tl‘P) )

x! (n—z) (t2p — to‘P)

_ ([ (tip —top)” tzSO — tl@)
x! (n—x) tzgo — togo)

n! (tip —top)” (tap — t1p)"
z!(n —x)! (tap — to)"”

We see that the parameter ¢ will occure in the numerator and denomerator with the same
powers, hence we can factor it out and cancel it. Hence we obtain

’I’L' (tl — to)w (t2 — tl)n—z

P(X =2z =n)= z! (n — z)! (ta —to)"
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Hence

n _4\T _ 4. \n—x
P(X=z|Z=n)= (x) @ t(&(_tfo)ﬁl)

n!

P(X =a|Z =n) = (027 €™) ()" e™) 13

But we found that A, = A; + Ay, hence the exponential term above vanish and we get

AT
zl(n—z)!  (A)"
(Ae)” (X))

(A2)"

(Ae)” (M)

)
) G
)
)

P(X=z|Z=n)=

(Aa)” ()"
Az +A)" (Aa +A)" "
(A=)" )"

n )\x T >\y n—x
) \Mtry) Dot A,

Let k = e thenl1 -k =1 e bl s e W W hence the last line above can be

written as

n )\m x Am n—x
rx=sdz=n= () (x¥x) (-55%)

= (1) wra-p

T

But this is a Binomial with parameters n, k, hence

3. Suppose that the probability © of getting heads for a coin is unknown, and let the
prior opinion about © be represented by the uniform distribution on [0,1]. You spin
the coin repeatedly and record the number of times N until a heads comes up. (a)
Find the posterior density of © given N. (b) Use Matlab or any other software to plot
the posterior for cases where N =1, N = 2, and N = 6. Using your plots, explain
what you infer about the probability of heads in each circumstance.

Figure 4.36: Problem 3
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4.4 Quiz 4
Local contents
441 Graded . ... . .. ... 290
Quiz 4 MaTH 502AB Fall 2007
Name (please print) Nasser Abbasi

1. Let X be a continuous random variable with a pdf that is symmetric about a point £.

Provided that E(X) exists, show that E(X) = &.

Figure 4.37: Problem 1

Let f(z) be the pdf of X, hence from definition of expected value of a random variable we
write

E(X) = /fo(x)dx

Now break the integral into the sum of integrals as follows

E(X):...+/£€_6.'L'f($)dx+/£ xf(x)dx+/:+5xf(x)dx+/§£+25xf(x)dx+...

—26 €5 +6

In the limit, as ¢ is made very small, the above can be written as Riemann sums of areas
each of width dz — ¢ as follows

E(X)=---+(-20) f(£-20)0 + (£-0) f(€-0)0 + &fed +
(E+0)f(E+08)0+ (E+28) f(E+20)6+--

=6[---(6—20) f(E—26) + (E=0) f(E—0) + &fe +
(E4+0)FE+S)+ (E+20) f(E+20)+---]

=0+ (Ef(E—20) —20f(£—20)) + (Ef(§—9)—4df(§—9)) +
Efe + (Ef(E+O) +f(E+0)+ (6f (E+20)+20f (£+20)) +---] (1)

But due to symmetry around £ then

f(€—1id0) = f(§+16)

for any integer ¢ in the above Riemann sum. This causes terms to cancel in the equation (1)
above.

For example the term —d f(§ — ) onthe left of the & fe will cancel with the term +df(£§ — 6)
on the right of £ f¢, and so on. Then we obtain the following sum

E(X)=0[--+&f(6—20) + Ef(E—0) + &fe + Ef(E+0)+ &fF (6+20) +---]
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Take ¢ as common factor

E(X)=£80[--+£f(€—20) + £f(E—0) + &fc + EF(E+0)+ £F (£+20) +---] (2)

But
O+ +&f(6—20) + &£f(E—0) + &fe + Ef(E+0)+ &f (§+26) +---]

is just the total area under f(z) in the Riemann sum sense i.e. [ f(z) dz.

Hence (2) becomes

E(X) =¢ / " @) de

But since f(z) is a density, this area is one. Hence

E(X)=¢

2. Let X be an exponential random variable with parameter A. Find
2

PIIX - B(X)| > §

and compare your result to the Chebyshev’s bound.

Figure 4.38: Problem 2

The density function of an exponential distribution with parameter Ais given by

e ™™ x>0

f(x):{ 0 z<0

First find the expected values of an exponential random variable X. From definition of
expected value:

E(X) = /O " f(2) dz

=)\ / ze dz
0

integrate by parts gives
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Hence | E(X) = }|, Hence we need to find A = P(|X — }| > 2), But this is the same as
finding

=1- (1—i) =l3: 0.049787
e e

Now compare to Chebyshev bound. Chebyshev bound says that

Var(X)
12

P(IX - E(X)[21) < 1)

Hence the upper bound by Chebyshev is VE’; g)f) We now need to find Var(X) and this is
given by ’
Var(X) = E(X?) - [E(X)]”

But

= {—1[0] +2 /0 h ace_mdx}

=2 / ze dz
0

[—1. 100 1 [ _\,
=2_T[xe>‘]0 —I-X/O e)‘dxl

r 1 e—)\m oo
=9 hd
9+A{—AL]

SO

Hence (1) becomes

=10.25

=
N
b
|
&
>
IV
|
N————
AN
>§|u>|>{c|r—l
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Hence an upper bound for the probability by Chebyshev is 0.25, and the actual probability
found was 0.04978 7 which is well within this bound.

3. If X is a discrete random variable, taking values on the positive integers, then show

that E(X) = Y52, P(X > k).

Figure 4.39: Problem 3

Let A = Z P(X > K), we need to show that this equals F(X)
k=1

A fémsz)

=P(X>1)+P(X>2)+P(X>3)+--

But

PX>1)=P(X=1)+P(X=2)+P(X=3)+---
and

P(X>2)=P(X=2)+P(X=3)+P(X =4)+---
and

P(X>3)=P(X=3)+P(X=4)+P(X=5)+"-

and so on. Hence adding all the above we obtain repeated terms, which comes out as follows

A=PX>1)+PX>2)+P(X>3)+---
=[PX=1)+PX=2)+P(X=3)+---]
+[P(X=2)+P(X=3)+P(X=4)+---]
+[P(X=3)+P(X=4)+P(X=5)+---]

_|_

P(X=1)+2P(X =2)+3P(X =3)+4P(X =4) + - --

[
NE

k P(X = k)

>
[l

1

But this is the definition of E(X), hence A = E(X)

4. Find the mean of a negative binomial random variable X with parameters r and p. by
expressing X as sum of indicator variables.

Figure 4.40: Problem 4

X is Number of trials needed to obtain r successes, Each trial has p chance of success.
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Let Y: be a random variable which represents the number of trials to obtain a success
(counting the success trial) (This will be the first success).

Let Y5 be a random variable which represents the number of trials to obtain a success (this
will be the second success so far)

Let Y3 be a random variable which represents the number of trials to obtain a success (this
will be the third success so far)

and so on. Hence

Let Y; be a random variable which represents the number of trials to obtain the i** success.

Therefore
X=Y1+Ys+---4+Y,
= ZYT
k=1
Hence

B(X) = (Zy> )

=Y E(Y,)

But a Geometric r.v. represents the number of trials needed to obtain a success (counting
the success trial), with each trial having p chance of success. So we need to find E(Y’) where
Y is a Geometric r.v. with parameters p

E(Y) = f:kp(x = K)

But
P(Y = K) =p(1~p)"

Hence

E(Y)=) kp(l—p)*=p> k(1-p)
_ (1P
A )
- ®)

Substitute (2) into (1)
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If U =a+bX and V = c+ dY, show that |pyv| = |pxv|.

[ §

B Cov(U, V)
POV = Var () Var (V) g
But
Cov(U,V)=E({UV)—-EU)E(V)
and
E(U)=E(a+bX)=E(a)+ E(bX)
=a+bE(X)
and
E(V)=E(c+dY)=E(c)+ E(dY)
=c+dE(Y)
Cov(U,V) = E[(a+bX) (c+dY)] — [a+ bE(X)] [c+ dE(Y)] (2)
and
Var(U) = Var(a + bX) = b*Var(X) (3)
and
Var(V) = Var(c+dY) = d*Var(Y) (4)

Substitute (2),(3),(4) into (1) we obtain

El(a+bX) (c+dY)] — [a+ bE(X)] [c+ dE(Y)]
Vb Var (X)d*Var (Y)

puyv =

_ Elac+ adY + cbX +bXdY] — (ac+ adE(Y) + cbE(X) 4 bdE(X) E(Y))
bd| \/Var (X)Var (Y)

_ac+ adE(Y) + cbE(X) + bdE(XY) —ac—adE(Y) — cbE(X) —bdE(X) E(Y)
lbd| \/Var (X) Var (Y)

_ bdE(XY) - bdE(X) E(Y)
lbd| \/Var (X) Var (Y)

_ bd[E(XY) - E(X) B(Y)
lod| \/Var (X) Var (Y)

)
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Now cancel bd term. So depending if bd < 0 or bd > 0 we obtain —px y or +pxy

Hence if we consider absolute sign of bd we write

louyv| = lpxy|

4.4.1 Graded
19/20

0
Quiz 4 MaTH 502AB T Fall 2007
Name (please print) Nasser Abbasi
1. Let X be a continuous random variable with a pdf that is symmetric about a point &.
Provided that E(X) exists, show that E(X) = €.

Let f(z) be the pdf of X, hence from definition of expected value of a random variable we
write
E(X) :/ zf (z)dz

Now break the integral into the sum of integrals as follows

E(X):-A.+/:-éxf(x)d:c—F/:&zf(z)dz+/:+5:cf(z)dz+/:Hézf(z)dz—}—...

—26 +4

In the limit, as 0 is made very small, the above can be written as Riemann sums of areas each
of width dx — § as follows

E(X)=---+(-20) f(§-20)6 + (£-0) f(E-0)0 + &fed +
(E+8)f(E+0)d+ (€+20) f (E+28)0+--

=0[--(£—20) f(E—20) + (£—0) f(E—0) + Efe +
(E+0)f(E+)+ (E+20) f (E+26)+---]

=0+ (§f(€—20)—20f (£ —20)) + (§f(€—0)—df(£—0)) +
Efe + (EF(E+0)+of(E+0)+ (Ef (E+20)+20f (£+20)) + -] 1)
But due to symmetry around £ then
f§—i6) = f(£+10)

for any integer 7 in the above Riemann sum. This causes terms to cancel in the equation (1)

above.
For example the term —df (£ — 0) onthe left of the & f will cancel with the term +df (£ — 6)
on the right of £ f¢, and so on. Then we obtain the following sum

E(X)=06[--+Ef(6—20) + Ef(E—0) + &fc + EfF(E+0)+ &F (€4+20) +--]

Take £ as common factor
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] /
E(X)—gé[---+£§25) +@(/§6) + é+%+6)+(§f/(§+25) +---] (2
But

Ol +&f(€=20) + Ef(€-0) + &fe + EF(E+0)+ & (£+20) +---]

is just the total area under f (z) in the Riemann sum sense i.e. [ f (z)dz.
Hence (2) becomes

E(X):g/:f(x)dx & 'U\x“

D
But since f (z) is a density, this area is one. Hence % > 3 ‘

0 &
wd

W
S @o‘)(

X\ Oofx U)‘/\&
(\r@(oo(m \ij(ﬁcv]
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2. Let X be an exponential random variable with parameter A. Find

(53

PIX - EQOl > 5

and compare vour result to the Chebyshev’s bound.

The density function of an exponential distribution with parameter \Ais given by

de™ >0
f(x):{ 0 3:20

First find the expected values of an exponential random variable X. From definition of expected
value:

E(X)= /Oooxf(x)dx

= /\/ ze Mdx
0

integrate by parts gives

Hence | E (X) = 1|, Hence we need to find A = P (|X — ;| > %), But this is the same as
finding

||
"U
B
<
/\
‘b

= (1 — ) =[0.049787
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Now compare to Chebyshev bound. Chebyshev bound says that

Var (X)

P(X -B(X)|2t) < ——

(1)

Hence the upper bound by Chebyshev is V(%()Xz) We now need to find Var (X) and this is
x

given by
Var (X) = E (X?) — [E (X)]?

But

£00

E (X?) :/0 x2f(z)dm:/0 w*he Mdz
—1 2 _—Ar] o 2 * -z
:,\[T[:ce ]0 +X/n Te dm]
= [—1[0] +2 / xe—*zdx]
0
-— 2/ ze Mdx
0

1 e L[
—A_[xe/\]0+X/(, e’\dx:l

. 1 e—/\a:°°
=204 - -
-+)‘[*)‘]0j|

P —eO]J

SO

Hence (1) becomes

2 L
P(|X*E(X)| 5 X) <2 =[0.25
32

Hence an upper bound for the probability by Chebyshev is 0.25, and the actual probability
found was 0.04 978 7 which is well within this bound.
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3. If X is a discrete random variable, taking values on the positive integers, then show

that E(X) =Y, P(X > k).

Let A=Y P(X > K), we need to show that this equals E (X)

A:iP(XZK)
=P=(X21)+P(X22)+P(X23)+
But
PX>1)=PX=1)+P(X=2)+P(X=3)+
and
P(X>2)=P(X=2)+P(X=3)+P(X=4)+
and

P(X>3)=P(X=3)+P(X=4)+P(X=5)+"--

and so on. Hence adding all the above we obtain repeated terms, which comes out as follows

A=P(X>1)+P(X>2)+P(X>3)+ -
=[P(X=1)+P(X=2)+P(X=3)+--] /
P(X=2)+P(X=3)+P(X=4)+--]
[P(X=3)+P(X=4)+P(X=5)+--]

+ 4+ +

P(X=1)+2P(X=2)+3P(X =3)+4P(X =4)+---

Il

Mg

kP(X=k)

x
Il

1

But this is the definition of E (X), hence A = E (X)
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{. Find the mean of a negative binomial random variable X with parameters r and p, by
expressing X as sum of indicator variables.

X is Number of trials needed to obtain r successes, Each trial has p chance of success.

Let Y7 be a random variable which represents the number of trials to obtain a success (counting
the success trial) (This will be the first success).

Let Y2 be a random variable which represents the number of trials to obtain a success (this
will be the second success so far)

Let Y3 be a random variable which represents the number of trials to obtain a success (this
will be the third success so far)

and so on. Hence

Let Y; be a random variable which represents the number of trials to obtain the i** success.

Therefore
X=Yi+Ye+ +Y,
-S>
k=1
Hence

But a Geometric r.v. represents the number of trials needed to obtain a success (counting the
success trial), with each trial having p chance of success. So we need to find E (Y') where Y is a
Geometric r.v. with parameters p

E(Y)= ikP(X =K)
But )

P(Y=K)=p(1—-p)

Hence

(2)
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Substitute (2) into (1)
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5. U =a+bX and V = c+dY, show that [ppyv| = |pxy]|.
B Cov (U, V)
R VVar (U)Var (V) @)
But
Cov(U,V)=E(UV)—E((U)E (V)
and
E(U)=E(a+bX)= E(a)+ E (bX)
=a+bE (X)
and
E(V)=FE(c+dY)=E(c)+ E (dY)
=c+dE(Y)
Cov(U,V)=E[(a+bX)(c+dY)| — [a+bE(X)][c+dE (Y)] (2)
and
Var (U) = Var (a + bX) = b*Var (X) (3)
and
Var (V) =Var (c+dY) = d*Var (Y) (4)

Substitute (2),(3),(4) into (1) we obtain

_ E[(a+bX)(c+dY)] —[a+bE (X)][c+ dE (Y)]
- Vb Var (X)d?*Var (Y)

PUV

Elac+ adY + cbX +bXdY| — (ac+ adE (Y) + cbE (X) + bdE (X) E (Y))
lbd| \/Var (X)Var (Y)

bd| \/Var (X) Var (Y)

A e W
_ bdE(XY) — bdE (X) E(Y) \pé (

|bd| /Var (X) Var (Y)
_b[E(XY)-E(X)E(Y)]
|bd| \/Var (X)Var (Y)
Now cancel bd term. So depending if bd < 0 or bd > 0 we obtain —pxy or +pxy
Hence if we consider absolute sign of bd we write

_ ac+adE(Y) + cbE (X) + bdE (XY) — ac — adE(Y) — cbE (X)—bdE(X)E(Y) J

lpuv| = |pxy]

8
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4.5 Quiz 5

Local contents
4.5.1 Graded . . . . . . . e,

Quiz 5 MATH 502AB October 20, 2006

NASSER ABEASI

Name (please print)

1. The moment generating function for a random variable X having a x? distribution with
degrees of freedom n > 1 is Mx(t) = (1 — 2t)™"2. Let W have a y? distribution with
degrees of freedom n > L, and let V' have a y? distribution with degrees of freedom 1. (a).
IEW =U+4+V, and U and V are independent, determine the distribution of U? (b). What

are the mean and variance of W7

Figure 4.41: Problem 1

(a) Consider

But since U L V then the above reduces to

My (t) = E(e*) E(e”)

= My(t) Mv(t)
Hence
Mw(t)  (1-2t)"¢
Mo(®) =3z, ®) @q-2t)
= (1—2t) %+
—(1—2t) 2
Hence

Ux*with(n — 1) degrees of freedom

E(W)=EU+V)
= E(U) + E(V)

Now use the moment generation function to find the expectations of U and V.

Need to find M (t) where Mx(t) = (1 — 2t)”2 where m is the degree of freedom

d d _m

—-Ta-278"(-2)
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Hence

M @) =m(l—2t) 2" (1)

at ¢ = 0 the above becomes

M5 (0) =m

For U, we found that m = (n — 1), hence

EU)=(n-1)

and for V' we are told its degree of freedom is m = 1 hence

EWV)=1
Therefore
EW)=(n-1)+1
Hence
EW)=n
Now
Var(W) = E(W?) — [E(W)]?
=E(W?) —
=E((U+ ) n’
=E((U*+V?+20V)) —
=E(U*) +E(V?) + 2E(UV) —n’

But U L V so the above becomes

Var(W) = E(U?) + E(V?) +2E(U) E(V) — n®

Lets find E(Z?) for a Z chi square random variable of degree of freedom m. We already
found M’(t) above in (1)

B(2%) = My(t)|
—(Mz(t))
p n
- dt< m(l—2t) >
- m((—% - 1) (1—2t) %2 (-2))

Att=0

E(Z?) = —2m(—g _ 1)

Hence
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E(Z*) =m(m+2) (2)

Hence using (2) above, we now can find E(U?) and E(V?)

For U it has degree of freedom m = (n — 1), hence

EU*)=(n-1)(n—1)+2)

=n?—-1

For V it has degree of freedom m = 1, hence

EV?)=1x(1+2)

=3
Hence
Var(W) = (n>—1) +3+2(n—1) x 1 —n®
=n>—14+3+2n—-2—-n?
Hence
Var(W) =2n
2. Find the approximate variance of ¥ = v/ X, where X is a Poisson random variable with

parameter A.

Figure 4.42: Problem 2

Ae=A

X(z) "

Moment generating function for a Poisson r.v. or parameter \ is (from page 144)

Mx () = e e

Now

Hence

and
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M () = B(Vavre™)

=F (meﬁt)
Therefore
My (0) = E(x)
But
E(r) = Mx(t)],—,
Hence
M}'i(O) =
But
My(0) = E(Y?)
then

E(Y?) =\

Now to find Var(Y)

Var(Y)=E(Y?) — [E(Y)]”

Where

- B(vE)

So we need to find F(4/z) to complete the solution.
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=Zx/5 ;
=0
)\ /\2 -2 3—)\ )\4 -\
0+ 2% +\f +\/71%+---

—*(A+\f +\f +\f P )

=XM1+ /\+1)‘2 1’\3+1’\4+
B V2© VB2l a3l r Al
2 3 4
2 By 2
Y gV (P CY

V2 V3 2 Vi 3l 5 4l

+ .-

4
) +17889< > TR

2
V2
3! 4]

2
= e 1+\j‘§+1 1547<%> +1. 4142(

Hence
A(1—2)
Var(Y) =X — [)\e V2 }
o )\2 22 (1— ﬂ
=\ — \2eV2A1-V2)
Hence

Var(Y) = A(1 — \e 058578%)

3. The random variable Y has a Gamma distribution with parameters a and A. Furthermore,
assume that X given Y has a Poisson distribution with parameter Y2, (a) Obtain E(X).

(b) Obtain Var(X).

Figure 4.43: Problem 3

(a)
— ¢ a—1_—\y >0
fY(y) T (Ol)y € Yy =z
N\T —y?
y°) e
fxv=y(zly) = % r=0,1,2,-
Now

E(X) = E(E(X|Y))

But E(X|Y) is expectation of a Poisson r.v. with parameter Y. But we know that mean
of a poisson r.v. with parameter \ is . Hence E(X|Y) = Y? since we are told Y2 is the
parameter.
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Hence
E(X)=E(Y?)

But the moment generating function for Gamma is My (t) = (ﬁ)a (book page 145 second
edition).

Hence E(Y?2) = ML(0) = 2 (page 145)

Hence
E(X) = *52
(b)
Var(X) = E(X?) - [B(X)]* (1)
But

B(X?) = B(B(X*Y))

But E(X?|Y) is F(X?) of a poisson r.v. with parameter Y2. But we know that F(X?) of a
poisson r.v. with parameter X is A2 + X (book page 144 example A). Hence since we are told
Y2 is the parameter, then

E(X?Y) = (Y?)*+Y?
— (V')

Hence
E(X*) =E(Y*+Y?)
=E(Y*) + E(Y?)
But using mgf for Gamma distribution we can find E(Y*).

” d* A \°
M) = g (525)

_ a(6+11a+6a2+a3)< A )a
(t—N)* A—t

) (6411 602 %)
a6+ lla+6a” + a
My'(0) = \

Therefore

a(6 + 1la + 602 + o?) N a(a+1)

E(XQ) = 2\ 22

Then (1) becomes

a6+ 1la+6a2+a)  a(a+1) aa+1)\?
Var(X):(( X L (A2 )_( ¥ )
a6+ 1la+6a%+0) oala+1) o2(a+1)’
= 4 + )2 - \4
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Then

Var(X) = &(a+1) (A +4a +6)

4.5.1 Graded

20,20

Nc\§5Qf/ T Qme\“j {2
5%0\(* '\jévkaul\j 10\« d’i\
I‘M&(t’ﬂﬂ-a %{& O ’I/Ld‘t'

ATH 502 ober 20. 2006
~€ humé 0\1\1;\{11;&_;:\1216{ .e%/é(n«ﬁ"‘” .fL(;)( tober 20, 2006
) - o F
Name (please print) NASSER ABBASI Ge b(&€~( ad i &
ane (plesse Vlotes

1. The moment generating function for a random variable X" having a \? distribution with
degrees of freedom n > 1 is Mx(t) = (1 — 2t)7"/2. Let W have a \? distribution with
degrees of freedom n > 1, and let V' have a \? distribution with degrees of freedom 1. (a).

If=0U+V,and U and V are independent, determine the distribution of U7 (b). What

Quiz 5

are the mean and variance of 17?7

(a) Consider

My (1) = E (")
=FE (e(u+1))L) T (eutcvi)

But since U L V' then the above reduces to

Hence
My () (1—2t)7%
My (= M@ _ (=207
My ()  (1-20)73
=(1-2t)75*3 /,'
_(n-1)
=(1-2t)" 2 /
Hence

U ~ x* with (n — 1) degrees of freedom|

(b)

EW)=EU+V)
—E(U)+E(V)

Now use the moment generation function to find the expectations of U and V.
Need to find Mk (t) where Mx (t) = (1 — 2t)” 2 where m is the degree of freedom

d d i i
TMx(t) =2 (1 -20)7F

__m
2

(1-207%71(-2)

Hence
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M (t)=m(1—2t)"2 " (1)

at t = 0 the above becomes

4

For U, we found that m = (n — 1), hence

EO=w-1]

and for V we are told its degree of freedom is m = 1 hence

EV)=1] «

Therefore
EW)=(n-1)+1
Hence
EW)=n
Now

Var(W wW?) — W)]2
w?) —

E(
E(
E(U+V ) -
E(
E{U

,

\\; \\:J\

\ \/(

(U*+V?+ 2UV))
Y+ E(V?) +2E (UV) —n?

But U | V so the above becomes

[Var(W) = E(U?) + E(V?) + 2E (U) E(V) — n?|

Lets find E (Z?) for a Z chi square random variable of degree of freedom m. We already found
M’ (t) above in (1)

Att=0

Hence
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|E(2%) = m(m +2)] (2)

Hence using (2) above, we now can find E (U?) and E (V?)
For U it has degree of freedom m = (n — 1), hence

EU)=(n—-1)((n-1)+2)
=n?-1

For V it has degree of freedom m = 1, hence

EVH)=1x(1+2)

=3
Hence
Var(W)=(n*—1)+3+2(n—1) x 1 —n?
=p®—143+2n~2—n?
Hence
Var(W) = 2n _
Y
)
"\\ [< \
7 \
" X
\ ~ (f\ I' \
\RERY
W :
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2. Find the approximate variance of ¥ = v/ X, where X is a Poisson random variable with
parameter A.

AT

z!

X (z)

Moment generating function for a Poisson r.v. or parameter X is (from page 144)

{MX (t) = e~ e

Now
My (t) = E (%)
=E (e‘/“_’t)
Hence
My (t) = B (vae'™)
and
My (t) = E (Vavze'™)
=F (xe‘/;t)
Therefore
My (0) = E (z)
But
E(z) = Mj{ (t)lt:O
=\
Hence
My (0) =\
But
My (0) = E (Y?)
then

E(Y?) =\
Now to find Var (Y)

Where
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E(y) = My () = ECX).
S need 1> f’""/ /»:’(/7) t= o le e 50/'1'/7"’\4'
| Nvx =g(;<ﬁ

expand py) qrooned A |
O e appresiriafuccd Ao

US/\ha 7"47/c,r Teries

50 gCX) Newsr AAX
) x ﬂ//{'fx) T (/\/‘“/"".) ﬁ/(/b«) -+ (/\;"//M’) f (M)
Note /é’,('—">\
4 (=0 A,
S0 ﬁ(X) ’«‘:ﬂ(k) - (X‘ >\) d% zllzz)\ T B /) JF ¥, /z:)
6Cx) = VX X)L

- E(‘f) 'E(;/x))

g
_E[[/ b \ l/)\ (Xlr)?;;z)(}) u
- el qu,
:f -
[’\*sﬁ ~£_xk B

9'\% T 4+ X)X 9

Yo

s X V&
s ﬁ**m ot M/\] / %)w
2.7 [ER) .m\ X7 sf ) X L E(x).M
i E(\() = \//\_,.# / % U/LW
/\ %—J:h fﬁ (%*/Q‘éi-f-zﬂ\i\)\ ;wLJ'
by 7‘“ = \
7L m‘# \_\/\Y\Tf'/z W/,
:/\~\/\7‘N‘\
7\ AV -?\) ?:‘/T_# A _Q-IL//T‘EI,/; f/}-}f?‘;’ﬁ

2.5(\7] = >\ (%;) r _ . _/‘7/1

d//alry:"%

o <l = ?}*-‘r -l -
[EJ @ ]’EE "4 pamate
aVar(Y) E(Y/ @ﬁ/%,m
DS
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nn d4 A “
)= & (—A_t)

a6+ 11la+ 60?4+ o) ( A )o‘

(t—N)"* A—t
Then (6411 6o )
a(6+ 1lla+6a” +
M (0) = .
Therefore
o a(6+1la+6a®>+a?) a(a+1)
E (X ) = 2\ + 22
Then (1) becomes
a(6+1la+6a?+a®) a(a+1) a(a+1)\?
Var (X) = ( Y + 2 — 2
a(6+1la+6a?+a®) a(a+1) o?(a+1)®
= \ + 2 - 2\

Then

lVar(X):%(a+1)()\2+4a+6)]
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-5 (V3)

So we need to find E (/z) to complete the solution,

2 3 4
@+1.4142—(%+1.7889(—%2l+--~

Hence
A(1—+/2) 2
Var (Y) =\ — [)\e V2 }
oo22(1-4/2)
=A—XNe v
— )\ Azeﬁx(k\/z_)
Hence

Var (V) = X (1 — Ae™058578%)
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3. The random variable Y has a Gamma distribution with parameters a and \. Furthermore,
assume that X given Y has a Poisson distribution with parameter Y2. (a) Obtain E({X).
(b) Obtain Var(X).

(a)

fr @) = Fgh e v 2o

fexy=y) (z|y) =

Now

E(X) = E(E(X]Y))

But E (X|Y) is expectation of a Poisson r.v. with parameter Y2. But we know that mean of
a poisson r.v. with parameter X is A. Hence E (X|Y) = Y2 since we are told Y2 is the parameter.

Hence
E(X)=E (Y?)
But the moment generating function for Gamma is My (t) = (ﬁ)a (book page 145 second
edition).
Hence E (Y?) = My (0) = 2% (page 145)
Hence
E(X) =g /
) 2
Var (X) = E (X?) — [E (X)] (1)
But

£(X?) = B (E (X))

But E (X?|Y) is E (X?) of a poisson r.v. with parameter Y2. But we know that E (X?) of a
poisson r.v. with parameter X is A + A (book page 144 example A). Hence since we are told Y?

is the parameter, then

E(XYY) = (Y?)? +Y?
= (Y*+Y?)

Hence

E(X*)=E({Y"'+Y?)
=E(Y")+E(Y?)

But using mgf for Gamma distribution we can find E (Y*).
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4.6 Quiz 6

Local contents
4.6.1 Graded . . . . . . . e, 318

Quiz 6 MaTn 502AB October 30, 2006

Name (please print) NASSER AEBASI

In solving the problems below, you can use all the results that we have derived
in class. You do not need to re-derive results. Make sure to cite the results that
you use.

1. Let Xy,---,X,, beiid random variables from a A(y, efr"j')1 and S? be the sample variance.
What is Var(S5?)?

Figure 4.44: Problem 1

By theorem B, chapter 6, "Mathematical Statistics and Data Analysis', 2nd edition, John
2
Rice, page 181, which states that the distribution of % is a chi-square distribution with

n — 1 degrees of freedom.
Hence
o2

Var ("5 —varea

Since 25! is not random, then applying the property that Var(c X) = ¢*Var(X) when c is
not random to the above, where in this case ¢ = % and rearranging, we obtain

4
Var(S?) = U—zVar(tn_l)
(n—1)
However, Var(t,—1) = 2(n — 1) [T}, hence
4
(o
Var(S?) =2
ar(s?) =2 T
2. Let Xj,---, X, be iid random variables from a A(0,1). Determine the asymptotic

distribution of

(1/m 31X,
i=1

Figure 4.45: Problem 2

Let

1"

T found Var(t,_1) from Chi-square moment generation function. Since M(t,) = (1 — 2t)=", then
M(t,—1) = (1 —2t)"% and then Var(t,_1) = E(t2) — E(t)*> = M"(0) — [M’(0)]> which comes out to
2(n—1)
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Find moment generation function

To find Mx (%), and noting that 4y =0 and o =1 we obtai

M|X|() \/%/ enlle™ dx

Due to symmetry of normal distribution and since |z| is positive always the above can be
written ad’]

Hence Mo = o5 (1+ert (50 )|

The limit of the above as n — 0o is e\/gt. Therefore

Mg, (£) = eVt

We see now that E(S,) = M'(0) = \/g and E(S2) = M"(0) = 2, therefore Var(S,) =

2
2 _ (ﬂ) = 0. (this means all sums add to same value for large n, did I make a mistake?

I did not expect this). Hence

Sn in distiiloution N ( z’ O)
s

3.. Let Xy,---, X, be iid random variables from a A(0,0{) and Y;,---,Y, be iid random
variables from a N(0, 03). Write a 95% confidence interval for o3 /o3.

Figure 4.46: Problem 3

For pivotal term use (";)52 ~ X%n—1)’ where s? is sample variance o2 is population variance,
and hence we write (following class notes on 10/29/07) the confidence interval as

?1 started by write log (Mg(%)) = nlog (M x|(£)) and then expanding log (M|x|(%)) around ¢ = 0
using taylor series. But due to the absolute x present, I was not sure I was doing it correctly so I changed to
using the integral approach.

3Please note that I used Mathematica for solving this integral and the limit. I need to learn better how
to do this by hand using the Log expansion?



CHAPTER 4. QUIZES

315

Pl—z, <0< z|=1-«a

(n;l)s%
Where from table A7, z, = 1.96 for normal r.v. at 95% and Where § = T
(n=Dey

71

Hence the C.I. becomes

o1s3

P[—1.96< 5 < 1.96} =1—«
0351
2

2 2
P{—l.%s—; <7< 1.968—;] —1-a
S 03 52

Where the sample variance s = -1- 3" (X, — X )2, and s? = L% (Vi — Y)2

n—1 =1

For 95% confidence, a: = 0.05. Hence the the final answer for the C.I. is

2 2 2
P|-1.9621 < 2L <1.96°L| =0.95
S 03 82

Not sure what more I can do with the above so I think I will stop here.

the distribution of X_f\/?.

Figure 4.47: Problem 4

4. Let X ~ N(0,2) and Y ~ ezponential(1). Provided that X is independent of Y, identify

First find the joint density of X,Y. Since X,Y are independent, then the joint density

Ifxy(z,y) = fx(z) fy(y) over —oco <z < oo andy >0

==

But fx(z) = =
for p=0,02=2,A=11is

2
fxy(z,y) = ﬁeTe_y —oc0o<z<00, y>0
Now Let Z = %7, andlet U =Y
Hence
fzu(z,u) = |J| fxy(2,u)
Where
9z 0z 1 =X
J = det {g_{f g_g} = det ‘6’7 2‘{’7
X oy
_ /L
VY
SO

e 202 and fy(y) = Ae™¥, hence the joint density is (after substituting

1)
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Hence, from (1) and substitute X = Zv/U and Y = U, we obtain

]_ —22u
PR 4
o/m. €

—u

fzu(z,u) = Vu

Hence the marginal density

f2(2) = |3 fzu(z,u) du

Then

fae) = g [ ute™
2) = —— uze u
d 207 Jo
o0 z2
= 1 / u%e_(HT)u du
27T Jo
Now Gamma distribution is f(w) = F’}Z)w"‘_le_)‘“’, hence if we replace A = 1+ % and a = 3,

then we have

To simplify further,

But I'(3) = ‘/TE, hence

Hence the pdf of \%is

[

o —
fxy(z,y) = i(l + Z_y)

To verify this is a pdf, I integrate it from —oo to +00 to see if I get 1:

1

21342
1 Z_)
(1+5%

1
In[16]:= Integrate[i {z, -Infinity, Infinity}]

ouiglE | 1

Figure 4.48: verify

Here is a plot of the distribution
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1 27
f== |1+ —

4 1y
Plot3D[£, {x, -20, 20}, {v, 0, 20}, AxesLabel = {"X", "¥Y" 6 "f (x,v)"}]
1
a[re £)"
4y

Figure 4.49: plot of the distribution

Another attempt at problem (2)

_ 1
Xn=ﬁ;Xz
_ 1<
| Xa| = g;Xi

1 n
< ﬁZLXZl (1)
i=1

By definition, the CDF of }Xn’ is

iz, (1Xn| = ¢) = P(|Xa| <)

P(—c< X, <c)
—c—p Xo—p c—p
P(a/ﬁ < oin < o/ﬁ)

Since u = 0,0 = 1 we obtain

_ —c X, c
(%l =0 = P( 5777 < 5707 < ) @

Now I need to combine (1) and (2). I am not sure how.

But central limit theorem tells us that as n gets large, the distribution of the sample mean X,
approach normal distribution with mean p and variance %2, hence X, ™ distripution ny (u "2>,

" n

hence the above becomes
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4.6.1 Graded
15/20

Quiz 6 Matn 502AB /7,0 October 30, 2006

Name (please print) RS

In solving the problems below, you can use all the results that we have derived
in class. You do not need to re-derive results. Make sure to cite the results that
you use.

1. Let X|.---. X, beiid random variables from a A(z. %), and S? be the sample variance.
What is Var(S?)?

By theorem B, chapter 6, "Mathematical Statistics and Data Analysis", 2nd edition, John

Rice, page 181, which states that the distribution of ‘";12)52 is a chi-square distribution with n — 1
degrees of freedom.

Hence )
Var (%S—) =Var (tp—1)
Since “Z' is not random, then applying the property that Var (¢ X) = ¢*Var (X) when c is
not random to the above, where in this case ¢ = (L”}i) and rearranging, we obtain
4
Var (8%) = (ni—l)ﬂ/ar (tn-1)

However, Var (tn—1) = 2(n — 1)*, hence /
[var (9 =225

"1 found Var (tn_1) from Chi-square moment generation function. Since M (t,) = (1 —2t)7", then M (t,—1) =

(1-2t)™%" and then Var (ta1) = E (2) — E (t)% = M" (0) — [M" (0)]* which comes out to 2 (n — 1)

1
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2. Let X,.---, X, be iid random variables from a A(0,1). D«\tvrmiy the asymptotic
distribution of \
(l/n)ZL\',l. C)\/
i=1 Sy
Let Q N
;e v
S, = EZ | X N
=1

Find moment generation function

To find M (%), and noting that u = 0 and ¢ = 1 we obtain?

M, (t) x/l /°° Hlele T dg
— ) =— en'"le
x| =

Due to symmetry of normal distribution and since |z| is positive always the above can be
written as® .
X _U4

" M (£) = L [" et e A
/ R CD) \
Hence e% (1+erf( . ))]n N:'(?}W’) p

Ms, (t) = [

V2

The limit of the above as 1 — oo is eV 3¢, Therefore

Ms, (t) = eVt

?1 started by write log (Mg (£)) = nlog (M x, (%)) and then expanding log (Mx| (£)) around ¢ = 0 using
taylor series. But due to the absolute z present, I was not sure I was doing it correctly so I changed to using the
integral approach.

3Please note that I used Mathematica for solving this integral and the limit. I need to learn better how to do
this by hand using the Log expansion?
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We see now that E(S,) = M'(0) = \/% and E (S2) = M"(0) = 2, therefos

™
not expect this). Hence

in distribution

2
= ( \/%) = 0. (this means all sums add to same value for large n, did I make a mistake? I did
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3.. Let Xy.---.X, be iid random variables from a A/(0, al) and )l

.Y, be iid random
variables from a .\ (0, rr*) Write a 95% confidence interval for o7/ n-

1)s2 ~ . . . . .
For pivotal term use u X{n_ 1)» Where s? is sample variance 0 is population variance, and

hence we write (following class notes on 10/29/07) the confidence interval as

Pl-zp<0<z]|=1-a

(n=1)s 2
Where from table A7, z, = 1.96 for normal r.v. at 95% and Where 0 = = oE:

of

Hence the C.I. becomes

P
| ! 222
Py 029 } =1l—a
// 038
/ 2 2 2
P [—1.96,5—; R 1.965—;] —1-a
f ls5 0 82

Where the sample variance s

=y (X )—()2 and s? =
For 95% confidence, a: = 0.05.

n—1
ence I;he the final a:pswer for th C.

/(\/ ng?;% e 1196/@»]—095

Not sure what more I can do Wlth the above so \L&’ﬁlnk I will stop here.

Ly %-7)
Ii

18
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4. Let X ~ N(0,2) and Y ~ exponential(1). Provided that X is independent of Y, identify
the distribution of X//Y".

First find the joint density of X,Y. Since X,Y are independent, then the joint density
fxy (z,y9) = fx (z) fy (v) over —oo < & < 00 and y > 0
But fx (z) = \/21706—(;;5 " and fy (y) = Ae™™¥, hence the joint density is (after substituting

forpy=0,02=2,A=1is

fX,y(:L',y):ﬁe‘iC_y —oc<z<oo, y>0
NowLetZz%,andletUzY
Hence
fzu (z,u) = |J| fxy (2,u) (1)
Where
9Z 9z 1 =X
J =det li?){ﬁ 2}}] = det [\/7 2‘/37]
X oy 0 1
e
VY
S0
I = VT = VT
Hence, from (1) and substitute X = Z+/U and Y = U, we obtain
i A "
fzu (z,u) = \/62\/7?6 © e \LN/\
Hence the marginal density b\)\b\/ ‘ /\
fz(2) = |;" fzu (2,u) du w /
Then

—2%u—4u

fz(z)=#/0 wie” i du

2

_ L7 e
—2\/7?/0 uze 4] du

Now Gamma distribution is f (w) = F—’}‘;—)w"_le_m, hence if we replace A =1+ % and o = %,

then we have

=1
_ M@ T
Fo @) = 5 | et du
1 (o) %
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To simplify further,
1 I
fZ (Z) = 2 3
2 22\ 2
VI (+3)

But I’ (%) = 4, hence

Hence the pdf of %is

3
1 z?\ 2
= — 1 _
Ifxy (z,y) 1 ( + 4y)

To verify this is a pdf, I integrate it from —oo to 400 to see if I get 1:

1 1
In[16]:= Integ:ate[z —————, {z, -Infinity, Infinity}]

[Lo2Z]" '

ouf1g)= | 1

Here is a plot of the distribution

-3

1 2172
f=- |1+ —

4 4y

1

372

4(1+ﬁ) 4
4y

Plot3D[f, {x, -20, 20}, {v, 0, 20}, AxesLabel -» {"X",6 "¥Y" 6 "f (x.y)

"3
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4.7 Quiz 7

Local contents

4.7.1 corrected problem 3 . . . . .. ... ... .. 337
472 Graded . ... . . ... 350!
Quiz 7 MaTH 502AB November 27, 2007

NASSER ABBASI

Name (please print)

1. Consider Xy, --, X, an i.i.d. sample from a random variables with density

o 1 x
flzlo) = 55 OXP (—Lﬂ) .

(a) Find the method of moment estimate of o.
(b) Find MLE of o.

(¢) Find the asymptotic distribution of the MLE.

Figure 4.50: Problem 1

PART(A)

In the method of moments we formulate the moments of the probability law of the distribution
in which the random variables belong to and equate these moments to the moments obtained
from the sample at hand and solve for the unknown parameters.

pm = E(X)
= / zf(z)dx

= — _O'd
20 _Ooace x

But e~ 7 is symmtric around the z = 0 due to absolute z in the power of the exp .(This
assumes o positive, which is ofcourse true) but it is multiplied by negative z to the left of
y-axis and multiplied by positive x on the right of the y-axis, hence the area of the left of
the y-axis will be equal but negative to the area on the right of the y-axis. Hence the above
integral is zero. Hence p; =0

This moment provides no information. Find the second moment.

p = E(X?)
_ L[ o
=5 _ooxe dx

Due to the symmetry of e~ and also #? is even and symmetrical around z = 0, the above
integral is then twice the integral from z = 0- - - co and it becomes

1 [ z
Lo = —/ zle" o dx
0 Jo

Integration by parts gives
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p2 = 20
Hence
U2
— /22 1
o=/" 1)

Now find ps from the sample itself and substitute for it in the above. From the sample,

pe = Var(sample) + Mean(Sample)
1< _
=-> (Xi-
i=1

Since the mean of the population was found to be zero, we can take the mean of the sample
X=0

Hence ps from the sample becomes
1 n
==Y Xx?
2 nzzzl i

Replace the above in (1) we obtain estimate of the population o as

PART(B)

The MLE of ¢ is found as follows. Since i.i.d. random variables we write (Where L(o) mean
lik(o) and I(o) means log (lik(o))

— [Trxilo)
i=1
= Zlogf(XAU)
i=1
= Zlog (%e v )
_Z( log (20) |)§Z|>

Therefore

(o) = —nlog (20) — Z|X|

Now we find the MLE, which is the value of o which maximizes the above function.
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Il (c)=0
—-n 1 —
— = Xi| =
Y BLIEL

i=1

Hence

n
&=1>|Xil
=1

The above is the MLE estimate of the parameter o.

PART(C)

The asymptotic distribution of the MLE & is normal with mean ¢ and variance #(G)Where

I(0) = —E[l,(0)]

But
(o) = 5 | ~nlog (20) - —;XA

_ "y lzn:pﬂ

o o? i=1 z
and

n 2 —
o) = 35 = s

Hence

I(oc)=-FE

2 n
- ;;w]
ZIXA]
=1

n 2 «
=—=t ;ZELXJ (2)
=1

{3+ 22

Need to find E|X;|, since i.i.d. all random variables has the same expected value as X, hence

1 © e
E|X]| = %/ o] e dz

—0o0

1 [ =
= —/ ze odxr
g Jo

=0

Therefore from (2)
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n 2 —
I(o) = 3 + ;;a
_mn 2n
T2 g2
Hence the Fischer information matrix is
n
I(o) = 2

i.e.

and

qQ 3
SR
O

S
N}

2. Suppose that certain electronic components have lifetimes that are exponentially dis-
tributed with parameter A. Five new components are put on test, the first one fails at
100 days, and no further observations are recorded.

(a) What is the MLE of A7
(b) What is the sampling distribution of the MLE?

(¢) What is the standard error of the MLE?

Figure 4.51: Problem 2

PART(A)

The random variable here is the lifetime of a component.

X ~ e ™

In this problem the contribution to the likelihood function of A comes from only one random
variable. Hence we need to find the pdf of this random observation, which is an order statistics.
It is the minimum random variable among n random variables where n = 5 here.

Since this is an exponential distribution, we know that the distribution of X(;) is given by
(from section 3.7, chapter 3, textbook)

fxq (t) = nhe ™
Where in the above, the ¢ is the time of the first failures in each sample taken. (sample size
is 5 in this problem).

Hence
Ln(X) = ne ™
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so for n = 5, the likelihood function is

L()\) = 5e X

Hence we need to find the maximum of the above function. Since we have only one r.v., no
need to take logs, use standard method:

L, (\) = ne™™ — n?the ™M

=0
Solve for \
1—ntA=0
i= L
nt

But here n = 5 and time of first failure is ¢ = 100 hence the above becomes ( write 7' = 100
) then we have

)\'VL: = —= —
7 BT~ 500

PART(B)

Since A = == where T is a r.v (the first time to fail) which has the distribution 5 e~
Hence we conclude that the distribution of A\ ~ %ﬁ But an exponential distribution is
Te~ T , hence now we see that sampling distribution of A ~multiple one over an exponential

distribution with parameter (7 = 5}).

(When asked to find distribution of some r.v., do we always have to express in terms of
"known' distributions?)

PART(C)

We need to find the standard deviation of the sampling distribution of )\ found above.

1
exponential distribution with parameter(7)

with parameter 7 is T%, hence variance of A\ = 72

and the variance of an exponential

Since we found that A\ ~

Hence standard error is the square root of this variance.| Hence standard error of the MLE A=1=>5)\
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3. Do problem 43(a-e) of Chapter 8. To obtain MLE of &, you may use the function
"fzero” in MATLAB, or the function "uniroot” in R.

43. The file gamma-arrivals contains another set of gamma-ray data, this one
consisting of the times between arrivals (interarrival times) of 3,935 photons
(units are seconds).

a. Make a histogram of the interarrival times. Does it appear that a gamma
distribution would be a plausible model?

b. Fit the parameters by the method of moments and by maximum likelihood.
How do the estimates compare?

¢. Plot the two fitted gamma densities on top of the histogram. Do the fits look
reasonable?

d. Forboth maximum likelihood and the method of moments, use the bootstrap to
estimate the standard errors of the parameter estimates, How do the estimated
standard errors of the two methods compare?

e. For both maximum likelihood and the method of moments, use the bootstrap
to form approximate confidence intervals for the parameters. How do the
confidence intervals for the two methods compare?

f. Is the interarrival time distribution consistent with a Poisson process model
for the arrival times?

Figure 4.52: Problem 3

PART (A)

First, I want to say that I am using the following defintion of the Gamma function (using S
instead of \) in the defintion. Since The data given has units of time and are not rate (i.e.
1/time). So I am using this definition of Gamma PDF

1 ta—le—%

™| =

Now to answer part (A).

Yes. The following shows the histogram of the data, and a plot of a Gamma distribution
with the shape parameter a = 1 and scale parameter § set to the average of the data.
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n7i}= nBins = 100;
gz = nmaMakeDensityHistogram[data, nBins];
histPlot = GeneralizedBarChart[gz, BarStyle - White,
ImageSize -+ 450, PlotRange = {{Min[data], Max[data]}, All},

PlotLabel - "Histogram of gamma arrival time data']

Histogram of ganuna arrival time data

Out[7a=

e — —

0 100 200 300 400 500 400 700

Let me plot a Ganuma distribution with the mean arrival time of the data
n74p= B = Mean[data]
ouf4 79.9352
ns= a=1;

ne= Plot[PDF[GammaDistribution[a, B], x], {x, 0, Max[data]},
PlotRange - All, PlotLabel - "Gamma[a, 3] "]

Gammal[a, 5]

0.0tz

n.010

0.008 +

OUlBE g |

0.004 ¢

0.002 ¢

100 200 300 400 500 600 700

From the above we gee that a Gamma distribution is possible.

Figure 4.53: histogram of the data

PART(B)

Using method of moments. We need 2 equations since we have to estimate 2 parameters
a, . For Gamma,



CHAPTER 4. QUIZES 331

21 —%
p2 = Var(X) + (E(X))*
-5+(G)

Now from the data itself, calculate the First and Second moments and equate to the above
and solve for a, A and these will be our estimate. This little code does the above

Part (B)

Start by fmding the first and second moments of the Gamma distribution
I[ies]= Clear[x, a, B]
ml = ExpectedValue [x, GammaDistribution[a, 8], x]

out[iE7l= o 8

In[1ga):= m2 = ExpectedValue [:-:2 , GammaDistribution[a, 8], x]

oupeaE o (1 +o) 82

Now find the fust and second moments of the data itself

In[1ga);= mlForData = Mean[data]

Ouw[tegE 79.9352

In[170)= m2ForData = Variance[data] + (Mean[data]) z

ou[i7oE 12702.9
Now solve for a, f§

In[171]= sol = First@Solve[{ml == mlFoxData, m2 == m2FoxData}, {a, B}1;

aByMoments = a /. sol

oui72)= 1.01209

In[173)= PFByMoments = /. sol

Out[173)= 78.38

Hence we fmd A

1
In[176)= A = —————
BByMoments

out[176)= 0.012¢6l4d

Figure 4.54: First and Second moments

Now using the MLE method. For o
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n

A% a1 X
L(aak):HF(a)Xi LM

la,A) = Z log I‘)\va‘_le_)‘Xi

)

n Aa n n
= ;logm + (a — 1);logXi - )\;Xi

=nalog\ —nlogl(a) + (a — 1) Z log X; — )‘ZX"

Hence we obtain the 2 equations

Ol(a, \) =
S0 nlog A — n polyGamma(0, o) + Z log X;
ol(a,\)
ox

na% — Xn:Xi

From the second equation, set it to zero we obtain

& I'a) <
0=mnlog (E) — nF(a) + ;logXi

0 = nlog (&) — nlog X — n polyGamma(0, ) + Z log X;

And solve for &. Once we find & we then find also A = &

X
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Now find estunates of the parameters by MLE method and do the same as above

In[229]:= | Clear[a, 4]
n = Length[data]
Qut[300]=

3535

In[201]:= | *Bar = Mean [data]
Qutf30]=

75.9352

n
ina02]= | eql = n Log[a] - nLog[xBar] - nPolyGamma[0, a] +ZLog[data|[i]]]
1=1

Out[an2)=

-2206.38 + 3935 Log [a] - 3935 PolyGammal0, o]

Solve the above mmnerically vsmg FmdRoot

in[a0a}= | FindRoot [eql, {«, 1}];/
aQMLE = a /. %

Quand)=
1.02633

Now that we found MLE for alpha, use it to find MLE for A

aMLE
In[205]= | AMLE =
xBar
Qut[308]=
0.0128395

Make a table to compare the a., A found by the above 2 methods

In[206].= | TableForm[{{aByMoments, AByMoments} K {aMLE, AMLE}},
TableHeadings - {{"Method of momsnts™, "MLE"}, {"a", "A"}}]
Qut[306]4TahbleFarm=

et A

1.01209 0.01Z6614

1.02633 0.0128355

Method of moments
MLE

Figure 4.55: result

PART(C)

Now Fit this model again, and compare the MLE fitting to the method of moments fitting
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In[350]:=

In[352]).=

Cut{354)=

1
AByMoments '
pdfByMomentMethod = Plot [PDF [GammaDistribution [aByMoments, 8], =],
{x, 0, Max[data]},6 PlotRange - All, PlotLabel - "Gamma[a, A]",
PlotStyle - {Red, Thick}]:
pl = Show[{histPlot, pdfByMomentMethod} ,
PlotLabel » "Fitting Gamma by method of moments on data”, ImageSize - 300];

pdfByMLE = Plot [PDF [GammaDistribution[aMLE, 1/ AMLE], %], {x, 0, Max[data]},
PlotRange - All, PlotLabel - "Gamma[a,A]", PlotStyle - {Red, Thick}];

P2 = Show[{histPlot, pdfByMLE},6 PlotLabel - "Fitting Gamma by method of MLE",
ImageSize » 300];

Grid[ {{p2, p1}}]

Fitting Gamma by method of MLE Fittmg Gamma by method of moments on data

1] 100 200 300 400 500 600 Jo0 0 100 200 300 400 500 600

Figure 4.56: MLE fitting to the method of moments fitting

This plot shows more closely the fitting on top of each others. They are very close so hard
to see the difference other than near the high frequency part.

In[554] =

Cut{556]=

pdfByMomentiMethod = Plot [PDF [GammaDistribution[aByMoments, 8], =],
{x, 0, Max[data]}, PlotRange = {{0, 300}, All}, PlotLabel - "Gamma[a,A]",
PlotStyle - {Dashed, Thick}]:
pdfByMLE = Plot [PDF [GammaDistribution[aMLE, 1/ AMLE], %], {x, 0, Max[data]},
PlotRange - {{0, 300}, All},6 PlotLabel - "Gamma[a,A]", PlotStyle » {Red, Thick}];
P2 = Show[{histPlot, pdfByMomentMethod, pdfByMLE} ,
PlotLabel - "Fitting Gamma by method of MLE and Moments", ImageSize - 300,
PlotRange » {{0, 150}, All}]

Fitting Ganuna by method of MLE and Moments
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Figure 4.57: the fitting on top of each others

The fits above both look reasonable.

PART(D)

Use bootstrap method.

For the method of moments.

Try for n = 500 be the same size. Use the method of moments parameters to generate an n
random variables from Gamma distribution. First time use the parameters estimated from
the data as shown above.

Now, use the sample generated above to estimate the parameters from it again using also the
method of moments. Use these parameters to generate another n random variables. repeat
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this process for say N = 5000 and find the variances of the parameters a, A\, and hence we
find the standard error which is the square root of these variances.

Here is the code to do the above and the result

(Last minute update), I am getting large result for standard error from the bootstrap method.
I think I have something wrong. Here is the result I get and the code

For Method of moments, I get standard error for alpha=918 and for lambda=18

Part (d)

In[1]:= | Remove ["Global *"]

SeedRandom[01010101] ;
ml = ExpectadValue[x, GammaDistribution[a, 8], x];

m2 = ExpectedValue [xz , GammaDistribution[a, 8], x] H

getMethodOfMomentsParameters [data ] := Module [{sol , aByMoments, fByMoments},
mlForData = Mean [clata] ;
m2ForData = Variance[data] + (mlForData) 2.
sol = First@Solve[{ml == mlForData, m2 == m2ForData}, {a, f}];/
aBylMoments = a /. sol;
BByloments = 8 /. sol;

{aByMoments, fByMoments}

]

InfE]= | file =
"E:/nabbasi/data/nabbasi_web_Page/my_courses/FULLERTON_COURSES/Fall_2007/math_502
_probability_and_statistics/quiz/quiz7/gamma-arrivals.txt";
data = Flatten[Import[file, "Table"]];

n=500;

nIter = 5000;

alpha = Table [0, {i, nIter}];
beta = Table [0, {i, nIter}];

{alpha[[1], beta[[l]} = getMethodOfMomentsParameters [data];

For[i=2, i =nlter, i++,
{
sample = RandomReal [GammaDistribution[alpha[i - 1], betaf[i - 1]], n]:
{alpha[i]l, beta[[i]} = getMethodOfMomentsParameters[sample] ;
}
1

Print["Standard error for alpha=", Sqrt[Variance[alpha]]]

Print["Standard error for lambda=", Sqrt[Variance[l /betal]]]

Standard error for alpha=518.308 j
Standard error for lambda=18.7966 j

Figure 4.58: result

For MLE I get
Standard error for alpha=1.68697*10"8

Standard error for lambda=60.2585
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Now do the same for MLE method

In[1]= | Remove ["Global "]

SeedRandom[01010101] ;

getMLEParameters [data ] := Module[{sol , ¥xBar, oMLE, AMLE, &q, a, n},
xBar = Mean [data];

n = Length [data] ;

n
=g = nLog[a] - nLog[xBar] - nPolyGamma[0, a] + ZLog[dataEi]]] g
1=1
sol = FindRoot[=qgq, {a, 1}];:
aMLE = a /. sol;
aMLE

AMLE = ;
xBar

{aMLE, AMLE}

Remove::rmnsm : There are no symbols matching "¢

In[a]= | £ile =
"E:/nabbasi/data/nabbasi_web_Page/my_courses/FULLERTON_COURSES/Fall_2007/math_502
_probability_and_statistiecs/quiz/quiz7/gamma-arrivals.txt";
data = Flatten[Import[file, "Table"]];

n=500;

nIter = 5000;

alpha = Table [0, {i, nIter}];
lambda = Table [0, {i, nIter}];

{alpha[l], lambda[l]} = getMLEParameters [data];

For[i =2, i = nIter, i++,
{
sample = RandomReal [GammaDistribution[alpha[i - 1], lambdaf[i - 1]], n];
{alpha[[i]], 1lambda[[i]} = getMLEParameters [sample];
}
1
Print["Standard error for alpha=", Sqgrt[Variance[alpha]]]
Print["Standard error for lambda=", Sqgrt[Variance[lambda]]]

Figure 4.59: result

Part (e) and (f)

Run out of time.
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4.7.1 corrected problem 3

Problem 3 Quiz 7 part(a)
by Nasser Abbasi

3. Do problem 43{a-e) of Chapter 8. To obtain MLE of o, you may use the functic
"fzero” in MATLAB, or the function "uniroot” in R.

43. The file gamma-arrivals contains another set of gamma-ray data, this one
consisting of the times between arrivals (interarrival times) of 3,935 photons
(units are seconds).

a. Make a histogram of the interarrival times. Does it appear that a gamma
distribution would be a plausible model?

b. Fit the parameters by the method of moments and by maximum likelihood.
How do the estimates compare?

¢, Plot the two fitted gamma densities on top of the histogram. Do the fits look
reasonable?

d. Forboth maximum likelihood and the method of moments, use the bootstrap to
estimate the standard errors of the parameter estimates, How do the estimated
standard errors of the two methods compare?

e. For both maximum likelihood and the method of moments, use the bootstrap
to form approximate confidence intervals for the parameters. How do the
confidence intervals for the two methods compare?

Is the interarrival time distribution consistent with a Poisson process model

for the arrival times?

™

Part A

FART (a)
First, [ want to say that | am using the following defintion of the Gamma function (using ,3 instead of A} in the defintion. Sil
giwen has units of time and are not rate (i.e. 1/time). Sa | am using this definition of Gamma PDF

MNow tor answer part (A)
Yes. The following shows the histogram of the data, and a plot of a Gamma distribution with the shape parameter @ = .
parameterﬁ set to the average of the data.

Open the gammafile and load the data

Renove["d obal ™ %" ]

Decide on number of bins and make a histogram (see appendix for function | wrote to make probability histogram)

Printed by Mathematica for Students
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ns= | NBi ns = 100;

gz = nmaMakeDensi t yH st ogr am[dat a, nBi ns];

hi st Pl ot = General i zedBar Chart [gz, BarStyl e » Wite,
| mgeSi ze -» 450, Pl ot Range -» {{M n[data], Max[data]l}, All},
Pl ot Label - "Hi stogram of gamma arrival tine data"]

Histogram of gammaarrival time data

Out[7]= [

0 100 200 300 400 500 600 700

Let me plot a Gammadistribution with the mean arrival time of the data

nei= | B = Mean[dat a]

Out[8]= 79 9352

In[9] a = l;

Printed by Mathematica for Students
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q7.nb |3

nioi= | Pl ot [PDF[GammaDbi stri bution[a, B], X1,
{x, 0, Max[data]}, PlotRange » All, PlotLabel »"Gamala, B]"1]

Gammala,f]

Out[10]

0.002f

500 600 700

From the above we see that a Gamma distribution is possible.

Part B

ParT(EB)
Using mathod of moments. e need 2 equations since wie have to estimate 2 parameters &, A. For Gamma
a

L1 = =

i A
Var(X) + (E(X))*

! e T
- £+ (%)
e A
= o (& |
S ? \G + ]. 7
Moy from the data itself, calculate the First and Second moments and equate to the above and solve fora, A and these
estimate. This little code does the above

=
I

Start by finding the first and second moments of the Gamma distribution

n1= | dear [X, a, B]
ml = Expect edVal ue [x, GammaDi stribution[a, B], X]

ap

Out[12]=

In[13]:= ‘ n2 = Expect edVal ue [xz, GanmaDi stribution[a, B], x]

ouiz= | a (1 +a) B2

Now find the first and second moments of the dataitself
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In[14]:= ‘ mLFor Dat a = Mean [dat a]

outf14]= | 79. 9352

In[15]:= ‘ m2For Dat a = Vari ance [dat a] + (l\/lean[data])2

ouis)= | 12702.9

Now solvefor a, 8

n[16)= | sol =First @Sol ve[{ml == nlLFor Dat a, n2 == nRFor Dat a}, {a, B}];
aByMonents = a /. sol

out[17] 1.01209

In[18]:= ‘ BByMonents =B /. sol

out[18)= | 78.98

Hencewe find A

Printed by Mathematica for Students
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q7.nb |5

CHAPTER 4.

Now find estimates of the parameters by MLE method and do the same as above

Mowi using the MLE method. For ¢
P
s

Lia,i) = 1_[ NS

i

N

fd
\ paLs
i)=Y log—As_ yo-le-ix:
b= T Ta)
- )

L L
ta-1)Y logxi- 1 Y X
— —

” -
= log £
— "~ I'la)
I I I
L L
= nalogi —nlogl'la) + (o — ny’ logX; — 4 by X;
i i
Hence we obtain the 2 equations
’, Y L
clla, ) . . ) ' -
——~ = plogi—npolvGamma(0,a) + by logX;
Ju £ 4 / 2
I
o q L
clla, i) o
~ = ha L T_\i
i A e
I
From the second equation, set it to zero we obtain
: na s
L 5 =

Substitute the above in the first equation and set to zero we obtain
: Tla)
Oznlog( ‘:{) o

0 = nlog(a) — nlogX— n polvGamma(0,a) + Z log X;

F'G\ — l =
g i
7

i

And solve for & Once we find & we then find also 4 = %

C ear [a, B]

In[19]
n = Lengt h[dat a]

out[20]= ‘ 3935

in[21:= | xBar = Mean[dat a]

oui21]= | 79. 9352
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n
n22:= | eql =nlLog[a] - nLog[xBar] -nPol yGamma [0, a] + ZLog [data[i 11
i=1

out22]= | -2206. 38 + 3935 Log [a] - 3935 Pol yGamma [0, «]

Solve the above numerically using FindRoot

in[23):= | Fi ndRoot [eql, {a, 1}1;
aME=za /. %

outz4)= | 1. 02633

Now that we found MLE for alpha, useit to find MLE for A

aMLE

inf25]= | AMLE =
xBar

out[25]= ‘ 0. 0128395

1
inj26]= | BMLE = ——
AMLE

out[26]= ‘ 77.8844

Conclusion for part B

Make atable to comparethe «, A found by the above 2 methods

In[27] Tabl eFor m[ {{aByMonents, "\t", BByMonents}, {aM.E, "\t", BM.LE}},

Out[27])/[TableForm=

| & B
Met hod of nonents | 1. 01209 78. 98
M_E 1. 02633 77.8844

Tabl eHeadi ngs -» {{"Met hod of nonents", "M.E"}, {"a", "", "B"}}]

Part C

Put the 2 fitting on top of each othersto compare

inj28:= | pdf ByMoment Met hod = Pl ot [PDF[GammaDi stri buti on[aByMonents, BByMonments], x1],
{X, 0, Max[data]l}, Pl ot Range » Al |, Pl otLabel -»"Gama[a, B]", PlotStyl e » {Red, Thick}];

pl = Showl[ {hi st Pl ot, pdf ByMonent Met hod},

Pl ot Label »"Fitting Gamma[a, B8] by nethod of nmoments on data", | mageSi ze » 300];

Printed by Mathematica for Students
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in3o):= | pdf ByMLE = Pl ot [PDF[GamabDi stri buti on[aM.E, BM.E], Xx], {x, O, Max[data]},
Pl ot Range » Al |, Pl ot Label -»"Gammal[a, B]1", PlotStyle -» {Red, Thick}];
p2 = Show [ {hi st Pl ot, pdf ByMLE}, Pl otLabel - "Fitting Ganma[a, B] by method of ME",
| mageSi ze -» 3007;
Gid[ {{p2, pl}}]
Fitting Gammala, 8] by method of MLE Fitting Gamma[a, 8] by method of moments on data
Out[32]=
0 400 500 600 700 400 500 600 700

Conclusion for part (C)

This plot shows more closely the fitting on top of each others.They are very close so hard to see the difference other
than near the high frequency part.

In[33] pdf ByMonent Met hod = Pl ot [PDF[GanmaDi stri buti on [aByMonments, pgByMonents], x], {x, 0, Max[data]},
Pl ot Range -» {{0, 300}, All}, PlotlLabel »"Gammal[a, 1", PlotStyle - {Dashed, Thick}];
pdf ByMLE = Pl ot [PDF[GammaDi stri bution[aM.E, 1/2ME], x], {x, 0, Max[data]},
Pl ot Range -» {{0, 300}, All}, PlotlLabel »"Gamal[a, A]", PlotStyle - {Red, Thick}];
p2 = Show [ {hi st Pl ot , pdf ByMonment Met hod, pdf ByM_.E},
Pl ot Label »"Fitting Gamma[a, B8] by nmethod of M.LE and Monents",
| mageSi ze -» 300, Pl ot Range -» {{0, 200}, All }]

Fitting Gamma[«,] by method of MLE and Moments
0.012

r\
0.010f |

0,008

w

N

/

Out[35]= 00065

0004

0.000}
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Part (d)

| use bootstrap to compare the standard error of parameters estimated using both the MLE and Method of Moments.

In Bootstrap, we find the estimate of the parameters from the data itself. Then we generate random data from the same
distribution of the same size as the data itself using these original estimates, then we estimate the parameters again
from the generated random data. We repeat this process keeping track each time of the parameters estimated from each
sample. At the end we find the variance and the mean of these parameters and also make histogram to compare the
standard errors from the MLE and the moments method. The method which has smaller standard error will be better.

Write 2 functions which find the parameters estimates using the ML E and the moments method

Renove ["d obal ™ %" ]

insel= | ML = Expect edVal ue [x, GammaDi stribution[a, B], XI;
n2 = Expect edVal ue [xz, GamaDi stribution[a, B1, x];

get Met hodOf Monent sPar anet ers [data_] : = Modul e [{sol , aByMonents, BByMbnents},
nmlFor Dat a = Mean [dat a];
n2For Dat a = Vari ance[data] + (mlForData)2;
sol =First @Sol ve[{ml == mlFor Data, n2 == nRForData}, {a, B}1;
aByMonents = a /. sol ;
BByMoneNnts =B /. sol;

{aByMonent s, pByMonents}

in[39]:= | get MLEPar anet ers [data_] : = Mbdul e[(sol, xBar, aMLE, AMLE, eq, a, n},

xBar = Mean[datal;
n = Length[data];

n

eq =nlLog[a] - nLog[xBar] -nPol yGamma[0, a] + ZLog[dat afill;
i=1

sol = Fi ndRoot [eq, {a, 1}1;

aMLE=a /. sol;

{aM_E, 1/XM.E}

]
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In[40]:=

Now call the above functionsto find the standard errors

get Standar dError [nunberOflteration_, data_, sizeO'Data_, f_]:=Mdule[{},
al pha = Tabl e[0, {i, nunberOflteration}];
beta = Tabl e[0, {i, nunberOflteration}];

{dat aAl pha, dataBeta} =f [data];

For[i =1, i snunberOflteration, i ++,
{
sanpl e = RandonReal [GamaDi stri buti on[dat aAl pha, dataBeta], sizeO Datal;
{al pha[i ], betafi ]} =f [sanpl e];
}
1
{Sqrt [Variance[al pha]], Mean[al pha], Sqrt [Vari ance[beta]], Mean[beta]}
1

In[41]:=

SeedRandom[01 0101017;

file ="E: /nabbasi /dat a/nabbasi _web_Page/nmy_cour ses/FULLERTON_COURSES/Fal | _2007 /mat h_502
_probability_and_statistics/quiz/quiz7/gamma-arrivals.txt";

data=Flatten[lnport [file, "Table"11;
sizeOf Data = Lengt h[dat a]; (xdata sizex)
nunmber O I terati ons = 5000;

In[46]:=

out[46]= ‘ {0.0319471, 1.01321, 2.76292, 78. 9663}

resul t Monents =
get St andar dError [nunber Of I terati ons, data, sizeOf Data, get Met hodOf Monent sPar anet ers ]

Now do the same for MLE method

In[47]:=

resul t MLE = get St andar dErr or [nunber Of I terati ons, data, si zeOf Data, get MLEParaneters];

Summary table for part D

In[48]:=

Out[48]//Tal

k

Tabl eForm[{ {result Monments[[1]], " ",

resul t Monents[[2]], " ", resultMnents[[3]], " ", resultMnments[[4]]},

{resul t MLE[[1]], " ", result ME[[2]], " ", resul t ME[[3]], " ", result ME[[4]11}},
Tabl eHeadi ngs -»

{{"Method of nonments", "M.E"}, {"std(a)", " ", "Mean(a)", " ", "std(B)", " ", "Mean(B)"}}]
bleForm=

‘st d(a) Mean (a) std (B) Mean ()

Met hod of nonents | 0. 0319471 1.01321 2.76292 78. 9663
M_E 0. 0203902 1.02741 1.97021 77.8397
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Conclusion for part D

We see from the table above that standard error for the MLE method for the parameter « is alittle smaller than that for
the moments method. Also for the 8 parameter, the MLE method gives a smaller standard error than the moments
method.

We conclude that the MLE is better than the moments method since its standard error is smaller. The differenceis not
too large here in standard error, | was expecting a larger error than this. May be if we have larger data size we can see
this.

Part E

Now we need to find confidence intervals for both @ and 8 based on the MLE and the moments methods estimates.
Hence we will need to generate 4 C.I's since we have 2 parameters and 2 methods. | will usethe 95% C.I. in all cases.
This C.1. isthen arandom variable which is said to contain the parameter being estimated with probability .95

There are 3 methods to determine the CI for the method of moments and the MLE. Exact methods, approximation
based on large sample size, and bootstrap methods. We are asked to use the bootstrap method here.

Algorithm

We start first by writing down the algorithm for finding CI (95 %) for MLE or Moments methods. This
algorithm can ofcourse be used for other CI other than 95 % by changing the quantile value, but | used
95 % here for illustration only

1) Load the data from file
2) use the method of MLE to estimate the parameters. Let the estimated parameters be & and 3

3) Now, using & and 3 generate 1000 random samples each of size equal to the original data. Use the
distribution Gamma.

4) From each sample generated in step (3) determine using MLE an estimate of the sample parameters
a,B call these aj* and B;" where j is the sample number

5) Sort the parameters sequence o* and the parameters sequence * from small to large

6) Find the parameter o* at position 25 and at position 975. Call these a*,5 and a*g75 and do the same
for g* and Call these 5*,5 and g5

7)Let § =a"ys-& and let § =a*g7s5- , Hence the 95% Cl for 4=(G-6,4-6)
8)Let § =" ,s-& and let § =(*)grs-& , Hence the 95% ClI for B=(3-6,5-6)
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inj49= | SeedRandom[01 010 1017;

file="E: /nabbasi /dat a/nabbasi _web_Page/ny_cour ses /FULLERTON_COURSES/Fal | _2007/mat h_502
_probability_and_statistics/quiz/quiz7/gamma-arrivals.txt";

data=Flatten[lnport [file, "Table"11;
sizeOf Data = Lengt h[data]; (xdata sizex)
nunber Of I terati ons = 1000;

getCl [data_, f_]:=Mdule[{},
al phaStar = Tabl e[0, {i, nunberOflterations}];
betaStar = Tabl e[0, {i, nunberOflterations}];

{al phaHat, betaHat } =f [data];

For[i =1, i <nunberOflterations, i ++,
{
sanpl e = RandonReal [GanmaDi stri buti on[al phaHat, betaHat ], sizeO Data];
{al phaStar [i ], betaStar[i ]} =f [sanpl e];
}
15
al phaStar = Sort [al phaStar ];
betaStar = Sort [betaStar ];
| ower QAl pha = al phaSt ar [25];
upper QAl pha = al phaSt ar [975];
| ower Bet a = bet aSt ar [25];
upper Bet a = bet aSt ar [9757];

{al phaHat - (upper QAl pha - al phaHat ), al phaHat - (I ower QAl pha - al phaHat ),
bet aHat - (upper QBet a - bet aHat ), bet aHat - (I ower QBet a - bet aHat ) }
]

{al phaLow, al phaHi gh, betalLow, betaHi gh} = getCl [data, get Met hodOf Monent sParaneters];

Print ["95% C.1. for a using Method of nonents is (" <>
ToString[al phaLow] <> ", " <>ToString[al phaH gh] <>")"1;

Print ["95% C.1. for B using Method of nonents is (" <>
ToString[betalLow] <> "," <>ToString[betaH gh] <>")"1;

95% C.I. for o using Method of nonents is (0.948008, 1. 07588)
95% C.I. for B using Method of nonents is (73.1629, 83.9168)

Now do the same for the MLE

nssl= | {al phaLow, al phaH gh, betalLow, betaH gh} = get Cl [data, get MLEParaneters];

Print [
"95% C. 1. for a using MLE is (" <>ToStringI[al phaLow] <> "," <>ToString[al phaHi gh] <>")"1;
Print ["95% C.1. for B using MLE is (" <>ToString[betaLow] <> "," <>ToString[betaH gh] <>")"1;

95% C.1. for o using MLE is (0.985055, 1. 06597)
95% C.1. for B using MLE is (73.9381, 81. 7684)
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Conclusion for part E

The confidence interval using MLE for the same percentage is smaller than that for the method of moments. Thisisfor
both the a and 3.

Thisis good. The smaller the Cl isfor the same confidence the better it is. This shows that the MLE method of estima-
tion is better than the method of moments (for large sample size as the case here).

Part f

To answer this part, we use MLE to try to fit Poisson distribution on the data. We use MLE to estimate the A parameter
for the poisson distribution and plot the pdf over the data histogram to seeiif the fit is good
We know that the MLE estimate of A for aPoissonis X

Renove [" A obal ™ %" ]

| anbdaHat = Mean[dataj;
di st = PDF[Poi ssonDi stribution[lanbdaHat ], t];
poi ssonData = Tabl e[{data[i], dist /. t ->data[il}, {i, 1, Length[data]}];
pl = Li st Pl ot [poi ssonDat a, Joi ned - Fal se,
Pl ot Range » Al |, PlotlLabel -»"Fitting Poisson on the data"]

Fitting Poisson on the data

003}
002}

0oLF

500 600 700

st

100 200 300

L ets superimpose the histogram

nBi ns = 100;
gz = nnaMakeDensi t yH st ogram[dat a, nBins];
hi st Pl ot = GeneralizedBarChart [gz, BarStyle - Wite, | mageSi ze - 450, Pl ot Range -»
{{M n[data], Max[data]}, All}, PlotLabel - "H stogram of ganma arrival tinme data"];
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Show [ {hi st Pl ot, pl}, PlotRange -» Al l ]

Histogram of gammaarrival time data
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Conclusion part f

From the above we see that a Poisson distribution is not a good probability law to describe the data. Poisson fits a
random variable which represents the number of times an event occur in some fixed time. The parameter A represents
the average rate at which the event occur per unit time.

The interarrivals times (from the histogram of the data itself) shows that more events occur (particles arrive) which has
the time between them small than when the time is large between them. But in Poisson, the rate should be fixed and not
changing. This explains why Poisson does not give agood fit.

(I really would like to know the correct answer for this one if mineis not correct. Thank you)

Appendix

Contain functions needed

In[1] file ="E: /nabbasi /dat a/nabbasi _web_Page/ny_cour ses/FULLERTON_COURSES/Fal | _2007/mat h_502
_probability_and_statistics/quiz/quiz7/gamma-arrivals.txt";
data=Flatten[lnport [file, "Table"11;

<<"BarCharts™"

nmaMakeDensi t yHi st ogram[original Data_, nBins_] : =
Modul e[ {freq, binSize, from to, scal eFactor, j, a, currentArea},
to=Max[originalData]; from=Mn[original Datal;
binSi ze = (to-from) /nBins; freq = Bi nCount s [ori gi nal Data, binSize];
current Area = Sumibi nSi ze xfreq[[i 1], {i, nBins}];
freq=freq/currentArea; a=from
Table[{a+ (j -1) »xbinSize, freq[[j]1], binSize}, {j, 1, nBins}11;

Printed by Mathematica for Students

Madl - Hook T ] Ton

[lext file of gamma arrivals datal



quiz/quiz7/q7_corrected.nb
quiz/quiz7/gamma-arrivals.txt
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4.7.2 Graded
16/20

Quiz 7 MaTH 502AB November 27, 2007

NASSER ABBASI

Name (please print)

L. Consider X;.---.X,. an i.i.d. sample from a random variables with density

||
f(z|o) = Luxl) (*L) 2
: 20 o

(a) Find the method of moment estimate of o.
(b) Find MLE of o

(c) Find the asymptotic distribution of the MLE.

PART(A)

In the method of moments we formulate the moments of the probability law of the distribution
in which the random variables belong to and equate these moments to the moments obtained from
the sample at hand and solve for the unknown parameters.

m = E(X)
=/ zf (z)dz

1 o =
= —/ e Pdr
20 ) _o

But e~%is symmtric around the z = 0 due to absolute z in the power of the exp.(This
assumes ¢ positive, which is ofcourse true) but it is multiplied by negative = to the left of y-axis
and multiplied by positive z on the right of the y-axis, hence the area of the left of the y-axis
will be equal but negative to the area on the right of the y-axis. Hence the above integral is zero.
Hence

This moment provides no information. Find the second moment.

p2 = E (X?)
17 et
=g 7001‘6 dx

Due to the symmetry of e%" and also 2? is even and symmetrical around z = 0, the above
integral is then twice the integral from z = 0--- 0o and it becomes

Integration by parts gives
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Hence

o=% (1)

Now find us from the sample itself and substitute for it in the above. From the sample,
w2 = Var(sample) + Mean(Sample)
Ig " -
IS e
n4
=1
Since the mean of the population was found to be zero, we can take the mean of the sample

Hence us from the sample becomes

1 n
He = EZZ:;XE

Replace the above in (1) we obtain estimate of the population o as

| o= |m) Xt
=1
PART(B)

The MLE of ¢ is found as follows. Since i.i.d. random variables we write (Where L (o) mean
lik (o) and [ (o) means log (lik (o))

Ly (o) = _Hf (Xilo)

In () = log f (Xilo)

Therefore

In (0) = —nlog (20) — 1) " |X;|

i=1

Now we find the MLE, which is the value of o which maximizes the above function.
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I ie)=0
—-n
SR it =
0+02;l |=0
n
—(m+Z|X,-|:0
i=1

Hence

G- %Z | Xl \/
i=1 !

The above is the MLE estimate of the parameter o.

PART(C)
The asymptotic distribution of the MLE ¢ is normal with mean ¢ and variance ﬁtT)where
I(0) =—E[i; (0)]
But
) I
ln(0) = 5 | ~nlog (20) — ;; | X
_—n + 1 2": 1|
o o2 ro !
and .
n 2
lZ. (0) = EE - G'BZ |X1|
i=1
Hence
I(0)=-E|= - 32"])(-(
N o2 o3 ) ‘
n 2 B = X
=]
_ Ty 2 = ElX 2
=t I @)

Need to find E | X;|, since i.i.d. all random variables has the same expected value as X, hence

1 e -
E|X|=%/ el

—00

1 o= %
=—/ e sdx
g Jo

=0



CHAPTER 4. QUIZES 353

Therefore from (2)

Hence MLE 6, has an asymptotic distribution = N (o, @ @)

Le.
E(6,)=0
and
1
Var (6,) = I (o)
42
==
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2. Suppose that certain electronic components have lifetimes that are exponentially dis-
tributed with parameter A. Five new components are put on test, the first one fails at
100 days, and no further observations are recorded.

{a) What is the MLE of A7
(b) What is the sampling distribution of the MLE?
{c) What is the standard error of the MLE?

PART(A)
The random variable here is the lifetime of a component.

X' xe ™

In this problem the contribution to the likelihood function of A comes from only one random
variable. Hence we need to find the pdf of this random observation, which is an order statistics.
It is the minimum random variable among n random variables where n = 5 here.

Since this is an exponential distribution, we know that the distribution of X(,) is given by
(from section 3.7, chapter 3, textbook)

fxo (&) = nie ™M

Where in the above, the ¢ is the time of the first failures in each sample taken. (sample size is
5 in this problem).

Hence
Ly (A) = nie™™

so for n = 5, the likelihood function is

|L(X) = 5xe ™|

Hence we need to find the maximum of the above function. Since we have only one r.v., no
need to take logs, use standard method:

L (A) = ne ™ — n2the ™M

=0
Solve for \
1—nth=0
i= L
nt

But here n = 5 and time of first failure is ¢ = 100 hence the above becoates ( write 7" = 100 )
then we have
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X
N
PART(B) ///

Since A = g7 Where T'is a 1. V/(éhe-ﬁfst«tﬂne to fail) which has the distribution 5 e, Hence
we conclude that the di trlbutlon of )(5 Bxe . But an exponential distribution is 7e~" , hence
\ now we see that sampling distribution of )\ multiple one over an exponential dlstnbutlon with

parameter (7 = 5\).
(When asked to find distribution of some r.v., do we always have to express in terms of "known"

distributions?) \/ JZ/ ﬁ} > éyﬁ//.'

PART(C)

We need to find the standard dev1at10n of the sampling distribution of ) found above.

Since we found that A~ and the variance of an exponential with
exponential (llqtulmtwn with parameter(r)

parameter 7 is -5, hence variance of A = 72

Hence standard error is the square root of this variance. h{ence standard error of the MLE \ = 7 = 5\

2
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3. Do problem 43(a-¢) of Chapter 8. To obtain MLE of o, vou may use the function
"fzero” in MATLAB. or the function "unircot™ in R.

43. The file camma-arrivals contains another set of gamma-ray data, this one

consisting of the times between arrivals (interarrival times) of 3,935 photons

(units are seconds).

a. Make a histogram of the interarrival times. Does it appear that a gamma
distribution would be a plausible model?

b. Fit the parameters by the method of moments and by maximum likelihood.
How do the estimates compare?

c. Plot the two fitted gamma densities on top of the histogram. Do the fits look
reasonable?

d. Forboth maximum likelihood and the method of moments, use the bootstrap to

estimate the standard errors of the parameter estimates. How do the estimated
standard errors of the two methods compare?

e. For both maximum likelihood and the method of moments, use the bootstrap
to form approximate confidence intervals for the parameters. How do the
confidence intervals for the two methods compare?

. Is the interarrival time distribution consistent with a Poisson process model
for the arrival times?

—

PART (A)

Yes. The following shows the histogram of the data, and a plot of a Gamma distribution with

the shape parameter a = 1 and scale parameter 3 set to the average of the data.
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In[224]:=

Out[226}=

nBins = 100;

gz = nmaMakeDensityHistogram[data, nBins];

histPlot = éeneralizedBarChart|[gz, BarStyle » White, ImageSize - 450,
PlotRange - {{Min[data], Max[data]}, All},
PlotLabel - "Histogram of gamma arrival time data"]

Histogram of gamma armval time data

\,m‘l“luu[‘["‘é&““& T

Let me plot a Gamma distribution with the mean arnival time of the data

In[227]:=

Out[227=

A = Mean[data]

79.9352

a=1;

In[229]:=

Out[229=

Plot[PDF[6ammaDistribution[a, 1], x], {x, 0, Max[data]}, PlotRange - All,
PlotLabel - "Gamm: PURE |

[
[«

Gamma[a1]
0012

0010
0008
0.006
0004

0.002

100 500

PART(B)
Using met
For Gamma

From the above we see that a Gamma distribution 1s possible.

hod of moments. We need 2 equations since we have to estimate 2 parameters a;, .
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_a
lh—)\

pz = Var (X) + (E (X))

()

«
:F(a-i‘l)

Now from the data itself, calculate the First and Second moments and equate to the above
and solve for o, A and these will be our estimate. This little code does the above
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Notice, In Mathematica, it uses 5 asone of the parameters to the Gamma distributions,

; .1 o ;
which is — of the definition in our textbook.

Start by fmndng the first and second moments of the Gamma distnbution

In[235]= | Clear[x, a, A]
ml = ExpectedValue [x, GammaDistribution[a, 1/24], x]

Out{236]=

in[237]= | m2 = ExpectedValue[xz, GammaDistribution[a, 1 /2], x]
Out{237]=
a (1 +a)

.",2

Now fnd the fust and second moments of the data tself

mlForData = Mean[data]

79.9352

m2ForData = Variance[data] + (Mean [data] )2

12 702.9

Now solve for a, A

In[279]= | sol = First@Solve[{ml == mlForData, m2 == m2FoxData}, {a, A}]/
aByMoments = a /. sol

Out[280]=

1.01209%

In[281]= | AByMoments = A /. sol
Qut{281]=

0.0126614

10
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Now using the MLE method. For a :

L(a,)\)zn -

X_aﬂl —AX;
L™ °
< A% a—1_-—AX;
l(a,)\) = Zlog F@Xl e i
n @ n n

Hence we obtain the 2 equations

=nalogA —nlogI'(a) + (a — I)ZlogX,- - )\ZX,-

Il (a, \) =
—— = nlog A — n polyGamma(0, @) + 21: log X;
A(a,)) 1

E)) N >_Xi

Substitute the above in the first equation and set to zero we obtain

[0

o—miog (&) -+ S

0 = nlog (&) — nlog X — n polyGamma(0, o) + Z log X;

And solve for &. Once we find & we then find also \ = %

11
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This code below does the above.

Now find estunates of the parameters by MLE method and do the same as above

In[299]= | Clear[a, A]
n = Length [data]
Out{300]=

3935

In[301]= | xBar = Mean [data]
Out{301]=

75.9352

n
In302]= | eql = nLog[a] - nLog[xBar] -nPolyGamma[0, a] +ZL°g[data[il]
1=1
Out{302]=

_2206.38 + 3935 Log [«] - 3935 PolyGamma[0, o]

Solve the above nmmencally usmg FindRoot

In[303}= | FindRoot[eql, {a, 1}]:
aMLE =a /. %
Out{304]=

1.02633

Now that we found MLE for alpha, use it to find MLE for A

aMLE
In[305]:= | AMLE =
xBax
Out{305]=
0.0128395

Make a table to compare the a. \ found by the above 2 methods

n[306]= | TableForm[{{aByMoments,6 AByMoments},6 {aMLE, AMLE}},
TableHeadings = {{"Method of moments", "MLE"}, {"a", "A"}}]
Out{306)/TableForm=

|22
Method of moments|[1.01209% 0.0126614
MLE 1.02633 0.0128395

12
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PARrT(C)
Now Fit this model again, and compare the MLE fitting to the method of moments fitting

In[350]= | B = ;:
AByMoments
pdfByMomentMethod = Plot [PDF [GammaDistribution [aByMoments, B8], =],
{x, 0, Max[data]}, PlotRange - All, PlotLabel » "Gamma[a A]",
PlotStyle » {Red, Thick}]:
pl = Show[{histPlot, pdfByMomentMethod},
PlotLabel » "Fitting Gamma by method of moments on data", ImageSize - 300];

n[3521= | pdEBYMLE = Plot [PDF [GammaDistribution[aMLE, 1/2aMLE], x], {x, 0, Max[data]},
PlotRange -» All, PlotLabel - "Gamma[a,A]", PlotStyle » {Red, Thick}]’

p2 = Show[{histPlot, pdfByMLE} , PlotLabel » "Fitting Gamma by method of MLE",
ImageSize » 300];

Grid[ {{p2, pl}}]

out[354]=

Fittme Gamma by method of MLE Fittmg Gamma by method of moments on data

0 400 500 600 700 0O 400 500 600 700

This plot shows more closely the fitting on top of each others. They are very close so hard to
see the difference other than near the high frequency part.

13
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In[554] =

Out[556]=

pdfByMomentMethod = Plot [PDF [GammaDistribution [aByMoments, B8], x],
{x, 0, Max[data]}, PlotRange » {{0, 300}, All}, PlotLabel » "Gamma[a A]",
PlotStyle » {Dashed, Thick}];

pdfByMLE = Plot [PDF [GammaDistribution[aMLE, 1/ AMLE], %], {x, 0, Max[data]},

PlotRange -» {{0, 300}, All}, PlotLabel - "Gamma[a,A]", PlotStyle » {Red, Thick}]:

p2 = Show[{histPlot, pdfByMomentMethod, pdfByMLE} ,
PlotLabel -» "Fitting Gamma by method of MLE and Moments", ImageSize - 300,
PlotRange -» {{0, 150}, All}]

Fittmg Gamma by method of MLE and Moments
0.012

0.010 f\

0.008
0.006
0.004 -

0.002

0.000 n
20

The fits above both look reasonable.

PART(D)

Use bootstrap method.

For the method of moments.

Try for n = 500 be the same size. Use the method of moments parameters to generate an n
random variables from Gamma distribution. First time use the parameters estimated from the
data as shown above.

Now, use the sample generated above to estimate the parameters from it again using also the
method of moments. Use these parameters to generate another n random variables. repeat this
process for say N = 5000 and find the variances of the parameters o, A, and hence we find the
standard error which is the square root of these variances.

Here is the code to do the above and the result

(Last minute update), I am getting large result for standard error from the bootstrap method.
I think I have something wrong. Here is the result I get and the code

For Method of moments, I get standard error for alpha=918 and for lambda=18

14
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Part (d)

In[1]:=

Remove["Global "]

SeedRandom[01010101] ;
ml = ExpectedValue[x, GammaDistribution[a, g], x];
m2 = ExpectedValue [xz. GammaDistribution[a, £], x] >

mlFoxData = Mean [data] ;

m2ForData = Variance [datza] + (mlForData) .

sol = First@Solve[{ml == mlForData, m2 == m2ForData}, {a, £}]:
aByMoments = a /. sol;

fByMoments =8 /. sol;

{aByMoments, gByMoments}

]

getMethodOfMomentsParameters[data ] := Module[{sol , aByMoments, SByMoments},

file =

_probability_and_statistics/quiz/quiz7/gamma-arrivals.txt";
data = Flatten[Import[file, "Table"]];

n=>500;

nIter = 5000;

alpha = Table[0, {i, nIter}];
beta = Table[0, {i, nItex}];

{alpha[[l], beta[[l]} = getMethodOfMomentsParameters[data]:

For[i=2, i s nlItex, i++,
{
sample = RandomReal [GammaDistribution[alpha[[i -1], beta[[i - 11], n]:
{alpha[i], beta[[i]} = getMethodOfMomentsParameters[sample];
3
1
Print["Standard error for alpha=", Sqrt[Variance[alpha]]]
Print["Standard error for lambda=", Sqrt[Variance[l / beta]]]

Standard error for alpha=918.308
Sstandard error for lambda=18.79%66

For MLE 1 get
Standard error for alpha—1.68697*10"8
Standard error for lambda=60.2585

15
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Inf1}=

Inf4].=

Now do the same for MLE method

Remove["Global +"]

SeedRandom[01010101];

getMLEParamsters[data ] :=Modulo[{sol, xBar, aMLE, AMLE, eq, a, n},
xBar = Mean[data];

n = Length [data] ;

n
=q=nLog[a] - nLog[xBar] -n PolyGamma[0, o] + ZLog[data[i]];
i=1
sol = FindRoot [eq, {a, 1}];
aMLE = a /. sol;

aMLE
AMLE =

xBar

{aMLE, AMLE}

Remove::rmnsm : There are no symbols matching "Global ™ x".

file =
"E:/nabbasi/data/nabbasi_web_Page/my_courses/FULLERTON_COURSES/Fall_2007/math_502
_probability_and_statistics/quiz/quiz7/gamma-arrivals.txt"”;
data = Flatten[Import[file, "Table"]];

n=500;

nIter = 5000;

alpha = Table[0, {i, nIterxr}];
lambda = Table [0, {i, nItex}]:

{alphaf[l], lambda[l]]} = getMLEParametexrs[data];

For[i =2, i s nIter, i++,
£
sample = RandomReal [GammaDistribution[alpha[[i -1]], lambdafi - 1]], n]:
{alphaf[i]], lambda[[i]} = getMLEParametexrs[sample]
H
1
Print["Standard error for alpha=", Sqrt[Variance[alphal]]
Print["Standard error for lambda=", Sqrt[Variance[lambda]]]

Part (e) and (f)

sorry, run out of time. A Wj(’
ok o 8o\ ™
T W ¢

=

Ne==

\/\D\)\ €

NO\;M M) M m Cl M

A , %Momi tCror ¢ (Were et C MW{C%‘/

16
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4.8 Quizes key solution

Quiz 1 MATH 502AB Fall 2007
Name (please print) -

1. Consider a sequence of days, and let R; denote the event that it rains on day ¢. Let
P(Ry) = p (rain today), P(R;|R;-;) = @, and P(R;|R;_|) = (. Suppose further that
only today’s weather is relevant to predicting tomorrow’s; that is, P(R|Ri-1 N+ ,NRy) =
P(R;|R;-;). What is the probability that it rains n days from now? What happens as n
approaches infinity?

C R
PRa) = PRAVRALY PRt v P (BT ) Bl )

= PR Pleas) & (o) Wi PlRa )
= (olap-) PLRA) -+ (1-8) -

Lok = xep-t b= A= v
Tl

/‘P - ()\/tn Al = alaf,. .t L) +b
w n-{ , ’ )
B N e R L ) i
n->

1
&) A+ A7)
= /?,\,3*’ b\

S )
= -~ 1 o
m o AR - ¥ /
- b (s
=k, -
\"’CL <
N - \’) \
= & /\’o v AT b [—6 V(KFIE":M)
"\ D - = = //H‘.(v
R N "7 - —xwp il pRART

PRV R i)

2. Suppose that a rare disease has an incidenfe of 1 in 1000. Assuming that members of the

populatigaare affectéd independéntly, Find £he probability that two individuals are affected
in a poplilation of 400,000. Giy a numerigal value.
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t
2 Show that if the conditional probab%i(:cies eiist, then
U Al A
P(AiNnA;Nn---NA,) = P(AIXP(A3|A1 NAy) - P(AJAiNA0 - N Any).
et e D A TR ) = plafe)Be)
Fn on=ad, b eaudiny Lotds chyrenty
P e v b &1\ "\Tkﬂ";ﬁ'%‘\ L{k VY- A\[\ AR A Be-i
i ?(P(-;,\i&'\7 o ‘\ .
T PB) = PCADRRGAgINORD = PUR QR (B ’
Pe) -
1 ,-f\p\n): \)(%(\ - . N
PLA - € ) pan®) s PE® ) o a o th)
M L OOk ) PCRA
= pea RRCAR AR R TN
\///_&_4/’_‘&_,,‘ ......... ——— \/,w""‘ ‘I\A ﬁu\'
P Loy o OME éﬂE\D
3. Let A and B be arbitrary events. Use the three axioms of probability to show that
P(AUB) < P(A) + P(B).
Identify the axiom(s) that you use at each step. You are not allowed to use any theorems.
Firok we preve ke 5
V¢ N Fho % C)/A
2 ® ( ‘;Bi\ P‘C 3
@" == f\ U P\ 5\}
, RN
‘ pnoh
- 7 &P‘) - ( (2) v
\9\5 AN\ EW
v (D -
> —
J A 5 ;
New AU® = @U[ | o |
» | M(BW\ i
P [ BN A ) ¢ _ o
P(AUBRY = PUAY Y Bon < ,
PROAN) < P
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4. Let X ~ binomial(n,p). Derive the mode of the probability mass function of X.

~%
p.opGeme oy efao™ ™
Q‘Q'ﬂ\ {\,v?-"(\‘)» /Yx w=%)

Al M B — " /“'::‘;)ﬂ et
i‘}:—, S T o ' n\ b G
V/‘()u_"\ -
(- ¥~ 9 -E‘/M
~— - %P
At '\"};

Te g1 <> 00
17%,‘ — \Qé\\’\*\*\

Ve o, OX
2 Ve T P

o Mpon O ENY
{aheger o

P

Ao Ofreates?
(n+V) 7%

5. Suppose that a rare disease has an incidence of 1 in 1000. Assuming that members of the
population are affected independently, Find the probability that two individuals are affected
in a population of 100,000. Give a numerical value.

PCD )= Jc;u O\QQ\oojoo") ~ )

Leoe )

affecied ng BT T ERO o

X :r‘f 53’ ‘ﬁm \%1\.\0\6\ \) ﬁ(ﬂ ~ ~O%&( %% éq(t

-2) = tw/ao (\00" et | N — \o?

?Qx OQC}( T:G(f’ -
[;,()szm‘*“

hN

. - <,
S T,
g0
—106C QOOQ

< e

‘/P c«\ §>> [N

_ :.0‘561%6\
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Quiz 2 MATH 502AB Fall 2007
( y
Name (please print) Qe\(
1. Use the fact that I'(1/2) = /7 to show that if n is an odd integer, then
— 1!
r2) = YO )
( 2 ) \F{ ﬁ;m~'2}"
Obvisssly  true fo m=) s (=) = I =)
—1 " 2 ES -
: w = AW . 2
wpm ) s rus Qd‘(» p,v,\“c 4 ‘;ﬁ {‘33‘;})«
AR \
Tl / o (dk ‘j\é(\ - ﬁg,z(k»i},
Yt 1 9\1‘1'[ %\ - {%ﬁ"’ ; K z
P2 )T () T
2 - (ak) !
— o
e ) R¥ S ot W 7
A¥ ( ‘ e 3\2 R~
= — T Zeb (v
2K ot

2. If U ~ Uniform[—1,1], find the density of UZ.

j(u(m; ?'_ - <L <t Lk Z-:ul
N o< L] )
" /Fﬁ}r ?(Z{z?:?(g €2 )
- -

:?(\»fgué V’fg}

() - Tl

,li - ‘\f\/g
\ ;(,J’M"

| DI

LUzt

LAGT\

fz(%’: ;7
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e
3. The following /five numbers were randomly generated from the uniform random variable
on (0,1): ,
0.0153 07468 0.4451 09318 OZHEE/

Using these numbers generate five random numbers from the geometric random variable
with parameter p = 1/3. Very briefly explain how you obtain your solution.

77/7@“ cdf Afor s j,emwa e randaom Ve (4 ple
- y (' [} 4’3 : 2
with  parameler 5 2 B u.j L (-3%) --Z }Y wzd, 2
= (3) = F 1T\

o et _ = (£
o 23 = £ =)
)
e dog -
— x. )z i
= F BV (7:/3‘) Leve (/c‘,/auﬂ-a we obtan (Hn ém‘"‘()
Tf we oppy F Ao e AFC

v.o03% , 3'3?75(

4. Three players play 10 independent rounds of a game, and each player has probability
1/3 of winning each round. (a) Find the joint distribution of the numbers of games won
by each of the three players. (b) Identify the distribution of the number of games won by
player one.

(0 Ny = # 0§ %mwzs wdon Loy @{A@%wi (=1, 3
(o \'ﬂ\ " L:“s
£ & G5

o

bl -

’“g,“\}“l

Mo xna+va =

bl LY.
“3) ?\1 WV, %i%,{\&mz c’«»& Q\OJ 3}
A
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5. Let (X,Y") be jointly distributed random variables with pdf
flz,y) = %(xQ—yQ)e'I 0<z<o00 —z<y<La.

(a) Find the marginal density of Y. (b) Find P(X +Y < 1). For part (b) leave your
solution as integrals, and do not calculate the integrals.

2 vo we %
1§ 0 < [ Ld-ahe Ix
(wy = k]
‘?Tﬁ -
J
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Quiz 3 MaTH 502AB Fall 2007

Name (please print) KE \<

1. Suppose that two components have independent exponentially distributed lifetimes T}
and 75, with parameters a and (3, respectively. Find (a) P(Ty > Tz), (b) determine
the distribution of W = 2T3, and (c) use the results in parts (a) and (b) to obtain

P(T1>2T2). ,o(»{-_-/{——@‘(«b -{: L .
LB e Ve §
Jfrg (L=
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w t -
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o]
o ~oent %)
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SR A > o T ExE
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2. Consider a Poisson process on the real line, and denote by N(t;,ts) the number of
events in the interval (t1,t2). If to < ¢1 < tg, find the conditional distribution of
N(to,t1) given that N(to,t2) = n.
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3. Suppose that the probability © of getting heads for a coin is unknown, and let the
prior opinion about © be represented by the uniform distribution on [0,1]. You spin
the coin repeatedly and record the number of times N until a heads comes up. (a)
Find the posterior density of © given N. (b) Use Matlab or any other software to plot
the posterior for cases where N = 1, N = 2, and N = 6. Using your plots, explain
what you infer about the probability of heads in each circumstance.
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376
Quiz 4 MATH 502AB Fall 2007
Name (please print) \¢ L~
1. Let X be a continuous random variable with a pdf that is symmetric about a point .
Provided that E(X) exists, show that E(X) = &.
. » 02 - . L Rcrew
%\V\CQ ‘5L: S QCL)EL'X , /‘/r o M(— Y
Lo
o Slhawe Sk Sy (L-¢) QCL) =©
-~ o U o .5 Ao
NeX ] (v-4) oo Ay _ S o R (wr ) AWw = S w & (e
L= \x{%, - D -
.00 Aw
3 - An)
» (T faerda = § w kL
+& w Qlerg) du = ), 5 ‘
o L exeession

Bk since Qlarg): Flg-M) by sdm-awb M Jes

equels Yerd.
2. Let X be an exponential random variable with parameter A. Find

2
P []X —E(X)| > X}
and compare your result to the Chebyshev’s bound.

W eppiN) EX)= %
L\c:?;)
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3 N ’?’, 787
éxfs):S’ dx = ¢ =-ot1
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3. If X is a discrete random variable, taking values on the positive integers, then show

that E(X) =Y, P(X 2 k). .
. P(X=2) 4 PUX=) 4 o
?(X:\) + Y -~

&X:’LW - o
el 4 P (R=3)t T

4. Find the mean of a negative binomial random variable X with parameters r and p, by
expressing X as sum of indicator variables.

R

Sy O
Y uccens b bee - ot

K Geret P

o= K X T )
EC) = o

- r
c(x) = »p



CHAPTER 4. QUIZES 378

5. IfU=a+bX and V = c+dY, show that |pyv| = |pxy]|.

L*A\()

Coy (Vv = (g (atRXY
- Lbvad Ce OQ/\()
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Quiz 5 MaTH 502AB October 20, 2006

Name (please print)

1. The moment generating function for a random variable X having a x? distribution with
degrees of freedom n > 1 is Mx(t) = (1 — 2t)™™2. Let W have a x? distribution with
degrees of freedom n > 1, and let V' have a x? distribution with degrees of freedom 1. (a).
IfW=U+V,and U and V are independent, determine the distribution of U? (b). What
are the mean and variance of W? M (8D

o -Myle)  —p "L~ (€)
o) MNM' Wt s Y

n/ _ _’" 2
7'/ ( -2t (,r—lt)

1’1{3

= W)=
A
-5 Vv ()CU\/\)

\ be ©
E(w)= n \ Con
\}CVL(N) -2 AN Ao b\ M~7

L A 6&[’)‘\'}"’{{'\’(’) fz,)

[L(n)

\3'\5&\/‘“} "QVC}M
1o

I [}

2. Find the approximate variance of Y = /X, where X is a Poisson random variable with
parameter \.
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3. The random variable Y has a Gamma distribution with parameters o and A. Furthermore,
assume that X given Y has a Poisson distribution with parameter Y2. (a) Obtain E(X).
(b) Obtain Var(X).

1y~ Potesen (X )

E(%} _ ES\EQ%\K)\(

PR SR
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Quiz 6 MATH 502AB October 30, 2006

Name (please print)

In solving the problems below, you can use all the results that we have derived
in class. You do not need to re-derive results. Make sure to cite the results that
you use.

1. Let Xy,---, X, be iid random variables from a (i, 6?), and S? be the sample variance.
What is Var(5%)?

2 2
fY\"\ S 2 QY\")S -\ )
( ) ~ %m‘” :17 \/M (_,,,;_ ) - g

2 O
&
:,P (M l) \[M(Sz') ;; (“ \)
c‘
v 4
a0 €20
> Ju(s)= (n-0)" (nt)

2. Let Xi,---, X, be iid random variables from a A(0,1). Determine the asymptotic
distribution of

(1/m) 31Xl
oo _5/ x* e __}/4.1

- . ! 2 2 b 2
E(\KH:—;S'MI%\C A x :\7;;“- La:e A%:ﬁ
= K\\f\(\l) - EQ‘}(: Y = YA CXe) -\-KEKﬁi\)zs 1

-2
var (X)) = | = %'« E;(
By Coareed  imiy Haass

n _ [z
.l_ ‘Z\x\'\ \/—7‘: | {\/(O,!)
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3.. Let Xj,---, X, be iid random variables from a A/(0,0?) and Y}, --,Y, be iid random

variables from a N(0,03). Write a 95% confidence interval for o?/02.
Xy
2 e
- 2 M=) sk :
('ﬂ 1) Sx v Kga-) ¢ T o~ /X’U\ V) / ,
— % > -

U o, €uy. Fiw,
2+ '1..
’ > rA& =%
= ! - ~ F(ﬂ,n) = ? K‘ RS a5y < Fl-d/ )
2 a[ Q\ n) 3 Q z
2 37(
N . F . Sx F T
= 4s /. CT - 4, _;% ) -5 S
4. Let X ~ N(0,2) and Y ~ exponential(1). Provided that X is independent of Y, identify
the distribution of }(/ VY.

X
V2 o
VY;‘(—\ f
S~ X a o m&%@\x t oA
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On solving this problem: Let Ul, U2, U3 be independent random variables uniform on [0,1].
Find the probability of the roots of the quadratic Ulzy 4+ U2z + U3 are real
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Small investigation into problem 11

Nasser Abbasi, 9/26/07

The problem :

Let Uy, U,, Uz be independent random variables uniform on [0,1]. Find the probability of the roots of the
quadratic U; x2+ U, x +U; are real

Answer:

Roots are real when discriminantis = 0

nes)= | eq = UL x2 + U2 x + U3;
expr = First @Sol ve[eq == 0, XI;
f =First eCases[expr, Sqrt [any_] »any, Infinity] («Pull out the expression under the sqrt =)

out[27)= w?-aulw
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2 | problem11.nb

Hence we want to find P(U22 - 4 U1 U3 >0)

This is the VOLUME between the above surface and between a cube of side 1. i.e. a cube of volume 1.

As an initial look, One way to view this is to look at the constant surface contours in 3 D space. We can
look at the constant contour surfaces in which the function U2% - 4 U1 U3 is zero. And then look at the
surface in which this function is on the positive side and then on the negative side of it. This will give
us an idea where the volume of interest lies in relation to the zero contour surface.

ing)= | ContourPlot3D[f , (U1, O, 1}, {U2, O, 1}, {U3, O, 1}, AxeslLabel - {"ul", "u2", "u3"},
Contours -» {0, -.5, .5}, ContourStyle - {Yell ow, Red, G een}]

ut 100

out[28]=

Printed by Mathematica for Students
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Cell[TextData[{Cell[TextData[{ValueBox["FileName"]}], “Header"], Cell[" ", "Header", CellFrame -> {{0, 0.5}, {0, 0}}, CellFrameMargins -> 4], " ",

Cell[TextData[{CounterBox["Page"]}], “PageNumber”]}], CellMargins -> {{Inherited, 0}, {Inherited, Inherited

We see from the above that surfaces below the yellow surface (the GREEN) are positive, and those
above it (RED) are negative. We can get a better view of the volume by getting a plot of the region
where such a function is POSITIVE. Next we draw the solid region where this function is POSITIVE

9= | Regi onPl ot3D[f >0, (U1, O, 1}, (U2, O, 1}, {U3, O, 1},
AxesLabel - {"ul", "u2", "u3"}, PlotStyle >Directive[Yellow, Opacity[0.5]], Mesh - None]

Out[29]=

o= | Regi onPl ot 3D[f >0, (U1, O, 1}, (U2, O, 1}, {U3, O, 1},
AxesLabel - {"ul", "u2", "u3"}, PlotStyle >Directive[Yellow], Mesh - None]

Out[30]=
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4 ‘ problem11.nb

So the solid volume in the above represents the numerical value of the probability we are looking for.
It is hard for me now to see the regions of integration analytically, but there is a simulation run which
gives an approximate value for the probability we need

in@31:= | N =3000000; SeedRandom[0101017;

ul = Tabl e [RandonReal [{0, 1}], {i, n}1;

u2 = Tabl e [RandonReal [{0, 1}]1, {i, n}1;

u3 = Tabl e [RandonReal [{0, 1}], {i, n}1;

r =Select [u2®-4ulu3, #2 0&];

Print ["Probability is ", N[Length[r]/n]]

Probability is 0.253976
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